Podcasts about gpd

  • 132PODCASTS
  • 209EPISODES
  • 47mAVG DURATION
  • 1MONTHLY NEW EPISODE
  • May 9, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about gpd

Latest podcast episodes about gpd

WISSEN SCHAFFT GELD - Aktien und Geldanlage. Wie Märkte und Finanzen wirklich funktionieren.

Angst und Emotionen spielen eine enorm wichtige Rolle bei der Geldanlage und führen nicht selten auch zu Verlusten. Dazu gibt es inzwischen sehr interessante Studien und Experimente. Mehr dazu in der heutigen Episode. Du hast einen Themen-Wunsch für den Podcast oder interessierst Dich für ein Seminar mit mir? Schreibe mir gerne einfach per E-Mail: krapp@abatus-beratung.com   Viel Spaß beim Hören, Dein Matthias Krapp (Transkript dieser Folge weiter unten)   NEU!!! Hier kannst Du Dich kostenlos für meinen Minikurs registrieren und reinschauen. Es lohnt sich: https://portal.abatus-beratung.com/geldanlage-kurs/    

The Rate Guy
Fed Meeting Primer

The Rate Guy

Play Episode Listen Later May 5, 2025 20:44


On this episode of The Rate Guy we unpack all of the data from last week; Inflation, GPD, Jobs. And cautiously break down what to expect at this week's Fed meeting. The uncertainty bends are proving to be true as the market has a 50/50 chance of a cut at June's meeting....flip a coin?  We also talk tariffs since we've never seen a tariff shock like this before, making it even more unpredictable. Mohammed El-Erian said it in the nicest way possible, "Markets are underestimating the depth and duration of this trade reset.” If you want to see the graphs referenced, you can see this week's newsletter here. And you can easily subscribe to the Pensford Newsletter here.

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

While everyone is now repeating that 2025 is the “Year of the Agent”, OpenAI is heads down building towards it. In the first 2 months of the year they released Operator and Deep Research (arguably the most successful agent archetype so far), and today they are bringing a lot of those capabilities to the API:* Responses API* Web Search Tool* Computer Use Tool* File Search Tool* A new open source Agents SDK with integrated Observability ToolsWe cover all this and more in today's lightning pod on YouTube!More details here:Responses APIIn our Michelle Pokrass episode we talked about the Assistants API needing a redesign. Today OpenAI is launching the Responses API, “a more flexible foundation for developers building agentic applications”. It's a superset of the chat completion API, and the suggested starting point for developers working with OpenAI models. One of the big upgrades is the new set of built-in tools for the responses API: Web Search, Computer Use, and Files. Web Search ToolWe previously had Exa AI on the podcast to talk about web search for AI. OpenAI is also now joining the race; the Web Search API is actually a new “model” that exposes two 4o fine-tunes: gpt-4o-search-preview and gpt-4o-mini-search-preview. These are the same models that power ChatGPT Search, and are priced at $30/1000 queries and $25/1000 queries respectively. The killer feature is inline citations: you do not only get a link to a page, but also a deep link to exactly where your query was answered in the result page. Computer Use ToolThe model that powers Operator, called Computer-Using-Agent (CUA), is also now available in the API. The computer-use-preview model is SOTA on most benchmarks, achieving 38.1% success on OSWorld for full computer use tasks, 58.1% on WebArena, and 87% on WebVoyager for web-based interactions.As you will notice in the docs, `computer-use-preview` is both a model and a tool through which you can specify the environment. Usage is priced at $3/1M input tokens and $12/1M output tokens, and it's currently only available to users in tiers 3-5.File Search ToolFile Search was also available in the Assistants API, and it's now coming to Responses too. OpenAI is bringing search + RAG all under one umbrella, and we'll definitely see more people trying to find new ways to build all-in-one apps on OpenAI. Usage is priced at $2.50 per thousand queries and file storage at $0.10/GB/day, with the first GB free.Agent SDK: Swarms++!https://github.com/openai/openai-agents-pythonTo bring it all together, after the viral reception to Swarm, OpenAI is releasing an officially supported agents framework (which was previewed at our AI Engineer Summit) with 4 core pieces:* Agents: Easily configurable LLMs with clear instructions and built-in tools.* Handoffs: Intelligently transfer control between agents.* Guardrails: Configurable safety checks for input and output validation.* Tracing & Observability: Visualize agent execution traces to debug and optimize performance.Multi-agent workflows are here to stay!OpenAI is now explicitly designs for a set of common agentic patterns: Workflows, Handoffs, Agents-as-Tools, LLM-as-a-Judge, Parallelization, and Guardrails. OpenAI previewed this in part 2 of their talk at NYC:Further coverage of the launch from Kevin Weil, WSJ, and OpenAIDevs, AMA here.Show Notes* Assistants API* Swarm (OpenAI)* Fine-Tuning in AI* 2024 OpenAI DevDay Recap with Romain* Michelle Pokrass episode (API lead)Timestamps* 00:00 Intros* 02:31 Responses API * 08:34 Web Search API * 17:14 Files Search API * 18:46 Files API vs RAG * 20:06 Computer Use / Operator API * 22:30 Agents SDKAnd of course you can catch up with the full livestream here:TranscriptAlessio [00:00:03]: Hey, everyone. Welcome back to another Latent Space Lightning episode. This is Alessio, partner and CTO at Decibel, and I'm joined by Swyx, founder of Small AI.swyx [00:00:11]: Hi, and today we have a super special episode because we're talking with our old friend Roman. Hi, welcome.Romain [00:00:19]: Thank you. Thank you for having me.swyx [00:00:20]: And Nikunj, who is most famously, if anyone has ever tried to get any access to anything on the API, Nikunj is the guy. So I know your emails because I look forward to them.Nikunj [00:00:30]: Yeah, nice to meet all of you.swyx [00:00:32]: I think that we're basically convening today to talk about the new API. So perhaps you guys want to just kick off. What is OpenAI launching today?Nikunj [00:00:40]: Yeah, so I can kick it off. We're launching a bunch of new things today. We're going to do three new built-in tools. So we're launching the web search tool. This is basically chat GPD for search, but available in the API. We're launching an improved file search tool. So this is you bringing your data to OpenAI. You upload it. We, you know, take care of parsing it, chunking it. We're embedding it, making it searchable, give you this like ready vector store that you can use. So that's the file search tool. And then we're also launching our computer use tool. So this is the tool behind the operator product in chat GPD. So that's coming to developers today. And to support all of these tools, we're going to have a new API. So, you know, we launched chat completions, like I think March 2023 or so. It's been a while. So we're looking for an update over here to support all the new things that the models can do. And so we're launching this new API. It is, you know, it works with tools. We think it'll be like a great option for all the future agentic products that we build. And so that is also launching today. Actually, the last thing we're launching is the agents SDK. We launched this thing called Swarm last year where, you know, it was an experimental SDK for people to do multi-agent orchestration and stuff like that. It was supposed to be like educational experimental, but like people, people really loved it. They like ate it up. And so we are like, all right, let's, let's upgrade this thing. Let's give it a new name. And so we're calling it the agents SDK. It's going to have built-in tracing in the OpenAI dashboard. So lots of cool stuff going out. So, yeah.Romain [00:02:14]: That's a lot, but we said 2025 was the year of agents. So there you have it, like a lot of new tools to build these agents for developers.swyx [00:02:20]: Okay. I guess, I guess we'll just kind of go one by one and we'll leave the agents SDK towards the end. So responses API, I think the sort of primary concern that people have and something I think I've voiced to you guys when, when, when I was talking with you in the, in the planning process was, is chat completions going away? So I just wanted to let it, let you guys respond to the concerns that people might have.Romain [00:02:41]: Chat completion is definitely like here to stay, you know, it's a bare metal API we've had for quite some time. Lots of tools built around it. So we want to make sure that it's maintained and people can confidently keep on building on it. At the same time, it was kind of optimized for a different world, right? It was optimized for a pre-multi-modality world. We also optimized for kind of single turn. It takes two problems. It takes prompt in, it takes response out. And now with these agentic workflows, we, we noticed that like developers and companies want to build longer horizon tasks, you know, like things that require multiple returns to get the task accomplished. And computer use is one of those, for instance. And so that's why the responses API came to life to kind of support these new agentic workflows. But chat completion is definitely here to stay.swyx [00:03:27]: And assistance API, we've, uh, has a target sunset date of first half of 2020. So this is kind of like, in my mind, there was a kind of very poetic mirroring of the API with the models. This, I kind of view this as like kind of the merging of assistance API and chat completions, right. Into one unified responses. So it's kind of like how GPT and the old series models are also unifying.Romain [00:03:48]: Yeah, that's exactly the right, uh, that's the right framing, right? Like, I think we took the best of what we learned from the assistance API, especially like being able to access tools very, uh, very like conveniently, but at the same time, like simplifying the way you have to integrate, like, you no longer have to think about six different objects to kind of get access to these tools with the responses API. You just get one API request and suddenly you can weave in those tools, right?Nikunj [00:04:12]: Yeah, absolutely. And I think we're going to make it really easy and straightforward for assistance API users to migrate over to responsive. Right. To the API without any loss of functionality or data. So our plan is absolutely to add, you know, assistant like objects and thread light objects to that, that work really well with the responses API. We'll also add like the code interpreter tool, which is not launching today, but it'll come soon. And, uh, we'll add async mode to responses API, because that's another difference with, with, uh, assistance. I will have web hooks and stuff like that, but I think it's going to be like a pretty smooth transition. Uh, once we have all of that in place. And we'll be. Like a full year to migrate and, and help them through any issues they, they, they face. So overall, I feel like assistance users are really going to benefit from this longer term, uh, with this more flexible, primitive.Alessio [00:05:01]: How should people think about when to use each type of API? So I know that in the past, the assistance was maybe more stateful, kind of like long running, many tool use kind of like file based things. And the chat completions is more stateless, you know, kind of like traditional completion API. Is that still the mental model that people should have? Or like, should you buy the.Nikunj [00:05:20]: So the responses API is going to support everything that it's at launch, going to support everything that chat completion supports, and then over time, it's going to support everything that assistance supports. So it's going to be a pretty good fit for anyone starting out with open AI. Uh, they should be able to like go to responses responses, by the way, also has a stateless mode, so you can pass in store false and they'll make the whole API stateless, just like chat completions. You're really trying to like get this unification. A story in so that people don't have to juggle multiple endpoints. That being said, like chat completions, just like the most widely adopted API, it's it's so popular. So we're still going to like support it for years with like new models and features. But if you're a new user, you want to or if you want to like existing, you want to tap into some of these like built in tools or something, you should feel feel totally fine migrating to responses and you'll have more capabilities and performance than the tech completions.swyx [00:06:16]: I think the messaging that I agree that I think resonated the most. When I talked to you was that it is a strict superset, right? Like you should be able to do everything that you could do in chat completions and with assistants. And the thing that I just assumed that because you're you're now, you know, by default is stateful, you're actually storing the chat logs or the chat state. I thought you'd be charging me for it. So, you know, to me, it was very surprising that you figured out how to make it free.Nikunj [00:06:43]: Yeah, it's free. We store your state for 30 days. You can turn it off. But yeah, it's it's free. And the interesting thing on state is that it just like makes particularly for me, it makes like debugging things and building things so much simpler, where I can like create a responses object that's like pretty complicated and part of this more complex application that I've built, I can just go into my dashboard and see exactly what happened that mess up my prompt that is like not called one of these tools that misconfigure one of the tools like the visual observability of everything that you're doing is so, so helpful. So I'm excited, like about people trying that out and getting benefits from it, too.swyx [00:07:19]: Yeah, it's a it's really, I think, a really nice to have. But all I'll say is that my friend Corey Quinn says that anything that can be used as a database will be used as a database. So be prepared for some abuse.Romain [00:07:34]: All right. Yeah, that's a good one. Some of that I've tried with the metadata. That's some people are very, very creative at stuffing data into an object. Yeah.Nikunj [00:07:44]: And we do have metadata with responses. Exactly. Yeah.Alessio [00:07:48]: Let's get through it. All of these. So web search. I think the when I first said web search, I thought you were going to just expose a API that then return kind of like a nice list of thing. But the way it's name is like GPD for all search preview. So I'm guessing you have you're using basically the same model that is in the chat GPD search, which is fine tune for search. I'm guessing it's a different model than the base one. And it's impressive the jump in performance. So just to give an example, in simple QA, GPD for all is 38% accuracy for all search is 90%. But we always talk about. How tools are like models is not everything you need, like tools around it are just as important. So, yeah, maybe give people a quick review on like the work that went into making this special.Nikunj [00:08:29]: Should I take that?Alessio [00:08:29]: Yeah, go for it.Nikunj [00:08:30]: So firstly, we're launching web search in two ways. One in responses API, which is our API for tools. It's going to be available as a web search tool itself. So you'll be able to go tools, turn on web search and you're ready to go. We still wanted to give chat completions people access to real time information. So in that. Chat completions API, which does not support built in tools. We're launching the direct access to the fine tuned model that chat GPD for search uses, and we call it GPD for search preview. And how is this model built? Basically, we have our search research team has been working on this for a while. Their main goal is to, like, get information, like get a bunch of information from all of our data sources that we use to gather information for search and then pick the right things and then cite them. As accurately as possible. And that's what the search team has really focused on. They've done some pretty cool stuff. They use like synthetic data techniques. They've done like all series model distillation to, like, make these four or fine tunes really good. But yeah, the main thing is, like, can it remain factual? Can it answer questions based on what it retrieves and get cited accurately? And that's what this like fine tune model really excels at. And so, yeah, so we're excited that, like, it's going to be directly available in chat completions along with being available as a tool. Yeah.Alessio [00:09:49]: Just to clarify, if I'm using the responses API, this is a tool. But if I'm using chat completions, I have to switch model. I cannot use 01 and call search as a tool. Yeah, that's right. Exactly.Romain [00:09:58]: I think what's really compelling, at least for me and my own uses of it so far, is that when you use, like, web search as a tool, it combines nicely with every other tool and every other feature of the platform. So think about this for a second. For instance, imagine you have, like, a responses API call with the web search tool, but suddenly you turn on function calling. You also turn on, let's say, structure. So you can have, like, the ability to structure any data from the web in real time in the JSON schema that you need for your application. So it's quite powerful when you start combining those features and tools together. It's kind of like an API for the Internet almost, you know, like you get, like, access to the precise schema you need for your app. Yeah.Alessio [00:10:39]: And then just to wrap up on the infrastructure side of it, I read on the post that people, publisher can choose to appear in the web search. So are people by default in it? Like, how can we get Latent Space in the web search API?Nikunj [00:10:53]: Yeah. Yeah. I think we have some documentation around how websites, publishers can control, like, what shows up in a web search tool. And I think you should be able to, like, read that. I think we should be able to get Latent Space in for sure. Yeah.swyx [00:11:10]: You know, I think so. I compare this to a broader trend that I started covering last year of online LLMs. Actually, Perplexity, I think, was the first. It was the first to say, to offer an API that is connected to search, and then Gemini had the sort of search grounding API. And I think you guys, I actually didn't, I missed this in the original reading of the docs, but you even give like citations with like the exact sub paragraph that is matching, which I think is the standard nowadays. I think my question is, how do we take what a knowledge cutoff is for something like this, right? Because like now, basically there's no knowledge cutoff is always live, but then there's a difference between what the model has sort of internalized in its back propagation and what is searching up its rag.Romain [00:11:53]: I think it kind of depends on the use case, right? And what you want to showcase as the source. Like, for instance, you take a company like Hebbia that has used this like web search tool. They can combine like for credit firms or law firms, they can find like, you know, public information from the internet with the live sources and citation that sometimes you do want to have access to, as opposed to like the internal knowledge. But if you're building something different, well, like, you just want to have the information. If you want to have an assistant that relies on the deep knowledge that the model has, you may not need to have these like direct citations. So I think it kind of depends on the use case a little bit, but there are many, uh, many companies like Hebbia that will need that access to these citations to precisely know where the information comes from.swyx [00:12:34]: Yeah, yeah, uh, for sure. And then one thing on the, on like the breadth, you know, I think a lot of the deep research, open deep research implementations have this sort of hyper parameter about, you know, how deep they're searching and how wide they're searching. I don't see that in the docs. But is that something that we can tune? Is that something you recommend thinking about?Nikunj [00:12:53]: Super interesting. It's definitely not a parameter today, but we should explore that. It's very interesting. I imagine like how you would do it with the web search tool and responsive API is you would have some form of like, you know, agent orchestration over here where you have a planning step and then each like web search call that you do like explicitly goes a layer deeper and deeper and deeper. But it's not a parameter that's available out of the box. But it's a cool. It's a cool thing to think about. Yeah.swyx [00:13:19]: The only guidance I'll offer there is a lot of these implementations offer top K, which is like, you know, top 10, top 20, but actually don't really want that. You want like sort of some kind of similarity cutoff, right? Like some matching score cuts cutoff, because if there's only five things, five documents that match fine, if there's 500 that match, maybe that's what I want. Right. Yeah. But also that might, that might make my costs very unpredictable because the costs are something like $30 per a thousand queries, right? So yeah. Yeah.Nikunj [00:13:49]: I guess you could, you could have some form of like a context budget and then you're like, go as deep as you can and pick the best stuff and put it into like X number of tokens. There could be some creative ways of, of managing cost, but yeah, that's a super interesting thing to explore.Alessio [00:14:05]: Do you see people using the files and the search API together where you can kind of search and then store everything in the file so the next time I'm not paying for the search again and like, yeah, how should people balance that?Nikunj [00:14:17]: That's actually a very interesting question. And let me first tell you about how I've seen a really cool way I've seen people use files and search together is they put their user preferences or memories in the vector store and so a query comes in, you use the file search tool to like get someone's like reading preferences or like fashion preferences and stuff like that, and then you search the web for information or products that they can buy related to those preferences and you then render something beautiful to show them, like, here are five things that you might be interested in. So that's how I've seen like file search, web search work together. And by the way, that's like a single responses API call, which is really cool. So you just like configure these things, go boom, and like everything just happens. But yeah, that's how I've seen like files and web work together.Romain [00:15:01]: But I think that what you're pointing out is like interesting, and I'm sure developers will surprise us as they always do in terms of how they combine these tools and how they might use file search as a way to have memory and preferences, like Nikum says. But I think like zooming out, what I find very compelling and powerful here is like when you have these like neural networks. That have like all of the knowledge that they have today, plus real time access to the Internet for like any kind of real time information that you might need for your app and file search, where you can have a lot of company, private documents, private details, you combine those three, and you have like very, very compelling and precise answers for any kind of use case that your company or your product might want to enable.swyx [00:15:41]: It's a difference between sort of internal documents versus the open web, right? Like you're going to need both. Exactly, exactly. I never thought about it doing memory as well. I guess, again, you know, anything that's a database, you can store it and you will use it as a database. That sounds awesome. But I think also you've been, you know, expanding the file search. You have more file types. You have query optimization, custom re-ranking. So it really seems like, you know, it's been fleshed out. Obviously, I haven't been paying a ton of attention to the file search capability, but it sounds like your team has added a lot of features.Nikunj [00:16:14]: Yeah, metadata filtering was like the main thing people were asking us for for a while. And I'm super excited about it. I mean, it's just so critical once your, like, web store size goes over, you know, more than like, you know, 5,000, 10,000 records, you kind of need that. So, yeah, metadata filtering is coming, too.Romain [00:16:31]: And for most companies, it's also not like a competency that you want to rebuild in-house necessarily, you know, like, you know, thinking about embeddings and chunking and, you know, how of that, like, it sounds like very complex for something very, like, obvious to ship for your users. Like companies like Navant, for instance. They were able to build with the file search, like, you know, take all of the FAQ and travel policies, for instance, that you have, you, you put that in file search tool, and then you don't have to think about anything. Now your assistant becomes naturally much more aware of all of these policies from the files.swyx [00:17:03]: The question is, like, there's a very, very vibrant RAG industry already, as you well know. So there's many other vector databases, many other frameworks. Probably if it's an open source stack, I would say like a lot of the AI engineers that I talk to want to own this part of the stack. And it feels like, you know, like, when should we DIY and when should we just use whatever OpenAI offers?Nikunj [00:17:24]: Yeah. I mean, like, if you're doing something completely from scratch, you're going to have more control, right? Like, so super supportive of, you know, people trying to, like, roll up their sleeves, build their, like, super custom chunking strategy and super custom retrieval strategy and all of that. And those are things that, like, will be harder to do with OpenAI tools. OpenAI tool has, like, we have an out-of-the-box solution. We give you the tools. We use some knobs to customize things, but it's more of, like, a managed RAG service. So my recommendation would be, like, start with the OpenAI thing, see if it, like, meets your needs. And over time, we're going to be adding more and more knobs to make it even more customizable. But, you know, if you want, like, the completely custom thing, you want control over every single thing, then you'd probably want to go and hand roll it using other solutions. So we're supportive of both, like, engineers should pick. Yeah.Alessio [00:18:16]: And then we got computer use. Which I think Operator was obviously one of the hot releases of the year. And we're only two months in. Let's talk about that. And that's also, it seems like a separate model that has been fine-tuned for Operator that has browser access.Nikunj [00:18:31]: Yeah, absolutely. I mean, the computer use models are exciting. The cool thing about computer use is that we're just so, so early. It's like the GPT-2 of computer use or maybe GPT-1 of computer use right now. But it is a separate model that has been, you know, the computer. The computer use team has been working on, you send it screenshots and it tells you what action to take. So the outputs of it are almost always tool calls and you're inputting screenshots based on whatever computer you're trying to operate.Romain [00:19:01]: Maybe zooming out for a second, because like, I'm sure your audience is like super, super like AI native, obviously. But like, what is computer use as a tool, right? And what's operator? So the idea for computer use is like, how do we let developers also build agents that can complete tasks for the users, but using a computer? Okay. Or a browser instead. And so how do you get that done? And so that's why we have this custom model, like optimized for computer use that we use like for operator ourselves. But the idea behind like putting it as an API is that imagine like now you want to, you want to automate some tasks for your product or your own customers. Then now you can, you can have like the ability to spin up one of these agents that will look at the screen and act on the screen. So that means able, the ability to click, the ability to scroll. The ability to type and to report back on the action. So that's what we mean by computer use and wrapping it as a tool also in the responses API. So now like that gives a hint also at the multi-turned thing that we were hinting at earlier, the idea that like, yeah, maybe one of these actions can take a couple of minutes to complete because there's maybe like 20 steps to complete that task. But now you can.swyx [00:20:08]: Do you think a computer use can play Pokemon?Romain [00:20:11]: Oh, interesting. I guess we tried it. I guess we should try it. You know?swyx [00:20:17]: Yeah. There's a lot of interest. I think Pokemon really is a good agent benchmark, to be honest. Like it seems like Claude is, Claude is running into a lot of trouble.Romain [00:20:25]: Sounds like we should make that a new eval, it looks like.swyx [00:20:28]: Yeah. Yeah. Oh, and then one more, one more thing before we move on to agents SDK. I know you have a hard stop. There's all these, you know, blah, blah, dash preview, right? Like search preview, computer use preview, right? And you see them all like fine tunes of 4.0. I think the question is, are we, are they all going to be merged into the main branch or are we basically always going to have subsets? Of these models?Nikunj [00:20:49]: Yeah, I think in the early days, research teams at OpenAI like operate with like fine tune models. And then once the thing gets like more stable, we sort of merge it into the main line. So that's definitely the vision, like going out of preview as we get more comfortable with and learn about all the developer use cases and we're doing a good job at them. We'll sort of like make them part of like the core models so that you don't have to like deal with the bifurcation.Romain [00:21:12]: You should think of it this way as exactly what happened last year when we introduced vision capabilities, you know. Yes. Vision capabilities were in like a vision preview model based off of GPT-4 and then vision capabilities now are like obviously built into GPT-4.0. You can think about it the same way for like the other modalities like audio and those kind of like models, like optimized for search and computer use.swyx [00:21:34]: Agents SDK, we have a few minutes left. So let's just assume that everyone has looked at Swarm. Sure. I think that Swarm has really popularized the handoff technique, which I thought was like, you know, really, really interesting for sort of a multi-agent. What is new with the SDK?Nikunj [00:21:50]: Yeah. Do you want to start? Yeah, for sure. So we've basically added support for types. We've made this like a lot. Yeah. Like we've added support for types. We've added support for guard railing, which is a very common pattern. So in the guardrail example, you basically have two things happen in parallel. The guardrail can sort of block the execution. It's a type of like optimistic generation that happens. And I think we've added support for tracing. So I think that's really cool. So you can basically look at the traces that the Agents SDK creates in the OpenAI dashboard. We also like made this pretty flexible. So you can pick any API from any provider that supports the ChatCompletions API format. So it supports responses by default, but you can like easily plug it in to anyone that uses the ChatCompletions API. And similarly, on the tracing side, you can support like multiple tracing providers. By default, it sort of points to the OpenAI dashboard. But, you know, there's like so many tracing providers. There's so many tracing companies out there. And we'll announce some partnerships on that front, too. So just like, you know, adding lots of core features and making it more usable, but still centered around like handoffs is like the main, main concept.Romain [00:22:59]: And by the way, it's interesting, right? Because Swarm just came to life out of like learning from customers directly that like orchestrating agents in production was pretty hard. You know, simple ideas could quickly turn very complex. Like what are those guardrails? What are those handoffs, et cetera? So that came out of like learning from customers. And it was initially shipped. It was not as a like low-key experiment, I'd say. But we were kind of like taken by surprise at how much momentum there was around this concept. And so we decided to learn from that and embrace it. To be like, okay, maybe we should just embrace that as a core primitive of the OpenAI platform. And that's kind of what led to the Agents SDK. And I think now, as Nikuj mentioned, it's like adding all of these new capabilities to it, like leveraging the handoffs that we had, but tracing also. And I think what's very compelling for developers is like instead of having one agent to rule them all and you stuff like a lot of tool calls in there that can be hard to monitor, now you have the tools you need to kind of like separate the logic, right? And you can have a triage agent that based on an intent goes to different kind of agents. And then on the OpenAI dashboard, we're releasing a lot of new user interface logs as well. So you can see all of the tracing UIs. Essentially, you'll be able to troubleshoot like what exactly happened. In that workflow, when the triage agent did a handoff to a secondary agent and the third and see the tool calls, et cetera. So we think that the Agents SDK combined with the tracing UIs will definitely help users and developers build better agentic workflows.Alessio [00:24:28]: And just before we wrap, are you thinking of connecting this with also the RFT API? Because I know you already have, you kind of store my text completions and then I can do fine tuning of that. Is that going to be similar for agents where you're storing kind of like my traces? And then help me improve the agents?Nikunj [00:24:43]: Yeah, absolutely. Like you got to tie the traces to the evals product so that you can generate good evals. Once you have good evals and graders and tasks, you can use that to do reinforcement fine tuning. And, you know, lots of details to be figured out over here. But that's the vision. And I think we're going to go after it like pretty hard and hope we can like make this whole workflow a lot easier for developers.Alessio [00:25:05]: Awesome. Thank you so much for the time. I'm sure you'll be busy on Twitter tomorrow with all the developer feedback. Yeah.Romain [00:25:12]: Thank you so much for having us. And as always, we can't wait to see what developers will build with these tools and how we can like learn as quickly as we can from them to make them even better over time.Nikunj [00:25:21]: Yeah.Romain [00:25:22]: Thank you, guys.Nikunj [00:25:23]: Thank you.Romain [00:25:23]: Thank you both. Awesome. Get full access to Latent.Space at www.latent.space/subscribe

