Podcast appearances and mentions of john frankel

  • 17PODCASTS
  • 21EPISODES
  • 44mAVG DURATION
  • ?INFREQUENT EPISODES
  • Dec 31, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about john frankel

Latest podcast episodes about john frankel

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Applications for the 2025 AI Engineer Summit are up, and you can save the date for AIE Singapore in April and AIE World's Fair 2025 in June.Happy new year, and thanks for 100 great episodes! Please let us know what you want to see/hear for the next 100!Full YouTube Episode with Slides/ChartsLike and subscribe and hit that bell to get notifs!Timestamps* 00:00 Welcome to the 100th Episode!* 00:19 Reflecting on the Journey* 00:47 AI Engineering: The Rise and Impact* 03:15 Latent Space Live and AI Conferences* 09:44 The Competitive AI Landscape* 21:45 Synthetic Data and Future Trends* 35:53 Creative Writing with AI* 36:12 Legal and Ethical Issues in AI* 38:18 The Data War: GPU Poor vs. GPU Rich* 39:12 The Rise of GPU Ultra Rich* 40:47 Emerging Trends in AI Models* 45:31 The Multi-Modality War* 01:05:31 The Future of AI Benchmarks* 01:13:17 Pionote and Frontier Models* 01:13:47 Niche Models and Base Models* 01:14:30 State Space Models and RWKB* 01:15:48 Inference Race and Price Wars* 01:22:16 Major AI Themes of the Year* 01:22:48 AI Rewind: January to March* 01:26:42 AI Rewind: April to June* 01:33:12 AI Rewind: July to September* 01:34:59 AI Rewind: October to December* 01:39:53 Year-End Reflections and PredictionsTranscript[00:00:00] Welcome to the 100th Episode![00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host Swyx for the 100th time today.[00:00:12] swyx: Yay, um, and we're so glad that, yeah, you know, everyone has, uh, followed us in this journey. How do you feel about it? 100 episodes.[00:00:19] Alessio: Yeah, I know.[00:00:19] Reflecting on the Journey[00:00:19] Alessio: Almost two years that we've been doing this. We've had four different studios. Uh, we've had a lot of changes. You know, we used to do this lightning round. When we first started that we didn't like, and we tried to change the question. The answer[00:00:32] swyx: was cursor and perplexity.[00:00:34] Alessio: Yeah, I love mid journey. It's like, do you really not like anything else?[00:00:38] Alessio: Like what's, what's the unique thing? And I think, yeah, we, we've also had a lot more research driven content. You know, we had like 3DAO, we had, you know. Jeremy Howard, we had more folks like that.[00:00:47] AI Engineering: The Rise and Impact[00:00:47] Alessio: I think we want to do more of that too in the new year, like having, uh, some of the Gemini folks, both on the research and the applied side.[00:00:54] Alessio: Yeah, but it's been a ton of fun. I think we both started, I wouldn't say as a joke, we were kind of like, Oh, we [00:01:00] should do a podcast. And I think we kind of caught the right wave, obviously. And I think your rise of the AI engineer posts just kind of get people. Sombra to congregate, and then the AI engineer summit.[00:01:11] Alessio: And that's why when I look at our growth chart, it's kind of like a proxy for like the AI engineering industry as a whole, which is almost like, like, even if we don't do that much, we keep growing just because there's so many more AI engineers. So did you expect that growth or did you expect that would take longer for like the AI engineer thing to kind of like become, you know, everybody talks about it today.[00:01:32] swyx: So, the sign of that, that we have won is that Gartner puts it at the top of the hype curve right now. So Gartner has called the peak in AI engineering. I did not expect, um, to what level. I knew that I was correct when I called it because I did like two months of work going into that. But I didn't know, You know, how quickly it could happen, and obviously there's a chance that I could be wrong.[00:01:52] swyx: But I think, like, most people have come around to that concept. Hacker News hates it, which is a good sign. But there's enough people that have defined it, you know, GitHub, when [00:02:00] they launched GitHub Models, which is the Hugging Face clone, they put AI engineers in the banner, like, above the fold, like, in big So I think it's like kind of arrived as a meaningful and useful definition.[00:02:12] swyx: I think people are trying to figure out where the boundaries are. I think that was a lot of the quote unquote drama that happens behind the scenes at the World's Fair in June. Because I think there's a lot of doubt or questions about where ML engineering stops and AI engineering starts. That's a useful debate to be had.[00:02:29] swyx: In some sense, I actually anticipated that as well. So I intentionally did not. Put a firm definition there because most of the successful definitions are necessarily underspecified and it's actually useful to have different perspectives and you don't have to specify everything from the outset.[00:02:45] Alessio: Yeah, I was at um, AWS reInvent and the line to get into like the AI engineering talk, so to speak, which is, you know, applied AI and whatnot was like, there are like hundreds of people just in line to go in.[00:02:56] Alessio: I think that's kind of what enabled me. People, right? Which is what [00:03:00] you kind of talked about. It's like, Hey, look, you don't actually need a PhD, just, yeah, just use the model. And then maybe we'll talk about some of the blind spots that you get as an engineer with the earlier posts that we also had on on the sub stack.[00:03:11] Alessio: But yeah, it's been a heck of a heck of a two years.[00:03:14] swyx: Yeah.[00:03:15] Latent Space Live and AI Conferences[00:03:15] swyx: You know, I was, I was trying to view the conference as like, so NeurIPS is I think like 16, 17, 000 people. And the Latent Space Live event that we held there was 950 signups. I think. The AI world, the ML world is still very much research heavy. And that's as it should be because ML is very much in a research phase.[00:03:34] swyx: But as we move this entire field into production, I think that ratio inverts into becoming more engineering heavy. So at least I think engineering should be on the same level, even if it's never as prestigious, like it'll always be low status because at the end of the day, you're manipulating APIs or whatever.[00:03:51] swyx: But Yeah, wrapping GPTs, but there's going to be an increasing stack and an art to doing these, these things well. And I, you know, I [00:04:00] think that's what we're focusing on for the podcast, the conference and basically everything I do seems to make sense. And I think we'll, we'll talk about the trends here that apply.[00:04:09] swyx: It's, it's just very strange. So, like, there's a mix of, like, keeping on top of research while not being a researcher and then putting that research into production. So, like, people always ask me, like, why are you covering Neuralibs? Like, this is a ML research conference and I'm like, well, yeah, I mean, we're not going to, to like, understand everything Or reproduce every single paper, but the stuff that is being found here is going to make it through into production at some point, you hope.[00:04:32] swyx: And then actually like when I talk to the researchers, they actually get very excited because they're like, oh, you guys are actually caring about how this goes into production and that's what they really really want. The measure of success is previously just peer review, right? Getting 7s and 8s on their um, Academic review conferences and stuff like citations is one metric, but money is a better metric.[00:04:51] Alessio: Money is a better metric. Yeah, and there were about 2200 people on the live stream or something like that. Yeah, yeah. Hundred on the live stream. So [00:05:00] I try my best to moderate, but it was a lot spicier in person with Jonathan and, and Dylan. Yeah, that it was in the chat on YouTube.[00:05:06] swyx: I would say that I actually also created.[00:05:09] swyx: Layen Space Live in order to address flaws that are perceived in academic conferences. This is not NeurIPS specific, it's ICML, NeurIPS. Basically, it's very sort of oriented towards the PhD student, uh, market, job market, right? Like literally all, basically everyone's there to advertise their research and skills and get jobs.[00:05:28] swyx: And then obviously all the, the companies go there to hire them. And I think that's great for the individual researchers, but for people going there to get info is not great because you have to read between the lines, bring a ton of context in order to understand every single paper. So what is missing is effectively what I ended up doing, which is domain by domain, go through and recap the best of the year.[00:05:48] swyx: Survey the field. And there are, like NeurIPS had a, uh, I think ICML had a like a position paper track, NeurIPS added a benchmarks, uh, datasets track. These are ways in which to address that [00:06:00] issue. Uh, there's always workshops as well. Every, every conference has, you know, a last day of workshops and stuff that provide more of an overview.[00:06:06] swyx: But they're not specifically prompted to do so. And I think really, uh, Organizing a conference is just about getting good speakers and giving them the correct prompts. And then they will just go and do that thing and they do a very good job of it. So I think Sarah did a fantastic job with the startups prompt.[00:06:21] swyx: I can't list everybody, but we did best of 2024 in startups, vision, open models. Post transformers, synthetic data, small models, and agents. And then the last one was the, uh, and then we also did a quick one on reasoning with Nathan Lambert. And then the last one, obviously, was the debate that people were very hyped about.[00:06:39] swyx: It was very awkward. And I'm really, really thankful for John Franco, basically, who stepped up to challenge Dylan. Because Dylan was like, yeah, I'll do it. But He was pro scaling. And I think everyone who is like in AI is pro scaling, right? So you need somebody who's ready to publicly say, no, we've hit a wall.[00:06:57] swyx: So that means you're saying Sam Altman's wrong. [00:07:00] You're saying, um, you know, everyone else is wrong. It helps that this was the day before Ilya went on, went up on stage and then said pre training has hit a wall. And data has hit a wall. So actually Jonathan ended up winning, and then Ilya supported that statement, and then Noam Brown on the last day further supported that statement as well.[00:07:17] swyx: So it's kind of interesting that I think the consensus kind of going in was that we're not done scaling, like you should believe in a better lesson. And then, four straight days in a row, you had Sepp Hochreiter, who is the creator of the LSTM, along with everyone's favorite OG in AI, which is Juergen Schmidhuber.[00:07:34] swyx: He said that, um, we're pre trading inside a wall, or like, we've run into a different kind of wall. And then we have, you know John Frankel, Ilya, and then Noam Brown are all saying variations of the same thing, that we have hit some kind of wall in the status quo of what pre trained, scaling large pre trained models has looked like, and we need a new thing.[00:07:54] swyx: And obviously the new thing for people is some make, either people are calling it inference time compute or test time [00:08:00] compute. I think the collective terminology has been inference time, and I think that makes sense because test time, calling it test, meaning, has a very pre trained bias, meaning that the only reason for running inference at all is to test your model.[00:08:11] swyx: That is not true. Right. Yeah. So, so, I quite agree that. OpenAI seems to have adopted, or the community seems to have adopted this terminology of ITC instead of TTC. And that, that makes a lot of sense because like now we care about inference, even right down to compute optimality. Like I actually interviewed this author who recovered or reviewed the Chinchilla paper.[00:08:31] swyx: Chinchilla paper is compute optimal training, but what is not stated in there is it's pre trained compute optimal training. And once you start caring about inference, compute optimal training, you have a different scaling law. And in a way that we did not know last year.[00:08:45] Alessio: I wonder, because John is, he's also on the side of attention is all you need.[00:08:49] Alessio: Like he had the bet with Sasha. So I'm curious, like he doesn't believe in scaling, but he thinks the transformer, I wonder if he's still. So, so,[00:08:56] swyx: so he, obviously everything is nuanced and you know, I told him to play a character [00:09:00] for this debate, right? So he actually does. Yeah. He still, he still believes that we can scale more.[00:09:04] swyx: Uh, he just assumed the character to be very game for, for playing this debate. So even more kudos to him that he assumed a position that he didn't believe in and still won the debate.[00:09:16] Alessio: Get rekt, Dylan. Um, do you just want to quickly run through some of these things? Like, uh, Sarah's presentation, just the highlights.[00:09:24] swyx: Yeah, we can't go through everyone's slides, but I pulled out some things as a factor of, like, stuff that we were going to talk about. And we'll[00:09:30] Alessio: publish[00:09:31] swyx: the rest. Yeah, we'll publish on this feed the best of 2024 in those domains. And hopefully people can benefit from the work that our speakers have done.[00:09:39] swyx: But I think it's, uh, these are just good slides. And I've been, I've been looking for a sort of end of year recaps from, from people.[00:09:44] The Competitive AI Landscape[00:09:44] swyx: The field has progressed a lot. You know, I think the max ELO in 2023 on LMSys used to be 1200 for LMSys ELOs. And now everyone is at least at, uh, 1275 in their ELOs, and this is across Gemini, Chadjibuti, [00:10:00] Grok, O1.[00:10:01] swyx: ai, which with their E Large model, and Enthopic, of course. It's a very, very competitive race. There are multiple Frontier labs all racing, but there is a clear tier zero Frontier. And then there's like a tier one. It's like, I wish I had everything else. Tier zero is extremely competitive. It's effectively now three horse race between Gemini, uh, Anthropic and OpenAI.[00:10:21] swyx: I would say that people are still holding out a candle for XAI. XAI, I think, for some reason, because their API was very slow to roll out, is not included in these metrics. So it's actually quite hard to put on there. As someone who also does charts, XAI is continually snubbed because they don't work well with the benchmarking people.[00:10:42] swyx: Yeah, yeah, yeah. It's a little trivia for why XAI always gets ignored. The other thing is market share. So these are slides from Sarah. We have it up on the screen. It has gone from very heavily open AI. So we have some numbers and estimates. These are from RAMP. Estimates of open AI market share in [00:11:00] December 2023.[00:11:01] swyx: And this is basically, what is it, GPT being 95 percent of production traffic. And I think if you correlate that with stuff that we asked. Harrison Chase on the LangChain episode, it was true. And then CLAUD 3 launched mid middle of this year. I think CLAUD 3 launched in March, CLAUD 3. 5 Sonnet was in June ish.[00:11:23] swyx: And you can start seeing the market share shift towards opening, uh, towards that topic, uh, very, very aggressively. The more recent one is Gemini. So if I scroll down a little bit, this is an even more recent dataset. So RAM's dataset ends in September 2 2. 2024. Gemini has basically launched a price war at the low end, uh, with Gemini Flash, uh, being basically free for personal use.[00:11:44] swyx: Like, I think people don't understand the free tier. It's something like a billion tokens per day. Unless you're trying to abuse it, you cannot really exhaust your free tier on Gemini. They're really trying to get you to use it. They know they're in like third place, um, fourth place, depending how you, how you count.[00:11:58] swyx: And so they're going after [00:12:00] the Lower tier first, and then, you know, maybe the upper tier later, but yeah, Gemini Flash, according to OpenRouter, is now 50 percent of their OpenRouter requests. Obviously, these are the small requests. These are small, cheap requests that are mathematically going to be more.[00:12:15] swyx: The smart ones obviously are still going to OpenAI. But, you know, it's a very, very big shift in the market. Like basically 2023, 2022, To going into 2024 opening has gone from nine five market share to Yeah. Reasonably somewhere between 50 to 75 market share.[00:12:29] Alessio: Yeah. I'm really curious how ramped does the attribution to the model?[00:12:32] Alessio: If it's API, because I think it's all credit card spin. . Well, but it's all, the credit card doesn't say maybe. Maybe the, maybe when they do expenses, they upload the PDF, but yeah, the, the German I think makes sense. I think that was one of my main 2024 takeaways that like. The best small model companies are the large labs, which is not something I would have thought that the open source kind of like long tail would be like the small model.[00:12:53] swyx: Yeah, different sizes of small models we're talking about here, right? Like so small model here for Gemini is AB, [00:13:00] right? Uh, mini. We don't know what the small model size is, but yeah, it's probably in the double digits or maybe single digits, but probably double digits. The open source community has kind of focused on the one to three B size.[00:13:11] swyx: Mm-hmm . Yeah. Maybe[00:13:12] swyx: zero, maybe 0.5 B uh, that's moon dream and that is small for you then, then that's great. It makes sense that we, we have a range for small now, which is like, may, maybe one to five B. Yeah. I'll even put that at, at, at the high end. And so this includes Gemma from Gemini as well. But also includes the Apple Foundation models, which I think Apple Foundation is 3B.[00:13:32] Alessio: Yeah. No, that's great. I mean, I think in the start small just meant cheap. I think today small is actually a more nuanced discussion, you know, that people weren't really having before.[00:13:43] swyx: Yeah, we can keep going. This is a slide that I smiley disagree with Sarah. She's pointing to the scale SEAL leaderboard. I think the Researchers that I talked with at NeurIPS were kind of positive on this because basically you need private test [00:14:00] sets to prevent contamination.[00:14:02] swyx: And Scale is one of maybe three or four people this year that has really made an effort in doing a credible private test set leaderboard. Llama405B does well compared to Gemini and GPT 40. And I think that's good. I would say that. You know, it's good to have an open model that is that big, that does well on those metrics.[00:14:23] swyx: But anyone putting 405B in production will tell you, if you scroll down a little bit to the artificial analysis numbers, that it is very slow and very expensive to infer. Um, it doesn't even fit on like one node. of, uh, of H100s. Cerebras will be happy to tell you they can serve 4 or 5B on their super large chips.[00:14:42] swyx: But, um, you know, if you need to do anything custom to it, you're still kind of constrained. So, is 4 or 5B really that relevant? Like, I think most people are basically saying that they only use 4 or 5B as a teacher model to distill down to something. Even Meta is doing it. So with Lama 3. [00:15:00] 3 launched, they only launched the 70B because they use 4 or 5B to distill the 70B.[00:15:03] swyx: So I don't know if like open source is keeping up. I think they're the, the open source industrial complex is very invested in telling you that the, if the gap is narrowing, I kind of disagree. I think that the gap is widening with O1. I think there are very, very smart people trying to narrow that gap and they should.[00:15:22] swyx: I really wish them success, but you cannot use a chart that is nearing 100 in your saturation chart. And look, the distance between open source and closed source is narrowing. Of course it's going to narrow because you're near 100. This is stupid. But in metrics that matter, is open source narrowing?[00:15:38] swyx: Probably not for O1 for a while. And it's really up to the open source guys to figure out if they can match O1 or not.[00:15:46] Alessio: I think inference time compute is bad for open source just because, you know, Doc can donate the flops at training time, but he cannot donate the flops at inference time. So it's really hard to like actually keep up on that axis.[00:15:59] Alessio: Big, big business [00:16:00] model shift. So I don't know what that means for the GPU clouds. I don't know what that means for the hyperscalers, but obviously the big labs have a lot of advantage. Because, like, it's not a static artifact that you're putting the compute in. You're kind of doing that still, but then you're putting a lot of computed inference too.[00:16:17] swyx: Yeah, yeah, yeah. Um, I mean, Llama4 will be reasoning oriented. We talked with Thomas Shalom. Um, kudos for getting that episode together. That was really nice. Good, well timed. Actually, I connected with the AI meta guy, uh, at NeurIPS, and, um, yeah, we're going to coordinate something for Llama4. Yeah, yeah,[00:16:32] Alessio: and our friend, yeah.[00:16:33] Alessio: Clara Shi just joined to lead the business agent side. So I'm sure we'll have her on in the new year.[00:16:39] swyx: Yeah. So, um, my comment on, on the business model shift, this is super interesting. Apparently it is wide knowledge that OpenAI wanted more than 6. 6 billion dollars for their fundraise. They wanted to raise, you know, higher, and they did not.