POPULARITY
Becky is the founder of The Inspired Business, an organization dedicated to coaching Christian writers, speakers, podcasters, and other content creators to generate sustainable incomes from their passion work, particularly through digital product sales funnels. Cut your lead gen costs in HALF with my $37 mini-course–NOW only $17!Visit The Art of Online Business website for Facebook Ads help If your Facebook or Instagram ads aren't performing the way you hoped, Becky Kopitzke says the problem might not be the ads—it could be your offer or your funnel. We talk about what really makes a low-ticket funnel profitable, how to use audience research to create offers people actually want, and what to tweak when your ROAS is hovering just below breakeven. Becky also shares why she doesn't rely on upsells to stay profitable and what data points she watches to make smart changes. Watch the previous episode on YouTube, "How Becky Kopitzke Built a Six Figure Business Serving Christian Creators" Please click here to give an honest Rating/Review for the show on iTunes! Thanks for your support! Kwadwo [QUĀY.jo] Sampany-Kessie's Links:Get 1:1 Meta Ads Coaching from Kwadwo!Say hi to Kwadwo on InstagramSubscribe to The Art of Online Business's YouTube Channel Becky's Links:Connect with Becky on InstagramFind Becky online at theinspiredbusiness.coSign up for her FREE workshop "How to Create and Sell Digital Products Without Feeling Stupid, Salesy, or Sacrilegious"
Summary:In this episode of the Youth Ministry Soul Keeper Podcast, hosts James and Todd discuss the importance of presence and listening in youth ministry. The conversation highlights the power of being present for others, the significance of listening without interruption, and the role of coaching in helping youth leaders grow. Takeaways:If you're not stealing stuff from other youth ministries, you're not even trying.The deeper the hurt, the fewer the words.Listening will be the best thing you ever do.The best gift we give someone is our ears.You can be mad at God, but you can't stay there.Being intentionally under programmedPresence is everything.Trust the scriptures, trust God.Show Notes:EDGE Neon Nights Program Guide:https://docs.google.com/document/d/17RuQfAo7limDlSz-knMyZw8rf7w3a1R2/edit?usp=sharing&ouid=114283713636819761122&rtpof=true&sd=trueADAM KEEHN FOUNDATIONhttps://adamkeehnfoundation.com/Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Instagram EDGE Students - https://www.instagram.com/edgestudentministries/Youtube EDGE Students - https://www.youtube.com/@MinistryEDGEYouthConnect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
Becky Kopitzke is the author of four non-fiction books in the Christian living genre and a three-time guest on Focus on the Family's daily broadcast. Cut your lead gen costs in HALF with my $37 mini-course–NOW only $17!Visit The Art of Online Business website for Facebook Ads help Today, she shares how she built her business helping Christian writers and content creators earn real income through digital products and coaching. Becky opens up about battling money mindset issues in the Christian space and how she reframed making money as a form of stewardship and generosity. We talk about how she scaled from low-ticket products to high-ticket coaching, and the hard decision she had to make when pivoting and niching down. Becky also shares what those conversations looked like with her husband behind the scenes—especially during big transitions. Watch the next episode on YouTube, "Your Facebook & Instagram Ads Aren't the Problem—Your Offer and Funnel Might Be With Becky Kopitzke" (releases April 23rd) Please click here to give an honest Rating/Review for the show on iTunes! Thanks for your support! Kwadwo [QUĀY.jo] Sampany-Kessie's Links:Get 1:1 Meta Ads Coaching from Kwadwo!Say hi to Kwadwo on InstagramSubscribe to The Art of Online Business's YouTube Channel Becky's Links:Connect with Becky on InstagramFind Becky online at theinspiredbusiness.coSign up for her FREE workshop "How to Create and Sell Digital Products Without Feeling Stupid, Salesy, or Sacrilegious"Tell me what podcast content would help you the most!Fill out the 3-min survey here to be entered to win. Winners announced on Monday April 21st! Tell me what podcast content would help you the most!Fill out the 3-min survey here to be entered to win. Winners announced on Monday April 21st!
Relationship Reddit Stories, OP is told by her family to co-sign on a house for her sister.0:00 Intro0:17 Story 13:29 Story 1 Comments5:43 Story 1 Update7:33 Story 1 Comments9:39 Story 215:09 Story 2 Comments / OP's Reply17:39 Story 2 Update21:18 Story 2 Comment / OP's Reply#redditupdate #redditrelationship #redditstoriesreddit Become a member at https://plus.acast.com/s/mark-narrations-the-wafflecast-reddit-stories. Hosted on Acast. See acast.com/privacy for more information.
Thank you to Arkansas' own LG Malique for coming on my show for an interview! LG talked about his new project Carved In Gold, Never Judge Ya being his personal favorite song off of the project, and Lil Wayne messaging him on Instagram. He discussed why Warner Records was the perfect fit for him, working with Yungeen Ace, and a TikTok live tour that he is putting together. He also got into why close friends turn on you when you get success in the entertainment industry, 7 Years being close to getting a plaque, and his upcoming R&B type music geared towards the female audience. Stay tuned! LG Malique's new project Carved In Gold is available on all platforms, including Apple Music: https://music.apple.com/us/album/carved-in-gold/1804748205. Follow LG Malique on Instagram and X: @lgmalique Follow me on Instagram and X: @thereelmax Website: https://maxcoughlan.com/index.html. Website live show streaming link: https://maxcoughlan.com/sports-and-hip-hop-with-dj-mad-max-live-stream.html. MAD MAX Radio on Live365: https://live365.com/station/MAD-MAX-Radio-a15096. Subscribe to my YouTube channel Sports and Hip Hop with DJ Mad Max: https://m.youtube.com/channel/UCE0107atIPV-mVm0M3UJyPg. LG Malique on "Sports and Hip-Hop with DJ Mad Max" visual on YouTube: https://www.youtube.com/watch?v=_AY11Tf3h7U.
Welcome back to the Real Estate Investing School Podcast! In this episode, host Brody Fausett explores a unique strategy for real estate investing through co-signing and owner-occupying, termed the "POP method" (Power of Primary). The core of the discussed strategy involves forming partnerships with individuals willing to reside in the property as their primary residence. This key factor unlocks more favorable financing terms, such as lower down payments and improved interest rates. Brody illustrates the versatility of the approach, applicable to various property types and sizes. The strategy becomes a dynamic tool for those lacking credit but willing to contribute financially, offering a pathway into real estate investing. Throughout the episode, Brody highlights the potential for win-win scenarios in these partnerships, detailing how equity, cash flow, and responsibilities can be distributed. The strategy's adaptability is underscored, with Brody encouraging listeners to explore its application, whether they are considering co-signing for others or seeking a partner to initiate their own real estate ventures. The episode serves as an insightful guide, emphasizing the power of creative deal structuring and partnerships in the real estate investment landscape. Having a hard time finding deals in today's market? If so, book a free strategy call with us in the link below to see how we can help you! Book a free real estate investing strategy call! No experience necessary. Check out the Real Estate Investing School Youtube Real Estate Investing School Instagram Brody's Instagram Joe's Instagram
SummaryIn this episode of the Youth Ministry Soul Keeper Podcast, hosts James Sabin and Todd Pearage welcome guest Dave Keehn, who shares his profound journey through grief and faith after the sudden loss of his son, Adam. Dave discusses Adam's transformation from a struggling youth to a passionate youth pastor and the establishment of the Adam Keehn Foundation, aimed at supporting new youth pastors. The conversation delves into the challenges of ministry, the importance of community support during grief, and the opportunities for involvement in coaching within youth ministry. The Adam Keen Foundation is a resource for young youth pastors, offering grants, coaching, and a supportive network.Takeaways Dave Keene shares his journey from youth pastor to professor.The Adam Keene Foundation supports new youth pastors.Grief can challenge one's faith in profound ways.Community support is crucial during times of loss.Authenticity in grief is important for healing.Coaching can significantly impact youth ministry development.The foundation aims to equip youth pastors with resources.It's okay to have doubts and question God during tough times.The Adam Keen Foundation offers grants and coaching opportunities.Community and mentorship are essential for success in ministry.Show NotesADAM KEEHN FOUNDATIONhttps://adamkeehnfoundation.com/Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Instagram EDGE Students - https://www.instagram.com/edgestudentministries/Youtube EDGE Students - https://www.youtube.com/@MinistryEDGEYouthConnect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
Hosts Dion Dove and Troy Pinckney walk us through the halls of Hip-Hop.
Jordan's King Abdullah II just visited Washington to meet with President Trump. All eyes are on Jordan as it harbors a convicted terrorist, Ahlam Tamimi, who was sentenced to prison after masterminding the 2001 bombing of the Sbarro pizzeria in Jerusalem. Tamimi was released from Israeli prison to her native Jordan as part of the deal to free captured Israeli soldier, Gilad Shalit. She has been roaming free since. In fact she is a celebrity in Jordan and the Arab world as presenter of her own TV show beamed throughout Jordan and all over the world. One of the children murdered by Tamimi's savagery was 15-year-old Malki Roth, one of two American murdered that day. Today, Tamimi is America's most wanted female fugitive with a $5 million reward on her head. Arnold Roth is Malki's father and his words are urgent, compelling, and insightful. PLEASE DONATE TO THE GENESIS 123 FOUNDATION ISRAEL EMERGENCY FUND AT WWW.GENESIS123.CO Sign the petition to get Ahlam Tamimi extradited here http://change.org/ExtraditeTamimi. For information about and how to register for Root & Branch, please go to www.RootandBranchIsrael.comConnect with the Genesis 123 Foundation at www.Genesis123.co FB - www.facebook.com/Genesis123Foundation Twitter - @Genesis123FIG - Genesis_123_FoundationFind out how you can be part of Run for Zion and bless Israel with every step at www.RunforZion.com
Send us a textAbout the Guest: Kenneth Lo is a two-time world championship track cyclist turned AI strategist and entrepreneur. As the co-founder of Zen Business AI, he helps organizations leverage artificial intelligence to scale operations and optimize growth. However, Kenneth's most profound journey in recent years has been a deeply personal one - facing an unexpected cancer diagnosis and redefining resilience in the face of uncertainty.About the EpisodeIn this deeply moving episode, Kenneth Lo shares his raw and powerful journey of receiving a shocking cancer diagnosis, the emotional turmoil that followed, and how he found strength through vulnerability, community, and AI. Steve Mellor dives deep into how Kenneth adapted to the unexpected, leaned on his tribe, and leveraged AI tools to navigate his treatment and recovery. This episode is not just about overcoming adversity but about redefining success and finding purpose through life's toughest challenges.Key Takeaways:You Can't Always Be Ready, But You Can Adapt: Kenneth reflects on how no one is truly “ready” for life's biggest challenges, but resilience is built in how we respond.Leaning on Your Tribe is a Superpower: The night of his diagnosis, Kenneth made over 100 calls, realizing that asking for help was essential to survival.Vulnerability is Strength: Kenneth didn't try to be strong—he allowed himself to be open, emotional, and real, which led to deeper connections.AI as an Unexpected Lifeline: Unable to interpret his own medical reports, Kenneth used AI to translate complex medical jargon, helping him better prepare for his treatments.Redefining Success: Kenneth now measures success not by career milestones but by the positive impact he leaves on people.Finding the Gifts in Hardship: His battle with cancer became a lesson in appreciating time, prioritizing meaningful connections, and eliminating distractions. Links & Resources:Connect with Kenneth Lo on Linkedin: https://linkedin.com/in/kennethloLearn more about Zen Business AI - https://zenbiz.coSign up for the monthly newsletter with Steve and GrowthReady (formerly known as Career Competitor) by providing your details here - Request to become part of our communityAlso be sure to give him and the show a follow on Instagram @coachstevemellor
SummaryIn this conversation, James and Todd discuss effective strategies for youth ministry, focusing on the importance of follow-up with newcomers, creating a welcoming environment, and building personal connections. They emphasize the significance of incentivizing attendance, and the role of discipleship in fostering a strong community. Budgeting and resource management are also highlighted as key elements for successful youth programs. Takeaways Follow-up is a crucial ministry, not just a retention plan. Creating a welcoming environment encourages newcomers to return. Personal connections with youth are essential for effective ministry. Incentivizing attendance can significantly improve retention rates. Discipleship should be at the core of youth ministry efforts. Budgeting for youth programs is necessary for sustainability. Start small and be intentional in your approach to follow-up. Celebrate attendance milestones to foster a sense of belonging. Utilize creative resources to enhance youth engagement. Encourage open communication and feedback from youth and leaders.Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Instagram EDGE Students - https://www.instagram.com/edgestudentministries/Youtube EDGE Students - https://www.youtube.com/@MinistryEDGEYouthConnect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
In this episode, I sat down with Jasmine Jonte, a true expert in course creation and founder of Cre8tion Co. Jasmine has helped top consultants, speakers, and coaches craft online courses that are not only engaging but also deliver powerful results. She shared her secrets for building courses that students rave about, explaining the key elements that make a course impactful, actionable, and unforgettable. We dove deep into topics like how to structure a course for maximum engagement, common mistakes to avoid, and what separates a successful course from the rest. Whether you're creating your very first course or looking to revamp an existing one, Jasmine's insights will inspire you to level up your course game and stand out in your niche.
60% of U.S. adults have lent money to family or friends. But when should you say “no” to a family member asking to borrow money? In this episode, Art shares four key signs that you shouldn't lend money to a loved one. He also tackles a question about cosigning a car loan.Resources:8 Money MilestonesAsk a Money Question!
In this episode of the Youth Ministry Soul Keeper podcast, hosts James Sabin and Todd Pearage discuss the significance of follow-up ministry. They emphasize the importance of making youth feel valued and connected, sharing personal experiences and strategies for effective follow-up. The conversation also touches on measuring success through numbers and transformational stories, encouraging youth leaders to start small and be consistent in their efforts to engage with students. Takeaways Follow-up is essential for making youth feel valued. Numbers can provide insight but are not the whole story. Starting small and being consistent is key to effective follow-up. Creating a welcoming environment begins in the parking lot. Follow-up helps youth feel they belong to a community. Transformational stories are a testament to effective ministry. Engagement through follow-up can lead to increased attendance. Utilizing social media can enhance follow-up efforts. Building relationships is crucial for youth retention. Every youth leader can develop a follow-up strategy that works for them.Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Instagram EDGE Students - https://www.instagram.com/edgestudentministries/Youtube EDGE Students - https://www.youtube.com/@MinistryEDGEYouthConnect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
On today's MJ Morning Show: Wood chipper accident Gleeking Morons in the news iPhone iOS emergency update Gender reveal gone wrong 80's soda making a comeback MJ had blue fin tuna at Armature Works MJ IG of Michelle after laser treatment Connecticut legislator wants movie theaters to post the actual times movies will begin HSN is leaving St. Pete A call to Michelle Chloe says don't bother mom A $6,000 rug at Goodwill Women no longer look for a man in finance Claim: Guy's dad worked with Ted Bundy at University of Utah Scam Alert: Bad people claiming to be with Humane Society found your lost pet Plane Crash in D.C. A brother filed for bankruptcy, asked brother for co-sign on a luxury car... We took calls DoorDash driver took food into bathroom For those on dating market... does posting you are vegetarian on apps affect results? We took calls Have you seen the Bob Barker coins? Nurse arrested for twerking on disabled patients Names that will enhance a kids chance of success in life
Applications for the 2025 AI Engineer Summit are up, and you can save the date for AIE Singapore in April and AIE World's Fair 2025 in June.Happy new year, and thanks for 100 great episodes! Please let us know what you want to see/hear for the next 100!Full YouTube Episode with Slides/ChartsLike and subscribe and hit that bell to get notifs!Timestamps* 00:00 Welcome to the 100th Episode!* 00:19 Reflecting on the Journey* 00:47 AI Engineering: The Rise and Impact* 03:15 Latent Space Live and AI Conferences* 09:44 The Competitive AI Landscape* 21:45 Synthetic Data and Future Trends* 35:53 Creative Writing with AI* 36:12 Legal and Ethical Issues in AI* 38:18 The Data War: GPU Poor vs. GPU Rich* 39:12 The Rise of GPU Ultra Rich* 40:47 Emerging Trends in AI Models* 45:31 The Multi-Modality War* 01:05:31 The Future of AI Benchmarks* 01:13:17 Pionote and Frontier Models* 01:13:47 Niche Models and Base Models* 01:14:30 State Space Models and RWKB* 01:15:48 Inference Race and Price Wars* 01:22:16 Major AI Themes of the Year* 01:22:48 AI Rewind: January to March* 01:26:42 AI Rewind: April to June* 01:33:12 AI Rewind: July to September* 01:34:59 AI Rewind: October to December* 01:39:53 Year-End Reflections and PredictionsTranscript[00:00:00] Welcome to the 100th Episode![00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host Swyx for the 100th time today.[00:00:12] swyx: Yay, um, and we're so glad that, yeah, you know, everyone has, uh, followed us in this journey. How do you feel about it? 100 episodes.[00:00:19] Alessio: Yeah, I know.[00:00:19] Reflecting on the Journey[00:00:19] Alessio: Almost two years that we've been doing this. We've had four different studios. Uh, we've had a lot of changes. You know, we used to do this lightning round. When we first started that we didn't like, and we tried to change the question. The answer[00:00:32] swyx: was cursor and perplexity.[00:00:34] Alessio: Yeah, I love mid journey. It's like, do you really not like anything else?[00:00:38] Alessio: Like what's, what's the unique thing? And I think, yeah, we, we've also had a lot more research driven content. You know, we had like 3DAO, we had, you know. Jeremy Howard, we had more folks like that.[00:00:47] AI Engineering: The Rise and Impact[00:00:47] Alessio: I think we want to do more of that too in the new year, like having, uh, some of the Gemini folks, both on the research and the applied side.[00:00:54] Alessio: Yeah, but it's been a ton of fun. I think we both started, I wouldn't say as a joke, we were kind of like, Oh, we [00:01:00] should do a podcast. And I think we kind of caught the right wave, obviously. And I think your rise of the AI engineer posts just kind of get people. Sombra to congregate, and then the AI engineer summit.[00:01:11] Alessio: And that's why when I look at our growth chart, it's kind of like a proxy for like the AI engineering industry as a whole, which is almost like, like, even if we don't do that much, we keep growing just because there's so many more AI engineers. So did you expect that growth or did you expect that would take longer for like the AI engineer thing to kind of like become, you know, everybody talks about it today.[00:01:32] swyx: So, the sign of that, that we have won is that Gartner puts it at the top of the hype curve right now. So Gartner has called the peak in AI engineering. I did not expect, um, to what level. I knew that I was correct when I called it because I did like two months of work going into that. But I didn't know, You know, how quickly it could happen, and obviously there's a chance that I could be wrong.[00:01:52] swyx: But I think, like, most people have come around to that concept. Hacker News hates it, which is a good sign. But there's enough people that have defined it, you know, GitHub, when [00:02:00] they launched GitHub Models, which is the Hugging Face clone, they put AI engineers in the banner, like, above the fold, like, in big So I think it's like kind of arrived as a meaningful and useful definition.[00:02:12] swyx: I think people are trying to figure out where the boundaries are. I think that was a lot of the quote unquote drama that happens behind the scenes at the World's Fair in June. Because I think there's a lot of doubt or questions about where ML engineering stops and AI engineering starts. That's a useful debate to be had.[00:02:29] swyx: In some sense, I actually anticipated that as well. So I intentionally did not. Put a firm definition there because most of the successful definitions are necessarily underspecified and it's actually useful to have different perspectives and you don't have to specify everything from the outset.[00:02:45] Alessio: Yeah, I was at um, AWS reInvent and the line to get into like the AI engineering talk, so to speak, which is, you know, applied AI and whatnot was like, there are like hundreds of people just in line to go in.[00:02:56] Alessio: I think that's kind of what enabled me. People, right? Which is what [00:03:00] you kind of talked about. It's like, Hey, look, you don't actually need a PhD, just, yeah, just use the model. And then maybe we'll talk about some of the blind spots that you get as an engineer with the earlier posts that we also had on on the sub stack.[00:03:11] Alessio: But yeah, it's been a heck of a heck of a two years.[00:03:14] swyx: Yeah.[00:03:15] Latent Space Live and AI Conferences[00:03:15] swyx: You know, I was, I was trying to view the conference as like, so NeurIPS is I think like 16, 17, 000 people. And the Latent Space Live event that we held there was 950 signups. I think. The AI world, the ML world is still very much research heavy. And that's as it should be because ML is very much in a research phase.[00:03:34] swyx: But as we move this entire field into production, I think that ratio inverts into becoming more engineering heavy. So at least I think engineering should be on the same level, even if it's never as prestigious, like it'll always be low status because at the end of the day, you're manipulating APIs or whatever.[00:03:51] swyx: But Yeah, wrapping GPTs, but there's going to be an increasing stack and an art to doing these, these things well. And I, you know, I [00:04:00] think that's what we're focusing on for the podcast, the conference and basically everything I do seems to make sense. And I think we'll, we'll talk about the trends here that apply.[00:04:09] swyx: It's, it's just very strange. So, like, there's a mix of, like, keeping on top of research while not being a researcher and then putting that research into production. So, like, people always ask me, like, why are you covering Neuralibs? Like, this is a ML research conference and I'm like, well, yeah, I mean, we're not going to, to like, understand everything Or reproduce every single paper, but the stuff that is being found here is going to make it through into production at some point, you hope.[00:04:32] swyx: And then actually like when I talk to the researchers, they actually get very excited because they're like, oh, you guys are actually caring about how this goes into production and that's what they really really want. The measure of success is previously just peer review, right? Getting 7s and 8s on their um, Academic review conferences and stuff like citations is one metric, but money is a better metric.[00:04:51] Alessio: Money is a better metric. Yeah, and there were about 2200 people on the live stream or something like that. Yeah, yeah. Hundred on the live stream. So [00:05:00] I try my best to moderate, but it was a lot spicier in person with Jonathan and, and Dylan. Yeah, that it was in the chat on YouTube.[00:05:06] swyx: I would say that I actually also created.[00:05:09] swyx: Layen Space Live in order to address flaws that are perceived in academic conferences. This is not NeurIPS specific, it's ICML, NeurIPS. Basically, it's very sort of oriented towards the PhD student, uh, market, job market, right? Like literally all, basically everyone's there to advertise their research and skills and get jobs.[00:05:28] swyx: And then obviously all the, the companies go there to hire them. And I think that's great for the individual researchers, but for people going there to get info is not great because you have to read between the lines, bring a ton of context in order to understand every single paper. So what is missing is effectively what I ended up doing, which is domain by domain, go through and recap the best of the year.[00:05:48] swyx: Survey the field. And there are, like NeurIPS had a, uh, I think ICML had a like a position paper track, NeurIPS added a benchmarks, uh, datasets track. These are ways in which to address that [00:06:00] issue. Uh, there's always workshops as well. Every, every conference has, you know, a last day of workshops and stuff that provide more of an overview.[00:06:06] swyx: But they're not specifically prompted to do so. And I think really, uh, Organizing a conference is just about getting good speakers and giving them the correct prompts. And then they will just go and do that thing and they do a very good job of it. So I think Sarah did a fantastic job with the startups prompt.[00:06:21] swyx: I can't list everybody, but we did best of 2024 in startups, vision, open models. Post transformers, synthetic data, small models, and agents. And then the last one was the, uh, and then we also did a quick one on reasoning with Nathan Lambert. And then the last one, obviously, was the debate that people were very hyped about.[00:06:39] swyx: It was very awkward. And I'm really, really thankful for John Franco, basically, who stepped up to challenge Dylan. Because Dylan was like, yeah, I'll do it. But He was pro scaling. And I think everyone who is like in AI is pro scaling, right? So you need somebody who's ready to publicly say, no, we've hit a wall.[00:06:57] swyx: So that means you're saying Sam Altman's wrong. [00:07:00] You're saying, um, you know, everyone else is wrong. It helps that this was the day before Ilya went on, went up on stage and then said pre training has hit a wall. And data has hit a wall. So actually Jonathan ended up winning, and then Ilya supported that statement, and then Noam Brown on the last day further supported that statement as well.[00:07:17] swyx: So it's kind of interesting that I think the consensus kind of going in was that we're not done scaling, like you should believe in a better lesson. And then, four straight days in a row, you had Sepp Hochreiter, who is the creator of the LSTM, along with everyone's favorite OG in AI, which is Juergen Schmidhuber.[00:07:34] swyx: He said that, um, we're pre trading inside a wall, or like, we've run into a different kind of wall. And then we have, you know John Frankel, Ilya, and then Noam Brown are all saying variations of the same thing, that we have hit some kind of wall in the status quo of what pre trained, scaling large pre trained models has looked like, and we need a new thing.[00:07:54] swyx: And obviously the new thing for people is some make, either people are calling it inference time compute or test time [00:08:00] compute. I think the collective terminology has been inference time, and I think that makes sense because test time, calling it test, meaning, has a very pre trained bias, meaning that the only reason for running inference at all is to test your model.[00:08:11] swyx: That is not true. Right. Yeah. So, so, I quite agree that. OpenAI seems to have adopted, or the community seems to have adopted this terminology of ITC instead of TTC. And that, that makes a lot of sense because like now we care about inference, even right down to compute optimality. Like I actually interviewed this author who recovered or reviewed the Chinchilla paper.[00:08:31] swyx: Chinchilla paper is compute optimal training, but what is not stated in there is it's pre trained compute optimal training. And once you start caring about inference, compute optimal training, you have a different scaling law. And in a way that we did not know last year.[00:08:45] Alessio: I wonder, because John is, he's also on the side of attention is all you need.[00:08:49] Alessio: Like he had the bet with Sasha. So I'm curious, like he doesn't believe in scaling, but he thinks the transformer, I wonder if he's still. So, so,[00:08:56] swyx: so he, obviously everything is nuanced and you know, I told him to play a character [00:09:00] for this debate, right? So he actually does. Yeah. He still, he still believes that we can scale more.[00:09:04] swyx: Uh, he just assumed the character to be very game for, for playing this debate. So even more kudos to him that he assumed a position that he didn't believe in and still won the debate.[00:09:16] Alessio: Get rekt, Dylan. Um, do you just want to quickly run through some of these things? Like, uh, Sarah's presentation, just the highlights.[00:09:24] swyx: Yeah, we can't go through everyone's slides, but I pulled out some things as a factor of, like, stuff that we were going to talk about. And we'll[00:09:30] Alessio: publish[00:09:31] swyx: the rest. Yeah, we'll publish on this feed the best of 2024 in those domains. And hopefully people can benefit from the work that our speakers have done.[00:09:39] swyx: But I think it's, uh, these are just good slides. And I've been, I've been looking for a sort of end of year recaps from, from people.[00:09:44] The Competitive AI Landscape[00:09:44] swyx: The field has progressed a lot. You know, I think the max ELO in 2023 on LMSys used to be 1200 for LMSys ELOs. And now everyone is at least at, uh, 1275 in their ELOs, and this is across Gemini, Chadjibuti, [00:10:00] Grok, O1.[00:10:01] swyx: ai, which with their E Large model, and Enthopic, of course. It's a very, very competitive race. There are multiple Frontier labs all racing, but there is a clear tier zero Frontier. And then there's like a tier one. It's like, I wish I had everything else. Tier zero is extremely competitive. It's effectively now three horse race between Gemini, uh, Anthropic and OpenAI.[00:10:21] swyx: I would say that people are still holding out a candle for XAI. XAI, I think, for some reason, because their API was very slow to roll out, is not included in these metrics. So it's actually quite hard to put on there. As someone who also does charts, XAI is continually snubbed because they don't work well with the benchmarking people.[00:10:42] swyx: Yeah, yeah, yeah. It's a little trivia for why XAI always gets ignored. The other thing is market share. So these are slides from Sarah. We have it up on the screen. It has gone from very heavily open AI. So we have some numbers and estimates. These are from RAMP. Estimates of open AI market share in [00:11:00] December 2023.[00:11:01] swyx: And this is basically, what is it, GPT being 95 percent of production traffic. And I think if you correlate that with stuff that we asked. Harrison Chase on the LangChain episode, it was true. And then CLAUD 3 launched mid middle of this year. I think CLAUD 3 launched in March, CLAUD 3. 5 Sonnet was in June ish.[00:11:23] swyx: And you can start seeing the market share shift towards opening, uh, towards that topic, uh, very, very aggressively. The more recent one is Gemini. So if I scroll down a little bit, this is an even more recent dataset. So RAM's dataset ends in September 2 2. 2024. Gemini has basically launched a price war at the low end, uh, with Gemini Flash, uh, being basically free for personal use.[00:11:44] swyx: Like, I think people don't understand the free tier. It's something like a billion tokens per day. Unless you're trying to abuse it, you cannot really exhaust your free tier on Gemini. They're really trying to get you to use it. They know they're in like third place, um, fourth place, depending how you, how you count.[00:11:58] swyx: And so they're going after [00:12:00] the Lower tier first, and then, you know, maybe the upper tier later, but yeah, Gemini Flash, according to OpenRouter, is now 50 percent of their OpenRouter requests. Obviously, these are the small requests. These are small, cheap requests that are mathematically going to be more.[00:12:15] swyx: The smart ones obviously are still going to OpenAI. But, you know, it's a very, very big shift in the market. Like basically 2023, 2022, To going into 2024 opening has gone from nine five market share to Yeah. Reasonably somewhere between 50 to 75 market share.[00:12:29] Alessio: Yeah. I'm really curious how ramped does the attribution to the model?[00:12:32] Alessio: If it's API, because I think it's all credit card spin. . Well, but it's all, the credit card doesn't say maybe. Maybe the, maybe when they do expenses, they upload the PDF, but yeah, the, the German I think makes sense. I think that was one of my main 2024 takeaways that like. The best small model companies are the large labs, which is not something I would have thought that the open source kind of like long tail would be like the small model.[00:12:53] swyx: Yeah, different sizes of small models we're talking about here, right? Like so small model here for Gemini is AB, [00:13:00] right? Uh, mini. We don't know what the small model size is, but yeah, it's probably in the double digits or maybe single digits, but probably double digits. The open source community has kind of focused on the one to three B size.[00:13:11] swyx: Mm-hmm . Yeah. Maybe[00:13:12] swyx: zero, maybe 0.5 B uh, that's moon dream and that is small for you then, then that's great. It makes sense that we, we have a range for small now, which is like, may, maybe one to five B. Yeah. I'll even put that at, at, at the high end. And so this includes Gemma from Gemini as well. But also includes the Apple Foundation models, which I think Apple Foundation is 3B.