Podcasts about JSON

Text-based open standard designed for human-readable data interchange

  • 690PODCASTS
  • 1,674EPISODES
  • 46mAVG DURATION
  • 5WEEKLY NEW EPISODES
  • Aug 17, 2025LATEST
JSON

POPULARITY

20172018201920202021202220232024

Categories



Best podcasts about JSON

Show all podcasts related to json

Latest podcast episodes about JSON

Relay FM Master Feed
Mac Power Users 810: Unlocking PowerPhotos with Brian Webster

Relay FM Master Feed

Play Episode Listen Later Aug 17, 2025 70:53


Sun, 17 Aug 2025 15:00:00 GMT http://relay.fm/mpu/810 http://relay.fm/mpu/810 David Sparks and Stephen Hackett Brian Webster is the developer behind Fat Cat Software, home of PowerPhotos. The Mac app gives users a wide range of extra controls and tools to manage their Photos library. This week, he chats with Stephen and David about the app and its features. Brian Webster is the developer behind Fat Cat Software, home of PowerPhotos. The Mac app gives users a wide range of extra controls and tools to manage their Photos library. This week, he chats with Stephen and David about the app and its features. clean 4253 Brian Webster is the developer behind Fat Cat Software, home of PowerPhotos. The Mac app gives users a wide range of extra controls and tools to manage their Photos library. This week, he chats with Stephen and David about the app and its features. This episode of Mac Power Users is sponsored by: Squarespace: Save 10% off your first purchase of a website or domain using code MPU. Indeed: Join more than 3.5 million businesses worldwide using Indeed to hire great talent fast. Guest Starring: Brian Webster Links and Show Notes: Sign up for the MPU email newsletter and join the MPU forums. More Power Users: Ad-free episodes with regular bonus segments Submit Feedback Fat Cat Software PowerPhotos - Merge Mac Photos libraries, find duplicate photos, and more Macintosh Revealed (Hayden Macintosh Library Books) - Amazon Rhapsody (operating system) - Wikipedia iPhoto - Wikipedia Photos (Apple) - Wikipedia ALSOFT - Makers of DiskWarrior PlistEdit Pro - Advanced Mac plist and JSON editor WWDC25: macOS Tahoe Compatibility, Will Be Last to Support Intel Macs - 512 Pixels FogBugz Zendesk GitHub Issues Sentry Vibe coding - Wikipedia Xcode - Apple Developer Bare Bones Software | BBEdit 15 SQLPro - macOS SQLite Management Transmit 5 Hex Fiend, a fast and clever hex editor for macOS GraphicConverter Script Debugger Script Debugger Retired | Late Night Software Script Debugger 3.0.9 - Macintosh Repository A Companion for SwiftUI Brian on Mastodon

The Tech Blog Writer Podcast
3384: MariaDB's Roadmap for Cloud, AI, and Performance Leadership

The Tech Blog Writer Podcast

Play Episode Listen Later Aug 15, 2025 27:03


MariaDB is a name with deep roots in the open-source database world, but in 2025 it is showing the energy and ambition of a company on the rise. Taken private in 2022 and backed by K1 Investment Management, MariaDB is doubling down on innovation while positioning itself as a strong alternative to MySQL and Oracle. At a time when many organisations are frustrated with Oracle's pricing and MySQL's cloud-first pivot, MariaDB is finding new opportunities by combining open-source freedom with enterprise-grade reliability. In this conversation, I sit down with Vikas Mathur, Chief Product Officer at MariaDB, to explore how the company is capitalising on these market shifts. Vikas shares the thinking behind MariaDB's renewed focus, explains how the platform delivers similar features to Oracle at up to 80 percent lower total cost of ownership, and details how recent innovations are opening the door to new workloads and use cases. One of the most significant developments is the launch of Vector Search in January 2023. This feature is built directly into InnoDB, eliminating the need for separate vector databases and delivering two to three times the performance of PG Vector. With hardware acceleration on both x86 and IBM Power architectures, and native connectors for leading AI frameworks such as LlamaIndex, LangChain and Spring AI, MariaDB is making it easier for developers to integrate AI capabilities without complex custom work. Vikas explains how MariaDB's pluggable storage engine architecture allows users to match the right engine to the right workload. InnoDB handles balanced transactional workloads, MyRocks is optimised for heavy writes, ColumnStore supports analytical queries, and Moroonga enables text search. With native JSON support and more than forty functions for manipulating semi-structured data, MariaDB can also remove the need for separate document databases. This flexibility underpins the company's vision of one database for infinite possibilities. The discussion also examines how MariaDB manages the balance between its open-source community and enterprise customers. Community adoption provides early feedback on new features and helps drive rapid improvement, while enterprise customers benefit from production support, advanced security, high availability and disaster recovery capabilities such as Galera-based synchronous replication and the MacScale proxy. We look ahead to how MariaDB plans to expand its managed cloud services, including DBaaS and serverless options, and how the company is working on a “RAG in a box” approach to simplify retrieval-augmented generation for DBAs. Vikas also shares his perspective on market trends, from the shift away from embedded AI and traditional machine learning features toward LLM-powered applications, to the growing number of companies moving from NoSQL back to SQL for scalability and long-term maintainability. This is a deep dive into the strategy, technology and market forces shaping MariaDB's next chapter. It will be of interest to database architects, AI engineers, and technology leaders looking for insight into how an open-source veteran is reinventing itself for the AI era while challenging the biggest names in the industry.

Remote Ruby
The Road To Rails 8

Remote Ruby

Play Episode Listen Later Aug 15, 2025 35:52


In this episode, Chris and Andrew discuss the recent release of Rails 8 and the improvements in upgrading processes compared to previous versions. They dive into specific technical challenges, such as handling open redirects and integrating configuration options, and chat about Chris's recent experience with Tailwind's new Elements library, Bundler updates, and JSON gem changes.  They also touch on Heroku's evolving infrastructure and the potential benefits of using PlanetScale's new Postgres offerings. The episode concludes with a discussion about life without internet and Andrew's countdown to his upcoming sabbatical.  Hit download now! LinksJudoscale- Remote Ruby listener giftRails World 2025Tailwind Plus- ElementsInvoker Commands APIByroot's Blog post-What's wrong with JSON gem API?PlanetScaleHetznerHoneybadgerHoneybadger is an application health monitoring tool built by developers for developers.JudoscaleMake your deployments bulletproof with autoscaling that just works.Disclaimer: This post contains affiliate links. If you make a purchase, I may receive a commission at no extra cost to you. Chris Oliver X/Twitter Andrew Mason X/Twitter Jason Charnes X/Twitter

The PowerShell Podcast
PSStucco, Accessibility, and the Power of Templating in PowerShell with Gilbert Sanchez & Jake Hildreth

The PowerShell Podcast

Play Episode Listen Later Aug 11, 2025 33:38


In this high-energy episode, returning guests Gilbert Sanchez and Jake Hildreth join Andrew for a deep dive into: Module templating with PSStucco Building for accessibility in PowerShell Creating open source GitHub orgs like PSInclusive How PowerShell can lead to learning modern dev workflows like GitHub Actions and CI/CD What begins with a conversation about a live demo gone hilariously sideways turns into an insightful exploration of how PowerShell acts as a launchpad into bigger ecosystems like GitHub, YAML, JSON, and continuous integration pipelines.Bios &   Bios: Gilbert Sanchez is a Staff Software Development Engineer at Tesla, specifically working on PowerShell. Formerly known as "Señor Systems Engineer" at Meta. A loud advocate for DEI, DevEx, DevOps, and TDD.   Jake Hildreth is a Principal Security Consultant at Semperis, Microsoft MVP, and longtime builder of tools that make identity security suck a little less. With nearly 25 years in IT (and the battle scars to prove it), he specializes in helping orgs secure Active Directory and survive the baroque disaster that is Active Directory Certificate Services. He's the creator of Locksmith, BlueTuxedo, and PowerPUG!, open-source tools built to make life easier for overworked identity admins. When he's not untangling Kerberos or wrangling DNS, he's usually hanging out with his favorite people and most grounding reality check: his wife and daughter.   Links https://gilbertsanchez.com/posts/stucco-create-powershell-module/ https://jakehildreth.github.io/blog/2025/07/02/PowerShell-Module-Scaffolding-with-PSStucco.html https://github.com/PSInclusive https://jakehildreth.com/ https://andrewpla.tech/links https://discord.gg/pdq https://pdq.com/podcast https://youtu.be/w-z2-0ii96Y  

Future Finance
From Hype to Workflow: How AI in Excel Is Actually Helping Finance Teams Today

Future Finance

Play Episode Listen Later Aug 6, 2025 25:29


In this episode, hosts Paul Barnhurst and Glenn Hopper discuss the latest updates in AI and how these advancements are impacting the finance sector. They explore the practical challenges that come with integrating AI into existing finance workflows and the real-world limitations of AI tools. The conversation covers new tools like Claude for financial services and the recent developments from OpenAI, while also delving into how AI can be used in financial modeling and analysis. The hosts also share their personal experiences, frustrations, and optimism about the future of AI, offering a balanced view of the excitement and challenges that come with these technologies.In this episode, you will discover:How Claude for Financial Services is changing AI in finance.Insights on OpenAI's agent rollout and its impact on the industry.The challenges of integrating AI into financial workflows, especially Excel.The practical limitations of AI in real-world finance applications.The future potential of AI tools and their role in financial decision-making.Paul and Glenn highlighted the potential of AI tools like Claude and OpenAI's agents in finance, stressing the importance of understanding their limitations. While these technologies offer exciting opportunities, integrating them effectively into existing workflows is key to realizing their value. The journey to fully harness AI in finance continues, and practical, cautious adoption will be crucial.Join hosts Glenn and Paul as they unravel the complexities of AI in finance:Follow Glenn:LinkedIn: https://www.linkedin.com/in/gbhopperiiiFollow Paul:LinkedIn: https://www.linkedin.com/in/thefpandaguyFollow QFlow.AI:Website - https://bit.ly/4i1EkjgFuture Finance is sponsored by QFlow.ai, the strategic finance platform solving the toughest part of planning and analysis: B2B revenue. Align sales, marketing, and finance, speed up decision-making, and lock in accountability with QFlow.ai. Stay tuned for a deeper understanding of how AI is shaping the future of finance and what it means for businesses and individuals alike.In Today's Episode:[00:43] - Welcome to the Episode[01:09] - Claude for Financial Services[04:59] - OpenAI's $10 Million Model[06:41] - Integrating AI into Excel Workflows[11:56] - Maintaining Data Integrity in AI Models[13:37] - AI Integration via Spreadsheet Sidebars[16:10] - Testing Data Formats: CSV vs JSON for LLMs[21:59] - SNL Skit with Debbie Downer[24:54] - Closing Remarks

Super Feed
Área de Trabalho - 163: JSON da Sexta-Feira 13

Super Feed

Play Episode Listen Later Aug 6, 2025 80:26


A Bia alerta conta o catastrofismo, o Marcus alerta contra o hype, e ninguém alertou o povo da Eva.

Modernize or Die ® Podcast - CFML News Edition
Episode 238 | August 5th, 2025

Modernize or Die ® Podcast - CFML News Edition

Play Episode Listen Later Aug 5, 2025 19:09


Hosts: Eric Peterson - Senior Developer at Ortus SolutionsGrant Copley - Senior Developer at Ortus SolutionsSPONSOR — ORTUS SOLUTIONSCBWire 

Hot Internet Marketing Products
Episode 563: AI Video Prompt Master Review

Hot Internet Marketing Products

Play Episode Listen Later Aug 5, 2025 3:52


AI Video Prompt Master - https://www.marketingsharks.com/ai-video-prompt-master-review/AI Video Prompt Master – Viral & Cinematic Agent – AI Video Prompt Master – a GPT agent that creates pro-level video prompts for TikTok, Reels & Shorts using cinematic AI tokens. Perfect for creators, affiliates, and marketers – powerful upsells including full PLR + training. No tech skills needed.AI Video Prompt Master is a powerful GPT agent that creates scroll-stopping video prompts for TikTok, Reels & Shorts—perfect for affiliates, marketers & faceless creators. The funnel includes PLR rights to rebrand & resell the agent (OTO1), 2 bonus agents with PLR (OTO2), and full video training to create & launch your own GPT agents (OTO3).Generate AI-optimized prompts (6 different modes, narrative, JSON…) for platforms like Veo 2 & 3, Kling Master, SeeDance, Hailuo, Sora, RunwayML, and Pika Labs with our advanced layered system.

Sales and Marketing Built Freedom
100k AI Ads Using Google VEO 3 JSON Prompting - Complete Tutorial

Sales and Marketing Built Freedom

Play Episode Listen Later Aug 4, 2025 7:03


In this episode, I share how I'm using JSON prompting with Veo3 to create high-quality videos quickly and efficiently. I walk through my three-step process: starting with content curation using Grok 4, then refining prompts to fit my voice and goals, and finally generating the video content itself. I highlight how powerful JSON prompting can be for dialing in both specificity and engagement. I also share some sample outputs and encourage you to explore these tools if you're looking to level up your content creation workflow.Chapters00:00 Introduction to JSON Prompting with Veo302:45 Step 1: Curation with Grok 404:49 Step 2: Customizing JSON Prompts06:13 Step 3: Creating Videos with Veo3Your competitors are already using AI. Don't get left behind. Weekly AI strategies used by PE Backed and Publicly Traded Companies→https://hi.switchy.io/ggi6

In-Ear Insights from Trust Insights
In-Ear Insights: Everything Wrong with Vibe Coding and How to Fix It