[00:16:51] swyx: And what that means is basically like, it's very convenient that we're not getting GPT 5, which would have been a larger pre train. We should have a lot of upfront money. And [00:17:00] instead we're, we're converting fixed costs into variable costs, right. And passing it on effectively to the customer. And it's so much easier to take margin there because you can directly attribute it to like, Oh, you're using this more.[00:17:12] swyx: Therefore you, you pay more of the cost and I'll just slap a margin in there. So like that lets you control your growth margin and like tie your. Your spend, or your sort of inference spend, accordingly. And it's just really interesting to, that this change in the sort of inference paradigm has arrived exactly at the same time that the funding environment for pre training is effectively drying up, kind of.[00:17:36] swyx: I feel like maybe the VCs are very in tune with research anyway, so like, they would have noticed this, but, um, it's just interesting.[00:17:43] Alessio: Yeah, and I was looking back at our yearly recap of last year. Yeah. And the big thing was like the mixed trial price fights, you know, and I think now it's almost like there's nowhere to go, like, you know, Gemini Flash is like basically giving it away for free.[00:17:55] Alessio: So I think this is a good way for the labs to generate more revenue and pass down [00:18:00] some of the compute to the customer. I think they're going to[00:18:02] swyx: keep going. I think that 2, will come.[00:18:05] Alessio: Yeah, I know. Totally. I mean, next year, the first thing I'm doing is signing up for Devin. Signing up for the pro chat GBT.[00:18:12] Alessio: Just to try. I just want to see what does it look like to spend a thousand dollars a month on AI?[00:18:17] swyx: Yes. Yes. I think if your, if your, your job is a, at least AI content creator or VC or, you know, someone who, whose job it is to stay on, stay on top of things, you should already be spending like a thousand dollars a month on, on stuff.[00:18:28] swyx: And then obviously easy to spend, hard to use. You have to actually use. The good thing is that actually Google lets you do a lot of stuff for free now. So like deep research. That they just launched. Uses a ton of inference and it's, it's free while it's in preview.[00:18:45] Alessio: Yeah. They need to put that in Lindy.[00:18:47] Alessio: I've been using Lindy lately. I've been a built a bunch of things once we had flow because I liked the new thing. It's pretty good. I even did a phone call assistant. Um, yeah, they just launched Lindy voice. Yeah, I think once [00:19:00] they get advanced voice mode like capability today, still like speech to text, you can kind of tell.[00:19:06] Alessio: Um, but it's good for like reservations and things like that. So I have a meeting prepper thing. And so[00:19:13] swyx: it's good. Okay. I feel like we've, we've covered a lot of stuff. Uh, I, yeah, I, you know, I think We will go over the individual, uh, talks in a separate episode. Uh, I don't want to take too much time with, uh, this stuff, but that suffice to say that there is a lot of progress in each field.[00:19:28] swyx: Uh, we covered vision. Basically this is all like the audience voting for what they wanted. And then I just invited the best people I could find in each audience, especially agents. Um, Graham, who I talked to at ICML in Vienna, he is currently still number one. It's very hard to stay on top of SweetBench.[00:19:45] swyx: OpenHand is currently still number one. switchbench full, which is the hardest one. He had very good thoughts on agents, which I, which I'll highlight for people. Everyone is saying 2025 is the year of agents, just like they said last year. And, uh, but he had [00:20:00] thoughts on like eight parts of what are the frontier problems to solve in agents.[00:20:03] swyx: And so I'll highlight that talk as well.[00:20:05] Alessio: Yeah. The number six, which is the Hacken agents learn more about the environment, has been a Super interesting to us as well, just to think through, because, yeah, how do you put an agent in an enterprise where most things in an enterprise have never been public, you know, a lot of the tooling, like the code bases and things like that.[00:20:23] Alessio: So, yeah, there's not indexing and reg. Well, yeah, but it's more like. You can't really rag things that are not documented. But people know them based on how they've been doing it. You know, so I think there's almost this like, you know, Oh, institutional knowledge. Yeah, the boring word is kind of like a business process extraction.[00:20:38] Alessio: Yeah yeah, I see. It's like, how do you actually understand how these things are done? I see. Um, and I think today the, the problem is that, Yeah, the agents are, that most people are building are good at following instruction, but are not as good as like extracting them from you. Um, so I think that will be a big unlock just to touch quickly on the Jeff Dean thing.[00:20:55] Alessio: I thought it was pretty, I mean, we'll link it in the, in the things, but. I think the main [00:21:00] focus was like, how do you use ML to optimize the systems instead of just focusing on ML to do something else? Yeah, I think speculative decoding, we had, you know, Eugene from RWKB on the podcast before, like he's doing a lot of that with Fetterless AI.[00:21:12] swyx: Everyone is. I would say it's the norm. I'm a little bit uncomfortable with how much it costs, because it does use more of the GPU per call. But because everyone is so keen on fast inference, then yeah, makes sense.[00:21:24] Alessio: Exactly. Um, yeah, but we'll link that. Obviously Jeff is great.[00:21:30] swyx: Jeff is, Jeff's talk was more, it wasn't focused on Gemini.[00:21:33] swyx: I think people got the wrong impression from my tweet. It's more about how Google approaches ML and uses ML to design systems and then systems feedback into ML. And I think this ties in with Lubna's talk.[00:21:45] Synthetic Data and Future Trends[00:21:45] swyx: on synthetic data where it's basically the story of bootstrapping of humans and AI in AI research or AI in production.[00:21:53] swyx: So her talk was on synthetic data, where like how much synthetic data has grown in 2024 in the pre training side, the post training side, [00:22:00] and the eval side. And I think Jeff then also extended it basically to chips, uh, to chip design. So he'd spend a lot of time talking about alpha chip. And most of us in the audience are like, we're not working on hardware, man.[00:22:11] swyx: Like you guys are great. TPU is great. Okay. We'll buy TPUs.[00:22:14] Alessio: And then there was the earlier talk. Yeah. But, and then we have, uh, I don't know if we're calling them essays. What are we calling these? But[00:22:23] swyx: for me, it's just like bonus for late in space supporters, because I feel like they haven't been getting anything.[00:22:29] swyx: And then I wanted a more high frequency way to write stuff. Like that one I wrote in an afternoon. I think basically we now have an answer to what Ilya saw. It's one year since. The blip. And we know what he saw in 2014. We know what he saw in 2024. We think we know what he sees in 2024. He gave some hints and then we have vague indications of what he saw in 2023.[00:22:54] swyx: So that was the Oh, and then 2016 as well, because of this lawsuit with Elon, OpenAI [00:23:00] is publishing emails from Sam's, like, his personal text messages to Siobhan, Zelis, or whatever. So, like, we have emails from Ilya saying, this is what we're seeing in OpenAI, and this is why we need to scale up GPUs. And I think it's very prescient in 2016 to write that.[00:23:16] swyx: And so, like, it is exactly, like, basically his insights. It's him and Greg, basically just kind of driving the scaling up of OpenAI, while they're still playing Dota. They're like, no, like, we see the path here.[00:23:30] Alessio: Yeah, and it's funny, yeah, they even mention, you know, we can only train on 1v1 Dota. We need to train on 5v5, and that takes too many GPUs.[00:23:37] Alessio: Yeah,[00:23:37] swyx: and at least for me, I can speak for myself, like, I didn't see the path from Dota to where we are today. I think even, maybe if you ask them, like, they wouldn't necessarily draw a straight line. Yeah,[00:23:47] Alessio: no, definitely. But I think like that was like the whole idea of almost like the RL and we talked about this with Nathan on his podcast.[00:23:55] Alessio: It's like with RL, you can get very good at specific things, but then you can't really like generalize as much. And I [00:24:00] think the language models are like the opposite, which is like, you're going to throw all this data at them and scale them up, but then you really need to drive them home on a specific task later on.[00:24:08] Alessio: And we'll talk about the open AI reinforcement, fine tuning, um, announcement too, and all of that. But yeah, I think like scale is all you need. That's kind of what Elia will be remembered for. And I think just maybe to clarify on like the pre training is over thing that people love to tweet. I think the point of the talk was like everybody, we're scaling these chips, we're scaling the compute, but like the second ingredient which is data is not scaling at the same rate.[00:24:35] Alessio: So it's not necessarily pre training is over. It's kind of like What got us here won't get us there. In his email, he predicted like 10x growth every two years or something like that. And I think maybe now it's like, you know, you can 10x the chips again, but[00:24:49] swyx: I think it's 10x per year. Was it? I don't know.[00:24:52] Alessio: Exactly. And Moore's law is like 2x. So it's like, you know, much faster than that. And yeah, I like the fossil fuel of AI [00:25:00] analogy. It's kind of like, you know, the little background tokens thing. So the OpenAI reinforcement fine tuning is basically like, instead of fine tuning on data, you fine tune on a reward model.[00:25:09] Alessio: So it's basically like, instead of being data driven, it's like task driven. And I think people have tasks to do, they don't really have a lot of data. So I'm curious to see how that changes, how many people fine tune, because I think this is what people run into. It's like, Oh, you can fine tune llama. And it's like, okay, where do I get the data?[00:25:27] Alessio: To fine tune it on, you know, so it's great that we're moving the thing. And then I really like he had this chart where like, you know, the brain mass and the body mass thing is basically like mammals that scaled linearly by brain and body size, and then humans kind of like broke off the slope. So it's almost like maybe the mammal slope is like the pre training slope.[00:25:46] Alessio: And then the post training slope is like the, the human one.[00:25:49] swyx: Yeah. I wonder what the. I mean, we'll know in 10 years, but I wonder what the y axis is for, for Ilya's SSI. We'll try to get them on.[00:25:57] Alessio: Ilya, if you're listening, you're [00:26:00] welcome here. Yeah, and then he had, you know, what comes next, like agent, synthetic data, inference, compute, I thought all of that was like that.[00:26:05] Alessio: I don't[00:26:05] swyx: think he was dropping any alpha there. Yeah, yeah, yeah.[00:26:07] Alessio: Yeah. Any other new reps? Highlights?[00:26:10] swyx: I think that there was comparatively a lot more work. Oh, by the way, I need to plug that, uh, my friend Yi made this, like, little nice paper. Yeah, that was really[00:26:20] swyx: nice.[00:26:20] swyx: Uh, of, uh, of, like, all the, he's, she called it must read papers of 2024.[00:26:26] swyx: So I laid out some of these at NeurIPS, and it was just gone. Like, everyone just picked it up. Because people are dying for, like, little guidance and visualizations And so, uh, I thought it was really super nice that we got there.[00:26:38] Alessio: Should we do a late in space book for each year? Uh, I thought about it. For each year we should.[00:26:42] Alessio: Coffee table book. Yeah. Yeah. Okay. Put it in the will. Hi, Will. By the way, we haven't introduced you. He's our new, you know, general organist, Jamie. You need to[00:26:52] swyx: pull up more things. One thing I saw that, uh, Okay, one fun one, and then one [00:27:00] more general one. So the fun one is this paper on agent collusion. This is a paper on steganography.[00:27:06] swyx: This is secret collusion among AI agents, multi agent deception via steganography. I tried to go to NeurIPS in order to find these kinds of papers because the real reason Like NeurIPS this year has a lottery system. A lot of people actually even go and don't buy tickets because they just go and attend the side events.[00:27:22] swyx: And then also the people who go and end up crowding around the most popular papers, which you already know and already read them before you showed up to NeurIPS. So the only reason you go there is to talk to the paper authors, but there's like something like 10, 000 other. All these papers out there that, you know, are just people's work that they, that they did on the air and they failed to get attention for one reason or another.[00:27:42] swyx: And this was one of them. Uh, it was like all the way at the back. And this is a deep mind paper that actually focuses on collusion between AI agents, uh, by hiding messages in the text that they generate. Uh, so that's what steganography is. So a very simple example would be the first letter of every word.[00:27:57] swyx: If you Pick that out, you know, and the code sends a [00:28:00] different message than that. But something I've always emphasized is to LLMs, we read left to right. LLMs can read up, down, sideways, you know, in random character order. And it's the same to them as it is to us. So if we were ever to get You know, self motivated, underlined LLMs that we're trying to collaborate to take over the planet.[00:28:19] swyx: This would be how they do it. They spread messages among us in the messages that we generate. And he developed a scaling law for that. So he marked, I'm showing it on screen right now, the emergence of this phenomenon. Basically, for example, for Cypher encoding, GPT 2, Lama 2, mixed trial, GPT 3. 5, zero capabilities, and sudden 4.[00:28:40] swyx: And this is the kind of Jason Wei type emergence properties that people kind of look for. I think what made this paper stand out as well, so he developed the benchmark for steganography collusion, and he also focused on shelling point collusion, which is very low coordination. For agreeing on a decoding encoding format, you kind of need to have some [00:29:00] agreement on that.[00:29:00] swyx: But, but shelling point means like very, very low or almost no coordination. So for example, if I, if I ask someone, if the only message I give you is meet me in New York and you're not aware. Or when you would probably meet me at Grand Central Station. That is the Grand Central Station is a shelling point.[00:29:16] swyx: And it's probably somewhere, somewhere during the day. That is the shelling point of New York is Grand Central. To that extent, shelling points for steganography are things like the, the, the common decoding methods that we talked about. It will be interesting at some point in the future when we are worried about alignment.[00:29:30] swyx: It is not interesting today, but it's interesting that DeepMind is already thinking about this.[00:29:36] Alessio: I think that's like one of the hardest things about NeurIPS. It's like the long tail. I[00:29:41] swyx: found a pricing guy. I'm going to feature him on the podcast. Basically, this guy from NVIDIA worked out the optimal pricing for language models.[00:29:51] swyx: It's basically an econometrics paper at NeurIPS, where everyone else is talking about GPUs. And the guy with the GPUs is[00:29:57] Alessio: talking[00:29:57] swyx: about economics instead. [00:30:00] That was the sort of fun one. So the focus I saw is that model papers at NeurIPS are kind of dead. No one really presents models anymore. It's just data sets.[00:30:12] swyx: This is all the grad students are working on. So like there was a data sets track and then I was looking around like, I was like, you don't need a data sets track because every paper is a data sets paper. And so data sets and benchmarks, they're kind of flip sides of the same thing. So Yeah. Cool. Yeah, if you're a grad student, you're a GPU boy, you kind of work on that.[00:30:30] swyx: And then the, the sort of big model that people walk around and pick the ones that they like, and then they use it in their models. And that's, that's kind of how it develops. I, I feel like, um, like, like you didn't last year, you had people like Hao Tian who worked on Lava, which is take Lama and add Vision.[00:30:47] swyx: And then obviously actually I hired him and he added Vision to Grok. Now he's the Vision Grok guy. This year, I don't think there was any of those.[00:30:55] Alessio: What were the most popular, like, orals? Last year it was like the [00:31:00] Mixed Monarch, I think, was like the most attended. Yeah, uh, I need to look it up. Yeah, I mean, if nothing comes to mind, that's also kind of like an answer in a way.[00:31:10] Alessio: But I think last year there was a lot of interest in, like, furthering models and, like, different architectures and all of that.[00:31:16] swyx: I will say that I felt the orals, oral picks this year were not very good. Either that or maybe it's just a So that's the highlight of how I have changed in terms of how I view papers.[00:31:29] swyx: So like, in my estimation, two of the best papers in this year for datasets or data comp and refined web or fine web. These are two actually industrially used papers, not highlighted for a while. I think DCLM got the spotlight, FineWeb didn't even get the spotlight. So like, it's just that the picks were different.[00:31:48] swyx: But one thing that does get a lot of play that a lot of people are debating is the role that's scheduled. This is the schedule free optimizer paper from Meta from Aaron DeFazio. And this [00:32:00] year in the ML community, there's been a lot of chat about shampoo, soap, all the bathroom amenities for optimizing your learning rates.[00:32:08] swyx: And, uh, most people at the big labs are. Who I asked about this, um, say that it's cute, but it's not something that matters. I don't know, but it's something that was discussed and very, very popular. 4Wars[00:32:19] Alessio: of AI recap maybe, just quickly. Um, where do you want to start? Data?[00:32:26] swyx: So to remind people, this is the 4Wars piece that we did as one of our earlier recaps of this year.[00:32:31] swyx: And the belligerents are on the left, journalists, writers, artists, anyone who owns IP basically, New York Times, Stack Overflow, Reddit, Getty, Sarah Silverman, George RR Martin. Yeah, and I think this year we can add Scarlett Johansson to that side of the fence. So anyone suing, open the eye, basically. I actually wanted to get a snapshot of all the lawsuits.[00:32:52] swyx: I'm sure some lawyer can do it. That's the data quality war. On the right hand side, we have the synthetic data people, and I think we talked about Lumna's talk, you know, [00:33:00] really showing how much synthetic data has come along this year. I think there was a bit of a fight between scale. ai and the synthetic data community, because scale.[00:33:09] swyx: ai published a paper saying that synthetic data doesn't work. Surprise, surprise, scale. ai is the leading vendor of non synthetic data. Only[00:33:17] Alessio: cage free annotated data is useful.[00:33:21] swyx: So I think there's some debate going on there, but I don't think it's much debate anymore that at least synthetic data, for the reasons that are blessed in Luna's talk, Makes sense.[00:33:32] swyx: I don't know if you have any perspectives there.[00:33:34] Alessio: I think, again, going back to the reinforcement fine tuning, I think that will change a little bit how people think about it. I think today people mostly use synthetic data, yeah, for distillation and kind of like fine tuning a smaller model from like a larger model.[00:33:46] Alessio: I'm not super aware of how the frontier labs use it outside of like the rephrase, the web thing that Apple also did. But yeah, I think it'll be. Useful. I think like whether or not that gets us the big [00:34:00] next step, I think that's maybe like TBD, you know, I think people love talking about data because it's like a GPU poor, you know, I think, uh, synthetic data is like something that people can do, you know, so they feel more opinionated about it compared to, yeah, the optimizers stuff, which is like,[00:34:17] swyx: they don't[00:34:17] Alessio: really work[00:34:18] swyx: on.[00:34:18] swyx: I think that there is an angle to the reasoning synthetic data. So this year, we covered in the paper club, the star series of papers. So that's star, Q star, V star. It basically helps you to synthesize reasoning steps, or at least distill reasoning steps from a verifier. And if you look at the OpenAI RFT, API that they released, or that they announced, basically they're asking you to submit graders, or they choose from a preset list of graders.[00:34:49] swyx: Basically It feels like a way to create valid synthetic data for them to fine tune their reasoning paths on. Um, so I think that is another angle where it starts to make sense. And [00:35:00] so like, it's very funny that basically all the data quality wars between Let's say the music industry or like the newspaper publishing industry or the textbooks industry on the big labs.