Podcasts about gitters

  • 7PODCASTS
  • 10EPISODES
  • 38mAVG DURATION
  • ?INFREQUENT EPISODES
  • Apr 26, 2020LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about gitters

Latest podcast episodes about gitters

Your Car Insiders
YCI - 4-25-20 - All That Gitters isnt Always Gold

Your Car Insiders

Play Episode Listen Later Apr 26, 2020 49:36


Your Car Insiders Episode #243  - A Time Like We've Never Seen   This program was created so that we may be your personal advocate through your car buying experience. We will find the best price for your chosen vehicle, the highest price possible for your trade if applicable and sit with you through the finance process. Our service is unique in that we are with you throughout every phase of your purchase from beginning to end, from the initial handshake “Hello” to the final handshake with “Congratulations and enjoy your new car!” You deserve to understand, be comfortable with and be in control of every step of your vehicle purchase. Show Partners: Precision Auto Care [www.precisionautoshop.com] David R. Farney, PLC [www.azinjuryatty.com] Cobblestone Auto Spa AZ [www.cobblestone.com] Precision Dealer Services [www.precisiondealerservices.com] Towne Jewelers [www.townejewelryscottsdale.com] See omnystudio.com/listener for privacy information.

217 Recovery
January 19 - Pregame Gitters

217 Recovery

Play Episode Listen Later Jan 19, 2020 26:47


Corey pregames with Ryan about what he's going to do if the Packers lose today!

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05

Diese Dissertation berichtet über ein neuartiges Quantengasmikroskop, mit dem Vielteilchensysteme von fermionischen Atomen in optischen Gittern untersucht werden. Die einzelplatzaufgelöste Abbildung ultrakalter Gase im Gitter hat mächtige Experimente an bosonischen Vielteilchensystemen ermöglicht. Die Erweiterung dieser Fähigkeit auf Fermigase bietet neue Aussichten, komplexe Phänomene stark korrelierter Systeme zu erforschen, für die numerische Simulationen oft nicht möglich sind. Mit Standardtechniken der Laserkühlung, optischen Fallen und Verdampfungskühlung werden ultrakalte Fermigase von 6Li präpariert und in ein 2D optisches Gitter mit flexibler Geometrie geladen. Die Atomverteilung wird mithilfe eines zweiten, kurzskaligen Gitters eingefroren. Durch Raman-Seitenbandkühlung wird an jedem Atom Fluoreszenz induziert, während seine Position festgehalten wird. Zusammen mit hochauflösender Abbildung erlaubt die Fluoreszenz die Rekonstruktion der ursprünglichen Verteilung mit Einzelplatzauflösung und hoher Genauigkeit. Mithilfe von magnetisch angetriebener Verdampfungskühlung produzieren wir entartete Fermigase mit fast einheitlicher Füllung im ersten Gitter. Dies ermöglicht die ersten mikroskopischen Untersuchungen an einem ultrakalten Gas mit klaren Anzeichen von Fermi-Statistik. Durch die Präparation eines Ensembles spinpolarisierter Fermigase detektieren wir eine Abflachung im Dichteprofil im Zentrum der Wolke, ein Charakteristikum bandisolierender Zustände. In einem Satz von Experimenten weisen wir nach, dass Verluste von Atompaaren an einem Gitterplatz, bedingt durch lichtinduzierte Stöße, umgangen werden. Die Überabtastung des zweiten Gitters erlaubt eine deterministische Trennung der Atompaare in unterschiedliche Gitterplätze. Die Kompression einer dichten Wolke in der Falle vor dem Laden ins Gitter führt zu vielen Doppelbesetzungen von Atomen in unterschiedlichen Bändern, die wir ohne Anzeichen von paarweisen Verlusten abbilden können. Somit erhalten wir die wahre Besetzungsstatistik an jedem Gitterplatz. Mithilfe dieser Besonderheit werten wir die lokale Besetzungsstatistik an einem Ensemble bandisolierenderWolken aus. Im Zentrum bei hoher Füllung sind die Atomzahlfluktuationen um eine Größenordnung unterdrückt, verglichen mit klassischen Gasen, eine Manifestation des Pauliverbots. Die Besetzungswahrscheinlichkeiten werden verwendet, um die lokale Entropie an jedem Gitterplatz zu messen. Eine niedrige Entropie pro Atom bis 0.34kB wird im Zentrum des Bandisolators gefunden. Die Erweiterung der Quantengasmikroskopie auf entartete Fermigase eröffnet neue Möglichkeiten der Quantensimulation stark korrelierter Vielteilchensysteme und kann einzigartige Erkenntnisse über fermionische Systeme im und außerhalb vom Gleichgewicht, Quantenmagnetismus und verschiedene Phasen des Fermi-Hubbard-Modells ergeben.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05