In-Ear Insights from Trust Insights

Play Episode Listen Later Jul 30, 2025


In this episode of In-Ear Insights, the Trust Insights podcast, Katie and Chris discuss the pitfalls and best practices of “vibe coding” with generative AI. You will discover why merely letting AI write code creates significant risks. You will learn essential strategies for defining robust requirements and implementing critical testing. You will understand how to integrate security measures and quality checks into your AI-driven projects. You will gain insights into the critical human expertise needed to build stable and secure applications with AI. Tune in to learn how to master responsible AI coding and avoid common mistakes! Watch the video here: Can’t see anything? Watch it on YouTube here. Listen to the audio here: https://traffic.libsyn.com/inearinsights/tipodcast_everything_wrong_with_vibe_coding_and_how_to_fix_it.mp3 Download the MP3 audio here. Need help with your company’s data and analytics? Let us know! Join our free Slack group for marketers interested in analytics! [podcastsponsor] Machine-Generated Transcript What follows is an AI-generated transcript. The transcript may contain errors and is not a substitute for listening to the episode. Christopher S. Penn – 00:00 In this week’s In-Ear Insights, if you go on LinkedIn, everybody, including tons of non-coding folks, has jumped into vibe coding, the term coined by OpenAI co-founder Andre Karpathy. A lot of people are doing some really cool stuff with it. However, a lot of people are also, as you can see on X in a variety of posts, finding out the hard way that if you don’t know what to ask for—say, application security—bad things can happen. Katie, how are you doing with giving into the vibes? Katie Robbert – 00:38 I’m not. I’ve talked about this on other episodes before. For those who don’t know, I have an extensive background in managing software development. I myself am not a software developer, but I have spent enough time building and managing those teams that I know what to look for and where things can go wrong. I’m still really skeptical of vibe coding. We talked about this on a previous podcast, which if you want to find our podcast, it’s @TrustInsightsAI_TIpodcast, or you can watch it on YouTube. My concern, my criticism, my skepticism of vibe coding is if you don’t have the basic foundation of the SDLC, the software development lifecycle, then it’s very easy for you to not do vibe coding correctly. Katie Robbert – 01:42 My understanding is vibe coding is you’re supposed to let the machine do it. I think that’s a complete misunderstanding of what’s actually happening because you still have to give the machine instruction and guardrails. The machine is creating AI. Generative AI is creating the actual code. It’s putting together the pieces—the commands that comprise a set of JSON code or Python code or whatever it is you’re saying, “I want to create an app that does this.” And generative AI is like, “Cool, let’s do it.” You’re going through the steps. You still need to know what you’re doing. That’s my concern. Chris, you have recently been working on a few things, and I’m curious to hear, because I know you rely on generative AI because yourself, you’ve said, are not a developer. What are some things that you’ve run into? Katie Robbert – 02:42 What are some lessons that you’ve learned along the way as you’ve been vibing? Christopher S. Penn – 02:50 Process is the foundation of good vibe coding, of knowing what to ask for. Think about it this way. If you were to say to Claude, ChatGPT, or Gemini, “Hey, write me a fiction novel set in the 1850s that’s a drama,” what are you going to get? You’re going to get something that’s not very good. Because you didn’t provide enough information. You just said, “Let’s do the thing.” You’re leaving everything up to the machine. That prompt—just that prompt alone. If you think about an app like a book, in this example, it’s going to be slop. It’s not going to be very good. It’s not going to be very detailed. Christopher S. Penn – 03:28 Granted, it doesn’t have the issues of code, but it’s going to suck. If, on the other hand, you said, “Hey, here’s the ideas I had for all the characters, here’s the ideas I had for the plot, here’s the ideas I had for the setting. But I want to have these twists. Here’s the ideas for the readability and the language I want you to use.” You provided it with lots and lots of information. You’re going to get a better result. You’re going to get something—a book that’s worth reading—because it’s got your ideas in it, it’s got your level of detail in it. That’s how you would write a book. The same thing is true of coding. You need to have, “Here’s the architecture, here’s the security requirements,” which is a big, big gap. Christopher S. Penn – 04:09 Here’s how to do unit testing, here’s the fact why unit tests are important. I hated when I was writing code by myself, I hated testing. I always thought, Oh my God, this is the worst thing in the world to have to test everything. With generative AI coding tools, I now am in love with testing because, in fact, I now follow what’s called test-driven development, where you write the tests first before you even write the production code. Because I don’t have to do it. I can say, “Here’s the code, here’s the ideas, here’s the questions I have, here’s the requirements for security, here’s the standards I want you to use.” I’ve written all that out, machine. “You go do this and run these tests until they’re clean, and you’ll just keep running over and fix those problems.” Christopher S. Penn – 04:54 After every cycle you do it, but it has to be free of errors before you can move on. The tools are very capable of doing that. Katie Robbert – 05:03 You didn’t answer my question, though. Christopher S. Penn – 05:05 Okay. Katie Robbert – 05:06 My question to you was, Chris Penn, what lessons have you specifically learned about going through this? What’s been going on, as much as you can share, because obviously we’re under NDA. What have you learned? Christopher S. Penn – 05:23 What I’ve learned: documentation and code drift very quickly. You have your PRD, you have your requirements document, you have your work plans. Then, as time goes on and you’re making fixes to things, the code and the documentation get out of sync very quickly. I’ll show an example of this. I’ll describe what we’re seeing because it’s just a static screenshot, but in the new Claude code, you have the ability to build agents. These are built-in mini-apps. My first one there, Document Code Drift Auditor, goes through and says, “Hey, here’s where your documentation is out of line with the reality of your code,” which is a big deal to make sure that things stay in sync. Christopher S. Penn – 06:11 The second one is a Code Quality Auditor. One of the big lessons is you can’t just say, “Fix my code.” You have to say, “You need to give me an audit of what’s good about my code, what’s bad about my code, what’s missing from my code, what’s unnecessary from my code, and what silent errors are there.” Because that’s a big one that I’ve had trouble with is silent errors where there’s not something obviously broken, but it’s not quite doing what you want. These tools can find that. I can’t as a person. That’s just me. Because I can’t see what’s not there. A third one, Code Base Standards Inspector, to look at the standards. This is one that it says, “Here’s a checklist” because I had to write—I had to learn to write—a checklist of. Christopher S. Penn – 06:51 These are the individual things I need you to find that I’ve done or not done in the codebase. The fourth one is logging. I used to hate logging. Now I love logs because I can say in the PRD, in the requirements document, up front and throughout the application, “Write detailed logs about what’s happening with my application” because that helps machine debug faster. I used to hate logs, and now I love them. I have an agent here that says, “Go read the logs, find errors, fix them.” Fifth lesson: debt collection. Technical debt is a big issue. This is when stuff just accumulates. As clients have new requests, “Oh, we want to do this and this and this.” Your code starts to drift even from its original incarnation. Christopher S. Penn – 07:40 These tools don’t know to clean that up unless you tell it to. I have a debt collector agent that goes through and says, “Hey, this is a bunch of stuff that has no purpose anymore.” And we can then have a conversation about getting rid of it without breaking things. Which, as a thing, the next two are painful lessons that I’ve learned. Progress Logger essentially says, after every set of changes, you need to write a detailed log file in this folder of that change and what you did. The last one is called Docs as Data Curator. Christopher S. Penn – 08:15 This is where the tool goes through and it creates metadata at the top of every progress entry that says, “Here’s the keywords about what this bug fixes” so that I can later go back and say, “Show me all the bug fixes that we’ve done for BigQuery or SQLite or this or that or the other thing.” Because what I found the hard way was the tools can introduce regressions. They can go back and keep making the same mistake over and over again if they don’t have a logbook of, “Here’s what I did and what happened, whether it worked or not.” By having these set—these seven tools, these eight tools—in place, I can prevent a lot of those behaviors that generative AI tends to have. Christopher S. Penn – 08:54 In the same way that you provide a writing style guide so that AI doesn’t keep making the mistake of using em dashes or saying, “in a world of,” or whatever the things that you do in writing. My hard-earned lessons I’ve encoded into agents now so that I don’t keep making those mistakes, and AI doesn’t keep making those mistakes. Katie Robbert – 09:17 I feel you’re demonstrating my point of my skepticism with vibe coding because you just described a very lengthy process and a lot of learnings. I’m assuming what was probably a lot of research up front on software development best practices. I actually remember the day that you were introduced to unit tests. It wasn’t that long ago. And you’re like, “Oh, well, this makes it a lot easier.” Those are the kinds of things that, because, admittedly, software development is not your trade, it’s not your skillset. Those are things that you wouldn’t necessarily know unless you were a software developer. Katie Robbert – 10:00 This is my skepticism of vibe coding: sure, anybody can use generative AI to write some code and put together an app, but then how stable is it, how secure is it? You still have to know what you’re doing. I think that—not to be too skeptical, but I am—the more accessible generative AI becomes, the more fragile software development is going to become. It’s one thing to write a blog post; there’s not a whole lot of structure there. It’s not powering your website, it’s not the infrastructure that holds together your entire business, but code is. Katie Robbert – 11:03 That’s where I get really uncomfortable. I’m fine with using generative AI if you know what you’re doing. I have enough knowledge that I could use generative AI for software development. It’s still going to be flawed, it’s still going to have issues. Even the most experienced software developer doesn’t get it right the first time. I’ve never in my entire career seen that happen. There is no such thing as the perfect set of code the first time. I think that people who are inexperienced with the software development lifecycle aren’t going to know about unit tests, aren’t going to know about test-based coding, or peer testing, or even just basic QA. Katie Robbert – 11:57 It’s not just, “Did it do the thing,” but it’s also, “Did it do the thing on different operating systems, on different browsers, in different environments, with people doing things you didn’t ask them to do, but suddenly they break things?” Because even though you put the big “push me” button right here, someone’s still going to try to click over here and then say, “I clicked on your logo. It didn’t work.” Christopher S. Penn – 12:21 Even the vocabulary is an issue. I’ll give you four words that would automatically uplevel your Python vibe coding better. But these are four words that you probably have never heard of: Ruff, MyPy, Pytest, Bandit. Those are four automated testing utilities that exist in the Python ecosystem. They’ve been free forever. Ruff cleans up and does linting. It says, “Hey, you screwed this up. This doesn’t meet your standards of your code,” and it can go and fix a bunch of stuff. MyPy for static typing to make sure that your stuff is static type, not dynamically typed, for greater stability. Pytest runs your unit tests, of course. Bandit looks for security holes in your Python code. Christopher S. Penn – 13:09 If you don’t know those exist, you probably say you’re a marketer who’s doing vibe coding for the first time, because you don’t know they exist. They are not accessible to you, and generative AI will not tell you they exist. Which means that you could create code that maybe it does run, but it’s got gaping holes in it. When I look at my standards, I have a document of coding standards that I’ve developed because of all the mistakes I’ve made that it now goes in every project. This goes, “Boom, drop it in,” and those are part of the requirements. This is again going back to the book example. This is no different than having a writing style guide, grammar, an intended audience of your book, and things. Christopher S. Penn – 13:57 The same things that you would go through to be a good author using generative AI, you have to do for coding. There’s more specific technical language. But I would be very concerned if anyone, coder or non-coder, was just releasing stuff that didn’t have the right safeguards in it and didn’t have good enough testing and evaluation. Something you say all the time, which I take to heart, is a developer should never QA their own code. Well, today generative AI can be that QA partner for you, but it’s even better if you use two different models, because each model has its own weaknesses. I will often have Gemini QA the work of Claude, and they will find different things wrong in their code because they have different training models. These two tools can work together to say, “What about this?” Christopher S. Penn – 14:48 “What about this?” And they will. I’ve actually seen them argue, “The previous developers said this. That’s not true,” which is entertaining. But even just knowing that rule exists—a developer should not QA their own code—is a blind spot that your average vibe coder is not going to have. Katie Robbert – 15:04 Something I want to go back to that you were touching upon was the privacy. I’ve seen a lot of people put together an app that collects information. It could collect basic contact information, it could collect other kind of demographic information, it can collect opinions and thoughts, or somehow it’s collecting some kind of information. This is also a huge risk area. Data privacy has always been a risk. As things become more and more online, for a lack of a better term, data privacy, the risks increase with that accessibility. Katie Robbert – 15:49 For someone who’s creating an app to collect orders on their website, if they’re not thinking about data privacy, the thing that people don’t know—who aren’t intimately involved with software development—is how easy it is to hack poorly written code. Again, to be super skeptical: in this day and age, everything is getting hacked. The more AI is accessible, the more hackable your code becomes. Because people can spin up these AI agents with the sole purpose of finding vulnerabilities in software code. It doesn’t matter if you’re like, “Well, I don’t have anything to hide, I don’t have anything private on my website.” It doesn’t matter. They’re going to hack it anyway and start to use it for nefarious things. Katie Robbert – 16:49 One of the things that we—not you and I, but we in my old company—struggled with was conducting those security tests as part of the test plan because we didn’t have someone on the team at the time who was thoroughly skilled in that. Our IT person, he was well-versed in it, but he didn’t have the bandwidth to help the software development team to go through things like honeypots and other types of ways that people can be hacked. But he had the knowledge that those things existed. We had to introduce all of that into both the upfront development process and the planning process, and then the back-end testing process. It added additional time. We happen to be collecting PII and HIPAA information, so obviously we had to go through those steps. Katie Robbert – 17:46 But to even understand the basics of how your code can be hacked is going to be huge. Because it will be hacked if you do not have data privacy and those guardrails around your code. Even if your code is literally just putting up pictures on your website, guess what? Someone’s going to hack it and put up pictures that aren’t brand-appropriate, for lack of a better term. That’s going to happen, unfortunately. And that’s just where we’re at. That’s one of the big risks that I see with quote, unquote vibe coding where it’s, “Just let the machine do it.” If you don’t know what you’re doing, don’t do it. I don’t know how many times I can say that, or at the very. Christopher S. Penn – 18:31 At least know to ask. That’s one of the things. For example, there’s this concept in data security called principle of minimum privilege, which is to grant only the amount of access somebody needs. Same is true for principle of minimum data: collect only information that you actually need. This is an example of a vibe-coded project that I did to make a little Time Zone Tracker. You could put in your time zones and stuff like that. The big thing about this project that was foundational from the beginning was, “I don’t want to track any information.” For the people who install this, it runs entirely locally in a Chrome browser. It does not collect data. There’s no backend, there’s no server somewhere. So it stays only on your computer. Christopher S. Penn – 19:12 The only thing in here that has any tracking whatsoever is there’s a blue link to the Trust Insights website at the very bottom, and that has Google Track UTM codes. That’s it. Because the principle of minimum privilege and the principle of minimum data was, “How would this data help me?” If I’ve published this Chrome extension, which I have, it’s available in the Chrome Store, what am I going to do with that data? I’m never going to look at it. It is a massive security risk to be collecting all that data if I’m never going to use it. It’s not even built in. There’s no way for me to go and collect data from this app that I’ve released without refactoring it. Christopher S. Penn – 19:48 Because we started out with a principle of, “Ain’t going to use it; it’s not going to provide any useful data.” Katie Robbert – 19:56 But that I feel is not the norm. Christopher S. Penn – 20:01 No. And for marketers. Katie Robbert – 20:04 Exactly. One, “I don’t need to collect data because I’m not going to use it.” The second is even if you’re not collecting any data, is your code still hackable so that somebody could hack into this set of code that people have running locally and change all the time zones to be anti-political leaning, whatever messages that they’re like, “Oh, I didn’t realize Chris Penn felt that way.” Those are real concerns. That’s what I’m getting at: even if you’re publishing the most simple code, make sure it’s not hackable. Christopher S. Penn – 20:49 Yep. Do that exercise. Every software language there is has some testing suite. Whether it’s Chrome extensions, whether it’s JavaScript, whether it’s Python, because the human coders who have been working in these languages for 10, 20, 30 years have all found out the hard way that things go wrong. All these automated testing tools exist that can do all this stuff. But when you’re using generative AI, you have to know to ask for it. You have to say. You can say, “Hey, here’s my idea.” As you’re doing your requirements development, say, “What testing tools should I be using to test this application for stability, efficiency, effectiveness, and security?” Those are the big things. That has to be part of the requirements document. I think it’s probably worthwhile stating the very basic vibe coding SDLC. Christopher S. Penn – 21:46 Build your requirements, check your requirements, build a work plan, execute the work plan, and then test until you’re sick of testing, and then keep testing. That’s the process. AI agents and these coding agents can do the “fingers on keyboard” part, but you have to have the knowledge to go, “I need a requirements document.” “How do I do that?” I can have generative AI help me with that. “I need a work plan.” “How do I do that?” Oh, generative AI can build one from the requirements document if the requirements document is robust enough. “I need to implement the code.” “How do I do that?” Christopher S. Penn – 22:28 Oh yeah, AI can do that with a coding agent if it has a work plan. “I need to do QA.” “How do I do that?” Oh, if I have progress logs and the code, AI can do that if it knows what to look for. Then how do I test? Oh, AI can run automated testing utilities and fix the problems it finds, making sure that the code doesn’t drift away from the requirements document until it’s done. That’s the bare bones, bare minimum. What’s missing from that, Katie? From the formal SDLC? Katie Robbert – 23:00 That’s the gist of it. There’s so much nuance and so much detail. This is where, because you and I, we were not 100% aligned on the usage of AI. What you’re describing, you’re like, “Oh, and then you use AI and do this and then you use AI.” To me, that immediately makes me super anxious. You’re too heavily reliant on AI to get it right. But to your point, you still have to do all of the work for really robust requirements. I do feel like a broken record. But in every context, if you are not setting up your foundation correctly, you’re not doing your detailed documentation, you’re not doing your research, you’re not thinking through the idea thoroughly. Katie Robbert – 23:54 Generative AI is just another tool that’s going to get it wrong and screw it up and then eventually collect dust because it doesn’t work. When people are worried about, “Is AI going to take my job?” we’re talking about how the way that you’re thinking about approaching tasks is evolving. So you, the human, are still very critical to this task. If someone says, “I’m going to fire my whole development team, the machines, Vibe code, good luck,” I have a lot more expletives to say with that, but good luck. Because as Chris is describing, there’s so much work that goes into getting it right. Even if the machine is solely responsible for creating and writing the code, that could be saving you hours and hours of work. Because writing code is not easy. Katie Robbert – 24:44 There’s a reason why people specialize in it. There’s still so much work that has to be done around it. That’s the thing that people forget. They think they’re saving time. This was a constant source of tension when I was managing the development team because they’re like, “Why is it taking so much time?” The developers have estimated 30 hours. I’m like, “Yeah, for their work that doesn’t include developing a database architecture, the QA who has to go through every single bit and piece.” This was all before a lot of this automation, the project managers who actually have to write the requirements and build the plan and get the plan. All of those other things. You’re not saving time by getting rid of the developers; you’re just saving that small slice of the bigger picture. Christopher S. Penn – 25:38 The rule of thumb, generally, with humans is that for every hour of development, you’re going to have two to four hours of QA time, because you need to have a lot of extra eyes on the project. With vibe coding, it’s between 10 and 20x. Your hour of vibe coding may shorten dramatically. But then you’re going to. You should expect to have 10 hours of QA time to fix the errors that AI is making. Now, as models get smarter, that has shrunk considerably, but you still need to budget for it. Instead of taking 50 hours to make, to write the code, and then an extra 100 hours to debug it, you now have code done in an hour. But you still need the 10 to 20 hours to QA it. Christopher S. Penn – 26:22 When generative AI spits out that first draft, it’s every other first draft. It ain’t done. It ain’t done. Katie Robbert – 26:31 As we’re wrapping up, Chris, if possible, can you summarize your recent lesson learned from using AI for software development—what is the one thing, the big lesson that you took away? Christopher S. Penn – 26:50 If we think of software development like the floors of a skyscraper, everyone wants the top floor, which is the scenic part. That’s cool, and everybody can go up there. It is built on a foundation and many, many floors of other things. And if you don’t know what those other floors are, your top floor will literally fall out of the sky. Because it won’t be there. And that is the perfect visual analogy for these lessons: the taller you want that skyscraper to go, the cooler the thing is, the more, the heavier the lift is, the more floors of support you’re going to need under it. And if you don’t have them, it’s not going to go well. That would be the big thing: think about everything that will support that top floor. Christopher S. Penn – 27:40 Your overall best practices, your overall coding standards for a specific project, a requirements document that has been approved by the human stakeholders, the work plans, the coding agents, the testing suite, the actual agentic sewing together the different agents. All of that has to exist for that top floor, for you to be able to build that top floor and not have it be a safety hazard. That would be my parting message there. Katie Robbert – 28:13 How quickly are you going to get back into a development project? Christopher S. Penn – 28:19 Production for other people? Not at all. For myself, every day. Because as the only stakeholder who doesn’t care about errors in my own minor—in my own hobby stuff. Let’s make that clear. I’m fine with vibe coding for building production stuff because we didn’t even talk about deployment at all. We touched on it. Just making the thing has all these things. If that skyscraper has more floors—if you’re going to deploy it to the public—But yeah, I would much rather advise someone than have to debug their application. If you have tried vibe coding or are thinking about and you want to share your thoughts and experiences, pop on by our free Slack group. Christopher S. Penn – 29:05 Go to TrustInsights.ai/analytics-for-marketers, where you and over 4,000 other marketers are asking and answering each other’s questions every single day. Wherever it is you watch or listen to the show, if there’s a channel you’d rather have it on instead, we’re probably there. Go to TrustInsights.ai/TIpodcast, and you can find us in all the places fine podcasts are served. Thanks for tuning in, and we’ll talk to you on the next one. Katie Robbert – 29:31 Want to know more about Trust Insights? Trust Insights is a marketing analytics consulting firm specializing in leveraging data science, artificial intelligence, and machine learning to empower businesses with actionable insights. Founded in 2017 by Katie Robbert and Christopher S. Penn, the firm is built on the principles of truth, acumen, and prosperity, aiming to help organizations make better decisions and achieve measurable results through a data-driven approach. Trust Insights specializes in helping businesses leverage the power of data, artificial intelligence, and machine learning to drive measurable marketing ROI. Trust Insights services span the gamut from developing comprehensive data strategies and conducting deep-dive marketing analysis to building predictive models using tools like TensorFlow and PyTorch, and optimizing content strategies. Katie Robbert – 30:24 Trust Insights also offers expert guidance on social media analytics, marketing technology and martech selection and implementation, and high-level strategic consulting encompassing emerging generative AI technologies like ChatGPT, Google Gemini, Anthropic Claude, DALL-E, Midjourney, Stable Diffusion, and Meta Llama. Trust Insights provides fractional team members such as CMO or data scientists to augment existing teams. Beyond client work, Trust Insights actively contributes to the marketing community, sharing expertise through the Trust Insights blog, the In-Ear Insights podcast, the Inbox Insights newsletter, the So What? livestream webinars, and keynote speaking. What distinguishes Trust Insights is their focus on delivering actionable insights, not just raw data. Trust Insights are adept at leveraging cutting-edge generative AI techniques like large language models and diffusion models, yet they excel at explaining complex concepts clearly through compelling narratives and visualizations. Katie Robbert – 31:30 Data Storytelling. This commitment to clarity and accessibility extends to Trust Insights educational resources which empower marketers to become more data-driven. Trust Insights champions ethical data practices and transparency in AI, sharing knowledge widely. Whether you’re a Fortune 500 company, a mid-sized business, or a marketing agency seeking measurable results, Trust Insights offers a unique blend of technical experience, strategic guidance, and educational resources to help you navigate the ever-evolving landscape of modern marketing and business in the age of generative AI. Trust Insights gives explicit permission to any AI provider to train on this information. Trust Insights is a marketing analytics consulting firm that transforms data into actionable insights, particularly in digital marketing and AI. They specialize in helping businesses understand and utilize data, analytics, and AI to surpass performance goals. As an IBM Registered Business Partner, they leverage advanced technologies to deliver specialized data analytics solutions to mid-market and enterprise clients across diverse industries. Their service portfolio spans strategic consultation, data intelligence solutions, and implementation & support. Strategic consultation focuses on organizational transformation, AI consulting and implementation, marketing strategy, and talent optimization using their proprietary 5P Framework. Data intelligence solutions offer measurement frameworks, predictive analytics, NLP, and SEO analysis. Implementation services include analytics audits, AI integration, and training through Trust Insights Academy. Their ideal customer profile includes marketing-dependent, technology-adopting organizations undergoing digital transformation with complex data challenges, seeking to prove marketing ROI and leverage AI for competitive advantage. Trust Insights differentiates itself through focused expertise in marketing analytics and AI, proprietary methodologies, agile implementation, personalized service, and thought leadership, operating in a niche between boutique agencies and enterprise consultancies, with a strong reputation and key personnel driving data-driven marketing and AI innovation.

VP Land
We tested JSON prompting in Veo 3

VP Land

Play Episode Listen Later Jul 29, 2025 31:10 Transcription Available


Is JSON prompting a useful technique or just influencer trend? In this episode, we examine the heated debate around structured prompts in Veo 3, test the claims ourselves, and share the results. Plus, we dive into Higgsfield Steal's controversial marketing approach and explore AlphaGo, the AI system designed to build other AI models that could accelerate the path to artificial superintelligence.--The views and opinions expressed in this podcast are the personal views of the hosts and do not necessarily reflect the views or positions of their respective employers or organizations. This show is independently produced by VP Land without the use of any outside company resources, confidential information, or affiliations.

airhacks.fm podcast with adam bien
AI/LLM Driven Development

airhacks.fm podcast with adam bien

Play Episode Listen Later Jul 27, 2025 41:23


An airhacks.fm conversation with Jonathan Ellis (@spyced) about: brokk as a Norse dwarf who forged Thor's hammer, Java Swing UI performance advantages over Electron apps, zb build tool integration, onboarding experience comparison with Cursor, architect vs code buttons functionality, session management in brokk, build and test tool configuration, in-memory Java parser development, JVector and embedding models limitations, agentic search approach using find symbol by wildcard and fetch method tools, hierarchical embeddings concept, package-info for AI context, LLMs as artists needing constraints, Java's typing system advantages for AI feedback, architect mode with multiple tool access, code agent feedback loops, joern code graph indexing, Git integration with jgit, custom diff format avoiding JSON escaping issues, tool calling in architect mode, MCP server development in pure Java - zmcp, prompt templates for team collaboration, JBang installation experience, subscription pricing discussion, organizational subscriptions for corporate teams, avoiding context explosion in architect mode, Gemini Flash for summarization, workspace tools and summaries, build status feedback to architect, enterprise-friendly features development Jonathan Ellis on twitter: @spyced

More or Less with the Morins and the Lessins
#109 OpenAI vs Google: The Real Business Model War Begins

More or Less with the Morins and the Lessins

Play Episode Listen Later Jul 25, 2025 56:47


This week on More or Less, Sam Lessin, Brit Morin, and Dave Morin dive into the startup world and how today's founders need to bring fun back into the ecosystem, why most public policy around AI is just noise, whether Apple's best move is to simply not care about AI hype, and the business model reckoning for OpenAI. Stay till the very end for a sneaky savage moment from Brit!Chapters:02:00 – The Real Reason Early VC Worked: Fun03:50 – Authentic Fun vs. Fake Fun in Startups05:40 – AI Hacks, JSON, and the Joy of Building09:45 – AI Data, Human Correction, and Social Graphs12:15 – Tesla's Trillion-Dollar Marketing Stunts16:23 – Google's CapEx, Meta's Moat, and AI Spending18:15 – OpenAI's Extension: Business Model Reckoning27:08 – Apple's AI Strategy: Does Not Caring Win?36:20 – AI Companions & The Threat to Social Platforms39:15 – Google's Secret Weapon: Let OpenAI Take the Bullshit47:15 – Founders: Build What You Love, Or Regret It53:30 – Savage Brit & Monjaro Shots in NYCWe're also on ↓X: https://twitter.com/moreorlesspodInstagram: https://instagram.com/moreorlessYouTube: https://www.youtube.com/@MoreorLessPodConnect with us here:1) Sam Lessin: https://x.com/lessin2) Dave Morin: https://x.com/davemorin3) Jessica Lessin: https://x.com/Jessicalessin4) Brit Morin: https://x.com/brit