[00:35:11] swyx: It's all of the pre training era. And then like the new era, like the reasoning era, like nobody has any problem with all the reasoning, especially because it's all like sort of math and science oriented with, with very reasonable graders. I think the more interesting next step is how does it generalize beyond STEM?[00:35:27] swyx: We've been using O1 for And I would say like for summarization and creative writing and instruction following, I think it's underrated. I started using O1 in our intro songs before we killed the intro songs, but it's very good at writing lyrics. You know, I can actually say like, I think one of the O1 pro demos.[00:35:46] swyx: All of these things that Noam was showing was that, you know, you can write an entire paragraph or three paragraphs without using the letter A, right?[00:35:53] Creative Writing with AI[00:35:53] swyx: So like, like literally just anything instead of token, like not even token level, character level manipulation and [00:36:00] counting and instruction following. It's, uh, it's very, very strong.[00:36:02] swyx: And so no surprises when I ask it to rhyme, uh, and to, to create song lyrics, it's going to do that very much better than in previous models. So I think it's underrated for creative writing.[00:36:11] Alessio: Yeah.[00:36:12] Legal and Ethical Issues in AI[00:36:12] Alessio: What do you think is the rationale that they're going to have in court when they don't show you the thinking traces of O1, but then they want us to, like, they're getting sued for using other publishers data, you know, but then on their end, they're like, well, you shouldn't be using my data to then train your model.[00:36:29] Alessio: So I'm curious to see how that kind of comes. Yeah, I mean, OPA has[00:36:32] swyx: many ways to publish, to punish people without bringing, taking them to court. Already banned ByteDance for distilling their, their info. And so anyone caught distilling the chain of thought will be just disallowed to continue on, on, on the API.[00:36:44] swyx: And it's fine. It's no big deal. Like, I don't even think that's an issue at all, just because the chain of thoughts are pretty well hidden. Like you have to work very, very hard to, to get it to leak. And then even when it leaks the chain of thought, you don't know if it's, if it's [00:37:00] The bigger concern is actually that there's not that much IP hiding behind it, that Cosign, which we talked about, we talked to him on Dev Day, can just fine tune 4.[00:37:13] swyx: 0 to beat 0. 1 Cloud SONET so far is beating O1 on coding tasks without, at least O1 preview, without being a reasoning model, same for Gemini Pro or Gemini 2. 0. So like, how much is reasoning important? How much of a moat is there in this, like, All of these are proprietary sort of training data that they've presumably accomplished.[00:37:34] swyx: Because even DeepSeek was able to do it. And they had, you know, two months notice to do this, to do R1. So, it's actually unclear how much moat there is. Obviously, you know, if you talk to the Strawberry team, they'll be like, yeah, I mean, we spent the last two years doing this. So, we don't know. And it's going to be Interesting because there'll be a lot of noise from people who say they have inference time compute and actually don't because they just have fancy chain of thought.[00:38:00][00:38:00] swyx: And then there's other people who actually do have very good chain of thought. And you will not see them on the same level as OpenAI because OpenAI has invested a lot in building up the mythology of their team. Um, which makes sense. Like the real answer is somewhere in between.[00:38:13] Alessio: Yeah, I think that's kind of like the main data war story developing.[00:38:18] The Data War: GPU Poor vs. GPU Rich[00:38:18] Alessio: GPU poor versus GPU rich. Yeah. Where do you think we are? I think there was, again, going back to like the small model thing, there was like a time in which the GPU poor were kind of like the rebel faction working on like these models that were like open and small and cheap. And I think today people don't really care as much about GPUs anymore.[00:38:37] Alessio: You also see it in the price of the GPUs. Like, you know, that market is kind of like plummeted because there's people don't want to be, they want to be GPU free. They don't even want to be poor. They just want to be, you know, completely without them. Yeah. How do you think about this war? You[00:38:52] swyx: can tell me about this, but like, I feel like the, the appetite for GPU rich startups, like the, you know, the, the funding plan is we will raise 60 million and [00:39:00] we'll give 50 of that to NVIDIA.[00:39:01] swyx: That is gone, right? Like, no one's, no one's pitching that. This was literally the plan, the exact plan of like, I can name like four or five startups, you know, this time last year. So yeah, GPU rich startups gone.[00:39:12] The Rise of GPU Ultra Rich[00:39:12] swyx: But I think like, The GPU ultra rich, the GPU ultra high net worth is still going. So, um, now we're, you know, we had Leopold's essay on the trillion dollar cluster.[00:39:23] swyx: We're not quite there yet. We have multiple labs, um, you know, XAI very famously, you know, Jensen Huang praising them for being. Best boy number one in spinning up 100, 000 GPU cluster in like 12 days or something. So likewise at Meta, likewise at OpenAI, likewise at the other labs as well. So like the GPU ultra rich are going to keep doing that because I think partially it's an article of faith now that you just need it.[00:39:46] swyx: Like you don't even know what it's going to, what you're going to use it for. You just, you just need it. And it makes sense that if, especially if we're going into. More researchy territory than we are. So let's say 2020 to 2023 was [00:40:00] let's scale big models territory because we had GPT 3 in 2020 and we were like, okay, we'll go from 1.[00:40:05] swyx: 75b to 1. 8b, 1. 8t. And that was GPT 3 to GPT 4. Okay, that's done. As far as everyone is concerned, Opus 3. 5 is not coming out, GPT 4. 5 is not coming out, and Gemini 2, we don't have Pro, whatever. We've hit that wall. Maybe I'll call it the 2 trillion perimeter wall. We're not going to 10 trillion. No one thinks it's a good idea, at least from training costs, from the amount of data, or at least the inference.[00:40:36] swyx: Would you pay 10x the price of GPT Probably not. Like, like you want something else that, that is at least more useful. So it makes sense that people are pivoting in terms of their inference paradigm.[00:40:47] Emerging Trends in AI Models[00:40:47] swyx: And so when it's more researchy, then you actually need more just general purpose compute to mess around with, uh, at the exact same time that production deployments of the old, the previous paradigm is still ramping up,[00:40:58] swyx: um,[00:40:58] swyx: uh, pretty aggressively.[00:40:59] swyx: So [00:41:00] it makes sense that the GPU rich are growing. We have now interviewed both together and fireworks and replicates. Uh, we haven't done any scale yet. But I think Amazon, maybe kind of a sleeper one, Amazon, in a sense of like they, at reInvent, I wasn't expecting them to do so well, but they are now a foundation model lab.[00:41:18] swyx: It's kind of interesting. Um, I think, uh, you know, David went over there and started just creating models.[00:41:25] Alessio: Yeah, I mean, that's the power of prepaid contracts. I think like a lot of AWS customers, you know, they do this big reserve instance contracts and now they got to use their money. That's why so many startups.[00:41:37] Alessio: Get bought through the AWS marketplace so they can kind of bundle them together and prefer pricing.[00:41:42] swyx: Okay, so maybe GPU super rich doing very well, GPU middle class dead, and then GPU[00:41:48] Alessio: poor. I mean, my thing is like, everybody should just be GPU rich. There shouldn't really be, even the GPU poorest, it's like, does it really make sense to be GPU poor?[00:41:57] Alessio: Like, if you're GPU poor, you should just use the [00:42:00] cloud. Yes, you know, and I think there might be a future once we kind of like figure out what the size and shape of these models is where like the tiny box and these things come to fruition where like you can be GPU poor at home. But I think today is like, why are you working so hard to like get these models to run on like very small clusters where it's like, It's so cheap to run them.[00:42:21] Alessio: Yeah, yeah,[00:42:22] swyx: yeah. I think mostly people think it's cool. People think it's a stepping stone to scaling up. So they aspire to be GPU rich one day and they're working on new methods. Like news research, like probably the most deep tech thing they've done this year is Distro or whatever the new name is.[00:42:38] swyx: There's a lot of interest in heterogeneous computing, distributed computing. I tend generally to de emphasize that historically, but it may be coming to a time where it is starting to be relevant. I don't know. You know, SF compute launched their compute marketplace this year, and like, who's really using that?[00:42:53] swyx: Like, it's a bunch of small clusters, disparate types of compute, and if you can make that [00:43:00] useful, then that will be very beneficial to the broader community, but maybe still not the source of frontier models. It's just going to be a second tier of compute that is unlocked for people, and that's fine. But yeah, I mean, I think this year, I would say a lot more on device, We are, I now have Apple intelligence on my phone.[00:43:19] swyx: Doesn't do anything apart from summarize my notifications. But still, not bad. Like, it's multi modal.[00:43:25] Alessio: Yeah, the notification summaries are so and so in my experience.[00:43:29] swyx: Yeah, but they add, they add juice to life. And then, um, Chrome Nano, uh, Gemini Nano is coming out in Chrome. Uh, they're still feature flagged, but you can, you can try it now if you, if you use the, uh, the alpha.[00:43:40] swyx: And so, like, I, I think, like, you know, We're getting the sort of GPU poor version of a lot of these things coming out, and I think it's like quite useful. Like Windows as well, rolling out RWKB in sort of every Windows department is super cool. And I think the last thing that I never put in this GPU poor war, that I think I should now, [00:44:00] is the number of startups that are GPU poor but still scaling very well, as sort of wrappers on top of either a foundation model lab, or GPU Cloud.[00:44:10] swyx: GPU Cloud, it would be Suno. Suno, Ramp has rated as one of the top ranked, fastest growing startups of the year. Um, I think the last public number is like zero to 20 million this year in ARR and Suno runs on Moto. So Suno itself is not GPU rich, but they're just doing the training on, on Moto, uh, who we've also talked to on, on the podcast.[00:44:31] swyx: The other one would be Bolt, straight cloud wrapper. And, and, um, Again, another, now they've announced 20 million ARR, which is another step up from our 8 million that we put on the title. So yeah, I mean, it's crazy that all these GPU pores are finding a way while the GPU riches are also finding a way. And then the only failures, I kind of call this the GPU smiling curve, where the edges do well, because you're either close to the machines, and you're like [00:45:00] number one on the machines, or you're like close to the customers, and you're number one on the customer side.[00:45:03] swyx: And the people who are in the middle. Inflection, um, character, didn't do that great. I think character did the best of all of them. Like, you have a note in here that we apparently said that character's price tag was[00:45:15] Alessio: 1B.[00:45:15] swyx: Did I say that?[00:45:16] Alessio: Yeah. You said Google should just buy them for 1B. I thought it was a crazy number.[00:45:20] Alessio: Then they paid 2. 7 billion. I mean, for like,[00:45:22] swyx: yeah.[00:45:22] Alessio: What do you pay for node? Like, I don't know what the game world was like. Maybe the starting price was 1B. I mean, whatever it was, it worked out for everybody involved.[00:45:31] The Multi-Modality War[00:45:31] Alessio: Multimodality war. And this one, we never had text to video in the first version, which now is the hottest.[00:45:37] swyx: Yeah, I would say it's a subset of image, but yes.[00:45:40] Alessio: Yeah, well, but I think at the time it wasn't really something people were doing, and now we had VO2 just came out yesterday. Uh, Sora was released last month, last week. I've not tried Sora, because the day that I tried, it wasn't, yeah. I[00:45:54] swyx: think it's generally available now, you can go to Sora.[00:45:56] swyx: com and try it. Yeah, they had[00:45:58] Alessio: the outage. Which I [00:46:00] think also played a part into it. Small things. Yeah. What's the other model that you posted today that was on Replicate? Video or OneLive?[00:46:08] swyx: Yeah. Very, very nondescript name, but it is from Minimax, which I think is a Chinese lab. The Chinese labs do surprisingly well at the video models.[00:46:20] swyx: I'm not sure it's actually Chinese. I don't know. Hold me up to that. Yep. China. It's good. Yeah, the Chinese love video. What can I say? They have a lot of training data for video. Or a more relaxed regulatory environment.[00:46:37] Alessio: Uh, well, sure, in some way. Yeah, I don't think there's much else there. I think like, you know, on the image side, I think it's still open.[00:46:45] Alessio: Yeah, I mean,[00:46:46] swyx: 11labs is now a unicorn. So basically, what is multi modality war? Multi modality war is, do you specialize in a single modality, right? Or do you have GodModel that does all the modalities? So this is [00:47:00] definitely still going, in a sense of 11 labs, you know, now Unicorn, PicoLabs doing well, they launched Pico 2.[00:47:06] swyx: 0 recently, HeyGen, I think has reached 100 million ARR, Assembly, I don't know, but they have billboards all over the place, so I assume they're doing very, very well. So these are all specialist models, specialist models and specialist startups. And then there's the big labs who are doing the sort of all in one play.[00:47:24] swyx: And then here I would highlight Gemini 2 for having native image output. Have you seen the demos? Um, yeah, it's, it's hard to keep up. Literally they launched this last week and a shout out to Paige Bailey, who came to the Latent Space event to demo on the day of launch. And she wasn't prepared. She was just like, I'm just going to show you.[00:47:43] swyx: So they have voice. They have, you know, obviously image input, and then they obviously can code gen and all that. But the new one that OpenAI and Meta both have but they haven't launched yet is image output. So you can literally, um, I think their demo video was that you put in an image of a [00:48:00] car, and you ask for minor modifications to that car.[00:48:02] swyx: They can generate you that modification exactly as you asked. So there's no need for the stable diffusion or comfy UI workflow of like mask here and then like infill there in paint there and all that, all that stuff. This is small model nonsense. Big model people are like, huh, we got you in as everything in the transformer.[00:48:21] swyx: This is the multimodality war, which is, do you, do you bet on the God model or do you string together a whole bunch of, uh, Small models like a, like a chump. Yeah,[00:48:29] Alessio: I don't know, man. Yeah, that would be interesting. I mean, obviously I use Midjourney for all of our thumbnails. Um, they've been doing a ton on the product, I would say.[00:48:38] Alessio: They launched a new Midjourney editor thing. They've been doing a ton. Because I think, yeah, the motto is kind of like, Maybe, you know, people say black forest, the black forest models are better than mid journey on a pixel by pixel basis. But I think when you put it, put it together, have you tried[00:48:53] swyx: the same problems on black forest?[00:48:55] Alessio: Yes. But the problem is just like, you know, on black forest, it generates one image. And then it's like, you got to [00:49:00] regenerate. You don't have all these like UI things. Like what I do, no, but it's like time issue, you know, it's like a mid[00:49:06] swyx: journey. Call the API four times.[00:49:08] Alessio: No, but then there's no like variate.[00:49:10] Alessio: Like the good thing about mid journey is like, you just go in there and you're cooking. There's a lot of stuff that just makes it really easy. And I think people underestimate that. Like, it's not really a skill issue, because I'm paying mid journey, so it's a Black Forest skill issue, because I'm not paying them, you know?[00:49:24] Alessio: Yeah,[00:49:25] swyx: so, okay, so, uh, this is a UX thing, right? Like, you, you, you understand that, at least, we think that Black Forest should be able to do all that stuff. I will also shout out, ReCraft has come out, uh, on top of the image arena that, uh, artificial analysis has done, has apparently, uh, Flux's place. Is this still true?[00:49:41] swyx: So, Artificial Analysis is now a company. I highlighted them I think in one of the early AI Newses of the year. And they have launched a whole bunch of arenas. So, they're trying to take on LM Arena, Anastasios and crew. And they have an image arena. Oh yeah, Recraft v3 is now beating Flux 1. 1. Which is very surprising [00:50:00] because Flux And Black Forest Labs are the old stable diffusion crew who left stability after, um, the management issues.[00:50:06] swyx: So Recurve has come from nowhere to be the top image model. Uh, very, very strange. I would also highlight that Grok has now launched Aurora, which is, it's very interesting dynamics between Grok and Black Forest Labs because Grok's images were originally launched, uh, in partnership with Black Forest Labs as a, as a thin wrapper.[00:50:24] swyx: And then Grok was like, no, we'll make our own. And so they've made their own. I don't know, there are no APIs or benchmarks about it. They just announced it. So yeah, that's the multi modality war. I would say that so far, the small model, the dedicated model people are winning, because they are just focused on their tasks.[00:50:42] swyx: But the big model, People are always catching up. And the moment I saw the Gemini 2 demo of image editing, where I can put in an image and just request it and it does, that's how AI should work. Not like a whole bunch of complicated steps. So it really is something. And I think one frontier that we haven't [00:51:00] seen this year, like obviously video has done very well, and it will continue to grow.[00:51:03] swyx: You know, we only have Sora Turbo today, but at some point we'll get full Sora. Oh, at least the Hollywood Labs will get Fulsora. We haven't seen video to audio, or video synced to audio. And so the researchers that I talked to are already starting to talk about that as the next frontier. But there's still maybe like five more years of video left to actually be Soda.[00:51:23] swyx: I would say that Gemini's approach Compared to OpenAI, Gemini seems, or DeepMind's approach to video seems a lot more fully fledged than OpenAI. Because if you look at the ICML recap that I published that so far nobody has listened to, um, that people have listened to it. It's just a different, definitely different audience.[00:51:43] swyx: It's only seven hours long. Why are people not listening? It's like everything in Uh, so, so DeepMind has, is working on Genie. They also launched Genie 2 and VideoPoet. So, like, they have maybe four years advantage on world modeling that OpenAI does not have. Because OpenAI basically only started [00:52:00] Diffusion Transformers last year, you know, when they hired, uh, Bill Peebles.[00:52:03] swyx: So, DeepMind has, has a bit of advantage here, I would say, in, in, in showing, like, the reason that VO2, while one, They cherry pick their videos. So obviously it looks better than Sora, but the reason I would believe that VO2, uh, when it's fully launched will do very well is because they have all this background work in video that they've done for years.[00:52:22] swyx: Like, like last year's NeurIPS, I already was interviewing some of their video people. I forget their model name, but for, for people who are dedicated fans, they can go to NeurIPS 2023 and see, see that paper.[00:52:32] Alessio: And then last but not least, the LLMOS. We renamed it to Ragops, formerly known as[00:52:39] swyx: Ragops War. I put the latest chart on the Braintrust episode.[00:52:43] swyx: I think I'm going to separate these essays from the episode notes. So the reason I used to do that, by the way, is because I wanted to show up on Hacker News. I wanted the podcast to show up on Hacker News. So I always put an essay inside of there because Hacker News people like to read and not listen.[00:52:58] Alessio: So episode essays,[00:52:59] swyx: I remember [00:53:00] purchasing them separately. You say Lanchain Llama Index is still growing.[00:53:03] Alessio: Yeah, so I looked at the PyPy stats, you know. I don't care about stars. On PyPy you see Do you want to share your screen? Yes. I prefer to look at actual downloads, not at stars on GitHub. So if you look at, you know, Lanchain still growing.[00:53:20] Alessio: These are the last six months. Llama Index still growing. What I've basically seen is like things that, One, obviously these things have A commercial product. So there's like people buying this and sticking with it versus kind of hopping in between things versus, you know, for example, crew AI, not really growing as much.[00:53:38] Alessio: The stars are growing. If you look on GitHub, like the stars are growing, but kind of like the usage is kind of like flat. In the last six months, have they done some[00:53:4