Wir untersuchen stark gekoppelte Phänomene unter Verwendung der Dualität zwischen Eich- und Gravitationstheorien. Dabei liegt ein besonderer Fokus einerseits auf Vortex Lösungen, die von einem magnetischem Feld verursacht werden, und andererseits auf zeitabhängigen Problemen in holographischen Modellen. Das wichtigste Ergebnis ist die Entdeckung eines unerwarteten Effektes in einem einfachen holografischen Modell: ein starkes nicht abelsches magnetisches Feld verursacht die Entstehung eines Grundzustandes in der Form eines dreieckigen Gitters von Vortices. Die Dualität zwischen Eich- und Gravitationstheorien ist ein mächtiges Werkzeug welches bereits verwendet wurde um stark gekoppelte Systeme vom Quark-Gluonen Plasma in Teilchenbeschleunigern bis hin zu Festkörpertheorien zu beschreiben. Die wichtigste Idee ist dabei die der Dualität: Eine stark gekoppelte Quantenfeldtheorie kann untersucht werden, indem man die Eigenschaften eines aus den Einsteinschen Feldgleichungen folgenden Gravitations-Hintergrundes bestimmt. Eine der Gravitationstheorien, die in dieser Arbeit behandelt werden, ist eine Einstein--Yang--Mills Theorie in einem AdS--Schwarzschild Hintergrund mit SU(2)-Eichsymmetrie. Der Ansatz für das Eichfeld ist so gewählt, dass die zugehörige Quantenfeldtheorie einem externen Magnetfeld ausgesetzt ist. Oberhalb eines kritischen Magnetfeldes wird die Konfiguration instabil und zeigt einen Phasenübergang zu einem Supraleiter. Die Instabilität wird mit zwei Ansätzen untersucht. Zum einen werden Fluktuationen des Hintergrunds betrachtet und die Quasinormalmoden analysiert. Zum anderen zeigt die numerische Analyse der Bewegungsgleichungen, dass das effektive Schrödinger-Potential mit stärker werdendem Magnetfeld sich so lange verändert, bis ein gebundener Zustand möglich wird. Der sich ergebende supraleitende Grundzustand ist durch ein dreieckiges Vortexgitter gegeben, wie eine störungstheoretische Entwicklung über einem kleinen Parameter proportional zur Größe des Kondensats zeigt. Zur Bestimmung des energetisch bevorzugten Zustands wird mithilfe der holographischen Übersetzungsvorschrift die Gesamtenergie verschiedener Lösungen berechnet. Hierfür wird die Lösung der Bewegungsgleichungen zur dritten Ordnung in oben genanntem Parameter berechnet. Zusätzlich wird gezeigt, dass dieses Ergebnis auch für den Fall einer AdS--hard wall Geometrie gilt, also einer Feldtheorie mit Confinement. Als nächstes erweitern wir das einfache Gravitationsmodell um ein chemisches Potential und wiederholen die Untersuchung. Sind das chemische Potential, das magnetische Feld oder beide groß genug, so befindet sich das System in einer supraleitenden Phase. Wir berechnen das Phasendiagramm des Systems numerisch. Der Grundzustand der supraleitenden Phase nahe dem Phasenübergang ist ein dreieckiges Vortexgitter, wobei der Gitterabstand nur von der Stärke des magnetischen Feldes abhängt. Die Relevanz dieser Ergebnisse wird im Zusammenhang mit inhomogenen Grundzuständen in holographischen Supraleitern diskutiert, einem Themengebiet welches in letzter Zeit viel Interesse auf sich gezogen hat. Die erhaltenen Resultate sind nicht nur aufgrund der vorher unbekannten inhomogenen Lösung der Gravitationstheorie mit Schwarzem Loch neuartig. Es ist auch interessant, dass ein großes magnetisches Feld die Vortexstruktur im Grundzustand induziert anstatt sie zu unterdrücken. Des Weiteren untersuchen wir zeitabhängige Phänomene in einer holographischen Erweiterung des Kondomodells. Letzteres beschreibt ein einfaches Modell in der Festkörperphysik, in welchem eine magnetische Verunreinigung stark an ein Elektronenreservoir koppelt. Die holographische Beschreibung erfordert Techniken der numerischen Relativitätstheorie und erlaubt uns die Entwicklung des Systems nach einem plötzlichen Sprung in der Kopplungskonstante zu simulieren. Diese Doktorarbeit basiert auf Ergebnissen, die der Autor während des Studiums am Max-Planck-Institut-für-Physik in München, Deutschland unter der Betreuung von PD Dr. J. K. Erdmenger von August 2011 bis Mai 2014 erreicht hat. Die relevanten Veröffentlichungen sind: [1] M. Ammon, J. Erdmenger, P. Kerner, and M. Strydom, “Black Hole Instability Induced by a Magnetic Field,” Phys.Lett. B706 (2011) 94–99, arXiv:1106.4551 [hep-th], [2] Y.-Y. Bu, J. Erdmenger, J. P. Shock, and M. Strydom, “Magnetic field induced lattice ground states from holography,” JHEP 1303 (2013) 165, arXiv:1210.6669 [hep-th].