[00:13:32] Alessio: Yeah. No, that's great. I mean, I think in the start small just meant cheap. I think today small is actually a more nuanced discussion, you know, that people weren't really having before.[00:13:43] swyx: Yeah, we can keep going. This is a slide that I smiley disagree with Sarah. She's pointing to the scale SEAL leaderboard. I think the Researchers that I talked with at NeurIPS were kind of positive on this because basically you need private test [00:14:00] sets to prevent contamination.[00:14:02] swyx: And Scale is one of maybe three or four people this year that has really made an effort in doing a credible private test set leaderboard. Llama405B does well compared to Gemini and GPT 40. And I think that's good. I would say that. You know, it's good to have an open model that is that big, that does well on those metrics.[00:14:23] swyx: But anyone putting 405B in production will tell you, if you scroll down a little bit to the artificial analysis numbers, that it is very slow and very expensive to infer. Um, it doesn't even fit on like one node. of, uh, of H100s. Cerebras will be happy to tell you they can serve 4 or 5B on their super large chips.[00:14:42] swyx: But, um, you know, if you need to do anything custom to it, you're still kind of constrained. So, is 4 or 5B really that relevant? Like, I think most people are basically saying that they only use 4 or 5B as a teacher model to distill down to something. Even Meta is doing it. So with Lama 3. [00:15:00] 3 launched, they only launched the 70B because they use 4 or 5B to distill the 70B.[00:15:03] swyx: So I don't know if like open source is keeping up. I think they're the, the open source industrial complex is very invested in telling you that the, if the gap is narrowing, I kind of disagree. I think that the gap is widening with O1. I think there are very, very smart people trying to narrow that gap and they should.[00:15:22] swyx: I really wish them success, but you cannot use a chart that is nearing 100 in your saturation chart. And look, the distance between open source and closed source is narrowing. Of course it's going to narrow because you're near 100. This is stupid. But in metrics that matter, is open source narrowing?[00:15:38] swyx: Probably not for O1 for a while. And it's really up to the open source guys to figure out if they can match O1 or not.[00:15:46] Alessio: I think inference time compute is bad for open source just because, you know, Doc can donate the flops at training time, but he cannot donate the flops at inference time. So it's really hard to like actually keep up on that axis.[00:15:59] Alessio: Big, big business [00:16:00] model shift. So I don't know what that means for the GPU clouds. I don't know what that means for the hyperscalers, but obviously the big labs have a lot of advantage. Because, like, it's not a static artifact that you're putting the compute in. You're kind of doing that still, but then you're putting a lot of computed inference too.[00:16:17] swyx: Yeah, yeah, yeah. Um, I mean, Llama4 will be reasoning oriented. We talked with Thomas Shalom. Um, kudos for getting that episode together. That was really nice. Good, well timed. Actually, I connected with the AI meta guy, uh, at NeurIPS, and, um, yeah, we're going to coordinate something for Llama4. Yeah, yeah,[00:16:32] Alessio: and our friend, yeah.[00:16:33] Alessio: Clara Shi just joined to lead the business agent side. So I'm sure we'll have her on in the new year.[00:16:39] swyx: Yeah. So, um, my comment on, on the business model shift, this is super interesting. Apparently it is wide knowledge that OpenAI wanted more than 6. 6 billion dollars for their fundraise. They wanted to raise, you know, higher, and they did not.[00:16:51] swyx: And what that means is basically like, it's very convenient that we're not getting GPT 5, which would have been a larger pre train. We should have a lot of upfront money. And [00:17:00] instead we're, we're converting fixed costs into variable costs, right. And passing it on effectively to the customer. And it's so much easier to take margin there because you can directly attribute it to like, Oh, you're using this more.[00:17:12] swyx: Therefore you, you pay more of the cost and I'll just slap a margin in there. So like that lets you control your growth margin and like tie your. Your spend, or your sort of inference spend, accordingly. And it's just really interesting to, that this change in the sort of inference paradigm has arrived exactly at the same time that the funding environment for pre training is effectively drying up, kind of.[00:17:36] swyx: I feel like maybe the VCs are very in tune with research anyway, so like, they would have noticed this, but, um, it's just interesting.[00:17:43] Alessio: Yeah, and I was looking back at our yearly recap of last year. Yeah. And the big thing was like the mixed trial price fights, you know, and I think now it's almost like there's nowhere to go, like, you know, Gemini Flash is like basically giving it away for free.[00:17:55] Alessio: So I think this is a good way for the labs to generate more revenue and pass down [00:18:00] some of the compute to the customer. I think they're going to[00:18:02] swyx: keep going. I think that 2, will come.[00:18:05] Alessio: Yeah, I know. Totally. I mean, next year, the first thing I'm doing is signing up for Devin. Signing up for the pro chat GBT.[00:18:12] Alessio: Just to try. I just want to see what does it look like to spend a thousand dollars a month on AI?[00:18:17] swyx: Yes. Yes. I think if your, if your, your job is a, at least AI content creator or VC or, you know, someone who, whose job it is to stay on, stay on top of things, you should already be spending like a thousand dollars a month on, on stuff.[00:18:28] swyx: And then obviously easy to spend, hard to use. You have to actually use. The good thing is that actually Google lets you do a lot of stuff for free now. So like deep research. That they just launched. Uses a ton of inference and it's, it's free while it's in preview.[00:18:45] Alessio: Yeah. They need to put that in Lindy.[00:18:47] Alessio: I've been using Lindy lately. I've been a built a bunch of things once we had flow because I liked the new thing. It's pretty good. I even did a phone call assistant. Um, yeah, they just launched Lindy voice. Yeah, I think once [00:19:00] they get advanced voice mode like capability today, still like speech to text, you can kind of tell.[00:19:06] Alessio: Um, but it's good for like reservations and things like that. So I have a meeting prepper thing. And so[00:19:13] swyx: it's good. Okay. I feel like we've, we've covered a lot of stuff. Uh, I, yeah, I, you know, I think We will go over the individual, uh, talks in a separate episode. Uh, I don't want to take too much time with, uh, this stuff, but that suffice to say that there is a lot of progress in each field.[00:19:28] swyx: Uh, we covered vision. Basically this is all like the audience voting for what they wanted. And then I just invited the best people I could find in each audience, especially agents. Um, Graham, who I talked to at ICML in Vienna, he is currently still number one. It's very hard to stay on top of SweetBench.[00:19:45] swyx: OpenHand is currently still number one. switchbench full, which is the hardest one. He had very good thoughts on agents, which I, which I'll highlight for people. Everyone is saying 2025 is the year of agents, just like they said last year. And, uh, but he had [00:20:00] thoughts on like eight parts of what are the frontier problems to solve in agents.[00:20:03] swyx: And so I'll highlight that talk as well.[00:20:05] Alessio: Yeah. The number six, which is the Hacken agents learn more about the environment, has been a Super interesting to us as well, just to think through, because, yeah, how do you put an agent in an enterprise where most things in an enterprise have never been public, you know, a lot of the tooling, like the code bases and things like that.[00:20:23] Alessio: So, yeah, there's not indexing and reg. Well, yeah, but it's more like. You can't really rag things that are not documented. But people know them based on how they've been doing it. You know, so I think there's almost this like, you know, Oh, institutional knowledge. Yeah, the boring word is kind of like a business process extraction.[00:20:38] Alessio: Yeah yeah, I see. It's like, how do you actually understand how these things are done? I see. Um, and I think today the, the problem is that, Yeah, the agents are, that most people are building are good at following instruction, but are not as good as like extracting them from you. Um, so I think that will be a big unlock just to touch quickly on the Jeff Dean thing.[00:20:55] Alessio: I thought it was pretty, I mean, we'll link it in the, in the things, but. I think the main [00:21:00] focus was like, how do you use ML to optimize the systems instead of just focusing on ML to do something else? Yeah, I think speculative decoding, we had, you know, Eugene from RWKB on the podcast before, like he's doing a lot of that with Fetterless AI.[00:21:12] swyx: Everyone is. I would say it's the norm. I'm a little bit uncomfortable with how much it costs, because it does use more of the GPU per call. But because everyone is so keen on fast inference, then yeah, makes sense.[00:21:24] Alessio: Exactly. Um, yeah, but we'll link that. Obviously Jeff is great.[00:21:30] swyx: Jeff is, Jeff's talk was more, it wasn't focused on Gemini.[00:21:33] swyx: I think people got the wrong impression from my tweet. It's more about how Google approaches ML and uses ML to design systems and then systems feedback into ML. And I think this ties in with Lubna's talk.[00:21:45] Synthetic Data and Future Trends[00:21:45] swyx: on synthetic data where it's basically the story of bootstrapping of humans and AI in AI research or AI in production.[00:21:53] swyx: So her talk was on synthetic data, where like how much synthetic data has grown in 2024 in the pre training side, the post training side, [00:22:00] and the eval side. And I think Jeff then also extended it basically to chips, uh, to chip design. So he'd spend a lot of time talking about alpha chip. And most of us in the audience are like, we're not working on hardware, man.[00:22:11] swyx: Like you guys are great. TPU is great. Okay. We'll buy TPUs.[00:22:14] Alessio: And then there was the earlier talk. Yeah. But, and then we have, uh, I don't know if we're calling them essays. What are we calling these? But[00:22:23] swyx: for me, it's just like bonus for late in space supporters, because I feel like they haven't been getting anything.[00:22:29] swyx: And then I wanted a more high frequency way to write stuff. Like that one I wrote in an afternoon. I think basically we now have an answer to what Ilya saw. It's one year since. The blip. And we know what he saw in 2014. We know what he saw in 2024. We think we know what he sees in 2024. He gave some hints and then we have vague indications of what he saw in 2023.[00:22:54] swyx: So that was the Oh, and then 2016 as well, because of this lawsuit with Elon, OpenAI [00:23:00] is publishing emails from Sam's, like, his personal text messages to Siobhan, Zelis, or whatever. So, like, we have emails from Ilya saying, this is what we're seeing in OpenAI, and this is why we need to scale up GPUs. And I think it's very prescient in 2016 to write that.[00:23:16] swyx: And so, like, it is exactly, like, basically his insights. It's him and Greg, basically just kind of driving the scaling up of OpenAI, while they're still playing Dota. They're like, no, like, we see the path here.[00:23:30] Alessio: Yeah, and it's funny, yeah, they even mention, you know, we can only train on 1v1 Dota. We need to train on 5v5, and that takes too many GPUs.[00:23:37] Alessio: Yeah,[00:23:37] swyx: and at least for me, I can speak for myself, like, I didn't see the path from Dota to where we are today. I think even, maybe if you ask them, like, they wouldn't necessarily draw a straight line. Yeah,[00:23:47] Alessio: no, definitely. But I think like that was like the whole idea of almost like the RL and we talked about this with Nathan on his podcast.[00:23:55] Alessio: It's like with RL, you can get very good at specific things, but then you can't really like generalize as much. And I [00:24:00] think the language models are like the opposite, which is like, you're going to throw all this data at them and scale them up, but then you really need to drive them home on a specific task later on.[00:24:08] Alessio: And we'll talk about the open AI reinforcement, fine tuning, um, announcement too, and all of that. But yeah, I think like scale is all you need. That's kind of what Elia will be remembered for. And I think just maybe to clarify on like the pre training is over thing that people love to tweet. I think the point of the talk was like everybody, we're scaling these chips, we're scaling the compute, but like the second ingredient which is data is not scaling at the same rate.[00:24:35] Alessio: So it's not necessarily pre training is over. It's kind of like What got us here won't get us there. In his email, he predicted like 10x growth every two years or something like that. And I think maybe now it's like, you know, you can 10x the chips again, but[00:24:49] swyx: I think it's 10x per year. Was it? I don't know.[00:24:52] Alessio: Exactly. And Moore's law is like 2x. So it's like, you know, much faster than that. And yeah, I like the fossil fuel of AI [00:25:00] analogy. It's kind of like, you know, the little background tokens thing. So the OpenAI reinforcement fine tuning is basically like, instead of fine tuning on data, you fine tune on a reward model.[00:25:09] Alessio: So it's basically like, instead of being data driven, it's like task driven. And I think people have tasks to do, they don't really have a lot of data. So I'm curious to see how that changes, how many people fine tune, because I think this is what people run into. It's like, Oh, you can fine tune llama. And it's like, okay, where do I get the data?[00:25:27] Alessio: To fine tune it on, you know, so it's great that we're moving the thing. And then I really like he had this chart where like, you know, the brain mass and the body mass thing is basically like mammals that scaled linearly by brain and body size, and then humans kind of like broke off the slope. So it's almost like maybe the mammal slope is like the pre training slope.[00:25:46] Alessio: And then the post training slope is like the, the human one.[00:25:49] swyx: Yeah. I wonder what the. I mean, we'll know in 10 years, but I wonder what the y axis is for, for Ilya's SSI. We'll try to get them on.[00:25:57] Alessio: Ilya, if you're listening, you're [00:26:00] welcome here. Yeah, and then he had, you know, what comes next, like agent, synthetic data, inference, compute, I thought all of that was like that.[00:26:05] Alessio: I don't[00:26:05] swyx: think he was dropping any alpha there. Yeah, yeah, yeah.[00:26:07] Alessio: Yeah. Any other new reps? Highlights?[00:26:10] swyx: I think that there was comparatively a lot more work. Oh, by the way, I need to plug that, uh, my friend Yi made this, like, little nice paper. Yeah, that was really[00:26:20] swyx: nice.[00:26:20] swyx: Uh, of, uh, of, like, all the, he's, she called it must read papers of 2024.[00:26:26] swyx: So I laid out some of these at NeurIPS, and it was just gone. Like, everyone just picked it up. Because people are dying for, like, little guidance and visualizations And so, uh, I thought it was really super nice that we got there.[00:26:38] Alessio: Should we do a late in space book for each year? Uh, I thought about it. For each year we should.[00:26:42] Alessio: Coffee table book. Yeah. Yeah. Okay. Put it in the will. Hi, Will. By the way, we haven't introduced you. He's our new, you know, general organist, Jamie. You need to[00:26:52] swyx: pull up more things. One thing I saw that, uh, Okay, one fun one, and then one [00:27:00] more general one. So the fun one is this paper on agent collusion. This is a paper on steganography.[00:27:06] swyx: This is secret collusion among AI agents, multi agent deception via steganography. I tried to go to NeurIPS in order to find these kinds of papers because the real reason Like NeurIPS this year has a lottery system. A lot of people actually even go and don't buy tickets because they just go and attend the side events.[00:27:22] swyx: And then also the people who go and end up crowding around the most popular papers, which you already know and already read them before you showed up to NeurIPS. So the only reason you go there is to talk to the paper authors, but there's like something like 10, 000 other. All these papers out there that, you know, are just people's work that they, that they did on the air and they failed to get attention for one reason or another.[00:27:42] swyx: And this was one of them. Uh, it was like all the way at the back. And this is a deep mind paper that actually focuses on collusion between AI agents, uh, by hiding messages in the text that they generate. Uh, so that's what steganography is. So a very simple example would be the first letter of every word.[00:27:57] swyx: If you Pick that out, you know, and the code sends a [00:28:00] different message than that. But something I've always emphasized is to LLMs, we read left to right. LLMs can read up, down, sideways, you know, in random character order. And it's the same to them as it is to us. So if we were ever to get You know, self motivated, underlined LLMs that we're trying to collaborate to take over the planet.[00:28:19] swyx: This would be how they do it. They spread messages among us in the messages that we generate. And he developed a scaling law for that. So he marked, I'm showing it on screen right now, the emergence of this phenomenon. Basically, for example, for Cypher encoding, GPT 2, Lama 2, mixed trial, GPT 3. 5, zero capabilities, and sudden 4.[00:28:40] swyx: And this is the kind of Jason Wei type emergence properties that people kind of look for. I think what made this paper stand out as well, so he developed the benchmark for steganography collusion, and he also focused on shelling point collusion, which is very low coordination. For agreeing on a decoding encoding format, you kind of need to have some [00:29:00] agreement on that.[00:29:00] swyx: But, but shelling point means like very, very low or almost no coordination. So for example, if I, if I ask someone, if the only message I give you is meet me in New York and you're not aware. Or when you would probably meet me at Grand Central Station. That is the Grand Central Station is a shelling point.[00:29:16] swyx: And it's probably somewhere, somewhere during the day. That is the shelling point of New York is Grand Central. To that extent, shelling points for steganography are things like the, the, the common decoding methods that we talked about. It will be interesting at some point in the future when we are worried about alignment.[00:29:30] swyx: It is not interesting today, but it's interesting that DeepMind is already thinking about this.[00:29:36] Alessio: I think that's like one of the hardest things about NeurIPS. It's like the long tail. I[00:29:41] swyx: found a pricing guy. I'm going to feature him on the podcast. Basically, this guy from NVIDIA worked out the optimal pricing for language models.[00:29:51] swyx: It's basically an econometrics paper at NeurIPS, where everyone else is talking about GPUs. And the guy with the GPUs is[00:29:57] Alessio: talking[00:29:57] swyx: about economics instead. [00:30:00] That was the sort of fun one. So the focus I saw is that model papers at NeurIPS are kind of dead. No one really presents models anymore. It's just data sets.[00:30:12] swyx: This is all the grad students are working on. So like there was a data sets track and then I was looking around like, I was like, you don't need a data sets track because every paper is a data sets paper. And so data sets and benchmarks, they're kind of flip sides of the same thing. So Yeah. Cool. Yeah, if you're a grad student, you're a GPU boy, you kind of work on that.[00:30:30] swyx: And then the, the sort of big model that people walk around and pick the ones that they like, and then they use it in their models. And that's, that's kind of how it develops. I, I feel like, um, like, like you didn't last year, you had people like Hao Tian who worked on Lava, which is take Lama and add Vision.[00:30:47] swyx: And then obviously actually I hired him and he added Vision to Grok. Now he's the Vision Grok guy. This year, I don't think there was any of those.[00:30:55] Alessio: What were the most popular, like, orals? Last year it was like the [00:31:00] Mixed Monarch, I think, was like the most attended. Yeah, uh, I need to look it up. Yeah, I mean, if nothing comes to mind, that's also kind of like an answer in a way.[00:31:10] Alessio: But I think last year there was a lot of interest in, like, furthering models and, like, different architectures and all of that.[00:31:16] swyx: I will say that I felt the orals, oral picks this year were not very good. Either that or maybe it's just a So that's the highlight of how I have changed in terms of how I view papers.[00:31:29] swyx: So like, in my estimation, two of the best papers in this year for datasets or data comp and refined web or fine web. These are two actually industrially used papers, not highlighted for a while. I think DCLM got the spotlight, FineWeb didn't even get the spotlight. So like, it's just that the picks were different.[00:31:48] swyx: But one thing that does get a lot of play that a lot of people are debating is the role that's scheduled. This is the schedule free optimizer paper from Meta from Aaron DeFazio. And this [00:32:00] year in the ML community, there's been a lot of chat about shampoo, soap, all the bathroom amenities for optimizing your learning rates.[00:32:08] swyx: And, uh, most people at the big labs are. Who I asked about this, um, say that it's cute, but it's not something that matters. I don't know, but it's something that was discussed and very, very popular. 4Wars[00:32:19] Alessio: of AI recap maybe, just quickly. Um, where do you want to start? Data?[00:32:26] swyx: So to remind people, this is the 4Wars piece that we did as one of our earlier recaps of this year.[00:32:31] swyx: And the belligerents are on the left, journalists, writers, artists, anyone who owns IP basically, New York Times, Stack Overflow, Reddit, Getty, Sarah Silverman, George RR Martin. Yeah, and I think this year we can add Scarlett Johansson to that side of the fence. So anyone suing, open the eye, basically. I actually wanted to get a snapshot of all the lawsuits.[00:32:52] swyx: I'm sure some lawyer can do it. That's the data quality war. On the right hand side, we have the synthetic data people, and I think we talked about Lumna's talk, you know, [00:33:00] really showing how much synthetic data has come along this year. I think there was a bit of a fight between scale. ai and the synthetic data community, because scale.[00:33:09] swyx: ai published a paper saying that synthetic data doesn't work. Surprise, surprise, scale. ai is the leading vendor of non synthetic data. Only[00:33:17] Alessio: cage free annotated data is useful.[00:33:21] swyx: So I think there's some debate going on there, but I don't think it's much debate anymore that at least synthetic data, for the reasons that are blessed in Luna's talk, Makes sense.[00:33:32] swyx: I don't know if you have any perspectives there.[00:33:34] Alessio: I think, again, going back to the reinforcement fine tuning, I think that will change a little bit how people think about it. I think today people mostly use synthetic data, yeah, for distillation and kind of like fine tuning a smaller model from like a larger model.[00:33:46] Alessio: I'm not super aware of how the frontier labs use it outside of like the rephrase, the web thing that Apple also did. But yeah, I think it'll be. Useful. I think like whether or not that gets us the big [00:34:00] next step, I think that's maybe like TBD, you know, I think people love talking about data because it's like a GPU poor, you know, I think, uh, synthetic data is like something that people can do, you know, so they feel more opinionated about it compared to, yeah, the optimizers stuff, which is like,[00:34:17] swyx: they don't[00:34:17] Alessio: really work[00:34:18] swyx: on.[00:34:18] swyx: I think that there is an angle to the reasoning synthetic data. So this year, we covered in the paper club, the star series of papers. So that's star, Q star, V star. It basically helps you to synthesize reasoning steps, or at least distill reasoning steps from a verifier. And if you look at the OpenAI RFT, API that they released, or that they announced, basically they're asking you to submit graders, or they choose from a preset list of graders.[00:34:49] swyx: Basically It feels like a way to create valid synthetic data for them to fine tune their reasoning paths on. Um, so I think that is another angle where it starts to make sense. And [00:35:00] so like, it's very funny that basically all the data quality wars between Let's say the music industry or like the newspaper publishing industry or the textbooks industry on the big labs.[00:35:11] swyx: It's all of the pre training era. And then like the new era, like the reasoning era, like nobody has any problem with all the reasoning, especially because it's all like sort of math and science oriented with, with very reasonable graders. I think the more interesting next step is how does it generalize beyond STEM?[00:35:27] swyx: We've been using O1 for And I would say like for summarization and creative writing and instruction following, I think it's underrated. I started using O1 in our intro songs before we killed the intro songs, but it's very good at writing lyrics. You know, I can actually say like, I think one of the O1 pro demos.[00:35:46] swyx: All of these things that Noam was showing was that, you know, you can write an entire paragraph or three paragraphs without using the letter A, right?[00:35:53] Creative Writing with AI[00:35:53] swyx: So like, like literally just anything instead of token, like not even token level, character level manipulation and [00:36:00] counting and instruction following. It's, uh, it's very, very strong.[00:36:02] swyx: And so no surprises when I ask it to rhyme, uh, and to, to create song lyrics, it's going to do that very much better than in previous models. So I think it's underrated for creative writing.[00:36:11] Alessio: Yeah.[00:36:12] Legal and Ethical Issues in AI[00:36:12] Alessio: What do you think is the rationale that they're going to have in court when they don't show you the thinking traces of O1, but then they want us to, like, they're getting sued for using other publishers data, you know, but then on their end, they're like, well, you shouldn't be using my data to then train your model.[00:36:29] Alessio: So I'm curious to see how that kind of comes. Yeah, I mean, OPA has[00:36:32] swyx: many ways to publish, to punish people without bringing, taking them to court. Already banned ByteDance for distilling their, their info. And so anyone caught distilling the chain of thought will be just disallowed to continue on, on, on the API.[00:36:44] swyx: And it's fine. It's no big deal. Like, I don't even think that's an issue at all, just because the chain of thoughts are pretty well hidden. Like you have to work very, very hard to, to get it to leak. And then even when it leaks the chain of thought, you don't know if it's, if it's [00:37:00] The bigger concern is actually that there's not that much IP hiding behind it, that Cosign, which we talked about, we talked to him on Dev Day, can just fine tune 4.[00:37:13] swyx: 0 to beat 0. 1 Cloud SONET so far is beating O1 on coding tasks without, at least O1 preview, without being a reasoning model, same for Gemini Pro or Gemini 2. 0. So like, how much is reasoning important? How much of a moat is there in this, like, All of these are proprietary sort of training data that they've presumably accomplished.[00:37:34] swyx: Because even DeepSeek was able to do it. And they had, you know, two months notice to do this, to do R1. So, it's actually unclear how much moat there is. Obviously, you know, if you talk to the Strawberry team, they'll be like, yeah, I mean, we spent the last two years doing this. So, we don't know. And it's going to be Interesting because there'll be a lot of noise from people who say they have inference time compute and actually don't because they just have fancy chain of thought.[00:38:00][00:38:00] swyx: And then there's other people who actually do have very good chain of thought. And you will not see them on the same level as OpenAI because OpenAI has invested a lot in building up the mythology of their team. Um, which makes sense. Like the real answer is somewhere in between.[00:38:13] Alessio: Yeah, I think that's kind of like the main data war story developing.[00:38:18] The Data War: GPU Poor vs. GPU Rich[00:38:18] Alessio: GPU poor versus GPU rich. Yeah. Where do you think we are? I think there was, again, going back to like the small model thing, there was like a time in which the GPU poor were kind of like the rebel faction working on like these models that were like open and small and cheap. And I think today people don't really care as much about GPUs anymore.[00:38:37] Alessio: You also see it in the price of the GPUs. Like, you know, that market is kind of like plummeted because there's people don't want to be, they want to be GPU free. They don't even want to be poor. They just want to be, you know, completely without them. Yeah. How do you think about this war? You[00:38:52] swyx: can tell me about this, but like, I feel like the, the appetite for GPU rich startups, like the, you know, the, the funding plan is we will raise 60 million and [00:39:00] we'll give 50 of that to NVIDIA.[00:39:01] swyx: That is gone, right? Like, no one's, no one's pitching that. This was literally the plan, the exact plan of like, I can name like four or five startups, you know, this time last year. So yeah, GPU rich startups gone.[00:39:12] The Rise of GPU Ultra Rich[00:39:12] swyx: But I think like, The GPU ultra rich, the GPU ultra high net worth is still going. So, um, now we're, you know, we had Leopold's essay on the trillion dollar cluster.[00:39:23] swyx: We're not quite there yet. We have multiple labs, um, you know, XAI very famously, you know, Jensen Huang praising them for being. Best boy number one in spinning up 100, 000 GPU cluster in like 12 days or something. So likewise at Meta, likewise at OpenAI, likewise at the other labs as well. So like the GPU ultra rich are going to keep doing that because I think partially it's an article of faith now that you just need it.[00:39:46] swyx: Like you don't even know what it's going to, what you're going to use it for. You just, you just need it. And it makes sense that if, especially if we're going into. More researchy territory than we are. So let's say 2020 to 2023 was [00:40:00] let's scale big models territory because we had GPT 3 in 2020 and we were like, okay, we'll go from 1.[00:40:05] swyx: 75b to 1. 8b, 1. 8t. And that was GPT 3 to GPT 4. Okay, that's done. As far as everyone is concerned, Opus 3. 5 is not coming out, GPT 4. 5 is not coming out, and Gemini 2, we don't have Pro, whatever. We've hit that wall. Maybe I'll call it the 2 trillion perimeter wall. We're not going to 10 trillion. No one thinks it's a good idea, at least from training costs, from the amount of data, or at least the inference.[00:40:36] swyx: Would you pay 10x the price of GPT Probably not. Like, like you want something else that, that is at least more useful. So it makes sense that people are pivoting in terms of their inference paradigm.[00:40:47] Emerging Trends in AI Models[00:40:47] swyx: And so when it's more researchy, then you actually need more just general purpose compute to mess around with, uh, at the exact same time that production deployments of the old, the previous paradigm is still ramping up,[00:40:58] swyx: um,[00:40:58] swyx: uh, pretty aggressively.[00:40:59] swyx: So [00:41:00] it makes sense that the GPU rich are growing. We have now interviewed both together and fireworks and replicates. Uh, we haven't done any scale yet. But I think Amazon, maybe kind of a sleeper one, Amazon, in a sense of like they, at reInvent, I wasn't expecting them to do so well, but they are now a foundation model lab.[00:41:18] swyx: It's kind of interesting. Um, I think, uh, you know, David went over there and started just creating models.[00:41:25] Alessio: Yeah, I mean, that's the power of prepaid contracts. I think like a lot of AWS customers, you know, they do this big reserve instance contracts and now they got to use their money. That's why so many startups.[00:41:37] Alessio: Get bought through the AWS marketplace so they can kind of bundle them together and prefer pricing.[00:41:42] swyx: Okay, so maybe GPU super rich doing very well, GPU middle class dead, and then GPU[00:41:48] Alessio: poor. I mean, my thing is like, everybody should just be GPU rich. There shouldn't really be, even the GPU poorest, it's like, does it really make sense to be GPU poor?[00:41:57] Alessio: Like, if you're GPU poor, you should just use the [00:42:00] cloud. Yes, you know, and I think there might be a future once we kind of like figure out what the size and shape of these models is where like the tiny box and these things come to fruition where like you can be GPU poor at home. But I think today is like, why are you working so hard to like get these models to run on like very small clusters where it's like, It's so cheap to run them.[00:42:21] Alessio: Yeah, yeah,[00:42:22] swyx: yeah. I think mostly people think it's cool. People think it's a stepping stone to scaling up. So they aspire to be GPU rich one day and they're working on new methods. Like news research, like probably the most deep tech thing they've done this year is Distro or whatever the new name is.[00:42:38] swyx: There's a lot of interest in heterogeneous computing, distributed computing. I tend generally to de emphasize that historically, but it may be coming to a time where it is starting to be relevant. I don't know. You know, SF compute launched their compute marketplace this year, and like, who's really using that?[00:42:53] swyx: Like, it's a bunch of small clusters, disparate types of compute, and if you can make that [00:43:00] useful, then that will be very beneficial to the broader community, but maybe still not the source of frontier models. It's just going to be a second tier of compute that is unlocked for people, and that's fine. But yeah, I mean, I think this year, I would say a lot more on device, We are, I now have Apple intelligence on my phone.[00:43:19] swyx: Doesn't do anything apart from summarize my notifications. But still, not bad. Like, it's multi modal.[00:43:25] Alessio: Yeah, the notification summaries are so and so in my experience.[00:43:29] swyx: Yeah, but they add, they add juice to life. And then, um, Chrome Nano, uh, Gemini Nano is coming out in Chrome. Uh, they're still feature flagged, but you can, you can try it now if you, if you use the, uh, the alpha.