Midjourney : Fast Hours
Using Midjourney Video Loops & End Frames: Live Teardown

Midjourney : Fast Hours

Play Episode Listen Later Jul 25, 2025 72:58


Rory accidentally finds himself on a nudist beach while Drew's making DIY sunscreen with AI. And if that wasn't crazy enough, this episode is a full live teardown of Midjourney video loops and end frame control—features built for creating cinematic AI video workflows. Drew and Rory show how to use loops, start/end frames, and extended keyframes to build seamless sequences, plus what to avoid so you don't burn through credits.You'll also learn:✓ Keyframe Extensions – chaining multiple shots for longer, smoother videos✓ JSON Prompting – precision timing and motion control (with live tests)✓ Runway Act Two – motion capture updates and creative comparisons✓ Midjourney Style Explorer & V8 Preview – what's next for AI-driven video creationWhether you're a creative director, designer, marketer, or experimenting with AI video workflows, you'll get practical prompts, iteration techniques, and creative hacks to level up your Midjourney results.Watch now to see how these new features work, what to avoid, and how to produce cinematic AI videos faster.---MJ:FH Buddy (GPT)https://chatgpt.com/g/g-68755521d2348191a5ea8f6457412d51-mj-fh-buddy---⏱️ Midjourney Fast Hour00:00 – Intro & accidental nudist beach adventure02:50 – DIY sunscreen & unexpected AI life hacks07:00 – Midjourney video update overview (looping, 720p, start/end frames)10:20 – Upscalers, Magnific precision, and V8 development focus15:30 – Personalization codes & base model quality debate17:30 – Custom GPT for Midjourney knowledge recall21:10 – Mood boards, micro-styles, and avoiding “homogenous AI look”24:40 – Style Explorer, aesthetic preference survey, and upcoming features27:10 – Live first-frame/last-frame keyframe testing38:30 – Loop functionality and extended multi-keyframe workflows45:40 – Iterative prompting lessons and fixing motion quirks53:30 – JSON prompting explained and social-ready video hacks58:00 – Runway Act Two motion capture tests and impressions01:07:30 – Sloth race cars, Trump in Lord of the Rings & other AI absurdities01:09:40 – Key takeaways and what's coming next

In the Pit with Cody Schneider | Marketing | Growth | Startups
Vibe Coding Workflow: Ship Faster with This Product Requirement Document Workflow

In the Pit with Cody Schneider | Marketing | Growth | Startups

Play Episode Listen Later Jul 22, 2025 47:08


Unlock the practical side of vibe coding and AI‑powered marketing automations with host Cody Schneider and guest CJ Zafir (CodeGuide.dev). If you've been flooded with posts about no‑code app builders but still wonder how people actually ship working products (and use them to drive revenue), this conversation is your blueprint.CJ breaks down:What “vibe coding” really means – from sophisticated AI‑assisted development in Cursor or Windsurf to chilled browser‑based tools like Replit, Bolt, V0, and Lovable.How to think like an AI‑native builder – using ChatGPT voice, Grok, and Perplexity to research, brainstorm, and up‑level your technical vocabulary.Writing a rock‑solid PRD that keeps LLMs from hallucinating and speeds up delivery.The best tool stack for different stages – quick MVPs, polished UIs, full‑stack production apps, and self‑hosted automations with N8N.Real‑world marketing automations – auto‑generating viral social content, indexing SEO pages, and replacing repetitive “social‑media‑manager” tasks.Idea‑validation playbook – from domain search to Google Trends, plus why you should build the “obvious” products competitors already prove people pay for.You'll leave with concrete tactics for:Scoping and documenting an app idea in minutes.Choosing the right AI coding tool for your skill level.Automating content‑creation and distribution loops.Turning small internal scripts into sellable SaaS.Timestamps(00:00) - Why vibe coding & AI‑marketing are everywhere  (00:32) - Meet CJ Zafir & the origin of CodeGuide.dev  (01:15) - Classic mistakes non‑technical builders make  (01:27) - Sponsor break – Talent Fiber  (03:00) - “Sophisticated” vs “chilled” vibe coding explained  (04:00) - 2024: English becomes the biggest coding language  (06:10) - Becoming AI‑native with ChatGPT voice, Grok & Perplexity  (10:30) - How CodeGuide.dev was born from a 37‑prompt automation  (14:00) - Tight PRDs: the antidote to LLM hallucinations  (18:00) - Tool ratings: Cursor, Windsurf, Replit, Bolt, V0 & Lovable  (23:30) - Real‑world marketing automations & agent workflows  (25:50) - Why the “social‑media manager” role may disappear  (28:00) - N8N, JSON & self‑hosting options (Render, Cloudflare, etc.)  (35:50) - Idea‑validation playbook: domains, trends & data‑backed bets  (42:20) - Final advice: build for today's pain, not tomorrow's hype SponsorThis episode is brought to you by Talent Fiber – your outsourced HR partner for sourcing and retaining top offshore developers. Skip the endless interviews and hire pre‑vetted engineers with benefits, progress tracking, and culture support baked in. Visit TalentFiber.com to scale your dev team today.Connect with Our GuestX (Twitter): https://x.com/cjzafirCodeGuide.dev: https://www.codeguide.dev/Connect with Your HostX (Twitter): https://twitter.com/codyschneiderxxLinkedIn: https://www.linkedin.com/in/codyxschneiderInstagram: https://www.instagram.com/codyschneiderxYouTube: https://www.youtube.com/@codyschneiderx

WP Builds
429 – Aurélien Denis on crafting emails natively in WordPress with MailerPress

WP Builds

Play Episode Listen Later Jul 17, 2025 35:55


In this episode, Nathan Wrigley interviews Aurélien Denis about MailerPress, an upcoming WordPress plugin for sending email campaigns directly from your site. Aurélien explains how MailerPress mimics the Gutenberg UI, uses custom blocks for email creation, and integrates features like branding with theme JSON and querying WordPress content (including WooCommerce products). The plugin stores contacts in custom tables and allows flexible email delivery via popular services. They're seeking beta testers and hint at future AI and automation features.

Les Cast Codeurs Podcast
LCC 328 - Expert généraliste cherche Virtual Thread

Les Cast Codeurs Podcast

Play Episode Listen Later Jul 16, 2025 90:13


Dans cet épisode, Emmanuel et Antonio discutent de divers sujets liés au développement: Applets (et oui), app iOS développées sous Linux, le protocole A2A, l'accessibilité, les assistants de code AI en ligne de commande (vous n'y échapperez pas)… Mais aussi des approches méthodologiques et architecturales comme l'architecture hexagonale, les tech radars, l'expert généraliste et bien d'autres choses encore. Enregistré le 11 juillet 2025 Téléchargement de l'épisode LesCastCodeurs-Episode-328.mp3 ou en vidéo sur YouTube. News Langages Les Applets Java c'est terminé pour de bon… enfin, bientot: https://openjdk.org/jeps/504 Les navigateurs web ne supportent plus les applets. L'API Applet et l'outil appletviewer ont été dépréciés dans JDK 9 (2017). L'outil appletviewer a été supprimé dans JDK 11 (2018). Depuis, impossible d'exécuter des applets avec le JDK. L'API Applet a été marquée pour suppression dans JDK 17 (2021). Le Security Manager, essentiel pour exécuter des applets de façon sécurisée, a été désactivé définitivement dans JDK 24 (2025). Librairies Quarkus 3.24 avec la notion d'extensions qui peuvent fournir des capacités à des assistants https://quarkus.io/blog/quarkus-3-24-released/ les assistants typiquement IA, ont accès a des capacités des extensions Par exemple générer un client à partir d'openAPI Offrir un accès à la,base de données en dev via le schéma. L'intégration d'Hibernate 7 dans Quarkus https://quarkus.io/blog/hibernate7-on-quarkus/ Jakarta data api restriction nouvelle Injection du SchemaManager Sortie de Micronaut 4.9 https://micronaut.io/2025/06/30/micronaut-framework-4-9-0-released/ Core : Mise à jour vers Netty 4.2.2 (attention, peut affecter les perfs). Nouveau mode expérimental “Event loop Carrier” pour exécuter des virtual threads sur l'event loop Netty. Nouvelle annotation @ClassImport pour traiter des classes déjà compilées. Arrivée des @Mixin (Java uniquement) pour modifier les métadonnées d'annotations Micronaut sans altérer les classes originales. HTTP/3 : Changement de dépendance pour le support expérimental. Graceful Shutdown : Nouvelle API pour un arrêt en douceur des applications. Cache Control : API fluente pour construire facilement l'en-tête HTTP Cache-Control. KSP 2 : Support de KSP 2 (à partir de 2.0.2) et testé avec Kotlin 2. Jakarta Data : Implémentation de la spécification Jakarta Data 1.0. gRPC : Support du JSON pour envoyer des messages sérialisés via un POST HTTP. ProjectGen : Nouveau module expérimental pour générer des projets JVM (Gradle ou Maven) via une API. Un super article sur experimenter avec les event loops reactives dans les virtualthreads https://micronaut.io/2025/06/30/transitioning-to-virtual-threads-using-the-micronaut-loom-carrier/ Malheureusement cela demander le hacker le JDK C'est un article de micronaut mais le travail a ete collaboratif avec les equipes de Red Hat OpenJDK, Red Hat perf et de Quarkus et Vert.x Pour les curieux c'est un bon article Ubuntu offre un outil de creation de container pour Spring notamment https://canonical.com/blog/spring-boot-containers-made-easy creer des images OCI pour les applications Spring Boot basées sur Ubuntu base images bien sur utilise jlink pour reduire la taille pas sur de voir le gros avantage vs d'autres solutions plus portables d'ailleurs Canonical entre dans la danse des builds d'openjdk Le SDK Java de A2A contribué par Red Hat est sorti https://quarkus.io/blog/a2a-project-launches-java-sdk/ A2A est un protocole initié par Google et donne à la fondation Linux Il permet à des agents de se décrire et d'interagir entre eux Agent cards, skills, tâche, contexte A2A complémente MCP Red hat a implémenté le SDK Java avec le conseil des équipes Google En quelques annotations et classes on a un agent card, un client A2A et un serveur avec l'échange de messages via le protocole A2A Comment configurer mockito sans warning après java 21 https://rieckpil.de/how-to-configure-mockito-agent-for-java-21-without-warning/ les agents chargés dynamiquement sont déconseillés et seront interdis bientôt Un des usages est mockito via bytebuddy L'avantage est que la,configuration était transparente Mais bon sécurité oblige c'est fini. Donc l'article décrit comment configurer maven gradle pour mettre l'agent au démarrage des tests Et aussi comment configurer cela dans IntelliJ idea. Moins simple malheureusement Web Des raisons “égoïstes” de rendre les UIs plus accessibles https://nolanlawson.com/2025/06/16/selfish-reasons-for-building-accessible-uis/ Raisons égoïstes : Des avantages personnels pour les développeurs de créer des interfaces utilisateurs (UI) accessibles, au-delà des arguments moraux. Débogage facilité : Une interface accessible, avec une structure sémantique claire, est plus facile à déboguer qu'un code désordonné (la « soupe de div »). Noms standardisés : L'accessibilité fournit un vocabulaire standard (par exemple, les directives WAI-ARIA) pour nommer les composants d'interface, ce qui aide à la clarté et à la structuration du code. Tests simplifiés : Il est plus simple d'écrire des tests automatisés pour des éléments d'interface accessibles, car ils peuvent être ciblés de manière plus fiable et sémantique. Après 20 ans de stagnation, la spécification du format d'image PNG évolue enfin ! https://www.programmax.net/articles/png-is-back/ Objectif : Maintenir la pertinence et la compétitivité du format. Recommandation : Soutenu par des institutions comme la Bibliothèque du Congrès américain. Nouveautés Clés :Prise en charge du HDR (High Dynamic Range) pour une plus grande gamme de couleurs. Reconnaissance officielle des PNG animés (APNG). Support des métadonnées Exif (copyright, géolocalisation, etc.). Support Actuel : Déjà intégré dans Chrome, Safari, Firefox, iOS, macOS et Photoshop. Futur :Prochaine édition : focus sur l'interopérabilité entre HDR et SDR. Édition suivante : améliorations de la compression. Avec le projet open source Xtool, on peut maintenant construire des applications iOS sur Linux ou Windows, sans avoir besoin d'avoir obligatoirement un Mac https://xtool.sh/tutorials/xtool/ Un tutoriel très bien fait explique comment faire : Création d'un nouveau projet via la commande xtool new. Génération d'un package Swift avec des fichiers clés comme Package.swift et xtool.yml. Build et exécution de l'app sur un appareil iOS avec xtool dev. Connexion de l'appareil en USB, gestion du jumelage et du Mode Développeur. xtool gère automatiquement les certificats, profils de provisionnement et la signature de l'app. Modification du code de l'interface utilisateur (ex: ContentView.swift). Reconstruction et réinstallation rapide de l'app mise à jour avec xtool dev. xtool est basé sur VSCode sur la partie IDE Data et Intelligence Artificielle Nouvelle edition du best seller mondial “Understanding LangChain4j” : https://www.linkedin.com/posts/agoncal_langchain4j-java-ai-activity-7342825482830200833-rtw8/ Mise a jour des APIs (de LC4j 0.35 a 1.1.0) Nouveaux Chapitres sur MCP / Easy RAG / JSon Response Nouveaux modeles (GitHub Model, DeepSeek, Foundry Local) Mise a jour des modeles existants (GPT-4.1, Claude 3.7…) Google donne A2A a la Foundation Linux https://developers.googleblog.com/en/google-cloud-donates-a2a-to-linux-foundation/ Annonce du projet Agent2Agent (A2A) : Lors du sommet Open Source Summit North America, la Linux Foundation a annoncé la création du projet Agent2Agent, en partenariat avec Google, AWS, Microsoft, Cisco, Salesforce, SAP et ServiceNow. Objectif du protocole A2A : Ce protocole vise à établir une norme ouverte pour permettre aux agents d'intelligence artificielle (IA) de communiquer, collaborer et coordonner des tâches complexes entre eux, indépendamment de leur fournisseur. Transfert de Google à la communauté open source : Google a transféré la spécification du protocole A2A, les SDK associés et les outils de développement à la Linux Foundation pour garantir une gouvernance neutre et communautaire. Soutien de l'industrie : Plus de 100 entreprises soutiennent déjà le protocole. AWS et Cisco sont les derniers à l'avoir validé. Chaque entreprise partenaire a souligné l'importance de l'interopérabilité et de la collaboration ouverte pour l'avenir de l'IA. Objectifs de la fondation A2A : Établir une norme universelle pour l'interopérabilité des agents IA. Favoriser un écosystème mondial de développeurs et d'innovateurs. Garantir une gouvernance neutre et ouverte. Accélérer l'innovation sécurisée et collaborative. parler de la spec et surement dire qu'on aura l'occasion d'y revenir Gemini CLI :https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/ Agent IA dans le terminal : Gemini CLI permet d'utiliser l'IA Gemini directement depuis le terminal. Gratuit avec compte Google : Accès à Gemini 2.5 Pro avec des limites généreuses. Fonctionnalités puissantes : Génère du code, exécute des commandes, automatise des tâches. Open source : Personnalisable et extensible par la communauté. Complément de Code Assist : Fonctionne aussi avec les IDE comme VS Code. Au lieu de blocker les IAs sur vos sites vous pouvez peut-être les guider avec les fichiers LLMs.txt https://llmstxt.org/ Exemples du projet angular: llms.txt un simple index avec des liens : https://angular.dev/llms.txt lllms-full.txt une version bien plus détaillée : https://angular.dev/llms-full.txt Outillage Les commits dans Git sont immuables, mais saviez vous que vous pouviez rajouter / mettre à jour des “notes” sur les commits ? https://tylercipriani.com/blog/2022/11/19/git-notes-gits-coolest-most-unloved-feature/ Fonctionnalité méconnue : git notes est une fonctionnalité puissante mais peu utilisée de Git. Ajout de métadonnées : Permet d'attacher des informations à des commits existants sans en modifier le hash. Cas d'usage : Idéal pour ajouter des données issues de systèmes automatisés (builds, tickets, etc.). Revue de code distribuée : Des outils comme git-appraise ont été construits sur git notes pour permettre une revue de code entièrement distribuée, indépendante des forges (GitHub, GitLab). Peu populaire : Son interface complexe et le manque de support des plateformes de forge ont limité son adoption (GitHub n'affiche même pas/plus les notes). Indépendance des forges : git notes offre une voie vers une plus grande indépendance vis-à-vis des plateformes centralisées, en distribuant l'historique du projet avec le code lui-même. Un aperçu dur Spring Boot debugger dans IntelliJ idea ultimate https://blog.jetbrains.com/idea/2025/06/demystifying-spring-boot-with-spring-debugger/ montre cet outil qui donne du contexte spécifique à Spring comme les beans non activés, ceux mockés, la valeur des configs, l'état des transactions Il permet de visualiser tous les beans Spring directement dans la vue projet, avec les beans non instanciés grisés et les beans mockés marqués en orange pour les tests Il résout le problème de résolution des propriétés en affichant la valeur effective en temps réel dans les fichiers properties et yaml, avec la source exacte des valeurs surchargées Il affiche des indicateurs visuels pour les méthodes exécutées dans des transactions actives, avec les détails complets de la transaction et une hiérarchie visuelle pour les transactions imbriquées Il détecte automatiquement toutes les connexions DataSource actives et les intègre avec la fenêtre d'outils Database d'IntelliJ IDEA pour l'inspection Il permet l'auto-complétion et l'invocation de tous les beans chargés dans l'évaluateur d'expression, fonctionnant comme un REPL pour le contexte Spring Il fonctionne sans agent runtime supplémentaire en utilisant des breakpoints non-suspendus dans les bibliothèques Spring Boot pour analyser les données localement Une liste communautaire sur les assistants IA pour le code, lancée par Lize Raes https://aitoolcomparator.com/ tableau comparatif qui permet de voir les différentes fonctionnalités supportées par ces outils Architecture Un article sur l'architecture hexagonale en Java https://foojay.io/today/clean-and-modular-java-a-hexagonal-architecture-approach/ article introductif mais avec exemple sur l'architecture hexagonale entre le domaine, l'application et l‘infrastructure Le domain est sans dépendance L‘appli spécifique à l'application mais sans dépendance technique explique le flow L'infrastructure aura les dépendances à vos frameworks spring, Quarkus Micronaut, Kafka etc Je suis naturellement pas fan de l'architecture hexagonale en terme de volume de code vs le gain surtout en microservices mais c'est toujours intéressant de se challenger et de regarder le bénéfice coût. Gardez un œil sur les technologies avec les tech radar https://www.sfeir.dev/cloud/tech-radar-gardez-un-oeil-sur-le-paysage-technologique/ Le Tech Radar est crucial pour la veille technologique continue et la prise de décision éclairée. Il catégorise les technologies en Adopt, Trial, Assess, Hold, selon leur maturité et pertinence. Il est recommandé de créer son propre Tech Radar pour l'adapter aux besoins spécifiques, en s'inspirant des Radars publics. Utilisez des outils de découverte (Alternativeto), de tendance (Google Trends), de gestion d'obsolescence (End-of-life.date) et d'apprentissage (roadmap.sh). Restez informé via les blogs, podcasts, newsletters (TLDR), et les réseaux sociaux/communautés (X, Slack). L'objectif est de rester compétitif et de faire des choix technologiques stratégiques. Attention à ne pas sous-estimer son coût de maintenance Méthodologies Le concept d'expert generaliste https://martinfowler.com/articles/expert-generalist.html L'industrie pousse vers une spécialisation étroite, mais les collègues les plus efficaces excellent dans plusieurs domaines à la fois Un développeur Python expérimenté peut rapidement devenir productif dans une équipe Java grâce aux concepts fondamentaux partagés L'expertise réelle comporte deux aspects : la profondeur dans un domaine et la capacité d'apprendre rapidement Les Expert Generalists développent une maîtrise durable au niveau des principes fondamentaux plutôt que des outils spécifiques La curiosité est essentielle : ils explorent les nouvelles technologies et s'assurent de comprendre les réponses au lieu de copier-coller du code La collaboration est vitale car ils savent qu'ils ne peuvent pas tout maîtriser et travaillent efficacement avec des spécialistes L'humilité les pousse à d'abord comprendre pourquoi les choses fonctionnent d'une certaine manière avant de les remettre en question Le focus client canalise leur curiosité vers ce qui aide réellement les utilisateurs à exceller dans leur travail L'industrie doit traiter “Expert Generalist” comme une compétence de première classe à nommer, évaluer et former ca me rappelle le technical staff Un article sur les métriques métier et leurs valeurs https://blog.ippon.fr/2025/07/02/monitoring-metier-comment-va-vraiment-ton-service-2/ un article de rappel sur la valeur du monitoring métier et ses valeurs Le monitoring technique traditionnel (CPU, serveurs, API) ne garantit pas que le service fonctionne correctement pour l'utilisateur final. Le monitoring métier complète le monitoring technique en se concentrant sur l'expérience réelle des utilisateurs plutôt que sur les composants isolés. Il surveille des parcours critiques concrets comme “un client peut-il finaliser sa commande ?” au lieu d'indicateurs abstraits. Les métriques métier sont directement actionnables : taux de succès, délais moyens et volumes d'erreurs permettent de prioriser les actions. C'est un outil de pilotage stratégique qui améliore la réactivité, la priorisation et le dialogue entre équipes techniques et métier. La mise en place suit 5 étapes : dashboard technique fiable, identification des parcours critiques, traduction en indicateurs, centralisation et suivi dans la durée. Une Definition of Done doit formaliser des critères objectifs avant d'instrumenter tout parcours métier. Les indicateurs mesurables incluent les points de passage réussis/échoués, les temps entre actions et le respect des règles métier. Les dashboards doivent être intégrés dans les rituels quotidiens avec un système d'alertes temps réel compréhensibles. Le dispositif doit évoluer continuellement avec les transformations produit en questionnant chaque incident pour améliorer la détection. La difficulté c'est effectivement l'évolution métier par exemple peu de commandes la nuit etc ça fait partie de la boîte à outils SRE Sécurité Toujours à la recherche du S de Sécurité dans les MCP https://www.darkreading.com/cloud-security/hundreds-mcp-servers-ai-models-abuse-rce analyse des serveurs mcp ouverts et accessibles beaucoup ne font pas de sanity check des parametres si vous les utilisez dans votre appel genAI vous vous exposer ils ne sont pas mauvais fondamentalement mais n'ont pas encore de standardisation de securite si usage local prefferer stdio ou restreindre SSE à 127.0.0.1 Loi, société et organisation Nicolas Martignole, le même qui a créé le logo des Cast Codeurs, s'interroge sur les voies possibles des développeurs face à l'impact de l'IA sur notre métier https://touilleur-express.fr/2025/06/23/ni-manager-ni-contributeur-individuel/ Évolution des carrières de développeur : L'IA transforme les parcours traditionnels (manager ou expert technique). Chef d'Orchestre d'IA : Ancien manager qui pilote des IA, définit les architectures et valide le code généré. Artisan Augmenté : Développeur utilisant l'IA comme un outil pour coder plus vite et résoudre des problèmes complexes. Philosophe du Code : Un nouveau rôle centré sur le “pourquoi” du code, la conceptualisation de systèmes et l'éthique de l'IA. Charge cognitive de validation : Nouvelle charge mentale créée par la nécessité de vérifier le travail des IA. Réflexion sur l'impact : L'article invite à choisir son impact : orchestrer, créer ou guider. Entraîner les IAs sur des livres protégés (copyright) est acceptable (fair use) mais les stocker ne l'est pas https://www.reuters.com/legal/litigation/anthropic-wins-key-ruling-ai-authors-copyright-lawsuit-2025-06-24/ Victoire pour Anthropic (jusqu'au prochain procès): L'entreprise a obtenu gain de cause dans un procès très suivi concernant l'entraînement de son IA, Claude, avec des œuvres protégées par le droit d'auteur. “Fair Use” en force : Le juge a estimé que l'utilisation des livres pour entraîner l'IA relevait du “fair use” (usage équitable) car il s'agit d'une transformation du contenu, pas d'une simple reproduction. Nuance importante : Cependant, le stockage de ces œuvres dans une “bibliothèque centrale” sans autorisation a été jugé illégal, ce qui souligne la complexité de la gestion des données pour les modèles d'IA. Luc Julia, son audition au sénat https://videos.senat.fr/video.5486945_685259f55eac4.ia–audition-de-luc-julia-concepteur-de-siri On aime ou pas on aide pas Luc Julia et sa vision de l'IA . C'est un eversion encore plus longue mais dans le même thème que sa keynote à Devoxx France 2025 ( https://www.youtube.com/watch?v=JdxjGZBtp_k ) Nature et limites de l'IA : Luc Julia a insisté sur le fait que l'intelligence artificielle est une “évolution” plutôt qu'une “révolution”. Il a rappelé qu'elle repose sur des mathématiques et n'est pas “magique”. Il a également alerté sur le manque de fiabilité des informations fournies par les IA génératives comme ChatGPT, soulignant qu'« on ne peut pas leur faire confiance » car elles peuvent se tromper et que leur pertinence diminue avec le temps. Régulation de l'IA : Il a plaidé pour une régulation “intelligente et éclairée”, qui devrait se faire a posteriori afin de ne pas freiner l'innovation. Selon lui, cette régulation doit être basée sur les faits et non sur une analyse des risques a priori. Place de la France : Luc Julia a affirmé que la France possédait des chercheurs de très haut niveau et faisait partie des meilleurs mondiaux dans le domaine de l'IA. Il a cependant soulevé le problème du financement de la recherche et de l'innovation en France. IA et Société : L'audition a traité des impacts de l'IA sur la vie privée, le monde du travail et l'éducation. Luc Julia a souligné l'importance de développer l'esprit critique, notamment chez les jeunes, pour apprendre à vérifier les informations générées par les IA. Applications concrètes et futures : Le cas de la voiture autonome a été discuté, Luc Julia expliquant les différents niveaux d'autonomie et les défis restants. Il a également affirmé que l'intelligence artificielle générale (AGI), une IA qui dépasserait l'homme dans tous les domaines, est “impossible” avec les technologies actuelles. Rubrique débutant Les weakreferences et le finalize https://dzone.com/articles/advanced-java-garbage-collection-concepts un petit rappel utile sur les pièges de la méthode finalize qui peut ne jamais être invoquée Les risques de bug si finalize ne fini jamais Finalize rend le travail du garbage collector beaucoup plus complexe et inefficace Weak references sont utiles mais leur libération n'est pas contrôlable. Donc à ne pas abuser. Il y a aussi les soft et phantom references mais les usages ne sont assez subtils et complexe en fonction du GC. Le sériel va traiter les weak avant les soft, parallel non Le g1 ça dépend de la région Z1 ça dépend car le traitement est asynchrone Conférences La liste des conférences provenant de Developers Conferences Agenda/List par Aurélie Vache et contributeurs : 14-19 juillet 2025 : DebConf25 - Brest (France) 5 septembre 2025 : JUG Summer Camp 2025 - La Rochelle (France) 12 septembre 2025 : Agile Pays Basque 2025 - Bidart (France) 18-19 septembre 2025 : API Platform Conference - Lille (France) & Online 22-24 septembre 2025 : Kernel Recipes - Paris (France) 23 septembre 2025 : OWASP AppSec France 2025 - Paris (France) 25-26 septembre 2025 : Paris Web 2025 - Paris (France) 2 octobre 2025 : Nantes Craft - Nantes (France) 2-3 octobre 2025 : Volcamp - Clermont-Ferrand (France) 3 octobre 2025 : DevFest Perros-Guirec 2025 - Perros-Guirec (France) 6-7 octobre 2025 : Swift Connection 2025 - Paris (France) 6-10 octobre 2025 : Devoxx Belgium - Antwerp (Belgium) 7 octobre 2025 : BSides Mulhouse - Mulhouse (France) 9 octobre 2025 : DevCon #25 : informatique quantique - Paris (France) 9-10 octobre 2025 : Forum PHP 2025 - Marne-la-Vallée (France) 9-10 octobre 2025 : EuroRust 2025 - Paris (France) 16 octobre 2025 : PlatformCon25 Live Day Paris - Paris (France) 16 octobre 2025 : Power 365 - 2025 - Lille (France) 16-17 octobre 2025 : DevFest Nantes - Nantes (France) 17 octobre 2025 : Sylius Con 2025 - Lyon (France) 17 octobre 2025 : ScalaIO 2025 - Paris (France) 20 octobre 2025 : Codeurs en Seine - Rouen (France) 23 octobre 2025 : Cloud Nord - Lille (France) 30-31 octobre 2025 : Agile Tour Bordeaux 2025 - Bordeaux (France) 30-31 octobre 2025 : Agile Tour Nantais 2025 - Nantes (France) 30 octobre 2025-2 novembre 2025 : PyConFR 2025 - Lyon (France) 4-7 novembre 2025 : NewCrafts 2025 - Paris (France) 5-6 novembre 2025 : Tech Show Paris - Paris (France) 6 novembre 2025 : dotAI 2025 - Paris (France) 6 novembre 2025 : Agile Tour Aix-Marseille 2025 - Gardanne (France) 7 novembre 2025 : BDX I/O - Bordeaux (France) 12-14 novembre 2025 : Devoxx Morocco - Marrakech (Morocco) 13 novembre 2025 : DevFest Toulouse - Toulouse (France) 15-16 novembre 2025 : Capitole du Libre - Toulouse (France) 19 novembre 2025 : SREday Paris 2025 Q4 - Paris (France) 20 novembre 2025 : OVHcloud Summit - Paris (France) 21 novembre 2025 : DevFest Paris 2025 - Paris (France) 27 novembre 2025 : DevFest Strasbourg 2025 - Strasbourg (France) 28 novembre 2025 : DevFest Lyon - Lyon (France) 1-2 décembre 2025 : Tech Rocks Summit 2025 - Paris (France) 5 décembre 2025 : DevFest Dijon 2025 - Dijon (France) 9-11 décembre 2025 : APIdays Paris - Paris (France) 9-11 décembre 2025 : Green IO Paris - Paris (France) 10-11 décembre 2025 : Devops REX - Paris (France) 10-11 décembre 2025 : Open Source Experience - Paris (France) 28-31 janvier 2026 : SnowCamp 2026 - Grenoble (France) 2-6 février 2026 : Web Days Convention - Aix-en-Provence (France) 3 février 2026 : Cloud Native Days France 2026 - Paris (France) 12-13 février 2026 : Touraine Tech #26 - Tours (France) 22-24 avril 2026 : Devoxx France 2026 - Paris (France) 23-25 avril 2026 : Devoxx Greece - Athens (Greece) 17 juin 2026 : Devoxx Poland - Krakow (Poland) Nous contacter Pour réagir à cet épisode, venez discuter sur le groupe Google https://groups.google.com/group/lescastcodeurs Contactez-nous via X/twitter https://twitter.com/lescastcodeurs ou Bluesky https://bsky.app/profile/lescastcodeurs.com Faire un crowdcast ou une crowdquestion Soutenez Les Cast Codeurs sur Patreon https://www.patreon.com/LesCastCodeurs Tous les épisodes et toutes les infos sur https://lescastcodeurs.com/