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Theoretical stellar atmosphere models for cool stars

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later May 14, 2014


In kühlen Sternen wie der Sonne wird die nuklear erzeugte Energie aus dem Inneren an die Oberfläche transportiert. Diese kann dann in den freien Weltraum entfliehen, und so können wir das Sternenlicht letztlich beobachten. Die theoretische Modellierung des photosphärischen Übergangsbereiches – vom konvektiven zum radiativen Energietransport – ist aufgrund der inhärenten dreidimensionalen (3D) Natur der Konvektion und der komplexen, nicht-linearen und nicht-lokalen Interaktionen des Strahlungsfelds mit dem stellaren Plasma sehr anspruchsvoll. Theoretische Atmosphärenmodelle stellen die fundamentale Basis für die Untersuchung von Sternen dar, daher sind Astronomen für ihr Verständnis der Sterne auf diese letztlich angewiesen. Die üblicherweise verwendeten eindimensionalen (1D) Atmosphärenmodelle beinhalten verschiedene Vereinfachungen. Insbesondere wird die Konvektion für gewöhnlich mit der Mischungswegtheorie berechnet, trotz ihrer wohlbekannten Fehler, da derzeit keine deutlich besseren Alternativen vorhanden sind. Der einzige Ausweg, um dieses Problem zu überwinden ist, die zeitabhängigen, dreidimensionalen, hydrodynamischen Gleichungen, welche mit einem realistischen Strahlungstransport gekoppelt sind, zu lösen. Aufgrund der in den vergangenen Jahrzehnten rasch gestiegenen Rechenleistung wurden bedeutende Fortschritte mit Simulationen für 3D Strahlungshydrodynamik (RHD) von Atmosphären erzielt. Diese Modelle sind außerordentlich leistungsfähig, und besitzen eine enorme Vorhersagekraft, wie präzise Vergleiche mit Sonnenbeobachtungen wiederholt beweisen konnten. Ausgestattet mit diesen ausgereiften Methoden möchte ich als Ziel meiner Dissertation die drei folgenden Fragen näher untersuchen: Was sind die Eigenschaften der Atmosphären von kühlen Sternen? Welche Unterschiede sind zwischen den 1D und 3D Modellen vorhanden? Wie verändern sich die Vorhersagen für die Sternstrukturen und Spektrallinien? Um mich dieser Aufgabenstellung systematisch anzunehmen, habe ich das Stagger-Gitter berechnet. Das Stagger-Gitter ist ein umfangreiches Gitter aus 3D RHD Atmosphärenmodellen von kühlen Sternen, welches einen großen stellaren Parameterbereich abdeckt. In der vorliegenden Dissertation beschreibe ich die Methoden, welche angewendet wurden, um die vielen Atmosphärenmodelle zu berechnen. Zudem werden die allgemeinen Eigenschaften der resultierenden 3D Modelle, auch deren zeitliche und räumliche Mittelwerte detailliert dargestellt und diskutiert. Die Unterschiede zwischen den 1D und 3D Schichtungen, sowie die Details der stellaren Granulation (die Manifestation der Konvektion unterhalb der Sternoberfläche) werden ebenfalls umfangreich erläutert und beschrieben. Des Weiteren habe ich folgende Anwendungen für die 3D Atmosphärenmodelle untersucht: Berechnung theoretischer Spektrallinien, wichtig für die Bestimmung von Sternparametern, Spektroskopie und Häufigkeiten-Analyse; die sogenannte Randverdunkelung, notwendig für die Analyse interferometrischer Beobachtungen und Suche nach extrasolaren Planeten; und die Kalibrierung der Mischungsweglänge, womit 1D-Sternmodelle verbessert werden können. Die Qualität der hochauflösenden Beobachtungen hat inzwischen die der theoretischen 1D Atmosphärenmodelle aufgrund der technischen Entwicklungen in den vergangenen Jahren überschritten. Daher hat sich der Bedarf an besseren Simulationen für Atmosphärenmodelle erhöht. Durch die Bereitstellung eines umfangreichen Gitters aus 3D RHD Atmosphärenmodellen wurde dazu ein erheblicher Beitrag geleistet. Damit werden wir den Anforderungen an die Theorie für die derzeitigen und zukünftigen Beobachtungen gerecht werden, und können somit zu einem besseren Verständnis der kühlen Sterne beitragen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Nonequilibrium phase transition in binary complex plasmas