The Secret Sauce
EE533 DeepSeek AI จีนท้าชิงสหรัฐฯ เปิดศึกสงครามโลก AI

The Secret Sauce

Play Episode Listen Later Feb 1, 2025 51:12


เปิดพอดแคสต์เอพิโสดนี้ใน YouTube เพื่อประสบการณ์การรับชมที่ดีที่สุด การเปิดตัว DeepSeek-R1 จากจีน ที่มีประสิทธิภาพเทียบเท่ากับ o1 ของ OpenAI เป็นหมัดตรงที่ส่งแรงสั่นสะเทือนไปถึง OpenAI และยักษ์ใหญ่ใน Silicon Valley  ด้วยต้นทุนการพัฒนาเพียงเศษเสี้ยวของคู่แข่ง แต่กลับทำคะแนนได้เหนือกว่าในบางด้าน ในช่วงเวลาเดียวกันสหรัฐฯ เร่งเครื่องเดินหน้าสร้างโครงสร้างพื้นฐาน AI ผ่านโครงการ Stargate ที่มีเงินทุนสูงถึง 5 แสนล้านดอลลาร์ หรือเท่ากับ GPD ของไทยทั้งประเทศ ขณะที่ตลาดหุ้นเทคโนโลยีทั่วโลกต้องรับแรงกระแทก มูลค่าหายไปกว่า 34 ล้านล้านบาทในคืนเดียว ทำไมการมาของ DeepSeek ถึงสั่นสะเทือนวงการ AI โลก ศึกเทคโนโลยี AI สหรัฐฯ-จีน เดือดกว่าเดิมหรือไม่ The Secret Sauce ชวนพูดคุยกับ นพ.ปิยะฤทธิ์ อิทธิชัยวงศ์ อาจารย์แพทย์โรงพยาบาลศิริราช และ Co-founder บริษัท PreceptorAI ติดตามชมได้ในเอพิโสดนี้

THE STANDARD Podcast
Executive Espresso EP.533 DeepSeek AI จีนท้าชิงสหรัฐฯ เปิดศึกสงครามโลก AI

THE STANDARD Podcast

Play Episode Listen Later Feb 1, 2025 51:12


การเปิดตัว DeepSeek-R1 จากจีน ที่มีประสิทธิภาพเทียบเท่ากับ o1 ของ OpenAI เป็นหมัดตรงที่ส่งแรงสั่นสะเทือนไปถึง OpenAI และยักษ์ใหญ่ใน Silicon Valley ด้วยต้นทุนการพัฒนาเพียงเศษเสี้ยวของคู่แข่ง แต่กลับทำคะแนนได้เหนือกว่าในบางด้าน ในช่วงเวลาเดียวกันสหรัฐฯ เร่งเครื่องเดินหน้าสร้างโครงสร้างพื้นฐาน AI ผ่านโครงการ Stargate ที่มีเงินทุนสูงถึง 5 แสนล้านดอลลาร์ หรือเท่ากับ GPD ของไทยทั้งประเทศ ขณะที่ตลาดหุ้นเทคโนโลยีทั่วโลกต้องรับแรงกระแทก มูลค่าหายไปกว่า 34 ล้านล้านบาทในคืนเดียว ทำไมการมาของ DeepSeek ถึงสั่นสะเทือนวงการ AI โลก ศึกเทคโนโลยี AI สหรัฐฯ-จีน เดือดกว่าเดิมหรือไม่ The Secret Sauce ชวนพูดคุยกับ นพ.ปิยะฤทธิ์ อิทธิชัยวงศ์ อาจารย์แพทย์โรงพยาบาลศิริราช และ Co-founder บริษัท PreceptorAI ติดตามชมได้ในเอพิโสดนี้

NTEB BIBLE RADIO: Rightly Dividing
Gavin 'Nero' Newsom And The Real Cause Of The LA Fires

NTEB BIBLE RADIO: Rightly Dividing

Play Episode Listen Later Jan 13, 2025 88:39


On this episode of the Prophecy News Podcast, the main question on everyone's mind is, are the massive raging fires devouring Los Angeles simply the result of incompetent Liberal rule and Democrat DEI initiatives, or is something far more sinister at work here? What I am asking is, could this be what the Great Reset actually looks like? To answer that question today, we will explore the deadly impact that Democrat rule has had on California, and how that's ‘part of the plan' to remake that state. If California were a nation, it would have the 5th largest economy in the world, in 2023 alone California's GPD was $3.8 trillion dollars, representing a whopping 14% of total US economy. That's massive. It's fair to say that if as California goes, so goes the country, then any major change you'd make there would have national ramifications. On this episode, we hunt for the truth behind the fires, a journey that takes us right to the doorstep of the New World Order.

Vietnam Entrepreneurs
Business Insights #42|Phân tích GDP để nhận diện tương lai doanh nghiệp|Bruce Delteil,McKinsey