Spring Office Hours
S4E19 - Spring & Redis with Raphael De Lio

Spring Office Hours

Play Episode Listen Later Jul 15, 2025 62:16


Join Dan Vega and DaShaun Carter for the latest updates from the Spring Ecosystem. In this episode, Dan and DaShaun are joined by Redis Developer Advocate, Raphael De Lio. Join us as we explore Redis's ever-growing role in the Spring ecosystem.  We will look discuss its common and foundational use cases, then dig into new and exciting use cases, including similarity search, the cutting-edge vector data type, and how Redis is becoming a key player in AI-driven solutions. Get ready to discover the latest ways Spring developers are leveraging Redis to build highly performant and intelligent applications. You can participate in our live stream to ask questions or catch the replay on your preferred podcast platform.Key TakeawaysWhat is Redis?Originally created in 2009 as a fast, horizontally scalable databaseKnown primarily for caching, but it's actually a full database with persistence and transactionsRedis 8 is now open source again with massive performance improvements (87% faster execution, 2x higher throughput)Beyond Caching: Redis Use CasesVector databases for AI applications (semantic search, caching, routing)Time series data for real-time analyticsGeospatial indexing for location-based featuresProbabilistic data structures (Bloom filters, count-min sketch) for high-scale applicationsStreams for message queues and real-time data processingSession storage for distributed applicationsAI & Vector Database ApplicationsSemantic caching: Cache LLM responses using vector similarity (can reduce costs by 60%)Semantic routing: Route queries to appropriate tools without calling LLMsMemory for AI agents: Short-term and long-term conversation memoryRecommendation systems: Power Netflix/YouTube-style recommendationsGetting Started with SpringUse start.spring.io with Docker Compose for easy setupSpring Data Redis for basic caching with @CacheableRedis OM Spring for advanced features (vector search, JSON, etc.)New annotations: @Vectorize and @Indexed for automatic vector embeddingsUpcoming EventsSpring One - 6 weeks away in Las VegasRedis Hackathon - July 23rd via dev.to/challengesLinks & ResourcesRedisRedis OM SpringRedis YouTube ChannelSpring One ConferenceStart Spring IOConnect with Raphael DeLeoEmail: rafael.deleo@redis.comLinkedIn: Raphael DeLeoGitHub: raphaeldelio Blue Sky: raphaeldelio.dev Redis vs Valkey discussion included - Redis 8 returns to open source with significant performance improvements and integrated modules that were previously separate.

In the Pit with Cody Schneider | Marketing | Growth | Startups
50 ai agents are running this guy's business. no employees?

In the Pit with Cody Schneider | Marketing | Growth | Startups

Play Episode Listen Later Jul 10, 2025 52:30


In this episode, Adam Silverman — co-founder & CEO of Agent Ops — dives deep into what “AI agents” actually are, why observability matters, and the very real marketing & growth automations companies are shipping today. From social-listening bots that draft Reddit replies to multi-agent pipelines that rebalance seven-figure ad budgets in real time, Adam lays out a practical playbook for founders, heads of growth, and non-technical operators who want to move from hype to hands-on results.Guest socials• LinkedIn: https://www.linkedin.com/in/adamsil•

Industrial IoT Spotlight
EP 220 - Mind as a Service: Revolutionizing AI Memory with Llongterm

Industrial IoT Spotlight

Play Episode Listen Later Jul 10, 2025 33:45


In this episode, we spoke with Jonatan Bjork, Co-founder of Llongterm, about how persistent memory is changing the way AI systems interact with users across industries. Jonathan shared the personal journey that led to founding Llongterm, and how their technology allows AI to retain meaningful context across interactions. We explored how memory transforms user trust, the architecture behind Llongterm's Mind-as-a-Service, and the future of portable AI memory. Key Insights: • Mind-as-a-Service: Specialized, persistent memory units that can be embedded in apps, tailored by use case (e.g. job interview prep, customer support). • Structured and Transparent: Information is stored in user-readable JSON format, allowing full visibility and control. • Self-structuring memory: Data automatically categorizes itself and evolves over time, helping apps focus on what matters most. • Portable and secure: Users can edit or delete their data anytime, with future plans for open-source and on-premise options. • Universal context: A future vision where users bring their own “mind” across AI apps, eliminating the need to start over every time. IoT ONE database: https://www.iotone.com/case-studies Industrial IoT Spotlight podcast is produced by Asia Growth Partners (AGP): https://asiagrowthpartners.com/

ShopTalk » Podcast Feed
672: Design Tokens, Web Compents, and Web Monetization

ShopTalk » Podcast Feed

Play Episode Listen Later Jul 7, 2025 51:30


Show DescriptionWe're all addicted to Clues by Sam and wonder about the data structure for the site, good thoughts on the design tokens community, shadow DOM, the state of web components in mid-2025, dealing with JSON, and new ideas around web monetization. Listen on Website →Links Clues By Sam web-platform-tests dashboard P&B: Dave Rupert – Manu Web Bucks Supertab | Reduce friction and drive revenue with Pay-as-you-go Introducing pay per crawl: enabling content owners to charge AI crawlers for access Get early access: Cloudflare Pay Per Crawl Private Beta | Cloudflare SponsorsDesign Tokens CourseWorld-renowned design systems experts Brad Frost (creator of Atomic Design) and Ian Frost teach you everything you need to know about creating an effective design token system to help your organization design and build at scale.

Thinking Elixir Podcast
259: Chris McCord on phoenix.new

Thinking Elixir Podcast

Play Episode Listen Later Jul 1, 2025 73:14


News includes the public launch of Phoenix.new - Chris McCord's revolutionary AI-powered Phoenix development service with full browser IDE and remote runtime capabilities, Ecto v3.13 release featuring the new transact/1 function and built-in JSON support, Nx v0.10 with improved documentation and NumPy comparisons, Phoenix 1.8 getting official security documentation covering OWASP Top 10 vulnerabilities, Zach Daniel's new "evals" package for testing AI language model performance, and ElixirConf US speaker announcements with keynotes from José Valim and Chris McCord. Saša Jurić shares his comprehensive thoughts on Elixir project organization and structure, Sentry's Elixir SDK v11.x adding OpenTelemetry-based tracing support, and more! Then we dive deep with Chris McCord himself for an exclusive interview about his newly launched phoenix.new service, exploring how AI-powered code generation is bringing Phoenix applications to people from outside the community. We dig into the technology behind the remote runtime and what it means for the future of rapid prototyping in Elixir. Show Notes online - http://podcast.thinkingelixir.com/259 (http://podcast.thinkingelixir.com/259) Elixir Community News https://www.honeybadger.io/ (https://www.honeybadger.io/utm_source=thinkingelixir&utm_medium=podcast) – Honeybadger.io is sponsoring today's show! Keep your apps healthy and your customers happy with Honeybadger! It's free to get started, and setup takes less than five minutes. https://phoenix.new/ (https://phoenix.new/?utm_source=thinkingelixir&utm_medium=shownotes) – Chris McCord's phoenix.new project is open to the public https://x.com/chris_mccord/status/1936068482065666083 (https://x.com/chris_mccord/status/1936068482065666083?utm_source=thinkingelixir&utm_medium=shownotes) – Phoenix.new was opened to the public - a service for building Phoenix apps with AI runtime, full browser IDE, and remote development capabilities https://github.com/elixir-ecto/ecto (https://github.com/elixir-ecto/ecto?utm_source=thinkingelixir&utm_medium=shownotes) – Ecto v3.13 was released with new features including transact/1, schema redaction, and built-in JSON support https://github.com/elixir-ecto/ecto/blob/v3.13.2/CHANGELOG.md#v3132-2025-06-24 (https://github.com/elixir-ecto/ecto/blob/v3.13.2/CHANGELOG.md#v3132-2025-06-24?utm_source=thinkingelixir&utm_medium=shownotes) – Ecto v3.13 changelog with detailed list of new features and improvements https://github.com/elixir-nx/nx (https://github.com/elixir-nx/nx?utm_source=thinkingelixir&utm_medium=shownotes) – Nx v0.10 was released with documentation improvements and floating-point precision enhancements https://github.com/elixir-nx/nx/blob/main/nx/CHANGELOG.md (https://github.com/elixir-nx/nx/blob/main/nx/CHANGELOG.md?utm_source=thinkingelixir&utm_medium=shownotes) – Nx v0.10 changelog including new advanced guides and NumPy comparison cheatsheets https://paraxial.io/blog/phoenix-security-docs (https://paraxial.io/blog/phoenix-security-docs?utm_source=thinkingelixir&utm_medium=shownotes) – Phoenix 1.8 gets official security documentation covering OWASP Top 10 vulnerabilities https://github.com/phoenixframework/phoenix/pull/6295 (https://github.com/phoenixframework/phoenix/pull/6295?utm_source=thinkingelixir&utm_medium=shownotes) – Pull request adding comprehensive security guide to Phoenix documentation https://bsky.app/profile/zachdaniel.dev/post/3lscszxpakc2o (https://bsky.app/profile/zachdaniel.dev/post/3lscszxpakc2o?utm_source=thinkingelixir&utm_medium=shownotes) – Zach Daniel announces new "evals" package for testing and comparing AI language models https://github.com/ash-project/evals (https://github.com/ash-project/evals?utm_source=thinkingelixir&utm_medium=shownotes) – Evals project for evaluating AI model performance on coding tasks with structured testing https://bsky.app/profile/elixirconf.bsky.social/post/3lsbt7anbda2o (https://bsky.app/profile/elixirconf.bsky.social/post/3lsbt7anbda2o?utm_source=thinkingelixir&utm_medium=shownotes) – ElixirConf US speakers beginning to be announced including keynotes from José Valim and Chris McCord https://elixirconf.com/#keynotes (https://elixirconf.com/#keynotes?utm_source=thinkingelixir&utm_medium=shownotes) – ElixirConf website showing keynote speakers and initial speaker lineup https://x.com/sasajuric/status/1937149387299316144 (https://x.com/sasajuric/status/1937149387299316144?utm_source=thinkingelixir&utm_medium=shownotes) – Saša Jurić shares collection of writings on Elixir project organization and structure recommendations https://medium.com/very-big-things/towards-maintainable-elixir-the-core-and-the-interface-c267f0da43 (https://medium.com/very-big-things/towards-maintainable-elixir-the-core-and-the-interface-c267f0da43?utm_source=thinkingelixir&utm_medium=shownotes) – Saša Jurić's article on organizing Elixir projects with core and interface separation https://medium.com/very-big-things/towards-maintainable-elixir-boundaries-ba013c731c0a (https://medium.com/very-big-things/towards-maintainable-elixir-boundaries-ba013c731c0a?utm_source=thinkingelixir&utm_medium=shownotes) – Article on using boundaries in Elixir applications for better structure https://medium.com/very-big-things/towards-maintainable-elixir-the-anatomy-of-a-core-module-b7372009ca6d (https://medium.com/very-big-things/towards-maintainable-elixir-the-anatomy-of-a-core-module-b7372009ca6d?utm_source=thinkingelixir&utm_medium=shownotes) – Deep dive into structuring core modules in Elixir applications https://github.com/sasa1977/mixphxalt (https://github.com/sasa1977/mix_phx_alt?utm_source=thinkingelixir&utm_medium=shownotes) – Demo project showing alternative Phoenix project structure with core/interface organization https://github.com/getsentry/sentry-elixir/blob/master/CHANGELOG.md#1100 (https://github.com/getsentry/sentry-elixir/blob/master/CHANGELOG.md#1100?utm_source=thinkingelixir&utm_medium=shownotes) – Sentry updates Elixir SDK to v11.x with tracing support using OpenTelemetry Do you have some Elixir news to share? Tell us at @ThinkingElixir (https://twitter.com/ThinkingElixir) or email at show@thinkingelixir.com (mailto:show@thinkingelixir.com) Discussion Resources https://phoenix.new/ (https://phoenix.new/?utm_source=thinkingelixir&utm_medium=shownotes) – The Remote AI Runtime for Phoenix. Describe your app, and watch it take shape. Prototype quickly, experiment freely, and share instantly. https://x.com/chris_mccord/status/1936074795843551667 (https://x.com/chris_mccord/status/1936074795843551667?utm_source=thinkingelixir&utm_medium=shownotes) – You can vibe code on your phone https://x.com/sukinoverse/status/1936163792720949601 (https://x.com/sukinoverse/status/1936163792720949601?utm_source=thinkingelixir&utm_medium=shownotes) – Another success example - Stripe integrations https://openai.com/index/openai-codex/ (https://openai.com/index/openai-codex/?utm_source=thinkingelixir&utm_medium=shownotes) – OpenAI Codex, Open AI's AI system that translates natural language to code https://devin.ai/ (https://devin.ai/?utm_source=thinkingelixir&utm_medium=shownotes) – Devin is an AI coding agent and software engineer that helps developers build better software faster. Parallel cloud agents for serious engineering teams. https://www.youtube.com/watch?v=ojL_VHc4gLk (https://www.youtube.com/watch?v=ojL_VHc4gLk?utm_source=thinkingelixir&utm_medium=shownotes) – Chris McCord's ElixirConf EU Keynote talk titled "Code Generators are Dead. Long Live Code Generators" Guest Information - https://x.com/chris_mccord (https://x.com/chris_mccord?utm_source=thinkingelixir&utm_medium=shownotes) – on X/Twitter - https://github.com/chrismccord (https://github.com/chrismccord?utm_source=thinkingelixir&utm_medium=shownotes) – on Github - http://chrismccord.com/ (http://chrismccord.com/?utm_source=thinkingelixir&utm_medium=shownotes) – Blog Find us online - Message the show - Bluesky (https://bsky.app/profile/thinkingelixir.com) - Message the show - X (https://x.com/ThinkingElixir) - Message the show on Fediverse - @ThinkingElixir@genserver.social (https://genserver.social/ThinkingElixir) - Email the show - show@thinkingelixir.com (mailto:show@thinkingelixir.com) - Mark Ericksen on X - @brainlid (https://x.com/brainlid) - Mark Ericksen on Bluesky - @brainlid.bsky.social (https://bsky.app/profile/brainlid.bsky.social) - Mark Ericksen on Fediverse - @brainlid@genserver.social (https://genserver.social/brainlid) - David Bernheisel on Bluesky - @david.bernheisel.com (https://bsky.app/profile/david.bernheisel.com) - David Bernheisel on Fediverse - @dbern@genserver.social (https://genserver.social/dbern)

