Podcasts about hefezellen

  • 8PODCASTS
  • 11EPISODES
  • 17mAVG DURATION
  • ?INFREQUENT EPISODES
  • Feb 14, 2023LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about hefezellen

Latest podcast episodes about hefezellen

DIE GELBE COUCH
93 - Live vom Marburger Ideenwettbewerb

DIE GELBE COUCH

Play Episode Listen Later Feb 14, 2023 15:04


Die Hütte war voll brechend voll. Und die Stimmung war super. Am Rande der Veranstaltung habe ich Stimmen eingesammelt. Viel Spaß mit ein paar Eindrücken vom diesjährigen Marburger Ideenwettbewerb. Der Marburger Ideenwettbewerb bildete dieses Jahr das Highlight und den Abschluss des Marburger Gründungscamps. Bereits im September startet die Veranstaltung mit Vorträgen zu Themen wie Health Tag und künstliche Intelligenz. Im November fand dann ein zweiwöchiges Bootcamp rund um Gründungsthemen statt das auch ziemlich gut besucht. Als Keynote Speaker war damals Patrick Klingberg aus dem OMR Kosmos gebucht, den ihr auch hier in einer der nächsten Folgen hören könnt. Und nun war es endlich soweit - es konnte vor einer großen Jury und einem noch größeren Publikum gepitched werden. Zahlreiche Teams hatten sich beworben, doch nur zwölf konnten vor dem interessierten Publikum ihre Ideen vorstellen. Das Projekt "Happy" hat den Hauptpreis in Höhe von 6.000 Euro sowie den Sonderpreis "Health" gewonnen. Es befasst sich mit der Vorhersage von Erkrankungen durch das Screening von Hefezellen. Platz zwei ging an "Kardio IQ", dessen Elektrokardiogramm kardiologische Erkenntnisse liefert. Es hat bereits einen Partner und gewann 3.000 Euro. Platz drei und den Sonderpreis "Künstliche Intelligenz" gewann die Arbeitsgruppe "Teclex", die ein Verfahren zur schnellen Recherche von juristischen Texten entwickelte. Der Sonderpreis "Social Entrepreneurship" ging an "Unamanus", die eine sprach-barrierefreie virtuelle Plattform für Flüchtlinge schuf. Alle Sonderpreise brachten noch einmal 4.000 Euro ein. Moderation: Steffen Schmidt | Audioproduktion: Clemenz Korn Eine Podcast der WR56 Kreativagentur (www.wr56.de) in Marburg. Facebook: https://www.facebook.com/diegelbecouch Instagram: https://www.instagram.com/diegelbecouch Sie wollen Ihr Unternehmen, Ihre Produkte und Dienstleistungen auf unserer gelben Couch präsentieren? Bewerben Sie sich jetzt für ein Interview in unserem Podcast. Schreiben Sie uns einfach eine Email an info@wr56.de  Mehr aus dem Werkraum56? Erhalten Sie die neuesten Hörspiele, Videos und Podcast sowie Zugang zu exklusiven Netzwerk-Events. Email eintragen und ab geht´s! https://wr56.de/newsletter

Die Sendung mit der Maus
Sachgeschichte: Hefe

Die Sendung mit der Maus

Play Episode Listen Later Jan 6, 2023 8:14


Wie wird eigentlich Hefe hergestellt? Das findet Christoph in einer Hefe-Fabrik heraus. Dort erfährt er, wovon sich Hefezellen ernähren und wie sie sich vermehren. Beim Backen von Hefezöpfen findet er außerdem die Antwort auf die Frage, warum der Teig geht und was das mit „pupsenden“ Hefepilzen zu tun hat.

antwort dort ut christoph mgr hefe teig sachgeschichten hefeteig die sendung mit der maus sachgeschichte hefezellen
Die Sendung mit der Maus
Sachgeschichte: Hefe

Die Sendung mit der Maus

Play Episode Listen Later Jan 6, 2023 8:14


Wie wird eigentlich Hefe hergestellt? Das findet Christoph in einer Hefe-Fabrik heraus. Dort erfährt er, wovon sich Hefezellen ernähren und wie sie sich vermehren. Beim Backen von Hefezöpfen findet er außerdem die Antwort auf die Frage, warum der Teig geht und was das mit „pupsenden“ Hefepilzen zu tun hat.

antwort dort ut christoph mgr hefe teig sachgeschichten hefeteig die sendung mit der maus sachgeschichte hefezellen
Der Gründerszene-Podcast
#97 Der Formo-Gründer will Laborkäse zu Geld machen

Der Gründerszene-Podcast

Play Episode Listen Later Nov 16, 2021 38:20


Sarah Heuberger und Raffael Wohlgensinger | Mozzarella aus dem Labor? Daran arbeitet das Berliner Food-Startup Formo. Statt Kühe zu melken, füttert es Hefezellen, um künstlichen Käse herzustellen. Investoren stritten sich vor Kurzem sogar darum, an der jüngsten Finanzierungsrunde des Lebensmittelherstellers teilzunehmen. Umgerechnet 42 Millionen Euro sammelte Formo ein – die größte Series A, die ein europäisches Food-Startup jemals abgeschlossen hat. In Folge 97 unseres Podcasts spricht Wohlgensinger über die Kriterien, nach denen er seine Neugesellschafter ausgewählt hat und darüber, warum sein Käse zuerst in Singapur statt in der EU erscheinen wird. Er verrät außerdem, warum der Preis im Supermarkt am Ende für ihn über Erfolg oder Niederlage entscheidet.