Vietnam Entrepreneurs

Play Episode Listen Later Jan 1, 2025 45:27


Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Applications for the 2025 AI Engineer Summit are up, and you can save the date for AIE Singapore in April and AIE World's Fair 2025 in June.Happy new year, and thanks for 100 great episodes! Please let us know what you want to see/hear for the next 100!Full YouTube Episode with Slides/ChartsLike and subscribe and hit that bell to get notifs!Timestamps* 00:00 Welcome to the 100th Episode!* 00:19 Reflecting on the Journey* 00:47 AI Engineering: The Rise and Impact* 03:15 Latent Space Live and AI Conferences* 09:44 The Competitive AI Landscape* 21:45 Synthetic Data and Future Trends* 35:53 Creative Writing with AI* 36:12 Legal and Ethical Issues in AI* 38:18 The Data War: GPU Poor vs. GPU Rich* 39:12 The Rise of GPU Ultra Rich* 40:47 Emerging Trends in AI Models* 45:31 The Multi-Modality War* 01:05:31 The Future of AI Benchmarks* 01:13:17 Pionote and Frontier Models* 01:13:47 Niche Models and Base Models* 01:14:30 State Space Models and RWKB* 01:15:48 Inference Race and Price Wars* 01:22:16 Major AI Themes of the Year* 01:22:48 AI Rewind: January to March* 01:26:42 AI Rewind: April to June* 01:33:12 AI Rewind: July to September* 01:34:59 AI Rewind: October to December* 01:39:53 Year-End Reflections and PredictionsTranscript[00:00:00] Welcome to the 100th Episode![00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host Swyx for the 100th time today.[00:00:12] swyx: Yay, um, and we're so glad that, yeah, you know, everyone has, uh, followed us in this journey. How do you feel about it? 100 episodes.[00:00:19] Alessio: Yeah, I know.[00:00:19] Reflecting on the Journey[00:00:19] Alessio: Almost two years that we've been doing this. We've had four different studios. Uh, we've had a lot of changes. You know, we used to do this lightning round. When we first started that we didn't like, and we tried to change the question. The answer[00:00:32] swyx: was cursor and perplexity.[00:00:34] Alessio: Yeah, I love mid journey. It's like, do you really not like anything else?[00:00:38] Alessio: Like what's, what's the unique thing? And I think, yeah, we, we've also had a lot more research driven content. You know, we had like 3DAO, we had, you know. Jeremy Howard, we had more folks like that.[00:00:47] AI Engineering: The Rise and Impact[00:00:47] Alessio: I think we want to do more of that too in the new year, like having, uh, some of the Gemini folks, both on the research and the applied side.[00:00:54] Alessio: Yeah, but it's been a ton of fun. I think we both started, I wouldn't say as a joke, we were kind of like, Oh, we [00:01:00] should do a podcast. And I think we kind of caught the right wave, obviously. And I think your rise of the AI engineer posts just kind of get people. Sombra to congregate, and then the AI engineer summit.[00:01:11] Alessio: And that's why when I look at our growth chart, it's kind of like a proxy for like the AI engineering industry as a whole, which is almost like, like, even if we don't do that much, we keep growing just because there's so many more AI engineers. So did you expect that growth or did you expect that would take longer for like the AI engineer thing to kind of like become, you know, everybody talks about it today.[00:01:32] swyx: So, the sign of that, that we have won is that Gartner puts it at the top of the hype curve right now. So Gartner has called the peak in AI engineering. I did not expect, um, to what level. I knew that I was correct when I called it because I did like two months of work going into that. But I didn't know, You know, how quickly it could happen, and obviously there's a chance that I could be wrong.[00:01:52] swyx: But I think, like, most people have come around to that concept. Hacker News hates it, which is a good sign. But there's enough people that have defined it, you know, GitHub, when [00:02:00] they launched GitHub Models, which is the Hugging Face clone, they put AI engineers in the banner, like, above the fold, like, in big So I think it's like kind of arrived as a meaningful and useful definition.[00:02:12] swyx: I think people are trying to figure out where the boundaries are. I think that was a lot of the quote unquote drama that happens behind the scenes at the World's Fair in June. Because I think there's a lot of doubt or questions about where ML engineering stops and AI engineering starts. That's a useful debate to be had.[00:02:29] swyx: In some sense, I actually anticipated that as well. So I intentionally did not. Put a firm definition there because most of the successful definitions are necessarily underspecified and it's actually useful to have different perspectives and you don't have to specify everything from the outset.[00:02:45] Alessio: Yeah, I was at um, AWS reInvent and the line to get into like the AI engineering talk, so to speak, which is, you know, applied AI and whatnot was like, there are like hundreds of people just in line to go in.[00:02:56] Alessio: I think that's kind of what enabled me. People, right? Which is what [00:03:00] you kind of talked about. It's like, Hey, look, you don't actually need a PhD, just, yeah, just use the model. And then maybe we'll talk about some of the blind spots that you get as an engineer with the earlier posts that we also had on on the sub stack.[00:03:11] Alessio: But yeah, it's been a heck of a heck of a two years.[00:03:14] swyx: Yeah.[00:03:15] Latent Space Live and AI Conferences[00:03:15] swyx: You know, I was, I was trying to view the conference as like, so NeurIPS is I think like 16, 17, 000 people. And the Latent Space Live event that we held there was 950 signups. I think. The AI world, the ML world is still very much research heavy. And that's as it should be because ML is very much in a research phase.[00:03:34] swyx: But as we move this entire field into production, I think that ratio inverts into becoming more engineering heavy. So at least I think engineering should be on the same level, even if it's never as prestigious, like it'll always be low status because at the end of the day, you're manipulating APIs or whatever.[00:03:51] swyx: But Yeah, wrapping GPTs, but there's going to be an increasing stack and an art to doing these, these things well. And I, you know, I [00:04:00] think that's what we're focusing on for the podcast, the conference and basically everything I do seems to make sense. And I think we'll, we'll talk about the trends here that apply.[00:04:09] swyx: It's, it's just very strange. So, like, there's a mix of, like, keeping on top of research while not being a researcher and then putting that research into production. So, like, people always ask me, like, why are you covering Neuralibs? Like, this is a ML research conference and I'm like, well, yeah, I mean, we're not going to, to like, understand everything Or reproduce every single paper, but the stuff that is being found here is going to make it through into production at some point, you hope.[00:04:32] swyx: And then actually like when I talk to the researchers, they actually get very excited because they're like, oh, you guys are actually caring about how this goes into production and that's what they really really want. The measure of success is previously just peer review, right? Getting 7s and 8s on their um, Academic review conferences and stuff like citations is one metric, but money is a better metric.[00:04:51] Alessio: Money is a better metric. Yeah, and there were about 2200 people on the live stream or something like that. Yeah, yeah. Hundred on the live stream. So [00:05:00] I try my best to moderate, but it was a lot spicier in person with Jonathan and, and Dylan. Yeah, that it was in the chat on YouTube.[00:05:06] swyx: I would say that I actually also created.[00:05:09] swyx: Layen Space Live in order to address flaws that are perceived in academic conferences. This is not NeurIPS specific, it's ICML, NeurIPS. Basically, it's very sort of oriented towards the PhD student, uh, market, job market, right? Like literally all, basically everyone's there to advertise their research and skills and get jobs.[00:05:28] swyx: And then obviously all the, the companies go there to hire them. And I think that's great for the individual researchers, but for people going there to get info is not great because you have to read between the lines, bring a ton of context in order to understand every single paper. So what is missing is effectively what I ended up doing, which is domain by domain, go through and recap the best of the year.[00:05:48] swyx: Survey the field. And there are, like NeurIPS had a, uh, I think ICML had a like a position paper track, NeurIPS added a benchmarks, uh, datasets track. These are ways in which to address that [00:06:00] issue. Uh, there's always workshops as well. Every, every conference has, you know, a last day of workshops and stuff that provide more of an overview.[00:06:06] swyx: But they're not specifically prompted to do so. And I think really, uh, Organizing a conference is just about getting good speakers and giving them the correct prompts. And then they will just go and do that thing and they do a very good job of it. So I think Sarah did a fantastic job with the startups prompt.[00:06:21] swyx: I can't list everybody, but we did best of 2024 in startups, vision, open models. Post transformers, synthetic data, small models, and agents. And then the last one was the, uh, and then we also did a quick one on reasoning with Nathan Lambert. And then the last one, obviously, was the debate that people were very hyped about.[00:06:39] swyx: It was very awkward. And I'm really, really thankful for John Franco, basically, who stepped up to challenge Dylan. Because Dylan was like, yeah, I'll do it. But He was pro scaling. And I think everyone who is like in AI is pro scaling, right? So you need somebody who's ready to publicly say, no, we've hit a wall.[00:06:57] swyx: So that means you're saying Sam Altman's wrong. [00:07:00] You're saying, um, you know, everyone else is wrong. It helps that this was the day before Ilya went on, went up on stage and then said pre training has hit a wall. And data has hit a wall. So actually Jonathan ended up winning, and then Ilya supported that statement, and then Noam Brown on the last day further supported that statement as well.[00:07:17] swyx: So it's kind of interesting that I think the consensus kind of going in was that we're not done scaling, like you should believe in a better lesson. And then, four straight days in a row, you had Sepp Hochreiter, who is the creator of the LSTM, along with everyone's favorite OG in AI, which is Juergen Schmidhuber.[00:07:34] swyx: He said that, um, we're pre trading inside a wall, or like, we've run into a different kind of wall. And then we have, you know John Frankel, Ilya, and then Noam Brown are all saying variations of the same thing, that we have hit some kind of wall in the status quo of what pre trained, scaling large pre trained models has looked like, and we need a new thing.[00:07:54] swyx: And obviously the new thing for people is some make, either people are calling it inference time compute or test time [00:08:00] compute. I think the collective terminology has been inference time, and I think that makes sense because test time, calling it test, meaning, has a very pre trained bias, meaning that the only reason for running inference at all is to test your model.[00:08:11] swyx: That is not true. Right. Yeah. So, so, I quite agree that. OpenAI seems to have adopted, or the community seems to have adopted this terminology of ITC instead of TTC. And that, that makes a lot of sense because like now we care about inference, even right down to compute optimality. Like I actually interviewed this author who recovered or reviewed the Chinchilla paper.[00:08:31] swyx: Chinchilla paper is compute optimal training, but what is not stated in there is it's pre trained compute optimal training. And once you start caring about inference, compute optimal training, you have a different scaling law. And in a way that we did not know last year.[00:08:45] Alessio: I wonder, because John is, he's also on the side of attention is all you need.[00:08:49] Alessio: Like he had the bet with Sasha. So I'm curious, like he doesn't believe in scaling, but he thinks the transformer, I wonder if he's still. So, so,[00:08:56] swyx: so he, obviously everything is nuanced and you know, I told him to play a character [00:09:00] for this debate, right? So he actually does. Yeah. He still, he still believes that we can scale more.[00:09:04] swyx: Uh, he just assumed the character to be very game for, for playing this debate. So even more kudos to him that he assumed a position that he didn't believe in and still won the debate.[00:09:16] Alessio: Get rekt, Dylan. Um, do you just want to quickly run through some of these things? Like, uh, Sarah's presentation, just the highlights.[00:09:24] swyx: Yeah, we can't go through everyone's slides, but I pulled out some things as a factor of, like, stuff that we were going to talk about. And we'll[00:09:30] Alessio: publish[00:09:31] swyx: the rest. Yeah, we'll publish on this feed the best of 2024 in those domains. And hopefully people can benefit from the work that our speakers have done.[00:09:39] swyx: But I think it's, uh, these are just good slides. And I've been, I've been looking for a sort of end of year recaps from, from people.[00:09:44] The Competitive AI Landscape[00:09:44] swyx: The field has progressed a lot. You know, I think the max ELO in 2023 on LMSys used to be 1200 for LMSys ELOs. And now everyone is at least at, uh, 1275 in their ELOs, and this is across Gemini, Chadjibuti, [00:10:00] Grok, O1.[00:10:01] swyx: ai, which with their E Large model, and Enthopic, of course. It's a very, very competitive race. There are multiple Frontier labs all racing, but there is a clear tier zero Frontier. And then there's like a tier one. It's like, I wish I had everything else. Tier zero is extremely competitive. It's effectively now three horse race between Gemini, uh, Anthropic and OpenAI.[00:10:21] swyx: I would say that people are still holding out a candle for XAI. XAI, I think, for some reason, because their API was very slow to roll out, is not included in these metrics. So it's actually quite hard to put on there. As someone who also does charts, XAI is continually snubbed because they don't work well with the benchmarking people.[00:10:42] swyx: Yeah, yeah, yeah. It's a little trivia for why XAI always gets ignored. The other thing is market share. So these are slides from Sarah. We have it up on the screen. It has gone from very heavily open AI. So we have some numbers and estimates. These are from RAMP. Estimates of open AI market share in [00:11:00] December 2023.[00:11:01] swyx: And this is basically, what is it, GPT being 95 percent of production traffic. And I think if you correlate that with stuff that we asked. Harrison Chase on the LangChain episode, it was true. And then CLAUD 3 launched mid middle of this year. I think CLAUD 3 launched in March, CLAUD 3. 5 Sonnet was in June ish.[00:11:23] swyx: And you can start seeing the market share shift towards opening, uh, towards that topic, uh, very, very aggressively. The more recent one is Gemini. So if I scroll down a little bit, this is an even more recent dataset. So RAM's dataset ends in September 2 2. 2024. Gemini has basically launched a price war at the low end, uh, with Gemini Flash, uh, being basically free for personal use.[00:11:44] swyx: Like, I think people don't understand the free tier. It's something like a billion tokens per day. Unless you're trying to abuse it, you cannot really exhaust your free tier on Gemini. They're really trying to get you to use it. They know they're in like third place, um, fourth place, depending how you, how you count.[00:11:58] swyx: And so they're going after [00:12:00] the Lower tier first, and then, you know, maybe the upper tier later, but yeah, Gemini Flash, according to OpenRouter, is now 50 percent of their OpenRouter requests. Obviously, these are the small requests. These are small, cheap requests that are mathematically going to be more.[00:12:15] swyx: The smart ones obviously are still going to OpenAI. But, you know, it's a very, very big shift in the market. Like basically 2023, 2022, To going into 2024 opening has gone from nine five market share to Yeah. Reasonably somewhere between 50 to 75 market share.[00:12:29] Alessio: Yeah. I'm really curious how ramped does the attribution to the model?[00:12:32] Alessio: If it's API, because I think it's all credit card spin. . Well, but it's all, the credit card doesn't say maybe. Maybe the, maybe when they do expenses, they upload the PDF, but yeah, the, the German I think makes sense. I think that was one of my main 2024 takeaways that like. The best small model companies are the large labs, which is not something I would have thought that the open source kind of like long tail would be like the small model.[00:12:53] swyx: Yeah, different sizes of small models we're talking about here, right? Like so small model here for Gemini is AB, [00:13:00] right? Uh, mini. We don't know what the small model size is, but yeah, it's probably in the double digits or maybe single digits, but probably double digits. The open source community has kind of focused on the one to three B size.[00:13:11] swyx: Mm-hmm . Yeah. Maybe[00:13:12] swyx: zero, maybe 0.5 B uh, that's moon dream and that is small for you then, then that's great. It makes sense that we, we have a range for small now, which is like, may, maybe one to five B. Yeah. I'll even put that at, at, at the high end. And so this includes Gemma from Gemini as well. But also includes the Apple Foundation models, which I think Apple Foundation is 3B.[00:13:32] Alessio: Yeah. No, that's great. I mean, I think in the start small just meant cheap. I think today small is actually a more nuanced discussion, you know, that people weren't really having before.[00:13:43] swyx: Yeah, we can keep going. This is a slide that I smiley disagree with Sarah. She's pointing to the scale SEAL leaderboard. I think the Researchers that I talked with at NeurIPS were kind of positive on this because basically you need private test [00:14:00] sets to prevent contamination.[00:14:02] swyx: And Scale is one of maybe three or four people this year that has really made an effort in doing a credible private test set leaderboard. Llama405B does well compared to Gemini and GPT 40. And I think that's good. I would say that. You know, it's good to have an open model that is that big, that does well on those metrics.[00:14:23] swyx: But anyone putting 405B in production will tell you, if you scroll down a little bit to the artificial analysis numbers, that it is very slow and very expensive to infer. Um, it doesn't even fit on like one node. of, uh, of H100s. Cerebras will be happy to tell you they can serve 4 or 5B on their super large chips.[00:14:42] swyx: But, um, you know, if you need to do anything custom to it, you're still kind of constrained. So, is 4 or 5B really that relevant? Like, I think most people are basically saying that they only use 4 or 5B as a teacher model to distill down to something. Even Meta is doing it. So with Lama 3. [00:15:00] 3 launched, they only launched the 70B because they use 4 or 5B to distill the 70B.[00:15:03] swyx: So I don't know if like open source is keeping up. I think they're the, the open source industrial complex is very invested in telling you that the, if the gap is narrowing, I kind of disagree. I think that the gap is widening with O1. I think there are very, very smart people trying to narrow that gap and they should.[00:15:22] swyx: I really wish them success, but you cannot use a chart that is nearing 100 in your saturation chart. And look, the distance between open source and closed source is narrowing. Of course it's going to narrow because you're near 100. This is stupid. But in metrics that matter, is open source narrowing?[00:15:38] swyx: Probably not for O1 for a while. And it's really up to the open source guys to figure out if they can match O1 or not.[00:15:46] Alessio: I think inference time compute is bad for open source just because, you know, Doc can donate the flops at training time, but he cannot donate the flops at inference time. So it's really hard to like actually keep up on that axis.[00:15:59] Alessio: Big, big business [00:16:00] model shift. So I don't know what that means for the GPU clouds. I don't know what that means for the hyperscalers, but obviously the big labs have a lot of advantage. Because, like, it's not a static artifact that you're putting the compute in. You're kind of doing that still, but then you're putting a lot of computed inference too.[00:16:17] swyx: Yeah, yeah, yeah. Um, I mean, Llama4 will be reasoning oriented. We talked with Thomas Shalom. Um, kudos for getting that episode together. That was really nice. Good, well timed. Actually, I connected with the AI meta guy, uh, at NeurIPS, and, um, yeah, we're going to coordinate something for Llama4. Yeah, yeah,[00:16:32] Alessio: and our friend, yeah.[00:16:33] Alessio: Clara Shi just joined to lead the business agent side. So I'm sure we'll have her on in the new year.[00:16:39] swyx: Yeah. So, um, my comment on, on the business model shift, this is super interesting. Apparently it is wide knowledge that OpenAI wanted more than 6. 6 billion dollars for their fundraise. They wanted to raise, you know, higher, and they did not.[00:16:51] swyx: And what that means is basically like, it's very convenient that we're not getting GPT 5, which would have been a larger pre train. We should have a lot of upfront money. And [00:17:00] instead we're, we're converting fixed costs into variable costs, right. And passing it on effectively to the customer. And it's so much easier to take margin there because you can directly attribute it to like, Oh, you're using this more.[00:17:12] swyx: Therefore you, you pay more of the cost and I'll just slap a margin in there. So like that lets you control your growth margin and like tie your. Your spend, or your sort of inference spend, accordingly. And it's just really interesting to, that this change in the sort of inference paradigm has arrived exactly at the same time that the funding environment for pre training is effectively drying up, kind of.[00:17:36] swyx: I feel like maybe the VCs are very in tune with research anyway, so like, they would have noticed this, but, um, it's just interesting.[00:17:43] Alessio: Yeah, and I was looking back at our yearly recap of last year. Yeah. And the big thing was like the mixed trial price fights, you know, and I think now it's almost like there's nowhere to go, like, you know, Gemini Flash is like basically giving it away for free.[00:17:55] Alessio: So I think this is a good way for the labs to generate more revenue and pass down [00:18:00] some of the compute to the customer. I think they're going to[00:18:02] swyx: keep going. I think that 2, will come.[00:18:05] Alessio: Yeah, I know. Totally. I mean, next year, the first thing I'm doing is signing up for Devin. Signing up for the pro chat GBT.[00:18:12] Alessio: Just to try. I just want to see what does it look like to spend a thousand dollars a month on AI?[00:18:17] swyx: Yes. Yes. I think if your, if your, your job is a, at least AI content creator or VC or, you know, someone who, whose job it is to stay on, stay on top of things, you should already be spending like a thousand dollars a month on, on stuff.[00:18:28] swyx: And then obviously easy to spend, hard to use. You have to actually use. The good thing is that actually Google lets you do a lot of stuff for free now. So like deep research. That they just launched. Uses a ton of inference and it's, it's free while it's in preview.[00:18:45] Alessio: Yeah. They need to put that in Lindy.[00:18:47] Alessio: I've been using Lindy lately. I've been a built a bunch of things once we had flow because I liked the new thing. It's pretty good. I even did a phone call assistant. Um, yeah, they just launched Lindy voice. Yeah, I think once [00:19:00] they get advanced voice mode like capability today, still like speech to text, you can kind of tell.[00:19:06] Alessio: Um, but it's good for like reservations and things like that. So I have a meeting prepper thing. And so[00:19:13] swyx: it's good. Okay. I feel like we've, we've covered a lot of stuff. Uh, I, yeah, I, you know, I think We will go over the individual, uh, talks in a separate episode. Uh, I don't want to take too much time with, uh, this stuff, but that suffice to say that there is a lot of progress in each field.[00:19:28] swyx: Uh, we covered vision. Basically this is all like the audience voting for what they wanted. And then I just invited the best people I could find in each audience, especially agents. Um, Graham, who I talked to at ICML in Vienna, he is currently still number one. It's very hard to stay on top of SweetBench.[00:19:45] swyx: OpenHand is currently still number one. switchbench full, which is the hardest one. He had very good thoughts on agents, which I, which I'll highlight for people. Everyone is saying 2025 is the year of agents, just like they said last year. And, uh, but he had [00:20:00] thoughts on like eight parts of what are the frontier problems to solve in agents.[00:20:03] swyx: And so I'll highlight that talk as well.[00:20:05] Alessio: Yeah. The number six, which is the Hacken agents learn more about the environment, has been a Super interesting to us as well, just to think through, because, yeah, how do you put an agent in an enterprise where most things in an enterprise have never been public, you know, a lot of the tooling, like the code bases and things like that.[00:20:23] Alessio: So, yeah, there's not indexing and reg. Well, yeah, but it's more like. You can't really rag things that are not documented. But people know them based on how they've been doing it. You know, so I think there's almost this like, you know, Oh, institutional knowledge. Yeah, the boring word is kind of like a business process extraction.[00:20:38] Alessio: Yeah yeah, I see. It's like, how do you actually understand how these things are done? I see. Um, and I think today the, the problem is that, Yeah, the agents are, that most people are building are good at following instruction, but are not as good as like extracting them from you. Um, so I think that will be a big unlock just to touch quickly on the Jeff Dean thing.[00:20:55] Alessio: I thought it was pretty, I mean, we'll link it in the, in the things, but. I think the main [00:21:00] focus was like, how do you use ML to optimize the systems instead of just focusing on ML to do something else? Yeah, I think speculative decoding, we had, you know, Eugene from RWKB on the podcast before, like he's doing a lot of that with Fetterless AI.[00:21:12] swyx: Everyone is. I would say it's the norm. I'm a little bit uncomfortable with how much it costs, because it does use more of the GPU per call. But because everyone is so keen on fast inference, then yeah, makes sense.[00:21:24] Alessio: Exactly. Um, yeah, but we'll link that. Obviously Jeff is great.[00:21:30] swyx: Jeff is, Jeff's talk was more, it wasn't focused on Gemini.[00:21:33] swyx: I think people got the wrong impression from my tweet. It's more about how Google approaches ML and uses ML to design systems and then systems feedback into ML. And I think this ties in with Lubna's talk.[00:21:45] Synthetic Data and Future Trends[00:21:45] swyx: on synthetic data where it's basically the story of bootstrapping of humans and AI in AI research or AI in production.[00:21:53] swyx: So her talk was on synthetic data, where like how much synthetic data has grown in 2024 in the pre training side, the post training side, [00:22:00] and the eval side. And I think Jeff then also extended it basically to chips, uh, to chip design. So he'd spend a lot of time talking about alpha chip. And most of us in the audience are like, we're not working on hardware, man.[00:22:11] swyx: Like you guys are great. TPU is great. Okay. We'll buy TPUs.[00:22:14] Alessio: And then there was the earlier talk. Yeah. But, and then we have, uh, I don't know if we're calling them essays. What are we calling these? But[00:22:23] swyx: for me, it's just like bonus for late in space supporters, because I feel like they haven't been getting anything.[00:22:29] swyx: And then I wanted a more high frequency way to write stuff. Like that one I wrote in an afternoon. I think basically we now have an answer to what Ilya saw. It's one year since. The blip. And we know what he saw in 2014. We know what he saw in 2024. We think we know what he sees in 2024. He gave some hints and then we have vague indications of what he saw in 2023.[00:22:54] swyx: So that was the Oh, and then 2016 as well, because of this lawsuit with Elon, OpenAI [00:23:00] is publishing emails from Sam's, like, his personal text messages to Siobhan, Zelis, or whatever. So, like, we have emails from Ilya saying, this is what we're seeing in OpenAI, and this is why we need to scale up GPUs. And I think it's very prescient in 2016 to write that.[00:23:16] swyx: And so, like, it is exactly, like, basically his insights. It's him and Greg, basically just kind of driving the scaling up of OpenAI, while they're still playing Dota. They're like, no, like, we see the path here.[00:23:30] Alessio: Yeah, and it's funny, yeah, they even mention, you know, we can only train on 1v1 Dota. We need to train on 5v5, and that takes too many GPUs.[00:23:37] Alessio: Yeah,[00:23:37] swyx: and at least for me, I can speak for myself, like, I didn't see the path from Dota to where we are today. I think even, maybe if you ask them, like, they wouldn't necessarily draw a straight line. Yeah,[00:23:47] Alessio: no, definitely. But I think like that was like the whole idea of almost like the RL and we talked about this with Nathan on his podcast.[00:23:55] Alessio: It's like with RL, you can get very good at specific things, but then you can't really like generalize as much. And I [00:24:00] think the language models are like the opposite, which is like, you're going to throw all this data at them and scale them up, but then you really need to drive them home on a specific task later on.[00:24:08] Alessio: And we'll talk about the open AI reinforcement, fine tuning, um, announcement too, and all of that. But yeah, I think like scale is all you need. That's kind of what Elia will be remembered for. And I think just maybe to clarify on like the pre training is over thing that people love to tweet. I think the point of the talk was like everybody, we're scaling these chips, we're scaling the compute, but like the second ingredient which is data is not scaling at the same rate.[00:24:35] Alessio: So it's not necessarily pre training is over. It's kind of like What got us here won't get us there. In his email, he predicted like 10x growth every two years or something like that. And I think maybe now it's like, you know, you can 10x the chips again, but[00:24:49] swyx: I think it's 10x per year. Was it? I don't know.[00:24:52] Alessio: Exactly. And Moore's law is like 2x. So it's like, you know, much faster than that. And yeah, I like the fossil fuel of AI [00:25:00] analogy. It's kind of like, you know, the little background tokens thing. So the OpenAI reinforcement fine tuning is basically like, instead of fine tuning on data, you fine tune on a reward model.[00:25:09] Alessio: So it's basically like, instead of being data driven, it's like task driven. And I think people have tasks to do, they don't really have a lot of data. So I'm curious to see how that changes, how many people fine tune, because I think this is what people run into. It's like, Oh, you can fine tune llama. And it's like, okay, where do I get the data?[00:25:27] Alessio: To fine tune it on, you know, so it's great that we're moving the thing. And then I really like he had this chart where like, you know, the brain mass and the body mass thing is basically like mammals that scaled linearly by brain and body size, and then humans kind of like broke off the slope. So it's almost like maybe the mammal slope is like the pre training slope.[00:25:46] Alessio: And then the post training slope is like the, the human one.[00:25:49] swyx: Yeah. I wonder what the. I mean, we'll know in 10 years, but I wonder what the y axis is for, for Ilya's SSI. We'll try to get them on.[00:25:57] Alessio: Ilya, if you're listening, you're [00:26:00] welcome here. Yeah, and then he had, you know, what comes next, like agent, synthetic data, inference, compute, I thought all of that was like that.[00:26:05] Alessio: I don't[00:26:05] swyx: think he was dropping any alpha there. Yeah, yeah, yeah.[00:26:07] Alessio: Yeah. Any other new reps? Highlights?[00:26:10] swyx: I think that there was comparatively a lot more work. Oh, by the way, I need to plug that, uh, my friend Yi made this, like, little nice paper. Yeah, that was really[00:26:20] swyx: nice.[00:26:20] swyx: Uh, of, uh, of, like, all the, he's, she called it must read papers of 2024.[00:26:26] swyx: So I laid out some of these at NeurIPS, and it was just gone. Like, everyone just picked it up. Because people are dying for, like, little guidance and visualizations And so, uh, I thought it was really super nice that we got there.[00:26:38] Alessio: Should we do a late in space book for each year? Uh, I thought about it. For each year we should.[00:26:42] Alessio: Coffee table book. Yeah. Yeah. Okay. Put it in the will. Hi, Will. By the way, we haven't introduced you. He's our new, you know, general organist, Jamie. You need to[00:26:52] swyx: pull up more things. One thing I saw that, uh, Okay, one fun one, and then one [00:27:00] more general one. So the fun one is this paper on agent collusion. This is a paper on steganography.[00:27:06] swyx: This is secret collusion among AI agents, multi agent deception via steganography. I tried to go to NeurIPS in order to find these kinds of papers because the real reason Like NeurIPS this year has a lottery system. A lot of people actually even go and don't buy tickets because they just go and attend the side events.[00:27:22] swyx: And then also the people who go and end up crowding around the most popular papers, which you already know and already read them before you showed up to NeurIPS. So the only reason you go there is to talk to the paper authors, but there's like something like 10, 000 other. All these papers out there that, you know, are just people's work that they, that they did on the air and they failed to get attention for one reason or another.[00:27:42] swyx: And this was one of them. Uh, it was like all the way at the back. And this is a deep mind paper that actually focuses on collusion between AI agents, uh, by hiding messages in the text that they generate. Uh, so that's what steganography is. So a very simple example would be the first letter of every word.[00:27:57] swyx: If you Pick that out, you know, and the code sends a [00:28:00] different message than that. But something I've always emphasized is to LLMs, we read left to right. LLMs can read up, down, sideways, you know, in random character order. And it's the same to them as it is to us. So if we were ever to get You know, self motivated, underlined LLMs that we're trying to collaborate to take over the planet.[00:28:19] swyx: This would be how they do it. They spread messages among us in the messages that we generate. And he developed a scaling law for that. So he marked, I'm showing it on screen right now, the emergence of this phenomenon. Basically, for example, for Cypher encoding, GPT 2, Lama 2, mixed trial, GPT 3. 5, zero capabilities, and sudden 4.[00:28:40] swyx: And this is the kind of Jason Wei type emergence properties that people kind of look for. I think what made this paper stand out as well, so he developed the benchmark for steganography collusion, and he also focused on shelling point collusion, which is very low coordination. For agreeing on a decoding encoding format, you kind of need to have some [00:29:00] agreement on that.[00:29:00] swyx: But, but shelling point means like very, very low or almost no coordination. So for example, if I, if I ask someone, if the only message I give you is meet me in New York and you're not aware. Or when you would probably meet me at Grand Central Station. That is the Grand Central Station is a shelling point.[00:29:16] swyx: And it's probably somewhere, somewhere during the day. That is the shelling point of New York is Grand Central. To that extent, shelling points for steganography are things like the, the, the common decoding methods that we talked about. It will be interesting at some point in the future when we are worried about alignment.[00:29:30] swyx: It is not interesting today, but it's interesting that DeepMind is already thinking about this.[00:29:36] Alessio: I think that's like one of the hardest things about NeurIPS. It's like the long tail. I[00:29:41] swyx: found a pricing guy. I'm going to feature him on the podcast. Basically, this guy from NVIDIA worked out the optimal pricing for language models.[00:29:51] swyx: It's basically an econometrics paper at NeurIPS, where everyone else is talking about GPUs. And the guy with the GPUs is[00:29:57] Alessio: talking[00:29:57] swyx: about economics instead. [00:30:00] That was the sort of fun one. So the focus I saw is that model papers at NeurIPS are kind of dead. No one really presents models anymore. It's just data sets.[00:30:12] swyx: This is all the grad students are working on. So like there was a data sets track and then I was looking around like, I was like, you don't need a data sets track because every paper is a data sets paper. And so data sets and benchmarks, they're kind of flip sides of the same thing. So Yeah. Cool. Yeah, if you're a grad student, you're a GPU boy, you kind of work on that.[00:30:30] swyx: And then the, the sort of big model that people walk around and pick the ones that they like, and then they use it in their models. And that's, that's kind of how it develops. I, I feel like, um, like, like you didn't last year, you had people like Hao Tian who worked on Lava, which is take Lama and add Vision.[00:30:47] swyx: And then obviously actually I hired him and he added Vision to Grok. Now he's the Vision Grok guy. This year, I don't think there was any of those.[00:30:55] Alessio: What were the most popular, like, orals? Last year it was like the [00:31:00] Mixed Monarch, I think, was like the most attended. Yeah, uh, I need to look it up. Yeah, I mean, if nothing comes to mind, that's also kind of like an answer in a way.[00:31:10] Alessio: But I think last year there was a lot of interest in, like, furthering models and, like, different architectures and all of that.[00:31:16] swyx: I will say that I felt the orals, oral picks this year were not very good. Either that or maybe it's just a So that's the highlight of how I have changed in terms of how I view papers.[00:31:29] swyx: So like, in my estimation, two of the best papers in this year for datasets or data comp and refined web or fine web. These are two actually industrially used papers, not highlighted for a while. I think DCLM got the spotlight, FineWeb didn't even get the spotlight. So like, it's just that the picks were different.[00:31:48] swyx: But one thing that does get a lot of play that a lot of people are debating is the role that's scheduled. This is the schedule free optimizer paper from Meta from Aaron DeFazio. And this [00:32:00] year in the ML community, there's been a lot of chat about shampoo, soap, all the bathroom amenities for optimizing your learning rates.[00:32:08] swyx: And, uh, most people at the big labs are. Who I asked about this, um, say that it's cute, but it's not something that matters. I don't know, but it's something that was discussed and very, very popular. 4Wars[00:32:19] Alessio: of AI recap maybe, just quickly. Um, where do you want to start? Data?[00:32:26] swyx: So to remind people, this is the 4Wars piece that we did as one of our earlier recaps of this year.[00:32:31] swyx: And the belligerents are on the left, journalists, writers, artists, anyone who owns IP basically, New York Times, Stack Overflow, Reddit, Getty, Sarah Silverman, George RR Martin. Yeah, and I think this year we can add Scarlett Johansson to that side of the fence. So anyone suing, open the eye, basically. I actually wanted to get a snapshot of all the lawsuits.[00:32:52] swyx: I'm sure some lawyer can do it. That's the data quality war. On the right hand side, we have the synthetic data people, and I think we talked about Lumna's talk, you know, [00:33:00] really showing how much synthetic data has come along this year. I think there was a bit of a fight between scale. ai and the synthetic data community, because scale.[00:33:09] swyx: ai published a paper saying that synthetic data doesn't work. Surprise, surprise, scale. ai is the leading vendor of non synthetic data. Only[00:33:17] Alessio: cage free annotated data is useful.[00:33:21] swyx: So I think there's some debate going on there, but I don't think it's much debate anymore that at least synthetic data, for the reasons that are blessed in Luna's talk, Makes sense.[00:33:32] swyx: I don't know if you have any perspectives there.[00:33:34] Alessio: I think, again, going back to the reinforcement fine tuning, I think that will change a little bit how people think about it. I think today people mostly use synthetic data, yeah, for distillation and kind of like fine tuning a smaller model from like a larger model.[00:33:46] Alessio: I'm not super aware of how the frontier labs use it outside of like the rephrase, the web thing that Apple also did. But yeah, I think it'll be. Useful. I think like whether or not that gets us the big [00:34:00] next step, I think that's maybe like TBD, you know, I think people love talking about data because it's like a GPU poor, you know, I think, uh, synthetic data is like something that people can do, you know, so they feel more opinionated about it compared to, yeah, the optimizers stuff, which is like,[00:34:17] swyx: they don't[00:34:17] Alessio: really work[00:34:18] swyx: on.[00:34:18] swyx: I think that there is an angle to the reasoning synthetic data. So this year, we covered in the paper club, the star series of papers. So that's star, Q star, V star. It basically helps you to synthesize reasoning steps, or at least distill reasoning steps from a verifier. And if you look at the OpenAI RFT, API that they released, or that they announced, basically they're asking you to submit graders, or they choose from a preset list of graders.[00:34:49] swyx: Basically It feels like a way to create valid synthetic data for them to fine tune their reasoning paths on. Um, so I think that is another angle where it starts to make sense. And [00:35:00] so like, it's very funny that basically all the data quality wars between Let's say the music industry or like the newspaper publishing industry or the textbooks industry on the big labs.[00:35:11] swyx: It's all of the pre training era. And then like the new era, like the reasoning era, like nobody has any problem with all the reasoning, especially because it's all like sort of math and science oriented with, with very reasonable graders. I think the more interesting next step is how does it generalize beyond STEM?[00:35:27] swyx: We've been using O1 for And I would say like for summarization and creative writing and instruction following, I think it's underrated. I started using O1 in our intro songs before we killed the intro songs, but it's very good at writing lyrics. You know, I can actually say like, I think one of the O1 pro demos.[00:35:46] swyx: All of these things that Noam was showing was that, you know, you can write an entire paragraph or three paragraphs without using the letter A, right?[00:35:53] Creative Writing with AI[00:35:53] swyx: So like, like literally just anything instead of token, like not even token level, character level manipulation and [00:36:00] counting and instruction following. It's, uh, it's very, very strong.[00:36:02] swyx: And so no surprises when I ask it to rhyme, uh, and to, to create song lyrics, it's going to do that very much better than in previous models. So I think it's underrated for creative writing.[00:36:11] Alessio: Yeah.[00:36:12] Legal and Ethical Issues in AI[00:36:12] Alessio: What do you think is the rationale that they're going to have in court when they don't show you the thinking traces of O1, but then they want us to, like, they're getting sued for using other publishers data, you know, but then on their end, they're like, well, you shouldn't be using my data to then train your model.[00:36:29] Alessio: So I'm curious to see how that kind of comes. Yeah, I mean, OPA has[00:36:32] swyx: many ways to publish, to punish people without bringing, taking them to court. Already banned ByteDance for distilling their, their info. And so anyone caught distilling the chain of thought will be just disallowed to continue on, on, on the API.[00:36:44] swyx: And it's fine. It's no big deal. Like, I don't even think that's an issue at all, just because the chain of thoughts are pretty well hidden. Like you have to work very, very hard to, to get it to leak. And then even when it leaks the chain of thought, you don't know if it's, if it's [00:37:00] The bigger concern is actually that there's not that much IP hiding behind it, that Cosign, which we talked about, we talked to him on Dev Day, can just fine tune 4.[00:37:13] swyx: 0 to beat 0. 1 Cloud SONET so far is beating O1 on coding tasks without, at least O1 preview, without being a reasoning model, same for Gemini Pro or Gemini 2. 0. So like, how much is reasoning important? How much of a moat is there in this, like, All of these are proprietary sort of training data that they've presumably accomplished.[00:37:34] swyx: Because even DeepSeek was able to do it. And they had, you know, two months notice to do this, to do R1. So, it's actually unclear how much moat there is. Obviously, you know, if you talk to the Strawberry team, they'll be like, yeah, I mean, we spent the last two years doing this. So, we don't know. And it's going to be Interesting because there'll be a lot of noise from people who say they have inference time compute and actually don't because they just have fancy chain of thought.[00:38:00][00:38:00] swyx: And then there's other people who actually do have very good chain of thought. And you will not see them on the same level as OpenAI because OpenAI has invested a lot in building up the mythology of their team. Um, which makes sense. Like the real answer is somewhere in between.[00:38:13] Alessio: Yeah, I think that's kind of like the main data war story developing.[00:38:18] The Data War: GPU Poor vs. GPU Rich[00:38:18] Alessio: GPU poor versus GPU rich. Yeah. Where do you think we are? I think there was, again, going back to like the small model thing, there was like a time in which the GPU poor were kind of like the rebel faction working on like these models that were like open and small and cheap. And I think today people don't really care as much about GPUs anymore.[00:38:37] Alessio: You also see it in the price of the GPUs. Like, you know, that market is kind of like plummeted because there's people don't want to be, they want to be GPU free. They don't even want to be poor. They just want to be, you know, completely without them. Yeah. How do you think about this war? You[00:38:52] swyx: can tell me about this, but like, I feel like the, the appetite for GPU rich startups, like the, you know, the, the funding plan is we will raise 60 million and [00:39:00] we'll give 50 of that to NVIDIA.[00:39:01] swyx: That is gone, right? Like, no one's, no one's pitching that. This was literally the plan, the exact plan of like, I can name like four or five startups, you know, this time last year. So yeah, GPU rich startups gone.[00:39:12] The Rise of GPU Ultra Rich[00:39:12] swyx: But I think like, The GPU ultra rich, the GPU ultra high net worth is still going. So, um, now we're, you know, we had Leopold's essay on the trillion dollar cluster.[00:39:23] swyx: We're not quite there yet. We have multiple labs, um, you know, XAI very famously, you know, Jensen Huang praising them for being. Best boy number one in spinning up 100, 000 GPU cluster in like 12 days or something. So likewise at Meta, likewise at OpenAI, likewise at the other labs as well. So like the GPU ultra rich are going to keep doing that because I think partially it's an article of faith now that you just need it.[00:39:46] swyx: Like you don't even know what it's going to, what you're going to use it for. You just, you just need it. And it makes sense that if, especially if we're going into. More researchy territory than we are. So let's say 2020 to 2023 was [00:40:00] let's scale big models territory because we had GPT 3 in 2020 and we were like, okay, we'll go from 1.[00:40:05] swyx: 75b to 1. 8b, 1. 8t. And that was GPT 3 to GPT 4. Okay, that's done. As far as everyone is concerned, Opus 3. 5 is not coming out, GPT 4. 5 is not coming out, and Gemini 2, we don't have Pro, whatever. We've hit that wall. Maybe I'll call it the 2 trillion perimeter wall. We're not going to 10 trillion. No one thinks it's a good idea, at least from training costs, from the amount of data, or at least the inference.[00:40:36] swyx: Would you pay 10x the price of GPT Probably not. Like, like you want something else that, that is at least more useful. So it makes sense that people are pivoting in terms of their inference paradigm.[00:40:47] Emerging Trends in AI Models[00:40:47] swyx: And so when it's more researchy, then you actually need more just general purpose compute to mess around with, uh, at the exact same time that production deployments of the old, the previous paradigm is still ramping up,[00:40:58] swyx: um,[00:40:58] swyx: uh, pretty aggressively.[00:40:59] swyx: So [00:41:00] it makes sense that the GPU rich are growing. We have now interviewed both together and fireworks and replicates. Uh, we haven't done any scale yet. But I think Amazon, maybe kind of a sleeper one, Amazon, in a sense of like they, at reInvent, I wasn't expecting them to do so well, but they are now a foundation model lab.[00:41:18] swyx: It's kind of interesting. Um, I think, uh, you know, David went over there and started just creating models.[00:41:25] Alessio: Yeah, I mean, that's the power of prepaid contracts. I think like a lot of AWS customers, you know, they do this big reserve instance contracts and now they got to use their money. That's why so many startups.[00:41:37] Alessio: Get bought through the AWS marketplace so they can kind of bundle them together and prefer pricing.[00:41:42] swyx: Okay, so maybe GPU super rich doing very well, GPU middle class dead, and then GPU[00:41:48] Alessio: poor. I mean, my thing is like, everybody should just be GPU rich. There shouldn't really be, even the GPU poorest, it's like, does it really make sense to be GPU poor?[00:41:57] Alessio: Like, if you're GPU poor, you should just use the [00:42:00] cloud. Yes, you know, and I think there might be a future once we kind of like figure out what the size and shape of these models is where like the tiny box and these things come to fruition where like you can be GPU poor at home. But I think today is like, why are you working so hard to like get these models to run on like very small clusters where it's like, It's so cheap to run them.[00:42:21] Alessio: Yeah, yeah,[00:42:22] swyx: yeah. I think mostly people think it's cool. People think it's a stepping stone to scaling up. So they aspire to be GPU rich one day and they're working on new methods. Like news research, like probably the most deep tech thing they've done this year is Distro or whatever the new name is.[00:42:38] swyx: There's a lot of interest in heterogeneous computing, distributed computing. I tend generally to de emphasize that historically, but it may be coming to a time where it is starting to be relevant. I don't know. You know, SF compute launched their compute marketplace this year, and like, who's really using that?[00:42:53] swyx: Like, it's a bunch of small clusters, disparate types of compute, and if you can make that [00:43:00] useful, then that will be very beneficial to the broader community, but maybe still not the source of frontier models. It's just going to be a second tier of compute that is unlocked for people, and that's fine. But yeah, I mean, I think this year, I would say a lot more on device, We are, I now have Apple intelligence on my phone.[00:43:19] swyx: Doesn't do anything apart from summarize my notifications. But still, not bad. Like, it's multi modal.[00:43:25] Alessio: Yeah, the notification summaries are so and so in my experience.[00:43:29] swyx: Yeah, but they add, they add juice to life. And then, um, Chrome Nano, uh, Gemini Nano is coming out in Chrome. Uh, they're still feature flagged, but you can, you can try it now if you, if you use the, uh, the alpha.[00:43:40] swyx: And so, like, I, I think, like, you know, We're getting the sort of GPU poor version of a lot of these things coming out, and I think it's like quite useful. Like Windows as well, rolling out RWKB in sort of every Windows department is super cool. And I think the last thing that I never put in this GPU poor war, that I think I should now, [00:44:00] is the number of startups that are GPU poor but still scaling very well, as sort of wrappers on top of either a foundation model lab, or GPU Cloud.[00:44:10] swyx: GPU Cloud, it would be Suno. Suno, Ramp has rated as one of the top ranked, fastest growing startups of the year. Um, I think the last public number is like zero to 20 million this year in ARR and Suno runs on Moto. So Suno itself is not GPU rich, but they're just doing the training on, on Moto, uh, who we've also talked to on, on the podcast.[00:44:31] swyx: The other one would be Bolt, straight cloud wrapper. And, and, um, Again, another, now they've announced 20 million ARR, which is another step up from our 8 million that we put on the title. So yeah, I mean, it's crazy that all these GPU pores are finding a way while the GPU riches are also finding a way. And then the only failures, I kind of call this the GPU smiling curve, where the edges do well, because you're either close to the machines, and you're like [00:45:00] number one on the machines, or you're like close to the customers, and you're number one on the customer side.[00:45:03] swyx: And the people who are in the middle. Inflection, um, character, didn't do that great. I think character did the best of all of them. Like, you have a note in here that we apparently said that character's price tag was[00:45:15] Alessio: 1B.[00:45:15] swyx: Did I say that?[00:45:16] Alessio: Yeah. You said Google should just buy them for 1B. I thought it was a crazy number.[00:45:20] Alessio: Then they paid 2. 7 billion. I mean, for like,[00:45:22] swyx: yeah.[00:45:22] Alessio: What do you pay for node? Like, I don't know what the game world was like. Maybe the starting price was 1B. I mean, whatever it was, it worked out for everybody involved.[00:45:31] The Multi-Modality War[00:45:31] Alessio: Multimodality war. And this one, we never had text to video in the first version, which now is the hottest.[00:45:37] swyx: Yeah, I would say it's a subset of image, but yes.[00:45:40] Alessio: Yeah, well, but I think at the time it wasn't really something people were doing, and now we had VO2 just came out yesterday. Uh, Sora was released last month, last week. I've not tried Sora, because the day that I tried, it wasn't, yeah. I[00:45:54] swyx: think it's generally available now, you can go to Sora.[00:45:56] swyx: com and try it. Yeah, they had[00:45:58] Alessio: the outage. Which I [00:46:00] think also played a part into it. Small things. Yeah. What's the other model that you posted today that was on Replicate? Video or OneLive?[00:46:08] swyx: Yeah. Very, very nondescript name, but it is from Minimax, which I think is a Chinese lab. The Chinese labs do surprisingly well at the video models.[00:46:20] swyx: I'm not sure it's actually Chinese. I don't know. Hold me up to that. Yep. China. It's good. Yeah, the Chinese love video. What can I say? They have a lot of training data for video. Or a more relaxed regulatory environment.[00:46:37] Alessio: Uh, well, sure, in some way. Yeah, I don't think there's much else there. I think like, you know, on the image side, I think it's still open.[00:46:45] Alessio: Yeah, I mean,[00:46:46] swyx: 11labs is now a unicorn. So basically, what is multi modality war? Multi modality war is, do you specialize in a single modality, right? Or do you have GodModel that does all the modalities? So this is [00:47:00] definitely still going, in a sense of 11 labs, you know, now Unicorn, PicoLabs doing well, they launched Pico 2.[00:47:06] swyx: 0 recently, HeyGen, I think has reached 100 million ARR, Assembly, I don't know, but they have billboards all over the place, so I assume they're doing very, very well. So these are all specialist models, specialist models and specialist startups. And then there's the big labs who are doing the sort of all in one play.[00:47:24] swyx: And then here I would highlight Gemini 2 for having native image output. Have you seen the demos? Um, yeah, it's, it's hard to keep up. Literally they launched this last week and a shout out to Paige Bailey, who came to the Latent Space event to demo on the day of launch. And she wasn't prepared. She was just like, I'm just going to show you.[00:47:43] swyx: So they have voice. They have, you know, obviously image input, and then they obviously can code gen and all that. But the new one that OpenAI and Meta both have but they haven't launched yet is image output. So you can literally, um, I think their demo video was that you put in an image of a [00:48:00] car, and you ask for minor modifications to that car.[00:48:02] swyx: They can generate you that modification exactly as you asked. So there's no need for the stable diffusion or comfy UI workflow of like mask here and then like infill there in paint there and all that, all that stuff. This is small model nonsense. Big model people are like, huh, we got you in as everything in the transformer.[00:48:21] swyx: This is the multimodality war, which is, do you, do you bet on the God model or do you string together a whole bunch of, uh, Small models like a, like a chump. Yeah,[00:48:29] Alessio: I don't know, man. Yeah, that would be interesting. I mean, obviously I use Midjourney for all of our thumbnails. Um, they've been doing a ton on the product, I would say.[00:48:38] Alessio: They launched a new Midjourney editor thing. They've been doing a ton. Because I think, yeah, the motto is kind of like, Maybe, you know, people say black forest, the black forest models are better than mid journey on a pixel by pixel basis. But I think when you put it, put it together, have you tried[00:48:53] swyx: the same problems on black forest?[00:48:55] Alessio: Yes. But the problem is just like, you know, on black forest, it generates one image. And then it's like, you got to [00:49:00] regenerate. You don't have all these like UI things. Like what I do, no, but it's like time issue, you know, it's like a mid[00:49:06] swyx: journey. Call the API four times.[00:49:08] Alessio: No, but then there's no like variate.[00:49:10] Alessio: Like the good thing about mid journey is like, you just go in there and you're cooking. There's a lot of stuff that just makes it really easy. And I think people underestimate that. Like, it's not really a skill issue, because I'm paying mid journey, so it's a Black Forest skill issue, because I'm not paying them, you know?[00:49:24] Alessio: Yeah,[00:49:25] swyx: so, okay, so, uh, this is a UX thing, right? Like, you, you, you understand that, at least, we think that Black Forest should be able to do all that stuff. I will also shout out, ReCraft has come out, uh, on top of the image arena that, uh, artificial analysis has done, has apparently, uh, Flux's place. Is this still true?[00:49:41] swyx: So, Artificial Analysis is now a company. I highlighted them I think in one of the early AI Newses of the year. And they have launched a whole bunch of arenas. So, they're trying to take on LM Arena, Anastasios and crew. And they have an image arena. Oh yeah, Recraft v3 is now beating Flux 1. 1. Which is very surprising [00:50:00] because Flux And Black Forest Labs are the old stable diffusion crew who left stability after, um, the management issues.[00:50:06] swyx: So Recurve has come from nowhere to be the top image model. Uh, very, very strange. I would also highlight that Grok has now launched Aurora, which is, it's very interesting dynamics between Grok and Black Forest Labs because Grok's images were originally launched, uh, in partnership with Black Forest Labs as a, as a thin wrapper.[00:50:24] swyx: And then Grok was like, no, we'll make our own. And so they've made their own. I don't know, there are no APIs or benchmarks about it. They just announced it. So yeah, that's the multi modality war. I would say that so far, the small model, the dedicated model people are winning, because they are just focused on their tasks.[00:50:42] swyx: But the big model, People are always catching up. And the moment I saw the Gemini 2 demo of image editing, where I can put in an image and just request it and it does, that's how AI should work. Not like a whole bunch of complicated steps. So it really is something. And I think one frontier that we haven't [00:51:00] seen this year, like obviously video has done very well, and it will continue to grow.[00:51:03] swyx: You know, we only have Sora Turbo today, but at some point we'll get full Sora. Oh, at least the Hollywood Labs will get Fulsora. We haven't seen video to audio, or video synced to audio. And so the researchers that I talked to are already starting to talk about that as the next frontier. But there's still maybe like five more years of video left to actually be Soda.[00:51:23] swyx: I would say that Gemini's approach Compared to OpenAI, Gemini seems, or DeepMind's approach to video seems a lot more fully fledged than OpenAI. Because if you look at the ICML recap that I published that so far nobody has listened to, um, that people have listened to it. It's just a different, definitely different audience.[00:51:43] swyx: It's only seven hours long. Why are people not listening? It's like everything in Uh, so, so DeepMind has, is working on Genie. They also launched Genie 2 and VideoPoet. So, like, they have maybe four years advantage on world modeling that OpenAI does not have. Because OpenAI basically only started [00:52:00] Diffusion Transformers last year, you know, when they hired, uh, Bill Peebles.[00:52:03] swyx: So, DeepMind has, has a bit of advantage here, I would say, in, in, in showing, like, the reason that VO2, while one, They cherry pick their videos. So obviously it looks better than Sora, but the reason I would believe that VO2, uh, when it's fully launched will do very well is because they have all this background work in video that they've done for years.[00:52:22] swyx: Like, like last year's NeurIPS, I already was interviewing some of their video people. I forget their model name, but for, for people who are dedicated fans, they can go to NeurIPS 2023 and see, see that paper.[00:52:32] Alessio: And then last but not least, the LLMOS. We renamed it to Ragops, formerly known as[00:52:39] swyx: Ragops War. I put the latest chart on the Braintrust episode.[00:52:43] swyx: I think I'm going to separate these essays from the episode notes. So the reason I used to do that, by the way, is because I wanted to show up on Hacker News. I wanted the podcast to show up on Hacker News. So I always put an essay inside of there because Hacker News people like to read and not listen.[00:52:58] Alessio: So episode essays,[00:52:59] swyx: I remember [00:53:00] purchasing them separately. You say Lanchain Llama Index is still growing.[00:53:03] Alessio: Yeah, so I looked at the PyPy stats, you know. I don't care about stars. On PyPy you see Do you want to share your screen? Yes. I prefer to look at actual downloads, not at stars on GitHub. So if you look at, you know, Lanchain still growing.[00:53:20] Alessio: These are the last six months. Llama Index still growing. What I've basically seen is like things that, One, obviously these things have A commercial product. So there's like people buying this and sticking with it versus kind of hopping in between things versus, you know, for example, crew AI, not really growing as much.[00:53:38] Alessio: The stars are growing. If you look on GitHub, like the stars are growing, but kind of like the usage is kind of like flat. In the last six months, have they done some[00:53:4