god ceo new york amazon spotify time world europe google china ai apple vision pr voice future speaking san francisco new york times phd video thinking chinese simple data predictions elon musk iphone surprise impact legal code tesla chatgpt reflecting memory ga discord reddit busy lgbt cloud flash stem honestly ab pros windows jeff bezos excited researchers unicorns lower ip sort tackling survey insane tier cto vc whispers applications doc signing seal fireworks f1 genie academic sf organizing gemini openai ux nvidia api assembly davos frontier chrome makes scarlett johansson ui mm turbo bash soda ml aws lama gpt dropbox mosaic creative writing github drafting reinvent canvas 1b apis bolt lava ruler wwdc exact stripe dev vm hundred pico strawberry sander bt vcs flux taiwanese moto 200k arr gartner assumption sora google docs parting opus nemo blackwell google drive sombra sam altman llm opa gpu tbd ramp elia elo 3b gnome estimates 5b midjourney agi leopold bytedance dota ciso haiku dx sarah silverman coursera rag george rr martin gpus sonnets cypher quill cobalt getty sdks ilya deepmind sheesh noam v2 alessio ttc lms satya future trends ssi stack overflow perplexity anthropic rl 8b r1 itc theoretically emerging trends sota yi replicate vo2 grok suno veo black forest graphql inflection mistral aitor brain trust databricks chinchillas adept nosql xai gpts grand central hacker news grand central station zep hacken ethical issues mcp ai models jensen huang cosign claud ai news distro gpc autogpt neo4j lubna tpu jeremy howard gbt gpd quent o1 o3 loras exa heygen gradients 70b neurips minimax jeff dean 400b langchain 128k elos gemini pro cerebras code interpreter icml john franco r1s lstm ai winter aws reinvent muser pypy latent space dan gross nova pro noam brown paige bailey quiet capital john frankel
Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