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later Jan 16, 2013


Komplexe Plasmen sind Systeme bestehend aus schwach ionisierten Gasen und mesoskopischen Partikeln. Partikel in einem Plasma erhalten ihre Ladung hauptsächlich durch den Fluß von Ionen und Elektronen auf denen Oberflächen. Abhängig von der Teilchengröße und den Plasmabedinungen kann die Ladung pro Teilchen mehrere tausend Elementarladungen betragen. Da das Hintergrundgas sehr dünn ist, können Partikelsysteme unabhängig von dem Plasma betrachtet werden. In vielen Fällen kann das Partikelwechselwirkungspotential als Yukawapotential angenähert werden, welches im Wesentlichen ein abgeschirmtes Coulombpotential ist. Kapitel 1 ist eine kurze Einleitung in die theoretischen Konzepte komplexer Plasmen. Aufgrund der Bedeutung des Mechanismus, beginne ich diese Arbeit mit der Diskussion der Teilchenladung für zwei verschiedene Situationen in Kapitel 2. Zunächst beschreibe ich ein einzigartiges Experiment, die "Coulomb-Explosion", zur Messung der Teilchenladung tief in der Plasmarandschicht. Ein Hybrid-Analyseverfahren, bestehend aus Teilchenverfolgung, MD und PIC Simulationen, wurde angewendet um die Ladung im Anfangsstadium der Explosion abzuschätzen. Dieses wird mit einer theoretische Methode zur Bestimmung der Partikelladung im Bulk-Plasma bei verschiedenen Entladungsfrequenzen ergänzt. Die Abhängigkeit der Partikelladung von der Entladungsfrequenz wird bei drei verschiedenen Drücken gezeigt. Das verwendete Modell ist hilfreich um die Veränderung der Teilchenladung in Abhänigkeit der Entladungsfrequenz abzuschätzen. Die hohe Teilchenladung und die damit verbundene abstoßende Teilchenwechselwirkung verhindern Partikelagglomeration. In Kapitel 3 stelle ich ein Experiment vor, in dem Partikelagglomeration durch selbst-angeregte Wellen induziert wird. Innerhalb der Wellen werden die Teilchen derart beschleunigt, dass das abstoßende Potential durch die erhöhte kinetische Energie überwunden werden kann. Die resultierenden Agglomerate werden mit einem "Long-Distance" Mikroskop überprüft. Im Folgenden stelle ich ein System binärer komplexer Plasmen vor. Unter bestimmten Bedingungen können monodisperse Partikel in einer Monolage eingefangen werden. Die Teilchen ordnen sich in einem Dreiecksgitter mit hexagonaler Symmetrie an. Dies ist als 2D Plasmakristall bekannt. Wenn ein sich bewegendes, einzelnes Teilchen einer anderen Spezies in das System eingeführt wird, verursacht es eine Störung des Kristallgitters. In Kapitel 4 werden die Untersuchungen der Wechselwirkung des Kristallgitters mit einem sich oberhalb des Gitters (stromaufwärts des Ionenflusses) befindlichen Teilchens diskutiert. Dieses zusätzliche Partikel erzeugt einen Mach-Kegel, da es sich mit einer Geschwindigkeit, schneller als der Schall in dem System bewegt. Das stromaufwärts befindliche Teilchen neigt dazu sich zwischen Reihen von Teilchen in dem Gitter zu bewegen, was als "Channeling-Effekt" bekannt ist. Wenn Teilchen einer Spezies eine Partikelwolke einer anderen durchdringen, bilden sowohl die durchfliessende als auch die durchflossene Teilchenwolke Kettenstrukturen ("Lanes") aus. In komplexen Plasmen ist die Wechselwirkung verschiedener Partikel immer stärker abstoßend als das geometrische Mittel der Wechselwirkung gleicher Partikel. Diese Asymmetrie in der gegenseitigen Wechselwirkung heißt "Positive nicht-Additivität". Deren Grad wird von dem nicht-Additivitäts Parameter bestimmt. In Kapitel 5 beschreibe ich zuerst die Ergebnisse von Langevin-Simulationen, um die Abhängigkeit der "Lane - Formation" von dem nicht-Additivitäts Parameters zu studieren. Weiterhin wurde die Rolle des Anfangszustands numerisch untersucht. Zusätzlich wurde eine Reihe umfassender Experimente zur "Lane - Formation" an Bord der Internationalen Raumstation (ISS) durchgeführt. Die Auswertung der Experimente konzentrierte sich auf die Struktur der durchflossenen Teilchen. Der Einfluss der Partikeldichten und -größe wurden untersucht. Das Studium zweier aufeinanderfolgenden Durchdringungen offenbarte einen "Memory-Effekt" in der Kettenstruktur. Zusätzlich wurde ein Übergang von freier "Lane-Formation" zu einem, von Entmischung dominierten, Zustand des Nichtgleichgewichtsystems innerhalb einer Experimentreihe beobachtet. Schließlich stelle ich einen ergänzenden Versuch zur "Lane-Formation" in erdgebundenen Experimenten vor. Die Schwerkraft wurde hier durch thermophoretische Kräfte kompensiert. In dieser Versuchsreihe konnten die durch unregelmässige Teilchengeschwindigkeiten und Inhomgenitäten in der durchflossenen Teilchenwolke entstehenden Nachteile erfolgreich überwunden werden. Mit diesem Modell-System kann die "Lane-Formation" im Detail untersucht werden und die Ergebnisse mit denen numerischer Simulationen und denen aus Experimenten in Kolloiden verglichen werden.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Particle hydrodynamics with tessellation techniques