god ceo new york amazon spotify time world europe google ai china apple vision pr voice future speaking san francisco new york times phd video thinking chinese simple data predictions elon musk iphone surprise impact legal code tesla chatgpt reflecting memory ga discord busy reddit lgbt cloud flash stem honestly ab pros jeff bezos windows excited researchers unicorns lower ip tackling sort survey insane tier cto vc whispers applications doc signing seal fireworks f1 genie academic openai sf gemini organizing nvidia ux api assembly davos frontier chrome makes scarlett johansson ui mm turbo gpt bash soda ml aws lama dropbox mosaic creative writing github drafting reinvent canvas 1b bolt apis lava ruler exact stripe dev pico strawberry hundred wwdc vm sander bt flux vcs taiwanese 200k moto arr gartner opus assumption sora google docs nemo parting blackwell sam altman google drive llm sombra gpu opa tbd ramp 3b elia elo agi gnome 5b estimates bytedance midjourney leopold dota ciso haiku dx sarah silverman coursera rag gpus sonnets george rr martin cypher quill getty cobalt sdks deepmind ilya perplexity noam sheesh v2 ttc alessio grok future trends anthropic lms satya r1 ssi stack overflow 8b rl itc emerging trends theoretically sota vo2 yi replicate suno mistral veo black forest inflection graphql aitor xai brain trust databricks chinchillas gpts adept nosql mcp grand central jensen huang ai models grand central station hacker news zep hacken ethical issues cosign claud ai news gpc distro lubna autogpt neo4j tpu o3 jeremy howard gbt o1 gpd quent heygen gradients exa loras 70b langchain minimax neurips 400b jeff dean 128k elos gemini pro cerebras code interpreter icml john franco lstm r1s ai winter aws reinvent muser latent space pypy dan gross nova pro paige bailey noam brown quiet capital john frankel
Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