[00:43:40] swyx: And so, like, I, I think, like, you know, We're getting the sort of GPU poor version of a lot of these things coming out, and I think it's like quite useful. Like Windows as well, rolling out RWKB in sort of every Windows department is super cool. And I think the last thing that I never put in this GPU poor war, that I think I should now, [00:44:00] is the number of startups that are GPU poor but still scaling very well, as sort of wrappers on top of either a foundation model lab, or GPU Cloud.[00:44:10] swyx: GPU Cloud, it would be Suno. Suno, Ramp has rated as one of the top ranked, fastest growing startups of the year. Um, I think the last public number is like zero to 20 million this year in ARR and Suno runs on Moto. So Suno itself is not GPU rich, but they're just doing the training on, on Moto, uh, who we've also talked to on, on the podcast.[00:44:31] swyx: The other one would be Bolt, straight cloud wrapper. And, and, um, Again, another, now they've announced 20 million ARR, which is another step up from our 8 million that we put on the title. So yeah, I mean, it's crazy that all these GPU pores are finding a way while the GPU riches are also finding a way. And then the only failures, I kind of call this the GPU smiling curve, where the edges do well, because you're either close to the machines, and you're like [00:45:00] number one on the machines, or you're like close to the customers, and you're number one on the customer side.[00:45:03] swyx: And the people who are in the middle. Inflection, um, character, didn't do that great. I think character did the best of all of them. Like, you have a note in here that we apparently said that character's price tag was[00:45:15] Alessio: 1B.[00:45:15] swyx: Did I say that?[00:45:16] Alessio: Yeah. You said Google should just buy them for 1B. I thought it was a crazy number.[00:45:20] Alessio: Then they paid 2. 7 billion. I mean, for like,[00:45:22] swyx: yeah.[00:45:22] Alessio: What do you pay for node? Like, I don't know what the game world was like. Maybe the starting price was 1B. I mean, whatever it was, it worked out for everybody involved.[00:45:31] The Multi-Modality War[00:45:31] Alessio: Multimodality war. And this one, we never had text to video in the first version, which now is the hottest.[00:45:37] swyx: Yeah, I would say it's a subset of image, but yes.[00:45:40] Alessio: Yeah, well, but I think at the time it wasn't really something people were doing, and now we had VO2 just came out yesterday. Uh, Sora was released last month, last week. I've not tried Sora, because the day that I tried, it wasn't, yeah. I[00:45:54] swyx: think it's generally available now, you can go to Sora.[00:45:56] swyx: com and try it. Yeah, they had[00:45:58] Alessio: the outage. Which I [00:46:00] think also played a part into it. Small things. Yeah. What's the other model that you posted today that was on Replicate? Video or OneLive?[00:46:08] swyx: Yeah. Very, very nondescript name, but it is from Minimax, which I think is a Chinese lab. The Chinese labs do surprisingly well at the video models.[00:46:20] swyx: I'm not sure it's actually Chinese. I don't know. Hold me up to that. Yep. China. It's good. Yeah, the Chinese love video. What can I say? They have a lot of training data for video. Or a more relaxed regulatory environment.[00:46:37] Alessio: Uh, well, sure, in some way. Yeah, I don't think there's much else there. I think like, you know, on the image side, I think it's still open.[00:46:45] Alessio: Yeah, I mean,[00:46:46] swyx: 11labs is now a unicorn. So basically, what is multi modality war? Multi modality war is, do you specialize in a single modality, right? Or do you have GodModel that does all the modalities? So this is [00:47:00] definitely still going, in a sense of 11 labs, you know, now Unicorn, PicoLabs doing well, they launched Pico 2.[00:47:06] swyx: 0 recently, HeyGen, I think has reached 100 million ARR, Assembly, I don't know, but they have billboards all over the place, so I assume they're doing very, very well. So these are all specialist models, specialist models and specialist startups. And then there's the big labs who are doing the sort of all in one play.[00:47:24] swyx: And then here I would highlight Gemini 2 for having native image output. Have you seen the demos? Um, yeah, it's, it's hard to keep up. Literally they launched this last week and a shout out to Paige Bailey, who came to the Latent Space event to demo on the day of launch. And she wasn't prepared. She was just like, I'm just going to show you.[00:47:43] swyx: So they have voice. They have, you know, obviously image input, and then they obviously can code gen and all that. But the new one that OpenAI and Meta both have but they haven't launched yet is image output. So you can literally, um, I think their demo video was that you put in an image of a [00:48:00] car, and you ask for minor modifications to that car.[00:48:02] swyx: They can generate you that modification exactly as you asked. So there's no need for the stable diffusion or comfy UI workflow of like mask here and then like infill there in paint there and all that, all that stuff. This is small model nonsense. Big model people are like, huh, we got you in as everything in the transformer.[00:48:21] swyx: This is the multimodality war, which is, do you, do you bet on the God model or do you string together a whole bunch of, uh, Small models like a, like a chump. Yeah,[00:48:29] Alessio: I don't know, man. Yeah, that would be interesting. I mean, obviously I use Midjourney for all of our thumbnails. Um, they've been doing a ton on the product, I would say.[00:48:38] Alessio: They launched a new Midjourney editor thing. They've been doing a ton. Because I think, yeah, the motto is kind of like, Maybe, you know, people say black forest, the black forest models are better than mid journey on a pixel by pixel basis. But I think when you put it, put it together, have you tried[00:48:53] swyx: the same problems on black forest?[00:48:55] Alessio: Yes. But the problem is just like, you know, on black forest, it generates one image. And then it's like, you got to [00:49:00] regenerate. You don't have all these like UI things. Like what I do, no, but it's like time issue, you know, it's like a mid[00:49:06] swyx: journey. Call the API four times.[00:49:08] Alessio: No, but then there's no like variate.[00:49:10] Alessio: Like the good thing about mid journey is like, you just go in there and you're cooking. There's a lot of stuff that just makes it really easy. And I think people underestimate that. Like, it's not really a skill issue, because I'm paying mid journey, so it's a Black Forest skill issue, because I'm not paying them, you know?[00:49:24] Alessio: Yeah,[00:49:25] swyx: so, okay, so, uh, this is a UX thing, right? Like, you, you, you understand that, at least, we think that Black Forest should be able to do all that stuff. I will also shout out, ReCraft has come out, uh, on top of the image arena that, uh, artificial analysis has done, has apparently, uh, Flux's place. Is this still true?[00:49:41] swyx: So, Artificial Analysis is now a company. I highlighted them I think in one of the early AI Newses of the year. And they have launched a whole bunch of arenas. So, they're trying to take on LM Arena, Anastasios and crew. And they have an image arena. Oh yeah, Recraft v3 is now beating Flux 1. 1. Which is very surprising [00:50:00] because Flux And Black Forest Labs are the old stable diffusion crew who left stability after, um, the management issues.[00:50:06] swyx: So Recurve has come from nowhere to be the top image model. Uh, very, very strange. I would also highlight that Grok has now launched Aurora, which is, it's very interesting dynamics between Grok and Black Forest Labs because Grok's images were originally launched, uh, in partnership with Black Forest Labs as a, as a thin wrapper.[00:50:24] swyx: And then Grok was like, no, we'll make our own. And so they've made their own. I don't know, there are no APIs or benchmarks about it. They just announced it. So yeah, that's the multi modality war. I would say that so far, the small model, the dedicated model people are winning, because they are just focused on their tasks.[00:50:42] swyx: But the big model, People are always catching up. And the moment I saw the Gemini 2 demo of image editing, where I can put in an image and just request it and it does, that's how AI should work. Not like a whole bunch of complicated steps. So it really is something. And I think one frontier that we haven't [00:51:00] seen this year, like obviously video has done very well, and it will continue to grow.[00:51:03] swyx: You know, we only have Sora Turbo today, but at some point we'll get full Sora. Oh, at least the Hollywood Labs will get Fulsora. We haven't seen video to audio, or video synced to audio. And so the researchers that I talked to are already starting to talk about that as the next frontier. But there's still maybe like five more years of video left to actually be Soda.[00:51:23] swyx: I would say that Gemini's approach Compared to OpenAI, Gemini seems, or DeepMind's approach to video seems a lot more fully fledged than OpenAI. Because if you look at the ICML recap that I published that so far nobody has listened to, um, that people have listened to it. It's just a different, definitely different audience.[00:51:43] swyx: It's only seven hours long. Why are people not listening? It's like everything in Uh, so, so DeepMind has, is working on Genie. They also launched Genie 2 and VideoPoet. So, like, they have maybe four years advantage on world modeling that OpenAI does not have. Because OpenAI basically only started [00:52:00] Diffusion Transformers last year, you know, when they hired, uh, Bill Peebles.[00:52:03] swyx: So, DeepMind has, has a bit of advantage here, I would say, in, in, in showing, like, the reason that VO2, while one, They cherry pick their videos. So obviously it looks better than Sora, but the reason I would believe that VO2, uh, when it's fully launched will do very well is because they have all this background work in video that they've done for years.[00:52:22] swyx: Like, like last year's NeurIPS, I already was interviewing some of their video people. I forget their model name, but for, for people who are dedicated fans, they can go to NeurIPS 2023 and see, see that paper.[00:52:32] Alessio: And then last but not least, the LLMOS. We renamed it to Ragops, formerly known as[00:52:39] swyx: Ragops War. I put the latest chart on the Braintrust episode.[00:52:43] swyx: I think I'm going to separate these essays from the episode notes. So the reason I used to do that, by the way, is because I wanted to show up on Hacker News. I wanted the podcast to show up on Hacker News. So I always put an essay inside of there because Hacker News people like to read and not listen.[00:52:58] Alessio: So episode essays,[00:52:59] swyx: I remember [00:53:00] purchasing them separately. You say Lanchain Llama Index is still growing.[00:53:03] Alessio: Yeah, so I looked at the PyPy stats, you know. I don't care about stars. On PyPy you see Do you want to share your screen? Yes. I prefer to look at actual downloads, not at stars on GitHub. So if you look at, you know, Lanchain still growing.[00:53:20] Alessio: These are the last six months. Llama Index still growing. What I've basically seen is like things that, One, obviously these things have A commercial product. So there's like people buying this and sticking with it versus kind of hopping in between things versus, you know, for example, crew AI, not really growing as much.[00:53:38] Alessio: The stars are growing. If you look on GitHub, like the stars are growing, but kind of like the usage is kind of like flat. In the last six months, have they done some[00:53:4
Reddit Relationship Stories - OP's parents decided that her golden child sister needed a house, and they went and got a mortgage for her; the trick is that OP has to co-sign on it, and OP refused, so now her family is blowing OP up.Become a supporter of this podcast: https://www.spreaker.com/podcast/lost-genre-reddit-stories--5779056/support.
In this episode of the Youth Ministry Soul Keeper Podcast, hosts James Sabin and Todd Pearage announce the upcoming Youth Leader Summit, and share their favorite Christmas songs. They discuss the popular meme 'Mary, Did You Know?' and reflect on the balance between what we know and what remains unknown in our spiritual journeys. Through personal testimonies and insights from youth ministry, they emphasize the significance of being faithful servants of God, even when the outcomes are uncertain. The discussion also touches on practical aspects of youth ministry, sharing what works and how to encourage youth leaders during challenging times.TakeawaysThe Youth Leader Summit is a valuable retreat for networking and learning.The event includes great speakers and practical content for youth ministry.The hosts share their top five Christmas songs and the reasons behind their choices.Our response should be like Mary's: I'm the Lord's servant.We often don't know all the details of God's plan.God gives us sneak peeks into His work sometimes.Faithfulness in ministry is crucial, even when results are unclear.We serve an amazing God who works behind the scenes.Youth leaders should remain faithful despite challenges.Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Connect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
In this episode of the Youth Ministry Soul Keeper Podcast, hosts James and Todd discuss the intersection of family and ministry during the Christmas season. They share personal experiences and insights about the importance of appreciation in youth ministry, highlighting stories of gratitude from past students. The conversation emphasizes the significance of small, consistent actions in making a lasting impact on youth.TakeawaysAppreciation is vital for youth leaders.Small acts can have a big impact on youth.Networking with other youth leaders is beneficial.Thank yous are rare but meaningful.Consistency in ministry leads to lasting influence. It's the little consistent things that matter.Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Connect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
Mike and Lindsay dive into Tee Higgins parting ways with his agent, what it means for his offseason, and the pressure on the Bengals front office. To learn more about listener data and our privacy practices visit: https://www.audacyinc.com/privacy-policy Learn more about your ad choices. Visit https://podcastchoices.com/adchoices
We have announced our first speaker, friend of the show Dylan Patel, and topic slates for Latent Space LIVE! at NeurIPS. Sign up for IRL/Livestream and to debate!We are still taking questions for our next big recap episode! Submit questions and messages on Speakpipe here for a chance to appear on the show!The vibe shift we observed in July - in favor of Claude 3.5 Sonnet, first introduced in June — has been remarkably long lived and persistent, surviving multiple subsequent updates of 4o, o1 and Gemini versions, for Anthropic's Claude to end 2024 as the preferred model for AI Engineers and even being the exclusive choice for new code agents like bolt.new (our next guest on the pod!), which unlocked so much performance from Claude Sonnet that it went from $0 to $4m ARR in 4 weeks when it launched last month.Anthropic has now raised an additional $4b from Amazon and made an incredibly well received update of Claude 3.5 Sonnet (and Haiku), making significant improvements in performance over its predecessors:Solving SWE-BenchAs part of the October Sonnet release, Anthropic teased a blink-and-you'll miss it result:The updated Claude 3.5 Sonnet shows wide-ranging improvements on industry benchmarks, with particularly strong gains in agentic coding and tool use tasks. On coding, it improves performance on SWE-bench Verified from 33.4% to 49.0%, scoring higher than all publicly available models—including reasoning models like OpenAI o1-preview and specialized systems designed for agentic coding. It also improves performance on TAU-bench, an agentic tool use task, from 62.6% to 69.2% in the retail domain, and from 36.0% to 46.0% in the more challenging airline domain. The new Claude 3.5 Sonnet offers these advancements at the same price and speed as its predecessor.This was followed up by a blogpost a week later from today's guest, Erik Schluntz, the engineer who implemented and scored this SOTA result using a simple, non-overengineered version of the SWE-Agent framework (you can see the submissions here). We have previously covered the SWE-Bench story extensively:* Speaking with SWEBench/SWEAgent authors at ICLR* Speaking with Cosine Genie, the previous SOTA (43.8%) on SWEBench Verified (with brief update at DevDay 2024)* Speaking with Shunyu Yao on SWEBench and the ReAct paradigm driving SWE-AgentOne of the notable inclusions in this blogpost are the tools that Erik decided to give Claude, e.g. the “Edit Tool”:The tools teased in the SWEBench submission/blogpost were then polished up and released with Computer Use…And you can also see even more computer use tools given in the new Model Context Protocol servers:Claude Computer UseBecause it is one of the best received AI releases of the year, we recommend watching the 2 minute Computer Use intro (and related demos) in its entirety:Eric also worked on Claude's function calling, tool use, and computer use APIs, so we discuss that in the episode.Erik [00:53:39]: With computer use, just give the thing a browser that's logged into what you want to integrate with, and it's going to work immediately. And I see that reduction in friction as being incredibly exciting. Imagine a customer support team where, okay, hey, you got this customer support bot, but you need to go integrate it with all these things. And you don't have any engineers on your customer support team. But if you can just give the thing a browser that's logged into your systems that you need it to have access to, now, suddenly, in one day, you could be up and rolling with a fully integrated customer service bot that could go do all the actions you care about. So I think that's the most exciting thing for me about computer use, is reducing that friction of integrations to almost zero.As you'll see, this is very top of mind for Erik as a former Robotics founder who's company basically used robots to interface with human physical systems like elevators.Full Video episodePlease like and subscribe!Show Notes* Eric Schluntz* “Raising the bar on SWE-Bench Verified”* Cobalt Robotics* SWE-Bench* SWE-Bench Verified* Human Eval & other benchmarks* Anthropic Workbench* Aider* Cursor* Fireworks AI* E2B* Amanda Askell* Toyota Research* Physical Intelligence (Pi)* Chelsea Finn* Josh Albrecht* Eric Jang* 1X* Dust* Cosine Episode* Bolt* Adept Episode* TauBench* LMSys EpisodeTimestamps* [00:00:00] Introductions* [00:03:39] What is SWE-Bench?* [00:12:22] SWE-Bench vs HumanEval vs others* [00:15:21] SWE-Agent architecture and runtime* [00:21:18] Do you need code indexing?* [00:24:50] Giving the agent tools* [00:27:47] Sandboxing for coding agents* [00:29:16] Why not write tests?* [00:30:31] Redesigning engineering tools for LLMs* [00:35:53] Multi-agent systems* [00:37:52] Why XML so good?* [00:42:57] Thoughts on agent frameworks* [00:45:12] How many turns can an agent do?* [00:47:12] Using multiple model types* [00:51:40] Computer use and agent use cases* [00:59:04] State of AI robotics* [01:04:24] Robotics in manufacturing* [01:05:01] Hardware challenges in robotics* [01:09:21] Is self-driving a good business?TranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners. And today we're in the new studio with my usual co-host, Shawn from Smol AI.Swyx [00:00:14]: Hey, and today we're very blessed to have Erik Schluntz from Anthropic with us. Welcome.Erik [00:00:19]: Hi, thanks very much. I'm Erik Schluntz. I'm a member of technical staff at Anthropic, working on tool use, computer use, and Swebench.Swyx [00:00:27]: Yeah. Well, how did you get into just the whole AI journey? I think you spent some time at SpaceX as well? Yeah. And robotics. Yeah. There's a lot of overlap between like the robotics people and the AI people, and maybe like there's some interlap or interest between language models for robots right now. Maybe just a little bit of background on how you got to where you are. Yeah, sure.Erik [00:00:50]: I was at SpaceX a long time ago, but before joining Anthropic, I was the CTO and co-founder of Cobalt Robotics. We built security and inspection robots. These are sort of five foot tall robots that would patrol through an office building or a warehouse looking for anything out of the ordinary. Very friendly, no tasers or anything. We would just sort of call a remote operator if we saw anything. We have about 100 of those out in the world, and had a team of about 100. We actually got acquired about six months ago, but I had left Cobalt about a year ago now, because I was starting to get a lot more excited about AI. I had been writing a lot of my code with things like Copilot, and I was like, wow, this is actually really cool. If you had told me 10 years ago that AI would be writing a lot of my code, I would say, hey, I think that's AGI. And so I kind of realized that we had passed this level, like, wow, this is actually really useful for engineering work. That got me a lot more excited about AI and learning about large language models. So I ended up taking a sabbatical and then doing a lot of reading and research myself and decided, hey, I want to go be at the core of this and joined Anthropic.Alessio [00:01:53]: And why Anthropic? Did you consider other labs? Did you consider maybe some of the robotics companies?Erik [00:02:00]: So I think at the time I was a little burnt out of robotics, and so also for the rest of this, any sort of negative things I say about robotics or hardware is coming from a place of burnout, and I reserve my right to change my opinion in a few years. Yeah, I looked around, but ultimately I knew a lot of people that I really trusted and I thought were incredibly smart at Anthropic, and I think that was the big deciding factor to come there. I was like, hey, this team's amazing. They're not just brilliant, but sort of like the most nice and kind people that I know, and so I just felt like I could be a really good culture fit. And ultimately, I do care a lot about AI safety and making sure that I don't want to build something that's used for bad purposes, and I felt like the best chance of that was joining Anthropic.Alessio [00:02:39]: And from the outside, these labs kind of look like huge organizations that have these obscureSwyx [00:02:44]: ways to organize.Alessio [00:02:45]: How did you get, you joined Anthropic, did you already know you were going to work on of the stuff you publish or you kind of join and then you figure out where you land? I think people are always curious to learn more.Erik [00:02:57]: Yeah, I've been very happy that Anthropic is very bottoms up and sort of very sort of receptive to whatever your interests are. And so I joined sort of being very transparent of like, hey, I'm most excited about code generation and AI that can actually go out and sort of touch the world or sort of help people build things. And, you know, those weren't my initial initial projects. I also came in and said, hey, I want to do the most valuable possible thing for this company and help Anthropic succeed. And, you know, like, let me find the balance of those. So I was working on lots of things at the beginning, you know, function calling, tool use. And then sort of as it became more and more relevant, I was like, oh, hey, like, let's it's time to go work on encoding agents and sort of started looking at SWE-Bench as sort of a really good benchmark for that.Swyx [00:03:39]: So let's get right into SWE-Bench. That's one of the many claims to fame. I feel like there's just been a series of releases related with Cloud 3.5 Sonnet around about two or three months ago, 3.5 Sonnet came out and it was it was a step ahead in terms of a lot of people immediately fell in love with it for coding. And then last month you released a new updated version of Cloud Sonnet. We're not going to talk about the training for that because that's still confidential. But I think Anthropic's done a really good job, like applying the model to different things. So you took the lead on SWE-Bench, but then also we're going to talk a little bit about computer use later on. So maybe just give us a context about why you looked at SWE-Bench Verified and you actually came up with a whole system for building agents that would maximally use the model well. Yeah.Erik [00:04:28]: So I'm on a sub team called Product Research. And basically the idea of product research is to really understand what end customers care about and want in the models and then work to try to make that happen. So we're not focused on sort of these more abstract general benchmarks like math problems or MMLU, but we really care about finding the things that are really valuable and making sure the models are great at those. And so because I've been interested in coding agents, I knew that this would be a really valuable thing. And I knew there were a lot of startups and our customers trying to build coding agents with our models. And so I said, hey, this is going to be a really good benchmark to be able to measure that and do well on it. And I wasn't the first person at Anthropic to find SWE-Bench, and there are lots of people that already knew about it and had done some internal efforts on it. It fell to me to sort of both implement the benchmark, which is very tricky, and then also to sort of make sure we had an agent and basically like a reference agent, maybe I'd call it, that could do very well on it. Ultimately, we want to provide how we implemented that reference agent so that people can build their own agents on top of our system and get sort of the most out of it as possible. So with this blog post we released on SWE-Bench, we released the exact tools and the prompt that we gave the model to be able to do well.Swyx [00:05:46]: For people who don't know, who maybe haven't dived into SWE-Bench, I think the general perception is they're like tasks that a software engineer could do. I feel like that's an inaccurate description because it is basically, one, it's a subset of like 12 repos. It's everything they could find that every issue with like a matching commit that could be tested. So that's not every commit. And then SWE-Bench verified is further manually filtered by OpenAI. Is that an accurate description and anything you'd change about that? Yes.Erik [00:06:14]: SWE-Bench is, it certainly is a subset of all tasks. It's first of all, it's only Python repos, so already fairly limited there. And it's just 12 of these popular open source repos. And yes, it's only ones where there were tests that passed at the beginning and also new tests that were introduced that test the new feature that's added. So it is, I think, a very limited subset of real engineering tasks. But I think it's also very valuable because even though it's a subset, it is true engineering tasks. And I think a lot of other benchmarks are really kind of these much more artificial setups of even if they're related to coding, they're more like coding interview style questions or puzzles that I think are very different from day-to-day what you end up doing. I don't know how frequently you all get to use recursion in your day-to-day job, but whenever I do, it's like a treat. And I think it's almost comical, and a lot of people joke about this in the industry, is how different interview questions are.Swyx [00:07:13]: Dynamic programming. Yeah, exactly.Erik [00:07:15]: Like, you code. From the day-to-day job. But I think one of the most interesting things about SWE-Bench is that all these other benchmarks are usually just isolated puzzles, and you're starting from scratch. Whereas SWE-Bench, you're starting in the context of an entire repository. And so it adds this entirely new dimension to the problem of finding the relevant files. And this is a huge part of real engineering, is it's actually pretty rare that you're starting something totally greenfield. You need to go and figure out where in a codebase you're going to make a change and understand how your work is going to interact with the rest of the systems. And I think SWE-Bench does a really good job of presenting that problem.Alessio [00:07:51]: Why do we still use human eval? It's like 92%, I think. I don't even know if you can actually get to 100% because some of the data is not actuallySwyx [00:07:59]: solvable.Alessio [00:08:00]: Do you see benchmarks like that, they should just get sunsetted? Because when you look at the model releases, it's like, oh, it's like 92% instead of like 89%, 90% on human eval versus, you know, SWE-Bench verified is you have 49%, right? Which is like, before 45% was state of the art, but maybe like six months ago it was like 30%, something like that. So is that a benchmark that you think is going to replace human eval, or do you think they're just going to run in parallel?Erik [00:08:27]: I think there's still need for sort of many different varied evals. Like sometimes you do really care about just sort of greenfield code generation. And so I don't think that everything needs to go to sort of an agentic setup.Swyx [00:08:39]: It would be very expensive to implement.Erik [00:08:41]: The other thing I was going to say is that SWE-Bench is certainly hard to implement and expensive to run because each task, you have to parse, you know, a lot of the repo to understand where to put your code. And a lot of times you take many tries of writing code, running it, editing it. It can use a lot of tokens compared to something like human eval. So I think there's definitely a space for these more traditional coding evals that are sort of easy to implement, quick to run, and do get you some signal. Maybe hopefully there's just sort of harder versions of human eval that get created.Alessio [00:09:14]: How do we get SWE-Bench verified to 92%? Do you think that's something where it's like line of sight to it, or it's like, you know, we need a whole lot of things to go right? Yeah, yeah.Erik [00:09:23]: And actually, maybe I'll start with SWE-Bench versus SWE-Bench verified, which is I think something I missed earlier. So SWE-Bench is, as we described, this big set of tasks that were scraped.Swyx [00:09:33]: Like 12,000 or something?Erik [00:09:34]: Yeah, I think it's 2,000 in the final set. But a lot of those, even though a human did them, they're actually impossible given the information that comes with the task. The most classic example of this is the test looks for a very specific error string. You know, like assert message equals error, something, something, something. And unless you know that's exactly what you're looking for, there's no way the model is going to write that exact same error message, and so the tests are going to fail. So SWE-Bench verified was actually made in partnership with OpenAI, and they hired humans to go review all these tasks and pick out a subset to try to remove any obstacle like this that would make the tasks impossible. So in theory, all of these tasks should be fully doable by the model. And they also had humans grade how difficult they thought the problems would be. Between less than 15 minutes, I think 15 minutes to an hour, an hour to four hours, and greater than four hours. So that's kind of this interesting sort of how big the problem is as well. To get to SWE-Bench verified to 90%, actually, maybe I'll also start off with some of the remaining failures that I see when running our model on SWE-Bench. I'd say the biggest cases are the model sort of operates at the wrong level of abstraction. And what I mean by that is the model puts in maybe a smaller band-aid when really the task is asking for a bigger refactor. And some of those, you know, is the model's fault, but a lot of times if you're just sort of seeing the GitHub issue, it's not exactly clear which way you should do. So even though these tasks are possible, there's still some ambiguity in how the tasks are described. That being said, I think in general, language models frequently will produce a smaller diff when possible, rather than trying to do a big refactor. I think another area, at least the agent we created, didn't have any multimodal abilities, even though our models are very good at vision. So I think that's just a missed opportunity. And if I read through some of the traces, there's some funny things where, especially the tasks on matplotlib, which is a graphing library, the test script will save an image and the model will just say, okay, it looks great, you know, without looking at it. So there's certainly extra juice to squeeze there of just making sure the model really understands all the sides of the input that it's given, including multimodal. But yeah, I think like getting to 92%. So this is something that I have not looked at, but I'm very curious about. I want someone to look at, like, what is the union of all of the different tasks that have been solved by at least one attempt at SWE-Bench Verified. There's a ton of submissions to the benchmark, and so I'd be really curious to see how many of those 500 tasks at least someone has solved. And I think, you know, there's probably a bunch that none of the attempts have ever solved. And I think it'd be interesting to look at those and say, hey, is there some problem with these? Like, are these impossible? Or are they just really hard and only a human could do them?Swyx [00:12:22]: Yeah, like specifically, is there a category of problems that are still unreachable by any LLM agent? Yeah, yeah. And I think there definitely are.Erik [00:12:28]: The question is, are those fairly inaccessible or are they just impossible because of the descriptions? But I think certainly some of the tasks, especially the ones that the human graders reviewed as like taking longer than four hours are extremely difficult. I think we got a few of them right, but not very many at all in the benchmark.Swyx [00:12:49]: And did those take less than four hours?Erik [00:12:51]: They certainly did less than, yeah, than four hours.Swyx [00:12:54]: Is there a correlation of length of time with like human estimated time? You know what I mean? Or do we have sort of more of X paradox type situations where it's something super easy for a model, but hard for a human?Erik [00:13:06]: I actually haven't done the stats on that, but I think that'd be really interesting to see of like how many tokens does it take and how is that correlated with difficulty? What is the likelihood of success with difficulty? I think actually a really interesting thing that I saw, one of my coworkers who was also working on this named Simon, he was focusing just specifically on the very hard problems, the ones that are said to take longer than four hours. And he ended up sort of creating a much more detailed prompt than I used. And he got a higher score on the most difficult subset of problems, but a lower score overall on the whole benchmark. And the prompt that I made, which is sort of much more simple and bare bones, got a higher score on the overall benchmark, but lower score on the really hard problems. And I think some of that is the really detailed prompt made the model sort of overcomplicate a lot of the easy problems, because