It's return guest season here at Latent Space! We last talked to Kanjun in October and Jonathan in May (and December post Databricks acquisition): Imbue and Databricks are back for a rare treat: a double-header interview talking about DBRX from Databricks and Imbue 70B, a new internal LLM that “outperforms GPT-4o” zero-shot on a range of reasoning and coding-related benchmarks and datasets, while using 7x less data than Llama 3 70B.While Imbue, being an agents company rather than a model provider, are not releasing their models today, they are releasing almost everything else: * Cleaned-up and extended versions of 11 of the most popular NLP reasoning benchmarks* An entirely new code-focused reasoning benchmark* A fine-tuned 70B model, built with Meta Llama 3, to identify ambiguity* A new dataset of 450,000 human judgments about ambiguity* Infrastructure scripts for bringing a cluster from bare metal to robust, high performance training* Our cost-aware hyperparameter optimizer, CARBS, which automatically and systematically fine-tunes all hyperparameters to derive optimum performance for models of any sizeAs well as EXTREMELY detailed posts on the infrastructure needs, hyperparameter search, and clean versions of the sorry state of industry standard benchmarks. This means for the FIRST TIME (perhaps since Meta's OPT-175B in 2022?) you have this level of educational detail into the hardware and ML nitty gritty of training extremely large LLMs, and if you are in fact training LLMs of this scale you now have evals, optimizers, scripts, and human data/benchmarks you can use to move the industry forward together with Imbue.We are busy running the sold-out AI Engineer World's Fair today, and so are unable to do our usual quality writeup, however, please enjoy our show notes and the excellent conversation! Thanks also to Kanjun, Ashley, Tom and the rest of team Imbue for setting up this interview behind the scenes.Video podTimestamps* [00:00:00] Introduction and catch up with guests* [00:01:55] Databricks' text to image model release* [00:03:46] Details about the DBRX model* [00:05:26] Imbue's infrastructure, evaluation, and hyperparameter optimizer releases* [00:09:18] Challenges of training foundation models and getting infrastructure to work* [00:12:03] Details of Imbue's cluster setup* [00:18:53] Process of bringing machines online and common failures* [00:22:52] Health checks and monitoring for the cluster* [00:25:06] Typical timelines and team composition for setting up a cluster* [00:27:24] Monitoring GPU utilization and performance* [00:29:39] Open source tools and libraries used* [00:32:33] Reproducibility and portability of cluster setup* [00:35:57] Infrastructure changes needed for different model architectures* [00:40:49] Imbue's focus on text-only models for coding and reasoning* [00:42:26] CARBS hyperparameter tuner and cost-aware optimization* [00:51:01] Emergence and CARBS* [00:53:18] Evaluation datasets and reproducing them with high quality* [00:58:40] Challenges of evaluating on more realistic tasks* [01:06:01] Abstract reasoning benchmarks like ARC* [01:10:13] Long context evaluation and needle-in-a-haystack tasks* [01:13:50] Function calling and tool use evaluation* [01:19:19] Imbue's future plans for coding and reasoning applications* [01:20:14] Databricks' future plans for useful applications and upcoming blog postsTranscriptSWYX [00:00:00]: Welcome to the Latent Space Podcast, another super special edition. Today, we have sort of like a two-header. John Frankel from Mosaic Databricks, or Databricks Mosaic, and Josh Albrecht from MBU. Welcome.JOSH [00:00:12]: Hey, glad to be here.SWYX [00:00:14]: Thank you for having us. Hey, so both of you are kind of past guests. Jonathan, you were actually one of the most popular episodes from last year talking about MPT7B. Remember the days when we trained large models and there was 7B?JONATHAN [00:00:30]: Yeah, back when reproducing LLAMA1-7B was considered a huge accomplishment for the field. Those are the good old days. I miss that.SWYX [00:00:38]: As the things have accelerated a lot. Actually, let's do a quick catch up and Josh, you can chime on in as well. So Databricks got acquired. I talked to you at New York.JONATHAN [00:00:45]: Mosaic got acquired, although sometimes it feels like Mosaic acquired Databricks because, you know, we're having a lot of fun being here. But, you know, yeah.SWYX [00:00:52]: Yeah. I mean, you are chief scientist now of Databricks.JONATHAN [00:00:55]: Chief AI scientist. Careful with the title. As much as I would love to understand how Spark works, I'm going to have to defer that to much smarter people than me.SWYX [00:01:03]: Got it. And I don't know about like what you would highlight so far as a post-acquisition, but the most recent news is that you guys released DBRX. Is that the thing that most people should be aware of?JONATHAN [00:01:13]: Actually, that's no longer the most recent news. Honestly, the most recent news, we announced this, but it was at our Data and AI Summit last week. So it was announced among like 100,000 other things, is that we finally released our text to image model, which has been a year in the making through a collaboration directly with Shutterstock. There was a lot of work put into finding a dataset that we were comfortable with working on and trying to build a model that honestly, I felt like I could trust and that others might be able to trust to put out in the world. So that model was released last week. It's unfortunately just available via API due to the fact that the data is quite sensitive and quite valuable. It's Shutterstock's entire business in a lot of ways, but I'm still really excited that there's now a model that is trained on a dataset where the provenance of every single image is known, and it's a damn good model. So I'm really proud of the team on that.SWYX [00:01:55]: Yeah, amazing. Josh, do you have any thoughts on image model questions?JOSH [00:01:59]: That is not my area of expertise, but I was excited to see the release of it last week as well, and very happy that you guys did a nice job on the data side of everything there. So that was cool to see.SWYX [00:02:09]: I think what's unusual is like, I think Shutterstock's doing multiple deals in multiple labs. So what is the Shutterstock model? Like, I guess, is this the house model for Shutterstock? Is this Databricks' version of the Shutterstock model? Like, what is this?JONATHAN [00:02:22]: The way that I would think about it is that Shutterstock is doing an amazing business in AI across the board. Their dataset is kind of widely known to be the best stock photos dataset in the world, the most comprehensive, the biggest. When you think about like, what dataset am I going to train a multimodal model on? You call Shutterstock. And I, at least I've heard in the news, like OpenAI, Google, Meta, Apple have all called Shutterstock and made those deals. So a lot of models have had Shutterstock data incorporated into them. But this is the only model I know of so far where it was, you know, exclusively and specifically trained just on the vanilla Shutterstock data. There was nothing else mixed in. We didn't go and scrape the web and find other data or combined datasets or anything like that. And so this is, in some sense, the house blend. But the other piece is that it's just a dataset where the provenance of every image is known in public. Where did the data come from? It is the Shutterstock collection. That's it. You know, nothing less, nothing more. And certainly being at Databricks, if I've learned one thing, I've learned about enterprise customers and what they want out of AI. And one of the things they ask for most is just, what can you tell me about the data the model was trained on? And here, especially for text to image models, where images are just tricky subject matter, there's been a lot of kind of legal conversation about images, especially. It's nice to just have something where I can point to it and say, you know, if you want to know where the images came from, these are what they are and this is how they got there.SWYX [00:03:36]: I will talk a little bit about Databricks because it's relevant to the rest of today's episode. So Databricks, sorry, I keep misspeaking. It's DBRX.JONATHAN [00:03:46]: DBRX, actually, there's been a pronunciation update. It is now D-B-Rex. So we have decided to add a dinosaur mascot because what model doesn't like a mascot? So literally, I wish I could pull it up. There is a little plush dinosaur that we had made. It's like the world's cutest dinosaur, but it is the official mascot of D-B-Rex. And there's a little dinosaur logo that, you know, you'll probably see around a little bit more because DBRX is a mouthful, but D-B-Rex, like, you know, it's just kind of...SWYX [00:04:13]: Rolls off the tongue. I love mascots. Like every company should have a mascot. And I think Hugging Face got it right. You need an emoji mascot because that's the minimal viable image.JONATHAN [00:04:21]: I probably shouldn't talk at all about, you know, Velociraptor, but, you know, that's a, maybe that's something we can talk about later in the summer. I'll just leave it at that.SWYX [00:04:28]: Okay. That's a hint to names. I feel like your names leak a lot of alpha. So just to quickly cover the headline details, DBRX, as Make Sure Experts model, that's fairly big, 132 billion total parameters, so 36 billion active on any input, pre-trained on 12 trillion tokens of text and code, and did really well on evals to the point where you had to dye your hair blue. That's my high level conclusion.JONATHAN [00:04:53]: Never make a bet with your team two weeks out from model launch, even when, you know, human eval is looking quite bad. Because if you set some bar, even if it's arbitrary and you think there's no way in hell they're going to hit it, apparently money doesn't motivate people anymore. Humiliating their boss motivates people. So Josh, you should really take a hint from this. You know, you cannot pay someone enough money to make up for you dyeing your hair blue.JOSH [00:05:15]: I'll keep that in mind for our next model.SWYX [00:05:17]: It works. So speaking of Imbue's next model, perhaps Josh, you want to actually just say hi to the general sort of latent space audience and talk about what we're releasing today. Yeah.JOSH [00:05:26]: I'm Josh, CTO of Imbue, and we're not releasing the model. We're not releasing the weights, but we are releasing a bunch of different things that should make it easier for other people to make their own models. So I think right now, training foundation models from scratch is like a very difficult, time-consuming, expensive, kind of risky endeavor, especially for smaller companies. And the things that we're releasing hopefully make that at least a little bit easier. So the things that we're releasing fall into kind of three different buckets. One is infrastructure and scripts for dealing with the kind of hardware and hardware failures and understanding how well is the actually lowest level of thing actually working so that you can actually do your training at all and at a reasonable speed without having to constantly restart, etc. So infrastructure and training scripts. A second set of things is around the evaluation. So after you've trained it, like how well is this actually working and how do you know how well it's working? We're releasing a whole bunch of different data there, a new benchmark about code, reasoning, understanding, as well as our own private versions of 11 different open source benchmarks. So things like pool queue or ANLI, where we've gone through and kind of cleaned up the data as much as possible by looking at all the ones that models get wrong or that are flagged for ambiguity and also our own kind of private reproductions of those where we've done like a kind of clean room black box, like, okay, this is what the data set is supposed to be. Here are some examples. Let's make our own version of this to make sure that there is no data contamination, etc. To make sure that we're actually, you know, not testing on train. And then I think a final thing that we're releasing there is around 450,000 human judgments about ambiguity and question quality, which we used in the process of cleaning these evaluations and we also hope will be helpful for other people training kind of similar models. And then the third thing is CARBS, our hyperparameter, our cost-aware hyperparameter optimizer, which was especially helpful for being able to experiment at much smaller scales and then scale those experiments up to the much larger scale kind of on the first try without having to retry it. You don't want to be training, you know, 10, 20 different 70B models. You really want to get these larger modelsSWYX [00:07:30]: right on the first try.JOSH [00:07:30]: And so the ability to kind of tune things very precisely and learn scaling laws, not just for, you know, the like data and flops, but also for learning rate and all the other hyperparameters and see like how should you scale these things up was extremely valuable to us as we were training the larger models. Yeah, that's a lot of stuff.SWYX [00:07:49]: Yeah, exactly. So there's a bunch of stuffJOSH [00:07:50]: we'll have to go through all of it.JONATHAN [00:07:52]: Yeah, I just want to throw in how excited I am about this. This is the stuff that nobody ever talks about. That is the difference between success and failure in this stuff. Like, can you get your cluster to run? Can you get software on your cluster? Can you figure out what broke? Because fault tolerance is still not really built into any of the fundamental primitives of training models. And so if something breaks, you have to go figure out what broke, your job stops, you have to restart your job. It is a nightmare just to get to the point where anything can train on the cluster. A basic MPI hello world that has the GPUs talk to each other is hard enough, let alone actually training a model, let alone getting good performance out of the GPUs, let alone actually getting a model that converges to anything interesting. There's so many levels of things you have to accomplish. This is the kind of stuff that matters. I think to a point that Josh made earlier, before we got on here, there are plenty of weights out there. Nobody's released this.JOSH [00:08:46]: Yeah, that was part of the motivation actually is that there are lots of other things that are complimentary, but I have not seen nearly as much discussion about some of these other things that we think are pretty important. I mean, in some sense,SWYX [00:08:56]: I'm very excited to have Jonathan on because this is a little bit, you're a bread and butter with Mosaic. And I think you've released some part with Composer. And I think it's just really interesting to see like a different take, basically a full stack take that's kind of open source today.JONATHAN [00:09:18]: Yeah, it's really kind of, it's been an ordeal to figure this out. And every time something changes, whether it's a new GPU or even a new driver update, you get new creative errors and new things go wrong. And, you know, we've dealt with the weirdest things from, you know, our InfiniBand cables getting stolen from the data center twice, like in boxes before they arrived at the data center. Like, you know, Porch Pirate basically had stolen our InfiniBand cables back when those were hard to come by. To like, you know, weird recalls of switches to like the strangest stuff has happened. I have my favorite GPU failures I've seen, like ones where the GPU doesn't fail, it has a correctable memory issue and the memory correction causes the GPU to become a straggler and hold up the whole job. Like weird stuff happens and figuring out how to not just identify all of that, but then eventually productize it, is in some sense, the entire story of Mosaic and now Databricks in terms of our ML offering. Really, the thing we offer is we have gone through this suffering and figured out how to even productize that. It has been a pain in the butt.SWYX [00:10:20]: Yeah, it's a lot of work.JOSH [00:10:20]: I think my favorite failure was GPU is just giving wrong math. Like if they give errors, great, because you can see the errors, but if they just give you the wrong math back, not so fun.SWYX [00:10:30]: When did they give you wrong math?JOSH [00:10:32]: Like literally you could just, you know, add two things. For example, the numbers come back. They're not the numbers that they're supposed to be.JONATHAN [00:10:40]: I think it's important to say at this stage, just because like it, I think it goes without saying for Josh and I, but it's worth saying here, this isn't to say that like anything is wrong with us. It's not like NVIDIA did a bad job or, you know, Mellanox did a bad job or the like the server builder, the data center operator, the cloud provider, like the million other parties that are involved in building this. We are running these insane chips that are huge and complicated and built on tiny transistors at insane frequencies with insane heat in data centers that for the most part, were not built remotely for this kind of power or heat and have been retrofitted for this. Like failures happen on a good day with normal CPUs. And this is not a good day and not a normal CPU for the most part. It's fun to joke about all the weird things we see. This is not to say anybody's done anything wrong. This is just kind of part and parcel of working on a massive cluster running at multiple megawatts of power at a time.SWYX [00:11:32]: It's crazy. Yeah.JONATHAN [00:11:33]: So optical cables, like all sorts, like everything.SWYX [00:11:37]: I'll take the opportunity to start going to the sort of infra piece. There's just like a description of the infra just to give people a sense of what we talk about when we talk about massive clusters. So I'm just going to read off the blog post here. This post is about one cluster that has 4,092 H100 GPUs spread across 511 computers. They use unified fabric manager nodes, which manage the infinite band network. And you talk a little bit about your networking. Is there anything unusual about this setup that you'll call out to people?JOSH [00:12:03]: Yeah, actually this particular cluster is a little bit non-standard. The normal, like vanilla setup for these large clusters as vanilla as it can be is what's normally like a 127 node cluster. So closer to like 1024 GPUs instead of 4,000. Here we have a larger cluster. As you start to get into the larger clusters, the networking becomes a little bit more custom. It's a little bit more, it's a little bit trickier. It's a little bit more difficult to get these things to all be able to talk to each other at the same speed. And so this has, in this particular case, this is a three tier network architecture instead of two tiers, kind of the normal one. So most of the clusters are a little bit smaller. As you get to even larger scales, then this becomes even much more complicated,SWYX [00:12:43]: much more expensive.JOSH [00:12:43]: So we chose this particular scale, kind of knowing our own workloads and kind of what we wanted to do. This was kind of the right size for us. But yeah, I think it's not exactly vanilla already. It's already getting into kind of the custom territory.SWYX [00:12:54]: So my understanding is that there, and is there any part of this that comes with the Voltage Park deal that you guys had? Is that part of the hardware that you got from the deal with them?JOSH [00:13:04]: Yeah, so we worked really closely with Voltage Park to set up all their clusters and infrastructure and everything and kind of decide even like what to order, how should the networking work? Like we were very involved in kind of the construction and bring up of this. And that's what this post is about, is about that process of like bringing up all these, there's like different clusters in different places of different scales. So in this particular post, we're talking about this one 4096 GPU, but there are other clusters that they have as well. And we were very closely involved with figuring out the exact architecture and kind of the trade-offs that go along with picking, you know, those exact components. You really don't want to like place the wrong order because it takes months to get it and it's very expensive. So yeah, we were happy to help out with that.JONATHAN [00:13:43]: And then your bit of good cables get stolen.SWYX [00:13:44]: Yeah, yeah, exactly.JOSH [00:13:47]: We wanted to make sure that we ended up with compute that would work for us and that would also work for their other customers. And so we kind of helped design something so that we would get exactly what we were looking for. We knew that these kinds of details would be super important and that getting down to the level of the hardware and like having these good scripts and everything was going to be a core part of like actually getting this to work. I'm very glad that we did that. I don't think that most companies kind of take that full stack approach, but for us, it certainly paid off.SWYX [00:14:12]: Yeah, it's basically sort of built to spec. It's interesting that relationship because you usually, for the rest of us who don't operate at your scale, we take whatever we can get from cloud providers, but you are basically co-designing from the single machine up. And you described that a little bit. Do you want to take us through the process that you described here?JOSH [00:14:27]: Yeah, so for the actual, like the blog post and kind of bringing these machines online.SWYX [00:14:32]: Yeah.JOSH [00:14:32]: So yeah, I think the process, as we have it broken down in the blog post, there's kind of a few different layers. First is like getting the individual machines to work at all and then getting the machines to actually be able to talk to each other. So getting the InfiniBand networking to work and then getting to a point where, you know, not just the machines are working and they can talk to each other, but everything is actually working correctly. There's a big gap between like it's working at all to it's working perfectly correctly. And then after you have all this stuff working perfectly correctly, nice and healthy, then now you get into kind of the software data, like training issues. And then after that, you're still not done. Like now, even once you're training at full speed, things are going to fail over time. Things are going to change. There's going to be new, you know, firmware updates. Like how do you kind of deal with this change and flux over time without going crazySWYX [00:15:16]: and pulling your hair out,JOSH [00:15:16]: trying to like reproduce things or understand why there were regressions. And so there's a lot of work to kind of automate the infrastructure tooling as well. And kind of the first step, like bringing these things online in the first place, you know, you have hundreds of machines at this point. So you don't necessarily want to be like walking around with like a CD-ROM or a USB drive, like plugging it in with your keyboard, like hitting next, next, next on the OS install. That's not how this works. You do that for one machine. And then you use, we use this thing called Metal as a Service to bring up all the other machines. So it's a kind of server that can kind of install the operating system on these other machines. So most like when you're talking about these machines, like each machine is, you know, on the order of hundreds of thousands of dollars. So they usually come with a kind of out-of-band management interface as well. So they don't, they have their InfiniBand networking. They have their normal 100 gigabit per second Ethernet networking. These are like dual, redundant, et cetera. And then you also have this extra out-of-band management network. So you can log in and you can see like the boot screen or you can see the blue screen of death. You can like get in there and actually see what was wrong, which is pretty fun. And it makes it like possible to automate a lot of this work. So the beginning of that, and the blog post goes into much more detail about like exactly how we set these up and kind of the other errors that we ran into. When you're bringing these online, you'll definitely have failures. Even if they all worked in the factory, they get shipped, some parts come loose, something fails, something goes wrong. So when you're bringing them online, there'll be some that don't quite work for all sorts of reasons. As you start to be working with machines at this scale, like if something happens one in a thousand times, you're like pretty likely to see it. And so you can get pretty rare, weird things, especially since we had fairly early builds and fairly early versions of this hardware. Like these are some of the like first machines that were ever produced, some of the first GPUs. So you've got some extra special things there. We definitely worked with Dell, for example, on making fixes in the firmware level to be like, okay, like this thing is wrong. Like we need to update this at the firmware to like actually fix this particular thing. So we worked pretty closely with Dell and Nvidia. Yeah, that's what I'm saying. Like this stuff gets complicated. And the thing is like, you know, taking a step back, the whole reason we're doing this, right, is that we knew that this was going to be complicated. There would be these kinds of failures. And if we're just using, you know, AWS or some other cloud provider, these errors are still gonna be there and you're gonna have no way to know and no way to debug this and no way to diagnose what's going wrong. And so we would much rather be able to like call up Dell and say, hey, this isn't working. And they're like, yep, okay, cool. Let's debug it together. Oh, I see. Yeah, cool. We'll ship a firmware update and actually fix this for you. That was a much better experience than like, great, just magically fails. I guess we restart and hope that that machine goes away. Like that's not a very good place to be. So yeah, that's kind of the first place is getting to a place where like GPU training is working on your single node machines. You can observe stuff. We have tons of tooling around like, you know, Prometheus and all sorts of other tools for understanding what's going on in these machines because you don't want to be like logging into each one and looking at the temperature or something you really need to have tooling to collect all these metrics, et cetera. Unfortunately, all of the scripts that we have for this are like for this entire cluster and for all this infrastructure are a little bit like special purpose for our particular thing. So it's not that every script that we have, it's not that you can just like take this and plug this in. Even if we did open source all the tooling that we have, you'd still have to do like a lot of work to open source it. What we are releasing is as many of the things that we can that are going to be useful for other people. You're still going to have to have some way of kind of managing these things, making your own like logging aggregators, et cetera, et cetera. So that's kind of bringing them up to the like, you know, the single nodes that are working. From there, it goes into, I'm happy to keep going if you want. Well, I just want to leave the opportunity for JohnSWYX [00:18:53]: to comment if there's anything that's different from how he runs things.JONATHAN [00:18:57]: Oh, I mean, all I'll say is I'll endorse this and say this s**t is hard. Like this is really, really hard. And, you know, I have a special props to, you know, the folks in Vue because they were building this from the ground up. You know, at Databricks and at Mosaic, we typically work with cloud providers because some of this stuff is just, there's too much to handle. It's complicated. There's a lot to deal with. And this doesn't even get into things like physical security, you know, securing power if you're the data center operator. Like this gets infinitely complicated and you have to abstract somewhere. Like, you know, and then you get to the folks who are literally building their own custom chips and like, good God.SWYX [00:19:36]: Like, oh my God, that's, you know,JONATHAN [00:19:38]: if you're one of those folks, you're having, you know, pour one out for the infra people at some of the AI chip startups who are having a really, really interesting time right now. But this stuff is really hard. And I don't think we talk about it much because there's so many other things that are hard. But the other hard things, I think everybody's becoming pretty familiar with at this point. This is something that I don't think there's ever really been a comprehensive discussion of, at least not that I've seen.SWYX [00:20:00]: Yeah, so my impression is that you guys, Mosaic, have your own software for sort of spinning up and down machines, just like Imbue had to build. But Imbue probably, it sounds like Imbue, you guys went fuller stack. I don't know how to describe it. Like Mosaic is not working with Dell on like their firmware.JONATHAN [00:20:21]: No, no, we're typically working with like, you know, pick your cloud provider on their Dell firmware or what have you. Like, it's kind of, I think one of the things, I don't know, Josh, you can correct me on this. It's kind of impossible if you're doing training to not go all the way through the entire stack, regardless of what happens. Like somehow I'm still chatting with cloud providers about power contracts, even though the whole point of dealing with the cloud provider is not to have to think about power contracts. Somehow I'm still asking them about which InfiniBand provider they used this time to see if this is part of the bad batch of cables I encountered on that cloud provider or what have you. Or like, we're still talking about a firmware update from pick your provider. You can't not do this. It's convenient that they have data center staff who are worrying about what to send back to which provider when, and they have people who can go and wait for the InfiniBand cables so they don't get stolen outside. But, you know, it's kind of, it's impossible not to really go full stack if you're thinking about the infrastructure at all. I don't know, Josh, correct me. No, I think that's right.JOSH [00:21:17]: That's what we expected from the beginning as well, is that we would inevitably have to get into the details here. And I'm glad that we kind of just planned for it. I think it made it a lot easier from our perspective to have direct control over this. Instead of having to go to the cloud provider that goes to the data center, that goes to the supplier, we could just go direct to NVIDIA or DellSWYX [00:21:37]: or the data center,JOSH [00:21:37]: whoever was responsible and be like, hey, this thing needs to change. And they're like, oh, okay. Yeah, that is our responsibility. Great, we can fix that. So it was just a lot easier for us to fix these bugs than if we had to go through an extra layer of email.SWYX [00:21:48]: Something we discussed in the pre-show was that you had a rule of thumb for your cluster of reliability. You say here in the post, by and large, you expect around 3% of your machines to break every week. So you're basically going to turn through all your machines in a year.JOSH [00:22:04]: As it says in the post. So that would be true if it was a uniform failure like that. But as it says in the post, it's usually these kind of problematic nodes. And to be clear, that is the number that we've heard from other people is like they're having about 3%. I don't think we're experiencing failure rates that are that high. I think ours is actually quite a bit lower than that, probably because we've taken the time to like dig into a large, maybe larger number than we should have of these failures and get to the root cause of it and be like, oh, okay, like that's exactly what's going wrong.SWYX [00:22:33]: How do we fix this?JOSH [00:22:33]: How do we prevent this from happening? How do we make automated checks for this so that if it does happen, it just goes back to whoever owns that particular part of the process and they can fix it immediately.SWYX [00:22:43]: And that's part of what you're also open sourcing, which is the health checks, right? You got the NIC health checks, GPU health check, this space health check, Docker D message. I don't know what that is.JOSH [00:22:52]: That one is just a lot of stuff.SWYX [00:22:54]: Yeah.JOSH [00:22:55]: That one is one where we realized that actually like when these machines boot, sometimes they wouldn't actually boot cleanly all the way. Or when they rebooted, they had problems that they didn't have when they were working before, which was kind of frustrating. Like usually if you restart your computer,SWYX [00:23:08]: it gets better.JOSH [00:23:08]: Here you restart. It did not get better.SWYX [00:23:10]: It got worse.JOSH [00:23:10]: That was very frustrating. So this health check looks at every particular line we've ever seen from the boot, like in D message, like every single log line that your computer emitsSWYX [00:23:21]: and says like,JOSH [00:23:21]: have we ever seen this before?SWYX [00:23:23]: Is this expected?JOSH [00:23:23]: Is this in the right order? Or is there something out of place? If there's anything out of place, let me say, okay, great. Like now it goes into this, like longer, more triage list of like, all right, great. Like, is this acceptable?SWYX [00:23:33]: Should we flag this?JOSH [00:23:33]: Like, should someone take a look at this? So we're looking down at a very, very granular detail level, what's happening on these computers to make sure that nothing is out of place. And that's critical because without that, if you're running your training, as Jonathan said, and this thing is slow, like what are you supposed to do? Right?SWYX [00:23:49]: Like you really,JOSH [00:23:49]: you really want to be very certain that like all 4,000 of these GPUs are working like they're supposed to.SWYX [00:23:54]: We know that.JOSH [00:23:54]: And so if it's slow, it's because like we messed up the config or something else and not because of this earlier thing that's like really hard to detect in software later.JONATHAN [00:24:01]: Yeah. I think the, I'm just curious to ask,SWYX [00:24:03]: like, you know,JONATHAN [00:24:03]: suppose you were to set up another, let's say another H100 cluster and it were at a different data center. And instead of the vendor being Dell, it was super micro or what have you. How much of this would be repeatable? And how much of this would you have to redo? I, you know, I genuinely don't know.SWYX [00:24:18]: A decent amount.JOSH [00:24:19]: I think it would go a lot faster the second time. I think there's lots of learnings that we had. And also the blog post,SWYX [00:24:24]: you know, yes,JOSH [00:24:24]: we are releasing the health checks, releasing some scripts, but a lot of the valuable stuff is also in the blog post itself, in the details and kind of the, you know, the learnings that we've had and the sort of errors that we run into. We tried to as much as possible surface those to other peopleSWYX [00:24:36]: could learn from thoseJOSH [00:24:36]: and avoid the same mistakes or failures as well. But I think it would go a lot faster.SWYX [00:24:41]: Although, yes,JOSH [00:24:41]: there would certainly be some things that'd be a little bit different. I mean, there'd probably be different CPUsSWYX [00:24:46]: or whatever,JOSH [00:24:46]: but I think a lot of that stuff is less,SWYX [00:24:49]: it's less,JOSH [00:24:49]: that's the like, that's less variable. I think most of it would apply the second time around. Although I'm sure next timeSWYX [00:24:56]: we're building one,JOSH [00:24:56]: it'll probably be, you know, at a scale that's 10x as big with a different chip or something like this.SWYX [00:25:00]: And then who knows?JOSH [00:25:01]: Yeah, with Kinect X8,JONATHAN [00:25:02]: that will have its own fun behavior and all that good stuff. Yeah.SWYX [00:25:06]: Perhaps there's something that people don't discuss about, and you don't even talk about this in the blog, but I always wonder is what is the timeline that's like kind of reasonable for this amount of work, at least the initial stages? And also what does the team composition look like for setting up a cluster, right? Like what are the mix of skills that you typically would require to get all this going?JOSH [00:25:27]: I'm, I can't really speak to typical. One thing I am very proud of is how much we accomplished with such a ridiculously small team. Like our infrastructure team is like, you know, fluctuates from week to week, depending on like how many things are on fire and how much we need to build. But it's like between like three and six people, like it's small. It's not like some huge team of like tons and tons of engineers. But those people are very, very good at what they do. And so that has allowed us to get a lot of mileage out of out of these things. I think it's not that we're building everything, right? It's not that three to six people build this whole thing. I definitely want to like, you know, say thanks very much to Dell and H5 and NVIDIA and the other people that have done a lot of the work, like to bring up this cluster, you know, with 4000 GPUs and three tier networking, networking architecture, you have 12,000 cables. So that's 24,000 things that need to be plugged in. Like that's just a lot of stuff to plug in, right? And you don't want to mess it up. Like each one needs to be done correctly. Like it's a little bit loose. Like it doesn't really work.SWYX [00:26:23]: If you break it,JOSH [00:26:23]: you need to replace it. Like there's a lot of workSWYX [00:26:26]: that goes into this.JOSH [00:26:27]: Yeah.SWYX [00:26:28]: And then, you know,JOSH [00:26:28]: that's just like that's it. That's if you were to do everything right the first time.SWYX [00:26:32]: And if you didn'tJOSH [00:26:32]: have to fix anything. But inevitably, you know, you will have to replace something, which means like taking all the wires out, pulling the thing out, taking all the GPUs out, going and fixing some cable, putting it all back correctly, putting it back in, doing this every time. So there were a lot of people at Dell, NVIDIA and at H5 that all helped a ton with this stuff. I don't know the exact size of the Dell team. It also fluctuated over time.SWYX [00:26:55]: Yeah, excellent. And then, you know, you so you have all the hardware set up and now you're firing it up for a single node. There's a long description that you guys have about just like monitoring the MFU, right? And what each situation might look might be indicative of. One of the most interesting things to me that I saw from here is like, you know, if training immediately starts off at 60 to 80% MFU, something's wrong.SWYX [00:27:24]: But like, you know, like what what are like, you know, some anecdotes or, you know, notable scenarios here that you might you might call out as maybe counterintuitive or super interesting.JOSH [00:27:36]: There's just so many of them. I mean, one of them, which I think is probably pretty common, like common knowledge by this point. But like we did have a sort of likeSWYX [00:27:46]: which one was this exactly?JOSH [00:27:47]: I think for the MFU, like gradually getting worse over time. I think that one, when we saw that the first time we were like, what the heck is going on? Like, why does it get just like a little bit worse? This is so strange. Like, what is it getting lazy or tired or something? Like, is it heat? Like what's going on? And in this particular case, it was memory fragmentation. Because you have hundreds of machines, they're doing garbage collection slightly different times. And then they get slightly further apart and slightly more and more jittered until eventually they're all happening kind of at random times. And just like really messing up each one of your steps. So you just turn off garbage collection and call it a day, basically,SWYX [00:28:20]: to be honest.JOSH [00:28:20]: There's other things you can do if you want to be a little bit more sophisticated about it. But you can also just manuallyJONATHAN [00:28:25]: have it all garbage collect on some interval. Like that's what we've done. We just have a garbage collection callback that just runs. But I've seen the exact same thing.JOSH [00:28:33]: Yeah, yeah, exactly. So I thought that one was kind of funny. And we did trace that one down and look and we did find the actual call. Like, again, this goes to like having good tools. So we had really good tools where we could look at a bunch of like actual traces in C and be like, OK, cool. This is the thing that's taking a lot of time. Or like, you know, this is the thing that doesn't quite line up here. Like, oh, I guess it's garbage collection. OK, cool.SWYX [00:28:52]: Interesting.JOSH [00:28:52]: Yeah, let's just try taking it off.SWYX [00:28:54]: OK, great.JOSH [00:28:54]: That's what it was. Now we can fix it. So for each of them, like basically bugs are not hard if you have good tools. But if you don't have good tools, bugs can be very, very hard. So similarly for like heat, another thing that we saw was like, oh, you know, the CPU is getting throttled. OK, well, it's easy to see if you're monitoring the CPU throttling or monitoring the heat. If you're not monitoring that, it's really hard to know why it's just suddenly one of them is going slower. I noticed also in the pieceSWYX [00:29:17]: that you mentioned FSDP with 0.3. Actually, we met, I went to iClear and Guanhua from the DSP team was there presenting 0++. I was wondering if you want to make any call outs to, you know, particular open source or open library or open whatever implementation teams that were super helpful in your process. I think we ended up actuallyJOSH [00:29:39]: pulling from a whole bunch of different ones to pull things in into our own particular pipeline. So we use things from NVIDIA's, you know, Megatron stuff. We use stuff from probably DeepSpeed. I think we pulled in a bunch of different pieces from a bunch of different places. So it was really nice to see all these working open source like examples. I think I really appreciate all the effort that has gone into actually tuning these things because you can tune them, but it's a lot of work to like tune this stuff and do all this stuff from scratch. It's really nice to have like a working example. I think those are probably the two biggest ones, DeepSpeed and Megatron alone, but there are probably other ones as well.SWYX [00:30:13]: Is there a particular thing in the ecosystem where you would call out as like, you know, there should be something here that is open source, but like it's not really, it's like everyone kind of builds it on their own. I want to say something with the file system because everyone talks about the file system eventually.JOSH [00:30:28]: The file system actually was,SWYX [00:30:30]: I mean, we did somethingJOSH [00:30:31]: kind of dumb there. Like we have our own sort of local mirror so that we can, you know, like a crappy version of S3SWYX [00:30:38]: that's local,JOSH [00:30:38]: but it's just a pretty simple script, right?SWYX [00:30:41]: Like I think we run likeJOSH [00:30:41]: a little web server that just like serves files and then, you know, it can upload themSWYX [00:30:45]: and download them.JOSH [00:30:45]: Okay, great. And part of the reason we did that is that our internet connectionSWYX [00:30:50]: in the beginningJOSH [00:30:50]: was not the like full speedSWYX [00:30:52]: one that we wouldJOSH [00:30:52]: eventually have. And so we are a little bit more kind of bottlenecked in terms of internet bandwidth. And so we had this. I think we looked at a bunch of services out there like Minio and some other ones, but a lot of these like come with a lot of extra overhead and maintenance. And since we already have so much infrastructureSWYX [00:31:09]: to deal with,JOSH [00:31:09]: we kind of didn't want to, you know, bring in a whole other like cloud provider, virtualize something, something.SWYX [00:31:14]: We just wanted something simple.JOSH [00:31:14]: So we went with that, which has been quite helpful. Like our toolsSWYX [00:31:19]: are usually quite simple.JOSH [00:31:19]: It's like Bash and Python and SSH and Docker. Like we'd like to keep things simple so that's easier to debug, like less layers of infrastructure, less layers of abstraction, make it a lot easier to work with. Like we don't use Kubernetes,SWYX [00:31:30]: for example,JOSH [00:31:30]: and we just directly launch these things. And it's just been much easier to debug this way. One tool actually that does come into mind that I will call out is Kraken from Uber. That was great. We love that tool. We were a little bit skeptical. What is it?SWYX [00:31:44]: I'm sorry. Yeah.JOSH [00:31:45]: So Kraken is this, yeah, it's a distributed like Docker registry, basically, that uses BitTorrent to like transfer things between the machines in a sort of nice optimal way. Like in the very beginning, the naive way is like you have this one Docker registry, which was outside of the cluster. So every time we change an image, you know, there's many gigabytes that each of the 500 machines needs to download.SWYX [00:32:07]: So that just takesJOSH [00:32:07]: a really long time. So what this thing does is like just one of them downloads it and then like they all sort of broadcast all the pieces to each other. And it was just like a really nice, fast way of getting these images down. And it was very robust.SWYX [00:32:19]: Like there's a lotJOSH [00:32:19]: going on under the hood, but I think it's a pretty cool tool that we haven't really had any bugs with it at all. Amazing.SWYX [00:32:26]: Yeah. I mean, that's all my questions, I guess, for the info piece. I don't know if, John, you had something that you were sort of burning to ask or.JONATHAN [00:32:33]: No, all I can say is just sameSWYX [00:32:36]: in a lot of places, like, you know, and they're done thatJONATHAN [00:32:38]: seeing this plus one. I think the one big difference, you know, perhaps in philosophies is we've tried to basically standardize on as much commodity stuff as possible, just because, you know, I think the reason I asked about trying to do thisSWYX [00:32:50]: on multiple differentJONATHAN [00:32:50]: pieces of infrastructure is like, I think we're running on like six or seven different clouds right now. And everybody has done something slightly different. And my gosh, the little differences add up as you know, you've seen. And so, you know,SWYX [00:33:04]: our philosophy has been like, whatever the hellJONATHAN [00:33:05]: we can standardize, please let's standardize it. Like vanilla off the shelf FSDB.SWYX [00:33:10]: And like, you know,JONATHAN [00:33:10]: we wrote our own data loader, but we've tried to make that as much of a standard as we can across our infrastructure and in Databricks, because things just start getting really complicatedSWYX [00:33:18]: or like we useJONATHAN [00:33:18]: Kubernetes extensively because it at least gives us a uniform set of APIs. Like that's our hardware abstraction layer to a certain extent for everything else. So it's just, you know, a difference in philosophy there. But otherwise, like, yeah, this stuff is really, really hard. And I feel like we take for granted how much of this, you know, is done for us when you go and you just query chat GPT, for example. Like, oh my God, everything going on underneath that, you know, it's kind of a miracle that the machines boot up, let alone that you can like query a giant language model that's probably doing inference across multiple machines and was trained across thousands of machines. Like, you know, minor miracle.SWYX [00:33:54]: Yeah, it is an awesome amount of power that we invoke with a single API call that we take for granted these days. It's absurd. Yeah, I mean, like Kubernetes, like that point about Kubernetes, I will say as a former AWS employee, like it seems like it would be ideal for imbue to at some point make it more abstracted or agnostic because you're going to want to, you know, replicate your setup. We do have our ownJOSH [00:34:19]: sort of replacement. It's just a much simpler version of Kubernetes. Kubernetes is really designed for running services, not for running experiments. Like that's not its like main architecture. And so for us, like we have everything that's like, cool, you're going to run an experiment. So you want it to run to completion, right?SWYX [00:34:34]: OK, great.JOSH [00:34:34]: Like the primitives are sort of built around a slightly different style. And that makes it a lot easier, like just a lot simpler to fit that the nature of like these machines are going to disappear. They will need to be rebooted for infrastructure upgrades. They will like something will happen to the GPUs. Failure is like baked into this as like a core part of our infrastructure. So it's not that we don't have an abstraction. It's that it's a sort of simpler, more tailored abstraction for the particular work that we're doing.JONATHAN [00:34:58]: Yeah, I think it all depends on what your goals are. And like, I think the challenge in a lot of the deep learning stuff right now is that people are trying to like, people often build things that are more complicated than necessary to get the job done. And the complication is the enemy of everything. You know, don't use a fancier parallelism strategy than you have to. Don't use a fancier set of libraries than you have to.SWYX [00:35:18]: Don't do anythingJONATHAN [00:35:18]: that you don't have to do because it's hard enough as it is. Like, don't overcomplicateSWYX [00:35:23]: your own life.JONATHAN [00:35:23]: Don't try to bring in more tools or more fancy architecture tweaks if you absolutely don't have to.SWYX [00:35:29]: Like getting to the minimumJONATHAN [00:35:30]: necessary to get the job done. And it's really tempting to want to try to use everything. So like, I totally understand that one.SWYX [00:35:37]: I think the last piece I'll maybe call out is that I'm just going to weave this in just because I see the opportunity to do it. Are there any infrastructure shifts that need to be, that need to rise because of changing architecture? So I think, for example,SWYX [00:35:57]: you're announcing a dense model, a 70B dense model, whereas John just worked on DBRX and the image-to-text model, which presumably has different bottlenecks.JONATHAN [00:36:10]: That's correct for us. You know, we train both dense and mixture of expert models. The one we happened to, you know, kind of get permission to open source was a mixture of expert model. And those models are very demanding when it comes to network bandwidth, at least if you're training them in kind of FSTP 03 style, where there's just a lot of parameters getting shuffled back and forth. And your ratio of kind of compute to amount of data that you have to shuffle back and forth becomes a lot worse because you're now, you know, you're only using a fraction of the parameters for every token instead of all the parameters. And so we had to really push the envelope on getting all the stuff to the right places on time. And so actually the networking part of DBRX was the single hardest thing, I think, of the entire process. Just get MOE training, working at scale across a big cluster. We still managed to, I think, do it all with commodity parts, which was very exciting. You know, we were using FSTP and we eventually used HSTP so that we could have HSTP as a version of FSTP where you have multiple smaller replicas and you're doing data parallel within those replicas. And that helped a lot with network latency issues that we were running into just because we were transmitting so much data, you know, for every single part of the process. I think it actually, like, it was instructive for how Google designs their hardware and software together personally. Their training, as far as I understand, using kind of a 03 style of training and have been for a while. They also train mixture of expert models. TPUs have a very different network bandwidth to compute ratio. They have a lot more bandwidth just objectively. And TPUs per chip tend to be a little bit less compute intensive and have a little bit less memory. You know, it's just a different design choice. So the ratio of flops to bandwidth is very different. And that means that it's much easier for Google to be able to pull offSWYX [00:37:54]: some of this stuff.JONATHAN [00:37:54]: They also have interesting, you know, Torus style network architecture or Torus style, like, literal network architectureSWYX [00:38:00]: is not like the model,JONATHAN [00:38:00]: but the network.SWYX [00:38:02]: Is this the sort of block attention? I forgot what you call it. So this is just more or the,JONATHAN [00:38:07]: yeah, this is more, not the ring attention, but these are the ring all reduces. Like you have three different dimensions of rings because they kind of put you in these three dimensional Toruses from what I understand. And so like, you know, Google's infrastructure in some sense is kind of, I wouldn't say built for this, but maybe the way that Google trains models is built for a slightly different bit of infrastructure they have. And it's kind of neat to think about that. You know, as one thing that I think NVIDIA announced for, you know, for, for both the GH200 and the GB200 is this hybrid networking where you'll have blocks of NVLink network chips. I think for the GB200, I think it's like groups of 72 GPUs will all have NVLink to each other. So higher bandwidth, then you'll have normal networking of some kind, InfiniBand or Rocky or what have you between these blocks. And that's kind of a, you know, it's a change due to the fact that, you know, it's hard to build really high bandwidth networks over very large groups, but it is now a blocked networking. And you have to think about how you architect your model and your parallelism differently. You also have to think about fault tolerance differently because it now matters where you lose a GPU, whereas it didn't before. So, you know, it's, it's, it's just all really interesting and really fun speaking personally, but it's going to mean new nightmares when we all move to that generation and have to think about, you know, new versions of these problems.JOSH [00:39:20]: As you go up to larger scales, it gets quite different. Like right now, you know, if you're experiencing, let's say, for example, you experience a GPU failure every day, that's fine.SWYX [00:39:31]: Just restart.JOSH [00:39:31]: If you make your thing 24 times as big, now it's once an hour. Now it stops being quite as easy to just restart, right? So now you have to kind of break, like bake in this sort of redundancy that you didn't have before. So I think as you go up in scale, you end up running into like a lot of really interesting problems that also inform the, the actual like design. Yeah, I mean, as an orchestration guy,SWYX [00:39:52]: this is why I always emphasize like very cheap storage or very fast storage. So you can checkpoint more, but I don't think that's probably not the best solution to for fast, you know, training.JONATHAN [00:40:05]: Which works fine when you're doing language and then you move to vision or video. And then, you know, you have multi petabyte datasetsSWYX [00:40:12]: and getting, you know,JONATHAN [00:40:13]: cheap, fast multi petabyte storage starts to bite. Like I've certainly encountered issues where the literal data center where my GPUs were did not have enough, you know, object store to fit the datasets that people wanted to bring into that data center from whichever users were, were trying to bring them in. And then you get to a wholeSWYX [00:40:31]: different world of hurtJONATHAN [00:40:31]: where you have to keep your data in a different region because the region is just out of storage. So things get fun really fast.SWYX [00:40:39]: Speaking of vision, Josh, actually, you know, Embu is an agents company, but you're only, you're announcing a text-only model. What, where does, where does the vision side come in?JOSH [00:40:49]: I think we've actually done a lot of work in the past and people can see kind of our blog posts about sort of self-supervised learning and some other kind of vision-related stuff in the past as well. So we're very familiar with, with that stuff. But I think our main focus right now is on kind of, as we say, coding and reasoning. And there, there's certainly a visual component to some problems. But, you know, it's not necessarily required for all problems. And actually we found that for most of the kind of like code writing and, and reasoning problems that we care about, the visual part isn't really a huge important part of it. Sometimes if you really need to, you can maybe describeSWYX [00:41:24]: the thing.JOSH [00:41:24]: There are other like, you know, multimodal models that you can use off the shelf to sort of plug in for those particular piecesSWYX [00:41:30]: that you need, right?JOSH [00:41:30]: Like if something is driving a browser or whatever, like you can sometimes get away with not having to have that baked into the original model. So our folk were, you know, in a sense, we kind of do a lot across the stack. We're working on our own infrastructure and pre-training and RL and fine tuning and products and everything. But in another sense, we're very narrowly focused on the application side. So all of the stuff across the stack is kind of going toward a very particular purpose. And so that particular purpose right now doesn't really need vision. So we think that people are going to make all sorts of really cool image modelsSWYX [00:42:00]: like Jonathan, right?JOSH [00:42:00]: And all sorts of interesting multimodal models into the future. We'll let them go do that. That's great. We'll take advantage of that, partner with those people in the future. And right now we're really focused on kind of the core reasoning and coding capabilities and aspects of the model.SWYX [00:42:14]: I wanted to go into carbs since that's kind of the next layer of the stack. We talked about carbs in the first episode with Kanjin because you've actually had a blog post about it like a couple of years ago. Maybe let's introduce it.JONATHAN [00:42:26]: Has that been a couple of years now?JOSH [00:42:28]: No, it must have been at least one year. Hopefully it's not multiple years.SWYX [00:42:32]: Sorry, I'm counting AI time. Yeah, yeah. Yeah, I was going to sayJONATHAN [00:42:35]: you're making me feel really old right now.SWYX [00:42:39]: I count everything before the generally intelligent rename as like, you know, prehistory. Yeah. And now sort of modernity, right? So I actually thought carbs was more about hyperparameter optimization in a sense of like sort of parameters, hyperparameter search. Whereas, you know, when you introduced it, especially in this blog post, it's more about scaling laws and predictability of like, are we sort of in the right ballpark before we scale things up? Maybe sort of recount the history of carbs.JOSH [00:43:10]: Yeah, so it really is a little bit of both. So carbs is, it's maybe a backronym, but it's for cost aware Pareto region Bayesian search. So this is about technically how it works, but carbs is like, you know, we like pastries and stuff.SWYX [00:43:26]: So great, why not? But the point is thatJOSH [00:43:29]: it's a cost aware hyperparameter tuner. So most hyperparameter tuners, you kind of say, OK, here's this objective function. I want you to make this number as big as possible or as small as possible, whichever direction you want to go. So yeah, just go make this number, you know, as small as possible. OK, so it'll try a bunch of differentSWYX [00:43:46]: hyperparameters,JOSH [00:43:46]: a bunch of different configurationsSWYX [00:43:48]: to figure out, like,JOSH [00:43:48]: how do I tweak your network and architecture, et cetera, to get the kind of best performance I possibly can. That's usually saying, like, you know, almost all of these hyperparameter configurations are, let's say they're all going to use the same number of GPUs or the same number of nodes.SWYX [00:44:01]: So it's going to runJOSH [00:44:01]: for the same amount of time.SWYX [00:44:03]: So you can do that.JOSH [00:44:03]: You can get a number out and that's great. But what carbs does is it says,SWYX [00:44:07]: OK, actually,JOSH [00:44:07]: what if we relax that constraint? What if we say each of these different points, we're going to model how expensive it will be to sample this configuration. So if what if we train with just one one hundredth of the data? Like, how well can we do?SWYX [00:44:19]: What if we trainJOSH [00:44:19]: with one tenth of the data? What if we train with all the data? That way you can understand, like, as we get more and more data, as we spend more and more compute,SWYX [00:44:26]: as we make a biggerJOSH [00:44:26]: and bigger network, how does performance change with these things that change? Like how expensive it is to even explore this data point. So by doing that, we can see the scaling laws for not just, you know,SWYX [00:44:36]: the scaling lawsJOSH [00:44:36]: from like the, you know, Chantilla paper, the scaling laws for all parameters. We can see how does how does the number of layers change with this? How does the, you know, the learning rate change? How do the like, you know, various types of regularization change? So you can see these nice scaling laws. And as you're going across costs, like how should this be changing as you're scaling up your model? So that, coupled with the kind of metric that we chose, which is a very precise way of measuring performance, allowed us to really like hone in on parameters that worked really wellSWYX [00:45:05]: and understand, like,JOSH [00:45:05]: how do we want to scale those up, especially as we're changingSWYX [00:45:08]: things about the network?JOSH [00:45:08]: Like one of the things that we did is we used a custom tokenizer. As we change this tokenizer, changes a bunch of other things about the model. So how should we scale up this entirely new tokenizer? Like no one has ever made a model this large with this tokenizer before. And so how do we want toSWYX [00:45:22]: change all these things?JOSH [00:45:22]: Harps kind of shows you, like, look, as you change these parameters, like these other ones are kind of dependent on this.SWYX [00:45:28]: Like this is the, these areJOSH [00:45:28]: the relationships between them. So you can better understand, like, OK, if I'm going to scale this up 10x or 100x, like, where do I want to be? I can only go so far. And so, you know, we did run, like, I think maybe it was like a 14b one or somethingSWYX [00:45:40]: like that to check.JOSH [00:45:41]: But and so we had a bunch of like 1b or 14b and then at 70b. I don't think we had a, I think we just did like one at 14b. So you can, we get to check that like, oh, is this on the curve? Like, is this where we expect? It was like right there. So then great, go on to the next one. Yeah, I mean, that makes a lot of sense.SWYX [00:45:56]: I wonder if, so one of the key questions, and correct me if I'm wrong, but like usually people do search or do their evals just based on loss. But you actually evaluate based on, you know, the sort of end state evals that people might expect, like HellaSwag and Lombata, whatever. What is the norm here? Is there a norm?JOSH [00:46:20]: Yeah, I don't know if there's a hundred percent.SWYX [00:46:21]: I don't know. I only see loss on most people's reports.JOSH [00:46:25]: I think it's easy to, like, loss is very nice because it's very precise. It will tell you, like, very fine grained differences between like really small changes in your hyperparameters or network architecture. Whereas, especially at the smaller scales, if you're looking at like accuracy, it's very noisy. Like it might be zero or a hundred or like, you know, fluctuating by like 10 or 20 percentage points, which makes it really hard to tell, like, did that change actually mean anything? So our loss is sort of a combination of these two. Instead of saying, like, let's just look at perplexity, we say, let's look at perplexity on the tasks that we care about for multiple choice questions effectively.SWYX [00:47:00]: So we're saying like, yes,JOSH [00:47:00]: this is formulated as a multiple choice question, and we're going to look at the, like, you know, the loss of perplexity for this particular answer token. And that ends up being something that's like both targeted to what you actually care about and also very precise. The nice thing about this though is that it's independent of the data that you train on. One thing that's annoying about perplexity or about loss is that as you change your data set, this is really obnoxious because now it fundamentally changes your loss, right? And so you can't tell, like, how do I tweak my data set? But because we have this held out evaluation dat