We are recording our next big recap episode and taking questions! Submit questions and messages on Speakpipe here for a chance to appear on the show!Also subscribe to our calendar for our Singapore, NeurIPS, and all upcoming meetups!In our first ever episode with Logan Kilpatrick we called out the two hottest LLM frameworks at the time: LangChain and Dust. We've had Harrison from LangChain on twice (as a guest and as a co-host), and we've now finally come full circle as Stanislas from Dust joined us in the studio.After stints at Oracle and Stripe, Stan had joined OpenAI to work on mathematical reasoning capabilities. He describes his time at OpenAI as "the PhD I always wanted to do" while acknowledging the challenges of research work: "You're digging into a field all day long for weeks and weeks, and you find something, you get super excited for 12 seconds. And at the 13 seconds, you're like, 'oh, yeah, that was obvious.' And you go back to digging." This experience, combined with early access to GPT-4's capabilities, shaped his decision to start Dust: "If we believe in AGI and if we believe the timelines might not be too long, it's actually the last train leaving the station to start a company. After that, it's going to be computers all the way down."The History of DustDust's journey can be broken down into three phases:* Developer Framework (2022): Initially positioned as a competitor to LangChain, Dust started as a developer tooling platform. While both were open source, their approaches differed – LangChain focused on broad community adoption and integration as a pure developer experience, while Dust emphasized UI-driven development and better observability that wasn't just `print` statements.* Browser Extension (Early 2023): The company pivoted to building XP1, a browser extension that could interact with web content. This experiment helped validate user interaction patterns with AI, even while using less capable models than GPT-4.* Enterprise Platform (Current): Today, Dust has evolved into an infrastructure platform for deploying AI agents within companies, with impressive metrics like 88% daily active users in some deployments.The Case for Being HorizontalThe big discussion for early stage companies today is whether or not to be horizontal or vertical. Since models are so good at general tasks, a lot of companies are building vertical products that take care of a workflow end-to-end in order to offer more value and becoming more of “Services as Software”. Dust on the other hand is a platform for the users to build their own experiences, which has had a few advantages:* Maximum Penetration: Dust reports 60-70% weekly active users across entire companies, demonstrating the potential reach of horizontal solutions rather than selling into a single team.* Emergent Use Cases: By allowing non-technical users to create agents, Dust enables use cases to emerge organically from actual business needs rather than prescribed solutions.* Infrastructure Value: The platform approach creates lasting value through maintained integrations and connections, similar to how Stripe's value lies in maintaining payment infrastructure. Rather than relying on third-party integration providers, Dust maintains its own connections to ensure proper handling of different data types and structures.The Vertical ChallengeHowever, this approach comes with trade-offs:* Harder Go-to-Market: As Stan talked about: "We spike at penetration... but it makes our go-to-market much harder. Vertical solutions have a go-to-market that is much easier because they're like, 'oh, I'm going to solve the lawyer stuff.'"* Complex Infrastructure: Building a horizontal platform requires maintaining numerous integrations and handling diverse data types appropriately – from structured Salesforce data to unstructured Notion pages. As you scale integrations, the cost of maintaining them also scales. * Product Surface Complexity: Creating an interface that's both powerful and accessible to non-technical users requires careful design decisions, down to avoiding technical terms like "system prompt" in favor of "instructions." The Future of AI PlatformsStan initially predicted we'd see the first billion-dollar single-person company in 2023 (a prediction later echoed by Sam Altman), but he's now more focused on a different milestone: billion-dollar companies with engineering teams of just 20 people, enabled by AI assistance.This vision aligns with Dust's horizontal platform approach – building the infrastructure that allows small teams to achieve outsized impact through AI augmentation. Rather than replacing entire job functions (the vertical approach), they're betting on augmenting existing workflows across organizations.Full YouTube EpisodeChapters* 00:00:00 Introductions* 00:04:33 Joining OpenAI from Paris* 00:09:54 Research evolution and compute allocation at OpenAI* 00:13:12 Working with Ilya Sutskever and OpenAI's vision* 00:15:51 Leaving OpenAI to start Dust* 00:18:15 Early focus on browser extension and WebGPT-like functionality* 00:20:20 Dust as the infrastructure for agents* 00:24:03 Challenges of building with early AI models* 00:28:17 LLMs and Workflow Automation* 00:35:28 Building dependency graphs of agents* 00:37:34 Simulating API endpoints* 00:40:41 State of AI models* 00:43:19 Running evals* 00:46:36 Challenges in building AI agents infra* 00:49:21 Buy vs. build decisions for infrastructure components* 00:51:02 Future of SaaS and AI's Impact on Software* 00:53:07 The single employee $1B company race* 00:56:32 Horizontal vs. vertical approaches to AI agentsTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:11]: Hey, and today we're in a studio with Stanislas, welcome.Stan [00:00:14]: Thank you very much for having me.Swyx [00:00:16]: Visiting from Paris.Stan [00:00:17]: Paris.Swyx [00:00:18]: And you have had a very distinguished career. It's very hard to summarize, but you went to college in both Ecopolytechnique and Stanford, and then you worked in a number of places, Oracle, Totems, Stripe, and then OpenAI pre-ChatGPT. We'll talk, we'll spend a little bit of time about that. About two years ago, you left OpenAI to start Dust. I think you were one of the first OpenAI alum founders.Stan [00:00:40]: Yeah, I think it was about at the same time as the Adept guys, so that first wave.Swyx [00:00:46]: Yeah, and people really loved our David episode. We love a few sort of OpenAI stories, you know, for back in the day, like we're talking about pre-recording. Probably the statute of limitations on some of those stories has expired, so you can talk a little bit more freely without them coming after you. But maybe we'll just talk about, like, what was your journey into AI? You know, you were at Stripe for almost five years, there are a lot of Stripe alums going into OpenAI. I think the Stripe culture has come into OpenAI quite a bit.Stan [00:01:11]: Yeah, so I think the buses of Stripe people really started flowing in, I guess, after ChatGPT. But, yeah, my journey into AI is a... I mean, Greg Brockman. Yeah, yeah. From Greg, of course. And Daniela, actually, back in the days, Daniela Amodei.Swyx [00:01:27]: Yes, she was COO, I mean, she is COO, yeah. She had a pretty high job at OpenAI at the time, yeah, for sure.Stan [00:01:34]: My journey started as anybody else, you're fascinated with computer science and you want to make them think, it's awesome, but it doesn't work. I mean, it was a long time ago, it was like maybe 16, so it was 25 years ago. Then the first big exposure to AI would be at Stanford, and I'm going to, like, disclose a whole lamb, because at the time it was a class taught by Andrew Ng, and there was no deep learning. It was half features for vision and a star algorithm. So it was fun. But it was the early days of deep learning. At the time, I think a few years after, it was the first project at Google. But you know, that cat face or the human face trained from many images. I went to, hesitated doing a PhD, more in systems, eventually decided to go into getting a job. Went at Oracle, started a company, did a gazillion mistakes, got acquired by Stripe, worked with Greg Buckman there. And at the end of Stripe, I started interesting myself in AI again, felt like it was the time, you had the Atari games, you had the self-driving craziness at the time. And I started exploring projects, it felt like the Atari games were incredible, but there were still games. And I was looking into exploring projects that would have an impact on the world. And so I decided to explore three things, self-driving cars, cybersecurity and AI, and math and AI. It's like I sing it by a decreasing order of impact on the world, I guess.Swyx [00:03:01]: Discovering new math would be very foundational.Stan [00:03:03]: It is extremely foundational, but it's not as direct as driving people around.Swyx [00:03:07]: Sorry, you're doing this at Stripe, you're like thinking about your next move.Stan [00:03:09]: No, it was at Stripe, kind of a bit of time where I started exploring. I did a bunch of work with friends on trying to get RC cars to drive autonomously. Almost started a company in France or Europe about self-driving trucks. We decided to not go for it because it was probably very operational. And I think the idea of the company, of the team wasn't there. And also I realized that if I wake up a day and because of a bug I wrote, I killed a family, it would be a bad experience. And so I just decided like, no, that's just too crazy. And then I explored cybersecurity with a friend. We're trying to apply transformers to cut fuzzing. So cut fuzzing, you have kind of an algorithm that goes really fast and tries to mutate the inputs of a library to find bugs. And we tried to apply a transformer to that and do reinforcement learning with the signal of how much you propagate within the binary. Didn't work at all because the transformers are so slow compared to evolutionary algorithms that it kind of didn't work. Then I started interested in math and AI and started working on SAT solving with AI. And at the same time, OpenAI was kind of starting the reasoning team that were tackling that project as well. I was in touch with Greg and eventually got in touch with Ilya and finally found my way to OpenAI. I don't know how much you want to dig into that. The way to find your way to OpenAI when you're in Paris was kind of an interesting adventure as well.Swyx [00:04:33]: Please. And I want to note, this was a two-month journey. You did all this in two months.Stan [00:04:38]: The search.Swyx [00:04:40]: Your search for your next thing, because you left in July 2019 and then you joined OpenAI in September.Stan [00:04:45]: I'm going to be ashamed to say that.Swyx [00:04:47]: You were searching before. I was searching before.Stan [00:04:49]: I mean, it's normal. No, the truth is that I moved back to Paris through Stripe and I just felt the hardship of being remote from your team nine hours away. And so it kind of freed a bit of time for me to start the exploration before. Sorry, Patrick. Sorry, John.Swyx [00:05:05]: Hopefully they're listening. So you joined OpenAI from Paris and from like, obviously you had worked with Greg, but notStan [00:05:13]: anyone else. No. Yeah. So I had worked with Greg, but not Ilya, but I had started chatting with Ilya and Ilya was kind of excited because he knew that I was a good engineer through Greg, I presume, but I was not a trained researcher, didn't do a PhD, never did research. And I started chatting and he was excited all the way to the point where he was like, hey, come pass interviews, it's going to be fun. I think he didn't care where I was, he just wanted to try working together. So I go to SF, go through the interview process, get an offer. And so I get Bob McGrew on the phone for the first time, he's like, hey, Stan, it's awesome. You've got an offer. When are you coming to SF? I'm like, hey, it's awesome. I'm not coming to the SF. I'm based in Paris and we just moved. He was like, hey, it's awesome. Well, you don't have an offer anymore. Oh, my God. No, it wasn't as hard as that. But that's basically the idea. And it took me like maybe a couple more time to keep chatting and they eventually decided to try a contractor set up. And that's how I kind of started working at OpenAI, officially as a contractor, but in practice really felt like being an employee.Swyx [00:06:14]: What did you work on?Stan [00:06:15]: So it was solely focused on math and AI. And in particular in the application, so the study of the larger grid models, mathematical reasoning capabilities, and in particular in the context of formal mathematics. The motivation was simple, transformers are very creative, but yet they do mistakes. Formal math systems are of the ability to verify a proof and the tactics they can use to solve problems are very mechanical, so you miss the creativity. And so the idea was to try to explore both together. You would get the creativity of the LLMs and the kind of verification capabilities of the formal system. A formal system, just to give a little bit of context, is a system in which a proof is a program and the formal system is a type system, a type system that is so evolved that you can verify the program. If the type checks, it means that the program is correct.Swyx [00:07:06]: Is the verification much faster than actually executing the program?Stan [00:07:12]: Verification is instantaneous, basically. So the truth is that what you code in involves tactics that may involve computation to search for solutions. So it's not instantaneous. You do have to do the computation to expand the tactics into the actual proof. The verification of the proof at the very low level is instantaneous.Swyx [00:07:32]: How quickly do you run into like, you know, halting problem PNP type things, like impossibilities where you're just like that?Stan [00:07:39]: I mean, you don't run into it at the time. It was really trying to solve very easy problems. So I think the... Can you give an example of easy? Yeah, so that's the mass benchmark that everybody knows today. The Dan Hendricks one. The Dan Hendricks one, yeah. And I think it was the low end part of the mass benchmark at the time, because that mass benchmark includes AMC problems, AMC 8, AMC 10, 12. So these are the easy ones. Then AIME problems, somewhat harder, and some IMO problems, like Crazy Arm.Swyx [00:08:07]: For our listeners, we covered this in our Benchmarks 101 episode. AMC is literally the grade of like high school, grade 8, grade 10, grade 12. So you can solve this. Just briefly to mention this, because I don't think we'll touch on this again. There's a bit of work with like Lean, and then with, you know, more recently with DeepMind doing like scoring like silver on the IMO. Any commentary on like how math has evolved from your early work to today?Stan [00:08:34]: I mean, that result is mind blowing. I mean, from my perspective, spent three years on that. At the same time, Guillaume Lampe in Paris, we were both in Paris, actually. He was at FAIR, was working on some problems. We were pushing the boundaries, and the goal was the IMO. And we cracked a few problems here and there. But the idea of getting a medal at an IMO was like just remote. So this is an impressive result. And we can, I think the DeepMind team just did a good job of scaling. I think there's nothing too magical in their approach, even if it hasn't been published. There's a Dan Silver talk from seven days ago where it goes a little bit into more details. It feels like there's nothing magical there. It's really applying reinforcement learning and scaling up the amount of data that can generate through autoformalization. So we can dig into what autoformalization means if you want.Alessio [00:09:26]: Let's talk about the tail end, maybe, of the OpenAI. So you joined, and you're like, I'm going to work on math and do all of these things. I saw on one of your blog posts, you mentioned you fine-tuned over 10,000 models at OpenAI using 10 million A100 hours. How did the research evolve from the GPD 2, and then getting closer to DaVinci 003? And then you left just before ChatGPD was released, but tell people a bit more about the research path that took you there.Stan [00:09:54]: I can give you my perspective of it. I think at OpenAI, there's always been a large chunk of the compute that was reserved to train the GPTs, which makes sense. So it was pre-entropic splits. Most of the compute was going to a product called Nest, which was basically GPT-3. And then you had a bunch of, let's say, remote, not core research teams that were trying to explore maybe more specific problems or maybe the algorithm part of it. The interesting part, I don't know if it was where your question was going, is that in those labs, you're managing researchers. So by definition, you shouldn't be managing them. But in that space, there's a managing tool that is great, which is compute allocation. Basically by managing the compute allocation, you can message the team of where you think the priority should go. And so it was really a question of, you were free as a researcher to work on whatever you wanted. But if it was not aligned with OpenAI mission, and that's fair, you wouldn't get the compute allocation. As it happens, solving math was very much aligned with the direction of OpenAI. And so I was lucky to generally get the compute I needed to make good progress.Swyx [00:11:06]: What do you need to show as incremental results to get funded for further results?Stan [00:11:12]: It's an imperfect process because there's a bit of a... If you're working on math and AI, obviously there's kind of a prior that it's going to be aligned with the company. So it's much easier than to go into something much more risky, much riskier, I guess. You have to show incremental progress, I guess. It's like you ask for a certain amount of compute and you deliver a few weeks after and you demonstrate that you have a progress. Progress might be a positive result. Progress might be a strong negative result. And a strong negative result is actually often much harder to get or much more interesting than a positive result. And then it generally goes into, as any organization, you would have people finding your project or any other project cool and fancy. And so you would have that kind of phase of growing up compute allocation for it all the way to a point. And then maybe you reach an apex and then maybe you go back mostly to zero and restart the process because you're going in a different direction or something else. That's how I felt. Explore, exploit. Yeah, exactly. Exactly. Exactly. It's a reinforcement learning approach.Swyx [00:12:14]: Classic PhD student search process.Alessio [00:12:17]: And you were reporting to Ilya, like the results you were kind of bringing back to him or like what's the structure? It's almost like when you're doing such cutting edge research, you need to report to somebody who is actually really smart to understand that the direction is right.Stan [00:12:29]: So we had a reasoning team, which was working on reasoning, obviously, and so math in general. And that team had a manager, but Ilya was extremely involved in the team as an advisor, I guess. Since he brought me in OpenAI, I was lucky to mostly during the first years to have kind of a direct access to him. He would really coach me as a trainee researcher, I guess, with good engineering skills. And Ilya, I think at OpenAI, he was the one showing the North Star, right? He was his job and I think he really enjoyed it and he did it super well, was going through the teams and saying, this is where we should be going and trying to, you know, flock the different teams together towards an objective.Swyx [00:13:12]: I would say like the public perception of him is that he was the strongest believer in scaling. Oh, yeah. Obviously, he has always pursued the compression thesis. You have worked with him personally, what does the public not know about how he works?Stan [00:13:26]: I think he's really focused on building the vision and communicating the vision within the company, which was extremely useful. I was personally surprised that he spent so much time, you know, working on communicating that vision and getting the teams to work together versus...Swyx [00:13:40]: To be specific, vision is AGI? Oh, yeah.Stan [00:13:42]: Vision is like, yeah, it's the belief in compression and scanning computes. I remember when I started working on the Reasoning team, the excitement was really about scaling the compute around Reasoning and that was really the belief we wanted to ingrain in the team. And that's what has been useful to the team and with the DeepMind results shows that it was the right approach with the success of GPT-4 and stuff shows that it was the right approach.Swyx [00:14:06]: Was it according to the neural scaling laws, the Kaplan paper that was published?Stan [00:14:12]: I think it was before that, because those ones came with GPT-3, basically at the time of GPT-3 being released or being ready internally. But before that, there really was a strong belief in scale. I think it was just the belief that the transformer was a generic enough architecture that you could learn anything. And that was just a question of scaling.Alessio [00:14:33]: Any other fun stories you want to tell? Sam Altman, Greg, you know, anything.Stan [00:14:37]: Weirdly, I didn't work that much with Greg when I was at OpenAI. He had always been mostly focused on training the GPTs and rightfully so. One thing about Sam Altman, he really impressed me because when I joined, he had joined not that long ago and it felt like he was kind of a very high level CEO. And I was mind blown by how deep he was able to go into the subjects within a year or something, all the way to a situation where when I was having lunch by year two, I was at OpenAI with him. He would just quite know deeply what I was doing. With no ML background. Yeah, with no ML background, but I didn't have any either, so I guess that explains why. But I think it's a question about, you don't necessarily need to understand the very technicalities of how things are done, but you need to understand what's the goal and what's being done and what are the recent results and all of that in you. And we could have kind of a very productive discussion. And that really impressed me, given the size at the time of OpenAI, which was not negligible.Swyx [00:15:44]: Yeah. I mean, you've been a, you were a founder before, you're a founder now, and you've seen Sam as a founder. How has he affected you as a founder?Stan [00:15:51]: I think having that capability of changing the scale of your attention in the company, because most of the time you operate at a very high level, but being able to go deep down and being in the known of what's happening on the ground is something that I feel is really enlightening. That's not a place in which I ever was as a founder, because first company, we went all the way to 10 people. Current company, there's 25 of us. So the high level, the sky and the ground are pretty much at the same place. No, you're being too humble.Swyx [00:16:21]: I mean, Stripe was also like a huge rocket ship.Stan [00:16:23]: Stripe, I was a founder. So I was, like at OpenAI, I was really happy being on the ground, pushing the machine, making it work. Yeah.Swyx [00:16:31]: Last OpenAI question. The Anthropic split you mentioned, you were around for that. Very dramatic. David also left around that time, you left. This year, we've also had a similar management shakeup, let's just call it. Can you compare what it was like going through that split during that time? And then like, does that have any similarities now? Like, are we going to see a new Anthropic emerge from these folks that just left?Stan [00:16:54]: That I really, really don't know. At the time, the split was pretty surprising because they had been trying GPT-3, it was a success. And to be completely transparent, I wasn't in the weeds of the splits. What I understood of it is that there was a disagreement of the commercialization of that technology. I think the focal point of that disagreement was the fact that we started working on the API and wanted to make those models available through an API. Is that really the core disagreement? I don't know.Swyx [00:17:25]: Was it safety?Stan [00:17:26]: Was it commercialization?Swyx [00:17:27]: Or did they just want to start a company?Stan [00:17:28]: Exactly. Exactly. That I don't know. But I think what I was surprised of is how quickly OpenAI recovered at the time. And I think it's just because we were mostly a research org and the mission was so clear that some divergence in some teams, some people leave, the mission is still there. We have the compute. We have a site. So it just keeps going.Swyx [00:17:50]: Very deep bench. Like just a lot of talent. Yeah.Alessio [00:17:53]: So that was the OpenAI part of the history. Exactly. So then you leave OpenAI in September 2022. And I would say in Silicon Valley, the two hottest companies at the time were you and Lanktrain. What was that start like and why did you decide to start with a more developer focused kind of like an AI engineer tool rather than going back into some more research and something else?Stan [00:18:15]: Yeah. First, I'm not a trained researcher. So going through OpenAI was really kind of the PhD I always wanted to do. But research is hard. You're digging into a field all day long for weeks and weeks and weeks, and you find something, you get super excited for 12 seconds. And at the 13 seconds, you're like, oh, yeah, that was obvious. And you go back to digging. I'm not a trained, like formally trained researcher, and it wasn't kind of a necessarily an ambition of me of creating, of having a research career. And I felt the hardness of it. I enjoyed a lot of like that a ton. But at the time, I decided that I wanted to go back to something more productive. And the other fun motivation was like, I mean, if we believe in AGI and if we believe the timelines might not be too long, it's actually the last train leaving the station to start a company. After that, it's going to be computers all the way down. And so that was kind of the true motivation for like trying to go there. So that's kind of the core motivation at the beginning of personally. And the motivation for starting a company was pretty simple. I had seen GPT-4 internally at the time, it was September 2022. So it was pre-GPT, but GPT-4 was ready since, I mean, I'd been ready for a few months internally. I was like, okay, that's obvious, the capabilities are there to create an insane amount of value to the world. And yet the deployment is not there yet. The revenue of OpenAI at the time were ridiculously small compared to what it is today. So the thesis was, there's probably a lot to be done at the product level to unlock the usage.Alessio [00:19:49]: Yeah. Let's talk a bit more about the form factor, maybe. I think one of the first successes you had was kind of like the WebGPT-like thing, like using the models to traverse the web and like summarize things. And the browser was really the interface. Why did you start with the browser? Like what was it important? And then you built XP1, which was kind of like the browser extension.Stan [00:20:09]: So the starting point at the time was, if you wanted to talk about LLMs, it was still a rather small community, a community of mostly researchers and to some extent, very early adopters, very early engineers. It was almost inconceivable to just build a product and go sell it to the enterprise, though at the time there was a few companies doing that. The one on marketing, I don't remember its name, Jasper. But so the natural first intention, the first, first, first intention was to go to the developers and try to create tooling for them to create product on top of those models. And so that's what Dust was originally. It was quite different than Lanchain, and Lanchain just beat the s**t out of us, which is great. It's a choice.Swyx [00:20:53]: You were cloud, in closed source. They were open source.Stan [00:20:56]: Yeah. So technically we were open source and we still are open source, but I think that doesn't really matter. I had the strong belief from my research time that you cannot create an LLM-based workflow on just one example. Basically, if you just have one example, you overfit. So as you develop your interaction, your orchestration around the LLM, you need a dozen examples. Obviously, if you're running a dozen examples on a multi-step workflow, you start paralyzing stuff. And if you do that in the console, you just have like a messy stream of tokens going out and it's very hard to observe what's going there. And so the idea was to go with an UI so that you could kind of introspect easily the output of each interaction with the model and dig into there through an UI, which is-Swyx [00:21:42]: Was that open source? I actually didn't come across it.Stan [00:21:44]: Oh yeah, it wasn't. I mean, Dust is entirely open source even today. We're not going for an open source-Swyx [00:21:48]: If it matters, I didn't know that.Stan [00:21:49]: No, no, no, no, no. The reason why is because we're not open source because we're not doing an open source strategy. It's not an open source go-to-market at all. We're open source because we can and it's fun.Swyx [00:21:59]: Open source is marketing. You have all the downsides of open source, which is like people can clone you.Stan [00:22:03]: But I think that downside is a big fallacy. Okay. Yes, anybody can clone Dust today, but the value of Dust is not the current state. The value of Dust is the number of eyeballs and hands of developers that are creating to it in the future. And so yes, anybody can clone it today, but that wouldn't change anything. There is some value in being open source. In a discussion with the security team, you can be extremely transparent and just show the code. When you have discussion with users and there's a bug or a feature missing, you can just point to the issue, show the pull request, show the, show the, exactly, oh, PR welcome. That doesn't happen that much, but you can show the progress if the person that you're chatting with is a little bit technical, they really enjoy seeing the pull request advancing and seeing all the way to deploy. And then the downsides are mostly around security. You never want to do security by obfuscation. But the truth is that your vector of attack is facilitated by you being open source. But at the same time, it's a good thing because if you're doing anything like a bug bountying or stuff like that, you just give much more tools to the bug bountiers so that their output is much better. So there's many, many, many trade-offs. I don't believe in the value of the code base per se. I think it's really the people that are on the code base that have the value and go to market and the product and all of those things that are around the code base. Obviously, that's not true for every code base. If you're working on a very secret kernel to accelerate the inference of LLMs, I would buy that you don't want to be open source. But for product stuff, I really think there's very little risk. Yeah.Alessio [00:23:39]: I signed up for XP1, I was looking, January 2023. I think at the time you were on DaVinci 003. Given that you had seen GPD 4, how did you feel having to push a product out that was using this model that was so inferior? And you're like, please, just use it today. I promise it's going to get better. Just overall, as a founder, how do you build something that maybe doesn't quite work with the model today, but you're just expecting the new model to be better?Stan [00:24:03]: Yeah, so actually, XP1 was even on a smaller one that was the post-GDPT release, small version, so it was... Ada, Babbage... No, no, no, not that far away. But it was the small version of GDPT, basically. I don't remember its name. Yes, you have a frustration there. But at the same time, I think XP1 was designed, was an experiment, but was designed as a way to be useful at the current capability of the model. If you just want to extract data from a LinkedIn page, that model was just fine. If you want to summarize an article on a newspaper, that model was just fine. And so it was really a question of trying to find a product that works with the current capability, knowing that you will always have tailwinds as models get better and faster and cheaper. So that was kind of a... There's a bit of a frustration because you know what's out there and you know that you don't have access to it yet. It's also interesting to try to find a product that works with the current capability.Alessio [00:24:55]: And we highlighted XP1 in our anatomy of autonomy post in April of last year, which was, you know, where are all the agents, right? So now we spent 30 minutes getting to what you're building now. So you basically had a developer framework, then you had a browser extension, then you had all these things, and then you kind of got to where Dust is today. So maybe just give people an overview of what Dust is today and the courtesies behind it. Yeah, of course.Stan [00:25:20]: So Dust, we really want to build the infrastructure so that companies can deploy agents within their teams. We are horizontal by nature because we strongly believe in the emergence of use cases from the people having access to creating an agent that don't need to be developers. They have to be thinkers. They have to be curious. But anybody can create an agent that will solve an operational thing that they're doing in their day-to-day job. And to make those agents useful, there's two focus, which is interesting. The first one is an infrastructure focus. You have to build the pipes so that the agent has access to the data. You have to build the pipes such that the agents can take action, can access the web, et cetera. So that's really an infrastructure play. Maintaining connections to Notion, Slack, GitHub, all of them is a lot of work. It is boring work, boring infrastructure work, but that's something that we know is extremely valuable in the same way that Stripe is extremely valuable because it maintains the pipes. And we have that dual focus because we're also building the product for people to use it. And there it's fascinating because everything started from the conversational interface, obviously, which is a great starting point. But we're only scratching the surface, right? I think we are at the pong level of LLM productization. And we haven't invented the C3. We haven't invented Counter-Strike. We haven't invented Cyberpunk 2077. So this is really our mission is to really create the product that lets people equip themselves to just get away all the work that can be automated or assisted by LLMs.Alessio [00:26:57]: And can you just comment on different takes that people had? So maybe the most open is like auto-GPT. It's just kind of like just trying to do anything. It's like it's all magic. There's no way for you to do anything. Then you had the ADAPT, you know, we had David on the podcast. They're very like super hands-on with each individual customer to build super tailored. How do you decide where to draw the line between this is magic? This is exposed to you, especially in a market where most people don't know how to build with AI at all. So if you expect them to do the thing, they're probably not going to do it. Yeah, exactly.Stan [00:27:29]: So the auto-GPT approach obviously is extremely exciting, but we know that the agentic capability of models are not quite there yet. It just gets lost. So we're starting, we're starting where it works. Same with the XP one. And where it works is pretty simple. It's like simple workflows that involve a couple tools where you don't even need to have the model decide which tools it's used in the sense of you just want people to put it in the instructions. It's like take that page, do that search, pick up that document, do the work that I want in the format I want, and give me the results. There's no smartness there, right? In terms of orchestrating the tools, it's mostly using English for people to program a workflow where you don't have the constraint of having compatible API between the two.Swyx [00:28:17]: That kind of personal automation, would you say it's kind of like an LLM Zapier type ofStan [00:28:22]: thing?Swyx [00:28:22]: Like if this, then that, and then, you know, do this, then this. You're programming with English?Stan [00:28:28]: So you're programming with English. So you're just saying, oh, do this and then that. You can even create some form of APIs. You say, when I give you the command X, do this. When I give you the command Y, do this. And you describe the workflow. But you don't have to create boxes and create the workflow explicitly. It just needs to describe what are the tasks supposed to be and make the tool available to the agent. The tool can be a semantic search. The tool can be querying into a structured database. The tool can be searching on the web. And obviously, the interesting tools that we're only starting to scratch are actually creating external actions like reimbursing something on Stripe, sending an email, clicking on a button in the admin or something like that.Swyx [00:29:11]: Do you maintain all these integrations?Stan [00:29:13]: Today, we maintain most of the integrations. We do always have an escape hatch for people to kind of custom integrate. But the reality is that the reality of the market today is that people just want it to work, right? And so it's mostly us maintaining the integration. As an example, a very good source of information that is tricky to productize is Salesforce. Because Salesforce is basically a database and a UI. And they do the f**k they want with it. And so every company has different models and stuff like that. So right now, we don't support it natively. And the type of support or real native support will be slightly more complex than just osing into it, like is the case with Slack as an example. Because it's probably going to be, oh, you want to connect your Salesforce to us? Give us the SQL. That's the Salesforce QL language. Give us the queries you want us to run on it and inject in the context of dust. So that's interesting how not only integrations are cool, and some of them require a bit of work on the user. And for some of them that are really valuable to our users, but we don't support yet, they can just build them internally and push the data to us.Swyx [00:30:18]: I think I understand the Salesforce thing. But let me just clarify, are you using browser automation because there's no API for something?Stan [00:30:24]: No, no, no, no. In that case, so we do have browser automation for all the use cases and apply the public web. But for most of the integration with the internal system of the company, it really runs through API.Swyx [00:30:35]: Haven't you felt the pull to RPA, browser automation, that kind of stuff?Stan [00:30:39]: I mean, what I've been saying for a long time, maybe I'm wrong, is that if the future is that you're going to stand in front of a computer and looking at an agent clicking on stuff, then I'll hit my computer. And my computer is a big Lenovo. It's black. Doesn't sound good at all compared to a Mac. And if the APIs are there, we should use them. There is going to be a long tail of stuff that don't have APIs, but as the world is moving forward, that's disappearing. So the core API value in the past has really been, oh, this old 90s product doesn't have an API. So I need to use the UI to automate. I think for most of the ICP companies, the companies that ICP for us, the scale ups that are between 500 and 5,000 people, tech companies, most of the SaaS they use have APIs. Now there's an interesting question for the open web, because there are stuff that you want to do that involve websites that don't necessarily have APIs. And the current state of web integration from, which is us and OpenAI and Anthropic, I don't even know if they have web navigation, but I don't think so. The current state of affair is really, really broken because you have what? You have basically search and headless browsing. But headless browsing, I think everybody's doing basically body.innertext and fill that into the model, right?Swyx [00:31:56]: MARK MIRCHANDANI There's parsers into Markdown and stuff.Stan [00:31:58]: FRANCESC CAMPOY I'm super excited by the companies that are exploring the capability of rendering a web page into a way that is compatible for a model, being able to maintain the selector. So that's basically the place where to click in the page through that process, expose the actions to the model, have the model select an action in a way that is compatible with model, which is not a big page of a full DOM that is very noisy, and then being able to decompress that back to the original page and take the action. And that's something that is really exciting and that will kind of change the level of things that agents can do on the web. That I feel exciting, but I also feel that the bulk of the useful stuff that you can do within the company can be done through API. The data can be retrieved by API. The actions can be taken through API.Swyx [00:32:44]: For listeners, I'll note that you're basically completely disagreeing with David Wan. FRANCESC CAMPOY Exactly, exactly. I've seen it since it's summer. ADEPT is where it is, and Dust is where it is. So Dust is still standing.Alessio [00:32:55]: Can we just quickly comment on function calling? You mentioned you don't need the models to be that smart to actually pick the tools. Have you seen the models not be good enough? Or is it just like, you just don't want to put the complexity in there? Like, is there any room for improvement left in function calling? Or do you feel you usually consistently get always the right response, the right parametersStan [00:33:13]: and all of that?Alessio [00:33:13]: FRANCESC CAMPOY So that's a tricky product question.Stan [00:33:15]: Because if the instructions are good and precise, then you don't have any issue, because it's scripted for you. And the model will just look at the scripts and just follow and say, oh, he's probably talking about that action, and I'm going to use it. And the parameters are kind of abused from the state of the conversation. I'll just go with it. If you provide a very high level, kind of an auto-GPT-esque level in the instructions and provide 16 different tools to your model, yes, we're seeing the models in that state making mistakes. And there is obviously some progress can be made on the capabilities. But the interesting part is that there is already so much work that can assist, augment, accelerate by just going with pretty simply scripted for actions agents. What I'm excited about by pushing our users to create rather simple agents is that once you have those working really well, you can create meta agents that use the agents as actions. And all of a sudden, you can kind of have a hierarchy of responsibility that will probably get you almost to the point of the auto-GPT value. It requires the construction of intermediary artifacts, but you're probably going to be able to achieve something great. I'll give you some example. We have our incidents are shared in Slack in a specific channel, or shipped are shared in Slack. We have a weekly meeting where we have a table about incidents and shipped stuff. We're not writing that weekly meeting table anymore. We have an assistant that just go find the right data on Slack and create the table for us. And that assistant works perfectly. It's trivially simple, right? Take one week of data from that channel and just create the table. And then we have in that weekly meeting, obviously some graphs and reporting about our financials and our progress and our ARR. And we've created assistants to generate those graphs directly. And those assistants works great. By creating those assistants that cover those small parts of that weekly meeting, slowly we're getting to in a world where we'll have a weekly meeting assistance. We'll just call it. You don't need to prompt it. You don't need to say anything. It's going to run those different assistants and get that notion page just ready. And by doing that, if you get there, and that's an objective for us to us using Dust, get there, you're saving an hour of company time every time you run it. Yeah.Alessio [00:35:28]: That's my pet topic of NPM for agents. How do you build dependency graphs of agents? And how do you share them? Because why do I have to rebuild some of the smaller levels of what you built already?Swyx [00:35:40]: I have a quick follow-up question on agents managing other agents. It's a topic of a lot of research, both from Microsoft and even in startups. What you've discovered best practice for, let's say like a manager agent controlling a bunch of small agents. It's two-way communication. I don't know if there should be a protocol format.Stan [00:35:59]: To be completely honest, the state we are at right now is creating the simple agents. So we haven't even explored yet the meta agents. We know it's there. We know it's going to be valuable. We know it's going to be awesome. But we're starting there because it's the simplest place to start. And it's also what the market understands. If you go to a company, random SaaS B2B company, not necessarily specialized in AI, and you take an operational team and you tell them, build some tooling for yourself, they'll understand the small agents. If you tell them, build AutoGP, they'll be like, Auto what?Swyx [00:36:31]: And I noticed that in your language, you're very much focused on non-technical users. You don't really mention API here. You mention instruction instead of system prompt, right? That's very conscious.Stan [00:36:41]: Yeah, it's very conscious. It's a mark of our designer, Ed, who kind of pushed us to create a friendly product. I was knee-deep into AI when I started, obviously. And my co-founder, Gabriel, was a Stripe as well. We started a company together that got acquired by Stripe 15 years ago. It was at Alain, a healthcare company in Paris. After that, it was a little bit less so knee-deep in AI, but really focused on product. And I didn't realize how important it is to make that technology not scary to end users. It didn't feel scary to me, but it was really seen by Ed, our designer, that it was feeling scary to the users. And so we were very proactive and very deliberate about creating a brand that feels not too scary and creating a wording and a language, as you say, that really tried to communicate the fact that it's going to be fine. It's going to be easy. You're going to make it.Alessio [00:37:34]: And another big point that David had about ADAPT is we need to build an environment for the agents to act. And then if you have the environment, you can simulate what they do. How's that different when you're interacting with APIs and you're kind of touching systems that you cannot really simulate? If you call it the Salesforce API, you're just calling it.Stan [00:37:52]: So I think that goes back to the DNA of the companies that are very different. ADAPT, I think, was a product company with a very strong research DNA, and they were still doing research. One of their goals was building a model. And that's why they raised a large amount of money, et cetera. We are 100% deliberately a product company. We don't do research. We don't train models. We don't even run GPUs. We're using the models that exist, and we try to push the product boundary as far as possible with the existing models. So that creates an issue. Indeed, so to answer your question, when you're interacting in the real world, well, you cannot simulate, so you cannot improve the models. Even improving your instructions is complicated for a builder. The hope is that you can use models to evaluate the conversations so that you can get at least feedback and you could get contradictive information about the performance of the assistance. But if you take actual trace of interaction of humans with those agents, it is even for us humans extremely hard to decide whether it was a productive interaction or a really bad interaction. You don't know why the person left. You don't know if they left happy or not. So being extremely, extremely, extremely pragmatic here, it becomes a product issue. We have to build a product that identifies the end users to provide feedback so that as a first step, the person that is building the agent can iterate on it. As a second step, maybe later when we start training model and post-training, et cetera, we can optimize around that for each of those companies. Yeah.Alessio [00:39:17]: Do you see in the future products offering kind of like a simulation environment, the same way all SaaS now kind of offers APIs to build programmatically? Like in cybersecurity, there are a lot of companies working on building simulative environments so that then you can use agents like Red Team, but I haven't really seen that.Stan [00:39:34]: Yeah, no, me neither. That's a super interesting question. I think it's really going to depend on how much, because you need to simulate to generate data, you need to train data to train models. And the question at the end is, are we going to be training models or are we just going to be using frontier models as they are? On that question, I don't have a strong opinion. It might be the case that we'll be training models because in all of those AI first products, the model is so close to the product surface that as you get big and you want to really own your product, you're going to have to own the model as well. Owning the model doesn't mean doing the pre-training, that would be crazy. But at least having an internal post-training realignment loop, it makes a lot of sense. And so if we see many companies going towards that all the time, then there might be incentives for the SaaS's of the world to provide assistance in getting there. But at the same time, there's a tension because those SaaS, they don't want to be interacted by agents, they want the human to click on the button. Yeah, they got to sell seats. Exactly.Swyx [00:40:41]: Just a quick question on models. I'm sure you've used many, probably not just OpenAI. Would you characterize some models as better than others? Do you use any open source models? What have been the trends in models over the last two years?Stan [00:40:53]: We've seen over the past two years kind of a bit of a race in between models. And at times, it's the OpenAI model that is the best. At times, it's the Anthropic models that is the best. Our take on that is that we are agnostic and we let our users pick their model. Oh, they choose? Yeah, so when you create an assistant or an agent, you can just say, oh, I'm going to run it on GP4, GP4 Turbo, or...Swyx [00:41:16]: Don't you think for the non-technical user, that is actually an abstraction that you should take away from them?Stan [00:41:20]: We have a sane default. So we move the default to the latest model that is cool. And we have a sane default, and it's actually not very visible. In our flow to create an agent, you would have to go in advance and go pick your model. So this is something that the technical person will care about. But that's something that obviously is a bit too complicated for the...Swyx [00:41:40]: And do you care most about function calling or instruction following or something else?Stan [00:41:44]: I think we care most for function calling because you want to... There's nothing worse than a function call, including incorrect parameters or being a bit off because it just drives the whole interaction off.Swyx [00:41:56]: Yeah, so got the Berkeley function calling.Stan [00:42:00]: These days, it's funny how the comparison between GP4O and GP4 Turbo is still up in the air on function calling. I personally don't have proof, but I know many people, and I'm probably part of them, to think that GP4 Turbo is still better than GP4O on function calling. Wow. We'll see what comes out of the O1 class if it ever gets function calling. And Cloud 3.5 Summit is great as well. They kind of innovated in an interesting way, which was never quite publicized. But it's that they have that kind of chain of thought step whenever you use a Cloud model or Summit model with function calling. That chain of thought step doesn't exist when you just interact with it just for answering questions. But when you use function calling, you get that step, and it really helps getting better function calling.Swyx [00:42:43]: Yeah, we actually just recorded a podcast with the Berkeley team that runs that leaderboard this week. So they just released V3.Stan [00:42:49]: Yeah.Swyx [00:42:49]: It was V1 like two months ago, and then they V2, V3. Turbo is on top.Stan [00:42:53]: Turbo is on top. Turbo is over 4.0.Swyx [00:42:54]: And then the third place is XLAM from Salesforce, which is a large action model they've been trying to popularize.Stan [00:43:01]: Yep.Swyx [00:43:01]: O1 Mini is actually on here, I think. O1 Mini is number 11.Stan [00:43:05]: But arguably, O1 Mini has been in a line for that. Yeah.Alessio [00:43:09]: Do you use leaderboards? Do you have your own evals? I mean, this is kind of intuitive, right? Like using the older model is better. I think most people just upgrade. Yeah. What's the eval process like?Stan [00:43:19]: It's funny because I've been doing research for three years, and we have bigger stuff to cook. When you're deploying in a company, one thing where we really spike is that when we manage to activate the company, we have a crazy penetration. The highest penetration we have is 88% daily active users within the entire employee of the company. The kind of average penetration and activation we have in our current enterprise customers is something like more like 60% to 70% weekly active. So we basically have the entire company interacting with us. And when you're there, there is so many stuff that matters most than getting evals, getting the best model. Because there is so many places where you can create products or do stuff that will give you the 80% with the work you do. Whereas deciding if it's GPT-4 or GPT-4 Turbo or et cetera, you know, it'll just give you the 5% improvement. But the reality is that you want to focus on the places where you can really change the direction or change the interaction more drastically. But that's something that we'll have to do eventually because we still want to be serious people.Swyx [00:44:24]: It's funny because in some ways, the model labs are competing for you, right? You don't have to do any effort. You just switch model and then it'll grow. What are you really limited by? Is it additional sources?Stan [00:44:36]: It's not models, right?Swyx [00:44:37]: You're not really limited by quality of model.Stan [00:44:40]: Right now, we are limited by the infrastructure part, which is the ability to connect easily for users to all the data they need to do the job they want to do.Swyx [00:44:51]: Because you maintain all your own stuff.Stan [00:44:53]: You know, there are companies out thereSwyx [00:44:54]: that are starting to provide integrations as a service, right? I used to work in an integrations company. Yeah, I know.Stan [00:44:59]: It's just that there is some intricacies about how you chunk stuff and how you process information from one platform to the other. If you look at the end of the spectrum, you could think of, you could say, oh, I'm going to support AirByte and AirByte has- I used to work at AirByte.Swyx [00:45:12]: Oh, really?Stan [00:45:13]: That makes sense.Swyx [00:45:14]: They're the French founders as well.Stan [00:45:15]: I know Jean very well. I'm seeing him today. And the reality is that if you look at Notion, AirByte does the job of taking Notion and putting it in a structured way. But that's the way it is not really usable to actually make it available to models in a useful way. Because you get all the blocks, details, et cetera, which is useful for many use cases.Swyx [00:45:35]: It's also for data scientists and not for AI.Stan [00:45:38]: The reality of Notion is that sometimes you have a- so when you have a page, there's a lot of structure in it and you want to capture the structure and chunk the information in a way that respects that structure. In Notion, you have databases. Sometimes those databases are real tabular data. Sometimes those databases are full of text. You want to get the distinction and understand that this database should be considered like text information, whereas this other one is actually quantitative information. And to really get a very high quality interaction with that piece of information, I haven't found a solution that will work without us owning the connection end-to-end.Swyx [00:46:15]: That's why I don't invest in, there's Composio, there's All Hands from Graham Newbig. There's all these other companies that are like, we will do the integrations for you. You just, we have the open source community. We'll do off the shelf. But then you are so specific in your needs that you want to own it.Swyx [00:46:28]: Yeah, exactly.Stan [00:46:29]: You can talk to Michel about that.Swyx [00:46:30]: You know, he wants to put the AI in there, but you know. Yeah, I will. I will.Stan [00:46:35]: Cool. What are we missing?Alessio [00:46:36]: You know, what are like the things that are like sneakily hard that you're tackling that maybe people don't even realize they're like really hard?Stan [00:46:43]: The real parts as we kind of touch base throughout the conversation is really building the infra that works for those agents because it's a tenuous walk. It's an evergreen piece of work because you always have an extra integration that will be useful to a non-negligible set of your users. I'm super excited about is that there's so many interactions that shouldn't be conversational interactions and that could be very useful. Basically, know that we have the firehose of information of those companies and there's not going to be that many companies that capture the firehose of information. When you have the firehose of information, you can do a ton of stuff with models that are just not accelerating people, but giving them superhuman capability, even with the current model capability because you can just sift through much more information. An example is documentation repair. If I have the firehose of Slack messages and new Notion pages, if somebody says, I own that page, I want to be updated when there is a piece of information that should update that page, this is not possible. You get an email saying, oh, look at that Slack message. It says the opposite of what you have in that paragraph. Maybe you want to update or just ping that person. I think there is a lot to be explored on the product layer in terms of what it means to interact productively with those models. And that's a problem that's extremely hard and extremely exciting.Swyx [00:48:00]: One thing you keep mentioning about infra work, obviously, Dust is building that infra and serving that in a very consumer-friendly way. You always talk about infra being additional sources, additional connectors. That is very important. But I'm also interested in the vertical infra. There is an orchestrator underlying all these things where you're doing asynchronous work. For example, the simplest one is a cron job. You just schedule things. But also, for if this and that, you have to wait for something to be executed and proceed to the next task. I used to work on an orchestrator as well, Temporal.Stan [00:48:31]: We used Temporal. Oh, you used Temporal? Yeah. Oh, how was the experience?Swyx [00:48:34]: I need the NPS.Stan [00:48:36]: We're doing a self-discovery call now.Swyx [00:48:39]: But you can also complain to me because I don't work there anymore.Stan [00:48:42]: No, we love Temporal. There's some edges that are a bit rough, surprisingly rough. And you would say, why is it so complicated?Swyx [00:48:49]: It's always versioning.Stan [00:48:50]: Yeah, stuff like that. But we really love it. And we use it for exactly what you said, like managing the entire set of stuff that needs to happen so that in semi-real time, we get all the updates from Slack or Notion or GitHub into the system. And whenever we see that piece of information goes through, maybe trigger workflows to run agents because they need to provide alerts to users and stuff like that. And Temporal is great. Love it.Swyx [00:49:17]: You haven't evaluated others. You don't want to build your own. You're happy with...Stan [00:49:21]: Oh, no, we're not in the business of replacing Temporal. And Temporal is so... I mean, it is or any other competitive product. They're very general. If it's there, there's an interesting theory about buy versus build. I think in that case, when you're a high-growth company, your buy-build trade-off is very much on the side of buy. Because if you have the capability, you're just going to be saving time, you can focus on your core competency, etc. And it's funny because we're seeing, we're starting to see the post-high-growth company, post-SKF company, going back on that trade-off, interestingly. So that's the cloud news about removing Zendesk and Salesforce. Do you believe that, by the way?Alessio [00:49:56]: Yeah, I did a podcast with them.Stan [00:49:58]: Oh, yeah?Alessio [00:49:58]: It's true.Swyx [00:49:59]: No, no, I know.Stan [00:50:00]: Of course they say it's true,Swyx [00:50:00]: but also how well is it going to go?Stan [00:50:02]: So I'm not talking about deflecting the customer traffic. I'm talking about building AI on top of Salesforce and Zendesk, basically, if I understand correctly. And all of a sudden, your product surface becomes much smaller because you're interacting with an AI system that will take some actions. And so all of a sudden, you don't need the product layer anymore. And you realize that, oh, those things are just databases that I pay a hundred times the price, right? Because you're a post-SKF company and you have tech capabilities, you are incentivized to reduce your costs and you have the capability to do so. And then it makes sense to just scratch the SaaS away. So it's interesting that we might see kind of a bad time for SaaS in post-hyper-growth tech companies. So it's still a big market, but it's not that big because if you're not a tech company, you don't have the capabilities to reduce that cost. If you're a high-growth company, always going to be buying because you go faster with that. But that's an interesting new space, new category of companies that might remove some SaaS. Yeah, Alessio's firmSwyx [00:51:02]: has an interesting thesis on the future of SaaS in AI.Alessio [00:51:05]: Service as a software, we call it. It's basically like, well, the most extreme is like, why is there any software at all? You know, ideally, it's all a labor interface where you're asking somebody to do something for you, whether that's a person, an AI agent or whatnot.Stan [00:51:17]: Yeah, yeah, that's interesting. I have to ask.Swyx [00:51:19]: Are you paying for Temporal Cloud or are you self-hosting?Stan [00:51:22]: Oh, no, no, we're paying, we're paying. Oh, okay, interesting.Swyx [00:51:24]: We're paying way too much.Stan [00:51:26]: It's crazy expensive, but it makes us-Swyx [00:51:28]: That's why as a shareholder, I like to hear that. It makes us go faster,Stan [00:51:31]: so we're happy to pay.Swyx [00:51:33]: Other things in the infrastack, I just want a list for other founders to think about. Ops, API gateway, evals, you know, anything interesting there that you build or buy?Stan [00:51:41]: I mean, there's always an interesting question. We've been building a lot around the interface between models and because Dust, the original version, was an orchestration platform and we basically provide a unified interface to every model providers.Swyx [00:51:56]: That's what I call gateway.Stan [00:51:57]: That we add because Dust was that and so we continued building upon and we own it. But that's an interesting question was in you, you want to build that or buy it?Swyx [00:52:06]: Yeah, I always say light LLM is the current open source consensus.Stan [00:52:09]: Exactly, yeah. There's an interesting question there.Swyx [00:52:12]: Ops, Datadog, just tracking.Stan [00:52:14]: Oh yeah, so Datadog is an obvious... What are the mistakes that I regret? I started as pure JavaScript, not TypeScript, and I think you want to, if you're wondering, oh, I want to go fast, I'll do a little bit of JavaScript. No, don't, just start with TypeScript. I see, okay.Swyx [00:52:30]: So interesting, you are a research engineer that came out of OpenAI that bet on TypeScript.Stan [00:52:36]: Well, the reality is that if you're building a product, you're going to be doing a lot of JavaScript, right? And Next, we're using Next as an example. It's