honestly, a lot of the suite bench problems, they really do just ask for a bandaid where it's like, hey, this crashes if this is none, and really all you need to do is put a check if none. And so sometimes trying to make the model think really deeply, it'll think in circles and overcomplicate something, which certainly human engineers are capable of as well. But I think there's some interesting thing of the best prompt for hard problems might not be the best prompt for easy problems.Alessio [00:14:19]: How do we fix that? Are you supposed to fix it at the model level? How do I know what prompt I'm supposed to use?Swyx [00:14:25]: Yeah.Erik [00:14:26]: And I'll say this was a very small effect size, and so I think this isn't worth obsessing over. I would say that as people are building systems around agents, I think the more you can separate out the different kinds of work the agent needs to do, the better you can tailor a prompt for that task. And I think that also creates a lot of like, for instance, if you were trying to make an agent that could both solve hard programming tasks, and it could just write quick test files for something that someone else had already made, the best way to do those two tasks might be very different prompts. I see a lot of people build systems where they first sort of have a classification, and then route the problem to two different prompts. And that's sort of a very effective thing, because one, it makes the two different prompts much simpler and smaller, and it means you can have someone work on one of the prompts without any risk of affecting the other tasks. So it creates like a nice separation of concerns. Yeah.Alessio [00:15:21]: And the other model behavior thing you mentioned, they prefer to generate like shorter diffs. Why is that? Like, is there a way? I think that's maybe like the lazy model question that people have is like, why are you not just generating the whole code instead of telling me to implement it?Swyx [00:15:36]: Are you saving tokens? Yeah, exactly. It's like conspiracy theory. Yeah. Yeah.Erik [00:15:41]: Yeah. So there's two different things there. One is like the, I'd say maybe like doing the easier solution rather than the hard solution. And I'd say the second one, I think what you're talking about is like the lazy model is like when the model says like dot, dot, dot, code remains the same.Swyx [00:15:52]: Code goes here. Yeah. I'm like, thanks, dude.Erik [00:15:55]: But honestly, like that just comes as like people on the internet will do stuff like that. And like, dude, if you're talking to a friend and you ask them like to give you some example code, they would definitely do that. They're not going to reroll the whole thing. And so I think that's just a matter of like, you know, sometimes you actually do just, just want like the relevant changes. And so I think it's, this is something where a lot of times like, you know, the models aren't good at mind reading of like which one you want. So I think that like the more explicit you can be in prompting to say, Hey, you know, give me the entire thing, no, no elisions versus just give me the relevant changes. And that's something, you know, we want to make the models always better at following those kinds of instructions.Swyx [00:16:32]: I'll drop a couple of references here. We're recording this like a day after Dario, Lex Friedman just dropped his five hour pod with Dario and Amanda and the rest of the crew. And Dario actually made this interesting observation that like, we actually don't want, we complain about models being too chatty in text and then not chatty enough in code. And so like getting that right is kind of a awkward bar because, you know, you, you don't want it to yap in its responses, but then you also want it to be complete in, in code. And then sometimes it's not complete. Sometimes you just want it to diff, which is something that Enthopic has also released with a, you know, like the, the fast edit stuff that you guys did. And then the other thing I wanted to also double back on is the prompting stuff. You said, you said it was a small effect, but it was a noticeable effect in terms of like picking a prompt. I think we'll go into suite agent in a little bit, but I kind of reject the fact that, you know, you need to choose one prompt and like have your whole performance be predicated on that one prompt. I think something that Enthopic has done really well is meta prompting, prompting for a prompt. And so why can't you just develop a meta prompt for, for all the other prompts? And you know, if it's a simple task, make a simple prompt, if it's a hard task, make a hard prompt. Obviously I'm probably hand-waving a little bit, but I will definitely ask people to try the Enthopic Workbench meta prompting system if they haven't tried it yet. I went to the Build Day recently at Enthopic HQ, and it's the closest I've felt to an AGI, like learning how to operate itself that, yeah, it's, it's, it's really magical.Erik [00:17:57]: Yeah, no, Claude is great at writing prompts for Claude.Swyx [00:18:00]: Right, so meta prompting. Yeah, yeah.Erik [00:18:02]: The way I think about this is that humans, even like very smart humans still use sort of checklists and use sort of scaffolding for themselves. Surgeons will still have checklists, even though they're incredible experts. And certainly, you know, a very senior engineer needs less structure than a junior engineer, but there still is some of that structure that you want to keep. And so I always try to anthropomorphize the models and try to think about for a human sort of what is the equivalent. And that's sort of, you know, how I think about these things is how much instruction would you give a human with the same task? And do you, would you need to give them a lot of instruction or a little bit of instruction?Alessio [00:18:36]: Let's talk about the agent architecture maybe. So first, runtime, you let it run until it thinks it's done or it reaches 200k context window.Swyx [00:18:45]: How did you come up? What's up with that?Erik [00:18:47]: Yeah.Swyx [00:18:48]: Yeah.Erik [00:18:49]: I mean, this, so I'd say that a lot of previous agent work built sort of these very hard coded and rigid workflows where the model is sort of pushed through certain flows of steps. And I think to some extent, you know, that's needed with smaller models and models that are less smart. But one of the things that we really wanted to explore was like, let's really give Claude the reins here and not force Claude to do anything, but let Claude decide, you know, how it should approach the problem, what steps it should do. And so really, you know, what we did is like the most extreme version of this is just give it some tools that it can call and it's able to keep calling the tools, keep thinking, and then yeah, keep doing that until it thinks it's done. And that's sort of the most, the most minimal agent framework that we came up with. And I think that works very well. I think especially the new Sonnet 3.5 is very, very good at self-correction, has a lot of like grit. Claude will try things that fail and then try, you know, come back and sort of try different approaches. And I think that's something that you didn't see in a lot of previous models. Some of the existing agent frameworks that I looked at, they had whole systems built to try to detect loops and see, oh, is the model doing the same thing, you know, more than three times, then we have to pull it out. And I think like the smarter the models are, the less you need that kind of extra scaffolding. So yeah, just giving the model tools and letting it keep sample and call tools until it thinks it's done was the most minimal framework that we could think of. And so that's what we did.Alessio [00:20:18]: So you're not pruning like bad paths from the context. If it tries to do something, it fails. You just burn all these tokens.Swyx [00:20:25]: Yes.Erik [00:20:26]: I would say the downside of this is that this is sort of a very token expensive way to doSwyx [00:20:29]: this. But still, it's very common to prune bad paths because models get stuck. Yeah.Erik [00:20:35]: But I'd say that, yeah, 3.5 is not getting stuck as much as previous models. And so, yeah, we wanted to at least just try the most minimal thing. Now, I would say that, you know, this is definitely an area of future research, especially if we talk about these problems that are going to take a human more than four hours. Those might be things where we're going to need to go prune bad paths to let the model be able to accomplish this task within 200k tokens. So certainly I think there's like future research to be done in that area, but it's not necessary to do well on these benchmarks.Swyx [00:21:06]: Another thing I always have questions about on context window things, there's a mini cottage industry of code indexers that have sprung up for large code bases, like the ones in SweetBench. You didn't need them? We didn't.Erik [00:21:18]: And I think I'd say there's like two reasons for this. One is like SweetBench specific and the other is a more general thing. The more general thing is that I think Sonnet is very good at what we call agentic search. And what this basically means is letting the model decide how to search for something. It gets the results and then it can decide, should it keep searching or is it done? Does it have everything it needs? So if you read through a lot of the traces of the SweetBench, the model is calling tools to view directories, list out things, view files. And it will do a few of those until it feels like it's found the file where the bug is. And then it will start working on that file. And I think like, again, this is all, everything we did was about just giving Claude the full reins. So there's no hard-coded system. There's no search system that you're relying on getting the correct files into context. This just totally lets Claude do it.Swyx [00:22:11]: Or embedding things into a vector database. Exactly. Oops. No, no.Erik [00:22:17]: This is very, very token expensive. And so certainly, and it also takes many, many turns. And so certainly if you want to do something in a single turn, you need to do RAG and just push stuff into the first prompt.Alessio [00:22:28]: And just to make it clear, it's using the Bash tool, basically doing LS, looking at files and then doing CAD for the following context. It can do that.Erik [00:22:35]: But it's file editing tool also has a command in it called view that can view a directory. It's very similar to LS, but it just sort of has some nice sort of quality of life improvements. So I think it'll only do an LS sort of two directories deep so that the model doesn't get overwhelmed if it does this on a huge file. I would say actually we did more engineering of the tools than the overall prompt. But the one other thing I want to say about this agentic search is that for SWE-Bench specifically, a lot of the tasks are bug reports, which means they have a stack trace in them. And that means right in that first prompt, it tells you where to go. And so I think this is a very easy case for the model to find the right files versus if you're using this as a general coding assistant where there isn't a stack trace or you're asking it to insert a new feature, I think there it's much harder to know which files to look at. And that might be an area where you would need to do more of this exhaustive search where an agentic search would take way too long.Swyx [00:23:33]: As someone who spent the last few years in the JS world, it'd be interesting to see SWE-Bench JS because these stack traces are useless because of so much virtualization that we do. So they're very, very disconnected with where the code problems are actually appearing.Erik [00:23:50]: That makes me feel better about my limited front-end experience, as I've always struggled with that problem.Swyx [00:23:55]: It's not your fault. We've gotten ourselves into a very, very complicated situation. And I'm not sure it's entirely needed. But if you talk to our friends at Vercel, they will say it is.Erik [00:24:04]: I will say SWE-Bench just released SWE-Bench Multimodal, which I believe is either entirely JavaScript or largely JavaScript. And it's entirely things that have visual components of them.Swyx [00:24:15]: Are you going to tackle that? We will see.Erik [00:24:17]: I think it's on the list and there's interest, but no guarantees yet.Swyx [00:24:20]: Just as a side note, it occurs to me that every model lab, including Enthopic, but the others as well, you should have your own SWE-Bench, whatever your bug tracker tool. This is a general methodology that you can use to track progress, I guess.Erik [00:24:34]: Yeah, sort of running on our own internal code base.Swyx [00:24:36]: Yeah, that's a fun idea.Alessio [00:24:37]: Since you spend so much time on the tool design, so you have this edit tool that can make changes and whatnot. Any learnings from that that you wish the AI IDEs would take in? Is there some special way to look at files, feed them in?Erik [00:24:50]: I would say the core of that tool is string replace. And so we did a few different experiments with different ways to specify how to edit a file. And string replace, basically, the model has to write out the existing version of the string and then a new version, and that just gets swapped in. We found that to be the most reliable way to do these edits. Other things that we tried were having the model directly write a diff, having the model fully regenerate files. That one is actually the most accurate, but it takes so many tokens, and if you're in a very big file, it's cost prohibitive. There's basically a lot of different ways to represent the same task. And they actually have pretty big differences in terms of model accuracy. I think Eider, they have a really good blog where they explore some of these different methods for editing files, and they post results about them, which I think is interesting. But I think this is a really good example of the broader idea that you need to iterate on tools rather than just a prompt. And I think a lot of people, when they make tools for an LLM, they kind of treat it like they're just writing an API for a computer, and it's sort of very minimal. It's sort of just the bare bones of what you'd need, and honestly, it's so hard for the models to use those. Again, I come back to anthropomorphizing these models. Imagine you're a developer, and you just read this for the very first time, and you're trying to use it. You can do so much better than just sort of the bare API spec of what you'd often see. Include examples in the description. Include really detailed explanations of how things work. And I think that, again, also think about what is the easiest way for the model to represent the change that it wants to make. For file editing, as an example, writing a diff is actually... Let's take the most extreme example. You want the model to literally write a patch file. I think patch files have at the very beginning numbers of how many total lines change. That means before the model has actually written the edit, it needs to decide how many numbers or how many lines are going to change.Swyx [00:26:52]: Don't quote me on that.Erik [00:26:54]: I think it's something like that, but I don't know if that's exactly the diff format. But you can certainly have formats that are much easier to express without messing up than others. And I like to think about how much human effort goes into designing human interfaces for things. It's incredible. This is entirely what FrontEnd is about, is creating better interfaces to kind of do the same things. And I think that same amount of attention and effort needs to go into creating agent computer interfaces.Swyx [00:27:19]: It's a topic we've discussed, ACI or whatever that looks like. I would also shout out that I think you released some of these toolings as part of computer use as well. And people really liked it. It's all open source if people want to check it out. I'm curious if there's an environment element that complements the tools. So how do you... Do you have a sandbox? Is it just Docker? Because that can be slow or resource intensive. Do you have anything else that you would recommend?Erik [00:27:47]: I don't think I can talk about sort of public details or about private details about how we implement our sandboxing. But obviously, we need to have sort of safe, secure, and fast sandboxes for training for the models to be able to practice writing code and working in an environment.Swyx [00:28:03]: I'm aware of a few startups working on agent sandboxing. E2B is a close friend of ours that Alessio has led around in, but also I think there's others where they're focusing on snapshotting memory so that it can do time travel for debugging. Computer use where you can control the mouse or keyboard or something like that. Whereas here, I think that the kinds of tools that we offer are very, very limited to coding agent work cases like bash, edit, you know, stuff like that. Yeah.Erik [00:28:30]: I think the computer use demo that we released is an extension of that. It has the same bash and edit tools, but it also has the computer tool that lets it get screenshots and move the mouse and keyboard. Yeah. So I definitely think there's sort of more general tools there. And again, the tools we released as part of SweetBench were, I'd say they're very specific for like editing files and doing bash, but at the same time, that's actually very general if you think about it. Like anything that you would do on a command line or like editing files, you can do with those tools. And so we do want those tools to feel like any sort of computer terminal work could be done with those same tools rather than making tools that were like very specific for SweetBench like run tests as its own tool, for instance. Yeah.Swyx [00:29:15]: You had a question about tests.Alessio [00:29:16]: Yeah, exactly. I saw there's no test writer tool. Is it because it generates the code and then you're running it against SweetBench anyway, so it doesn't really need to write the test or?Swyx [00:29:26]: Yeah.Erik [00:29:27]: So this is one of the interesting things about SweetBench is that the tests that the model's output is graded on are hidden from it. That's basically so that the model can't cheat by looking at the tests and writing the exact solution. And I'd say typically the model, the first thing it does is it usually writes a little script to reproduce the error. And again, most SweetBench tasks are like, hey, here's a bug that I found. I run this and I get this error. So the first thing the model does is try to reproduce that. So it's kind of been rerunning that script as a mini test. But yeah, sometimes the model will like accidentally introduce a bug that breaks some other tests and it doesn't know about that.Alessio [00:30:05]: And should we be redesigning any tools? We kind of talked about this and like having more examples, but I'm thinking even things of like Q as a query parameter in many APIs, it's like easier for the model to like re-query than read the Q. I'm sure it learned the Q by this point, but like, is there anything you've seen like building this where it's like, hey, if I were to redesign some CLI tools, some API tool, I would like change the way structure to make it better for LLMs?Erik [00:30:31]: I don't think I've thought enough about that off the top of my head, but certainly like just making everything more human friendly, like having like more detailed documentation and examples. I think examples are really good in things like descriptions, like so many, like just using the Linux command line, like how many times I do like dash dash help or look at the man page or something. It's like, just give me one example of like how I actually use this. Like I don't want to go read through a hundred flags. Just give me the most common example. But again, so you know, things that would be useful for a human, I think are also very useful for a model.Swyx [00:31:03]: Yeah. I mean, there's one thing that you cannot give to code agents that is useful for human is this access to the internet. I wonder how to design that in, because one of the issues that I also had with just the idea of a suite bench is that you can't do follow up questions. You can't like look around for similar implementations. These are all things that I do when I try to fix code and we don't do that. It's not, it wouldn't be fair, like it'd be too easy to cheat, but then also it's kind of not being fair to these agents because they're not operating in a real world situation. Like if I had a real world agent, of course I'm giving it access to the internet because I'm not trying to pass a benchmark. I don't have a question in there more, more just like, I feel like the most obvious tool access to the internet is not being used.Erik [00:31:47]: I think that that's really important for humans, but honestly the models have so much general knowledge from pre-training that it's, it's like less important for them. I feel like versioning, you know, if you're working on a newer thing that was like, they came after the knowledge cutoff, then yes, I think that's very important. I think actually this, this is like a broader problem that there is a divergence between Sweebench and like what customers will actually care about who are working on a coding agent for real use. And I think one of those there is like internet access and being able to like, how do you pull in outside information? I think another one is like, if you have a real coding agent, you don't want to have it start on a task and like spin its wheels for hours because you gave it a bad prompt. You want it to come back immediately and ask follow up questions and like really make sure it has a very detailed understanding of what to do, then go off for a few hours and do work. So I think that like real tasks are going to be much more interactive with the agent rather than this kind of like one shot system. And right now there's no benchmark that, that measures that. And maybe I think it'd be interesting to have some benchmark that is more interactive. I don't know if you're familiar with TauBench, but it's a, it's a customer service benchmark where there's basically one LLM that's playing the user or the customer that's getting support and another LLM that's playing the support agent and they interact and try to resolve the issue.Swyx [00:33:08]: Yeah. We talked to the LMSIS guys. Awesome. And they also did MTBench for people listening along. So maybe we need MTSWE-Bench. Sure. Yeah.Erik [00:33:16]: So maybe, you know, you could have something where like before the SWE-Bench task starts, you have like a few back and forths with kind of like the, the author who can answer follow up questions about what they want the task to do. And of course you'd need to do that where it doesn't cheat and like just get the exact, the exact thing out of the human or out of the sort of user. But I think that would be a really interesting thing to see. If you look at sort of existing agent work, like a Repl.it's coding agent, I think one of the really great UX things they do is like first having the agent create a plan and then having the human approve that plan or give feedback. I think for agents in general, like having a planning step at the beginning, one, just having that plan will improve performance on the downstream task just because it's kind of like a bigger chain of thought, but also it's just such a better UX. It's way easier for a human to iterate on a plan with a model rather than iterating on the full task that sort of has a much slower time through each loop. If the human has approved this implementation plan, I think it makes the end result a lot more sort of auditable and trustable. So I think there's a lot of things sort of outside of SweetBench that will be very important for real agent usage in the world. Yeah.Swyx [00:34:27]: I will say also, there's a couple of comments on names that you dropped. Copilot also does the plan stage before it writes code. I feel like those approaches have generally been less Twitter successful because it's not prompt to code, it's prompt plan code. You know, so there's a little bit of friction in there, but it's not much. Like it's, it actually, it's, it, you get a lot for what it's worth. I also like the way that Devin does it, where you can sort of edit the plan as it goes along. And then the other thing with Repl.it, we had a, we hosted a sort of dev day pregame with Repl.it and they also commented about multi-agents. So like having two agents kind of bounce off of each other. I think it's a similar approach to what you're talking about with kind of the few shot example, just as in the prompts of clarifying what the agent wants. But typically I think this would be implemented as a tool calling another agent, like a sub-agent I don't know if you explored that, do you like that idea?Erik [00:35:20]: I haven't explored this enough, but I've definitely heard of people having good success with this. Of almost like basically having a few different sort of personas of agents, even if they're all the same LLM. I think this is one thing with multi-agent that a lot of people will kind of get confused by is they think it has to be different models behind each thing. But really it's sort of usually the same, the same model with different prompts. And yet having one, having them have different personas to kind of bring different sort of thoughts and priorities to the table. I've seen that work very well and sort of create a much more thorough and thought outSwyx [00:35:53]: response.Erik [00:35:53]: I think the downside is just that it adds a lot of complexity and it adds a lot of extra tokens. So I think it depends what you care about. If you want a plan that's very thorough and detailed, I think it's great. If you want a really quick, just like write this function, you know, you probably don't want to do that and have like a bunch of different calls before it does this.Alessio [00:36:11]: And just talking about the prompt, why are XML tags so good in Cloud? I think initially people were like, oh, maybe you're just getting lucky with XML. But I saw obviously you use them in your own agent prompts, so they must work. And why is it so model specific to your family?Erik [00:36:26]: Yeah, I think that there's, again, I'm not sure how much I can say, but I think there's historical reasons that internally we've preferred XML. I think also the one broader thing I'll say is that if you look at certain kinds of outputs, there is overhead to outputting in JSON. If you're trying to output code in JSON, there's a lot of extra escaping that needs to be done, and that actually hurts model performance across the board. Versus if you're in just a single XML tag, there's none of that sort of escaping thatSwyx [00:36:58]: needs to happen.Erik [00:36:58]: That being said, I haven't tried having it write HTML and XML, which maybe then you start running into weird escaping things there. I'm not sure. But yeah, I'd say that's some historical reasons, and there's less overhead of escaping.Swyx [00:37:12]: I use XML in other models as well, and it's just a really nice way to make sure that the thing that ends is tied to the thing that starts. That's the only way to do code fences where you're pretty sure example one start, example one end, that is one cohesive unit.Alessio [00:37:30]: Because the braces are nondescriptive. Yeah, exactly.Swyx [00:37:33]: That would be my simple reason. XML is good for everyone, not just Cloud. Cloud was just the first one to popularize it, I think.Erik [00:37:39]: I do definitely prefer to read XML than read JSON.Alessio [00:37:43]: Any other details that are maybe underappreciated? I know, for example, you had the absolute paths versus relative. Any other fun nuggets?Erik [00:37:52]: I think that's a good sort of anecdote to mention about iterating on tools. Like I said, spend time prompt engineering your tools, and don't just write the prompt, but write the tool, and then actually give it to the model and read a bunch of transcripts about how the model tries to use the tool. I think by doing that, you will find areas where the model misunderstands a tool or makes mistakes, and then basically change the tool to make it foolproof. There's this Japanese term, pokayoke, about making tools mistake-proof. You know, the classic idea is you can have a plug that can fit either way, and that's dangerous, or you can make it asymmetric so that it can't fit this way, it has to go like this, and that's a better tool because you can't use it the wrong way. So for this example of absolute paths, one of the things that we saw while testing these tools is, oh, if the model has done CD and moved to a different directory, it would often get confused when trying to use the tool because it's now in a different directory, and so the paths aren't lining up. So we said, oh, well, let's just force the tool to always require an absolute path, and then that's easy for the model to understand. It knows sort of where it is. It knows where the files are. And then once we have it always giving absolute paths, it never messes up even, like, no matter where it is because it just, if you're using an absolute path, it doesn't matter whereSwyx [00:39:13]: you are.Erik [00:39:13]: So iterations like that, you know, let us make the tool foolproof for the model. I'd say there's other categories of things where we see, oh, if the model, you know, opens vim, like, you know, it's never going to return. And so the tool is stuck.Swyx [00:39:28]: Did it get stuck? Yeah. Get out of vim. What?Erik [00:39:31]: Well, because the tool is, like, it just text in, text out. It's not interactive. So it's not like the model doesn't know how to get out of vim. It's that the way that the tool is, like, hooked up to the computer is not interactive. Yes, I mean, there is the meme of no one knows how to get out of vim. You know, basically, we just added instructions in the tool of, like, hey, don't launch commands that don't return.Swyx [00:39:54]: Yeah, like, don't launch vim.Erik [00:39:55]: Don't launch whatever. If you do need to do something, you know, put an ampersand after it to launch it in the background. And so, like, just, you know, putting kind of instructions like that just right in the description for the tool really helps the model. And I think, like, that's an underutilized space of prompt engineering, where, like, people might try to do that in the overall prompt, but just put that in the tool itself so the model knows that it's, like, for this tool, this is what's relevant.Swyx [00:40:20]: You said you worked on the function calling and tool use before you actually started this vBench work, right? Was there any surprises? Because you basically went from creator of that API to user of that API. Any surprises or changes you would make now that you have extensively dog-fooded in a state-of-the-art agent?Erik [00:40:39]: I want us to make, like, maybe, like, a little bit less verbose SDK. I think some way, like, right now, it just takes, I think we sort of force people to do the best practices of writing out sort of these full JSON schemas, but it would be really nice if you could just pass in a Python function as a tool. I think that could be something nice.Swyx [00:40:58]: I think that there's a lot of, like, Python- There's helper libraries. ... structure, you know. I don't know if there's anyone else that is specializing for Anthropic. Maybe Jeremy Howard's and Simon Willis's stuff. They all have Cloud-specific stuff that they are working on. Cloudette. Cloudette, exactly. I also wanted to spend a little bit of time with SuiteAgent. It seems like a very general framework. Like, is there a reason you picked it apart from it's the same authors as vBench, or?Erik [00:41:21]: The main thing we wanted to go with was the same authors as vBench, so it just felt sort of like the safest, most neutral option. And it was, you know, very high quality. It was very easy to modify, to work with. I would say it also actually, their underlying framework is sort of this, it's like, youSwyx [00:41:39]: know, think, act, observe.Erik [00:41:40]: That they kind of go through this loop, which is like a little bit more hard-coded than what we wanted to do, but it's still very close. That's still very general. So it felt like a good match as sort of the starting point for our agent. And we had already sort of worked with and talked with the SWE-Bench people directly, so it felt nice to just have, you know, we already know the authors. This will be easy to work with.Swyx [00:42:00]: I'll share a little bit of like, this all seems disconnected, but once you figure out the people and where they go to school, it all makes sense. So it's all Princeton. Yeah, the SWE-Bench and SuiteAgent.Erik [00:42:11]: It's a group out of Princeton.Swyx [00:42:12]: Yeah, and we had Shun Yu on the pod, and he came up with the React paradigm, and that's think, act, observe. That's all React. So they're all friends. Yep, yeah, exactly.Erik [00:42:22]: And you know, if you actually read our traces of our submission, you can actually see like think, act, observe in our logs. And we just didn't even change the printing code. So it's like doing still function calls under the hood, and the model can do sort of multiple function calls in a row without thinking in between if it wants to. But yeah, so a lot of similarities and a lot of things we inherited from SuiteAgent just as a starting point for the framework.Alessio [00:42:47]: Any thoughts about other agent frameworks? I think there's, you know, the whole gamut from very simple to like very complex.Swyx [00:42:53]: Autogen, CooEI, LandGraph. Yeah, yeah.Erik [00:42:56]: I think I haven't explored a lot of them in detail. I would say with agent frameworks in general, they can certainly save you some like boilerplate. But I think there's actually this like downside of making agents too easy, where you end up very quickly like building a much more complex system than you need. And suddenly, you know, instead of having one prompt, you have five agents that are talking to each other and doing a dialogue. And it's like, because the framework made that 10 lines to do, you end up building something that's way too complex. So I think I would actually caution people to like try to start without these frameworks if you can, because you'll be closer to the raw prompts and be able to sort of directly understand what's going on. I think a lot of times these frameworks also, by trying to make everything feel really magical, you end up sort of really hiding what the actual prompt and output of the model is, and that can make it much harder to debug. So certainly these things have a place, and I think they do really help at getting rid of boilerplate, but they come with this cost of obfuscating what's really happening and making it too easy to very quickly add a lot of complexity. So yeah, I would recommend people to like try it from scratch, and it's like not that bad.Alessio [00:44:08]: Would you rather have like a framework of tools? Do you almost see like, hey, it's maybe easier to get tools that are already well curated, like the ones that you build, if I had an easy way to get the best tool from you, andSwyx [00:44:21]: like you maintain the definition?Alessio [00:44:22]: Or yeah, any thoughts on how you want to formalize