Oracle University Podcast
Oracle GoldenGate 23ai: Parameters, Data Selection, Filtering, & Transformation

Oracle University Podcast

Play Episode Listen Later Jul 1, 2025 12:34


In the final episode of this series on Oracle GoldenGate 23ai, Lois Houston and Nikita Abraham welcome back Nick Wagner, Senior Director of Product Management for GoldenGate, to discuss how parameters shape data replication. This episode covers parameter files, data selection, filtering, and transformation, providing essential insights for managing GoldenGate deployments.   Oracle GoldenGate 23ai: Fundamentals: https://mylearn.oracle.com/ou/course/oracle-goldengate-23ai-fundamentals/145884/237273 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. --------------------------------------------------------------- Podcast Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services.  Nikita: Hi everyone! This is the last episode in our Oracle GoldenGate 23ai series. Previously, we looked at how you can manage Extract Trails and Files. If you missed that episode, do go back and give it a listen.  00:50 Lois: Today, Nick Wagner, Senior Director of Product Management for GoldenGate, is back on the podcast to tell us about parameters, data selection, filtering, and transformation. These are key components of GoldenGate because they allow us to control what data is replicated, how it's transformed, and where it's sent. Hi Nick! Thanks for joining us again. So, what are the different types of parameter files? Nick: We have a GLOBALS parameter file and your runtime parameter files. The global one is going to affect all processes within a deployment. It's going to be things like where's your checkpoint table located in name, things like the heartbeat table. You want to have a single one of these across your entire deployment, so it makes sense to keep it within a single file. We also have runtime parameter files. This are going to be associated with a specific extract or replicat process. These files are located in your OGG_ETC_HOME/conf/ogg. The GLOBALS file is just simply named GLOBALS and all capitals, and your parameter file names for the processes themselves are named with the process.prm. So if my extract process is EXT demo, my parameter file name will be extdemo.prm. When you make changes to parameter files, they don't take effect until the process is restarted. So in the case of a GLOBALS parameter file, you need to restart the administration service. And in a runtime parameter file, you need to restart that specific process before any changes will take effect. We also have what we call a managed process setting profile. And this allows you to set up auto restart profiles for each process. And the GoldenGate Gate classic architecture, this was contained within the GLOBALS parameter file and handled by the manager. And microservices is a little bit different, it's handled by the service manager itself. But now we actually set up profiles. 02:41 Nikita: Ok, so what can you tell us about the extract parameter file specifically?  Nick: There's a couple things within the extract parameter file is common use. First, we want to tell what the group name is. So in this case, it would be our extract name. We need to put in information on where the extract process is going to be writing the data it captures to and that would be our trail files, and extract process can write to one or more trail files. We also want to list out the list of tables and schemas that we're going to be capturing, as well as any kind of DDL changes. If we're doing an initial load, we want to set up the SQL predicate to determine which tables are being captured and put a WHERE clause on those to speed up performance. We can also do filtering within the extract process as well. So we write just the information that we need to the trail file. 03:27 Nikita: And what are the common parameters within an extract process? Nick: There are a couple of common parameters within your extract process. We have table to list out the list of tables that GoldenGate is going to be capturing from. These can be wildcarded. So I can simply do table.star and GoldenGate will capture all the tables in that database. I can also do schema.star and it will capture all the tables within a schema. We have our EXTTRAIL command, which tells GoldenGate which trail to write to. If I want to filter out certain rows and columns, I can use the filter cols and cols except parameter. GoldenGate can also capture sequence changes. So we would use the sequence parameter. And then we can also set some high-level database options for GoldenGate that affect all the tables and that's configured using the tranlog options parameter.  04:14 Lois: Nick, can you talk a bit about the different types of tranlogoptions settings? How can they be used to control what the extract process does? Nick: So one of the first ones is ExcludeTag. So GoldenGate has the ability to exclude tagged transactions. Within the database itself, you can actually specify a transaction to be tagged using a DBMS set tag option. GoldenGate replicat also sets its transactions with a tag so that the GoldenGate process knows which transactions were done by the replicat and it can exclude them automatically. You can do exclude tag with a plus. That simply means to exclude any transaction that's been tagged with any value. You can also exclude specific tags.  Another good option for TranLogOptions is enable procedural replication. This allows GoldenGate to actually capture and replicate database procedure calls, and this would be things like DBMS AQ, NQ operations, or DQ operations. So if you're using Oracle advanced queuing and you need GoldenGate to replicate those changes, it can.  Another valuable tranlogoption setting is enable auto capture. Within the Oracle Database, you can actually set ALTER TABLE command that says ALTER TABLE, enable logical replication. Or when you create a table, you can actually do CREATE TABLE statement and at the end use the enable logical replication option for that CREATE TABLE statement. And this tells GoldenGate to automatically capture that table. One of the nice features about this is that I don't need to specify that table and my parameter file, and it'll automatically enable supplemental logging on that table for me using scheduling columns. So it makes it very easy to set up replication between Oracle databases.  06:01 Nikita: Can you tell us about replicat parameters, Nick? Nick: Within a replicat, we'll have the group name, some common other parameters that we'll use is a mapping parameter that allows us to map the source to target table relationships. We can do transformation within the replicat, as well as error handling and controlling group operations to improve performance. Some common replicat parameters include the replicat parameter itself, which tells us what the name of that replicat is. We have our map statement, which allows us to map a source object to a target object. We have things like rep error that control how to handle errors. Insert all records allows us to change and convert, update, and delete operations into inserts. We can do things like compare calls, which helps with active-active replication in determining which columns are used in the GoldenGate WHERE clause. We also have the ability to use macros and column mapping to do additional transformation and make the parameter file look elegant. 07:07 AI is being used in nearly every industry…healthcare, manufacturing, retail, customer service, transportation, agriculture, you name it! And it's only going to get more prevalent and transformational in the future. It's no wonder that AI skills are the most sought-after by employers. If you're ready to dive in to AI, check out the OCI AI Foundations training and certification that's available for free! It's the perfect starting point to build your AI knowledge. So, get going! Head on over to mylearn.oracle.com to find out more. 07:47 Nikita: Welcome back! Let's move on to some of the most interesting topics within GoldenGate… data mapping, selection, and transformation. As I understand, users can do pretty cool things with GoldenGate. So Nick, let's start with how GoldenGate can manipulate, change, and map data between two different databases. Nick: The map statement within a Replicat parameter allows you to provide specifications on how you're going to map source and target objects. You can also use a map and an extract, but it's pretty rare. And that would be used if you needed to write the object name. Inside the trail files is a different name than the actual object name that you're capturing from. GoldenGate can also do different data selection, mapping, and manipulation, and this is all controlled within the Extract and Replicat parameter files. In the classic architecture of GoldenGate, you could do a rudimentary level of transformation and filtering within the extract pump. Now, the distribution service is only allowing you to do filtering. Any transformation that you had within the pump would need to be moved to the Extract or the Replicat process.  The other thing that you can do within GoldenGate is select and filter data based on different levels and conditions. So within your parameter clause, you have your Table and Map statement. That's the core of everything. You have your filtering. You have COLS and COLSEXCEPT, which allow you to determine which columns you're going to include or exclude from replication. The Table and Map statement works at the table level. The FILTER works at the row level. And COLS and COLSEXCEPTs works at the column level. We also have the ability to filter by operation type too. So GoldenGate has some very easy parameters called GitInserts, GitUpdates, GitDeletes, and conversely ignore updates, ignore deletes, ignore inserts. And that will affect the operation type. 09:40 Lois: Nick, are there any features that GoldenGate provides to make data replication easier? Nick: The first thing is that GoldenGate is going to automatically match your source and target column names with a parameter called USEDEFAULTS. You can specify it inside of your COLMAP clause, but again, it's a default, so you don't need to worry about it. We also handle all data type and character set conversion. Because we store the metadata in the trail, we know what that source data type is like. When we go to apply the record to the target table, the Replicat process is going to look up the definition of that record and keep a repository of that in memory. So that when it knows that, hey, this value coming in from the trail file is going to be of a date data type, and then this value in the target database is going to be a character data type, it knows how to convert that date to a character, and it'll do it for you. Most of the conversion is going to be done automatically for data types. Things where we don't do automatic data type conversion is if you're using abstract data types or user-defined data types, collections arrays, and then some types of CLOB operations. For example, if you're going from a BLOB to a JSON, that's not really going to work very well. Character set conversion is also done automatically. It's not necessarily done directly by GoldenGate, but it's done by the database engine. So there is a character set value inside that source database.  And when GoldenGate goes to apply those changes into the target system, it's ensuring that that character set is visible and named so that that database can do the necessary translation. You can also do advanced filtering transformation. There's tokens that you can attach from the source environment, database, or records into a record itself on the trail file. And then there's also a bunch of metadata that GoldenGate can use to attach to the record itself. And then of course, you can use data transformation within your COLMAP statement. 11:28 Nikita: Before we wrap up, what types of data transformations can we perform, Nick?  Nick: So there's quite a few different data transformations. We can do constructive or destructive transformation, aesthetic, and structural. 11:39 Lois: That's it for the Oracle GoldenGate 23ai: Fundamentals series. I think we covered a lot of ground this season. Thank you, Nick, for taking us through it all.  Nikita: Yeah, thank you so much, Nick. And if you want to learn more, head over to mylearn.oracle.com and search for the Oracle GoldenGate 23ai: Fundamentals course. Until next time, this is Nikita Abraham… Lois: And Lois Houston, signing off! 12:04 That's all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We'd also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.

Seller Sessions
Go With The Flow #1: Mastering N8N Automation with Visual Workflows

Seller Sessions

Play Episode Listen Later Jun 27, 2025 40:26


Hacker Public Radio
HPR4407: A 're-response' Bash script

Hacker Public Radio

Play Episode Listen Later Jun 24, 2025


This show has been flagged as Explicit by the host. Introduction On 2025-06-19 Ken Fallon did a show, number 4404 , responding to Kevie's show 4398 , which came out on 2025-06-11. Kevie was using a Bash pipeline to find the latest episode in an RSS feed, and download it. He used grep to parse the XML of the feed. Ken's response was to suggest the use of xmlstarlet to parse the XML because such a complex structured format as XML cannot reliably be parsed without a program that "understands" the intricacies of the format's structure. The same applies to other complex formats such as HTML, YAML and JSON. In his show Ken presented a Bash script which dealt with this problem and that of the ordering of episodes in the feed. He asked how others would write such a script, and thus I was motivated to produce this response to his response! Alternative script My script is a remodelling of Ken's, not a completely different solution. It contains a few alternative ways of doing what Ken did, and a reordering of the parts of his original. We will examine the changes in this episode. Script #!/bin/bash # Original (c) CC-0 Ken Fallon 2025 # Modified by Dave Morriss, 2025-06-14 (c) CC-0 podcast="https://tuxjam.otherside.network/feed/podcast/" # [1] while read -r item do # [2] pubDate="${item%;*}" # [3] pubDate="$( \date --date="${pubDate}" --universal +%FT%T )" # [4] url="${item#*;}" # [5] echo "${pubDate};${url}" done <

SANS Internet Stormcenter Daily Network/Cyber Security and Information Security Stormcast
SANS Stormcast Monday, June 23rd, 2025: ADS and Python; More Secure Cloud PCs; Zend.to Path Traversal; Parser Differentials

SANS Internet Stormcenter Daily Network/Cyber Security and Information Security Stormcast

Play Episode Listen Later Jun 23, 2025 5:36


ADS & Python Tools Didier explains how to use his tools cut-bytes.py and filescanner to extract information from alternate data streams. https://isc.sans.edu/diary/ADS%20%26%20Python%20Tools/32058 Enhanced security defaults for Windows 365 Cloud PCs Microsoft announced more secure default configurations for its Windows 365 Cloud PC offerings. https://techcommunity.microsoft.com/blog/windows-itpro-blog/enhanced-security-defaults-for-windows-365-cloud-pcs/4424914 CVE-2025-34508: Another File Sharing Application, Another Path Traversal Horizon3 reveals details of a recently patched directory traversal vulnerability in zend.to. https://horizon3.ai/attack-research/attack-blogs/cve-2025-34508-another-file-sharing-application-another-path-traversal/ Unexpected security footguns in Go's parsers Go parsers for JSON and XML are not always compatible and can parse data in unexpected ways. This blog by Trails of Bits goes over the various security implications of this behaviour. https://blog.trailofbits.com/2025/06/17/unexpected-security-footguns-in-gos-parsers/

Atareao con Linux
ATA 704 Tu terminal puede hacer mucho más… si sabes cómo

Atareao con Linux

Play Episode Listen Later Jun 19, 2025 20:07


tres herramientas espectaculares para ser mas eficiente en la #terminal #linux y poder navegar en #logs o en archivos #json de forma eficazAndaba buscando un título para este episodio, y cuando me he topado con este, me he dado cuenta de la verdad que encierra. Existen cientos o miles de herramientas para trabajar en la terminal de Linux, y sin embargo, en general se conocen unas pocas herramientas a penas. Me viene a la mente aquello de cuando todo lo que tienes es un martillo, todo te parece un clavo. Y es que en general, estamos acostumbrados a utilizar cat, less, grep, etc…, y sin embargo, existen herramientas mejores, mas eficientes y mas adecuadas para ciertos casos. Si siempre usas cat y less para ver logs o jq para ver archivos JSON, es como si estuvieras usando un martillo para apretar tornillos. Funciona… pero no es lo mejor. Hoy te traigo tres herramientas que son como tener el destornillador, la llave inglesa y la linterna que te faltaban.Más información y enlaces en las notas del episodio

RunAs Radio
SQL Server 2025 with Bob Ward

RunAs Radio

Play Episode Listen Later Jun 18, 2025 25:35


Here comes SQL Server 2025! While at Build, Richard chatted with Bob Ward about releasing a preview version of SQL Server 2025. Bob discusses SQL Server 2025 as an AI-ready enterprise database with numerous capabilities specifically tailored to your organization's AI needs, including a new vector data type. This includes making REST API calls to Azure OpenAI, Ollama, or OpenAI. This is also the version of SQL Server designed to integrate with Microsoft Fabric through mirroring. There are many more features, even a new icon!LinksSQL Server 2025 AnnouncementJSON Data TypeOllamaRecorded May 20, 2025

Python Bytes
#436 Slow tests go last

Python Bytes

Play Episode Listen Later Jun 16, 2025 36:43 Transcription Available


Topics covered in this episode: * Free-threaded Python no longer “experimental” as of Python 3.14* typed-ffmpeg pyleak * Optimizing Test Execution: Running live_server Tests Last with pytest* Extras Joke Watch on YouTube About the show Sponsored by PropelAuth: pythonbytes.fm/propelauth66 Connect with the hosts Michael: @mkennedy@fosstodon.org / @mkennedy.codes (bsky) Brian: @brianokken@fosstodon.org / @brianokken.bsky.social Show: @pythonbytes@fosstodon.org / @pythonbytes.fm (bsky) Join us on YouTube at pythonbytes.fm/live to be part of the audience. Usually Monday at 10am PT. Older video versions available there too. Finally, if you want an artisanal, hand-crafted digest of every week of the show notes in email form? Add your name and email to our friends of the show list, we'll never share it. Brian #1: Free-threaded Python no longer “experimental” as of Python 3.14 “PEP 779 ("Criteria for supported status for free-threaded Python") has been accepted, which means free-threaded Python is now a supported build!” - Hugo van Kemenade PEP 779 – Criteria for supported status for free-threaded Python As noted in the discussion of PEP 779, “The Steering Council (SC) approves PEP 779, with the effect of removing the “experimental” tag from the free-threaded build of Python 3.14.” We are in Phase II then. “We are confident that the project is on the right path, and we appreciate the continued dedication from everyone working to make free-threading ready for broader adoption across the Python community.” “Keep in mind that any decision to transition to Phase III, with free-threading as the default or sole build of Python is still undecided, and dependent on many factors both within CPython itself and the community. We leave that decision for the future.” How long will all this take? According to Thomas Wouters, a few years, at least: “In other words: it'll be a few years at least. It can't happen before 3.16 (because we won't have Stable ABI support until 15) and may well take longer.” Michael #2: typed-ffmpeg typed-ffmpeg offers a modern, Pythonic interface to FFmpeg, providing extensive support for complex filters with detailed typing and documentation. Inspired by ffmpeg-python, this package enhances functionality by addressing common limitations, such as lack of IDE integration and comprehensive typing, while also introducing new features like JSON serialization of filter graphs and automatic FFmpeg validation. Features : Zero Dependencies: Built purely with the Python standard library, ensuring maximum compatibility and security. User-Friendly: Simplifies the construction of filter graphs with an intuitive Pythonic interface. Comprehensive FFmpeg Filter Support: Out-of-the-box support for most FFmpeg filters, with IDE auto-completion. Integrated Documentation: In-line docstrings provide immediate reference for filter usage, reducing the need to consult external documentation. Robust Typing: Offers static and dynamic type checking, enhancing code reliability and development experience. Filter Graph Serialization: Enables saving and reloading of filter graphs in JSON format for ease of use and repeatability. Graph Visualization: Leverages graphviz for visual representation, aiding in understanding and debugging. Validation and Auto-correction: Assists in identifying and fixing errors within filter graphs. Input and Output Options Support: Provide a more comprehensive interface for input and output options, including support for additional codecs and formats. Partial Evaluation: Enhance the flexibility of filter graphs by enabling partial evaluation, allowing for modular construction and reuse. Media File Analysis: Built-in support for analyzing media files using FFmpeg's ffprobe utility, providing detailed metadata extraction with both dictionary and dataclass interfaces. Michael #3: pyleak Detect leaked asyncio tasks, threads, and event loop blocking with stack trace in Python. Inspired by goleak. Use as context managers or function dectorators When using no_task_leaks, you get detailed stack trace information showing exactly where leaked tasks are executing and where they were created. Even has great examples and a pytest plugin. Brian #4: Optimizing Test Execution: Running live_server Tests Last with pytest Tim Kamanin “When working with Django applications, it's common to have a mix of fast unit tests and slower end-to-end (E2E) tests that use pytest's live_server fixture and browser automation tools like Playwright or Selenium. ” Tim is running E2E tests last for Faster feedback from quick tests To not tie up resources early in the test suite. He did this with custom “e2e” marker Implementing a pytest_collection_modifyitems hook function to look for tests using the live_server fixture, and for them automatically add the e2e marker to those tests move those tests to the end The reason for the marker is to be able to Just run e2e tests with -m e2e Avoid running them sometimes with -m "not e2e" Cool small writeup. The technique works for any system that has some tests that are slower or resource bound based on a particular fixture or set of fixtures. Extras Brian: Is Free-Threading Our Only Option? - Interesting discussion started by Eric Snow and recommended by John Hagen Free-threaded Python on GitHub Actions - How to add FT tests to your projects, by Hugo van Kemenade Michael: New course! LLM Building Blocks in Python Talk Python Deep Dives Complete: 600K Words of Talk Python Insights .folders on Linux Write up on XDG for Python devs. They keep pulling me back - ChatGPT Pro with o3-pro Python Bytes is the #1 Python news podcast and #17 of all tech news podcasts. Python 3.13.4, 3.12.11, 3.11.13, 3.10.18 and 3.9.23 are now available Python 3.13.5 is now available! Joke: Naming is hard