Eli's Abitur Crashkurs
#74 Abi Biologie - Stoffwechsel & Ökologie (Anwendungsaufgabe Hefezellen)

Eli's Abitur Crashkurs

Play Episode Listen Later May 12, 2020 18:30


Hallo, schön, dass Du dabei bist. Ich hoffe, die erste Abiturklausur in Geschichte ist bei Dir gut gelaufen und Du bist nun bereit für das Bio-Abitur. Passend dazu wollen wir uns eine Anwendungsaufgabe mit einem Themenübergriff auf die Fächer Stoffwechsel und Ökologie anschauen. Wir werden gemeinsam zwei Aufgaben bearbeiten. Die erste beinhaltet das Thema Gärung, welche wir uns in der #51 Folge angeschaut haben. Die zweite Aufgabe ist dann der Themenübergriff, welchen wir genau bearbeiten werden. Ich hoffe, diese Anwendungsaufgabe hilft Dir und Du kannst Dich nun besser mit den Aufgaben identifizieren und diese verstehen. :) Übrigens kommen in dieser Folge auch die Lotka-Volterra Regeln dran. Diese findest Du genauer erklärt in der #29 Folge. Übrigens haben wir jetzt auch eine eigene Website, schaue doch gerne mal auf: https://www.9thwear.com vorbei. :) Dein Name als Unterstützer am Anfang jeder Podcast-Folge? Ich werde Dich am Anfang der nächsten Podcast-Folge namentlich aufführen. Wenn Dir der Podcast zu einem besseren Gefühl oder einer besseren Note verholfen hat, dann freue ich mich über Deine Unterstützung, damit können wir sicherstellen, dass wir weiterhin für Dich tolle Lerninhalte präsentieren können. Mit Paypal kannst Du uns mit folgendem Link unterstützen: https://www.paypal.me/abiturcrashkurs Auch mit einer Bewertung bei Apple Podcasts oder einer lieben Nachricht von Dir kannst Du uns gern unterstützen ❤ Audiovisuelle Direktion & Produktion: Christian Horn

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Über den therapeutischen Nutzen von Hefezellen-ein historischer Überblick

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19

Play Episode Listen Later Jun 24, 2010


Thu, 24 Jun 2010 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/12148/ https://edoc.ub.uni-muenchen.de/12148/1/Eder_Gabriele.pdf Eder, Gabriele ddc:610, ddc:600, Medizinische Fa

nutzen eder ddc:600 hefezellen
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Identifizierung und Charakterisierung neuer Interaktionspartner des mitochondrialen Hsp70