tool sharing?Erik [00:44:26]: Yeah, I think that's something that we're certainly interested in exploring, and I think there is space for sort of these general tools that will be very broadly applicable. But at the same time, most people that are building on these, they do have much more specific things that they're trying to do. You know, I think that might be useful for hobbyists and demos, but the ultimate end applications are going to be bespoke. And so we just want to make sure that the model's great at any tool that it uses. But certainly something we're exploring.Alessio [00:44:52]: So everything bespoke, no frameworks, no anything.Swyx [00:44:55]: Just for now, for now.Erik [00:44:56]: Yeah, I would say that like the best thing I've seen is people building up from like, build some good util functions, and then you can use those as building blocks. Yeah, yeah.Alessio [00:45:05]: I have a utils folder, or like all these scripts. My framework is like def, call, and tropic. And then I just put all the defaults.Swyx [00:45:12]: Yeah, exactly. There's a startup hidden in every utils folder, you know? No, totally not. Like, if you use it enough, like it's a startup, you know? At some point. I'm kind of curious, is there a maximum length of turns that it took? Like, what was the longest run? I actually don't.Erik [00:45:27]: I mean, it had basically infinite turns until it ran into a 200k context. I should have looked this up. I don't know. And so for some of those failed cases where it eventually ran out of context, I mean, it was over 100 turns. I'm trying to remember like the longest successful run, but I think it was definitely over 100 turns that some of the times.Swyx [00:45:48]: Which is not that much. It's a coffee break. Yeah.Erik [00:45:52]: But certainly, you know, these things can be a lot of turns. And I think that's because some of these things are really hard, where it's going to take, you know, many tries to do it. And if you think about like, think about a task that takes a human four hours to do. Think about how many different files you read, and like times you edit a file in four hours. That's a lot more than 100.Alessio [00:46:10]: How many times you open Twitter because you get distracted. But if you had a lot more compute, what's kind of like the return on the extra compute now? So like, you know, if you had thousands of turns or like whatever, like how much better would it get?Erik [00:46:23]: Yeah, this I don't know. And I think this is, I think sort of one of the open areas of research in general with agents is memory and sort of how do you have something that can do work beyond its context length where you're just purely appending. So you mentioned earlier things like pruning bad paths. I think there's a lot of interesting work around there. Can you just roll back but summarize, hey, don't go down this path? There be dragons. Yeah, I think that's very interesting that you could have something that that uses way more tokens without ever using at a time more than 200k. So I think that's very interesting. I think the biggest thing is like, can you make the model sort of losslessly summarize what it's learned from trying different approaches and bring things back? I think that's sort of the big challenge.Swyx [00:47:11]: What about different models?Alessio [00:47:12]: So you have Haiku, which is like, you know, cheaper. So you're like, well, what if I have a Haiku to do a lot of these smaller things and then put it back up?Erik [00:47:20]: I think Cursor might have said that they actually have a separate model for file editing.Swyx [00:47:25]: I'm trying to remember.Erik [00:47:25]: I think they were on maybe the Lex Fridman podcast where they said they have a bigger model, like write what the code should be and then a different model, like apply it. So I think there's a lot of interesting room for stuff like that. Yeah, fast supply.Swyx [00:47:37]: We actually did a pod with Fireworks that they worked with on. It's speculative decoding.Erik [00:47:41]: But I think there's also really interesting things about like, you know, paring down input tokens as well, especially sometimes the models trying to read like a 10,000 line file. That's a lot of tokens. And most of it is actually not going to be relevant. I think it'd be really interesting to like delegate that to Haiku. Haiku read this file and just pull out the most relevant functions. And then, you know, Sonnet reads just those and you save 90% on tokens. I think there's a lot of really interesting room for things like that. And again, we were just trying to do sort of the simplest, most minimal thing and show that it works. I'm really hoping that people, sort of the agent community builds things like that on top of our models. That's, again, why we released these tools. We're not going to go and do lots more submissions to SWE-Bench and try to prompt engineer this and build a bigger system. We want people to like the ecosystem to do that on top of our models. But yeah, so I think that's a really interesting one.Swyx [00:48:32]: It turns out, I think you did do 3.5 Haiku with your tools and it scored a 40.6. Yes.Erik [00:48:38]: So it did very well. It itself is actually very smart, which is great. But we haven't done any experiments with this combination of the two models. But yeah, I think that's one of the exciting things is that how well Haiku 3.5 did on SWE-Bench shows that sort of even our smallest, fastest model is very good at sort of thinking agentically and working on hard problems. Like it's not just sort of for writing simple text anymore.Alessio [00:49:02]: And I know you're not going to talk about it, but like Sonnet is not even supposed to be the best model, you know? Like Opus, it's kind of like we left it at three back in the corner intro. At some point, I'm sure the new Opus will come out. And if you had Opus Plus on it, that sounds very, very good.Swyx [00:49:19]: There's a run with SuiteAgent plus Opus, but that's the official SWE-Bench guys doing it.Erik [00:49:24]: That was the older, you know, 3.0.Swyx [00:49:25]: You didn't do yours. Yeah. Okay. Did you want to? I mean, you could just change the model name.Erik [00:49:31]: I think we didn't submit it, but I think we included it in our model card.Swyx [00:49:35]: Okay.Erik [00:49:35]: We included the score as a comparison. Yeah.Swyx [00:49:38]: Yeah.Erik [00:49:38]: And Sonnet and Haiku, actually, I think the new ones, they both outperformed the original Opus. Yeah. I did see that.Swyx [00:49:44]: Yeah. It's a little bit hard to find. Yeah.Erik [00:49:47]: It's not an exciting score, so we didn't feel like they need to submit it to the benchmark.Swyx [00:49:52]: We can cut over to computer use if we're okay with moving on to topics on this, if anything else. I think we're good.Erik [00:49:58]: I'm trying to think if there's anything else SWE-Bench related.Swyx [00:50:02]: It doesn't have to be also just specifically SWE-Bench, but just your thoughts on building agents, because you are one of the few people that have reached this leaderboard on building a coding agent. This is the state of the art. It's surprisingly not that hard to reach with some good principles. Right. There's obviously a ton of low-hanging fruit that we covered. Your thoughts on if you were to build a coding agent startup, what next?Erik [00:50:24]: I think the really interesting question for me, for all the startups out there, is this kind of divergence between the benchmarks and what real customers will want. So I'm curious, maybe the next time you have a coding agent startup on the podcast, you should ask them that. What are the differences that they're starting to make? Tomorrow.Swyx [00:50:40]: Oh, perfect, perfect. Yeah.Erik [00:50:41]: I'm actually very curious what they will see, because I also have seen, I feel like it's slowed down a little bit if I don't see the startups submitting to SWE-Bench that much anymore.Swyx [00:50:52]: Because of the traces, the trace. So we had Cosign on, they had a 50-something on full, on SWE-Bench full, which is the hardest one, and they were rejected because they didn't want to submit their traces. Yep. IP, you know? Yeah, that makes sense, that makes sense. Actually, tomorrow we're talking to Bolt, which is a cloud customer. You guys actually published a case study with them. I assume you weren't involved with that, but they were very happy with Cloud. Cool. One of the biggest launches of the year. Yeah, totally. We actually happened to b
We have a full slate of upcoming events: AI Engineer London, AWS Re:Invent in Las Vegas, and now Latent Space LIVE! at NeurIPS in Vancouver and online. Sign up to join and speak!We are still taking questions for our next big recap episode! Submit questions and messages on Speakpipe here for a chance to appear on the show!We try to stay close to the inference providers as part of our coverage, as our podcasts with Together AI and Replicate will attest: However one of the most notable pull quotes from our very well received Braintrust episode was his opinion that open source model adoption has NOT gone very well and is actually declining in relative market share terms (it is of course increasing in absolute terms):Today's guest, Lin Qiao, would wholly disagree. Her team of Pytorch/GPU experts are wholly dedicated toward helping you serve and finetune the full stack of open source models from Meta and others, across all modalities (Text, Audio, Image, Embedding, Vision-understanding), helping customers like Cursor and Hubspot scale up open source model inference both rapidly and affordably.Fireworks has emerged after its successive funding rounds with top tier VCs as one of the leaders of the Compound AI movement, a term first coined by the Databricks/Mosaic gang at Berkeley AI and adapted as “Composite AI” by Gartner:Replicating o1We are the first podcast to discuss Fireworks' f1, their proprietary replication of OpenAI's o1. This has become a surprisingly hot area of competition in the past week as both Nous Forge and Deepseek r1 have launched competitive models.Full Video PodcastLike and subscribe!Timestamps* 00:00:00 Introductions* 00:02:08 Pre-history of Fireworks and PyTorch at Meta* 00:09:49 Product Strategy: From Framework to Model Library* 00:13:01 Compound AI Concept and Industry Dynamics* 00:20:07 Fireworks' Distributed Inference Engine* 00:22:58 OSS Model Support and Competitive Strategy* 00:29:46 Declarative System Approach in AI* 00:31:00 Can OSS replicate o1?* 00:36:51 Fireworks f1* 00:41:03 Collaboration with Cursor and Speculative Decoding* 00:46:44 Fireworks quantization (and drama around it)* 00:49:38 Pricing Strategy* 00:51:51 Underrated Features of Fireworks Platform* 00:55:17 HiringTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner at CTO at Danceable Partners, and I'm joined by my co-host, Swyx founder, Osmalayar.Swyx [00:00:11]: Hey, and today we're in a very special studio inside the Fireworks office with Lin Qiang, CEO of Fireworks. Welcome. Yeah.Lin [00:00:20]: Oh, you should welcome us.Swyx [00:00:21]: Yeah, welcome. Yeah, thanks for having us. It's unusual to be in the home of a startup, but it's also, I think our relationship is a bit unusual compared to all our normal guests. Definitely.Lin [00:00:34]: Yeah. I'm super excited to talk about very interesting topics in that space with both of you.Swyx [00:00:41]: You just celebrated your two-year anniversary yesterday.Lin [00:00:43]: Yeah, it's quite a crazy journey. We circle around and share all the crazy stories across these two years, and it has been super fun. All the way from we experienced Silicon Valley bank run to we delete some data that shouldn't be deleted operationally. We went through a massive scale where we actually are busy getting capacity to, yeah, we learned to kind of work with it as a team with a lot of brilliant people across different places to join a company. It has really been a fun journey.Alessio [00:01:24]: When you started, did you think the technical stuff will be harder or the bank run and then the people side? I think there's a lot of amazing researchers that want to do companies and it's like the hardest thing is going to be building the product and then you have all these different other things. So, were you surprised by what has been your experience the most?Lin [00:01:42]: Yeah, to be honest with you, my focus has always been on the product side and then after the product goes to market. And I didn't realize the rest has been so complicated, operating a company and so on. But because I don't think about it, I just kind of manage it. So it's done. I think I just somehow don't think about it too much and solve whatever problem coming our way and it worked.Swyx [00:02:08]: So let's, I guess, let's start at the pre-history, the initial history of Fireworks. You ran the PyTorch team at Meta for a number of years and we previously had Sumit Chintal on and I think we were just all very interested in the history of GenEI. Maybe not that many people know how deeply involved Faire and Meta were prior to the current GenEI revolution.Lin [00:02:35]: My background is deep in distributed system, database management system. And I joined Meta from the data side and I saw this tremendous amount of data growth, which cost a lot of money and we're analyzing what's going on. And it's clear that AI is driving all this data generation. So it's a very interesting time because when I joined Meta, Meta is going through ramping down mobile-first, finishing the mobile-first transition and then starting AI-first. And there's a fundamental reason about that sequence because mobile-first gave a full range of user engagement that has never existed before. And all this user engagement generated a lot of data and this data power AI. So then the whole entire industry is also going through, falling through this same transition. When I see, oh, okay, this AI is powering all this data generation and look at where's our AI stack. There's no software, there's no hardware, there's no people, there's no team. I want to dive up there and help this movement. So when I started, it's very interesting industry landscape. There are a lot of AI frameworks. It's a kind of proliferation of AI frameworks happening in the industry. But all the AI frameworks focus on production and they use a very certain way of defining the graph of neural network and then use that to drive the model iteration and productionization. And PyTorch is completely different. So they could also assume that he was the user of his product. And he basically says, researchers face so much pain using existing AI frameworks, this is really hard to use and I'm going to do something different for myself. And that's the origin story of PyTorch. PyTorch actually started as the framework for researchers. They don't care about production at all. And as they grow in terms of adoption, so the interesting part of AI is research is the top of our normal production. There are so many researchers across academic, across industry, they innovate and they put their results out there in open source and that power the downstream productionization. So it's brilliant for MATA to establish PyTorch as a strategy to drive massive adoption in open source because MATA internally is a PyTorch shop. So it creates a flying wheel effect. So that's kind of a strategy behind PyTorch. But when I took on PyTorch, it's kind of at Caspo, MATA established PyTorch as the framework for both research and production. So no one has done that before. And we have to kind of rethink how to architect PyTorch so we can really sustain production workload, the stability, reliability, low latency, all this production concern was never a concern before. Now it's a concern. And we actually have to adjust its design and make it work for both sides. And that took us five years because MATA has so many AI use cases, all the way from ranking recommendation as powering the business top line or as ranking newsfeed, video ranking to site integrity detect bad content automatically using AI to all kinds of effects, translation, image classification, object detection, all this. And also across AI running on the server side, on mobile phones, on AI VR devices, the wide spectrum. So by the time we actually basically managed to support AI across ubiquitous everywhere across MATA. But interestingly, through open source engagement, we work with a lot of companies. It is clear to us like this industry is starting to take on AI first transition. And of course, MATA's hyperscale always go ahead of industry. And it feels like when we start this AI journey at MATA, there's no software, no hardware, no team. For many companies we engage with through PyTorch, we feel the pain. That's the genesis why we feel like, hey, if we create fireworks and support industry going through this transition, it will be a huge amount of impact. Of course, the problem that the industry is facing will not be the same as MATA. MATA is so big, right? So it's kind of skewed towards extreme scale and extreme optimization in the industry will be different. But we feel like we have the technical chop and we've seen a lot. We'll look to kind of drive that. So yeah, so that's how we started.Swyx [00:06:58]: When you and I chatted about the origins of fireworks, it was originally envisioned more as a PyTorch platform, and then later became much more focused on generative AI. Is that fair to say? What was the customer discovery here?Lin [00:07:13]: Right. So I would say our initial blueprint is we should build a PyTorch cloud because a PyTorch library and there's no SaaS platform to enable AI workloads.Swyx [00:07:26]: Even in 2022, it's interesting.Lin [00:07:28]: I would not say absolutely no, but cloud providers have some of those, but it's not first class citizen, right? At 2022, there's still like TensorFlow is massively in production. And this is all pre-gen AI, and PyTorch is kind of getting more and more adoption. But there's no PyTorch-first SaaS platform existing. At the same time, we are also a very pragmatic set of people. We really want to make sure from the get-go, we get really, really close to customers. We understand their use case, we understand their pain points, we understand the value we deliver to them. So we want to take a different approach instead of building a horizontal PyTorch cloud. We want to build a verticalized platform first. And then we talk with many customers. And interestingly, we started the company in September 2022, and in October, November, the OpenAI announced ChatGPT. And then boom, when we talked with many customers, they were like, can you help us work on the JNS aspect? So of course, there are some open source models. It's not as good at that time, but people are already putting a lot of attention there. Then we decided that if we're going to pick a vertical, we're going to pick JNI. The other reason is all JNI models are PyTorch models. So that's another reason. We believe that because of the nature of JNI, it's going to generate a lot of human consumable content. It will drive a lot of consumer, customer-developer-facing application and product innovation. Guaranteed. We're just at the beginning of this. Our prediction is for those kind of applications, the inference is much more important than training because inference scale is proportional to the up-limit award population. And training scale is proportional to the number of researchers. Of course, each training round could be very expensive. Although PyTorch supports both inference and training, we decided to laser focus on inference. So yeah, so that's how we got started. And we launched our public platform August last year. When we launched, it was a single product. It's a distributed inference engine with a simple API, open AI compatible API with many models. We started with LM and then we added a lot of models. Fast forward to now, we are a full platform with multiple product lines. So we love to kind of dive deep into what we offer. But that's a very fun journey in the past two years.Alessio [00:09:49]: What was the transition from you start to focus on PyTorch and people want to understand the framework, get it live. And now say maybe most people that use you don't even really know much about PyTorch at all. You know, they're just trying to consume a model. From a product perspective, like what were some of the decisions early on? Like right in October, November, you were just like, hey, most people just care about the model, not about the framework. We're going to make it super easy or was it more a gradual transition to the model librarySwyx [00:10:16]: you have today?Lin [00:10:17]: Yeah. So our product decision is all based on who is our ICP. And one thing I want to acknowledge here is the generic technology is disruptive. It's very different from AI before GNI. So it's a clear leap forward. Because before GNI, the companies that want to invest in AI, they have to train from scratch. There's no other way. There's no foundation model. It doesn't exist. So that means then to start a team, first hire a team who is capable of crunch data. There's a lot of data to crunch, right? Because training from scratch, you have to prepare a lot of data. And then they need to have GPUs to train, and then you start to manage GPUs. So then it becomes a very complex project. It takes a long time and not many companies can afford it, actually. And the GNI is a very different game right now, because it is a foundation model. So you don't have to train anymore. That makes AI much more accessible as a technology. As an app developer or product manager, even, not a developer, they can interact with GNI models directly. So our goal is to make AI accessible to all app developers and product engineers. That's our goal. So then getting them into the building model doesn't make any sense anymore with this new technology. And then building easy, accessible APIs is the most important. Early on, when we got started, we decided we're going to be open AI compatible. It's just kind of very easy for developers to adopt this new technology, and we will manage the underlying complexity of serving all these models.Swyx [00:11:56]: Yeah, open AI has become the standard. Even as we're recording today, Gemini announced that they have open AI compatible APIs. Interesting. So we just need to drop it all in line, and then we have everyone popping in line.Lin [00:12:09]: That's interesting, because we are working very closely with Meta as one of the partners. Meta, of course, is kind of very generous to donate many very, very strong open source models, expecting more to come. But also they have announced LamaStack, which is basically standardized, the upper level stack built on top of Lama models. So they don't just want to give out models and you figure out what the upper stack is. They instead want to build a community around the stack and build a new standard. I think there's an interesting dynamics in play in the industry right now, when it's more standardized across open AI, because they are kind of creating the top of the funnel, or standardized across Lama, because this is the most used open source model. So I think it's a lot of fun working at this time.Swyx [00:13:01]: I've been a little bit more doubtful on LamaStack, I think you've been more positive. Basically it's just like the meta version of whatever Hugging Face offers, you know, or TensorRT, or BLM, or whatever the open source opportunity is. But to me, it's not clear that just because Meta open sources Lama, that the rest of LamaStack will be adopted. And it's not clear why I should adopt it. So I don't know if you agree.Lin [00:13:27]: It's very early right now. That's why I kind of work very closely with them and give them feedback. The feedback to the meta team is very important. So then they can use that to continue to improve the model and also improve the higher level I think the success of LamaStack heavily depends on the community adoption. And there's no way around it. And I know the meta team would like to kind of work with a broader set of community. But it's very early.Swyx [00:13:52]: One thing that after your Series B, so you raced for Benchmark, and then Sequoia. I remember being close to you for at least your Series B announcements, you started betting heavily on this term of Compound AI. It's not a term that we've covered very much in the podcast, but I think it's definitely getting a lot of adoption from Databricks and Berkeley people and all that. What's your take on Compound AI? Why is it resonating with people?Lin [00:14:16]: Right. So let me give a little bit of context why we even consider that space.Swyx [00:14:22]: Because like pre-Series B, there was no message, and now it's like on your landing page.Lin [00:14:27]: So it's kind of very organic evolution from when we first launched our public platform, we are a single product. We are a distributed inference engine, where we do a lot of innovation, customized KUDA kernels, raw kernel kernels, running on different kinds of hardware, and build distributed disaggregated execution, inference execution, build all kinds of caching. So that is one. So that's kind of one product line, is the fast, most cost-efficient inference platform. Because we wrote PyTorch code, we know we basically have a special PyTorch build for that, together with a custom kernel we wrote. And then we worked with many more customers, we realized, oh, the distributed inference engine, our design is one size fits all. We want to have this inference endpoint, then everyone come in, and no matter what kind of form and shape or workload they have, it will just work for them. So that's great. But the reality is, we realized all customers have different kinds of use cases. The use cases come in all different forms and shapes. And the end result is the data distribution in their inference workload doesn't align with the data distribution in the training data for the model. It's a given, actually. If you think about it, because researchers have to guesstimate what is important, what's not important in preparing data for training. So because of that misalignment, then we leave a lot of quality, latency, cost improvement on the table. So then we're saying, OK, we want to heavily invest in a customization engine. And we actually announced it called FHIR Optimizer. So FHIR Optimizer basically helps users navigate a three-dimensional optimization space across quality, latency, and cost. So it's a three-dimensional curve. And even for one company, for different use cases, they want to land in different spots. So we automate that process for our customers. It's very simple. You have your inference workload. You inject into the optimizer along with the objective function. And then we spit out inference deployment config and the model setup. So it's your customized setup. So that is a completely different product. So that product thinking is one size fits all. And now on top of that, we provide a huge variety of state-of-the-art models, hundreds of them, varying from text to large state-of-the-art English models. That's where we started. And as we talk with many customers, we realize, oh, audio and text are very, very close. Many of our customers start to build assistants, all kinds of assistants using text. And they immediately want to add audio, audio in, audio out. So we support transcription, translation, speech synthesis, text, audio alignment, all different kinds of audio features. It's a big announcement. You should have heard by the time this is out. And the other areas of vision and text are very close with each other. Because a lot of information doesn't live in plain text. A lot of information lives in multimedia format, images, PDFs, screenshots, and many other different formats. So oftentimes to solve a problem, we need to put the vision model first to extract information and then use language model to process and then send out results. So vision is important. We also support vision model, various different kinds of vision models specialized in processing different kinds of source and extraction. And we're also going to have another announcement of a new API endpoint we'll support for people to upload various different kinds of multimedia content and then get the extract very accurate information out and feed that into LM. And of course, we support embedding because embedding is very important for semantic search, for RAG, and all this. And in addition to that, we also support text-to-image, image generation models, text-to-image, image-to-image, and we're adding text-to-video as well in our portfolio. So it's a very comprehensive set of model catalog that built on top of File Optimizer and Distributed Inference Engine. But then we talk with more customers, they solve business use case, and then we realize one model is not sufficient to solve their problem. And it's very clear because one is the model hallucinates. Many customers, when they onboard this JNI journey, they thought this is magical. JNI is going to solve all my problems magically. But then they realize, oh, this model hallucinates. It hallucinates because it's not deterministic, it's probabilistic. So it's designed to always give you an answer, but based on probabilities, so it hallucinates. And that's actually sometimes a feature for creative writing, for example. Sometimes it's a bug because, hey, you don't want to give misinformation. And different models also have different specialties. To solve a problem, you want to ask different special models to kind of decompose your task into multiple small tasks, narrow tasks, and then have an expert model solve that task really well. And of course, the model doesn't have all the information. It has limited knowledge because the training data is finite, not infinite. So the model oftentimes doesn't have real-time information. It doesn't know any proprietary information within the enterprise. It's clear that in order to really build a compiling application on top of JNI, we need a compound AI system. Compound AI system basically is going to have multiple models across modalities, along with APIs, whether it's public APIs, internal proprietary APIs, storage systems, database systems, knowledge to work together to deliver the best answer.Swyx [00:20:07]: Are you going to offer a vector database?Lin [00:20:09]: We actually heavily partner with several big vector database providers. Which is your favorite? They are all great in different ways. But it's public information, like MongoDB is our investor. And we have been working closely with them for a while.Alessio [00:20:26]: When you say distributed inference engine, what do you mean exactly? Because when I hear your explanation, it's almost like you're centralizing a lot of the decisions through the Fireworks platform on the quality and whatnot. What do you mean distributed? It's like you have GPUs in a lot of different clusters, so you're sharding the inference across the same model.Lin [00:20:45]: So first of all, we run across multiple GPUs. But the way we distribute across multiple GPUs is unique. We don't distribute the whole model monolithically across multiple GPUs. We chop them into pieces and scale them completely differently based on what's the bottleneck. We also are distributed across regions. We have been running in North America, EMEA, and Asia. We have regional affinity to applications because latency is extremely important. We are also doing global load balancing because a lot of applications there, they quickly scale to global population. And then at that scale, different content wakes up at a different time. And you want to kind of load balancing across. So all the way, and we also have, we manage various different kinds of hardware skew from different hardware vendors. And different hardware design is best for different types of workload, whether it's long context, short context, long generation. So all these different types of workload is best fitted for different kinds of hardware skew. And then we can even distribute across different hardware for a workload. So the distribution actually is all around in the full stack.Swyx [00:22:02]: At some point, we'll show on the YouTube, the image that Ray, I think, has been working on with all the different modalities that you offer. To me, it's basically you offer the open source version of everything that OpenAI typically offers. I don't think there is. Actually, if you do text to video, you will be a superset of what OpenAI offers because they don't have Sora. Is that Mochi, by the way? Mochi. Mochi, right?Lin [00:22:27]: Mochi. And there are a few others. I will say, the interesting thing is, I think we're betting on the open source community is going to proliferate. This is literally what we're seeing. And there's amazing video generation companies. There is amazing audio companies. Like cross-border, the innovation is off the chart, and we are building on top of that. I think that's the advantage we have compared with a closed source company.Swyx [00:22:58]: I think I want to restate the value proposition of Fireworks for people who are comparing you versus a raw GPU provider like a RunPod or Lambda or anything like those, which is like you create the developer experience layer and you also make it easily scalable or serverless or as an endpoint. And then, I think for some models, you have custom kernels, but not all models.Lin [00:23:25]: Almost for all models. For all large language models, all your models, and the VRMs. Almost for all models we serve.Swyx [00:23:35]: And so that is called Fire Attention. I don't remember the speed numbers, but apparently much better than VLM, especially on a concurrency basis.Lin [00:23:44]: So Fire Attention is specific mostly for language models, but for other modalities, we'll also have a customized kernel.Swyx [00:23:51]: And I think the typical challenge for people is understanding that has value, and then there are other people who are also offering open-source models. Your mode is your ability to offer a good experience for all these customers. But if your existence is entirely reliant on people releasing nice open-source models, other people can also do the same thing.Lin [00:24:14]: So I would say we build on top of open-source model foundation. So that's the kind of foundation we build on top of. But we look at the value prop from the lens of application developers and product engineers. So they want to create new UX. So what's happening in the industry right now is people are thinking about a completely new way of designing products. And I'm talking to so many founders, it's just mind-blowing. They help me understand existing way of doing PowerPoint, existing way of coding, existing way of managing customer service. It's actually putting a box in our head. For example, PowerPoint. So PowerPoint generation is we always need to think about how to fit into my storytelling into this format of slide one after another. And I'm going to juggle through design together with what story to tell. But the most important thing is what's our storytelling lines, right? And why don't we create a space that is not limited to any format? And those kind of new product UX design combined with automated content generation through Gen AI is the new thing that many founders are doing. What are the challenges they're facing? Let's go from there. One is, again, because a lot of products built on top of Gen AI, they are consumer-personal