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Jun 3, 2011


Um Galaxien, Galaxienhaufen oder noch größere Strukturen im Universum detailliert zu simulieren, benötigt man eine korrekte Simulation des in diesen Objekten vorhandenen Gases. Eine Möglichkeit zur Simulation dieses Gases bietet das etablierte Verfahren ``Smoothed Particle Hydrodynamics (SPH)''. Diese Methode empfiehlt sich besonders wegen ihrer intrinsischen geometrischen Flexibilität und ihrer adaptiven Auflösung. Neuere Untersuchungen zeigten aber, dass SPH in Situationen, in denen große Dichtesprünge auftreten, ungenau wird. Hier kann es zu einem unphysikalisch verlangsamten Wachstum von hydrodynamischen Instabilitäten kommen. Diese Probleme von SPH können vor allem auf systematisch bedingte Ungenauigkeiten in der Dichtebestimmung dieser Methode zurückgeführt werden. Um diese Probleme zu vermeiden, haben wir eine neue ``Voronoi Particle Hydrodynamics'' (VPH) genannte Methode enwickelt, um die Hydrodynamik zu simulieren. Dabei wird die Dichte der Simulationsteilchen mit Hilfe eines zusätzlichen Gitters bestimmt. Dieses Gitter ist eine Voronoi Pflasterung, die auf auf den Positionen der Teilchen basiert. Mit Hilfe dieses Prinzips können hydrodynamische Instabilitäten korrekt simuliert werden. Situationen, in denen Scherströmungen entlang großer Dichtesprünge auftreten und zu hydrodynamische Instabilitäten führen, sind besonders ungünstig für SPH, da es hier zu großen Ungenauigkeiten kommen kann. Eine Anwendung, in der solche Situationen zu erwarten sind, ist der Einfall einer Galaxie in einen Galaxienhaufen. Dabei verliert die Galaxie aufgrund des anströmenden Galaxienhaufen-Gases zunehmend Gas an den Galaxienhaufen. Da SPH aufgrund seiner Dichtebestimmung diesen Prozess nicht korrekt simuliert, ermittelt SPH einen zu geringen Verlust von Gas. Wir konnten dies mit Hilfe unserer Simulationen belegen. Wir haben diese Resultate sowohl mit Simulationen von Galaxien, die in einen Galaxienhaufen fallen, als auch mit kosmologischen Simulationen von sich bildenden Galaxienhaufen überprüft. Dort bestätigte sich, dass in SPH der Gasverlust der einfallenen Galaxien zu gering ist. Desweiteren ist der Gasverlust in den AREPO Simulationen stets am höchsten, während VPH eine mittlere Stellung einnimmt. Wir konnten ingesamt zeigen, dass VPH in Situationen mit großem Dichtekontrast eine Verbesserung zu SPH darstellt. Auch wenn unsere Resultate keine vollständige Übereinstimmung mit dem Gitter-basierten AREPO Code zeigen, stellen sie doch eine wichtige Annährung zwischen Teilchen- und Gitter-basierten hydrodynamischen Verfahren dar. VPH empfiehlt sich vor allem als eine gegenüber SPH verbesserte Methode zur Simulation von hydrodynamischen Prozesssen in kosmologischen Problemen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Bosonische und fermionische Quantengase in dreidimensionalen optischen Gittern