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later May 7, 2007


Mitochondriales Hsp70 spielt eine wichtige Rolle bei der Biogenese und Funktion von Mitochondrien. Es ist essenziell für den Import, die Faltung und den Abbau mitochondrialer Proteine. Wie alle Hsp70-Proteine arbeitet mtHsp70 dabei mit Cochaperonen zusammen. In dieser Arbeit wurden neue Interaktionspartner von mtHsp70 identifiziert und funktionell charakterisiert. MtHsp70 ist die zentrale Komponente des Importmotors der TIM23-Translokase, der den ATP-abhängigen Transport von Proteinen über die Innenmembran der Mitochondrien vermittelt. Mit Tim14 und Mdj2 wurden in dieser Arbeit zwei Proteine des Importmotors als J-Cochaperone identifiziert. Sowohl Tim14 als auch Mdj2 wurden als MBP-Fusionsproteine aus E. coli gereinigt und stimulierten die ATPase-Aktivität von mtHsp70. Eine Variante von Tim14 mit einer Mutation im HPD-Motiv, die die Stimulation der ATPase-Aktivität von mtHsp70 durch Tim14 verhindert, konnte die Funktion von Tim14 in Hefezellen nicht übernehmen. Die Entdeckung von membranassoziierten J-Proteinen im Importmotor macht deutlich, dass mtHsp70 durch die Stimulation seiner ATPase-Aktivität effizient an ein importiertes Protein binden kann, sobald dieses die Translokationspore des TIM23- Komplexes verlässt. Ebenso wird die evolutionäre Konservierung zwischen dem Importmotor und bakteriellen Hsp70-Systemen ersichtlich. Der Importmotor der TIM23-Translokase ist aber eine Ausnahme unter den Hsp70-Systemen, da in diesem System mit Tim16 eine weitere, regulatorische Komponente identifiziert werden konnte. Tim16 ist ein J-ähnliches Protein, das selber keine stimulierende Wirkung auf die ATPase-Aktivität von mtHsp70 hat, aber die Stimulation von mtHsp70 durch Tim14 reguliert. Dies könnte einen unnötigen Verbrauch von ATP durch mtHsp70 in Abwesenheit eines Präproteins verhindern. Mit der Charakterisierung der J- und J-ähnlichen Proteine des Importmotors wurden wesentliche Erkenntnisse über die Funktionsweise des Importmotors geliefert. Ein bisher nicht bekanntes Protein wurde zusammen mit mtHsp70 aus S. cerevisiae gereinigt und anschließend biochemisch charakterisiert. Dieses Protein, Hep1, ist ein lösliches Protein der mitochondrialen Matrix. Es interagiert mit mtHsp70 in seiner nukleotidfreien und ADPgebundenen Form. Für diese Interaktion ist die ATPase-Domäne von mtHsp70 notwendig. Jedoch trägt vermutlich auch die PBD zur Bindung von mtHsp70 an Hep1 bei, da eine solche Bindung nur beobachtet werden konnte, wenn mtHsp70 sowohl die ATPase-Domäne als auch die PBD aufweist. Hep1 hat im Gegensatz zu den bekannten Cochaperonen keinen Einfluss auf den ATPase- Zyklus von mtHsp70. Allerdings aggregieren in Abwesenheit von Hep1 mitochondriale Hsp70-Proteine. Diese Aggregation ist irreversibel und führt zum Verlust der Funktion der mitochondrialen Hsp70-Proteine. Diese Beeinträchtigung führt wiederum zu Defekten in Prozessen, die funktionelle mitochondriale Hsp70-Proteine benötigen. So wurden in ∆hep1- Zellen Defekte im mitochondrialen Proteinimport und der Biogenese von Eisen-Schwefel- Clustern beobachtet. Aufgrund dieser Defekte zeigen ∆hep1-Zellen einen Temperatursensitiven Wachstumsphänotyp. Die Tendenz zur Aggregation ist spezifisch für mitochondriale Hsp70-Proteine, wobei besonders die nukleotidfreie Form von mtHsp70 betroffen ist. Im aggregierten Material ließ sich eine erhöhte Sensitivität der ATPase-Domäne gegenüber zugesetzter Protease feststellen, was auf eine Fehlfaltung dieser Domäne deutet. Es wurde eine Region in der ATPase- Domäne von mtHsp70 identifiziert, die zur Aggregation von mtHsp70 beiträgt. Durch Austausch dieser Region gegen die entsprechende Region aus DnaK, dem nächsten nicht mitochondrialen Verwandten von mtHsp70, konnte ein teilweise funktionsfähiges Hsp70- Protein hergestellt werden, dessen Löslichkeit nicht mehr von Hep1 abhängig ist. MtHsp70 aggregiert nur, wenn es sowohl die ATPase-Domäne als auch die PBD aufweist. Die Interdomänenkommunikation zwischen der ATPase-Domäne und der PBD von mtHsp70 scheint zur Ausbildung einer instabilen Konformation notwendig zu sein. Hep1 bindet an mtHsp70 in dieser Konformation und verhindert somit die Aggregation. Mit Hep1 wurde in dieser Arbeit ein neuer Typ von Interaktionspartnern mitochondrialer Hsp70-Proteine entdeckt. Es wirkt als Chaperon für dieses Hsp70-Proteine, indem es an sie bindet und deren Aggregation verhindert.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Die mitochondriale Außenmembran beherbergt eine Vielzahl an Proteinen, die anhand ihrer Topologie in unterschiedliche Klassen eingeteilt werden können. Im Rahmen dieser Arbeit wurde die Biogenese von zwei Klassen untersucht. Die erste besitzt eine hydrophile cytosolische Domäne und ist über eine Transmembrandomäne im N-terminalen Bereich in der Membran verankert. Dieser N-terminale Bereich enthält die Signalsequenz dieser Proteine und dient gleichzeitig als Membrananker, weshalb er als Signal-Anker-Domäne bezeichnet wird. Zu dieser Proteinklasse gehören die beiden Rezeptorkomponenten des TOM-Komplexes, Tom20 und Tom70, und in S. cerevisiae das Protein OM45 mit bisher unbekannter Funktion. Zur Bestimmung der Bedeutung der Signal-Anker-Domäne für die Funktion des jeweiligen Proteins bzw. zur strukturellen und funktionellen Charakterisierung dieses Sequenzabschnittes