NewsInside
Podcast NewsInside #176 — PCs Portáteis: De Steam Deck a Anbernic: Os Polystations da Nova Era

NewsInside

Play Episode Listen Later Oct 27, 2024 46:52


Podcast NewsInside, siga e ouça mensalmente no Spotify: Vamos embarcar em uma nova era da computação portátil, onde os limites entre consoles e PCs se desfazem. Mergulharemos no fascinante mundo dos PCs portáteis, como Steam Deck, AyaNEO, Lenovo Legion Go, Anbernic e outros. Esses dispositivos inovadores estão redefinindo o conceito de jogabilidade e produtividade, oferecendo a potência de um PC tradicional em um formato portátil e compacto. Neste Podcast citamos e recomendamos os canais: Ruivo ™: https://www.youtube.com/@ruivoplay/videos VICTOR IEMINI: https://www.youtube.com/@victoriemini/videos Senhor Linguica: https://www.youtube.com/@SenhorLinguica/videos O Que São Pcs Portáteis? Os PCs portáteis representam uma nova categoria de dispositivos que combinam a potência de um computador pessoal com a portabilidade de um console de jogos. Esses aparelhos estão revolucionando a forma como interagimos com a tecnologia em movimento, oferecendo uma experiência completa de computação em formatos compactos e versáteis. A Evolução Dos Dispositivos Móveis A jornada até os PCs portáteis atuais foi longa e fascinante. Começamos com os laptops tradicionais, passamos pelos netbooks ultracompactos e chegamos aos ultrabooks elegantes. Cada etapa dessa evolução trouxe avanços significativos em termos de portabilidade e desempenho. Agora, estamos testemunhando o surgimento de uma nova geração de dispositivos que desafia as convenções estabelecidas. Principais Categorias de PCs Portáteis Dispositivos Android Ambernic e outras marcas A linha RG da Ambernic é um excelente exemplo de PC portátil baseado em Android. Esses dispositivos oferecem a flexibilidade do sistema operacional móvel mais popular do mundo em um formato que lembra consoles de jogos portáteis clássicos. Com tela sensível ao toque, controles dedicados e a capacidade de executar uma ampla gama de aplicativos, eles são uma opção atraente para usuários que buscam versatilidade a um preço acessível.Outras marcas como Powkiddy e Anbernic também estão fazendo ondas neste segmento, oferecendo uma variedade de modelos que atendem a diferentes preferências e necessidades. A diversidade de opções é impressionante, com designs que evocam nostalgia de consoles clássicos como Game Boy, PSP e até mesmo o Nintendo Switch. Dispositivos Linux Steam Deck e alternativas O Steam Deck da Valve é, sem dúvida, o nome mais proeminente na categoria de PCs portáteis baseados em Linux. Executando uma versão personalizada do SteamOS, este dispositivo oferece acesso à vasta biblioteca de jogos da Steam em um formato portátil. Seu sucesso inspirou uma onda de alternativas, como os modelos da GPD e AYA, que buscam oferecer experiências similares com suas próprias características únicas.A flexibilidade do Linux permite que esses dispositivos sejam personalizados e otimizados de maneiras que os sistemas operacionais proprietários não permitem. Isso abre um mundo de possibilidades para entusiastas e desenvolvedores, tornando esses PCs portáteis verdadeiras plataformas de experimentação e inovação. Dispositivos Windows Lenovo Legion Go e concorrentes Para aqueles que desejam a familiaridade e compatibilidade do Windows em um formato portátil, dispositivos como o Lenovo Legion Go estão liderando o caminho. Esses PCs portáteis oferecem a experiência completa do Windows em um formato que se assemelha a um console de jogos portátil. Com processadores poderosos e GPUs dedicadas, eles são capazes de executar jogos AAA e aplicativos de produtividade com facilidade.Concorrentes como o GPD Win e o OneXPlayer estão constantemente empurrando os limites do que é possível em termos de desempenho em um formato portátil. Esses dispositivos frequentemente incorporam as últimas tecnologias, como processadores Intel Core i7 ou AMD Ryzen, oferecendo um nível de potência que antes era impensável em um dispositivo tão compacto.

Oh my ad! Podcast by GPD
Kreatywność na zawołanie – o tajnikach copywritingu – Oh my ad! #19

Oh my ad! Podcast by GPD

Play Episode Listen Later Oct 14, 2024 62:16


Jak myśleć kreatywnie, kiedy czas goni nieubłaganie? Jak wygląda proces wymyślania kampanii reklamowych? I czy da się tak tworzyć na zawołanie? Na te i inne pytania dotyczące pracy copywritera odpowiadają Natalia Glesmann, Creative Group Lead oraz Karolina Kwiecień, Senior Copywriter w GPD.