developer facing, and they require interactive experience. It's just a kind of product experience we all get used to. And our desire is to actually get faster and faster interaction. Otherwise, nobody wants to spend time, right? And then that requires low latency. And the other thing is the nature of consumer-personal developer facing is your audience is very big. You want to scale up to product market fit quickly. But if you lose money at a small scale, you're going to bankrupt quickly. So it's actually a big contrast. I actually have product market fit, but when I scale, I scale out of my business. So that's kind of a very funny way to think about it. So then having low latency and low cost is essential for those new applications and products to survive and really become a generation company. So that's the design point for our distributed inference engine and the file optimizer. File optimizer, you can think about that as a feedback loop. The more you feed your inference workload to our inference engine, the more we help you improve quality, lower latency further, lower your cost. It basically becomes better. And we automate that because we don't want you as an app developer or product engineer to think about how to figure out all these low-level details. It's impossible because you're not trained to do that at all. You should kind of keep your focus on the product innovation. And then the compound AI, we actually feel a lot of pain as the app developers, engineers, there are so many models. Every week, there's at least a new model coming out.Swyx [00:27:09]: Tencent had a giant model this week. Yeah, yeah.Lin [00:27:13]: I saw that. I saw that.Swyx [00:27:15]: It's like $500 billion.Lin [00:27:18]: So they're like, should I keep chasing this or should I forget about it? And which model should I pick to solve what kind of sub-problem? How do I even decompose my problem into those smaller problems and fit the model into it? I have no idea. And then there are two ways to think about this design. I think I talked about that in the past. One is imperative, as in you figure out how to do it. You give developer tools to dictate how to do it. Or you build a declarative system where a developer tells what they want to do, not how. So these are completely two different designs. So the analogy I want to draw is, in the data world, the database management system is a declarative system because people use database, use SQL. SQL is a way you say, what do you want to extract out of a database? What kind of result do you want? But you don't figure out which node is going to, how many nodes you're going to run on top of, how you redefine your disk, which index you use, which project. You don't need to worry about any of those. And database management system will figure out, generate a new best plan, and execute on that. So database is declarative. And it makes it super easy. You just learn SQL, which is learn a semantic meaning of SQL, and you can use it. Imperative side is there are a lot of ETL pipelines. And people design this DAG system with triggers, with actions, and you dictate exactly what to do. And if it fails, then how to recover. So that's an imperative system. We have seen a range of systems in the ecosystem go different ways. I think there's value of both. There's value of both. I don't think one is going to subsume the other. But we are leaning more into the philosophy of the declarative system. Because from the lens of app developer and product engineer, that would be easiest for them to integrate.Swyx [00:29:07]: I understand that's also why PyTorch won as well, right? This is one of the reasons. Ease of use.Lin [00:29:14]: Focus on ease of use, and then let the system take on the hard challenges and complexities. So we follow, we extend that thinking into current system design. So another announcement is we will also announce our next declarative system is going to appear as a model that has extremely high quality. And this model is inspired by Owen's announcement for OpenAI. You should see that by the time we announce this or soon.Alessio [00:29:46]: Trained by you.Lin [00:29:47]: Yes.Alessio [00:29:48]: Is this the first model that you trained? It's not the first.Lin [00:29:52]: We actually have trained a model called FireFunction. It's a function calling model. It's our first step into compound AI system. Because function calling model can dispatch a request into multiple APIs. We have pre-baked set of APIs the model learned. You can also add additional APIs through the configuration to let model dispatch accordingly. So we have a very high quality function calling model that's already released. We have actually three versions. The latest version is very high quality. But now we take a further step that you don't even need to use function calling model. You use our new model we're going to release. It will solve a lot of problems approaching very high OpenAI quality. So I'm very excited about that.Swyx [00:30:41]: Do you have any benchmarks yet?Lin [00:30:43]: We have a benchmark. We're going to release it hopefully next week. We just put our model to LMSYS and people are guessing. Is this the next Gemini model or a MADIS model? People are guessing. That's very interesting. We're watching the Reddit discussion right now.Swyx [00:31:00]: I have to ask more questions about this. When OpenAI released o1, a lot of people asked about whether or not it's a single model or whether it's a chain of models. Noam and basically everyone on the Strawberry team was very insistent that what they did for reinforcement learning, chain of thought, cannot be replicated by a whole bunch of open source model calls. Do you think that that is wrong? Have you done the same amount of work on RL as they have or was it a different direction?Lin [00:31:29]: I think they take a very specific approach where the caliber of team is very high. So I do think they are the domain expert in doing the things they are doing. I don't think there's only one way to achieve the same goal. We're on the same direction in the sense that the quality scaling law is shifting from training to inference. For that, I fully agree with them. But we're taking a completely different approach to the problem. All of that is because, of course, we didn't train the model from scratch. All of that is because we built on the show of giants. The current model available we have access to is getting better and better. The future trend is the gap between the open source model and the co-source model. It's just going to shrink to the point there's not much difference. And then we're on the same level field. That's why I think our early investment in inference and all the work we do around balancing across quality, latency, and cost pay off because we have accumulated a lot of experience and that empowers us to release this new model that is approaching open-ended quality.Alessio [00:32:39]: I guess the question is, what do you think the gap to catch up will be? Because I think everybody agrees with open source models eventually will catch up. And I think with 4, then with Lama 3.2, 3.1, 4.5b, we close the gap. And then 0.1 just reopened the gap so much and it's unclear. Obviously, you're saying your model will have...Swyx [00:32:57]: We're closing that gap.Alessio [00:32:58]: But you think in the future, it's going to be months?Lin [00:33:02]: So here's the thing that's happened. There's public benchmark. It is what it is. But in reality, open source models in certain dimensions are already on par or beat closed source models. So for example, in the coding space, open source models are really, really good. And in function calling, file function is also really, really good. So it's all a matter of whether you build one model to solve all the problems and you want to be the best of solving all the problems, or in the open source domain, it's going to specialize. All these different model builders specialize in certain narrow area. And it's logical that they can be really, really good in that very narrow area. And that's our prediction is with specialization, there will be a lot of expert models really, really good and even better than one-size-fits-all closed source models.Swyx [00:33:55]: I think this is the core debate that I am still not 100% either way on in terms of compound AI versus normal AI. Because you're basically fighting the bitter lesson.Lin [00:34:09]: Look at the human society, right? We specialize. And you feel really good about someone specializing doing something really well, right? And that's how our way evolved from ancient times. We're all journalists. We do everything. Now we heavily specialize in different domains. So my prediction is in the AI model space, it will happen also. Except for the bitter lesson.Swyx [00:34:30]: You get short-term gains by having specialists, domain specialists, and then someone just needs to train like a 10x bigger model on 10x more inference, 10x more data, 10x more model perhaps, whatever the current scaling law is. And then it supersedes all the individual models because of some generalized intelligence slash world knowledge. I think that is the core insight of the GPTs, the GPT-123 networks. Right.Lin [00:34:56]: But the training scaling law is because you have an increasing amount of data to train from. And you can do a lot of compute. So I think on the data side, we're approaching the limit. And the only data to increase that is synthetic generated data. And then there's like what is the secret sauce there, right? Because if you have a very good large model, you can generate very good synthetic data and then continue to improve quality. So that's why I think in OpenAI, they are shifting from the training scaling law intoSwyx [00:35:25]: inference scaling law.Lin [00:35:25]: And it's the test time and all this. So I definitely believe that's the future direction. And that's where we are really good at, doing inference.Swyx [00:35:34]: A couple of questions on that. Are you planning to share your reasoning choices?Lin [00:35:39]: That's a very good question. We are still debating.Swyx [00:35:43]: Yeah.Lin [00:35:45]: We're still debating.Swyx [00:35:46]: I would say, for example, it's interesting that, for example, SweetBench. If you want to be considered for ranking, you have to submit your reasoning choices. And that has actually disqualified some of our past guests. Cosign was doing well on SweetBench, but they didn't want to leak those results. So that's why you don't see O1 preview on SweetBench, because they don't submit their reasoning choices. And obviously, it's IP. But also, if you're going to be more open, then that's one way to be more open. So your model is not going to be open source, right? It's going to be an endpoint that you provide. Okay, cool. And then pricing, also the same as OpenAI, just kind of based on...Lin [00:36:25]: Yeah, this is... I don't have, actually, information. Everything is going so fast, we haven't even thought about that yet. Yeah, I should be more prepared.Swyx [00:36:33]: I mean, this is live. You know, it's nice to just talk about it as it goes live. Any other things that you want feedback on or you're thinking through? It's kind of nice to just talk about something when it's not decided yet. About this new model. It's going to be exciting. It's going to generate a lot of buzz. Right.Lin [00:36:51]: I'm very excited to see how people are going to use this model. So there's already a Reddit discussion about it. And people are asking very deep, mathematical questions. And since the model got it right, surprising. And internally, we're also asking the model to generate what is AGI. And it generates a very complicated DAG thinking process. So we're having a lot of fun testing this internally. But I'm more curious, how will people use it? What kind of application they're going to try and test on it? And that's where we really like to hear feedback from the community. And also feedback to us. What works out well? What doesn't work out well? What works out well, but surprising them? And what kind of thing they think we should improve on? And those kind of feedback will be tremendously helpful.Swyx [00:37:44]: Yeah. So I've been a production user of Preview and Mini since launch. I would say they're very, very obvious jobs in quality. So much so that they made clods on it. And they made the previous state-of-the-art look bad. It's really that stark, that difference. The number one thing, just feedback or feature requests, is people want control on the budget. Because right now, in 0.1, it kind of decides its own thinking budget. But sometimes you know how hard the problem is. And you want to actually tell the model, spend two minutes on this. Or spend some dollar amount. Maybe it's time you miss dollars. I don't know what the budget is. That makes a lot of sense.Lin [00:38:27]: So we actually thought about that requirement. And it should be, at some point, we need to support that. Not initially. But that makes a lot of sense.Swyx [00:38:38]: Okay. So that was a fascinating overview of just the things that you're working on. First of all, I realized that... I don't know if I've ever given you this feedback. But I think you guys are one of the reasons I agreed to advise you. Because I think when you first met me, I was kind of dubious. I was like... Who are you? There's Replicate. There's Together. There's Laptop. There's a whole bunch of other players. You're in very, very competitive fields. Like, why will you win? And the reason I actually changed my mind was I saw you guys shipping. I think your surface area is very big. The team is not that big. No. We're only 40 people. Yeah. And now here you are trying to compete with OpenAI and everyone else. What is the secret?Lin [00:39:21]: I think the team. The team is the secret.Swyx [00:39:23]: Oh boy. So there's no thing I can just copy. You just... No.Lin [00:39:30]: I think we all come from a very aligned culture. Because most of our team came from meta.Swyx [00:39:38]: Yeah.Lin [00:39:38]: And many startups. So we really believe in results. One is result. And second is customer. We're very customer obsessed. And we don't want to drive adoption for the sake of adoption. We really want to make sure we understand we are delivering a lot of business values to the customer. And we really value their feedback. So we would wake up midnight and deploy some model for them. Shuffle some capacity for them. And yeah, over the weekend, no brainer.Swyx [00:40:15]: So yeah.Lin [00:40:15]: So that's just how we work as a team. And the caliber of the team is really, really high as well. So as plug-in, we're hiring. We're expanding very, very fast. So if we are passionate about working on the most cutting-edge technology in the general space, come talk with us. Yeah.Swyx [00:40:38]: Let's talk a little bit about that customer journey. I think one of your more famous customers is Cursor. We were the first podcast to have Cursor on. And then obviously since then, they have blown up. Cause and effect are not related. But you guys especially worked on a fast supply model where you were one of the first people to work on speculative decoding in a production setting. Maybe just talk about what was the behind the scenes of working with Cursor?Lin [00:41:03]: I will say Cursor is a very, very unique team. I think the unique part is the team has very high technical caliber. There's no question about it. But they have decided, although many companies building coding co-pilot, they will say, I'm going to build a whole entire stack because I can. And they are unique in the sense they seek partnership. Not because they cannot. They're fully capable, but they know where to focus. That to me is amazing. And of course, they want to find a bypass partner. So we spent some time working together. They are pushing us very aggressively because for them to deliver high caliber product experience, they need the latency. They need the interactive, but also high quality at the same time. So actually, we expanded our product feature quite a lot as we support Cursor. And they are growing so fast. And we massively scaled quickly across multiple regions. And we developed a pretty high intense inference stack, almost like similar to what we do for Meta. I think that's a very, very interesting engagement. And through that, there's a lot of trust being built. They realize, hey, this is a team they can really partner with. And they can go big with. That comes back to, hey, we're really customer obsessed. And all the engineers working with them, there's just enormous amount of time syncing together with them and discussing. And we're not big on meetings, but we are like stack channel always on. Yeah, so you almost feel like working as one team. So I think that's really highlighted.Swyx [00:42:38]: Yeah. For those who don't know, so basically Cursor is a VS Code fork. But most of the time, people will be using closed models. Like I actually use a lot of SONET. So you're not involved there, right? It's not like you host SONET or you have any partnership with it. You're involved where Cursor is small, or like their house brand models are concerned, right?Lin [00:42:58]: I don't know what I can say, but the things they haven't said.Swyx [00:43:04]: Very obviously, the drop down is 4.0, but in Cursor, right? So I assume that the Cursor side is the Fireworks side. And then the other side, they're calling out the other. Just kind of curious. And then, do you see any more opportunity on the... You know, I think you made a big splash with 1,000 tokens per second. That was because of speculative decoding. Is there more to push there?Lin [00:43:25]: We push a lot. Actually, when I mentioned Fire Optimizer, right? So as in, we have a unique automation stack that is one size fits one. We actually deployed to Cursor earlier on. Basically optimized for their specific workload. And that's a lot of juice to extract out of there. And we see success in that product. It actually can be widely adopted. So that's why we started a separate product line called Fire Optimizer. So speculative decoding is just one approach. And speculative decoding here is not static. We actually wrote a blog post about it. There's so many different ways to do speculative decoding. You can pair a small model with a large model in the same model family. Or you can have equal pads and so on. There are different trade-offs which approach you take. It really depends on your workload. And then with your workload, we can align the Eagle heads or Medusa heads or a small big model pair much better to extract the best latency reduction. So all of that is part of the Fire Optimizer offering.Alessio [00:44:23]: I know you mentioned some of the other inference providers. I think the other question that people always have is around benchmarks. So you get different performance on different platforms. How should people think about... People are like, hey, Lama 3.2 is X on MMLU. But maybe using speculative decoding, you go down a different path. Maybe some providers run a quantized model. How should people think about how much they should care about how you're actually running the model? What's the delta between all the magic that you do and what a raw model...Lin [00:44:57]: Okay, so there are two big development cycles. One is experimentation, where they need fast iteration. They don't want to think about quality, and they just want to experiment with product experience and so on. So that's one. And then it looks good, and they want to post-product market with scaling. And the quality is really important. And latency and all the other things are becoming important. During the experimentation phase, it's just pick a good model. Don't worry about anything else. Make sure you even generate the right solution to your product. And that's the focus. And then post-product market fit, then that's kind of the three-dimensional optimization curve start to kick in across quality, latency, cost, where you should land. And to me, it's purely a product decision. To many products, if you choose a lower quality, but better speed and lower cost, but it doesn't make a difference to the product experience, then you should do it. So that's why I think inference is part of the validation. The validation doesn't stop at offline eval. The validation will go through A-B testing, through inference. And that's where we offer various different configurations for you to test which is the best setting. So this is the traditional product evaluation. So product evaluation should also include your new model versions and different model setup into the consideration.Swyx [00:46:22]: I want to specifically talk about what happens a few months ago with some of your major competitors. I mean, all of this is public. What is your take on what happens? And maybe you want to set the record straight on how Fireworks does quantization because I think a lot of people may have outdated perceptions or they didn't read the clarification post on your approach to quantization.Lin [00:46:44]: First of all, it's always a surprise to us that without any notice, we got called out.Swyx [00:46:51]: Specifically by name, which is normally not what...Lin [00:46:54]: Yeah, in a public post. And have certain interpretation of our quality. So I was really surprised. And it's not a good way to compete, right? We want to compete fairly. And oftentimes when one vendor gives out results, the interpretation of another vendor is always extremely biased. So we actually refrain ourselves to do any of those. And we happily partner with third parties to do the most fair evaluation. So we're very surprised. And we don't think that's a good way to figure out the competition landscape. So then we react. I think when it comes to quantization, the interpretation, we wrote actually a very thorough blog post. Because again, no one says it's all. We have various different quantization schemes. We can quantize very different parts of the model from ways to activation to cross-TPU communication. They can use different quantization schemes or consistent across the board. And again, it's a trade-off. It's a trade-off across this three-dimensional quality, latency, and cost. And for our customer, we actually let them find the best optimized point. And we have a very thorough evaluation process to pick that point. But for self-serve, there's only one point to pick. There's no customization available. So of course, it depends on what we talk with many customers. We have to pick one point. And I think the end result, like AA published, later on AA published a quality measure. And we actually looked really good. So that's why what I mean is, I will leave the evaluation of quality or performance to third party and work with them to find the most fair benchmark. And I think that's a good approach, a methodology. But I'm not a part of an approach of calling out specific namesSwyx [00:48:55]: and critique other competitors in a very biased way. Databases happens as well. I think you're the more politically correct one. And then Dima is the more... Something like this. It's you on Twitter.Lin [00:49:11]: It's like the Russian... We partner. We play different roles.Swyx [00:49:20]: Another one that I wanted to... I'm just the last one on the competition side. There's a perception of price wars in hosting open source models. And we talked about the competitiveness in the market. Do you aim to make margin on open source models? Oh, absolutely, yes.Lin [00:49:38]: So, but I think it really... When we think about pricing, it's really need to coordinate with the value we're delivering. If the value is limited, or there are a lot of people delivering the same value, there's no differentiation. There's only one way to go. It's going down. So through competition. If I take a big step back, there is pricing from... We're more compared with close model providers, APIs, right? The close model provider, their cost structure is even more interesting because we don't bear any training costs. And we focus on inference optimization, and that's kind of where we continue to add a lot of product value. So that's how we think about product. But for the close source API provider, model provider, they bear a lot of training costs. And they need to amortize the training costs into the inference. So that created very interesting dynamics of, yeah, if we match pricing there, and I think how they are going to make money is very, very interesting.Swyx [00:50:37]: So for listeners, opening eyes 2024, $4 billion in revenue, $3 billion in compute training, $2 billion in compute inference, $1 billion in research compute amortization, and $700 million in salaries. So that is like...Swyx [00:50:59]: I mean, a lot of R&D.Lin [00:51:01]: Yeah, so I think matter is basically like, make it zero. So that's a very, very interesting dynamics we're operating within. But coming back to inference, so we are, again, as I mentioned, our product is, we are a platform. We're not just a single model as a service provider as many other inference providers, like they're providing a single model. We have our optimizer to highly customize towards your inference workload. We have a compound AI system where significantly simplify your interaction to high quality and low latency, low cost. So those are all very different from other providers.Alessio [00:51:38]: What do people not know about the work that you do? I guess like people are like, okay, Fireworks, you run model very quickly. You have the function model. Is there any kind of like underrated part of Fireworks that more people should try?Lin [00:51:51]: Yeah, actually, one user post on x.com, he mentioned, oh, actually, Fireworks can allow me to upload the LoRa adapter to the service model at the same cost and use it at same cost. Nobody has provided that. That's because we have a very special, like we rolled out multi-LoRa last year, actually. And we actually have this function for a long time. And many people has been using it, but it's not well known that, oh, if you find your model, you don't need to use on demand. If you find your model is LoRa, you can upload your LoRa adapter and we deploy it as if it's a new model. And then you use, you get your endpoint and you can use that directly, but at the same cost as the base model. So I'm happy that user is marketing it for us. He discovered that feature, but we have that for last year. So I think to feedback to me is, we have a lot of very, very good features, as Sean just mentioned. I'm the advisor to the company,Swyx [00:52:57]: and I didn't know that you had speculative decoding released.Lin [00:53:02]: We have prompt catching way back last year also. We have many, yeah. So I think that is one of the underrated feature. And if they're developers, you are using our self-serve platform, please try it out.Swyx [00:53:16]: The LoRa thing is interesting because I think you also, the reason people add additional costs to it, it's not because they feel like charging people. Normally in normal LoRa serving setups, there is a cost to dedicating, loading those weights and dedicating a machine to that inference. How come you can't avoid it?Lin [00:53:36]: Yeah, so this is kind of our technique called multi-LoRa. So we basically have many LoRa adapters share the same base model. And basically we significantly reduce the memory footprint of serving. And the one base model can sustain a hundred to a thousand LoRa adapters. And then basically all these different LoRa adapters can share the same, like direct the same traffic to the same base model where base model is dominating the cost. So that's how we advertise that way. And that's how we can manage the tokens per dollar, million token pricing, the same as base model.Swyx [00:54:13]: Awesome. Is there anything that you think you want to request from the community or you're looking for model-wise or tooling-wise that you think like someone should be working on in this?Lin [00:54:23]: Yeah, so we really want to get a lot of feedback from the application developers who are starting to build on JNN or on the already adopted or starting about thinking about new use cases and so on to try out Fireworks first. And let us know what works out really well for you and what is your wishlist and what sucks, right? So what is not working out for you and we would like to continue to improve. And for our new product launches, typically we want to launch to a small group of people. Usually we launch on our Discord first to have a set of people use that first. So please join our Discord channel. We have a lot of communication going on there. Again, you can also give us feedback. We'll have a starting office hour for you to directly talk with our DevRel and engineers to exchange more long notes.Alessio [00:55:17]: And you're hiring across the board?Lin [00:55:18]: We're hiring across the board. We're hiring front-end engineers, infrastructure cloud, infrastructure engineers, back-end system optimization engineers, applied researchers, like researchers who have done post-training, who have done a lot of fine-tuning and so on.Swyx [00:55:34]: That's it. Thank you. Thanks for having us. Get full access to Latent Space at www.latent.space/subscribe
Summary: James and Todd talk about the importance of taking breaks and finding time for spiritual renewal amidst the demands of youth ministry. They share personal experiences from recent events, including a father-son camp and a trip to Scotland, emphasizing the need for self-care and intentional rest. The conversation highlights practical tips for integrating breaks into ministry life, the counterintuitive nature of rest, and resources available for spiritual retreats.Show Takeaways Taking breaks is essential for youth leaders' well-being. We are human beings, not just human doers. Creating rhythms in life helps prevent burnout. Spiritual renewal can come from recreational activities. It's important to reconnect with God regularly. Taking a break requires faith and courage. Youth leaders should not feel guilty for taking time off. Family time can be integrated into ministry activities. Small, inexpensive activities can provide significant rest. Planning for breaks is crucial for long-term sustainability. Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/jamessabin13/ / https://www.instagram.com/edgestudentministries/Connect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
Griffin, GA artist King Elway chops it up with Lalaa Shepard of The Progress Report live at his ‘2 Soulful' listening experience. During the conversation, King Elway discusses selling the project for $100 following Nipsey Hussle's infrastructure, ‘2 Soulful' production and features with Translee, Starlito, Deante Hitchcock, Jody Breeze, and his homies from Griffin, GA, entrepreneurship and owning Wing It Deli, a shoe cleaning business, being a barber, all while being an artist and a father.
This episode of Ray Ray's Podcast is sponsored by Spotify for Podcasters and Litt Vacations, in partnership with Pandora. Sept 15th - Oct 15th is Hispanic Heritage Month. In honor of that, we wanted to highlight people doing great things in the Hispanic community. Also, October is Breast Cancer Awareness month, and we would love to extend our love and support to every woman fighting and battling we support you. We sat with our Friend K.G. Graham (@cosignkg) the Founder of “COSIGN Enterprises” (@cosignmag). We caught up with K.G. and talked about what has happened with him since the last time he was on the show, including the new “COSIGN Studio”, being an Afro-Latino, this year's “COSIGN Awards” and much more. We would like to give a big shoutout to Tite for providing our intro music from his single "Get'n Paid" featuring Chalie Boy. Our podcast is recorded on the 10th floor of Hello Studios. Visit our Website www.RayRaysPodcast.com for all of our fantastic content. Continue to follow us on all social media IG @rayrays_podcast Facebook.com/RayRaysPodcast and TikTok @rayrayspodcast. Follow us on YouTube. Like and Subscribe on YouTube Please.
Tickets to We Cool? and Friends live at Comedy Corner Underground Oct 11 here:https://www.tickettailor.com/events/the10000laughscomedyfestival/1369470Use promo code: wecool for 20% off tickets!Follow Andy Duong: @andyduong.coSign up for the patreon! patreon.com/wecoolpodcastGet the new pod merch at grantwinkelscomedy.com/storePlease rate, review and subscribe!Submit your anonymous apology here: www.wecoolpodcast.comSubscribe to our Youtube Channel for HD full length episodes and clips: https://youtube.com/channel/UCEFHvn5zEiiXX9bfbYT-RNg?sub_confirmation=1Follow us on all social media:@WeCoolPodcast@TommmyBear@IdiotRyanKahl@GrantWinkels
In this episode of the Youth Ministry Soul Keeper Podcast, hosts James and Todd reflect on their summer family and ministry experiences. They delve into the current polarized culture, emphasizing the need for youth leaders to navigate political discussions with grace and kindness. The conversation highlights the significance of modeling love and acceptance, creating a safe environment for youth to express themselves, and the necessity of conflict resolution in ministry. The episode concludes with encouragement for youth leaders to embrace their roles with compassion and understanding.Connect With The Show:Webpage - https://ymsoulkeeper.carrd.cosFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/ymsoulkeeper/Connect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
Get ready for outrageous demands and audacious parenting as we dive into the wild world of r/EntitledParents. Original Posts My parent expects me to be co-sign a house with them Evil Mamabear told me to use my own money. So I did Entitled uncle wants father's day and birthday gifts from the children of his deceased brother EM gets me permanently banned from my martial arts classes for “permanently disabling” her son. Learn more about Evergreen Podcasts and Wessler Media. Visit TheRRShow.com Check out our Subreddit Follow us on socials: TikTok Instagram YouTube Learn more about your ad choices. Visit megaphone.fm/adchoices
Tim is getting revenge on his friend David after he got him an interview at his work and when he found out he got the job he BAILED because it wasn't enough money. Follow us on socials! @themorningmess
Plug of the Day - Should I Co-Sign?Done with Debt Prayer Plan - Day 6 Mediate on this scripture:“One who has no sense shakes hands in pledge and puts up security for a neighbor.”Proverbs 17:18 NIVDownload the PrayerPlug mobile app for daily prayers and same day releases! --- Support this podcast: https://podcasters.spotify.com/pod/show/prayerplug/support
This episode of Ray Ray's Podcast is sponsored by Spotify for Podcasters and Litt Vacations, in partnership with Pandora. We sat with Suki Moreno(@Sukii_moreno), a versatile entrepreneur. We talked with Suki about her upbringing, Modeling, Her work as a choreographer, her work with “Cosign”, and much more. Also, we have Law of “Law Nation Sports” (@lawsnation) as a special co-host. We would like to give a big shoutout to Tite for providing our intro music from his single "Get'n Paid" featuring Chalie Boy. Our podcast is recorded on the 10th floor of Hello Studios. Visit our Website www.RayRaysPodcast.com for all of our fantastic content. Continue to follow us on all social media IG @rayrays_podcast Facebook.com/RayRaysPodcast and TikTok @rayrayspodcast. Follow us on YouTube. Like and Subscribe on YouTube Please.