wurde ein Komplementationsansatz benutzt. Damit konnte gezeigt werden, dass die Signal-Anker-Domänen mitochondrialer Außenmembranproteine funktionell austauschbar sind. Folglich spielen sie für die spezifische Funktion des Proteins nur eine untergeordnete Rolle, sind allerdings für den Transport zu den Mitochondrien und für die Verankerung in der Außenmembran von entscheidender Bedeutung. Des Weiteren konnte ich die strukturellen Elemente bestimmen, die zusammen mit der Ankerdomäne das topogene Signal bilden. Eine moderate Hydrophobizität der Transmembrandomäne scheint am wichtigsten zu sein, um diese Proteine zu Mitochondrien zu dirigieren. Eine positive Nettoladung in beiden flankierenden Regionen der Transmembrandomäne erhöht die Effizienz des Transports zu den Mitochondrien und die Membraneinbaurate, ist aber keine essenzielle strukturelle Eigenschaft dieses Signals. Zusätzlich zur Charakterisierung der Signal-Anker-Domänen wurde der Importmechanismus dieser Proteinklasse untersucht. Dieser ist gemäß unserer Ergebnisse nicht von den bekannten Importrezeptoren, Tom20 und Tom70, abhängig, benötigt aber sehr wohl die zentrale Tom-Komponente Tom40. Im Gegensatz zu Vorstufen von Proteinen interner mitochondrialer Kompartimente und von beta-Barrel-Proteinen der Außenmembran scheinen die Vorstufen von Proteinen mit einer Signal-Anker-Domäne nicht über den von Tom40 gebildeten Kanal importiert zu werden. Höchstwahrscheinlich werden diese Proteine durch andere Teile von Tom40 erkannt und anschließend an der Protein-Lipid-Interphase in die Membran eingebaut. Die zweite untersuchte Proteinklasse der mitochondrialen Außenmembran sind die beta-Barrel-Proteine, welche über mehrere antiparallele beta-Faltblätter in der Membran verankert sind. Diese Proteine sind neben Mitochondrien in der Außenmembran von Chloroplasten und gram-negativen Bakterien zu finden. Zu Beginn dieser Arbeit war wenig über die Biogenese mitochondrialer beta-Barrel-Proteine bekannt. Wir konnten zeigen, dass diese Proteinklasse über einen evolutionär konservierten Weg in Mitochondrien importiert wird. Beta-Barrel-Proteine werden zunächst mit Hilfe des TOM-Komplexes zur Intermembranraumseite transportiert. Von dort werden sie durch einen zweiten oligomeren Proteinkomplex, den TOB-Komplex, in die Außenmembran eingebaut. Als erste Tob-Komponente konnten wir das essenzielle Protein Tob55 identifizieren und charakterisieren. Es kann eine Pore in Lipidmembranen bilden und könnte folglich für die Insertion der beta-Barrel-Vorstufen in die Außenmembran verantwortlich sein. Mas37 wurde ebenfalls als Bestandteil dieses Komplexes beschrieben. Auf der Suche nach weiteren Komponenten konnte ich Tob38 mit Tob55 zusammen reinigen. Tob38 ist wie Tob55 essenziell für das Wachstum von Hefezellen und für die Funktion des TOB-Komplexes. Es ist auf der Oberfläche der mitochondrialen Außenmembran lokalisiert. Tob38 interagiert mit Mas37 und Tob55 und ist auch in Abwesenheit von Mas37 mit Tob55 assoziiert. Der Tob38-Tob55 Kernkomplex bindet Vorstufen von beta-Barrel-Proteinen und ermöglicht deren Einbau in die Außenmembran. Die Depletion von Tob38 führt zu stark verringerten Mengen an Tob55 und Mas37 und die verbleibenden Proteine bilden keinen Komplex mehr. Der Import von beta-Barrel-Vorstufenproteinen in Tob38-depletierte Mitochondrien ist stark beeinträchtigt, wohingegen andere Außenmembranproteine oder Proteine anderer mitochondrialer Subkompartimente mit gleicher Effizienz wie in Wildtyp-Organellen importiert werden. Demnach besitzt Tob38 eine äußerst wichtige und spezifische Funktion bei der Biogenese von mitochondrialen beta-Barrel-Proteinen. Es könnte für die Stabilität und Assemblierung des TOB-Komplexes notwendig sein oder an der Ausbildung einer transienten Assoziation zwischen dem TOM- und dem TOB-Komplex beteiligt sein und dabei den Transfer von Vorstufenproteinen erleichtern. Andererseits könnte Tob38 auch als Regulator der von Tob55 gebildeten Pore fungieren. Mim1 konnte im Rahmen dieser Arbeit als eine weitere am Import bzw. der Assemblierung des beta-Barrel-Proteins Tom40 beteiligte Komponente charakterisiert werden. Die Depletion von Mim1 führt zu stark verringerten Mengen an assembliertem TOM-Komplex und zur Akkumulation von Tom40 als niedermolekulare Spezies. Wie alle mitochondrialen beta-Barrel-Proteine werden die Vorstufen von Tom40 durch den TOB-Komplex in die Außenmembran eingebaut. Mim1 wird höchstwahrscheinlich nach diesem TOB-abhängigen Schritt benötigt. Aufgrund der starken Konservierung im Bereich des Transmembransegments von Mim1 beim Vergleich der Proteinsequenzen verschiedener Pilze könnte das Protein als eine Art Membran-Chaperon fungieren. Dabei könnte Mim1 notwendig sein, um nicht oder teilweise assembliertes Tom40 in einer kompetenten Form für die Assemblierung mit den kleinen Tom-Proteinen und mit Tom22 zu halten. Mim1 ist weder eine Komponente des TOM-Komplexes noch des TOB-Komplexes, sondern scheint vielmehr Bestandteil eines weiteren, bisher nicht charakterisierten Komplexes zu sein. Zusammenfassend kann gesagt werden, dass Mim1 eine spezifische und unverzichtbare Rolle bei der Assemblierung des TOM-Komplexes spielt.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Einfluß der Chromatinumgebung auf die Genregulation durch den Transkriptionsfaktor Sin4 aus der Hefe Saccharomyces cerevisiae