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

OpenAI DevDay is almost here! Per tradition, we are hosting a DevDay pregame event for everyone coming to town! Join us with demos and gossip!Also sign up for related events across San Francisco: the AI DevTools Night, the xAI open house, the Replicate art show, the DevDay Watch Party (for non-attendees), Hack Night with OpenAI at Cloudflare. For everyone else, join the Latent Space Discord for our online watch party and find fellow AI Engineers in your city.OpenAI's recent o1 release (and Reflection 70b debacle) has reignited broad interest in agentic general reasoning and tree search methods.While we have covered some of the self-taught reasoning literature on the Latent Space Paper Club, it is notable that the Eric Zelikman ended up at xAI, whereas OpenAI's hiring of Noam Brown and now Shunyu suggests more interest in tool-using chain of thought/tree of thought/generator-verifier architectures for Level 3 Agents.We were more than delighted to learn that Shunyu is a fellow Latent Space enjoyer, and invited him back (after his first appearance on our NeurIPS 2023 pod) for a look through his academic career with Harrison Chase (one year after his first LS show).ReAct: Synergizing Reasoning and Acting in Language Modelspaper linkFollowing seminal Chain of Thought papers from Wei et al and Kojima et al, and reflecting on lessons from building the WebShop human ecommerce trajectory benchmark, Shunyu's first big hit, the ReAct paper showed that using LLMs to “generate both reasoning traces and task-specific actions in an interleaved manner” achieved remarkably greater performance (less hallucination/error propagation, higher ALFWorld/WebShop benchmark success) than CoT alone. In even better news, ReAct scales fabulously with finetuning:As a member of the elite Princeton NLP group, Shunyu was also a coauthor of the Reflexion paper, which we discuss in this pod.Tree of Thoughtspaper link hereShunyu's next major improvement on the CoT literature was Tree of Thoughts:Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role…ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices.The beauty of ToT is it doesnt require pretraining with exotic methods like backspace tokens or other MCTS architectures. You can listen to Shunyu explain ToT in his own words on our NeurIPS pod, but also the ineffable Yannic Kilcher:Other WorkWe don't have the space to summarize the rest of Shunyu's work, you can listen to our pod with him now, and recommend the CoALA paper and his initial hit webinar with Harrison, today's guest cohost:as well as Shunyu's PhD Defense Lecture:as well as Shunyu's latest lecture covering a Brief History of LLM Agents:As usual, we are live on YouTube! Show Notes* Harrison Chase* LangChain, LangSmith, LangGraph* Shunyu Yao* Alec Radford* ReAct Paper* Hotpot QA* Tau Bench* WebShop* SWE-Agent* SWE-Bench* Trees of Thought* CoALA Paper* Related Episodes* Our Thomas Scialom (Meta) episode* Shunyu on our NeurIPS 2023 Best Papers episode* Harrison on our LangChain episode* Mentions* Sierra* Voyager* Jason Wei* Tavily* SERP API* ExaTimestamps* [00:00:00] Opening Song by Suno* [00:03:00] Introductions* [00:06:16] The ReAct paper* [00:12:09] Early applications of ReAct in LangChain* [00:17:15] Discussion of the Reflection paper* [00:22:35] Tree of Thoughts paper and search algorithms in language models* [00:27:21] SWE-Agent and SWE-Bench for coding benchmarks* [00:39:21] CoALA: Cognitive Architectures for Language Agents* [00:45:24] Agent-Computer Interfaces (ACI) and tool design for agents* [00:49:24] Designing frameworks for agents vs humans* [00:53:52] UX design for AI applications and agents* [00:59:53] Data and model improvements for agent capabilities* [01:19:10] TauBench* [01:23:09] Promising areas for AITranscriptAlessio [00:00:01]: Hey, everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO of Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Small AI.Swyx [00:00:12]: Hey, and today we have a super special episode. I actually always wanted to take like a selfie and go like, you know, POV, you're about to revolutionize the world of agents because we have two of the most awesome hiring agents in the house. So first, we're going to welcome back Harrison Chase. Welcome. Excited to be here. What's new with you recently in sort of like the 10, 20 second recap?Harrison [00:00:34]: Linkchain, Linksmith, Lingraph, pushing on all of them. Lots of cool stuff related to a lot of the stuff that we're going to talk about today, probably.Swyx [00:00:42]: Yeah.Alessio [00:00:43]: We'll mention it in there. And the Celtics won the title.Swyx [00:00:45]: And the Celtics won the title. You got that going on for you. I don't know. Is that like floorball? Handball? Baseball? Basketball.Alessio [00:00:52]: Basketball, basketball.Harrison [00:00:53]: Patriots aren't looking good though, so that's...Swyx [00:00:56]: And then Xun Yu, you've also been on the pod, but only in like a sort of oral paper presentation capacity. But welcome officially to the LinkedSpace pod.Shunyu [00:01:03]: Yeah, I've been a huge fan. So thanks for the invitation. Thanks.Swyx [00:01:07]: Well, it's an honor to have you on. You're one of like, you're maybe the first PhD thesis defense I've ever watched in like this AI world, because most people just publish single papers, but every paper of yours is a banger. So congrats.Shunyu [00:01:22]: Thanks.Swyx [00:01:24]: Yeah, maybe we'll just kick it off with, you know, what was your journey into using language models for agents? I like that your thesis advisor, I didn't catch his name, but he was like, you know... Karthik. Yeah. It's like, this guy just wanted to use language models and it was such a controversial pick at the time. Right.Shunyu [00:01:39]: The full story is that in undergrad, I did some computer vision research and that's how I got into AI. But at the time, I feel like, you know, you're just composing all the GAN or 3D perception or whatever together and it's not exciting anymore. And one day I just see this transformer paper and that's really cool. But I really got into language model only when I entered my PhD and met my advisor Karthik. So he was actually the second author of GPT-1 when he was like a visiting scientist at OpenAI. With Alec Redford?Swyx [00:02:10]: Yes.Shunyu [00:02:11]: Wow. That's what he told me. It's like back in OpenAI, they did this GPT-1 together and Ilya just said, Karthik, you should stay because we just solved the language. But apparently Karthik is not fully convinced. So he went to Princeton, started his professorship and I'm really grateful. So he accepted me as a student, even though I have no prior knowledge in NLP. And you know, we just met for the first time and he's like, you know, what do you want to do? And I'm like, you know, you have done those test game scenes. That's really cool. I wonder if we can just redo them with language models. And that's how the whole journey began. Awesome.Alessio [00:02:46]: So GPT-2 was out at the time? Yes, that was 2019.Shunyu [00:02:48]: Yeah.Alessio [00:02:49]: Way too dangerous to release. And then I guess the first work of yours that I came across was React, which was a big part of your defense. But also Harrison, when you came on The Pockets last year, you said that was one of the first papers that you saw when you were getting inspired for BlankChain. So maybe give a recap of why you thought it was cool, because you were already working in AI and machine learning. And then, yeah, you can kind of like intro the paper formally. What was that interesting to you specifically?Harrison [00:03:16]: Yeah, I mean, I think the interesting part was using these language models to interact with the outside world in some form. And I think in the paper, you mostly deal with Wikipedia. And I think there's some other data sets as well. But the outside world is the outside world. And so interacting with things that weren't present in the LLM and APIs and calling into them and thinking about the React reasoning and acting and kind of like combining those together and getting better results. I'd been playing around with LLMs, been talking with people who were playing around with LLMs. People were trying to get LLMs to call into APIs, do things, and it was always, how can they do it more reliably and better? And so this paper was basically a step in that direction. And I think really interesting and also really general as well. Like I think that's part of the appeal is just how general and simple in a good way, I think the idea was. So that it was really appealing for all those reasons.Shunyu [00:04:07]: Simple is always good. Yeah.Alessio [00:04:09]: Do you have a favorite part? Because I have one favorite part from your PhD defense, which I didn't understand when I read the paper, but you said something along the lines, React doesn't change the outside or the environment, but it does change the insight through the context, putting more things in the context. You're not actually changing any of the tools around you to work for you, but you're changing how the model thinks. And I think that was like a very profound thing when I, not that I've been using these tools for like 18 months. I'm like, I understand what you meant, but like to say that at the time you did the PhD defense was not trivial. Yeah.Shunyu [00:04:41]: Another way to put it is like thinking can be an extra tool that's useful.Alessio [00:04:47]: Makes sense. Checks out.Swyx [00:04:49]: Who would have thought? I think it's also more controversial within his world because everyone was trying to use RL for agents. And this is like the first kind of zero gradient type approach. Yeah.Shunyu [00:05:01]: I think the bigger kind of historical context is that we have this two big branches of AI. So if you think about RL, right, that's pretty much the equivalent of agent at a time. And it's like agent is equivalent to reinforcement learning and reinforcement learning is equivalent to whatever game environment they're using, right? Atari game or go or whatever. So you have like a pretty much, you know, you have a biased kind of like set of methodologies in terms of reinforcement learning and represents agents. On the other hand, I think NLP is like a historical kind of subject. It's not really into agents, right? It's more about reasoning. It's more about solving those concrete tasks. And if you look at SEL, right, like each task has its own track, right? Summarization has a track, question answering has a track. So I think really it's about rethinking agents in terms of what could be the new environments that we came to have is not just Atari games or whatever video games, but also those text games or language games. And also thinking about, could there be like a more general kind of methodology beyond just designing specific pipelines for each NLP task? That's like the bigger kind of context, I would say.Alessio [00:06:14]: Is there an inspiration spark moment that you remember or how did you come to this? We had Trida on the podcast and he mentioned he was really inspired working with like systems people to think about Flash Attention. What was your inspiration journey?Shunyu [00:06:27]: So actually before React, I spent the first two years of my PhD focusing on text-based games, or in other words, text adventure games. It's a very kind of small kind of research area and quite ad hoc, I would say. And there are like, I don't know, like 10 people working on that at the time. And have you guys heard of Zork 1, for example? So basically the idea is you have this game and you have text observations, like you see a monster, you see a dragon.Swyx [00:06:57]: You're eaten by a grue.Shunyu [00:06:58]: Yeah, you're eaten by a grue. And you have actions like kill the grue with a sword or whatever. And that's like a very typical setup of a text game. So I think one day after I've seen all the GPT-3 stuff, I just think about, you know, how can I solve the game? Like why those AI, you know, machine learning methods are pretty stupid, but we are pretty good at solving the game relatively, right? So for the context, the predominant method to solve this text game is obviously reinforcement learning. And the idea is you just try out an arrow in those games for like millions of steps and you kind of just overfit to the game. But there's no language understanding at all. And I'm like, why can't I solve the game better? And it's kind of like, because we think about the game, right? Like when we see this very complex text observation, like you see a grue and you might see a sword, you know, in the right of the room and you have to go through the wooden door to go to that room. You will think, you know, oh, I have to kill the monster and to kill that monster, I have to get the sword, I have to get the sword, I have to go, right? And this kind of thinking actually helps us kind of throw shots off the game. And it's like, why don't we also enable the text agents to think? And that's kind of the prototype of React. And I think that's actually very interesting because the prototype, I think, was around November of 2021. So that's even before like chain of thought or whatever came up. So we did a bunch of experiments in the text game, but it was not really working that well. Like those text games are just too hard. I think today it's still very hard. Like if you use GPD 4 to solve it, it's still very hard. So the change came when I started the internship in Google. And apparently Google care less about text game, they care more about what's more practical. So pretty much I just reapplied the idea, but to more practical kind of environments like Wikipedia or simpler text games like Alphard, and it just worked. It's kind of like you first have the idea and then you try to find the domains and the problems to demonstrate the idea, which is, I would say, different from most of the AI research, but it kind of worked out for me in that case.Swyx [00:09:09]: For Harrison, when you were implementing React, what were people applying React to in the early days?Harrison [00:09:14]: I think the first demo we did probably had like a calculator tool and a search tool. So like general things, we tried to make it pretty easy to write your own tools and plug in your own things. And so this is one of the things that we've seen in LangChain is people who build their own applications generally write their own tools. Like there are a few common ones. I'd say like the three common ones might be like a browser, a search tool, and a code interpreter. But then other than that-Swyx [00:09:37]: The LMS. Yep.Harrison [00:09:39]: Yeah, exactly. It matches up very nice with that. And we actually just redid like our integrations docs page, and if you go to the tool section, they like highlight those three, and then there's a bunch of like other ones. And there's such a long tail of other ones. But in practice, like when people go to production, they generally have their own tools or maybe one of those three, maybe some other ones, but like very, very few other ones. So yeah, I think the first demos was a search and a calculator one. And there's- What's the data set?Shunyu [00:10:04]: Hotpot QA.Harrison [00:10:05]: Yeah. Oh, so there's that one. And then there's like the celebrity one by the same author, I think.Swyx [00:10:09]: Olivier Wilde's boyfriend squared. Yeah. 0.23. Yeah. Right, right, right.Harrison [00:10:16]: I'm forgetting the name of the author, but there's-Swyx [00:10:17]: I was like, we're going to over-optimize for Olivier Wilde's boyfriend, and it's going to change next year or something.Harrison [00:10:21]: There's a few data sets kind of like in that vein that require multi-step kind of like reasoning and thinking. So one of the questions I actually had for you in this vein, like the React paper, there's a few things in there, or at least when I think of that, there's a few things that I think of. There's kind of like the specific prompting strategy. Then there's like this general idea of kind of like thinking and then taking an action. And then there's just even more general idea of just like taking actions in a loop. Today, like obviously language models have changed a lot. We have tool calling. The specific prompting strategy probably isn't used super heavily anymore. Would you say that like the concept of React is still used though? Or like do you think that tool calling and running tool calling in a loop, is that ReactSwyx [00:11:02]: in your mind?Shunyu [00:11:03]: I would say like it's like more implicitly used than explicitly used. To be fair, I think the contribution of React is actually twofold. So first is this idea of, you know, we should be able to use calls in a very general way. Like there should be a single kind of general method to handle interaction with various environments. I think React is the first paper to demonstrate the idea. But then I think later there are two form or whatever, and this becomes like a trivial idea. But I think at the time, that's like a pretty non-trivial thing. And I think the second contribution is this idea of what people call like inner monologue or thinking or reasoning or whatever, to be paired with tool use. I think that's still non-trivial because if you look at the default function calling or whatever, like there's no inner monologue. And in practice, that actually is important, especially if the tool that you use is pretty different from the training distribution of the language model. I think those are the two main things that are kind of inherited.Harrison [00:12:10]: On that note, I think OpenAI even recommended when you're doing tool calling, it's sometimes helpful to put a thought field in the tool, along with all the actual acquired arguments,Swyx [00:12:19]: and then have that one first.Harrison [00:12:20]: So it fills out that first, and they've shown that that's yielded better results. The reason I ask is just like this same concept is still alive, and I don't know whether to call it a React agent or not. I don't know what to call it. I think of it as React, like it's the same ideas that were in the paper, but it's obviously a very different implementation at this point in time. And so I just don't know what to call it.Shunyu [00:12:40]: I feel like people will sometimes think more in terms of different tools, right? Because if you think about a web agent versus, you know, like a function calling agent, calling a Python API, you would think of them as very different. But in some sense, the methodology is the same. It depends on how you view them, right? I think people will tend to think more in terms of the environment and the tools rather than the methodology. Or, in other words, I think the methodology is kind of trivial and simple, so people will try to focus more on the different tools. But I think it's good to have a single underlying principle of those things.Alessio [00:13:17]: How do you see the surface of React getting molded into the model? So a function calling is a good example of like, now the model does it. What about the thinking? Now most models that you use kind of do chain of thought on their own, they kind of produce steps. Do you think that more and more of this logic will be in the model? Or do you think the context window will still be the main driver of reasoning and thinking?Shunyu [00:13:39]: I think it's already default, right? You do some chain of thought and you do some tool call, the cost of adding the chain of thought is kind of relatively low compared to other things. So it's not hurting to do that. And I think it's already kind of common practice, I would say.Swyx [00:13:56]: This is a good place to bring in either Tree of Thought or Reflection, your pick.Shunyu [00:14:01]: Maybe Reflection, to respect the time order, I would say.Swyx [00:14:05]: Any backstory as well, like the people involved with NOAA and the Princeton group. We talked about this offline, but people don't understand how these research pieces come together and this ideation.Shunyu [00:14:15]: I think Reflection is mostly NOAA's work, I'm more like advising kind of role. The story is, I don't remember the time, but one day we just see this pre-print that's like Reflection and Autonomous Agent with memory or whatever. And it's kind of like an extension to React, which uses this self-reflection. I'm like, oh, somehow you've become very popular. And NOAA reached out to me, it's like, do you want to collaborate on this and make this from an archive pre-print to something more solid, like a conference submission? I'm like, sure. We started collaborating and we remain good friends today. And I think another interesting backstory is NOAA was contacted by OpenAI at the time. It's like, this is pretty cool, do you want to just work at OpenAI? And I think Sierra also reached out at the same time. It's like, this is pretty cool, do you want to work at Sierra? And I think NOAA chose Sierra, but it's pretty cool because he was still like a second year undergrad and he's a very smart kid.Swyx [00:15:16]: Based on one paper. Oh my god.Shunyu [00:15:19]: He's done some other research based on programming language or chemistry or whatever, but I think that's the paper that got the attention of OpenAI and Sierra.Swyx [00:15:28]: For those who haven't gone too deep on it, the way that you present the inside of React, can you do that also for reflection? Yeah.Shunyu [00:15:35]: I think one way to think of reflection is that the traditional idea of reinforcement learning is you have a scalar reward and then you somehow back-propagate the signal of the scalar reward to the rest of your neural network through whatever algorithm, like policy grading or A2C or whatever. And if you think about the real life, most of the reward signal is not scalar. It's like your boss told you, you should have done a better job in this, but you could jump on that or whatever. It's not like a scalar reward, like 29 or something. I think in general, humans deal more with long scalar reward, or you can say language feedback. And the way that they deal with language feedback also has this back-propagation process, right? Because you start from this, you did a good job on job B, and then you reflect what could have been done differently to change to make it better. And you kind of change your prompt, right? Basically, you change your prompt on how to do job A and how to do job B, and then you do the whole thing again. So it's really like a pipeline of language where in self-graded descent, you have something like text reasoning to replace those gradient descent algorithms. I think that's one way to think of reflection.Harrison [00:16:47]: One question I have about reflection is how general do you think the algorithm there is? And so for context, I think at LangChain and at other places as well, we found it pretty easy to implement React in a standard way. You plug in any tools and it kind of works off the shelf, can get it up and running. I don't think we have an off-the-shelf kind of implementation of reflection and kind of the general sense. I think the concepts, absolutely, we see used in different kind of specific cognitive architectures, but I don't think we have one that comes off the shelf. I don't think any of the other frameworks have one that comes off the shelf. And I'm curious whether that's because it's not general enough or it's complex as well, because it also requires running it more times.Swyx [00:17:28]: Maybe that's not feasible.Harrison [00:17:30]: I'm curious how you think about the generality, complexity. Should we have one that comes off the shelf?Shunyu [00:17:36]: I think the algorithm is general in the sense that it's just as general as other algorithms, if you think about policy grading or whatever, but it's not applicable to all tasks, just like other algorithms. So you can argue PPO is also general, but it works better for those set of tasks, but not on those set of tasks. I think it's the same situation for reflection. And I think a key bottleneck is the evaluator, right? Basically, you need to have a good sense of the signal. So for example, if you are trying to do a very hard reasoning task, say mathematics, for example, and you don't have any tools, you're operating in this chain of thought setup, then reflection will be pretty hard because in order to reflect upon your thoughts, you have to have a very good evaluator to judge whether your thought is good or not. But that might be as hard as solving the problem itself or even harder. The principle of self-reflection is probably more applicable if you have a good evaluator, for example, in the case of coding. If you have those arrows, then you can just reflect on that and how to solve the bug andSwyx [00:18:37]: stuff.Shunyu [00:18:38]: So I think another criteria is that it depends on the application, right? If you have this latency or whatever need for an actual application with an end-user, the end-user wouldn't let you do two hours of tree-of-thought or reflection, right? You need something as soon as possible. So in that case, maybe this is better to be used as a training time technique, right? You do those reflection or tree-of-thought or whatever, you get a lot of data, and then you try to use the data to train your model better. And then in test time, you still use something as simple as React, but that's already improved.Alessio [00:19:11]: And if you think of the Voyager paper as a way to store skills and then reuse them, how would you compare this reflective memory and at what point it's just ragging on the memory versus you want to start to fine-tune some of them or what's the next step once you get a very long reflective corpus? Yeah.Shunyu [00:19:30]: So I think there are two questions here. The first question is, what type of information or memory are you considering, right? Is it like semantic memory that stores knowledge about the word, or is it the episodic memory that stores trajectories or behaviors, or is it more of a procedural memory like in Voyager's case, like skills or code snippets that you can use to do actions, right?Swyx [00:19:54]: That's one dimension.Shunyu [00:19:55]: And the second dimension is obviously how you use the memory, either retrieving from it, using it in the context, or fine-tuning it. I think the Cognitive Architecture for Language Agents paper has a good categorization of all the different combinations. And of course, which way you use depends on the concrete application and the concrete need and the concrete task. But I think in general, it's good to think of those systematic dimensions and all the possible options there.Swyx [00:20:25]: Harrison also has in LangMEM, I think you did a presentation in my meetup, and I think you've done it at a couple other venues as well. User state, semantic memory, and append-only state, I think kind of maps to what you just said.Shunyu [00:20:38]: What is LangMEM? Can I give it like a quick...Harrison [00:20:40]: One of the modules of LangChain for a long time has been something around memory. And I think we're still obviously figuring out what that means, as is everyone kind of in the space. But one of the experiments that we did, and one of the proof of concepts that we did was, technically what it was is you would basically create threads, you'd push messages to those threads in the background, we process the data in a few ways. One, we put it into some semantic store, that's the semantic memory. And then two, we do some extraction and reasoning over the memories to extract. And we let the user define this, but extract key facts or anything that's of interest to the user. Those aren't exactly trajectories, they're maybe more closer to the procedural memory. Is that how you'd think about it or classify it?Shunyu [00:21:22]: Is it like about knowledge about the word, or is it more like how to do something?Swyx [00:21:27]: It's reflections, basically.Harrison [00:21:28]: So in generative worlds.Shunyu [00:21:30]: Generative agents.Swyx [00:21:31]: The Smallville. Yeah, the Smallville one.Harrison [00:21:33]: So the way that they had their memory there was they had the sequence of events, and that's kind of like the raw events that happened. But then every N events, they'd run some synthesis over those events for the LLM to insert its own memory, basically. It's that type of memory.Swyx [00:21:49]: I don't know how that would be classified.Shunyu [00:21:50]: I think of that as more of the semantic memory, but to be fair, I think it's just one way to think of that. But whether it's semantic memory or procedural memory or whatever memory, that's like an abstraction layer. But in terms of implementation, you can choose whatever implementation for whatever memory. So they're totally kind of orthogonal. I think it's more of a good way to think of the things, because from the history of cognitive science and cognitive architecture and how people study even neuroscience, that's the way people think of how the human brain organizes memory. And I think it's more useful as a way to think of things. But it's not like for semantic memory, you have to do this kind of way to retrieve or fine-tune, and for procedural memory, you have to do that. I think those are totally orthogonal kind of dimensions.Harrison [00:22:34]: How much background do you have in cognitive sciences, and how much do you model some of your thoughts on?Shunyu [00:22:40]: That's a great question, actually. I think one of the undergrad influences for my follow-up research is I was doing an internship at MIT's Computational Cognitive Science Lab with Josh Tannenbaum, and he's a very famous cognitive scientist. And I think a lot of his ideas still influence me today, like thinking of things in computational terms and getting interested in language and a lot of stuff, or even developing psychology kind of stuff. So I think it still influences me today.Swyx [00:23:14]: As a developer that tried out LangMEM, the way I view it is just it's a materialized view of a stream of logs. And if anything, that's just useful for context compression. I don't have to use the full context to run it over everything. But also it's kind of debuggable. If it's wrong, I can show it to the user, the user can manually fix it, and I can carry on. That's a really good analogy. I like that. I'm going to steal that. Sure. Please, please. You know I'm bullish on memory databases. I guess, Tree of Thoughts? Yeah, Tree of Thoughts.Shunyu [00:23:39]: I feel like I'm relieving the defense in like a podcast format. Yeah, no.Alessio [00:23:45]: I mean, you had a banger. Well, this is the one where you're already successful and we just highlight the glory. It was really good. You mentioned that since thinking is kind of like taking an action, you can use action searching algorithms to think of thinking. So just like you will use Tree Search to find the next thing. And the idea behind Tree of Thought is that you generate all these possible outcomes and then find the best tree to get to the end. Maybe back to the latency question, you can't really do that if you have to respond in real time. So what are maybe some of the most helpful use cases for things like this? Where have you seen people adopt it where the high latency is actually worth the wait?Shunyu [00:24:21]: For things that you don't care about latency, obviously. For example, if you're trying to do math, if you're just trying to come up with a proof. But I feel like one type of task is more about searching for a solution. You can try a hundred times, but if you find one solution, that's good. For example, if you're finding a math proof or if you're finding a good code to solve a problem or whatever, I think another type of task is more like reacting. For example, if you're doing customer service, you're like a web agent booking a ticket for an end user. Those are more reactive kind of tasks, or more real-time tasks. You have to do things fast. They might be easy, but you have to do it reliably. And you care more about can you solve 99% of the time out of a hundred. But for the type of search type of tasks, then you care more about can I find one solution out of a hundred. So it's kind of symmetric and different.Alessio [00:25:11]: Do you have any data or intuition from your user base? What's the split of these type of use cases? How many people are doing more reactive things and how many people are experimenting with deep, long search?Harrison [00:25:23]: I would say React's probably the most popular. I think there's aspects of reflection that get used. Tree of thought, probably the least so. There's a great tweet from Jason Wei, I think you're now a colleague, and he was talking about prompting strategies and how he thinks about them. And I think the four things that he had was, one, how easy is it to implement? How much compute does it take? How many tasks does it solve? And how much does it improve on those tasks? And I'd add a fifth, which is how likely is it to be relevant when the next generation of models come out? And I think if you look at those axes and then you look at React, reflection, tree of thought, it tracks that the ones that score better are used more. React is pretty easy to implement. Tree of thought's pretty hard to implement. The amount of compute, yeah, a lot more for tree of thought. The tasks and how much it improves, I don't have amazing visibility there. But I think if we're comparing React versus tree of thought, React just dominates the first two axes so much that my question around that was going to be like, how do you think about these prompting strategies, cognitive architectures, whatever you want to call them? When you're thinking of them, what are the axes that you're judging them on in your head when you're thinking whether it's a good one or a less good one?Swyx [00:26:38]: Right.Shunyu [00:26:39]: Right. I think there is a difference between a prompting method versus research, in the sense that for research, you don't really even care about does it actually work on practical tasks or does it help? Whatever. I think it's more about the idea or the principle, right? What is the direction that you're unblocking and whatever. And I think for an actual prompting method to solve a concrete problem, I would say simplicity is very important because the simpler it is, the less decision you have to make about it. And it's easier to design. It's easier to propagate. And it's easier to do stuff. So always try to be as simple as possible. And I think latency obviously is important. If you can do things fast and you don't want to do things slow. And I think in terms of the actual prompting method to use for a particular problem, I think we should all be in the minimalist kind of camp, right? You should try the minimum thing and see if it works. And if it doesn't work and there's absolute reason to add something, then you add something, right? If there's absolute reason that you need some tool, then you should add the tool thing. If there's absolute reason to add reflection or whatever, you should add that. Otherwise, if a chain of thought can already solve something, then you don't even need to use any of that.Harrison [00:27:57]: Yeah. Or if it's just better prompting can solve it. Like, you know, you could add a reflection step or you could make your instructions a little bit clearer.Swyx [00:28:03]: And it's a lot easier to do that.Shunyu [00:28:04]: I think another interesting thing is like, I personally have never done those kind of like weird tricks. I think all the prompts that I write are kind of like just talking to a human, right? It's like, I don't know. I never say something like, your grandma is dying and you have to solve it. I mean, those are cool, but I feel like we should all try to solve things in a very intuitive way. Just like talking to your co-worker. That should work 99% of the time. That's my personal take.Swyx [00:28:29]: The problem with how language models, at least in the GPC 3 era, was that they over-optimized to some sets of tokens in sequence. So like reading the Kojima et al. paper that was listing step-by-step, like he tried a bunch of them and they had wildly different results. It should not be the case, but it is the case. And hopefully we're getting better there.Shunyu [00:28:51]: Yeah. I think it's also like a timing thing in the sense that if you think about this whole line of language model, right? Like at the time it was just like a text generator. We don't have any idea how it's going to be used, right? And obviously at the time you will find all kinds of weird issues because it's not trained to do any of that, right? But then I think we have this loop where once we realize chain of thought is important or agent is important or tool using is important, what we see is today's language models are heavily optimized towards those things. So I think in some sense they become more reliable and robust over those use cases. And you don't need to do as much prompt engineering tricks anymore to solve those things. I feel like in some sense, I feel like prompt engineering even is like a slightly negative word at the time because it refers to all those kind of weird tricks that you have to apply. But I think we don't have to do that anymore. Like given today's progress, you should just be able to talk to like a coworker. And if you're clear and concrete and being reasonable, then it should do reasonable things for you.Swyx [00:29:51]: Yeah. The way I put this is you should not be a prompt engineer because it is the goal of the big labs to put you out of a job.Shunyu [00:29:58]: You should just be a good communicator. Like if you're a good communicator to humans, you should be a good communicator to languageSwyx [00:30:02]: models.Harrison [00:30:03]: That's the key though, because oftentimes people aren't good communicators to these language models and that is a very important skill and that's still messing around with the prompt. And so it depends what you're talking about when you're saying prompt engineer.Shunyu [00:30:14]: But do you think it's like very correlated with like, are they like a good communicator to humans? You know, it's like.Harrison [00:30:20]: It may be, but I also think I would say on average, people are probably worse at communicating with language models than to humans right now, at least, because I think we're still figuring out how to do it. You kind of expect it to be magical and there's probably some correlation, but I'd say there's also just like, people are worse at it right now than talking to humans.Shunyu [00:30:36]: We should make it like a, you know, like an elementary school class or whatever, how toSwyx [00:30:41]: talk to language models. Yeah. I don't know. Very pro that. Yeah. Before we leave the topic of trees and searching, not specific about QSTAR, but there's a lot of questions about MCTS and this combination of tree search and language models. And I just had to get in a question there about how seriously should people take this?Shunyu [00:30:59]: Again, I think it depends on the tasks, right? So MCTS was magical for Go, but it's probably not as magical for robotics, right? So I think right now the problem is not even that we don't have good methodologies, it's more about we don't have good tasks. It's also very interesting, right? Because if you look at my citation, it's like, obviously the most cited are React, Refraction and Tree of Thought. Those are methodologies. But I think like equally important, if not more important line of my work is like benchmarks and environments, right? Like WebShop or SuiteVenture or whatever. And I think in general, what people do in academia that I think is not good is they choose a very simple task, like Alford, and then they apply overly complex methods to show they improve 2%. I think you should probably match the level of complexity of your task and your method. I feel like where tasks are kind of far behind the method in some sense, right? Because we have some good test-time approaches, like whatever, React or Refraction or Tree of Thought, or like there are many, many more complicated test-time methods afterwards. But on the benchmark side, we have made a lot of good progress this year, last year. But I think we still need more progress towards that, like better coding benchmark, better web agent benchmark, better agent benchmark, not even for web or code. I think in general, we need to catch up with tasks.Harrison [00:32:27]: What are the biggest reasons in your mind why it lags behind?Shunyu [00:32:31]: I think incentive is one big reason. Like if you see, you know, all the master paper are cited like a hundred times more than the task paper. And also making a good benchmark is actually quite hard. It's almost like a different set of skills in some sense, right? I feel like if you want to build a good benchmark, you need to be like a good kind of product manager kind of mindset, right? You need to think about why people should use your benchmark, why it's challenging, why it's useful. If you think about like a PhD going into like a school, right? The prior skill that expected to have is more about, you know, can they code this method and can they just run experiments and can solve that? I think building a benchmark is not the typical prior skill that we have, but I think things are getting better. I think more and more people are starting to build benchmarks and people are saying that it's like a way to get more impact in some sense, right? Because like if you have a really good benchmark, a lot of people are going to use it. But if you have a super complicated test time method, like it's very hard for people to use it.Harrison [00:33:35]: Are evaluation metrics also part of the reason? Like for some of these tasks that we might want to ask these agents or language models to do, is it hard to evaluate them? And so it's hard to get an automated benchmark. Obviously with SweetBench you can, and with coding, it's easier, but.Shunyu [00:33:50]: I think that's part of the skillset thing that I mentioned, because I feel like it's like a product manager because there are many dimensions and you need to strike a balance and it's really hard, right? If you want to make sense, very easy to autogradable, like automatically gradable, like either to grade or either to evaluate, then you might lose some of the realness or practicality. Or like it might be practical, but it might not be as scalable, right? For example, if you think about text game, human have pre-annotated all the rewards and all the language are real. So it's pretty good on autogradable dimension and the practical dimension. If you think about, you know, practical, like actual English being practical, but it's not scalable, right? It takes like a year for experts to build that game. So it's not really that scalable. And I think part of the reason that SweetBench is so popular now is it kind of hits the balance between these three dimensions, right? Easy to evaluate and being actually practical and being scalable. Like if I were to criticize upon some of my prior work, I think webshop, like it's my initial attempt to get into benchmark world and I'm trying to do a good job striking the balance. But obviously we make it all gradable and it's really scalable, but then I think the practicality is not as high as actually just using GitHub issues, right? Because you're just creating those like synthetic tasks.Harrison [00:35:13]: Are there other areas besides coding that jump to mind as being really good for being autogradable?Shunyu [00:35:20]: Maybe mathematics.Swyx [00:35:21]: Classic. Yeah. Do you have thoughts on alpha proof, the new DeepMind paper? I think it's pretty cool.Shunyu [00:35:29]: I think it's more of a, you know, it's more of like a confidence boost or like sometimes, you know, the work is not even about, you know, the technical details or the methodology that it chooses or the concrete results. I think it's more about a signal, right?Swyx [00:35:47]: Yeah. Existence proof. Yeah.Shunyu [00:35:50]: Yeah. It can be done. This direction is exciting. It kind of encourages people to work more towards that direction. I think it's more like a boost of confidence, I would say.Swyx [00:35:59]: Yeah. So we're going to focus more on agents now and, you know, all of us have a special interest in coding agents. I would consider Devin to be the sort of biggest launch of the year as far as AI startups go. And you guys in the Princeton group worked on Suiagents alongside of Suibench. Tell us the story about Suiagent. Sure.Shunyu [00:36:21]: I think it's kind of like a triology, it's actually a series of three works now. So actually the first work is called Intercode, but it's not as famous, I know. And the second work is called Suibench and the third work is called Suiagent. And I'm just really confused why nobody is working on coding. You know, it's like a year ago, but I mean, not everybody's working on coding, obviously, but a year ago, like literally nobody was working on coding. I was really confused. And the people that were working on coding are, you know, trying to solve human evil in like a sick-to-sick way. There's no agent, there's no chain of thought, there's no anything, they're just, you know, fine tuning the model and improve some points and whatever, like, I was really confused because obviously coding is the best application for agents because it's autogradable, it's super important, you can make everything like API or code action, right? So I was confused and I collaborated with some of the students in Princeton and we have this work called Intercode and the idea is, first, if you care about coding, then you should solve coding in an interactive way, meaning more like a Jupyter Notebook kind of way than just writing a program and seeing if it fails or succeeds and stop, right? You should solve it in an interactive way because that's exactly how humans solve it, right? You don't have to, you know, write a program like next token, next token, next token and stop and never do any edits and you cannot really use any terminal or whatever tool. It doesn't make sense, right? And that's the way people are solving coding at the time, basically like sampling a program from a language model without chain of thought, without tool call, without refactoring, without anything. So the first point is we should solve coding in a very interactive way and that's a very general principle that applies for various coding benchmarks. And also, I think you can make a lot of the agent task kind of like interactive coding. If you have Python and you can call any package, then you can literally also browse internet or do whatever you want, like control a robot or whatever. So that seems to be a very general paradigm. But obviously I think a bottleneck is at the time we're still doing, you know, very simple tasks like human eval or whatever coding benchmark people proposed. They were super hard in 2021, like 20%, but they're like 95% already in 2023. So obviously the next step is we need a better benchmark. And Carlos and John, which are the first authors of Swaybench, I think they come up with this great idea that we should just script GitHub and solve whatever human engineers are solving. And I think it's actually pretty easy to come up with the idea. And I think in the first week, they already made a lot of progress. They script the GitHub and they make all the same, but then there's a lot of painful info work and whatever, you know. I think the idea is super easy, but the engineering is super hard. And I feel like that's a very typical signal of a good work in the AI era now.Swyx [00:39:17]: I think also, I think the filtering was challenging, because if you look at open source PRs, a lot of them are just like, you know, fixing typos. I think it's challenging.Shunyu [00:39:27]: And to be honest, we didn't do a perfect job at the time. So if you look at the recent blog post with OpenAI, we improved the filtering so that it's more solvable.Swyx [00:39:36]: I think OpenAI was just like, look, this is a thing now. We have to fix this. These students just rushed it.Shunyu [00:39:45]: It's a good convergence of interests for me.Alessio [00:39:48]: Was that tied to you joining OpenAI? Or was that just unrelated?Shunyu [00:39:52]: It's a coincidence for me, but it's a good coincidence.Swyx [00:39:55]: There is a history of anytime a big lab adopts a benchmark, they fix it. Otherwise, it's a broken benchmark.Shunyu [00:40:03]: So naturally, once we propose swimmage, the next step is to solve it. But I think the typical way you solve something now is you collect some training samples, or you design some complicated agent method, and then you try to solve it. Either super complicated prompt, or you build a better model with more training data. But I think at the time, we realized that even before those things, there's a fundamental problem with the interface or the tool that you're supposed to use. Because that's like an ignored problem in some sense. What your tool is, or how that matters for your task. So what we found concretely is that if you just use the text terminal off the shelf as a tool for those agents, there's a lot of problems. For example, if you edit something, there's no feedback. So you don't know whether your edit is good or not. That makes the agent very confused and makes a lot of mistakes. There are a lot of small problems, you would say. Well, you can try to do prompt engineering and improve that, but it turns out to be actually very hard. We realized that the interface design is actually a very omitted part of agent design. So we did this switch agent work. And the key idea is just, even before you talk about what the agent is, you should talk about what the environment is. You should make sure that the environment is actually friendly to whatever agent you're trying to apply. That's the same idea for humans. Text terminal is good for some tasks, like git, pool, or whatever. But it's not good if you want to look at browser and whatever. Also, browser is a good tool for some tasks, but it's not a good tool for other tasks. We need to talk about how design interface, in some sense, where we should treat agents as our customers. It's like when we treat humans as a customer, we design human computer interfaces. We design those beautiful desktops or browsers or whatever, so that it's very intuitive and easy for humans to use. And this whole great subject of HCI is all about that. I think now the research idea of switch agent is just, we should treat agents as our customers. And we should do like, you know… AICI.Swyx [00:42:16]: AICI, exactly.Harrison [00:42:18]: So what are the tools that a suite agent should have, or a coding agent in general should have?Shunyu [00:42:24]: For suite agent, it's like a modified text terminal, which kind of adapts to a lot of the patterns of language models to make it easier for language models to use. For example, now for edit, instead of having no feedback, it will actually have a feedback of, you know, actually here you introduced like a syntax error, and you should probably want to fix that, and there's an ended error there. And that makes it super easy for the model to actually do that. And there's other small things, like how exactly you write arguments, right? Like, do you want to write like a multi-line edit, or do you want to write a single line edit? I think it's more interesting to think about the way of the development process of an ACI rather than the actual ACI for like a concrete application. Because I think the general paradigm is very similar to HCI and psychology, right? Basically, for how people develop HCIs, they do behavior experiments on humans, right? I do every test, right? Like, which interface is actually better? And I do those behavior experiments, kind of like psychology experiments to humans, and I change things. And I think what's really interesting for me, for this three-agent paper, is we can probably do the same thing for agents, right? We can do every test for those agents and do behavior tests. And through the process, we not only invent better interfaces for those agents, that's the practical value, but we also better understand agents. Just like when we do those A-B tests, we do those HCI, we better understand humans. Doing those ACI experiments, we actually better understand agents. And that's pretty cool.Harrison [00:43:51]: Besides that A-B testing, what are other processes that people can use to think about this in a good way?Swyx [00:43:57]: That's a great question.Shunyu [00:43:58]: And I think three-agent is an initial work. And what we do is the kind of the naive approach, right? You just try some interface, and you see what's going wrong, and then you try to fix that. We do this kind of iterative fixing. But I think what's really interesting is there'll be a lot of future directions that's very promising if we can apply some of the HCI principles more systematically into the interface design. I think that would be a very cool interdisciplinary research opportunity.Harrison [00:44:26]: You talked a lot about agent-computer interfaces and interactions. What about human-to-agent UX patterns? Curious for any thoughts there that you might have.Swyx [00:44:38]: That's a great question.Shunyu [00:44:39]: And in some sense, I feel like prompt engineering is about human-to-agent interface. But I think there can be a lot of interesting research done about... So prompting is about how humans can better communicate with the agent. But I think there could be interesting research on how agents can better communicate with humans, right? When to ask questions, how to ask questions, what's the frequency of asking questions. And I think those kinds of stuff could be very cool research.Harrison [00:45:07]: Yeah, I think some of the most interesting stuff that I saw here was also related to coding with Devin from Cognition. And they had the three or four different panels where you had the chat, the browser, the terminal, and I guess the code editor as well.Swyx [00:45:19]: There's more now.Harrison [00:45:19]: There's more. Okay, I'm not up to date. Yeah, I think they also did a good job on ACI.Swyx [00:45:25]: I think that's the main learning I have from Devin. They cracked that. Actually, there was no foundational planning breakthrough. The planner is actually pretty simple, but ACI that they broke through on.Shunyu [00:45:35]: I think making the tool good and reliable is probably like 90% of the whole agent. Once the tool is actually good, then the agent design can be much, much simpler. On the other hand, if the tool is bad, then no matter how much you put into the agent design, planning or search or whatever, it's still going to be trash.Harrison [00:45:53]: Yeah, I'd argue the same. Same with like context and instructions. Like, yeah, go hand in hand.Alessio [00:46:00]: On the tool, how do you think about the tension of like, for both of you, I mean, you're building a library, so even more for you. The tension between making now a language or a library that is like easy for the agent to grasp and write versus one that is easy for like the human to grasp and write. Because, you know, the trend is like more and more code gets written by the agent. So why wouldn't you optimize the framework to be as easy as possible for the model versus for the person?Swyx [00:46:24]: I think it's possible to design an interfaceShunyu [00:46:25]: that's both friendly to humans and agents. But what do you think?Harrison [00:46:29]: We haven't thought about that from the perspective, like we're not trying to design LangChain or LangGraph to be friendly. But I mean, I think to be friendly for agents to write.Swyx [00:46:42]: But I mean, I think we see this with like,Harrison [00:46:43]: I saw some paper that used TypeScript notation instead of JSON notation for tool calling and it got a lot better performance. So it's definitely a thing. I haven't really heard of anyone designing like a syntax or a language explicitly for agents, but there's clearly syntaxes that are better.Shunyu [00:46:59]: I think function calling is a good example where it's like a good interface for both human programmers and for agents, right? Like for developers, it's actually a very friendly interface because it's very concrete and you don't have to do prompt engineering anymore. You can be very systematic. And for models, it's also pretty good, right? Like it can use all the existing coding content. So I think we need more of those kinds of designs.Swyx [00:47:21]: I will mostly agree and I'll slightly disagree in terms of this, which is like, whether designing for humans also overlaps with designing for AI. So Malte Ubo, who's the CTO of Vercel, who is creating basically JavaScript's competitor to LangChain, they're observing that basically, like if the API is easy to understand for humans, it's actually much easier to understand for LLMs, for example, because they're not overloaded functions. They don't behave differently under different contexts. They do one thing and they always work the same way. It's easy for humans, it's easy for LLMs. And like that makes a lot of sense. And obviously adding types is another one. Like type annotations only help give extra context, which is really great. So that's the agreement. And then a disagreement is that when I use structured output to do my chain of thought, I have found that I change my field names to hint to the LLM of what the field is supposed to do. So instead of saying topics, I'll say candidate topics. And that gives me a better result because the LLM was like, ah, this is just a draft thing I can use for chain of thought. And instead of like summaries, I'll say topic summaries to link the previous field to the current field. So like little stuff like that, I find myself optimizing for the LLM where I, as a human, would never do that. Interesting.Shunyu [00:48:32]: It's kind of like the way you optimize the prompt, it might be different for humans and for machines. You can have a common ground that's both clear for humans and agents, but to improve the human performance versus improving the agent performance, they might move to different directions.Swyx [00:48:48]: Might move different directions. There's a lot more use of metadata as well, like descriptions, comments, code comments, annotations and stuff like that. Yeah.Harrison [00:48:56]: I would argue that's just you communicatingSwyx [00:48:58]: to the agent what it should do.Harrison [00:49:00]: And maybe you need to communicate a little bit more than to humans because models aren't quite good enough yet.Swyx [00:49:06]: But like, I don't think that's crazy.Harrison [00:49:07]: I don't think that's like- It's not crazy.Swyx [00:49:09]: I will bring this in because it just happened to me yesterday. I was at the cursor office. They held their first user meetup and I was telling them about the LLM OS concept and why basically every interface, every tool was being redesigned for AIs to use rather than humans. And they're like, why? Like, can we just use Bing and Google for LLM search? Why must I use Exa? Or what's the other one that you guys work with?Harrison [00:49:32]: Tavilli.Swyx [00:49:33]: Tavilli. Web Search API dedicated for LLMs. What's the difference?Shunyu [00:49:36]: Exactly. To Bing API.Swyx [00:49:38]: Exactly.Harrison [00:49:38]: There weren't great APIs for search. Like the best one, like the one that we used initially in LangChain was SERP API, which is like maybe illegal. I'm not sure.Swyx [00:49:49]: And like, you know,Harrison [00:49:52]: and now there are like venture-backed companies.Swyx [00:49:53]: Shout out to DuckDuckGo, which is free.Harrison [00:49:55]: Yes, yes.Swyx [00:49:56]: Yeah.Harrison [00:49:56]: I do think there are some differences though. I think you want, like, I think generally these APIs try to return small amounts of text information, clear legible field. It's not a massive JSON blob. And I think that matters. I think like when you talk about designing tools, it's not only the, it's the interface in the entirety, not only the inputs, but also the outputs that really matter. And so I think they try to make the outputs.Shunyu [00:50:18]: They're doing ACI.Swyx [00:50:19]: Yeah, yeah, absolutely.Harrison [00:50:20]: Really?Swyx [00:50:21]: Like there's a whole set of industries that are just being redone for ACI. It's weird. And so my simple answer to them was like the error messages. When you give error messages, they should be basically prompts for the LLM to take and then self-correct. Then your error messages get more verbose, actually, than you normally would with a human. Stuff like that. Like a little, honestly, it's not that big. Again, like, is this worth a venture-backed industry? Unless you can tell us. But like, I think Code Interpreter, I think is a new thing. I hope so.Alessio [00:50:52]: We invested in it to be so.Shunyu [00:50:53]: I think that's a very interesting point. You're trying to optimize to the extreme, then obviously they're going to be different. For example, the error—Swyx [00:51:00]: Because we take it very seriously. Right.Shunyu [00:51:01]: The error for like language model, the longer the better. But for humans, that will make them very nervous and very tired, right? But I guess the point is more like, maybe we should try to find a co-optimized common ground as much as possible. And then if we have divergence, then we should try to diverge. But it's more philosophical now.Alessio [00:51:19]: But I think like part of it is like how you use it. So Google invented the PageRank because ideally you only click on one link, you know, like the top three should have the answer. But with models, it's like, well, you can get 20. So those searches are more like semantic grouping in a way. It's like for this query, I'll return you like 20, 30 things that are kind of good, you know? So it's less about ranking and it's more about grouping.Shunyu [00:51:42]: Another fundamental thing about HCI is the difference between human and machine's kind of memory limit, right? So I think what's really interesting about this concept HCI versus HCI is interfaces that's optimized for them. You can kind of understand some of the fundamental characteristics, differences of humans and machines, right? Why, you know, if you look at find or whatever terminal command, you know, you can only look at one thing at a time or that's because we have a very small working memory. You can only deal with one thing at a time. You can only look at one paragraph of text at the same time. So the interface for us is by design, you know, a small piece of information, but more temporal steps. But for machines, that should be the opposite, right? You should just give them a hundred different results and they should just decide in context what's the most relevant stuff and trade off the context for temporal steps. That's actually also better for language models because like the cost is smaller or whatever. So it's interesting to connect those interfaces to the fundamental kind of differences of those.Harrison [00:52:43]: When you said earlier, you know, we should try to design these to maybe be similar as possible and diverge if we need to.Swyx [00:52:49]: I actually don't have a problem with them diverging nowHarrison [00:52:51]: and seeing venture-backed startups emerging now because we are different from machines code AI. And it's just so early on, like they may still look kind of similar and they may still be small differences, but it's still just so early. And I think we'll only discover more ways that they differ. And so I'm totally fine with them kind of like diverging earlySwyx [00:53:10]: and optimizing for the...Harrison [00:53:11]: I agree. I think it's more like, you know,Shunyu [00:53:14]: we should obviously try to optimize human interface just for humans. We're already doing that for 50 years. We should optimize agent interface just for agents, but we might also try to co-optimize both and see how far we can get. There's enough people to try all three directions. Yeah.Swyx [00:53:31]: There's a thesis I sometimes push, which is the sour lesson as opposed to the bitter lesson, which we're always inspired by human development, but actually AI develops its own path.Shunyu [00:53:40]: Right. We need to understand better, you know, what are the fundamental differences between those creatures.Swyx [00:53:45]: It's funny when really early on this pod, you were like, how much grounding do you have in cognitive development and human brain stuff? And I'm like