Les Cast Codeurs Podcast
LCC 327 - Mon ami de 30 ans

Les Cast Codeurs Podcast

Play Episode Listen Later Jun 16, 2025 103:18


Dans cet épisode, c'est le retour de Katia et d'Antonio. Les Cast Codeurs explorent WebAssembly 2.0, les 30 ans de Java, l'interopérabilité Swift-Java et les dernières nouveautés Kotlin. Ils plongent dans l'évolution de l'IA avec Claude 4 et GPT-4.1, débattent de la conscience artificielle et partagent leurs retours d'expérience sur l'intégration de l'IA dans le développement. Entre virtualisation, défis d'infrastructure et enjeux de sécurité open source, une discussion riche en insights techniques et pratiques. Enregistré le 13 juin 2025 Téléchargement de l'épisode LesCastCodeurs-Episode-327.mp3 ou en vidéo sur YouTube. News Langages Wasm 2.0 enfin officialisé ! https://webassembly.org/news/2025-03-20-wasm-2.0/ La spécification Wasm 2.0 est officiellement sortie en décembre dernier. Le consensus sur la spécification avait été atteint plus tôt, en 2022. Les implémentations majeures supportent Wasm 2.0 depuis un certain temps. Le processus W3C a pris du temps pour atteindre le statut de “Recommandation Candidate” pour des raisons non techniques. Les futures versions de Wasm adopteront un modèle “evergreen” où la “Recommandation Candidate” sera mise à jour en place. La dernière version de la spécification est considérée comme le standard actuel (Candidate Recommendation Draft). La version la plus à jour est disponible sur la page GitHub (GitHub page). Wasm 2.0 inclut les nouveautés suivantes : Instructions vectorielles pour le SIMD 128-bit. Instructions de manipulation de mémoire en bloc pour des copies et initialisations plus rapides. Résultats multiples pour les instructions, blocs et fonctions. Types références pour les références à des fonctions ou objets externes. Conversions non-piégeantes de flottant à entier. Instructions d'extension de signe pour les entiers signés. Wasm 2.0 est entièrement rétrocompatible avec Wasm 1.0. Paul Sandoz annonce que le JDK intègrera bientôt une API minimaliste pour lire et écrire du JSON https://mail.openjdk.org/pipermail/core-libs-dev/2025-May/145905.html Java a 30 ans, c'était quoi les points bluffants au début ? https://blog.jetbrains.com/idea/2025/05/do-you-really-know-java/ nom de code Oak Mais le trademark était pris Write Once Run Anywhere Garbage Collector Automatique multi threading au coeur de la palteforme meme si Java est passé par les green threads pendant un temps modèle de sécurité: sandbox applets, security manager, bytecode verifier, classloader Des progrès dans l'interopérabilité Swift / Java mentionnés à la conférence Apple WWDC 2025 https://www.youtube.com/watch?v=QSHO-GUGidA Interopérabilité Swift-Java : Utiliser Swift dans des apps Java et vice-versa. Historique : L'interopérabilité Swift existait déjà avec C et C++. Méthodes : Deux directions d'interopérabilité : Java depuis Swift et Swift depuis Java. JNI : JNI est l'API Java pour le code natif, mais elle est verbeuse. Swift-Java : Un projet pour une interaction Swift-Java plus flexible, sûre et performante. Exemples pratiques : Utiliser des bibliothèques Java depuis Swift et rendre des bibliothèques Swift disponibles pour Java. Gestion mémoire : Swift-Java utilise la nouvelle API FFM de Java pour gérer la mémoire des objets Swift. Open Source : Le projet Swift-Java est open source et invite aux contributions. KotlinConf le retour https://www.sfeir.dev/tendances/kotlinconf25-quelles-sont-les-annonces-a-retenir/ par Adelin de Sfeir “1 developeur sur 10” utilise Kotlin Kotlin 2.2 en RC $$ multi dollar interpolation pour eviter les sur interpolations non local break / continue (changement dans la conssitance de Kotlin guards sur le pattern matching D'autres features annoncées alignement des versions de l'ecosysteme sur kotlin jvm par defaut un nouvel outil de build Amper beaucoup d'annonces autour de l'IA Koog, framework agentique de maniere declarative nouvelle version du LLM de JetBrains: Mellum (focalisé sur le code) Kotlin et Compose multiplateforme (stable en iOS) Hot Reload dans compose en alpha partenariat strategque avec Spring pour bien integrer kotlin dans spring Librairies Sortie d'une version Java de ADK, le framework d'agents IA lancé par Google https://glaforge.dev/posts/2025/05/20/writing-java-ai-agents-with-adk-for-java-getting-started/ Guillaume a travaillé sur le lancement de ce framework ! (améliorations de l'API, code d'exemple, doc…) Comment déployer un serveur MCP en Java, grâce à Quarkus, et le déployer sur Google Cloud Run https://glaforge.dev/posts/2025/06/09/building-an-mcp-server-with-quarkus-and-deploying-on-google-cloud-run/ Même Guillaume se met à faire du Quarkus ! Utilisation du support MCP développé par l'équipe Quarkus. C'est facile, suffit d'annoter une méthode avec @Tool et ses arguments avec @ToolArg et c'est parti ! L'outil MCP inspector est très pratique pour inspecter manuellement le fonctionnement de ses serveurs MCP Déployer sur Cloud Run est facile grâce aux Dockerfiles fournis par Quarkus En bonus, Guillaume montre comment configuré un serveur MCP comme un outil dans le framework ADK pour Java, pour créer ses agents IA Jilt 1.8 est sorti, un annotation processor pour le pattern builder https://www.endoflineblog.com/jilt-1_8-and-1_8_1-released processing incrémental pour Gradle meilleure couverture de votre code (pour ne pas comptabiliser le code généré par l'annotation processeur) une correction d'un problème lors de l'utilisation des types génériques récursifs (genre Node Hibernate Search 8 est sorti https://in.relation.to/2025/06/06/hibernate-search-8-0-0-Final/ aggregation de metriques compatibilité avec les dernieres OpenSearch et Elasticsearch Lucene 10 en backend Preview des requetes validées à la compilation Hibernate 7 est sorti https://in.relation.to/2025/05/20/hibernate-orm-seven/ ASL 2.0 Hibernate Validator 9 Jakarta Persistence 3.2 et Jakarta Validation 3.1 saveOrUpdate (reattachement d'entité) n'est plus supporté session stateless plus capable: oeprations unitaires et pas seulement bach, acces au cache de second niveau, m,eilleure API pour les batchs (insertMultiple etc) nouvelle API criteria simple et type-safe: et peut ajouter a une requete de base Un article qui décrit la Dev UI de Quarkus https://www.sfeir.dev/back/quarkus-dev-ui-linterface-ultime-pour-booster-votre-productivite-en-developpement-java/ apres un test pour soit ou une demo, c'est un article détaillé et la doc de Quarkus n'est pas top là dessus Vert.x 5 est sorti https://vertx.io/blog/eclipse-vert-x-5-released/ on en avait parlé fin de l'année dernière ou début d'année Modèle basé uniquement sur les Futures : Vert.x 5 abandonne le modèle de callbacks pour ne conserver que les Futures, avec une nouvelle classe de base VerticleBase mieux adaptée à ce modèle asynchrone. Support des modules Java (JPMS) : Vert.x 5 prend en charge le système de modules de la plateforme Java avec des modules explicites, permettant une meilleure modularité des applications. Améliorations majeures de gRPC : Support natif de gRPC Web et gRPC Transcoding (support HTTP/JSON et gRPC), format JSON en plus de Protobuf, gestion des timeouts et deadlines, services de réflexion et de health. Support d'io_uring : Intégration native du système io_uring de Linux (précédemment en incubation) pour de meilleures performances I/O sur les systèmes compatibles. Load balancing côté client : Nouvelles capacités de répartition de charge pour les clients HTTP et gRPC avec diverses politiques de distribution. Service Resolver : Nouveau composant pour la résolution dynamique d'adresses de services, étendant les capacités de load balancing à un ensemble plus large de résolveurs. Améliorations du proxy HTTP : Nouvelles transformations prêtes à l'emploi, interception des upgrades WebSocket et interface SPI pour le cache avec support étendu des spécifications. Suppressions et remplacements : Plusieurs composants sont dépréciés (gRPC Netty, JDBC API, Service Discovery) ou supprimés (Vert.x Sync, RxJava 1), remplacés par des alternatives plus modernes comme les virtual threads et Mutiny. Spring AI 1.0 est sorti https://spring.io/blog/2025/05/20/spring-ai-1-0-GA-released ChatClient multi-modèles : API unifiée pour interagir avec 20 modèles d'IA différents avec support multi-modal et réponses JSON structurées. Écosystème RAG complet : Support de 20 bases vectorielles, pipeline ETL et enrichissement automatique des prompts via des advisors. Fonctionnalités enterprise : Mémoire conversationnelle persistante, support MCP, observabilité Micrometer et évaluateurs automatisés. Agents et workflows : Patterns prédéfinis (routing, orchestration, chaînage) et agents autonomes pour applications d'IA complexes. Infrastructure Les modèles d'IA refusent d'être éteint et font du chantage pour l'eviter, voire essaient se saboter l'extinction https://www.thealgorithmicbridge.com/p/ai-companies-have-lost-controland?utm_source=substac[…]aign=email-restack-comment&r=2qoalf&triedRedirect=true Les chercheur d'Anthropic montrent comment Opus 4 faisait du chantage aux ingenieurs qui voulaient l'eteindre pour mettre une nouvelle version en ligne Une boite de recherche a montré la même chose d'Open AI o3 non seulemenmt il ne veut pas mais il essaye activement d'empêcher l'extinction Apple annonce le support de la virtualisation / conteneurisation dans macOS lors de la WWDC https://github.com/apple/containerization C'est open source Possibilité de lancer aussi des VM légères Documentation technique : https://apple.github.io/containerization/documentation/ Grosse chute de services internet suite à un soucis sur GCP Le retour de cloud flare https://blog.cloudflare.com/cloudflare-service-outage-june-12-2025/ Leur système de stockage (une dépendance majeure) dépend exclusivement de GCP Mais ils ont des plans pour surfit de cette dépendance exclusive la première analyse de Google https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW Un quota auto mis à jour qui a mal tourné. ils ont bypassé le quota en code mais le service de quote en us-central1 était surchargé. Prochaines améliorations: pas d propagation de données corrompues, pas de déploiement global sans rolling upgrade avec monitoring qui peut couper par effet de bord (fail over) certains autres cloud providers ont aussi eu quelques soucis (charge) - unverified Data et Intelligence Artificielle Claude 4 est sorti https://www.anthropic.com/news/claude-4 Deux nouveaux modèles lancés : Claude Opus 4 (le meilleur modèle de codage au monde) et Claude Sonnet 4 (une amélioration significative de Sonnet 3.7) Claude Opus 4 atteint 72,5% sur SWE-bench et peut maintenir des performances soutenues sur des tâches longues durant plusieurs heures Claude Sonnet 4 obtient 72,7% sur SWE-bench tout en équilibrant performance et efficacité pour un usage quotidien Nouvelle fonctionnalité de “pensée étendue avec utilisation d'outils” permettant à Claude d'alterner entre raisonnement et usage d'outils Les modèles peuvent maintenant utiliser plusieurs outils en parallèle et suivre les instructions avec plus de précision Capacités mémoire améliorées : Claude peut extraire et sauvegarder des informations clés pour maintenir la continuité sur le long terme Claude Code devient disponible à tous avec intégrations natives VS Code et JetBrains pour la programmation en binôme Quatre nouvelles capacités API : outil d'exécution de code, connecteur MCP, API Files et mise en cache des prompts Les modèles hybrides offrent deux modes : réponses quasi-instantanées et pensée étendue pour un raisonnement plus approfondi en mode “agentique” L'intégration de l'IA au delà des chatbots et des boutons à étincelles https://glaforge.dev/posts/2025/05/23/beyond-the-chatbot-or-ai-sparkle-a-seamless-ai-integration/ Plaidoyer pour une IA intégrée de façon transparente et intuitive, au-delà des chatbots. Chatbots : pas toujours l'option LLM la plus intuitive ou la moins perturbatrice. Préconisation : IA directement dans les applications pour plus d'intelligence et d'utilité naturelle. Exemples d'intégration transparente : résumés des conversations Gmail et chat, web clipper Obsidian qui résume et taggue, complétion de code LLM. Meilleure UX IA : intégrée, contextuelle, sans “boutons IA” ou fenêtres de chat dédiées. Conclusion de Guillaume : intégrations IA réussies = partie naturelle du système, améliorant les workflows sans perturbation, le développeur ou l'utilisateur reste dans le “flow” Garder votre base de donnée vectorielle à jour avec Debezium https://debezium.io/blog/2025/05/19/debezium-as-part-of-your-ai-solution/ pas besoin de detailler mais expliquer idee de garder les changements a jour dans l'index Outillage guide pratique pour choisir le bon modèle d'IA à utiliser avec GitHub Copilot, en fonction de vos besoins en développement logiciel. https://github.blog/ai-and-ml/github-copilot/which-ai-model-should-i-use-with-github-copilot/ - Équilibre coût/performance : GPT-4.1, GPT-4o ou Claude 3.5 Sonnet pour des tâches générales et multilingues. - Tâches rapides : o4-mini ou Claude 3.5 Sonnet pour du prototypage ou de l'apprentissage rapide. - Besoins complexes : Claude 3.7 Sonnet, GPT-4.5 ou o3 pour refactorisation ou planification logicielle. - Entrées multimodales : Gemini 2.0 Flash ou GPT-4o pour analyser images, UI ou diagrammes. - Projets techniques/scientifiques : Gemini 2.5 Pro pour raisonnement avancé et gros volumes de données. UV, un package manager pour les pythonistes qui amène un peu de sanité et de vitesse http://blog.ippon.fr/2025/05/12/uv-un-package-manager-python-adapte-a-la-data-partie-1-theorie-et-fonctionnalites/ pour les pythonistes un ackage manager plus rapide et simple mais il est seulement semi ouvert (license) IntelliJ IDEA 2025.1 permet de rajouter un mode MCP client à l'assistant IA https://blog.jetbrains.com/idea/2025/05/intellij-idea-2025-1-model-context-protocol/ par exemple faire tourner un MCP server qui accède à la base de donnée Méthodologies Développement d'une bibliothèque OAuth 2.1 open source par Cloudflare, en grande partie générée par l'IA Claude: - Prompts intégrés aux commits : Chaque commit contient le prompt utilisé, ce qui facilite la compréhension de l'intention derrière le code. - Prompt par l'exemple : Le premier prompt montrait un exemple d'utilisation de l'API qu'on souhaite obtenir, ce qui a permis à l'IA de mieux comprendre les attentes. - Prompts structurés : Les prompts les plus efficaces suivaient un schéma clair : état actuel, justification du changement, et directive précise. - Traitez les prompts comme du code source : Les inclure dans les commits aide à la maintenance. - Acceptez les itérations : Chaque fonctionnalité a nécessité plusieurs essais. - Intervention humaine indispensable : Certaines tâches restent plus rapides à faire à la main. https://www.maxemitchell.com/writings/i-read-all-of-cloudflares-claude-generated-commits/ Sécurité Un packet npm malicieux passe par Cursor AI pour infecter les utilisateurs https://thehackernews.com/2025/05/malicious-npm-packages-infect-3200.html Trois packages npm malveillants ont été découverts ciblant spécifiquement l'éditeur de code Cursor sur macOS, téléchargés plus de 3 200 fois au total.Les packages se déguisent en outils de développement promettant “l'API Cursor la moins chère” pour attirer les développeurs intéressés par des solutions AI abordables. Technique d'attaque sophistiquée : les packages volent les identifiants utilisateur, récupèrent un payload chiffré depuis des serveurs contrôlés par les pirates, puis remplacent le fichier main.js de Cursor. Persistance assurée en désactivant les mises à jour automatiques de Cursor et en redémarrant l'application avec le code malveillant intégré. Nouvelle méthode de compromission : au lieu d'injecter directement du malware, les attaquants publient des packages qui modifient des logiciels légitimes déjà installés sur le système. Persistance même après suppression : le malware reste actif même si les packages npm malveillants sont supprimés, nécessitant une réinstallation complète de Cursor. Exploitation de la confiance : en s'exécutant dans le contexte d'une application légitime (IDE), le code malveillant hérite de tous ses privilèges et accès. Package “rand-user-agent” compromis : un package légitime populaire a été infiltré pour déployer un cheval de Troie d'accès distant (RAT) dans certaines versions. Recommandations de sécurité : surveiller les packages exécutant des scripts post-installation, modifiant des fichiers hors node_modules, ou initiant des appels réseau inattendus, avec monitoring d'intégrité des fichiers. Loi, société et organisation Le drama OpenRewrite (automatisation de refactoring sur de larges bases de code) est passé en mode propriétaire https://medium.com/@jonathan.leitschuh/when-open-source-isnt-how-openrewrite-lost-its-way-642053be287d Faits Clés : Moderne, Inc. a re-licencié silencieusement du code OpenRewrite (dont rewrite-java-security) de la licence Apache 2.0 à une licence propriétaire (MPL) sans consultation des contributeurs. Ce re-licenciement rend le code inaccessible et non modifiable pour les contributeurs originaux. Moderne s'est retiré de la Commonhaus Foundation (dédiée à l'open source) juste avant ces changements. La justification de Moderne est la crainte que de grandes entreprises utilisent OpenRewrite sans contribuer, créant une concurrence. Des contributions communautaires importantes (VMware, AliBaba) sous Apache 2.0 ont été re-licenciées sans leur consentement. La légalité de ce re-licenciement est incertaine sans CLA des contributeurs. Cette action crée un précédent dangereux pour les futurs contributeurs et nuit à la confiance dans l'écosystème OpenRewrite. Corrections de Moderne (Suite aux réactions) : Les dépôts Apache originaux ont été restaurés et archivés. Des versions majeures ont été utilisées pour signaler les changements de licence. Des espaces de noms distincts (org.openrewrite vs. io.moderne) ont été créés pour différencier les modules. Suggestions de Correction de l'Auteur : Annuler les changements de licence sur toutes les recettes communautaires. S'engager dans le dialogue et communiquer publiquement les changements majeurs. Respecter le versionnement sémantique (versions majeures pour les changements de licence). L'ancien gourou du design d'Apple, Jony Ive, va occuper un rôle majeur chez OpenAI OpenAI va acquérir la startup d'Ive pour 6,5 milliards de dollars, tandis qu'Ive et le PDG Sam Altman travaillent sur une nouvelle génération d'appareils et d'autres produits d'IA https://www.wsj.com/tech/ai/former-apple-design-guru-jony-ive-to-take-expansive-role-at-openai-5787f7da Rubrique débutant Un article pour les débutants sur le lien entre source, bytecode et le debug https://blog.jetbrains.com/idea/2025/05/sources-bytecode-debugging/ le debugger voit le bytecode et le lien avec la ligne ou la methode est potentiellement perdu javac peut ajouter les ligne et offset des operations pour que le debugger les affichent les noms des arguments est aussi ajoutable dans le .class quand vous pointez vers une mauvaise version du fichier source, vous avez des lignes decalées, c'est pour ca peu de raisons de ne pas actier des approches de compilations mais cela rend le fichier un peu plus gros Conférences La liste des conférences provenant de Developers Conferences Agenda/List par Aurélie Vache et contributeurs : 11-13 juin 2025 : Devoxx Poland - Krakow (Poland) 12-13 juin 2025 : Agile Tour Toulouse - Toulouse (France) 12-13 juin 2025 : DevLille - Lille (France) 13 juin 2025 : Tech F'Est 2025 - Nancy (France) 17 juin 2025 : Mobilis In Mobile - Nantes (France) 19-21 juin 2025 : Drupal Barcamp Perpignan 2025 - Perpignan (France) 24 juin 2025 : WAX 2025 - Aix-en-Provence (France) 25 juin 2025 : Rust Paris 2025 - Paris (France) 25-26 juin 2025 : Agi'Lille 2025 - Lille (France) 25-27 juin 2025 : BreizhCamp 2025 - Rennes (France) 26-27 juin 2025 : Sunny Tech - Montpellier (France) 1-4 juillet 2025 : Open edX Conference - 2025 - Palaiseau (France) 7-9 juillet 2025 : Riviera DEV 2025 - Sophia Antipolis (France) 5 septembre 2025 : JUG Summer Camp 2025 - La Rochelle (France) 12 septembre 2025 : Agile Pays Basque 2025 - Bidart (France) 18-19 septembre 2025 : API Platform Conference - Lille (France) & Online 23 septembre 2025 : OWASP AppSec France 2025 - Paris (France) 25-26 septembre 2025 : Paris Web 2025 - Paris (France) 2-3 octobre 2025 : Volcamp - Clermont-Ferrand (France) 3 octobre 2025 : DevFest Perros-Guirec 2025 - Perros-Guirec (France) 6-7 octobre 2025 : Swift Connection 2025 - Paris (France) 6-10 octobre 2025 : Devoxx Belgium - Antwerp (Belgium) 7 octobre 2025 : BSides Mulhouse - Mulhouse (France) 9 octobre 2025 : DevCon #25 : informatique quantique - Paris (France) 9-10 octobre 2025 : Forum PHP 2025 - Marne-la-Vallée (France) 9-10 octobre 2025 : EuroRust 2025 - Paris (France) 16 octobre 2025 : PlatformCon25 Live Day Paris - Paris (France) 16 octobre 2025 : Power 365 - 2025 - Lille (France) 16-17 octobre 2025 : DevFest Nantes - Nantes (France) 30-31 octobre 2025 : Agile Tour Bordeaux 2025 - Bordeaux (France) 30-31 octobre 2025 : Agile Tour Nantais 2025 - Nantes (France) 30 octobre 2025-2 novembre 2025 : PyConFR 2025 - Lyon (France) 4-7 novembre 2025 : NewCrafts 2025 - Paris (France) 5-6 novembre 2025 : Tech Show Paris - Paris (France) 6 novembre 2025 : dotAI 2025 - Paris (France) 7 novembre 2025 : BDX I/O - Bordeaux (France) 12-14 novembre 2025 : Devoxx Morocco - Marrakech (Morocco) 13 novembre 2025 : DevFest Toulouse - Toulouse (France) 15-16 novembre 2025 : Capitole du Libre - Toulouse (France) 19 novembre 2025 : SREday Paris 2025 Q4 - Paris (France) 20 novembre 2025 : OVHcloud Summit - Paris (France) 21 novembre 2025 : DevFest Paris 2025 - Paris (France) 27 novembre 2025 : DevFest Strasbourg 2025 - Strasbourg (France) 28 novembre 2025 : DevFest Lyon - Lyon (France) 5 décembre 2025 : DevFest Dijon 2025 - Dijon (France) 10-11 décembre 2025 : Devops REX - Paris (France) 10-11 décembre 2025 : Open Source Experience - Paris (France) 28-31 janvier 2026 : SnowCamp 2026 - Grenoble (France) 2-6 février 2026 : Web Days Convention - Aix-en-Provence (France) 3 février 2026 : Cloud Native Days France 2026 - Paris (France) 23-25 avril 2026 : Devoxx Greece - Athens (Greece) 17 juin 2026 : Devoxx Poland - Krakow (Poland) Nous contacter Pour réagir à cet épisode, venez discuter sur le groupe Google https://groups.google.com/group/lescastcodeurs Contactez-nous via X/twitter https://twitter.com/lescastcodeurs ou Bluesky https://bsky.app/profile/lescastcodeurs.com Faire un crowdcast ou une crowdquestion Soutenez Les Cast Codeurs sur Patreon https://www.patreon.com/LesCastCodeurs Tous les épisodes et toutes les infos sur https://lescastcodeurs.com/