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Dec 1, 2009


In den letzten Jahren haben sich atomare Quantengase in optischen Gittern zu einem faszinierenden und interdisziplinär bedeutsamen Forschungsfeld entwickelt. Die in den periodischen Potentialen gefangenen ultrakalten Atome stellen ein ideales Modellsystem dar, anhand dessen sich grundlegende Fragestellungen der modernen Festkörper- und Vielteilchenphysik untersuchen lassen. In der vorliegenden Arbeit werden neue Methoden zur Manipulation und Analyse von Quantenzuständen in optischen Gittern demonstriert. Insbesondere wird mittels der sogenannten Rauschkorrelationsanalyse die Ordnung der Atome im Gitter bestimmt und erstmals fermionisches Antibunching an freien neutralen Atomen nachgewiesen. Grundlage für die vorgestellten Experimente ist eine im Rahmen dieser Arbeit neu entwickelte Apparatur, mit der sich simultan entartete bosonische und fermionische Quantengase aus 87-Rubidium und 40-Kalium präparieren und in einem dreidimensionalen optischen Gitter untersuchen lassen. Die Apparatur zeichnet sich durch eine Serie technischer Innovationen aus: Eine neuartige Spulen- und Fallenkonfiguration eröffnet einen hervorragenden optischen Zugang zu den präparierten Ensemblen und ermöglicht es, starke homogene Magnetfelder bei einer geringen dissipierten Leistung zu erzeugen. Dies sind wichtige Voraussetzungen, um definierte Gitterpotentiale verwirklichen und die interatomaren Wechselwirkungen mittels Feshbach-Resonanzen beeinflussen zu können. Das optische Potential geht aus der Überlagerung einer gekreuzten Dipolfalle und eines blauverstimmten dreidimensionalen Gitters hervor. Eine solche Kombination erlaubt es, sehr tiefe und relativ homogene Gitterpotentiale zu erzeugen sowie den externen Einschluss unabhängig von der Gittertiefe zu variieren. Des Weiteren lassen sich über eine frei einstellbare Wellenlänge speziesabhängige Gitter realisieren. Die Vereinigung der hier aufgeführten Technologien liefert uns eine außergewöhnlich flexible Plattform für das Studium maßgeschneiderter Quantenzustände in periodischen Potentialen. Durch den unabhängigen externen Einschluss kann erstmals ein Fermigas allein über dessen Kompression zwischen einem metallischen und einem isolierenden Zustand hin- und hergeschaltet und – in ersten Ansätzen – die entsprechende Dynamik beobachtet werden. Die Ergebnisse werden mit numerischen Simulationen verglichen. Neben der Durchführung von Transportmessungen lässt sich hieraus ein neues Diagnoseverfahren ableiten, das es ermöglicht, Quantenphasen, wie den bosonischen oder fermionischen Mott-Isolator, anhand der charakteristischen Kompressibilität zu identifizieren. Als weiteres Diagnoseverfahren wird die Korrelationsanalyse von Flugzeitaufnahmen vorgestellt. Durch die Auswertung von Hanbury Brown und Twiss (HBT)-Korrelationen im Quantenrauschen der expandierenden Atomwolken lässt sich die mikroskopische Ordnung der Atome im Gitter nachweisen. Ausgangspunkt für die Messungen sind jeweils vollständig spinpolarisierte bosonische Mott-Isolatoren und fermionische Bandisolatoren. Trotz identischer Dichteverteilungen innerhalb des Gitters, weisen die Korrelationen von Bosonen und Fermionen entgegengesetzte Vorzeichen auf. Mit diesen Messungen gelingt es erstmals, fermionisches Antibunching an freien neutralen Atomen zu beobachten und innerhalb einer selben Apparatur mit dem bosonischen Bunching zu vergleichen. Neben dem Nachweis dieses fundamentalen Quanteneffektes lässt sich die Ordnung und die Temperatur der Fermionen im Gitter bis hinauf zur Fermi-Temperatur bestimmen. Damit erweist sich die Korrelationsanalyse als ein robustes Verfahren, mit dem sich in Zukunft noch weitaus komplexere Quantenphasen in optischen Gittern untersuchen lassen.