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19

Play Episode Listen Later Oct 9, 2003


Nach der Aufklärung der Basenabfolge des Genoms von Saccharomyces cerevisiae ist die Funktion der 30.000-40.000 Gene und insbesondere das Zusammenspiel der Regulation der einzelnen Gene ein zentrales Thema der Molekularbiologie. Die DNA eukaryonter Zellen liegt durch Bindungen an Histon-Proteine im Zellkern als Chromatin vor. Die Chromatinstruktur dient nicht nur der Komprimierung der DNA auf engstem Raume, sondern hat auch starke Auswirkungen auf die Funktion der DNA. So müssen Gene bei ihrer Aktivierung durch Veränderung ihrer Chromatinstruktur, die bis zur Ablösung der Histone führen kann, den für die Transkription benötigten Enzymen und Faktoren erst zugänglich gemacht werden. Das PHO5-Gen der Hefe Saccharomyces cerevisiae stellt ein sehr gut untersuchtes Modell dar, bei dem Veränderungen der Chromatinstruktur genau untersucht und mit dem funktionellen Zustand des Gens korreliert worden sind. PHO5 kodiert für eine saure Phosphatase, die bei Verbrauch der Phosphatreserven der Zelle in den periplasmatischen Raum sezerniert wird, um aus dort eventuell vorhandenen organischen Phosphatverbindungen Phosphat zu gewinnen. Ist im Medium genügend Phosphat vorhanden, ist PHO5 reprimiert. In diesem Zustand ist die Chromatinstruktur des PHO5-Promotors durch vier dicht aufeinander folgende Nukleosomen gekennzeichnet, wodurch der Promotor Enzymen und regulatorischen Proteinen allgemein schlecht zugänglich ist. Nur zwischen dem zweiten und dem dritten Nukleosom ist die dichte Anordnung der Nukleosomen durch einen etwa 70 bp langen gut zugänglichen Bereich unterbrochen. In dieser sogenannten hypersensitiven Region bindet bei Phosphatmangel der aktivierende Transkriptionsfaktor Pho4 gemeinsam mit dem Faktor Pho2 an ein UAS-Element und induziert die PHO5-Expression. Dabei lösen sich die vier Nukleosomen vom DNA-Strang ab. Sin4 ist ein Transkriptionsfaktor der Hefe Saccharomyces cerevisiae, der auf mehrere Promotoren zumeist reprimierenden Einfluss ausübt. Ausgangspunkt der hier vorliegenden Arbeit war der Befund, dass in Abwesenheit von Sin4 die Gegenwart der prokaryontischen lacZ Sequenz stromaufwärts des PHO5-Promotors zu einer Derepression des PHO5-Gens führt, und zwar in Gegenwart von Phosphat, also unter eigentlich reprimierenden Bedingungen. Dieser Effekt wurde ursprünglich bei der Verwendung der kodierenden Sequenz von lacZ als dem PHO5-Promotor nachgeschalteten Reporter-Gen in sin4-Hefezellen entdeckt. Eine Frage der hier vorliegenden Arbeit galt der Ursache der Derepression von PHO5 durch die lacZ kodierenden DNA-Sequenz. Dazu interessierte uns, ob die Derepression ein spezielles Phänomen der lacZ-Sequenz ist oder ob es sich hierbei eher um eine allgemeine Eigenschaft von DNA-Fragmenten handelt. Außerdem interessierte uns, ob die Herkunft der DNA aus prokaryonten oder eukaryonten Zellen eine Rolle spielen könnte. Dazu wurde jeweils eine große Anzahl zufällig ausgewählter DNA-Fragmente einer Länge zwischen 900bp und 1200bp aus den Genomen der Hefe Saccharomyces cerevisiae und der Bakterien Escherichia coli und Micrococcus lysodeikticus an entsprechender Stelle vor den PHO5-Promotor integriert. Die so konstruierten Plasmide wurden in einen Hefestamm transformiert, in dem das SIN4-Gen zerstört worden war. Insgesamt wurden 400 Klone mit integrierten Hefe-DNA-Fragmenten, 300 Klone mit integrierten M. lysodeikticus-DNA-Fragmenten und 14 Klone mit integrierten E. coli-DNA-Fragmenten untersucht. Die Bestimmung der Phosphatase-Aktivitäten der einzelnen Klone ergab für fast alle Plasmide mit integrierten E. coli- und M. lysodeikticus-DNA-Fragmenten eine erhöhte Aktivität trotz phosphatreichen Mediums. Im Gegensatz dazu zeigten die wenigsten Plasmide mit