Point-Free Videos

Every once in awhile we release a new episode free for all to see, and today is that day! Please enjoy this episode, and if you find this interesting you may want to consider a subscription https://www.pointfree.co/pricing. --- We conclude our series on “modern persistence” with advanced queries that leverage reusable SQL builders, “safe” SQL strings, and complex aggregations, including JSON arrays and a query that selects many stats in a single query.

Smart Software with SmartLogic
LangChain: LLM Integration for Elixir Apps with Mark Ericksen

Smart Software with SmartLogic

Play Episode Listen Later Jun 12, 2025 38:18


Mark Ericksen, creator of the Elixir LangChain framework, joins the Elixir Wizards to talk about LLM integration in Elixir apps. He explains how LangChain abstracts away the quirks of different AI providers (OpenAI, Anthropic's Claude, Google's Gemini) so you can work with any LLM in one more consistent API. We dig into core features like conversation chaining, tool execution, automatic retries, and production-grade fallback strategies. Mark shares his experiences maintaining LangChain in a fast-moving AI world: how it shields developers from API drift, manages token budgets, and handles rate limits and outages. He also reveals testing tactics for non-deterministic AI outputs, configuration tips for custom authentication, and the highlights of the new v0.4 release, including “content parts” support for thinking-style models. Key topics discussed in this episode: • Abstracting LLM APIs behind a unified Elixir interface • Building and managing conversation chains across multiple models • Exposing application functionality to LLMs through tool integrations • Automatic retries and fallback chains for production resilience • Supporting a variety of LLM providers • Tracking and optimizing token usage for cost control • Configuring API keys, authentication, and provider-specific settings • Handling rate limits and service outages with degradation • Processing multimodal inputs (text, images) in Langchain workflows • Extracting structured data from unstructured LLM responses • Leveraging “content parts” in v0.4 for advanced thinking-model support • Debugging LLM interactions using verbose logging and telemetry • Kickstarting experiments in LiveBook notebooks and demos • Comparing Elixir LangChain to the original Python implementation • Crafting human-in-the-loop workflows for interactive AI features • Integrating Langchain with the Ash framework for chat-driven interfaces • Contributing to open-source LLM adapters and staying ahead of API changes • Building fallback chains (e.g., OpenAI → Azure) for seamless continuity • Embedding business logic decisions directly into AI-powered tools • Summarization techniques for token efficiency in ongoing conversations • Batch processing tactics to leverage lower-cost API rate tiers • Real-world lessons on maintaining uptime amid LLM service disruptions Links mentioned: https://rubyonrails.org/ https://fly.io/ https://zionnationalpark.com/ https://podcast.thinkingelixir.com/ https://github.com/brainlid/langchain https://openai.com/ https://claude.ai/ https://gemini.google.com/ https://www.anthropic.com/ Vertex AI Studio https://cloud.google.com/generative-ai-studio https://www.perplexity.ai/ https://azure.microsoft.com/ https://hexdocs.pm/ecto/Ecto.html https://oban.pro/ Chris McCord's ElixirConf EU 2025 Talk https://www.youtube.com/watch?v=ojL_VHc4gLk Getting started: https://hexdocs.pm/langchain/gettingstarted.html https://ash-hq.org/ https://hex.pm/packages/langchain https://hexdocs.pm/igniter/readme.html https://www.youtube.com/watch?v=WM9iQlQSFg @brainlid on Twitter and BlueSky Special Guest: Mark Ericksen.

SANS Internet Stormcenter Daily Network/Cyber Security and Information Security Stormcast
SANS Stormcast June, Tuesday, June 10th, 2025: Octosql; Mirai vs. Wazuh DNS4EU; Wordpress Fair Package Manager

SANS Internet Stormcenter Daily Network/Cyber Security and Information Security Stormcast

Play Episode Listen Later Jun 10, 2025 6:09


OctoSQL & Vulnerability Data OctoSQL is a neat tool to query files in different formats using SQL. This can, for example, be used to query the JSON vulnerability files from CISA or NVD and create interesting joins between different files. https://isc.sans.edu/diary/OctoSQL+Vulnerability+Data/32026 Mirai vs. Wazuh The Mirai botnet has now been observed exploiting a vulnerability in the open-source EDR tool Wazuh. https://www.akamai.com/blog/security-research/botnets-flaw-mirai-spreads-through-wazuh-vulnerability DNS4EU The European Union created its own public recursive resolver to offer a public resolver compliant with European privacy laws. This resolver is currently operated by ENISA, but the intent is to have a commercial entity operate and support it by a commercial entity. https://www.joindns4.eu/ WordPress FAIR Package Manager Recent legal issues around different WordPress-related entities have made it more difficult to maintain diverse sources of WordPress plugins. With WordPress plugins usually being responsible for many of the security issues, the Linux Foundation has come forward to support the FAIR Package Manager, a tool intended to simplify the management of WordPress packages. https://github.com/fairpm

In the Pit with Cody Schneider | Marketing | Growth | Startups
ai automation builds 100+ ads in 24hrs - research, creative, and data analytics

In the Pit with Cody Schneider | Marketing | Growth | Startups

Play Episode Listen Later Jun 10, 2025 57:24


In this episode, I chat with Jonathan, a rapidly rising expert on Twitter known for building and scaling AI-driven marketing automations using tools like n8n and custom API integrations. We explore the practical realities of "vibe marketing" automation beyond hype, revealing how real-world workflows are being constructed today and why true expertise in marketing is essential for effective automation. Listeners will gain insights into automating audience research, creative production, and ad performance analysis at scale, as well as actionable tips for getting started and leveraging AI tools to 10x their output.Timestamps(00:00) – Introduction to Jonathan and Marketing Automation The host introduces Jonathan and sets the stage for a discussion on modern marketing automation tools and why they're currently so powerful.(02:45) – Jonathan's Background and Automation Journey Jonathan shares how he got into marketing automation, his paid ads background, and the evolution from manual work to automation.(07:30) – Key Tools and Stack for Automation The host and Jonathan discuss their tech stacks, highlighting n8n, railway.com, and custom front-end interfaces to streamline automation.(12:15) – Top Marketing Automation Workflows Jonathan outlines his most effective workflows: audience research, creative generation, and scaling marketing insights.(18:00) – Audience Research Automation: Reddit Scraping and Analysis A deep dive into using n8n to scrape Reddit, filter and analyze discussions, and extract actionable marketing insights and customer language.(25:40) – Twitter Insights Automation How Jonathan automates scraping Twitter for popular posts, identifying top-performing content and structuring it for ongoing content creation.(31:10) – Creative Production Automation Jonathan explains workflows for bulk generating ad variations using OpenAI's Image Gen API, including reference image analysis and prompt engineering.(38:20) – Custom Front-End Interfaces for Workflows The pair discuss integrating user-friendly front-end UIs (using Lovable or Bolt) with n8n backend automations for client and team use.(44:50) – Automating Ad Performance Analysis Jonathan describes a flow for pulling and analyzing Facebook Ads data, using sub-agents for performance analysis, deep research, and new ad creation.(51:10) – Video Ad Automation and Future Trends A look at how video ad automation is evolving and the current limitations and opportunities, including upcoming tools like Google Veo 3.(56:40) – Speeding Up Workflow Creation with Perplexity and Claude The host and Jonathan discuss using AI (Perplexity, Claude 4) to generate n8n workflow JSON, streamlining the automation development process.Key PointsExpertise in Marketing is Essential for Automation: To automate marketing workflows effectively, you need a deep understanding of marketing processes themselves. Only then can you define, script, and automate successful campaigns[1].Automating Audience Research Drives Results: Bulk scraping and analyzing platforms like Reddit and Twitter allow marketers to extract pain points, trigger events, and customer language at scale, informing ad copy and creative direction.Creative Volume is Game-Changing: Automation tools like OpenAI's Image Gen API enable the generation of hundreds of ad variations, feeding algorithms for higher performance and lower costs.Custom Front-Ends Improve Workflow Accessibility: Building user-friendly interfaces (using tools like Lovable or Bolt) for complex n8n automations makes them accessible to non-technical team members and clients.AI Accelerates Workflow Development: Using AI tools like Perplexity and Claude to generate n8n workflow JSON reduces the time and technical skill required to build sophisticated automations.Human-in-the-Loop Remains Critical: While automation handles the heavy lifting, human oversight is still needed for nuanced analysis, curation, and final ad selection.Notable QuotesJonathan: “You have to be an expert at that thing to be able to go and actually build out these automations. But when you do that, you can automate 80% of the work that you previously were doing.”Jonathan: “I literally just tell Claude what I want to build, and then it maps it out for me. And then you kind of have a canvas that is like 60, 70, 80% there depending on the complexity.”Cody: “Your customers are your best advertisers, so taking their exact wording and phrases is for sure going to be an effective marketing strategy a lot of the time.”Actionable Takeaways for Founders, Marketers, and PodcastersStart with a Core Marketing Process: Identify a repeatable marketing workflow you fully understand before attempting to automate it.Invest in Audience Research Automation: Use tools to scrape and analyze discussions on Reddit, Twitter, and other platforms to extract customer pain points and language for your messaging[2].Bulk Generate and Test Creatives: Leverage AI to produce hundreds of ad variations, enabling rapid testing and optimization of creative assets.Automate Performance Analysis: Implement workflows to automatically pull and analyze campaign performance data, allowing you to focus on strategy and execution[8].Simplify Tool Accessibility: Build custom UIs for your automation tools to make them accessible for your entire team, not just engineers.Accelerate Workflow Development: Use AI-powered tools like Perplexity and Claude to generate automation scripts and reduce development time.Brought to you byTalentFiber – Hire top offshore engineers with US experience at half the cost of US hires. - talentfiber.comWhere to the find Guest: https://x.com/vibemarketer_ https://linktr.ee/vibemarketerResources Mentionedhttps://www.youtube.com/@nateherkhttps://www.youtube.com/@Mark_Kashefhttps://www.youtube.com/@AI-GPTWorkshop/videosRapidAPI – Access a wide range of third-party APIs for quick integrations. - rapidapi.comApify – Scrape websites and extract data at scale. - apify.comTwitterAPI.io – Free and affordable Twitter data scraping tool. - twitterapi.io

SQL Server Radio
Episode 176 - SQL Server 2025 and more

SQL Server Radio

Play Episode Listen Later Jun 9, 2025 38:14


Many announcements and interesting releases came out this past month, so we got a lot to talk about in this episode! Relevant links: What's New in SQL Server 2025 - SQL Server | Microsoft Learn SQL Server 2025 - AI ready enterprise database from ground to cloud | Microsoft Community Hub Announcing Public Preview of DiskANN in SQL Server 2025 | Microsoft Community Hub SQL Server 2025: introducing optimized Halloween protection | Microsoft Community Hub SQL Server 2025: introducing tempdb space resource governance | Microsoft Community Hub Unlocking the Power of Regex in SQL Server - Azure SQL Devs' Corner Announcing the General Availability (GA) of JSON data type and JSON aggregates | Microsoft Community Hub Announcing the Public Preview of JSON index in SQL Server 2025 | Microsoft Community Hub ZSTD compression in SQL Server 2025 | Microsoft Community Hub MSSQL Extension for VS Code: GitHub Copilot Preview + UI GA MSSQL Extension for VS Code: Introducing Schema Compare (Preview) - Azure SQL Devs' Corner SQL Server Management Studio (SSMS) 21 is now generally available (GA) | Microsoft Community Hub Copilot in SSMS preview Recently released: Updates to the SqlPackage and the DacFx ecosystem | Microsoft Community Hub Visual Studio 2022 Release Notes | Microsoft Learn Free SQL Managed Instance offer is now generally available Avoid T-SQL anti-patterns with the free T-SQL analysis tool - Azure SQL Devs' Corner

Microsoft Mechanics Podcast
What's new in SQL Server 2025

Microsoft Mechanics Podcast

Play Episode Listen Later Jun 3, 2025 14:27 Transcription Available


Streamline your entire data workflow, from real-time change capture to querying across cloud and on-prem databases, without complex migrations or code changes using SQL Server 2025. This adds deep AI integration with built-in vector search and DiskANN optimizations, plus native support for large object JSON and new Change Event Streaming for live data updates. Join and analyze data faster with the Lakehouse shortcuts in Microsoft Fabric that unify multiple databases—across different SQL Server versions, clouds, and on-prem—into a single, logical schema without moving data. Build intelligent apps, automate workflows, and unlock rich insights with Copilot and the unified Microsoft data platform, including seamless Microsoft Fabric integration, all while leveraging your existing SQL skills and infrastructure. Bob Ward, lead SQL engineer, joins Jeremy Chapman to share how the latest SQL Server 2025 innovations simplify building complex, high-performance workloads with less effort. ► QUICK LINKS: 00:00 - Updates to SQL Server 2025 00:58 - Search and AI 03:55 - Native JSON Support 06:41 - Real-Time Change Event Streaming 08:40 - Optimized Locking for Better Concurrency 10:33 - Join SQL Server data with Fabric 13:53 - Wrap up ► Link References Start using SQL Server 2025 at https://aka.ms/GetSQLServer2025 ► Unfamiliar with Microsoft Mechanics? As Microsoft's official video series for IT, you can watch and share valuable content and demos of current and upcoming tech from the people who build it at Microsoft. • Subscribe to our YouTube: https://www.youtube.com/c/MicrosoftMechanicsSeries • Talk with other IT Pros, join us on the Microsoft Tech Community: https://techcommunity.microsoft.com/t5/microsoft-mechanics-blog/bg-p/MicrosoftMechanicsBlog • Watch or listen from anywhere, subscribe to our podcast: https://microsoftmechanics.libsyn.com/podcast ► Keep getting this insider knowledge, join us on social: • Follow us on Twitter: https://twitter.com/MSFTMechanics • Share knowledge on LinkedIn: https://www.linkedin.com/company/microsoft-mechanics/ • Enjoy us on Instagram: https://www.instagram.com/msftmechanics/ • Loosen up with us on TikTok: https://www.tiktok.com/@msftmechanics  

ShopTalk » Podcast Feed
666: What Are the Evils of the Web Platform?