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Besondere magnetische Eigenschaften der Ozeanbasalte im Altersbereich 10 bis 40 Ma

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Play Episode Listen Later Nov 30, 2001


In der hier vorgestellten Arbeit wurde gezeigt, daß das weltweit beobachtete Ph¨anomen geringer Intensit¨at der nat¨urlichen remanenten Magnetisierung von etwa 20 Ma alten Ozeanbasalten und das dadurch verursachte Minimum bei den Amplituden der ozeanischen Magnetfeldanomalien auf die Tieftemperaturoxidation der Titanomagnetite zu Titanomaghemiten zur¨uckzuf¨uhren ist. Dazu wurden magnetische und mineralogische Untersuchungen an etwa 100 durch das Deep Sea Drilling Project bzw. Ocean Drilling Program erbohrten Ozeanbasalten durchgef¨uhrt. Die Proben decken einen Altersbereich von 0.6 bis 135 Ma ab und stammen haupts¨achlich aus dem Atlantischen und Pazifischen Ozean. Tr¨ager der Magnetisierung bei den meisten Proben ist je nach Alter der Ozeanbasalte Titanomagnetit oder Titanomaghemit. Um den Oxidationsgrad der Titanomaghemite zu bestimmen, wurden die davon abh¨angigen Parameter Curie-Temperatur und Gitterkonstante gemessen sowie Mikrosonden-Analysen durchgef¨uhrt. Der Oxidationsgrad wird durch den von 0 (nicht oxidiert) bis 1 (vollst¨andig tieftemperaturoxidiert) variierenden Oxidationsparameter beschrieben. Es wurde nachgewiesen, daß die S¨attigungsmagnetisierung der Ozeanbasalte (gemessen bei Raumtemperatur) in gleicher Weise wie die Intensit¨at der nat¨urlichen remanenten Magnetisierung (NRM) mit dem Alter variiert und bei 10 bis 40 Ma alten Ozeanbasalten ein Minimum aufweist. Dieses Ph¨anomen wird durch die fortschreitende Tieftemperaturoxidation der Titanomaghemite verursacht, bei der Fe-Ionen bevorzugt aus den Oktaederpl¨atzen des ferrimagnetischen Gitters auswandern und verbleibende Fe2+-Ionen zu Fe3+-Ionen oxidiert werden. Die S¨attigungsmagnetisierung der ferrimagnetischen Titanomaghemite ist gleich der Untergittermagnetisierung der Fe-Ionen auf Oktaederpl¨atzen abz¨uglich der antiparallelen Untergittermagnetisierung der Fe-Ionen auf Tetraederpl¨atzen und nimmt deshalb mit der Tieftemperaturoxidation ab. Bei 10 bis 40 Ma alten Proben wird f¨ur die Titanomaghemite eine fast vollst¨andige Oxidation beobachtet. Der Oxidationsparameter erreicht hier einen Wert von ≈ 0.8. Bei noch ¨alteren Proben findet vermutlich eine Diffusion der Fe-Ionen aus den Tetraederl ¨ucken in die Oktaederl¨ucken statt. Dies k¨onnte die beobachtete Zunahme der S¨attigungsmagnetisierung im Altersbereich von 40 bis 130 Ma bei ungef¨ahr gleichbleibendem Oxidationsgrad der Titanomaghemite erkl¨aren. Zur weiteren Charakterisierung der Titanomaghemite wurde die Temperaturabh¨angigkeit der S¨attigungsmagnetisierung MS(T) bestimmt. Der Verlauf der MS(T)-Kurven h¨angt von der Zusammensetzung der Titanomaghemite ab und zeigt deshalb eine Abh¨angigkeit vom Alter der Proben. Die MS(T)-Kurven von Ferrimagnetika werden nach N´eel (1948) in verschiedene Typen eingeteilt, die sich jeweils aus dem Unterschied der Temperaturabh¨angigkeiten ihrer Untergittermagnetisierungen ergeben. Proben aus allen Altersbereichen zeigen ein Maximum bei MS(T) oberhalb des absoluten Nullpunktes der Temperatur. Bei einem Teil der 10 bis 40 Ma alten Proben wird außerdem beiT