integrierten Hefe-DNA-Fragmenten eine Erhöhung der PHO5-Expression unter denselben Bedingungen. Von den insgesamt 400 getesteten Plasmiden wiesen nur neun eine gesteigerte PHO5-Expression auf. In allen Fällen, also für alle E. coli-, M. lysodeikticus- und Hefe-DNA-Fragmente, wurde nur in Abwesenheit von Sin4 eine erhöhte Phosphatase-Aktivität gemessen. Bei seiner Anwesenheit wurden in phosphatreichem Medium nie gesteigerte Aktivitäten beobachtet. Diese Ergebnisse zeigen deutlich, dass die hier beobachtete Derepression typischerweise eine Eigenschaft prokaryonter DNA ist. Nur ein Bruchteil der eukaryonten DNA-Fragmente aus dem Hefe-Genom führt zu einer Derepression der Promotoraktivität, während dies nahezu alle prokaryonten DNA-Fragmente aus Escherichia coli- bzw. Micrococcus lysodeikticus tun. Um die neun Hefe-DNA-Fragmente, die zu einer Aktivierung des PHO5-Promotors führten, auf eventuelle Besonderheiten zu untersuchen, wurden ihre DNA-Sequenzen bestimmt und analysiert. Außerdem wurden noch zwei E. coli-DNA-Fragmente sequenziert, die zu keiner gesteigerten PHO5-Expression geführt haben. Diese sehr eindeutigen Ergebnisse werfen Fragen nach dem zugrunde liegenden Mechanismus auf. Eventuelle DNA-Methylierungen oder kryptische Promotoren schieden als Erklärung des Phänomens aus. Unterschiede des G-C-Gehalts der einzelnen DNA-Fragmente könnten besonders für die prokaryonte DNA teilweise eine Erklärung liefern. Die beiden prokaryonten Genome haben mit 51% bzw.72% einen wesentlich höheren G-C-Gehalt als das Hefegenom mit 38%. Besonders die beiden E. coli-DNA-Fragmente, die zu keiner gesteigerten PHO5-Expression führten, besitzen einen wesentlich geringeren G-C-Gehalt als der Durchschnitt des gesamten E. coli-Genoms (44,7% bzw. 38,0% im Vergleich zu 51%). Eukaryonte DNA besitzt in ihrer Sequenz im Gegensatz zu der aus Prokaryonten eine gewisse Periodizität, die sich etwa alle 10,5bp wiederholt und die Ausbildung von Nukleosomen erleichtert. Das Fehlen dieser Periodizität in prokaryonter DNA könnte sich ebenfalls auswirken, z.B. über eine labile Chromatinstruktur, die sich auch auf den benachbarten PHO5-Promotor auswirkt und dadurch eine Dereprimierung von PHO5 in sin4-Zellen auslöst. Die Dereprimierung des PHO5-Promotors durch die wenigen Hefe-DNA-Fragmente trotz reprimierender Bedingungen könnten aufgrund anderer Mechanismen zustande zu kommen. Die neun Hefe-DNA-Fragmente, die zu einer Aktivierung des PHO5-Promotors führten, zeigten auch keinen vom Hefegenom abweichenden G-C-Gehalt. Es ist auffällig, dass alle 9 DNA-Fragmente intergenische Bereiche enthalten. In diesen Bereichen gibt es oft regulatorische Elemente, die häufig in hypersensitiven Regionen gefunden werden. Hypersensitive Regionen sind nicht in Nukleosomen gepackt und könnten dadurch auch die umgebene Chromatinstruktur beeinflussen. Unabhängig von den mechanistischen Überlegungen zeigen diese Untersuchungen, dass die Aktivität eines Promotors von der Umgebung beeinflusst werden kann und dass daher der Einsatz von heterologen Reportergenen mit Vorsicht betrachtet werden muss.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Das Dhh1 Protein aus Saccharomyces cerevisiae ist aufgrund von acht hoch konservierten Aminosäure-Motiven als putative RNA Helikase klassifiziert. In S. pombe (Ste13p), Drosophi-la melanogaster (ME31B), Xenopus laevis (Xp54), Mus musculus (mmRCK) und Homo sa-piens (hRCK/p54) findet man Proteine, die zu Dhh1p eine sehr hohe Konservierung von bis zu 83 % aufweisen. Lediglich der N- und C-Terminus dieser Proteingruppe ist nicht konserviert. In der vorliegenden Arbeit wurde die Auswirkung der Deletion von DHH1 in Saccharomyces cerevisiae auf verschiedene Aspekte der DNA Schädigung und Reparatur, sowie die Funktio-nalität verschiedener Domänen von Dhh1p durch