Betteridge's law says no: with seemingly infinite flavors of RAG, and >2million token context + prompt caching from Anthropic/Deepmind/Deepseek, it's reasonable to believe that "in context learning is all you need".But then there's Cosine Genie, the first to make a huge bet using OpenAI's new GPT4o fine-tuning for code at the largest scale it has ever been used externally; resulting in what is now the #1 coding agent in the world according to SWE-Bench Full, Lite, and Verified:SWE-Bench has been the most successful agent benchmark of the year, receiving honors at ICLR (our interview here) and recently being verified by OpenAI. Cognition (Devin) was valued at $2b after reaching 14% on it. So it is very, very big news when a new agent appears to beat all other solutions, by a lot:While this number is self reported, it seems to be corroborated by OpenAI, who also award it clear highest marks on SWE-Bench verified:The secret is GPT-4o finetuning on billions of tokens of synthetic data. * Finetuning: As OpenAI says:Genie is powered by a fine-tuned GPT-4o model trained on examples of real software engineers at work, enabling the model to learn to respond in a specific way. The model was also trained to be able to output in specific formats, such as patches that could be committed easily to codebases. Due to the scale of Cosine's finetuning, OpenAI worked closely with them to figure out the size of the LoRA:“They have to decide how big your LoRA adapter is going to be… because if you had a really sparse, large adapter, you're not going to get any signal in that at all. So they have to dynamically size these things.”* Synthetic data: we need to finetune on the process of making code work instead of only training on working code.“…we synthetically generated runtime errors. Where we would intentionally mess with the AST to make stuff not work, or index out of bounds, or refer to a variable that doesn't exist, or errors that the foundational models just make sometimes that you can't really avoid, you can't expect it to be perfect.”Genie also has a 4 stage workflow with the standard LLM OS tooling stack that lets it solve problems iteratively:Full Video Podlike and subscribe etc!Show Notes* Alistair Pullen - Twitter, Linkedin* Cosine Genie launch, technical report* OpenAI GPT-4o finetuning GA* Llama 3 backtranslation* Cursor episode and Aman + SWEBench at ICLR episodeTimestamps* [00:00:00] Suno Intro* [00:05:01] Alistair and Cosine intro* [00:16:34] GPT4o finetuning* [00:20:18] Genie Data Mix* [00:23:09] Customizing for Customers* [00:25:37] Genie Workflow* [00:27:41] Code Retrieval* [00:35:20] Planning* [00:42:29] Language Mix* [00:43:46] Running Code* [00:46:19] Finetuning with OpenAI* [00:49:32] Synthetic Code Data* [00:51:54] SynData in Llama 3* [00:52:33] SWE-Bench Submission Process* [00:58:20] Future Plans* [00:59:36] Ecosystem Trends* [01:00:55] Founder Lessons* [01:01:58] CTA: Hiring & CustomersDescript Transcript[00:01:52] AI Charlie: Welcome back. This is Charlie, your AI cohost. As AI engineers, we have a special focus on coding agents, fine tuning, and synthetic data. And this week, it all comes together with the launch of Cosign's Genie, which reached 50 percent on SWE Bench Lite, 30 percent on the full SWE Bench, and 44 percent on OpenAI's new SWE Bench Verified.[00:02:17] All state of the art results by the widest ever margin recorded compared to former leaders Amazon Q and US Autocode Rover. And Factory Code Droid. As a reminder, Cognition Devon went viral with a 14 percent score just five months ago. Cosign did this by working closely with OpenAI to fine tune GPT 4. 0, now generally available to you and me, on billions of tokens of code, much of which was synthetically generated.[00:02:47] Alistair Pullen: Hi, I'm Ali. Co founder and CEO of Cosign, a human reasoning lab. And I'd like to show you Genie, our state of the art, fully autonomous software engineering colleague. Genie has the highest score on SWBench in the world. And the way we achieved this was by taking a completely different approach. We believe that if you want a model to behave like a software engineer, it has to be shown how a human software engineer works.[00:03:15] We've designed new techniques to derive human reasoning from real examples of software engineers doing their jobs. Our data represents perfect information lineage, incremental knowledge discovery, and step by step decision making. Representing everything a human engineer does logically. By actually training Genie on this unique dataset, rather than simply prompting base models, which is what everyone else is doing, we've seen that we're no longer simply generating random code until some works.[00:03:46] It's tackling problems like[00:03:48] AI Charlie: a human. Alistair Pullen is CEO and co founder of Kozen, and we managed to snag him on a brief trip stateside for a special conversation on building the world's current number one coding agent. Watch out and take care.[00:04:07] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO of Resonance at Decibel Partners, and I'm joined by my co host Swyx, founder of Small. ai.[00:04:16] swyx: Hey, and today we're back in the studio. In person, after about three to four months in visa jail and travels and all other fun stuff that we talked about in the previous episode.[00:04:27] But today we have a special guest, Ali Pullen from Cosign. Welcome. Hi, thanks for having me. We're very lucky to have you because you're on a two day trip to San Francisco. Yeah, I wouldn't recommend it. I would not[00:04:38] Alistair Pullen: recommend it. Don't fly from London to San Francisco for two days.[00:04:40] swyx: And you launched Genie on a plane.[00:04:42] On plain Wi Fi, um, claiming state of the art in SuiteBench, which we're all going to talk about. I'm excited to dive into your whole journey, because it has been a journey. I've been lucky to be a small angel in part of that journey. And it's exciting to see that you're launching to such acclaim and, you know, such results.[00:05:01] Alistair and Cosine intro[00:05:01] swyx: Um, so I'll go over your brief background, and then you can sort of fill in the blanks on what else people should know about you. You did your bachelor's in computer science at Exeter.[00:05:10] Speaker 6: Yep.[00:05:10] swyx: And then you worked at a startup that got acquired into GoPuff and round about 2022, you started working on a stealth startup that became a YC startup.[00:05:19] What's that? Yeah. So[00:05:21] Alistair Pullen: basically when I left university, I, I met my now co founder, Sam. At the time we were both mobile devs. He was an Android developer. iOS developer. And whilst at university, we built this sort of small consultancy, sort of, we'd um, be approached to build projects for people and we would just take them up and start with, they were student projects.[00:05:41] They weren't, they weren't anything crazy or anything big. We started with those and over time we started doing larger and larger projects, more interesting things. And then actually, when we left university, we just kept doing that. We didn't really get jobs, traditional jobs. It was also like in the middle of COVID, middle of lockdown.[00:05:57] So we were like, this is a pretty good gig. We'll just keep like writing code in our bedrooms. And yeah, that's it. We did that for a while. And then a friend of ours that we went to Exeter with started a YC startup during COVID. And it was one of these fast grocery delivery companies. At the time I was living in the deepest, darkest countryside in England, where fast grocery companies are still not a thing.[00:06:20] So he, he sort of pitched me this idea and was like, listen, like I need an iOS dev, do you fancy coming along? And I thought, absolutely. It was a chance to get out of my parents house, chance to move to London, you know, do interesting things. And at the time, truthfully, I had no idea what YC was. I had no idea.[00:06:34] I wasn't in the startup space. I knew I liked coding and building apps and stuff, but I'd never, never really done anything in that area. So I said, yes, absolutely. I moved to London just sort of as COVID was ending and yeah, worked at what was fancy for about a year and a half. Then we brought Sam along as well.[00:06:52] So we, Sam and I, were the two engineers at Fancy for basically its entire life, and we built literally everything. So like the, the front, the client mobile apps, the, the backends, the internal like stock management system, the driver routing, algorithms, all those things. Literally like everything. It was my first.[00:07:12] You know, both of us were super inexperienced. We didn't have, like, proper engineering experience. There were definitely decisions we'd do differently now. We'd definitely buy a lot of stuff off the shelf, stuff like that. But it was the initial dip of the toe into, like, the world of startups, and we were both, like, hooked immediately.[00:07:26] We were like, this is so cool. This sounds so much better than all our friends who were, like, consultants and doing, like, normal jobs, right? We did that, and it ran its course, and after, I want to say, 18 months or so, GoPuff came and acquired us. And there was obviously a transitionary period, an integration period, like with all acquisitions, and we did that, and as soon as we'd vested what we wanted to vest, and as soon as we thought, okay, this chapter is sort of done, uh, in about 2022, We left and we knew that we wanted to go alone and try something like we'd had this taste.[00:07:54] Now we knew we'd seen how a like a YC startup was managed like up close and we knew that we wanted to do something similar ourselves. We had no idea what it was at the time. We just knew we wanted to do something. So we, we tried a small, um, some small projects in various different areas, but then GPT 3.[00:08:12] He'd seen it on Reddit and I'm his source of all knowledge. Yeah, Sam loves Reddit. I'd actually heard of GPT 2. And obviously had like loosely followed what OpenAI had done with, what was the game they trained a model to play? Dota. Was it Dota? Yeah. So I'd followed that and, I knew loosely what GPT 2 was, I knew what BERT was, so I was like, Okay, this GPT 3 thing sounds interesting.[00:08:35] And he just mentioned it to me on a walk. And I then went home and, like, googled GPT was the playground. And the model was DaVinci 2 at the time. And it was just the old school playground, completions, nothing crazy, no chat, no nothing. I miss completions though. Yeah. Oh, completion. Honestly, I had this conversation in open hours office yesterday.[00:08:54] I was like, I just went. I know. But yeah, so we, we, um, I started playing around with the, the playground and the first thing I ever wrote into it was like, hello world, and it gave me some sort of like, fairly generic response back. I was like, okay, that looks pretty cool. The next thing was. I looked through the docs, um, also they had a lot of example prompts because I had no idea.[00:09:14] I didn't know if the, if you could put anything in, I didn't know if you had to structure in a certain way or whatever, and I, and I saw that it could start writing like tables and JSON and stuff like that. So I was like, okay, can you write me something in JSON? And it did. And I was like, Oh, wow, this is, this is pretty cool.[00:09:28] Um, can it, can it just write arbitrary JSON for me? And, um, immediately as soon as I realized that my mind was racing and I like got Sam in and we just started messing around in the playground, like fairly innocently to start with. And then, of course, both being mobile devs and also seeing, at that point, we learned about what the Codex model was.[00:09:48] It was like, this thing's trained to write code, sounds awesome. And Copilot was start, I think, I can't actually remember if Copilot had come out yet, it might have done. It's round about the same time as Codex. Round about the same time, yeah. And we were like, okay, as mobile devs, let's see what we can do.[00:10:02] So the initial thing was like, okay, let's see if we can get this AI to build us a mobile app from scratch. We eventually built the world's most flimsy system, which was back in the day with like 4, 000 token context windows, like chaining prompts, trying to keep as much context from one to the other, all these different things, where basically, Essentially, you'd put an app idea in a box, and then we'd do, like, very high level stuff, figuring out what the stack should be, figuring out what the frontend should be written in, backend should be written in, all these different things, and then we'd go through, like, for each thing, more and more levels of detail, until the point that you're You actually got Codex to write the code for each thing.[00:10:41] And we didn't do any templating or anything. We were like, no, we're going to write all the code from scratch every time, which is basically why it barely worked. But there were like occasions where you could put in something and it would build something that did actually run. The backend would run, the database would work.[00:10:54] And we were like, Oh my God, this is insane. This is so cool. And that's what we showed to our co founder Yang. I met my co founder Yang through, through fancy because his wife was their first employee. And, um, we showed him and he was like, You've discovered fire. What is this? This is insane. He has a lot more startup experience.[00:11:12] Historically, he's had a few exits in the past and has been through all different industries. He's like our dad. He's a bit older. He hates me saying that. He's your COO now? He's our COO. Yeah. And, uh, we showed him and he was like, this is absolutely amazing. Let's just do something. Cause he, he, at the time, um, was just about to have a child, so he didn't have anything going on either.[00:11:29] So we, we applied to YC, got an interview. The interview was. As most YC interviews are short, curt, and pretty brutal. They told us they hated the idea. They didn't think it would work. And that's when we started brainstorming. It was almost like the interview was like an office hours kind of thing. And we were like, okay, given what you know about the space now and how to build things with these LLMs, like what can you bring out of what you've learned in building that thing into Something that might be a bit more useful to people on the daily, and also YC obviously likes B2B startups a little bit more, at least at the time they did, back then.[00:12:01] So we were like, okay, maybe we could build something that helps you with existing codebases, like can sort of automate development stuff with existing codebases, not knowing at all what that would look like, or how you would build it, or any of these things. And They were like, yeah, that sounds interesting.[00:12:15] You should probably go ahead and do that. You're in, you've got two weeks to build us an MVP. And we were like, okay, okay. We did our best. The MVP was absolutely horrendous. It was a CLI tool. It sucked. And, um, at the time we were like, we, we don't even know. How to build what we want to build. And we didn't really know what we wanted to build, to be honest.[00:12:33] Like, we knew we wanted to try to help automate dev work, but back then we just didn't know enough about how LLM apps were built, the intricacies and all those things. And also, like, the LLMs themselves, like 4, 000 tokens, you're not going very far, they're extremely expensive. So we ended up building a, uh, a code based retrieval tool, originally.[00:12:51] Our thought process originally was, we want to build something that can do our jobs for us. That is like the gold star, we know that. We've seen like there are glimpses of it happening with our initial demo that we did. But we don't see the path of how to do that at the moment. Like the tech just wasn't there.[00:13:05] So we were like, well, there are going to be some things that you need to build this when the tech does catch up. So retrieval being one of the most important things, like the model is going to have to build like pull code out of a code base somehow. So we were like, well, let's just build the tooling around it.[00:13:17] And eventually when the tech comes, then we'll be able to just like plug it into our, our tooling and then it should work basically. And to be fair, that's basically what we've done. And that's basically what's happened, which is very fortunate. But in the meantime, whilst we were waiting for everything to sort of become available, we built this code base retrieval tool.[00:13:34] That was the first thing we ever launched when we were in YC like that, and it didn't work. It was really frustrating for us because it was just me and Sam like working like all hours trying to get this thing to work. It was quite a big task in of itself, trying to get like a good semantic search engine working that could run locally on your machine.[00:13:51] We were trying to avoid sending code to the cloud as much as possible. And then for very large codebases, you're like, you know, millions of lines of code. You're trying to do some sort of like local HNSW thing that runs inside your VS Code instance that like eats all your RAM as you've seen in the past.[00:14:05] All those different things. Yep. Yeah.[00:14:07] swyx: My first call with[00:14:07] Alistair Pullen: you, I had trouble. You were like, yeah, it sucks, man. I know, I know. I know it sucks. I'm sorry. I'm sorry. But building all that stuff was essentially the first six to eight months of what at the time was built. Which, by the way, build it. Build it. Yeah, it was a terrible, terrible name.[00:14:25] It was the worst,[00:14:27] swyx: like, part of trying to think about whether I would invest is whether or not people could pronounce it.[00:14:32] Alistair Pullen: No, when we, so when we went on our first ever YC, like, retreat, No one got the name right. They were like, build, build, well, um, and then we actually changed the names, cosign, like, although some people would spell it as in like, as if you're cosigning for an apartment or something like that's like, can't win.[00:14:49] Yeah. That was what built was back then. But the ambition, and I did a talk on this back in the end of 2022, the ambition to like build something that essentially automated our jobs was still very much like core to what we were doing. But for a very long time, it was just never apparent to us. Like. How would you go about doing these things?[00:15:06] Even when, like, you had 3. suddenly felt huge, because you've gone from 4 to 16, but even then 16k is like, a lot of Python files are longer than 16k. So you can't, you know, before you even start doing a completion, even then we were like, eh, Yeah, it looks like we're still waiting. And then, like, towards the end of last year, you then start, you see 32k.[00:15:28] 32k was really smart. It was really expensive, but also, like, you could fit a decent amount of stuff in it. 32k felt enormous. And then, finally, 128k came along, and we were like, right, this is, like, this is what we can actually deal with. Because, fundamentally, to build a product like this, you need to get as much information in front of the model as possible, and make sure that everything it ever writes in output can be read.[00:15:49] traced back to something in the context window, so it's not hallucinating it. As soon as that model existed, I was like, okay, I know that this is now going to be feasible in some way. We'd done early sort of dev work on Genie using 3. 5 16k. And that was a very, very like crude way of proving that this loop that we were after and the way we were generating the data actually had signal and worked and could do something.[00:16:16] But the model itself was not useful because you couldn't ever fit enough information into it for it to be able to do the task competently and also the base intelligence of the model. I mean, 3. 5, anyone who's used 3. 5 knows the base intelligence of the model is. is lacking, especially when you're asking it to like do software engineering, this is quite quite involved.[00:16:34] GPT4o finetuning[00:16:34] Alistair Pullen: So, we saw the 128k context model and um, at that point we'd been in touch with OpenAI about our ambitions and like how we wanted to build it. We essentially are, I just took a punt, I was like, I'm just going to ask to see, can we like train this thing? Because at the time Fortobo had just come out and back then there was still a decent amount of lag time between like OpenAI releasing a model and then allowing you to fine tune it in some way.[00:16:59] They've gotten much better about that recently, like 4. 0 fine tuning came out either, I think, a day, 4. 0 mini fine tuning came out like a day after the model did. And I know that's something they're definitely like, optimising for super heavily inside, which is great to see.[00:17:11] swyx: Which is a little bit, you know, for a year or so, YC companies had like a direct Slack channel to open AI.[00:17:17] We still do. Yeah. Yeah. So, it's a little bit of a diminishing of the YC advantage there. Yeah. If they're releasing this fine tuning[00:17:23] Alistair Pullen: ability like a day after. Yeah, no, no, absolutely. But like. You can't build a startup otherwise. The advantage is obviously nice and it makes you feel fuzzy inside. But like, at the end of the day, it's not that that's going to make you win.[00:17:34] But yeah, no, so like we'd spoken to Shamul there, Devrel guy, I'm sure you know him. I think he's head of solutions or something. In their applied team, yeah, we'd been talking to him from the very beginning when we got into YC, and he's been absolutely fantastic throughout. I basically had pitched him this idea back when we were doing it on 3.[00:17:53] 5, 16k, and I was like, this is my, this is my crazy thesis. I want to see if this can work. And as soon as like that 128k model came out, I started like laying the groundwork. I was like, I know this definitely isn't possible because he released it like yesterday, but know that I want it. And in the interim, like, GPT 4, like, 8K fine tuning came out.[00:18:11] We tried that, it's obviously even fewer tokens, but the intelligence helped. And I was like, if we can marry the intelligence and the context window length, then we're going to have something special. And eventually, we were able to get on the Experimental Access Program, and we got access to 4Turbo fine tuning.[00:18:25] As soon as we did that, because in the entire run up to that we built the data pipeline, we already had all that set up, so we were like, right, we have the data, now we have the model, let's put it through and iterate, essentially, and that's, that's where, like, Genie as we know it today, really was born. I won't pretend like the first version of Gene that we trained was good.[00:18:45] It was a disaster. That's where you realize all the implicit biases in your data set. And you realize that, oh, actually this decision you made that was fairly arbitrary was the wrong one. You have to do it a different way. Other subtle things like, you know, how you write Git diffs in using LLMs and how you can best optimize that to make sure they actually apply and work and loads of different little edge cases.[00:19:03] But as soon as we had access to the underlying tool, we were like, we can actually do this. And I was I breathed a sigh of relief because I didn't know it was like, it wasn't a done deal, but I knew that we could build something useful. I mean, I knew that we could build something that would be measurably good on whatever eval at the time that you wanted to use.[00:19:23] Like at the time, back then, we weren't actually that familiar with Swift. But once Devin came out and they announced the SBBench core, I like, that's when my life took a turn. Challenge accepted. Yeah, challenge accepted. And that's where like, yes, that's where my friendships have gone. My sleep has gone. My weight.[00:19:40] Everything got into SweeBench and yeah, we, we, it was actually a very useful tool in building GeniX beforehand. It was like, yes, vibe check this thing and see if it's useful. And then all of a sudden you have a, an actual measure to, to see like, couldn't it do software engineering? Not, not the best measure, obviously, but like it's a, it's the best that we've got now.[00:19:57] We, we just iterated and built and eventually we got it to the point where it is now. And a little bit beyond since we actually Like, we actually got that score a couple of weeks ago, and yeah, it's been a hell of a journey from the beginning all the way now. That was a very rambling answer to your question about how we got here, but that's essentially the potted answer of how we got here.[00:20:16] Got the full[00:20:16] swyx: origin story[00:20:17] Alessio: out. Yeah, no, totally.[00:20:18] Genie Data Mix[00:20:18] Alessio: You mentioned bias in the data and some of these things. In your announcement video, you called Genie the worst verse AI software engineering colleague. And you kind of highlighted how the data needed to train it needs to show how a human engineer works. I think maybe you're contrasting that to just putting code in it.[00:20:37] There's kind of like a lot more than code that goes into software engineering. How do you think about the data mixture, you know, and like, uh, there's this kind of known truth that code makes models better when you put in the pre training data, but since we put so much in the pre training data, what else do you add when you turn to Genium?[00:20:54] Alistair Pullen: Yeah, I think, well, I think that sort of boils down fundamentally to the difference between a model writing code and a model doing software engineering, because the software engineering sort of discipline goes wider, because if you look at something like a PR, that is obviously a Artifact of some thought and some work that has happened and has eventually been squashed into, you know, some diffs, right?[00:21:17] What the, very crudely, what the pre trained models are reading is they're reading those final diffs and they're emulating that and they're being able to output it, right? But of course, it's a super lossy thing, a PR. You have no idea why or how, for the most part, unless there are some comments, which, you know, anyone who's worked in a company realizes PR reviews can be a bit dodgy at times, but you see that you lose so much information at the end, and that's perfectly fine, because PRs aren't designed to be something that perfectly preserves everything that happened, but What we realized was if you want something that's a software engineer, and very crudely, we started with like something that can do PRs for you, essentially, you need to be able to figure out why those things happened.[00:21:58] Otherwise, you're just going to rely, you essentially just have a code writing model, you have something that's good at human eval, but But, but not very good at Sweet Eng. Essentially that realization was, was part of the, the kernel of the idea of of, of the approach that we took to design the agent. That, that is genie the way that we decided we want to try to extract what happened in the past, like as forensically as possible, has been and is currently like one of the, the main things that we focus all our time on, because doing that as getting as much signal out as possible, doing that as well as possible is the biggest.[00:22:31] thing that we've seen that determines how well we do on that benchmark at the end of the day. Once you've sorted things out, like output structure, how to get it consistently writing diffs and all the stuff that is sort of ancillary to the model actually figuring out how to solve a problem, the core bit of solving the problem is how did the human solve this problem and how can we best come up with how the human solved these problems.[00:22:54] So all the effort went in on that. And the mix that we ended up with was, as you've probably seen in the technical report and so on, all of those different languages and different combinations of different task types, all of that has run through that pipeline, and we've extracted all that information out.[00:23:09] Customizing for Customers[00:23:09] Alessio: How does that differ when you work with customers that have private workflows? Like, do you think, is there usually a big delta between what you get in open source and maybe public data versus like Yeah,[00:23:19] Alistair Pullen: yeah, yeah. When you scrape enough of it, most of open source is updating readmes and docs. It's hilarious, like we had to filter out so much of that stuff because when we first did the 16k model, like the amount of readme updating that went in, we did like no data cleaning, no real, like, we just sort of threw it in and saw what happened.[00:23:38] And it was just like, It was really good at updating readme, it was really good at writing some comments, really good at, um, complaining in Git reviews, in PR reviews, rather, and it would, again, like, we didn't clean the data, so you'd, like, give it some feedback, and it would just, like, reply, and, like, it would just be quite insubordinate when it was getting back to you, like, no, I don't think you're right, and it would just sort of argue with you, so The process of doing all that was super interesting because we realized from the beginning, okay, there's a huge amount of work that needs to go into like cleaning this, getting it aligned with what we want the model to do to be able to get the model to be useful in some way.[00:24:12] Alessio: I'm curious, like, how do you think about the customer willingness? To share all of this historical data, I've done a lot of developer tools investing in my career and getting access to the code base is always one of the hard things. Are people getting more cautious about sharing this information? In the past, it was maybe like, you know, you're using static analysis tool, like whatever else you need to plug into the code base, fine.[00:24:35] Now you're building. A model based on it, like, uh, what's the discussion going into these companies? Are most people comfortable with, like, letting you see how to work and sharing everything?[00:24:44] Alistair Pullen: It depends on the sector, mostly. We've actually seen, I'd say, people becoming more amenable to the idea over time, actually, rather than more skeptical, because I think they can see the, the upside.[00:24:55] If this thing could be, Does what they say it does, it's going to be more help to us than it is a risk to our infosec. Um, and of course, like, companies building in this space, we're all going to end up, you know, complying with the same rules, and there are going to be new rules that come out to make sure that we're looking at your code, that everything is safe, and so on.[00:25:12] So from what we've seen so far, we've spoken to some very large companies that you've definitely heard of and all of them obviously have stipulations and many of them want it to be sandbox to start with and all the like very obvious things that I, you know, I would say as well, but they're all super keen to have a go and see because like, despite all those things, if we can genuinely Make them go faster, allow them to build more in a given time period and stuff.[00:25:35] It's super worth it to them.[00:25:37] Genie Workflow[00:25:37] swyx: Okay, I'm going to dive in a little bit on the process that you have created. You showed the demo on your video, and by the time that we release this, you should be taking people off the waitlist and launching people so people can see this themselves. There's four main Parts of the workflow, which is finding files, planning action, writing code and running tests.[00:25:58] And controversially, you have set yourself apart from the Devins of the world by saying that things like having access to a browser is not that important for you. Is that an accurate reading of[00:26:09] Alistair Pullen: what you wrote? I don't remember saying that, but At least with what we've seen, the browser is helpful, but it's not as helpful as, like, ragging the correct files, if that makes sense.[00:26:20] Like, it is still helpful, but obviously there are more fundamental things you have to get right before you get to, like, Oh yeah, you can read some docs, or you can read a stack overflow article, and stuff like that.[00:26:30] swyx: Yeah, the phrase I was indexing on was, The other software tools are wrappers around foundational models with a few additional tools, such as a web browser or code interpreter.[00:26:38] Alistair Pullen: Oh, I see. No, I mean, no, I'm, I'm not, I'm not, I'm not deri, I'm deriding the, the, the approach that, not the, not the tools. Yeah, exactly. So like, I would[00:26:44] swyx: say in my standard model of what a code agent should look like, uh, Devon has been very influential, obviously. Yeah. Yeah. Because you could just add the docs of something.[00:26:54] Mm-Hmm. . And like, you know, now I have, now when I'm installing a new library, I can just add docs. Yeah, yeah. Cursor also does this. Right. And then obviously having a code interpreter does help. I guess you have that in the form[00:27:03] Alistair Pullen: of running tests. I mean, uh, the Genie has both of those tools available to it as well.[00:27:08] So, yeah, yeah, yeah. So, we have a tool where you can, like, put in URLs and it will just read the URLs. And you can also use this Perplexities API under the hood as well to be able to actually ask questions if it wants to. Okay. So, no, we use both of those tools as well. Like, those tools are Super important and super key.[00:27:24] I think obviously the most important tools to these agents are like being able to retrieve code from a code base, being able to read Stack Overflow articles and what have you and just be able to essentially be able to Google like we do is definitely super useful.[00:27:38] swyx: Yeah, I thought maybe we could just kind of dive into each of those actions.[00:27:41] Code Retrieval[00:27:41] swyx: Code retrieval, one of the core indexer that Yes. You've worked on, uh, even as, as built, what makes it hard, what approach you thought would work, didn't work,[00:27:52] Alistair Pullen: anything like that. It's funny, I had a similar conversation to this when I was chatting to the guys from OpenAI yesterday. The thing is that searching for code, specifically semantically, at least to start with, I mean like keyword search and stuff like that is a, is a solved problem.[00:28:06] It's been around for ages, but at least being able to, the phrase we always used back in the day was searching for what code does rather than what code is. Like searching for functionality is really hard. Really hard. The way that we approached that problem was that obviously like a very basic and easy approach is right.[00:28:26] Let's just embed the code base. We'll chunk it up in some arbitrary way, maybe using an AST, maybe using number of lines, maybe using whatever, like some overlapping, just chunk it up and embed it. And once you've done that, I will write a query saying, like, find me some authentication code or something, embed it, and then do the cosine similarity and get the top of K, right?[00:28:43] That doesn't work. And I wish it did work, don't get me wrong. It doesn't work well at all, because fundamentally, if you think about, like, semantically, how code looks is very different to how English looks, and there's, like, not a huge amount of signal that's carried between the two. So what we ended up, the first approach we took, and that kind of did well enough for a long time, was Okay, let's train a model to be able to take in English code queries and then produce a hypothetical code snippet that might look like the answer, embed that, and then do the code similarity.[00:29:18] And that process, although very simple, gets you so much more performance out of the retrieval accuracy. And that was kind of like the start of our of our engine, as we called it, which is essentially like the aggregation of all these different heuristics, like semantic, keyword, LSP, and so on. And then we essentially had like a model that would, given an input, choose which ones it thought were most appropriate, given the type of requests you had.[00:29:45] So the whole code search thing was a really hard problem. And actually what we ended up doing with Genie is we, um, let The model through self play figure out how to retrieve code. So actually we don't use our engine for Genie. So instead of like a request coming in and then like say GPT 4 with some JSON output being like, Well, I think here we should use a keyword with these inputs and then we should use semantic.[00:30:09] And then we should like pick these results. It's actually like, A question comes in and Genie has self played in its training data to be able to be like, okay, this is how I'm going to approach finding this information. Much more akin to how a developer would do it. Because if I was like, Shawn, go into this new code base you've never seen before.[00:30:26] And find me the code that does this. You're gonna probably, you might do some keywords, you're gonna look over the file system, you're gonna try to figure out from the directories and the file names where it might be, you're gonna like jump in one, and then once you're in there, you're probably gonna be doing the, you know, go to definition stuff to like jump from file to file and try to use the graph to like get closer and closer.[00:30:46] And that is exactly what Genie does. Starts on the file system, looks at the file system, picks some candidate files, is this what I'm looking for, yes or no, and If there's something that's interesting, like an import or something, it can, it can command click on that thing, go to definition, go to references, and so on.[00:31:00] And it can traverse the codebase that way.[00:31:02] swyx: Are you using the VS Code, uh, LSP, or? No,[00:31:05] Alistair Pullen: that's not, we're not like, we're not doing this in VS Code, we're just using the language servers running. But, we really wanted to try to mimic the way we do it as best as possible. And we did that during the self play process when we were generating the dataset, so.[00:31:18] Although we did all that work originally, and although, like, Genie still has access to these tools, so it can do keyword searches, and it can do, you know, basic semantic searches, and it can use the graph, it uses them through this process and figures out, okay, I've learned from data how to find stuff in codebases, and I think in our technical report, I can't remember the exact number, but I think it was around 65 or 66 percent retrieval accuracy overall, Measured on, we know what lines we need for these tasks to find, for the task to actually be able to be completed, And we found about 66 percent of all those lines, which is one of the biggest areas of free performance that we can get a hold of, because When we were building Genie, truthfully, like, a lot more focus went on assuming you found the right information, you've been able to reproduce the issue, assuming that's true, how do you then go about solving it?[00:32:08] And the bulk of the work we did was on the solving. But when you go higher up the funnel, obviously, like, the funnel looks like, have you found everything you need for the task? Are you able to reproduce the problem that's seen in the issue? Are you then able to solve it? And the funnel gets narrower as you go down.[00:32:22] And at the top of the funnel, of course, is rank. So I'm actually quite happy with that score. I think it's still pretty impressive considering the size of some of the codebases we're doing, we're using for this. But as soon as that, if that number becomes 80, think how many more tasks we get right. That's one of the key areas we're going to focus on when we continue working on Genie.[00:32:37] It'd be interesting to break out a benchmark just for that.[00:32:41] swyx: Yeah, I mean, it's super easy. Because I don't know what state of the art is.[00:32:43] Alistair Pullen: Yeah, I mean, like, for a, um, it's super easy because, like, for a given PR, you know what lines were edited. Oh, okay. Yeah, you know what lines were[00:32:50] swyx: you can[00:32:51] Alistair Pullen: source it from Cbench, actually.[00:32:52] Yeah, you can do it, you can do it super easily. And that's how we got that figure out at the other end. Um, for us being able to see it against, um, our historic models were super useful. So we could see if we were, you know, actually helping ourselves or not. And initially, one of the biggest performance gains that we saw when we were work, when we did work on the RAG a bit was giving it the ability to use the LSP to like go to definition and really try to get it to emulate how we do that, because I'm sure when you go into an editor with that, where like the LSP is not working or whatever, you suddenly feel really like disarmed and naked.[00:33:20] You're like, Oh my god, I didn't realize how much I actually used this to get about rather than just find stuff. So we really tried to get it to do that and that gave us a big jump in performance. So we went from like 54 percent up to like the 60s, but just by adding, focusing on that.[00:33:34] swyx: One weird trick. Yes.