Fireside with a VC
Episode #70, John Frankel, cofounder, ff Venture Capital in New York, Poland & Ukraine

Fireside with a VC

Play Episode Listen Later Feb 10, 2023 62:49


Episode #70, John Frankel, cofounder, ff Venture Capital on Fireside with a VC discussing: · Learnings from Goldman Sachs applied to VC · Launching the largest VC fund in Ukraine · Launching a VC fund in Poland · Managing the 6 VC funds based in New York, but investing across the US · What percentage of companies get to $100m of ARR and how this drives portfolio construction · What is the true work and lifestyle in running a VC business from raising capital, sourcing and diligencing deals, reporting, helping startups, numbers, and repeating · The types of investors John got into fund I and how this changed with characteristics of raising a fund II, III, IV up to fund VI · The true time table of starting to getting to exits and into carry · The difference between investing early, mid stage and late stage within the context of a changing dynamic economy · QSBS tax breaks for LPs, VCs and founders. No tax on the greater of 10x cost or $10m · Details on why convertible notes are bad and SAFEs are worse · The best way to construct a board of directors from pre-seed onwards · Where is the market going? When is the bottom of the market and why? · Breaking "the economy" into at least 6 different economies · How the standoff on falling valuations will play out as we recover · The complex relationship of public markets and private markets Twitter: https://twitter.com/john_frankel YouTube: https://youtu.be/DDCqJMVgUsc All podcast platforms: https://anchor.fm/FiresideVC Registration is open for 7BC's in-person VC insight panels, startup presentations & networking receptions New York City, March 7, 2023 – https://7BC-neonVest-NYC.eventbrite.com. Seattle, April 4, 2023 – https://7BC-neonVest-Seattle.eventbrite.com. Planning events in cities in key tech corridors across the U.S. Get in touch if you want to host or sponsor any of our events. andrew@7bc.vc https://www.linkedin.com/in/romans/ Thanks to our sponsor Pacific Western Bank, Startup Banking & Venture Debt, Mark diTargiani, mditargiani@pacwest.com --- Send in a voice message: https://podcasters.spotify.com/pod/show/firesidevc/message