Mutationsanalysen untersucht. Im ersten Teil der Arbeit wurde das DHH1 Gen in verschiedenen Hefestämmen deletiert und die Auswirkungen von DNA schädigenden Substanzen auf diese Mutanten untersucht. Die De-letion von DHH1 führte zu einer starken Erhöhung der Sensitivität von Hefezellen sowohl ge-genüber Bleomycin als auch gegenüber MMS. Allerdings zeigten dhh1D-Zellen nur eine schwache Sensitivität gegenüber UV-Strahlung und keine Sensitivität gegenüber g-Strahlung. Dies weist sehr stark darauf hin, dass die beobachteten Sensitivitäten auf einem eventuell durch Membrandefekte verursachten, sogenannten „uptake“-Phänotyp beruhen. In „uptake“ unabhängigen Experimenten wurde die Funktionalität des Non-homologous End-joining Repa-raturweges der Hefe untersucht. Dabei konnte gezeigt werden, dass dhh1D-Stämme eine um den Faktor fünf reduzierte Effizienz in der Rezirkularisierung linearisierter Plasmide zeigen. Allerdings ist nur die Effizienz, nicht die Genauigkeit des End-joining in dhh1D-Stämmen be-troffen – die rezirkularisierten Plasmide wurden zu 100 % genau repariert. Dies weist darauf hin, dass die Deletion sich auf mehr als nur einen einzelnen Aspekt zellulä-rer Vorgänge auswirkt. Im zweiten Teil der Arbeit wurde die extreme Sensitivität der dhh1D-Stämme gegenüber Ble-omycin und MMS als Testsystem für die funktionelle Charakterisierung verschiedener Dhh1p Domänen verwendet. Dabei zeigte sich, dass eine Deletion des N-Terminus von Dhh1p kaum Einfluss auf die Funktionalität des Proteins hat. Die Deletion des C-Terminus führt zu einer deutlichen Sensitivität der Zellen gegenüber Bleomycin. Bei Deletion beider Termini wachsen die Zellen auf Bleomycin nur noch geringfügig besser als der dhh1D-Stamm. Diese Effekte werden durch Überexpression der verkürzten Proteine aufgehoben. Keine der drei Verkürzun-gen hat Einfluss auf das Wachstum auf MMS-haltigen Platten. Die Mutation der ATPase Domäne (Walker A Motiv) hebt die Funktion des Proteins fast voll-ständig auf. Diese Mutanten sind nahezu so sensitiv gegenüber Bleomycin, wie dhh1D Zellen. Die Überexpression der ATPase Mutante führt im Gegensatz zu den Verkürzungen zu keiner Verringerung der Sensitivität gegenüber Bleomycin. Die zusätzliche Entfernung der Termini in der ATPase Mutante führt nicht zu einer Erhöhung der Bleomycin-Sensitivität. Allerdings zeigt die Dreifachmutante deutlich schlechteres Wachstum auf MMS-haltigen Platten. Die Mutation des SAT-Motives in AAA führt ebenfalls zu einer deutlichen Bleomycin-Sensitivität. Der Phänotyp ist vergleichbar mit den Auswirkungen der Deletion des C-Terminus. Das ur-sprünglich als RNA Entwindemotiv charakterisierte SAT-Motiv wind mittlerweile eher als eine Art „Scharnier“ angesehen, das eine Bewegung der Domänen 1 und 2 im Dhh1 Protein relativ zueinander ermöglicht. Die Auswirkung der Mutation des SAT-Motivs in AAA im Vergleich zu den Verkürzungen und den ATPase Mutanten weist auf eine eher strukturelle Rolle des SAT-Motives in Dhh1p hin. Aus diesen Daten ließ sich ein vorläufiges Modell über die Funktionsweise des Dhh1 Proteins ableiten. In in vitro Experimenten wurde mit dem IMPACT-System aufgereinigtes Dhh1 Protein auf seine Fähigkeit hin untersucht, DNA und RNA zu entwinden. Für die verwendeten Substrate konnte keine in vitro Helikase Aktivität festgestellt werden. Zur Analyse der ATPase Aktivität wurde IMPACT-gereinigtes Dhh1p und durch Immunopräzipitation aus Heferohextrakten ge-wonnenes Protein eingesetzt. In beiden Fällen konnte keine ATP Hydrolyse beobachtet wer-den, obwohl die Mutationsanalyse eindeutig darauf hinweist, dass die ATPase Aktivität essen-tiell für die Funktion des Dhh1 Proteins ist.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Charakterisierung des negativen Cofaktors 2 der RNA-Polymerase II in vivo und in vitro