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Interferierende Laserstrahlen können ein periodisches Potential für Atome induzieren, das es erlaubt, ultrakalte Neutralatome in geordneten Strukturen zu fangen. Diese Ensemble lichtgebundener Atome werden als optische Gitter bezeichnet. Liegt die Frequenz der verwendeten Lichtfelder sehr weit unterhalbder nächstgelegenen atomaren Resonanz, so entstehen quasi-statische Mikrofallen. Sie eignen sich durch ihre nahezu vollkommene Dissipationsfreiheit aufgrund der zu vernachlässigenden spontanen Photonenstreuung sehr gut zur Speicherung und Manipulation von kalten Atomen. In dieser Arbeit wird über Experimente zur kontrollierten Manipulation derartiger lichtgebundener Atome berichtet. Mit dem Licht eines CO2-Lasers der Wellenlänge 10.6 µm wird eine intensive Stehwelle erzeugt, in der kalte Rubidiumatome in mesoskopischen Dipolfallen mit einem Gitterabstand von 5.3 µm und bei Lebensdauern von über drei Sekunden gespeichert werden. Im ersten Teil der Arbeit werden die Eigenschaften der gespeicherten Atome charakterisiert. Es zeigt sich, daß die atomare Temperatur empfindlich von der Fallenlaserintensität abhängt. Für niedrige Intensitäten werden atomare Temperaturen von 21 µK bei Dichten oberhalb 1013 Atome/cm3 beobachtet. Unter alleinigen Verwendung der Laserkühlung wird damit eine atomare Phasenraumdichte von 1/300 erreicht, was nur drei Größenordnungen unterhalbdes Übergangs zur Bose-Einstein-Kondensation liegt. Bei höheren Intensitäten des Fallenlasers steigt die Temperatur im Gitter auf 140 µK an, welches in etwa der Doppler-Temperatur des Rubidiumatoms entspricht. Dies wird auf die große differentielle Lichtverschiebung der Atomzustände durch den Fallenlaser zurückgeführt, die die Effizienz der Subdoppler-Kühlmechanismen verringert. Durch das Erreichen hoher Vibrationsfrequenzen sowohl in radialer als auch in axialer Richtung wird erstmals ein dissipationsfreies, eindimensionales Gitter realisiert, indem der Lamb-Dicke-Bereich in allen drei Raumrichtungen erreicht wird. Dies ist die Grundlage für ein angestrebtes Kühlen der Atome in den Grundzustand des Gitters mit Hilfe des Raman-Seitenband-Verfahrens. Im Rahmen der Arbeit gelingt es weiterhin, Atome in einzelnen Gitterplätzen mit einem Abstand von 5.3 µm in einer Fluoreszenzabbildung optisch aufzulösen. Dies bedeutet den direkten Nachweis der Lokalisierung der in einer Stehwelle gebundenen Atome, so daß lokale Aspekte dieses optischen Gitters untersucht werden können. Gleichzeitig erlaubt ein konfokales Mikroskop, Atome in einzelnen Gitterplätzen mit Hilfe fokussierter, resonanter Lichtpulse selektiv anzusprechen. Dies eröffnet im Prinzip die Möglichkeit der Präparation und des Auslesens von Zuständen einzelner Atome, wie sie für eine Realisierung quantenlogischer Experimente in optischen Gittern erforderlich ist. In weiteren Experimenten werden gepulste Raman-Übergänge an kalten Rubidiumatomen untersucht, die in der CO2-Laser Dipolfalle gefangen sind. Dabei können Mehrphotonen-Übergänge zwischen zwei Zeeman-Grundzustandsniveaus beobachtet werden, sofern die Differenzfrequenz der beiden Raman-Laserstrahlen einer Subharmonischen der Frequenz des Zweiphotonenübergangs entspricht. Man kann diese Resonanzen als Mehrphotonen-Ramanübergänge interpretieren, bei denen n Photonenpaare beteiligt sind. Dabei zeigte sich sowohl experimentell als auch theoretisch, daß die Linienbreiten der höheren Subharmonischen deutlich unterhalbder durch die RamanpulsAlänge gegebenen Fourier-Breite liegen. Man findet weiter, daß das genaue Skalieren der Linienbreiten mit der beteiligten Photonenzahl von der verwendeten Form der Pulseinhüllenden abhängt.