EUVC
#98 John Frankel & Maciej Skarul, ffVC

EUVC

Play Episode Listen Later Aug 9, 2022 44:32


Today we're happy to welcome John Frankel and Maciej Skarul.John founded ffVC back in 2008. ffVC is a leading New York City-based VC firm which has demonstrated success scaling global tech business. And you might be asking: “A US based fund in The European VC pod?!”. Listen to this episode and you'll understand why.Maciej, our other guest, is a partner at ffVC and has over 12 years of experience in investment banking and M&A. Based in Poland, he is one of the two partners leading ffVC's European arm in Warsaw. ffVC Warsaw works in conjunction with the rest of the ffVC network to bring to Poland everything that ffVC has done over the past twelve years in the US.In this episode you'll learn:– Why a US focused VC decided to invest in Poland and the ecosystem challenges they are facing with more conservative investors– How the European culture can grow from million to billion-dollar exits– How their early investments are turning into a global seed stage footprint– The attraction of building US focused businesses using European tools and teams, since CE startups are 3x more cost efficient than their western pears

Real Sports Podcast
“Olympians in Debt” with Johnathan Cheever

Real Sports Podcast

Play Episode Listen Later Jan 13, 2022 30:15


Host Max Gershberg is joined by Jonathan Cheever, former Team USA snowboarder and 2018 Olympian to discuss the lack of revenue from the United States Olympic Committee flowing back to athletes. John Frankel's 2018 report kicks off a conversation about what American athletes must do to fund their dreams, the cost of training and what should be done about it. Watch Real Sports with Bryant Gumbel on HBO Max. See omnystudio.com/listener for privacy information.

Venture
Episode 45. John Frankel. Partner at ff Venture Capital. "Making the way in VC"

Venture

Play Episode Listen Later Sep 22, 2021 29:22


John Frankel is partner at ff Venture Capital where he focuses on companies that deploy lightweight, disruptive business models to become the low cost player in their respective market. He is a VC enthusiast and that energy has led him to build great companies and great opportunities in the ecosystem. Through ff Ventures he has broken paradigms and taken best practices to another level.

DrinksWithAVC (DWAVC)
DWAVC: John Frankel | Ep. 12

DrinksWithAVC (DWAVC)

Play Episode Listen Later Jul 22, 2021 86:07


Pour a mocktail and join us for episode twelve of DrinksWithAVC, where we sit down with John Frankel of ff Venture Capital — our first New York guest and pioneer of our alcohol-free edition. Vik and Bree dive into John's journey from Goldman Sachs to venture capital, discuss the intersection of education and startups, and even try on some goofy hats. Get to know this London-native who not only has a penchant for croquet but also an unexpected affection for the film 'Dude, Where's My Car?' and a passion for snowboarding.Links:www.ffvc.comwww.twitter.com/john_frankel

Demo Day Podcast
John Frankel on Advice for Aspiring VCs and Establishing a Work-Life Balance, ff Venture Capital

Demo Day Podcast

Play Episode Listen Later Jun 12, 2021 54:49


In this episode, John shares his experience transitioning from Goldman Sachs to Venture Capital as well as a wide range of advice for aspiring VCs.Guest - John FrankelWebsite - ffvc.comTwitter - @john_frankelFollow Us!LinkedIn: www.linkedin.com/company/coefficient-labsInstagram: www.instagram.com/demodaypodcast/Facebook: www.facebook.com/coefficientlabs/Twitter: https://twitter.com/coefficientlabsContact Information:social@coefficientlabs.com

1Mby1M Entrepreneurship Podcast
521st 1Mby1M Entrepreneurship Podcast With John Frankel, ff Venture Capital - 1Mby1M Entrepreneurship Podcast

1Mby1M Entrepreneurship Podcast

Play Episode Listen Later Mar 6, 2021 27:29


John Frankel is Partner at ff Venture Capital. We had an extensive discussion about Covid’s impact on the startup ecosystem, the changes we notice, so forth.

Lindzanity with Howard Lindzon
Panic with friends (64) - with John Frankel of ff Venture Capital

Lindzanity with Howard Lindzon

Play Episode Listen Later Apr 29, 2020 49:34


Localization of manufacturing is inevitable. “Where do you want your robots?” Guest - John Frankel, Founder and Partner at ff Venture Capital howardlindzon.com, ffvc.com Twitter: @howardlindzon, @john_frankel, @ffvc, @knutjensen

Future1
John Frankel: ff Venture Capital: Trends in technology, cross border investments, portfolio construction, and reporting updates to LPs.

Future1

Play Episode Listen Later Jan 1, 2020 78:01


In this episode of the Future 1 web show & podcast, we meet John Frankel. John founded ff Venture Capital ("ffVC") in 2008 and has been a seed- and early-stage investor since late 1999. He focuses on advising and growing technology and technology-enabled companies across emerging industries, including artificial intelligence, cybersecurity, drones, enterprise software, crowdfunding, and data analytics, among others. We talk about trends in technology, cross border investments, portfolio construction, and reporting updates to LPs The material contained on this web series & podcast is for informational purposes only and should not be construed as an offer or a recommendation to buy or sell any security nor is it to be construed as investment advice. Music credits: Clouds by MBB | https://soundcloud.com/mbbofficial , Music promoted by https://www.free-stock-music.com , Creative Commons Attribution-ShareAlike 3.0 Unported, https://creativecommons.org/licenses/by-sa/3.0/deed.en_US IMPORTANT NOTICE: This web series and podcast is intended for informational purposes only. The views expressed are not, and should not be construed as investment advice or recommendations. Recipients of this should do their own due diligence, taking into account their specific financial circumstances, investment objectives and risk tolerance (which are not considered in this web series and podcast) before investing. None of this information communication is an offer, nor the solicitation of an offer, to buy or sell any of the assets mentioned herein. --- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app Support this podcast: https://anchor.fm/joelpalathinkal/support

Culture: Founders, Entrepreneurs & Innovators
Leaders Live: John Frankel, Founding Partner ff Venture Capital

Culture: Founders, Entrepreneurs & Innovators

Play Episode Listen Later Jun 25, 2019 31:25


Talking with Industry Leader John Frankel, Founding Partner of ff Venture Capital live from the Empire State Building. We discuss company culture, technology, drones, artificial intelligence & Die Hard.  ff Venture Capital ("ffVC") focuses on advising & growing technology & tech-enabled companies across emerging industries, including ai, cyber security, drones, enterprise software, crowdfunding, and data analytics. Check out all past episodes of Leaders Live on LinkedIn Live -  www.CharlieNYC.com      

Austinpreneur
Want to Know What VCs Won’t Tell You? Ask VC John Frankel

Austinpreneur

Play Episode Listen Later Jun 25, 2019 26:57


Ever wondered what goes on inside the head of VCs partners that they won’t tell you? We do, too. So we asked one.We invited John Frankel to join us for this episode of Austinpreneur. He told us all about the issues VC firms face in their portfolio companies, such as accounting problems. He also told us who and what he looks for before investing (and, what he doesn’t want to find).John is Partner at ff Venture Capital, which he founded in 2008. They invest primarily in US, Canadian, and Israeli-based companies, specifically in applied AI, cybersecurity, and drones.

1Mby1M Entrepreneurship Podcast
379th 1Mby1M Entrepreneurship Podcast With John Frankel, ff Venture Capital - 1Mby1M Entrepreneurship Podcast

1Mby1M Entrepreneurship Podcast

Play Episode Listen Later Dec 29, 2017 33:09


John Frankel, Partner at ff Venture Capital, discusses the firm’s investment thesis as well as key trends in the industry.

AI Today Podcast: Artificial Intelligence Insights, Experts, and Opinion
AI Today Podcast #009: Investing in AI with John Frankel of ffVC

AI Today Podcast: Artificial Intelligence Insights, Experts, and Opinion

Play Episode Listen Later Nov 1, 2017 18:55


In this week’s podcast we interviewed John Frankel, Founding Partner at ff Venture Capital. We discussed his firm’s role at NYU FutureLabs Summit (where Cognilytica was a proud partner), the current state of the AI market from an investor’s perspective, and advice for enterprise and startup companies looking to have an AI strategy. Episode Sponsors: For over 25 years, QS has been helping prospective MBA candidates just like you make informed decisions about choosing the right business school. Read more ...

The Twenty Minute VC: Venture Capital | Startup Funding | The Pitch
20VC: Why Every Successful Company Pivots and Good Companies Get Funded in Good & Bad Markets with John Frankel, Founding Partner @ ff Venture Capital

The Twenty Minute VC: Venture Capital | Startup Funding | The Pitch

Play Episode Listen Later Apr 27, 2016 24:21


John Frankel is the founding partner of ff Venture Capital and has been an early-stage investor since 1999. He has served on the boards of more than 35 companies and has led investments in more than 80 companies, including Cornerstone OnDemand (CSOD), Indiegogo, Ionic Security, Unikey, Socure, Skycatch, Plated, 500px, Distil Networks, and Bottlenose. Prior to founding ffVC, John worked at Goldman Sachs for 21 years in a variety of roles that involved technology development, reengineering and capital markets. At Goldman Sachs, he worked closely with some of the world’s leading hedge fund managers and developed a keen understanding of emerging technologies and portfolio risk/return management.  In Today's Episode You Will Learn: 1.) How did John make the move from Oxford grad to NYC venture capitalist? 2.) How has the massive decrease in startup costs affected the seed funding environment? How does David identify the startups he invests in with the plethora that are now available? 3.) How much of an extent is portfolio a branding tool for VCs? In recent years we have seen the rise of the operational VC model with the likes of Andreesen, will this continue as a prominent model in VC? 4.) How as a seed investor does John advise his founders when chasing a valuation that will only lead to a down round? What is John's views on the dreaded down round? 5.) Many companies pivot in the process? Does John like to see pivots? If pivoting what is it important for founders to remember and focus on? Items Mentioned In Today's Episode:  John's Fave Book: The Accidental Superpower John's Most Recent Investment: Wade and Wendy As always you can follow The Twenty Minute VC, Harry and John on Twitter here! If you would like to see a more colourful side to Harry with many a mojito session, you can follow him on Instagram here!   The Twenty Minute VC is brought to you by Leesa, the Warby Parker or TOMS shoes of the mattress industry. Lees have done away with the terrible mattress showroom buying experience by creating a luxury premium foam mattress that is order completely online and ships for free to your doorstep. The 10 inch mattress comes in all sizes and is engineered with 3 unique foam layers for a universal, adaptive feel, including 2 inches of memory foam and 2 inches of a really cool latex foam called Avena, design to keep you cool. All Leesa mattresses are 100% US or UK made and for every 10 mattresses they sell, they donate one to a shelter. Go to Leesa.com/VC and enter the promo code VC75 to get $75 off!  

Venture Studio
Ep 14 - John Frankel - ff Venture Capital (2 of 2)

Venture Studio

Play Episode Listen Later Dec 15, 2015 18:27


In this week's episode, Dave continues a fascinating two-part interview with John Frankel, the founder of ff venture capital. When we left part 1 last week, John was just starting to describe a tech future with just a few behemoths owning the lion's share of every market. This week, in part 2, Dave and John discuss how to find growth in a zero growth world and the potential down sides of tech shrinking the globe. Finally, they revisit John's prognostications (from four years ago on this very show) about about the late-stage valuation bubble that we find ourselves in today and the implications on today's early-stage environment.

venture capital john frankel
Venture Studio
Ep 13 - John Frankel - ff Venture Capital (1 of 2)

Venture Studio

Play Episode Listen Later Dec 8, 2015 23:44


In this week's episode, you'll hear part 1 of an amazing two part interview with John Frankel, the founder of ff Venture Capital. Dave and John discuss how ff approaches investing, what functions ff provides to it's portfolio companies and why they do it, the label on the back of the honey bottle, and what it means to be living in a world of abundance. John Frankel is the founding partner of ff Venture Capital, and has been an early-stage investor since 1999. John has served as a director of over 35 companies and an investor in more than 76 companies, including Cornerstone OnDemand, Indiegogo, Ionic Security, Klout, SkyCatch, Plated, 500px, Distil Networks, and Bottlenose.

Venture Studio
Ep 06 - John Frankel - ff Venture Capital

Venture Studio

Play Episode Listen Later Oct 21, 2015 7:54


John Frankel is the head of ff Venture Capital, an early-stage New York venture capital firm that includes some of the web's hottest startups in its portfolio. Check out our Venture Studio Vault interview with Frankel to learn what motivates him as an investor, why he's so attracted to early stage companies and his thoughts on where the next tech bubble will manifest. This interview was originally released on October 24, 2011.

BE Culture Radio - The Ultimate Business Podcast on enhancing Company Culture, Management, and Leadership
How to be Successful by Helping Others Succeed - with John Frankel

BE Culture Radio - The Ultimate Business Podcast on enhancing Company Culture, Management, and Leadership

Play Episode Listen Later Jun 17, 2015 28:59


John Frankel grew up in England and spent his formative years at the University of Oxford where he earned a masters in Mathematics and Philosophy. His early entrepreneurial drive started with a sales adventure going door to door selling cases of strawberries where he made 50 pounds a day. He has since then moved on to a higher calling by working at Goldman Sachs. He has served as director of over 35 companies and is an investor in more than 76 companies and now is co-founder of ff Venture Capital. Listen to the full interview and learn: What inspired John to set up ff Venture Capital  What ff means How he got started as an Angel investor His personal advice to those who are planning to approach a VC company And more... To get the full show notes, transcripts on this episode check us out at www.befurniture.com/episode44 You can also connect with us on Twitter @BeFurniture or personally to me, @BEJohnGardner Click the links to subscribe on iTunes or Stitcher.

Upfront Ventures
John Frankel, Partner at ffVC - Bothsides TV Episode 10 with Mark Suster

Upfront Ventures

Play Episode Listen Later Apr 22, 2015 69:11


Mark Suster sits down with John Frankel to discuss his investments at ffVC, themes he's interested in, and current events affecting the tech sector.