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 5, 2000


Biochemische Untersuchungen beschreiben NC2 als einen Transkriptionsrepressor, welcher stabil an das TATA-Box bindende Protein (TBP) bindet. Die spezifische Bindung von NC2 an TBP inhibiert die weitere Anlagerung der generellen Transkriptionsfaktoren TFIIA und TFIIB und führt dadurch zur Unterbrechung der Bildung des Initiationskomplexes. NC2 besteht aus zwei Untereinheiten, NC2a und NC2b, die starke Homologien zu den Histonen H2A bzw. H2B aufweisen. Alle Erkenntnisse zu Beginn dieser Arbeit basierten auf Beobachtungen, die in vitro erhalten wurden. Unklar sind die Funktionen von NC2 in der Zelle. Die Aufgabe dieser Arbeit bestand darin, ein in vivo-Modellsystem zu etablieren. Als Modellorganismus wurde die Bäckerhefe Saccharomyces cerevisiae ausgewählt. Hefe hat zwei Proteine, die stark homolog zum menschlichen NC2 sind. Beide sind essentiell für das vegetative Wachstum von Hefe. Für Plasmid-Austausch-Experimente wurden Hefestämme konstruiert, bei denen die chromosomalen Gene für NC2a und NC2b durch Wildtyp-Kopien auf einem URA3-Plasmid ersetzt wurden. Mit Hilfe einer negativen Selektion gegen das URA3-Gen in Anwesenheit von 5-FOA gelang es, die humanen NC2a- und NC2b-Gene als episomale Kopien in Hefe stabil einzubringen. So zeigte sich unter anderem, daß die beiden humanen NC2-Untereinheiten, sowohl einzeln in Kombination mit ihrem Dimerisierungspartner aus Hefe als auch gemeinsam in Form des menschlichen binären Komplexes, fähig waren, die physiologische Funktion ihres Gegenstückes aus Hefe zu übernehmen. Das gleiche System wurde auch eingesetzt, um Deletionsmutanten der humanen NC2-Gene in vivo zu untersuchen. Es wurde festgestellt, daß in beiden NC2-Untereinheiten die Domänen, welche für die in vivo-Funktion notwendig sind, die vom Mensch zur Hefe konservierten Regionen enthalten. Ein wesentlicher Teil dieser Arbeit bestand darin, spontane Suppressoren einer limitierenden NC2-Funktion in vivo zu isolieren und Suppressoren mit genomischen Punktmutationen zu charakterisieren. Gefunden wurde eine Punktmutation in der großen Untereinheit (Toa1) des Hefe-TFIIA, welche einen einzigen Aminosäure-Austausch von Valin zu Phenylalanin verursacht. Hefezellen, die diese Suppressor-Mutation in Toa1 (mt- Toa1) tragen, weisen einen Kälte-sensitiven Phänotyp auf und sind trotz fehlender NC2-Gene lebensfähig. Die biochemischen Eigenschaften des rekombinanten Proteins der Suppressor-Mutante wurden durch Gelretardations-, Footprinting- und in vitro Transkriptionsexperimente untersucht. Das Protein mt-Toa1 war in der Lage, stabile TFIIA-Komplexe zusammen mit der kleinen Untereinheit Toa2 auszubilden und die Rekrutierung von TBP an die TATA-Box auf dem Promotor zu unterstützen. Allerdings zeigten weitere Untersuchungen der Suppressor-Mutante, daß der ternäre Komplex aus mt-yTFIIA, TBP und DNA weniger stabil ist. Hinweise darauf gab die reduzierte Menge an Protein-DNA-Komplexen im Fall von mtyTFIIA in Gelretardationsexperimenten unter sättigenden Bedingungen. Das mt-yTFIIA verlor zugleich seine Antirepressionsaktivität in in vivo-Transkriptionsexperimenten in Anwesenheit von NC2. Die Isolierung und Charakterisierung der Suppressor-Mutante von NC2 lieferten zum ersten Mal den Beweis, daß die Genregulation in vivo eine präzise Balance zwischen positiv und negativ wirkenden Aktivitäten erfordert. Gleichzeitig bestätigen sie die in vitro Beobachtungen, insbesondere das Gleichgewicht zwischen TFIIA und NC2 in der Kompetition um das TATA-bindende Protein TBP. Eine weitere Aufgabe der Arbeit waren Mutagenese-Studien von humanem NC2 in vivo und in vitro. Innerhalb des Histone-Fold-Motives beider NC2-Untereinheiten wurden Punktmutanten isoliert, die ihre essentielle Funktion in der Hefezelle vollständig verloren haben. Es konnten Mutanten identifiziert werden, die Einfluß auf das Wachstum der Hefe mit dem Verlust der in vitro-Aktivität korrelierten. Die Charakterisierung dieser Mutanten lieferte erste Hinweise auf funktionelle Oberflächen von NC2, die für die ternäre Komplexbildung (NC2-TBP-DNA) und die Repressionsfunktion wichtig sind. Zusammengefaßt schafft die vorliegende Arbeit einen Einblick in die NC2-Funktion in der Zelle und erweitert unser Verständnis über den molekularen Mechanismus der Transkriptionsregulation während der Initiation der Klasse II-Transkription.