[00:33:37] I'll briefly comment here. So this is the standard approach I would say most, uh, code tooling startups are pursuing. The one company that's not doing this is magic. dev. So would you do things differently if you have a 10 million[00:33:51] Alistair Pullen: token context window? If I had a 10 million context window and hundreds of millions of dollars, I wouldn't have gone and built, uh, it's an LTM, it's not a transformer, right, that they're using, right?[00:34:03] If I'm not mistaken, I believe it's not a transformer. Yeah, Eric's going to come on at some point. Listen, they obviously know a lot more about their product than I do. I don't know a great deal about how magic works. I don't think he knows anything yet. I'm not going to speculate. Would I do it the same way as them?[00:34:17] I like the way we've done it because fundamentally like we focus on the Active software engineering and what that looks like and showing models how to do that. Fundamentally, the underlying model that we use is kind of null to us, like, so long as it's the best one, I don't mind. And the context windows, we've already seen, like, you can get transformers to have, like, million, one and a half million token context windows.[00:34:43] And that works perfectly well, so like, as soon as you can fine tune Gemini 1. 5, then you best be sure that Genie will run on Gemini 1. 5, and like, we'll probably get very good performance out of that. I like our approach because we can be super agile and be like, Oh, well, Anthropic have just released whatever, uh, you know, and it might have half a million tokens and it might be really smart.[00:35:01] And I can just immediately take my JSONL file and just dump it in there and suddenly Genie works on there and it can do all the new things. Does[00:35:07] swyx: Anthropic have the same fine tuning support as OpenAI? I[00:35:11] Alistair Pullen: actually haven't heard any, anyone do it because they're working on it. They are partner, they're partnered with AWS and it's gonna be in Bedrock.[00:35:16] Okay. As far as, as far as I know, I think I'm, I think, I think that's true. Um, cool. Yeah.[00:35:20] Planning[00:35:20] swyx: We have to keep moving on to, uh, the other segments. Sure. Uh, planning the second piece of your four step grand master plan, that is the frontier right now. You know, a lot of people are talking about strawberry Q Star, whatever that is.[00:35:32] Monte Carlo Tree Search. Is current state of the art planning good enough? What prompts have worked? I don't even know what questions to ask. Like, what is the state of planning?[00:35:41] Alistair Pullen: I think it's fairly obvious that with the foundational models, like, you can ask them to think by step by step and ask them to plan and stuff, but that isn't enough, because if you look at how those models score on these benchmarks, then they're not even close to state of the art.[00:35:52] Which ones are[00:35:52] swyx: you referencing? Benchmarks? So, like,[00:35:53] Alistair Pullen: just, uh, like, SweetBench and so on, right? And, like, even the things that get really good scores on human evalor agents as well, because they have these loops, right? Yeah. Obviously these things can reason, quote unquote, but the reasoning is the model, like, it's constrained by the model as intelligence, I'd say, very crudely.[00:36:10] And what we essentially wanted to do was we still thought that, obviously, reasoning is super important, we need it to get the performance we have. But we wanted the reasoning to emulate how we think about problems when we're solving them as opposed to how a model thinks about a problem when we're solving it.[00:36:23] And that was, that's obviously part of, like, the derivation pipeline that we have when we, when we, when we Design our data, but the reasoning that the models do right now, and who knows what Q star, whatever ends up being called looks like, but certainly what I'm excited on a small tangent to that, like, what I'm really excited about is when models like that come out, obviously, the signal in my data, when I regenerate, it goes up.[00:36:44] And then I can then train that model. It's already better at reasoning with it. improved reasoning data and just like I can keep bootstrapping and keep leapfrogging every single time. And that is like super exciting to me because I don't, I welcome like new models so much because immediately it just floats me up without having to do much work, which is always nice.[00:37:02] But at the state of reasoning generally, I don't see it going away anytime soon. I mean, that's like an autoregressive model doesn't think per se. And in the absence of having any thought Maybe, uh, an energy based model or something like that. Maybe that's what QSTAR is. Who knows? Some sort of, like, high level, abstract space where thought happens before tokens get produced.[00:37:22] In the absence of that for the moment, I think it's all we have and it's going to have to be the way it works. For what happens in the future, we'll have to see, but I think certainly it's never going to hinder performance to do it. And certainly, the reasoning that we see Genie do, when you compare it to like, if you ask GPT 4 to break down step by step and approach for the same problem, at least just on a vibe check alone, looks far better.[00:37:46] swyx: Two elements that I like, that I didn't see in your initial video, we'll see when, you know, this, um, Genie launches, is a planner chat, which is, I can modify the plan while it's executing, and then the other thing is playbooks, which is also from Devin, where, here's how I like to do a thing, and I'll use Markdown to, Specify how I do it.[00:38:06] I'm just curious if, if like, you know,[00:38:07] Alistair Pullen: those things help. Yeah, no, absolutely. We're a hundred percent. We want everything to be editable. Not least because it's really frustrating when it's not. Like if you're ever, if you're ever in a situation where like this is the one thing I just wish I could, and you'd be right if that one thing was right and you can't change it.[00:38:21] So we're going to make everything as well, including the code it writes. Like you can, if it makes a small error in a patch, you can just change it yourself and let it continue and it will be fine. Yeah. So yeah, like those things are super important. We'll be doing those two.[00:38:31] Alessio: I'm curious, once you get to writing code, is most of the job done?[00:38:35] I feel like the models are so good at writing code when they're like, And small chunks that are like very well instructed. What's kind of the drop off in the funnel? Like once you get to like, you got the right files and you got the right plan. That's a great question[00:38:47] Alistair Pullen: because by the time this is out, there'll be another blog, there'll be another blog post, which contains all the information, all the learnings that I delivered to OpenAI's fine tuning team when we finally got the score.[00:38:59] Oh, that's good. Um, go for it. It's already up. And, um, yeah, yeah. I don't have it on my phone, but basically I, um, broke down the log probs. I basically got the average log prob for a token at every token position in the context window. So imagine an x axis from 0 to 128k and then the average log prob for each index in there.[00:39:19] As we discussed, like, The way genie works normally is, you know, at the beginning you do your RAG, and then you do your planning, and then you do your coding, and that sort of cycle continues. The certainty of code writing is so much more certain than every other aspect of genie's loop. So whatever's going on under the hood, the model is really comfortable with writing code.[00:39:35] There is no doubt, and it's like in the token probabilities. One slightly different thing, I think, to how most of these models work is, At least for the most part, if you ask GPT4 in ChatGPT to edit some code for you, it's going to rewrite the entire snippet for you with the changes in place. We train Genie to write diffs and, you know, essentially patches, right?[00:39:55] Because it's more token efficient and that is also fundamentally We don't write patches as humans, but it's like, the result of what we do is a patch, right? When Genie writes code, I don't know how much it's leaning on the pre training, like, code writing corpus, because obviously it's just read code files there.[00:40:14] It's obviously probably read a lot of patches, but I would wager it's probably read more code files than it has patches. So it's probably leaning on a different part of its brain, is my speculation. I have no proof for this. So I think the discipline of writing code is slightly different, but certainly is its most comfortable state when it's writing code.[00:40:29] So once you get to that point, so long as you're not too deep into the context window, another thing that I'll bring up in that blog post is, um, Performance of Genie over the length of the context window degrades fairly linearly. So actually, I actually broke it down by probability of solving a SWE bench issue, given the number of tokens of the context window.[00:40:49] It's 60k, it's basically 0. 5. So if you go over 60k in context length, you are more likely to fail than you are to succeed just based on the amount of tokens you have on the context window. And when I presented that to the fine tuning team at OpenAI, that was super interesting to them as well. And that is more of a foundational model attribute than it is an us attribute.[00:41:10] However, the attention mechanism works in, in GPT 4, however, you know, they deal with the context window at that point is, you know, influencing how Genie is able to form, even though obviously all our, all our training data is perfect, right? So even if like stuff is being solved in 110, 000 tokens, sort of that area.[00:41:28] The training data still shows it being solved there, but it's just in practice, the model is finding it much harder to solve stuff down that end of the context window.[00:41:35] Alessio: That's the scale with the context, so for a 200k context size, is 100k tokens like the 0. 5? I don't know. Yeah, but I,[00:41:43] Alistair Pullen: I, um, hope not. I hope you don't just take the context length and halve it and then say, oh, this is the usable context length.[00:41:50] But what's been interesting is knowing that Actually really digging into the data, looking at the log probs, looking at how it performs over the entire window. It's influenced the short term improvements we've made to Genie since we did the, got that score. So we actually made some small optimizations to try to make sure As best we can without, like, overdoing it, trying to make sure that we can artificially make sure stuff sits within that sort of range, because we know that's our sort of battle zone.[00:42:17] And if we go outside of that, we're starting to push the limits, we're more likely to fail. So just doing that sort of analysis has been super useful without actually messing with anything, um, like, more structural in getting more performance out of it.[00:42:29] Language Mix[00:42:29] Alessio: What about, um, different languages? So, in your technical report, the data makes sense.[00:42:34] 21 percent JavaScript, 21 percent Python, 14 percent TypeScript, 14 percent TSX, um, Which is JavaScript, JavaScript.[00:42:42] Alistair Pullen: Yeah,[00:42:42] swyx: yeah, yeah. Yes,[00:42:43] Alistair Pullen: yeah, yeah. It's like 49 percent JavaScript. That's true, although TypeScript is so much superior, but anyway.[00:42:46] Alessio: Do you see, how good is it at just like generalizing? You know, if you're writing Rust or C or whatever else, it's quite different.[00:42:55] Alistair Pullen: It's pretty good at generalizing. Um, obviously, though, I think there's 15 languages in that technical report, I think, that we've, that we've covered. The ones that we picked in the highest mix were, uh, the ones that, selfishly, we internally use the most, and also that are, I'd argue, some of the most popular ones.[00:43:11] When we have more resource as a company, and, More time and, you know, once all the craziness that has just happened sort of dies down a bit, we are going to, you know, work on that mix. I'd love to see everything ideally be represented in a similar level as it is. If you, if you took GitHub as a data set, if you took like how are the languages broken down in terms of popularity, that would be my ideal data mix to start.[00:43:34] It's just that it's not cheap. So, um, yeah, trying to have an equal amount of Ruby and Rust and all these different things is just, at our current state, is not really what we're looking for.[00:43:46] Running Code[00:43:46] Alessio: There's a lot of good Ruby in my GitHub profile. You can have it all. Well, okay, we'll just train on that. For running tests It sounds easy, but it isn't, especially when you're working in enterprise codebases that are kind of like very hard to spin up.[00:43:58] Yes. How do you set that up? It's like, how do you make a model actually understand how to run a codebase, which is different than writing code for a codebase?[00:44:07] Alistair Pullen: The model itself is not in charge of like setting up the codebase and running it. So Genie sits on top of GitHub, and if you have CI running GitHub, you have GitHub Actions and stuff like that, then Genie essentially makes a call out to that, runs your CI, sees the outputs and then like moves on.[00:44:23] Making a model itself, set up a repo, wasn't scoped in what we wanted Genie to be able to do because for the most part, like, at least most enterprises have some sort of CI pipeline running and like a lot of, if you're doing some, even like, A lot of hobbyist software development has some sort of like basic CI running as well.[00:44:40] And that was like the lowest hanging fruit approach that we took. So when, when Genie ships, like the way it will run its own code is it will basically run your CI and it will like take the, um, I'm not in charge of writing this. The rest of the team is, but I think it's the checks API on GitHub allows you to like grab that information and throw it in the context window.[00:44:56] Alessio: What's the handoff like with the person? So, Jeannie, you give it a task, and then how long are you supposed to supervise it for? Or are you just waiting for, like, the checks to eventually run, and then you see how it goes? Like, uh, what does it feel like?[00:45:11] Alistair Pullen: There are a couple of modes that it can run in, essentially.[00:45:14] It can run in, like, fully headless autonomous modes, so say you assign it a ticket in linear or something. Then it won't ask you for anything. It will just go ahead and try. Or if you're in like the GUI on the website and you're using it, then you can give it a task and it, it might choose to ask you a clarifying question.[00:45:30] So like if you ask it something super broad, it might just come back to you and say, what does that actually mean? Or can you point me in the right direction for this? Because like our decision internally was, it's going to piss people off way more if it just goes off and has, and makes a completely like.[00:45:45] ruined attempt at it because it just like from day one got the wrong idea. So it can ask you for a lot of questions. And once it's going much like a regular PR, you can leave review comments, issue comments, all these different things. And it, because you know, he's been trained to be a software engineering colleague, responds in actually a better way than a real colleague, because it's less snarky and less high and mighty.[00:46:08] And also the amount of filtering has to do for When you train a model to like be a software engineer, essentially, it's like you can just do anything. It's like, yeah, it looks good to me, bro.[00:46:17] swyx: Let's[00:46:17] Alistair Pullen: ship it.[00:46:19] Finetuning with OpenAI[00:46:19] swyx: I just wanted to dive in a little bit more on your experience with the fine tuning team. John Allard was publicly sort of very commentary supportive and, you know, was, was part of it.[00:46:27] Like, what's it like working with them? I also picked up that you initially started to fine tune what was publicly available, the 16 to 32 K range. You got access to do more than that. Yeah. You've also trained on billions of tokens instead of the usual millions range. Just, like, take us through that fine tuning journey and any advice that you might have.[00:46:47] Alistair Pullen: It's been so cool, and this will be public by the time this goes out, like, OpenAI themselves have said we are pushing the boundaries of what is possible with fine tuning. Like, we are right on the edge, and like, we are working, genuinely working with them in figuring out how stuff works, what works, what doesn't work, because no one's doing No one else is doing what we're doing.[00:47:06] They have found what we've been working on super interesting, which is why they've allowed us to do so much, like, interesting stuff. Working with John, I mean, I had a really good conversation with John yesterday. We had a little brainstorm after the video we shot. And one of the things you mentioned, the billions of tokens, one of the things we've noticed, and it's actually a very interesting problem for them as well, when you're[00:47:28] How big your peft adapter, your lore adapter is going to be in some way and like figuring that out is actually a really interesting problem because if you make it too big and because they support data sets that are so small, you can put like 20 examples through it or something like that, like if you had a really sparse, large adapter, you're not going to get any signal in that at all.[00:47:44] So they have to dynamically size these things and there is an upper bound and actually we use. Models that are larger than what's publicly available. It's not publicly available yet, but when this goes out, it will be. But we have larger law adapters available to us, just because the amount of data that we're pumping through it.[00:48:01] And at that point, you start seeing really Interesting other things like you have to change your learning rate schedule and do all these different things that you don't have to do when you're on the smaller end of things. So working with that team is such a privilege because obviously they're like at the top of their field in, you know, in the fine tuning space.[00:48:18] So we're, as we learn stuff, they're learning stuff. And one of the things that I think really catalyzed this relationship is when we first started working on Genie, like I delivered them a presentation, which will eventually become the blog post that you'll love to read soon. The information I gave them there I think is what showed them like, oh wow, okay, these guys are really like pushing the boundaries of what we can do here.[00:48:38] And truthfully, our data set, we view our data set right now as very small. It's like the minimum that we're able to afford, literally afford right now to be able to produce a product like this. And it's only going to get bigger. So yesterday while I was in their offices, I was basically, so we were planning, we were like, okay, how, this is where we're going in the next six to 12 months.[00:48:57] Like we're, Putting our foot on the gas here, because this clearly works. Like I've demonstrated this is a good, you know, the best approach so far. And I want to see where it can go. I want to see what the scaling laws like for the data. And at the moment, like, it's hard to figure that out because you don't know when you're running into like saturating a PEFT adapter, as opposed to actually like, is this the model's limit?[00:49:15] Like, where is that? So finding all that stuff out is the work we're actively doing with them. And yeah, it's, it's going to get more and more collaborative over the next few weeks as we, as we explore like larger adapters, pre training extension, different things like that.[00:49:27] swyx: Awesome. I also wanted to talk briefly about the synthetic data process.[00:49:32] Synthetic Code Data[00:49:32] swyx: One of your core insights was that the vast majority of the time, the code that is published by a human is encrypted. In a working state. And actually you need to fine tune on non working code. So just, yeah, take us through that inspiration. How many rounds, uh, did you, did you do? Yeah, I mean, uh,[00:49:47] Alistair Pullen: it might, it might be generous to say that the vast majority of code is in a working state.[00:49:51] I don't know if I don't know if I believe that. I was like, that's very nice of you to say that my code works. Certainly, it's not true for me. No, I think that so yeah, no, but it was you're right. It's an interesting problem. And what we saw was when we didn't do that, obviously, we'll just hope you have to basically like one shot the answer.[00:50:07] Because after that, it's like, well, I've never seen iteration before. How am I supposed to figure out how this works? So what the what you're alluding to there is like the self improvement loop that we started working on. And that was in sort of two parts, we synthetically generated runtime errors. Where we would intentionally mess with the AST to make stuff not work, or index out of bounds, or refer to a variable that doesn't exist, or errors that the foundational models just make sometimes that you can't really avoid, you can't expect it to be perfect.[00:50:39] So we threw some of those in with a, with a, with a probability of happening and on the self improvement side, I spoke about this in the, in the blog post, essentially the idea is that you generate your data in sort of batches. First batch is like perfect, like one example, like here's the problem, here's the answer, go, train the model on it.[00:50:57] And then for the second batch, you then take the model that you trained before that can look like one commit into the future, and then you let it have the first attempt at solving the problem. And hopefully it gets it wrong, and if it gets it wrong, then you have, like, okay, now the codebase is in this incorrect state, but I know what the correct state is, so I can do some diffing, essentially, to figure out how do I get the state that it's in now to the state that I want it in, and then you can train the model to then produce that diff next, and so on, and so on, and so on, so the model can then learn, and also reason as to why it needs to make these changes, to be able to learn how to, like, learn, like, solve problems iteratively and learn from its mistakes and stuff like that.[00:51:35] Alessio: And you picked the size of the data set just based on how much money you could spend generating it. Maybe you think you could just make more and get better results. How, what[00:51:42] Alistair Pullen: multiple of my monthly burn do I spend doing this? Yeah. Basically it was, it was very much related to Yeah. Just like capital and um, yes, with any luck that that will be alleviated to[00:51:53] swyx: very soon.[00:51:54] Alistair Pullen: Yeah.[00:51:54] SynData in Llama 3[00:51:54] swyx: Yeah. I like drawing references to other things that are happening in, in the, in the wild. So, 'cause we only get to release this podcast once a week. Mm-Hmm. , the LAMA three paper also had some really interesting. Thoughts on synthetic data for code? I don't know if you have reviewed that. I'll highlight the back translation section.[00:52:11] Because one of your dataset focuses is updating documentation. I think that translation between natural language, English versus code, and
Kendall wants revenge on his cousin Angelique after he suggested her to his boss for an open position at his job. She tanked the interview and absolutely embarrassed him. Nacho is pranking her and also teaching Kendall a lesson about working with family! Follow us on socials! @themorningmess
Ambrose Serrano is currently the Lead Strength and Conditioning Coach for the Winter Olympic athletes training at the Olympic & Paralympic Training Center in Lake Placid, NY.In this episode, we discuss the OTC's S&C structure, Ambrose's day-to-day responsibilities, advice for new S&C professionals, and what Ambrose looks for when hiring new coaches. This was an absolutely incredible episode, one you really won't want to miss.Sign up for the Coachlogik waitlist:https://form.typeform.com/to/g7HTOrZr?typeform-source=coachlogik-mentorship.mn.coSign up for our coaching mentorship group -- our next call is 7/19 at 12 pm EDT!https://coachlogik-mentorship.mn.coSubscribe to my Patreon to support the show!!!Philosophical Weightlifting | Creating Weightlifting podcasts and sharing knowledge.Follow me and get coaching:https://www.instagram.com/josh_philwl/Weightlifting House:https://www.weightliftinghouse.com/ code PHILWL for 10% offOnyx:https://www.onyxstraps.com/ with code PHILWL for 10% offVirus:https://virusintl.com code PHILWL for 10% off
On this episode, Chris & Koi call up some friends to find out if a woman's co-sign matters in a relationship.
Alex Long is a recent graduate of ETSU, earning his PhD in Sport Physiology studying the physiological adaptations following a strength endurance block performed with accentuated eccentric loading or traditional resistance training. In this episode, we discuss Alex's research line, particularly training-induced morphological adaptations in skeletal muscle, deep diving into the available literature and his current work to understand the implications of regional hypertrophy for performance. Referenced papers: Review: Inhomogeneous Muscle Growth: https://journals.lww.com/nsca-scj/fulltext/2020/10000/regional_hypertrophy,_the_inhomogeneous_muscle.11.aspxRegional Hypertrophy, Muscle Center of Mass, and Moment of Inertia Paper: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1074705/fullRandomized Controlled Trial: Regional Hypertrophy and Jump Performance: https://www.researchgate.net/publication/351577491_The_role_of_exercise_selection_in_regional_Muscle_Hypertrophy_A_randomized_controlled_trialEmphasizing Task-Specific Hypertrophy: https://www.mdpi.com/2411-5142/5/4/76Study under Dr. Long and Dr. Taber: Master of Science in Exercise and Sports Science: https://www.sacredheart.edu/majors--programs/exercise--sport-science---ms/Sign up for the Coachlogik waitlist:https://form.typeform.com/to/g7HTOrZr?typeform-source=coachlogik-mentorship.mn.coSign up for our coaching mentorship group -- our next call is 7/12 at 12 pm EDT!https://coachlogik-mentorship.mn.coSubscribe to my Patreon to support the show!!!Philosophical Weightlifting | Creating Weightlifting podcasts and sharing knowledge.Follow me and get coaching:https://www.instagram.com/josh_philwl/Weightlifting House:https://www.weightliftinghouse.com/ code PHILWL for 10% offOnyx:https://www.onyxstraps.com/ with code PHILWL for 10% offVirus:https://virusintl.com code PHILWL for 10% off
Summary: In this conversation, James and Todd discuss how anniversaries can be both a cause for celebration and a reminder of painful experiences. Todd shares a personal experience of being asked to resign from his position as a youth pastor on a specific date, which has become a traumatic anniversary for him. James also shares how his wedding anniversary has had mixed emotions attached to it. James and Todd discuss the unexpected reactions that can come with trauma anniversaries, share insights on how to navigate these difficult times, and highlight the power of redemption and how God can use our trauma to bring healing and help others. Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.cosFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/ymsoulkeeper/Connect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
Meg Stone is a titan in athletics; going to two Olympic Games and becoming the NCAA's first female D1 head strength coach. In this episode, we discuss Meg's background as an athlete and a coach and her experiences as a female in the strength and conditioning profession - particularly with D1 football in the 1980s. Follow the ETSU Center of Excellence for Sport Science and Coach Education:https://www.instagram.com/sportscienceed/https://x.com/sportscienceed?lang=enSign up for the Coachlogik waitlist:https://form.typeform.com/to/g7HTOrZr?typeform-source=coachlogik-mentorship.mn.coSign up for our coaching mentorship group -- our next call is 7/12 at 12 pm EDT!https://coachlogik-mentorship.mn.coSubscribe to my Patreon to support the show!!!Philosophical Weightlifting | Creating Weightlifting podcasts and sharing knowledge.Follow me and get coaching:https://www.instagram.com/josh_philwl/Weightlifting House:https://www.weightliftinghouse.com/ code PHILWL for 10% offOnyx:https://www.onyxstraps.com/ with code PHILWL for 10% offVirus:https://virusintl.com code PHILWL for 10% off
Christian Carter received his PhD from East Tennessee State University, where he studied accentuated eccentric loading and assisted with the weightlifting team, women's soccer, and men's and women's golf teams. He is currently the Director of Strength and Conditioning for Olympic Sports at James Madison University.Very infrequently do you come across someone with a similar philosophy, life outlook, and interests. This was one of those instances. Christian is highly educated in sport science and human performance, an avid consumer of philosophy and psychological texts, and an all-around awesome person.In this episode, we discuss Christian's revelation as a strength coach, authentic coaching, and his experience getting a PhD in sport physiology before taking over as the director at JMU.Enjoy.Follow Christian:https://www.instagram.com/drcoachcarter/https://www.instagram.com/rp_weightlifting/Sign up for the Coachlogik waitlist:https://form.typeform.com/to/g7HTOrZr?typeform-source=coachlogik-mentorship.mn.coSign up for our coaching mentorship group -- our next call is 6/28 at 12 pm EDT!https://coachlogik-mentorship.mn.coSubscribe to my Patreon to support the show!!!Philosophical Weightlifting | Creating Weightlifting podcasts and sharing knowledge.Follow me and get coaching:https://www.instagram.com/josh_philwl/Weightlifting House:https://www.weightliftinghouse.com/ code PHILWL for 10% offOnyx:https://www.onyxstraps.com/ with code PHILWL for 10% offhttps://www.instagram.com/onyx_straps/Virus:https://virusintl.com code PHILWL for 10% offEarth Fed Muscle:https://www.earthfedmuscle.com/ with code PHILWL for 10% off
Summary: In this episode, James and Todd discuss milestones in ministry and personal life. They share their recent family milestones and encourage listeners to recognize and appreciate the significant moments in their own lives. They emphasize the importance of practicing God's presence and being aware of His work, even when it may not be apparent. Show Notes Connect With The Show:Webpage - https://ymsoulkeeper.carrd.coFacebook - https://www.facebook.com/profile.php?id=100088943467640&sk=followersInstagram - https://www.instagram.com/ymsoulkeeper/Youtube (watch pod vids here) - https://www.youtube.com/channel/UCIqvY3ftXO8-8poUuRYUZ8wTwitter - https://twitter.com/YMSoulKeeperConnect with James:Instagram - https://www.instagram.com/ymsoulkeeper/Connect with Todd:Facebook - https://www.facebook.com/toddpearageInstagram - https://www.instagram.com/toddpearage/Twitter - https://twitter.com/toddpearageWe would love to hear from you with questions and comments at the following email: ymsoulkeeper@gmail.comCheck Out Coleader and plan your next month of ministry in just one click - https://www.coleader.coSign-up for Coleader here: https://share.coleader.co/SikZuk/joinGet help with the weekly grind with the help of Download Youth Ministry here - https://www.downloadyouthministry.comYouth Leader Summit Conferences: https://www.youthleadersummit.com/Connect with Guest Co-Host - Eben EddyInstagram - https://www.instagram.com/ebeneddy/Facebook - https://www.facebook.com/eben.eddy
C dans l'air du 3 juin - Dette: la France sanctionnée...bientôt l'austérité ? C'est un coup de semonce en pleine campagne des européennes. Après des mois de suspense, l'agence de notation américaine Standard & Poor's (S&P) a finalement abaissé la note de la dette française, de AA à AA −. C'est la première fois depuis 2013 que S&P dégrade la note souveraine française, mais la deuxième en un peu plus d'un an que l'une des trois agences de notation la sanctionne, après Fitch, en avril 2023. Une rétrogradation qui n'aura pour l'heure que peu d'effets sur les conditions de financement du pays, mais qui bouscule l'exécutif à quelques jours du scrutin des européennes et suscite une avalanche de réactions des oppositions. "Voilà où nous mène la piteuse gestion des finances publiques du duo Macron/Le Maire !" a écrit sur X Eric Ciotti tandis que la présidente LR de la région Ile-de-France Valérie Pécresse s'est indignée : "Ils ont cramé la caisse, et maintenant ? À quand le courage de la bonne gestion et une remise en ordre dans nos comptes ?". "La gestion catastrophique des finances publiques par des gouvernements aussi incompétents qu'arrogants a mis notre pays dans de très graves difficultés cumulant records d'impôts, de déficit et de dettes", a dénoncé sur X la cheffe des députés du Rassemblement national Marine Le Pen. De son côté, le président LFI de la commission des Finances de l'Assemblée nationale Eric Coquerel a estimé qu'"il ne fait aucun doute que le gouvernement va se servir de cette décision pour justifier de nouvelles coupes budgétaires". "Les seuls résultats à attendre seront la dégradation de nos services publics et la réduction de nos moyens pour répondre aux urgences climatiques et sociales", a-t-il ajouté. À l'Assemblée nationale, le gouvernement affronte ce lundi deux motions de censure déposées par le RN et LFI pour protester contre les coupes budgétaires de l'éxécutif par décret au mois de février, sans soumettre un projet de loi de finances rectificative au Parlement. Cosignée par les communistes et des écologistes, celle de La France Insoumise fustige "une austérité sans précédent", "insupportable sur le plan social et inefficace sur le plan budgétaire", après les dix milliards d'euros de crédits pour 2024 déjà gelés en raison du dérapage du déficit. La gauche dénonce également le "surgel de dix milliards d'euros supplémentaires" que le gouvernement cherche à "annuler avant la fin de l'année". "Notre stratégie reste la même : réindustrialiser, atteindre le plein-emploi et tenir notre trajectoire pour revenir sous les 3 % de déficit en 2027 », a déclaré Bruno Le Maire au journal Le Parisien. "La raison principale de cette dégradation, c'est que nous avons sauvé l'économie française", a-t-il affirmé, évoquant les dépenses de soutien de l'économie pendant la crise du Covid. Ce qui n'a pas manqué de faire vivement réagir les oppositions et de relancer les appels à sa démission. Sept ans après son arrivée à la tête de Bercy, un record, le ministre de l'Economie croit en son bilan. Et s'il reconnaît "une erreur sur l'évaluation des remontées fiscales" - elles ont été 21 milliards d'euros plus faibles que prévu par l'exécutif - Bruno Le Maire ne veut pas changer de ligne et exclut toujours toute "augmentation d'impôts" en 2025, au grand dam de la gauche, qui réclame de taxer les "ultrariches" et les "superprofits" des entreprises. Le ministre des Comptes publics, Thomas Cazenave, a indiqué, pour sa part à l'AFP, que "cette révision de la note de la dette française par S&P ne (faisait) que traduire un impératif que nous connaissons déjà : celui de poursuivre le rétablissement de nos finances publiques". Après avoir tenté de faire profil bas ces dernières semaines sur ce sujet, l'exécutif va devoir accélérer dans sa quête d'économies budgétaires forcément impopulaires. Le projet de loi de finances pour 2025 aura sans doute besoin de 20 à 25 milliards d'euros d'économies pour être bouclé, dans un contexte où le gouvernement est menacé de motions de censure à l'Assemblée nationale par tous les bancs de l'opposition. Les débats s'annoncent très agités. Alors que signifie cette nouvelle dégradation de la note de la dette française ? Quelles conséquences pour la France et les Français ? Comment rétablir les comptes publics ? Qui va payer ? Bruno Le Maire doit-il démissionner ? Que prévoit l'exécutif ? Que proposent le RN, LR et la gauche ? Les experts : - Guillaume DARET - Grand reporter au service politique à France Télévisions - Gaëlle MACKE - Directrice déléguée de la rédaction du magazine Challenges - Nathalie MAURET - Journaliste politique pour le groupe de presse régionale Ebra - Mathieu PLANE - Economiste, directeur adjoint à l'OFCE, l'Observatoire français des conjonctures économiques
0:00 Intro Juice 1:00 Life and Podcast update Entrée - Steak and Shrimp Kabobs 4:45 Mom stunned to give birth to twins 22 days apart: 'Genuinely couldn't believe it' 7:47 Woman needs emergency surgery after swallowing nail in bag of pork rinds 12:52 My fiancé lost my $2K wedding dress — he put it on the roof of his car and sped off 17:10 Brazilian woman brazenly wheels elderly man's corpse into bank to co-sign a loan for her: 'Uncle, are you listening?' 21:37 Would you rather with co-host DJ Code Dessert (Millionaire's Cheesecake) 24:54 Outro Follow on Instagram: https://www.instagram.com/mrpr3zz/ TikTok: https://www.tiktok.com/@mr_pr3zz?lang=en GRAB SOME MERCH: https://my-store-cebaed.creator-spring.com/ --- Support this podcast: https://podcasters.spotify.com/pod/show/makeucrunchshow/support
Last month, the famed American philosopher and gender studies scholar Judith Butler was thrust into the center of a controversy after remarks Butler made about the October 7 attacks in Israel. A longtime critic of Zionism and Israel's war against the Palestinians, Butler had condemned the attacks in the immediate aftermath. But at a March roundtable in France, Butler offered a historical context for the Hamas-led operations and stated that the attacks constituted armed resistance. The blowback was swift, and Butler was criticized in media outlets across Europe and in Israel. This week on Intercepted, Butler discusses the controversy and their position on Hamas, Israel, and crackdowns on student protests.Butler is currently a Distinguished Professor at UC Berkeley's Graduate School. They are the author of several books, including “The Force of Nonviolence: An Ethico-Political Bind,” “Parting Ways: Jewishness and the Critique of Zionism,” and most recently, “Who's Afraid of Gender?”For full show transcript visit the episode page. If you'd like to support our work, go to theintercept.com/join, where your donation, no matter what the amount, makes a real difference.And if you haven't already, please subscribe to the show so you can hear it every week. And please go and leave us a rating or a review — it helps people find the show. If you want to give us additional feedback, email us at Podcasts@theintercept.com. Hosted on Acast. See acast.com/privacy for more information.
Honey Bxby On Rapping About Taking Someone's Man, Kehlani Co-Sign, Strip Club Encounters + MoreSee omnystudio.com/listener for privacy information.
It's been weeks since we've checked in on Uncle Kevin Brennan, Neal Brenann's less successful brother and once-wannabe wacky physical comic. Kevin's podcast is entering a new phase. The self-production and lack of punctuality were already causing fans to become irritable, but how will the new crop of MLC clueless comics fare in the colosseum that is the MLC revolving door. Let's watch Kevin Brennan go over weeks-old clips and renew his anger while regurgitating stories to one of the most giggly, fake-laughing open mic-stresses that has slid across the NLO console in quite awhile. Come taunt this mans wife! ...
Have you ever found yourself on the receiving end of feelings that make you feel some kind of way? In this episode, Elena walks you through five steps to respond compassionately and productively without co-signing anything. Mentioned on this episode: Become a Friend of the Podcast The Art of Coaching (Book by Elena)The Art of Coaching Workbook (Book by Elena)Coaching for Equity (Book by Elena) Coaching for Equity (Bright Morning workshop)Core emotions tool Opportunities for continued learning: Attend The Art of Coaching Emotions workshop Become a Bright Morning Member February Webinar registration (2024)Reflection questions: When have you experienced a coaching (or any conversation) scenario where you experienced feelings like the ones Elena shares she felt in her conversation with “Michelle?” In that moment of discomfort, what stories were you telling? About the client? About yourself? What is one phrase that feels authentic to you that you can say to yourself when you need to practice self-compassion in coaching conversations? Follow Elena on Instagram and LinkedIn.Follow Bright Morning on LinkedIn and Instagram (we also have accounts on Facebook and Twitter) Receive weekly wisdom and tools from Elena delivered to your inbox! Sign up at https://brightmorningteam.com/newsletter/ As a Bright Morning Member, you get a front-row seat to see the process of Transformational Coaching unfold during live coaching demonstrations by our presenters and the training and practice time you need to transform your skills and impact. Learn more: https://www.brightmorningteam.com/membership Support us by becoming a Friend of the Show!