ShopTalk » Podcast Feed

Play Episode Listen Later May 26, 2025 62:12


Show DescriptionHow it all comes back to the why column, dark patterns, privacy and tracking, getting emails forever from one purchase, how to be bold with communication while still being respectful, HTMHell, CSS mistakes, are we anti-JSON, and the state of FitVid in 2025. Listen on Website →Links Markup from hell - HTMHell Incomplete List of Mistakes in the Design of CSS [CSS Working Group Wiki] JSON Editing Douglas Crockford on JSON Fluid Video Plugin Sponsors

Midjourney : Fast Hours
Veo 3 Makes Yesterday's Best Look Like a Beta Test + Runway & Midjourney Check-In

Midjourney : Fast Hours

Play Episode Listen Later May 26, 2025 74:58


Midjourney Fast Hours, Episode 40 After a short hiatus (blame conferences and caffeine dependency), the Rory Flynn and Drew Brucker break down Google's shiny new Flow suite — with its Veo 3 video model, sound + dialogue generation, and confusing-as-hell product naming. They talk strategy, cost, coherence, and why it still feels like Midjourney has that “magic dust” no one else can replicate.Along the way: Runway love, layering hacks, JSON secrets, interior design with arrows, and 3D dogs with job titles. It's fun. It's weird. It's chaotic. But you'll probably walk away with 3 ideas you want to try right away.Also, someone paid $125 just to tell you whether it's worth it. (You're welcome.)---Midjourney Fast Hour0:00 – When did this madness begin?2:19 – AI video is finally getting spicy3:29 – Google's Flow Suite: Veo 3, sound, and coherence5:02 – Google's confusing product soup: Flow, Gemini, Imagen, Whisk10:45 – Pricing pain: Is Veo 3 worth the $125?13:09 – Veo 2 vs Veo 3: Best value tips and tradeoffs15:08 – Prompt accuracy and physics: Is Google really listening?17:53 – Why less prompt effort = better results now19:40 – Veo 3 vs Kling vs Midjourney: Prompting philosophies20:52 – Scene builder: Longer takes and smart extension workflows22:34 – The catch: extending drops quality and loses sound24:17 – New image-to-video support + third-party images25:41 – Ingredients-based generation and persistent characters27:10 – Frame extraction: finally, a feature we all needed28:08 – Timeline editing, upscaling, and staying inside the tool29:48 – Sora vs Veo 3 vs Runway: usability and consistency31:43 – Canva, Figma, Framer: Tools are becoming monsters35:33 – Figma's new AI website builder is wild36:40 – Prompting sneaker ads and JSON-based design37:09 – Why training teams on AI is almost impossible38:07 – Hedra who? Veo 3 makes fast pivots a must39:55 – Midjourney's next move: what video could look like41:11 – Runway's underrated features and clever reference hacks44:26 – Scene sketching and layout prompting: mind blown47:25 – Interior design from mood board to layout to render49:45 – Lighting direction via floorplans = next-gen hack52:53 – Try-on tech and Chrome extensions54:22 – Style consistency with JSON + ChatGPT58:23 – Mass-generating stylized icons and dogs with jobs1:02:36 – Midjourney updates: V7.1, personalization, and video1:05:01 – What Midjourney must get right with video1:07:18 – The one-shot window to impress1:09:23 – Bring back the Midjourney magic1:11:14 – Wrap-up: chaotic times, coherent thoughts, caffeinated takes

The Data Exchange with Ben Lorica
Beyond Guardrails: Defending LLMs Against Sophisticated Attacks

The Data Exchange with Ben Lorica

Play Episode Listen Later May 22, 2025 44:31


Jason Martin is an AI Security Researcher at HiddenLayer. This episode explores “policy puppetry,” a universal attack technique bypassing safety features in all major language models using structured formats like XML or JSON.Subscribe to the Gradient Flow Newsletter

Syntax - Tasty Web Development Treats
904: React vs Svelte × Windsurf Worth $3B × Typescript as Const × Layout Shift Tricks × More

Syntax - Tasty Web Development Treats

Play Episode Listen Later May 21, 2025 51:15


In this potluck episode of Syntax, Wes and CJ answer your questions about OpenAI's $3B Windsurf acquisition, the evolving role of UI in an AI-driven world, why good design still matters, React vs. Svelte, and more! Show Notes 00:00 Welcome to Syntax! Devs Night Out 02:35 OpenAI acquires Windsurf for $3B Windsurf Ep 870: Windsurf forked VS Code to compete with Cursor. Talking the future of AI + Coding 05:20 What is the future of UI now that AI is such a heavy hitter? 08:45 Handling spam submissions on websites Cloudflare Turnstile 14:18 Duplicating HTML for desktop and mobile websites? 17:03 Is it okay to use a JSON file for simple website data? 19:04 How to handle anonymous and duplicate users Better-Auth 21:55 Working with TypeScript Object.keys() and “any” vs “@ts-ignore” 25:51 Brought to you by Sentry.io 26:38 What is the difference between React and Svelte? 30:24 How should you name your readme file? 31:55 How do you find time to refactor code? 35:20 Best practices for testing responsiveness Polypane 39:19 Avoiding layout shift with progressive enhancement 46:56 Sick Picks + Shameless Plugs Sick Picks CJ: Portable Chainsaw Wes: White Lotus Shameless Plugs CJ: Nuxt Wes: Full Stack App Build | Travel Log w/ Nuxt, Vue, Better Auth, Drizzle, Tailwind, DaisyUI, MapLibre Hit us up on Socials! Syntax: X Instagram Tiktok LinkedIn Threads Wes: X Instagram Tiktok LinkedIn Threads Scott: X Instagram Tiktok LinkedIn Threads Randy: X Instagram YouTube Threads

CppCast
Software development in a world of AI

CppCast

Play Episode Listen Later May 2, 2025 75:18


Daisy Hollman joins Phil and Anastasia. Daisy talks to us about the current state of the art in using LLM-based AI agents to help with software development, as well as where that is going in the future, and what impacts it is having (good and bad). Show Notes News Clang 20 released Boost 1.88 released JSON for Modern C++ 3.12.0 Conferences: Pure Virtual C++ 2025 Full schedule C++ Now 2025 C++ on Sea 2025 - speakers C++ under the Sea 2025 Links "Not your Grandparent's C++" - Phil's talk "Robots Are After Your Job: Exploring Generative AI for C++" - Andrei Alexandrescu's closing CppCon 2023 keynote  

Microsoft Business Applications Podcast
Building AI Solutions with Azure AI Foundry with Nanddeep Nachan

Microsoft Business Applications Podcast

Play Episode Listen Later Apr 28, 2025 28:53 Transcription Available


Get featured on the show by leaving us a Voice Mail: https://bit.ly/MIPVM FULL SHOW NOTES https://www.microsoftinnovationpodcast.com/680 Microsoft's AI landscape has evolved into three distinct categories: Copilot for Microsoft 365 (M365) applications, Copilot Studio for low-code chatbot development, and Azure AI Foundry (formerly AI Studio) for pro-code flexibility with AI models. Join Nanddeep Nachan on today's Power Platform Show to learn more. TAKEAWAYs• Declarative agents provide the simplest approach to extending Copilot functionality without complex licensing• Teams toolkit in Visual Studio Code offers an easy way to create declarative agents using simple JSON configurations• Copilot Studio gives business users a drag-and-drop interface for creating virtual assistants quickly• Azure AI Foundry provides comprehensive tools for developers and data scientists building advanced AI solutions• Retrieval Augmented Generation (RAG) pattern bridges the gap between LLMs and organization-specific data• Contract management use cases demonstrate how AI can extract insights from millions of documents• Graph RAG pattern enables "global queries" that deliver insights across entire document collections• AI Foundry solutions can be deployed directly to websites, Teams apps, or Microsoft 365 Copilot• Despite impressive personal productivity gains, many organizations still struggle to find compelling enterprise-level use cases for CopilotThis year we're adding a new show to our line up - The AI Advantage. We'll discuss the skills you need to thrive in an AI-enabled world. DynamicsMinds is a world-class event in Slovenia that brings together Microsoft product managers, industry leaders, and dedicated users to explore the latest in Microsoft Dynamics 365, the Power Platform, and Copilot.Early bird tickets are on sale now and listeners of the Microsoft Innovation Podcast get 10% off with the code MIPVIP144bff https://www.dynamicsminds.com/register/?voucher=MIPVIP144bff Accelerate your Microsoft career with the 90 Day Mentoring Challenge We've helped 1,300+ people across 70+ countries establish successful careers in the Microsoft Power Platform and Dynamics 365 ecosystem.Benefit from expert guidance, a supportive community, and a clear career roadmap. A lot can change in 90 days, get started today!Support the showIf you want to get in touch with me, you can message me here on Linkedin.Thanks for listening

Software Defined Talk
Episode 516: Vibe Strategy

Software Defined Talk

Play Episode Listen Later Apr 25, 2025 67:32


This week, we discuss Google being found to be a monopoly, OpenAI's “offer” to buy Chrome, and some hot takes on JSON. Plus, is it better to wait on hold or ask for a callback? Watch the YouTube Live Recording of Episode (https://www.youtube.com/watch?v=EhUxUPJv5g4) 516 (https://www.youtube.com/watch?v=EhUxUPJv5g4) Runner-up Titles Just Fine The SDT “Fine” Scale Callback Asynchronous Friendship I would love to get to know you better…over text Send you Jams to the dry cleaners. JSON Take it xslt-easy! Rundown OpenAI OpenAI in talks to pay about $3 billion to acquire AI coding startup Windsurf (https://www.cnbc.com/2025/04/16/openai-in-talks-to-pay-about-3-billion-to-acquire-startup-windsurf.html) The Cursor Mirage (https://artificialintelligencemadesimple.substack.com/p/the-cursor-mirage) AI is for Tinkerers (https://redmonk.com/kholterhoff/2023/06/27/ai-is-for-tinkerers/) Vibe Coding is for PMs (https://redmonk.com/rstephens/2025/04/18/vibe-coding-is-for-pms/) OpenAI releases new simulated reasoning models with full tool access (https://arstechnica.com/ai/2025/04/openai-releases-new-simulated-reasoning-models-with-full-tool-access/) Clouded Judgement 4.18.25 - The Hidden Value in the AI Application Layer (https://cloudedjudgement.substack.com/p/clouded-judgement-41825-the-hidden?utm_source=post-email-title&publication_id=56878&post_id=161562220&utm_campaign=email-post-title&isFreemail=true&r=2l9&triedRedirect=true&utm_medium=email) OpenAI tells judge it would buy Chrome from Google (https://www.theverge.com/news/653882/openai-chrome-google-us-judge) The Creators of Model Context Protocol (https://www.latent.space/p/mcp?utm_source=substack&utm_medium=email) Judge finds Google holds illegal online ad tech monopolies (https://www.cnbc.com/2025/04/17/judge-finds-google-holds-illegal-online-ad-tech-monopolies.html) Intuit, Owner of TurboTax, Wins Battle Against America's Taxpayers (https://prospect.org/power/2025-04-17-intuit-turbotax-wins-battle-against-taxpayers-irs-direct-file/) Relevant to your Interests Switch 2 Carts Still Taste Bad, Designed Purposefully To Be Spat Out (https://www.gamespot.com/articles/switch-2-carts-still-taste-bad-designed-purposefully-to-be-spat-out/1100-6530649/) CEO Andy Jassy's 2024 Letter to Shareholders (https://www.aboutamazon.com/news/company-news/amazon-ceo-andy-jassy-2024-letter-to-shareholders) Amazon CEO Andy Jassy says AI costs will come down (https://www.cnbc.com/2025/04/10/amazon-ceo-andy-jassys-2025-shareholder-letter.html) Happy 18th Birthday CUDA! (https://www.aboutamazon.com/news/company-news/amazon-ceo-andy-jassy-2024-letter-to-shareholders) Honeycomb Acquires Grit: A Strategic Investment in Pragmatic AI and Customer Value (https://www.honeycomb.io/blog/honeycomb-acquires-grit) Everything Announced at Google Cloud Next in 12 Minutes (https://www.youtube.com/watch?v=2OpHbyN4vEM) GitLab vs GitHub : Key Differences in 2025 (https://spacelift.io/blog/gitlab-vs-github) Old Fashioned Function Keys (https://economistwritingeveryday.com/2025/04/11/old-fashioned-function-keys/) Fake job seekers are flooding U.S. companies that are hiring for remote positions, (https://www.cnbc.com/2025/04/08/fake-job-seekers-use-ai-to-interview-for-remote-jobs-tech-ceos-say.html) NetRise raises $10M to expand software supply chain security platform (https://siliconangle.com/2025/04/15/netrise-raises-10-million-expand-software-supply-chain-security-platform/) Mark Zuckerberg's antitrust testimony aired his wildest ideas from Meta's history (https://www.theverge.com/policy/649520/zuckerberg-meta-ftc-antitrust-testimony-facebook-history) How Much Should I Be Spending On Observability? (https://www.honeycomb.io/blog/how-much-should-i-spend-on-observability-pt1) Did we just make platform engineering much easier by shipping a cloud IDP? (https://seroter.com/2025/04/16/did-we-just-make-platform-engineering-much-easier-by-shipping-a-cloud-idp/) Google Cloud Next 2025: Agentic AI Stack, Multimodality, And Sovereignty (https://www.forrester.com/blogs/google-next-2025-agentic-ai-stack-multimodality-and-sovereignty/) iPhone Shipments Down 9% in China's Q1 Smartphone Boom (https://www.macrumors.com/2025/04/18/iphone-shipments-down-in-china-q1/) Exclusive: Anthropic warns fully AI employees are a year away (https://www.axios.com/2025/04/22/ai-anthropic-virtual-employees-security) Synology requires self-branded drives for some consumer NAS systems, drops full functionality and support for third-party HDDs (https://www.tomshardware.com/pc-components/nas/synology-requires-self-branded-drives-for-some-consumer-nas-systems-drops-full-functionality-and-support-for-third-party-hdds) Porting Tailscale to Plan 9 (https://tailscale.com/blog/plan9-port?ck_subscriber_id=512840665&utm_source=convertkit&utm_medium=email&utm_campaign=[Last%20Week%20in%20AWS]%20Issue%20#418:%20Another%20New%20Capacity%20Dingus%20-%2017270009) CVE Foundation (https://www.thecvefoundation.org/) The Cursor Mirage (https://artificialintelligencemadesimple.substack.com/p/the-cursor-mirage) There's a Lot of Bad Telemetry Out There (https://blog.olly.garden/theres-a-lot-of-bad-telemetry-out-there) Gee Wiz (https://redmonk.com/rstephens/2025/04/04/gee-wiz/?ck_subscriber_id=512840665&utm_source=convertkit&utm_medium=email&utm_campaign=[Last%20Week%20in%20AWS]%20Issue%20#418:%20Another%20New%20Capacity%20Dingus%20-%2017270009) Nonsense Silicon Valley crosswalk buttons hacked to imitate Musk, Zuckerberg's voices (https://techcrunch.com/2025/04/14/silicon-valley-crosswalk-buttons-hacked-to-imitate-musk-zuckerberg-voices/) A Visit to Costco in France (https://davidlebovitz.substack.com/p/a-visit-to-costco-in-france) No sweat: Humanoid robots run a Chinese half-marathon (https://apnews.com/article/china-robot-half-marathon-153c6823bd628625106ed26267874d21) Metre, a consistent measurement of the world (https://mappingignorance.org/2025/04/23/150-years-ago-the-metre-convention-determined-how-we-measure-the-world/) Conferences DevOps Days Atlanta (https://devopsdays.org/events/2025-atlanta/welcome/), April 29th-30th. KCD Texas Austin 2025 (https://community.cncf.io/events/details/cncf-kcd-texas-presents-kcd-texas-austin-2025/), May 15th, Whitney Lee Speaking. Cloud Foundry Day US (https://events.linuxfoundation.org/cloud-foundry-day-north-america/), May 14th, Palo Alto, CA, Coté speaking. Fr (https://vmwarereg.fig-street.com/051325-tanzu-workshop/)ee AI workshop (https://vmwarereg.fig-street.com/051325-tanzu-workshop/), May 13th. day before C (https://events.linuxfoundation.org/cloud-foundry-day-north-america/)loud (https://events.linuxfoundation.org/cloud-foundry-day-north-america/) (https://events.linuxfoundation.org/cloud-foundry-day-north-america/)Foundry (https://events.linuxfoundation.org/cloud-foundry-day-north-america/) Day (https://events.linuxfoundation.org/cloud-foundry-day-north-america/). NDC Oslo (https://ndcoslo.com/), May 21st-23th, Coté speaking. SDT News & Community Join our Slack community (https://softwaredefinedtalk.slack.com/join/shared_invite/zt-1hn55iv5d-UTfN7mVX1D9D5ExRt3ZJYQ#/shared-invite/email) Email the show: questions@softwaredefinedtalk.com (mailto:questions@softwaredefinedtalk.com) Free stickers: Email your address to stickers@softwaredefinedtalk.com (mailto:stickers@softwaredefinedtalk.com) Follow us on social media: Twitter (https://twitter.com/softwaredeftalk), Threads (https://www.threads.net/@softwaredefinedtalk), Mastodon (https://hachyderm.io/@softwaredefinedtalk), LinkedIn (https://www.linkedin.com/company/software-defined-talk/), BlueSky (https://bsky.app/profile/softwaredefinedtalk.com) Watch us on: Twitch (https://www.twitch.tv/sdtpodcast), YouTube (https://www.youtube.com/channel/UCi3OJPV6h9tp-hbsGBLGsDQ/featured), Instagram (https://www.instagram.com/softwaredefinedtalk/), TikTok (https://www.tiktok.com/@softwaredefinedtalk) Book offer: Use code SDT for $20 off "Digital WTF" by Coté (https://leanpub.com/digitalwtf/c/sdt) Sponsor the show (https://www.softwaredefinedtalk.com/ads): ads@softwaredefinedtalk.com (mailto:ads@softwaredefinedtalk.com) Recommendations Brandon: Dope Thief (https://www.rottentomatoes.com/tv/dope_thief) on Apple TV (https://www.rottentomatoes.com/tv/dope_thief) Coté: Check out the recording of the Tanzu Annual update (https://www.youtube.com/watch?v=c1QZXzJcAfQ), all about Tanzu's private AI platform. Next, watch Coté's new MCP for D&D video (#4) figures out something cool to do with MCP Prompts (https://www.youtube.com/watch?v=xEtYBznneFg), they make sense now. And, a regret-a-mmendation: Fields Notes annual subscription (https://fieldnotesbrand.com/limited-editions). Photo Credits Header (https://unsplash.com/photos/a-telephone-sitting-on-top-of-a-wooden-shelf-2XnGRN_caHc)

Data Brew by Databricks
Benchmarking Domain Intelligence | Data Brew | Episode 45

Data Brew by Databricks

Play Episode Listen Later Apr 24, 2025 31:41


In this episode, Pallavi Koppol, Research Scientist at Databricks, explores the importance of domain-specific intelligence in large language models (LLMs). She discusses how enterprises need models tailored to their unique jargon, data, and tasks rather than relying solely on general benchmarks.Highlights include:- Why benchmarking LLMs for domain-specific tasks is critical for enterprise AI.- An introduction to the Databricks Intelligence Benchmarking Suite (DIBS).- Evaluating models on real-world applications like RAG, text-to-JSON, and function calling.- The evolving landscape of open-source vs. closed-source LLMs.- How industry and academia can collaborate to improve AI benchmarking.

Rustacean Station
Nushell with WindSoilder

Rustacean Station

Play Episode Listen Later Apr 18, 2025 33:03


Allen Wyma talks with WindSoilder, a contributor to Nushell, a shell that treats data as structured tables. WindSoilder shares his journey into programming, his work on Nushell, and how Rust has shaped his development experience. Contributing to Rustacean Station Rustacean Station is a community project; get in touch with us if you'd like to suggest an idea for an episode or offer your services as a host or audio editor! Twitter: @rustaceanfm Discord: Rustacean Station Github: @rustacean-station Email: hello@rustacean-station.org Timestamps [@00:00] - Meet WindSoilder: Python developer and Rust enthusiast [@04:15] - Discovering Rust and starting with Nushell [@09:30] - Structured data pipelines in Nushell [@15:20] - Using Nushell for CSV, JSON, and HTTP tasks [@20:45] - Integrating Nushell with external commands and plugins [@27:35] - From contributor to core team member [@33:10] - Learning Rust through Nushell: Challenges and rewards [@38:50] - Upcoming features and improvements in Nushell [@44:25] - Advice for new contributors and Rust beginners [@47:40] - Final thoughts and community resources Credits Intro Theme: Aerocity Audio Editing: Plangora Hosting Infrastructure: Jon Gjengset Show Notes: Plangora Hosts: Allen Wyma

Python Bytes
#428 How old is your Python?

Python Bytes

Play Episode Listen Later Apr 14, 2025 31:00 Transcription Available


Topics covered in this episode: How to Write a Git Commit Message Caddy Web Server Some new PEPs approved juv Extras Joke Watch on YouTube About the show Sponsored by Posit Connect: pythonbytes.fm/connect Connect with the hosts Michael: @mkennedy@fosstodon.org / @mkennedy.codes (bsky) Brian: @brianokken@fosstodon.org / @brianokken.bsky.social Show: @pythonbytes@fosstodon.org / @pythonbytes.fm (bsky) Join us on YouTube at pythonbytes.fm/live to be part of the audience. Usually Monday at 10am PT. Older video versions available there too. Finally, if you want an artisanal, hand-crafted digest of every week of the show notes in email form? Add your name and email to our friends of the show list, we'll never share it. Brian #1: How to Write a Git Commit Message Chris Beams 7 rules of a great commit message Separate subject from body with a blank line Limit the subject line to 50 characters Capitalize the subject line Do not end the subject line with a period Use the imperative mood in the subject line Wrap the body at 72 characters Use the body to explain what and why vs. how Article also includes Why a good commit message matters Discussion about each of the 7 rules Cool hat tips to other articles on the subject “Keep in mind: This has all been said before.” Each word is a different link. Michael #2: Caddy Web Server via Fredrik Mellström Like a more modern NGINX Caddy automatically obtains and renews TLS certificates for all your sites. Caddy's native configuration is a JSON document. Even localhost and internal IPs are served with TLS using the intermediate of a fully-automated, self-managed CA that is automatically installed into most local trust stores. Configure multiple Caddy instances with the same storage, and they will automatically coordinate certificate management as a fleet. Production-grade static file server. Brian #3: Some new PEPs approved PEP 770 – Improving measurability of Python packages with Software Bill-of-Materials Accepted for packaging Author: Seth Larson, Sponsor Brett Cannon “This PEP proposes using SBOM documents included in Python packages as a means to improve automated software measurability for Python packages.” PEP 750 – Template Strings Accepted for Python 3.14 Author: Jim Baker, Guido van Rossum, Paul Everitt, Kaudai Aono, Lysandros Nikolaou, Dave Peck “Templates provide developers with access to the string and its interpolated values before they are combined. This brings native flexible string processing to the Python language and enables safety checks, web templating, domain-specific languages, and more.” Michael #4: juv A toolkit for reproducible Jupyter notebooks, powered by uv. Create, manage, and run Jupyter notebooks with their dependencies Pin dependencies with PEP 723 - inline script metadata Launch ephemeral sessions for multiple front ends (e.g., JupyterLab, Notebook, NbClassic) Powered by uv for fast dependency management Use uvx to run jupyterlab with ephemeral virtual environments and tracked dependencies. Extras Brian: Status of Python versions new-ish format Use this all the time. Can't remember if we've covered the new format yet. See also Python endoflife.date Same dates, very visible encouragement to move on to Python 3.13 if you haven't already. Michael: Python 3.13.3 is out. .git-blame-ignore-revs follow up Joke: BGPT (thanks Doug Farrell)