The Double Shot
Quickshots Q&A #167

The Double Shot

Play Episode Listen Later Sep 12, 2024 6:21


- Do you think the Melbourne market will pick up? - How much should property mangers generally receive each month?  - What effect will today's GPD figures have on interest rates?   Get in touch jamesf@jlf.com.au | mitchells@jlf.com.au All views and opinions discussed are that of the hosts. They do not endorse reliability or accuracy of their information. Not for commercial use. 

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Thank you for 1m downloads of the podcast and 2m readers of the Substack!

united states god ceo american new york world australia english google ai apple vision voice talk americans san francisco new york times research war chinese rich australian data market european union search microsoft italian holy new zealand drop south iphone illinois selling irish code ladies chatgpt supreme court missouri memory valley os atlantic whatsapp software washington post reddit wars cloud singapore midwest philippines indonesia laugh ios scottish intelligence new yorker context mark zuckerberg scaling architecture uma oracle stopping snap bloomberg cto substack malaysia vc iq similar whispers adapt ipo determine southeast asia fireworks optimizing openai gemini residence laughing gdp gateway fusion nvidia nah acknowledge hardware financial times chess api document av wang frontier chrome blank verge 10k mojo scarlett johansson winds vertical gpt ftc gorilla nexus ml aws lama boston marathon llama small talk goldman mandarin apis bedtime ruler great lakes consensus nome amd synthetic tt frameworks band aids romain chameleons nano biases ids opus hirsch weights sam altman chai llm ops mamba skynet colbert gpu gg pdfs crowdstrike venn google chrome gnome 5b modular soit skyfall soc mozilla zuck wix cuz nama kv haiku imo rag vespa rudyard kipling gpus sonnets golden gate bridge 7b quadrants benchmarking sdks ilya irobot ccs perplexity lambda san fernando valley alessio lightspeed asics anthropic lms crackle stack overflow scarjo little italy noose 8b restful economically lex fridman cpus malay shutterstock riaa asic suno mistral inflection gcp opex tts superintelligence vertex a16z multimodal latency ozymandias larry ellison observability datadog olympiads gradient proxies asr icm baits drop zone rpc devrel mimicry netlify etched ai news cloud platforms gpc temasek sandbagging jamba eclair gbt gpd apple notes augments character ai exa neurips li bai ai engineer huggingface george hotz harvard yard singlish entropic gbd code interpreter icml phy ml ops ai winter crosstrek martin casado technium latent space johnny ive numina inprint sohu i okay
Financial Revelations
Smoke and Mirrors

Financial Revelations

Play Episode Listen Later Jul 25, 2024 16:35


The market opened a little low this morning but is already back into the green. David gives some insight on how he handles a down market. What a crazy month in Politics! David warns: Do not be deceived by the GPD news that came out for the quarter. 2.8% sounds nice but most new hires were in the government sector and more jobs were part time and not full time positions. As always you can listen to David on WCRF Cleveland 103.3 every Thursday from 8AM - 9AM or on the Moody Radio App. Email any financial questions to Kory@epsf.com Twitter @skibucks1 For more information on the Amazon well drill, please visit: https://nativosusa.org https://www.gofundme.com

TẠP CHÍ KINH TẾ
Bất ổn chính trị vẫn là mối lo của các doanh nghiệp Pháp

TẠP CHÍ KINH TẾ

Play Episode Listen Later Jul 9, 2024 9:19


Trong ba tuần cuối tháng Sáu, quyết định giải tán Quốc Hội cuốn trôi « ba tháng tăng trưởng » của nước Pháp. Kết thúc hai vòng bầu cử Quốc Hội, toàn cảnh chính trị Pháp vẫn trong một vùng sương mù và đó là điều các chủ doanh nghiệp và giới đầu tư tối kỵ. Giới đầu tư và doanh nghiệp không an tâm trước nguy cơ bất ổn chính trị kéo dài, trước khả năng các chương trình cải tổ của nước Pháp để đem lại tăng trưởng, lấy lại cân bằng trong cán cân chi tiêu của nhà nước, giảm nợ công có nguy cơ bị chựng lại. Nhưng không mấy ai tin vào tính khả thi và hiệu quả từ những hứa hẹn trong cương lĩnh tranh cử của cánh tả.Với kết quả vòng hai bầu cử Quốc Hội Pháp hôm 07/07/2024 Pháp đã đẩy lùi « kịch bản xấu nhất », nghĩa là quyền lực thuộc về tay một đảng bài ngoại, chống đối mọi chính sách kinh tế của Liên Âu mà Pháp là một trong hai đầu tàu quan trọng nhất.Nhưng việc Quốc Hội mới có ba khối lớn với tương quan lực lượng khá ngang nhau và không một phe nào giành được đa số tuyệt đối để điều hành đất nước đặt ra nghi vấn về khả năng đàm phán giữa các đảng phái để tìm ra đồng thuận.« Wait and See »Ba lực lượng chủ chốt ở Quốc Hội Pháp sắp tới gồm đảng cực hữu Tập Hợp Dân Tộc RN, cánh trung với liên minh Đồng Hành Ensemble và liên minh cánh tả Mặt Trận Bình Dân Mới NFP. Khối này có nhiều dân biểuhơn cả, nhưng lại không đồng nhất, bao gồm bốn thành phần (đảng Xanh EELV, đảng Xã Hội PS, đảng Cộng Sản PCF và đảng cực tả Nước Pháp Bất Khuất LFI). Với bức tranh chính trị này các bên thương lượng được với nhau để thành lập chính phủ đòi hỏi thời gian. Sau này, tìm được đồng thuận ở Quốc Hội để thông qua các dự luật sẽ luôn đòi hỏi sức thuyết phục cao của mỗi bên. Trong mắt các doanh nghiệp, sự bấp bênh về mặt chính trị này kềm hãm một số chương trình đầu tư và các dự án tuyển dụng thêm lao động. Trả lời đài phát thanh tư nhân Radio Classique sau kết quả bầu cử Quốc Hội Pháp vòng 2 hôm 08/07/2024, Jean - Eudes du Mesnil, tổng thư ký Liên Đoàn Các Doanh Nghiệp Vừa và Nhỏ CPME không che giấu mối lo ngại « Hiện tại chúng ta đang đứng trước một tình huống bất định. Câu hỏi lớn là phe nào sẽ lên điều hành đất nước. Các doanh nghiệp, từ khi có tin giải tán Quốc Hội, đã dừng các dự án đầu tư, đình chỉ các kế hoạch tuyển dụng thêm nhân viên. Vấn đề đặt ra là nội các mới có đủ sức thuyết phục, để giới doanh nhân tin tưởng trở lại vào tương lai, để thúc đẩy trở lại các dự án đang bị tạm ngừng hay không. Các doanh nghiệp vừa và nhỏ hiện đã trong tình thế khó khăn. So với cùng thời kỳ năm ngoái, hiện đã có thêm 18 % các doanh nghiệp vừa và nhỏ phá sản. Trên trang mạng tìm việc làm Hellowork, trong hồi tháng 5/2024, trong 1 tháng nhu cầu tuyển dụng nhân viên tăng 15 %. Dưới tác động bầu cử, bước sang tháng 6/2024 nhu cầu tuyển người giảm đi mất 5 %. Điều đó chứng tỏ là giới chủ lo lắng và họ đợi xem rằng đường lối kinh tế của Pháp sắp tới đây sẽ ra sao ».Niềm tin, bàn tay vô hình điều khiển kinh tế Xavier Jaravel trường kinh tế London School of Economics cũng cho rằng « các hoạt động ở Pháp trong thời gian vừa qua gần như bị « đóng băng » thậm chí một số lĩnh vực đã bị « thụt lùi ». Chỉ số PMI đo lường sức năng động trong ngành công nghiệp của Pháp trong tháng 6 tuột dốc so với một tháng trước đó. Đầu tháng 6/2024 Viện Thống Kê Quốc Gia Pháp báo động chỉ số tin tưởng của các hộ gia đình đã rơi xuống mức còn chưa đầy 90 điểm, tương đương với thời kỳ Pháp phải đối mặt với đại dịch Covid trong nữa đầu năm 2020.Nhu cầu cấp bách về một chính sách kinh tế rõ ràngVào lúc tổng thống Emmanuel Macron vẫn giữ thủ tướng Gabriel Attal tiếp tục điều hành đất nước cho đến khi Quốc Hội mới được định hình để có thể thành lập chính phủ, thì các doanh nhân đang có rất nhiều câu hỏi cần nhanh chóng được giải đáp.Câu hỏi đầu tiên chính sách kinh tế của Pháp sắp tới đây có cho phép đem lại tăng trưởng và giúp người dân đủ tự tin để tiếp tục tiêu thụ hay không ? Đây là chìa khóa cho phép các chủ doanh nghiệp khởi động lại các dự án đầu tư và đủ tự tin để tuyển dụng thêm nhân công.Liên minh cánh tả NFP đã về đầu trong cuộc bầu cử Quốc Hội vừa qua. Ẩn số thứ hai là tập hợp này sẽ có áp dụng chính sách « hào phóng » hứa hẹn tăng lương, tăng sức mua cho người lao động, dẹp bỏ những cải tổ về bảo hiểm thất nghiệp, về tuổi hưu trí hay không.NFP chủ trương tăng lương và bơm thêm sức mua cho người dân, tăng lương tối thiểu lên thành 1.600 euro thay vì 1.398 euro như hiện tại, bơm thêm 25 tỷ euro cho người lao động để kích cầu. Vẫn tổng thư ký Liên Đoàn Các Doanh Nghiệp Vừa và Nhỏ CPME Jean -Eudes du Mesnil phân tích về gánh nặng cho các doanh nghiệp nếu chính phủ mới áp dụng biện pháp này. « Đội mức lương tối thiểu lên thành 1.600 euro, có nghĩa là ngay lập tức tăng thêm 15 % lương cho nhân viên. Trong một số lĩnh vực thuộc diện nhọc nhằn, người lao động được hưởng quy chế làm việc có 32 giờ một tuần, với điều khoản tăng lương tối thiểu vừa nêu, đồng nghĩa với việc giới chủ tăng lương đến 25 % cho nhân viên. Có bao nhiêu doanh nghiệp vừa và nhỏ đủ sức chịu được khoản chi tiêu phụ trội đó ? Trước cuộc bầu cử Quốc Hội, nghiệp đoàn của chúng tôi đã thực hiện một cuộc thăm dò về điều khoản tăng lương tối thiểu lên thành 1.600 euro như đề xuất của Mặt Trận Bình Dân Mới NFP. Kết quả cho thấy là 14 % sẽ phải đóng cửa vĩnh viễn, 27 % những người được hỏi báo trước là sẽ phải sa thải một phần nhân viên và 50 % dự trù sẽ tăng giá các sản phẩm thành, hay tăng giá các dịch vụ cung cấp. Trong điều kiện đó, mục đích tăng lương để bơm thêm mãi lực cho người dân có hiệu quả hay không ? Thực tế có thể hoàn toàn khác với những tính toán ban đầu ». Tăng mức lương tối thiểu : Lợi bất cập hạiNếu giới sản xuất phải tăng giá thành, đâu đó người tiêu dùng sẽ phải hứng chịu hậu quả từ biện pháp tăng lương cho người lao động. Vật giá leo thang, hàng của Pháp đắt hơn so với của các đối tác thương mại trong và ngoài khối euro. Cán cân thương mại lại càng bị thâm hụt.Hơn nữa trong đề xuất, NFP quên mất rằng, trong thế giới mở rộng hiện tại, nhiều doanh nghiệp có thể di dời cơ sở sản xuất sang những nơi có nhân công rẻ, có thể mở thêm nhà máy ở nước ngoài, tức sẽ không tạo công việc làm cho dân Pháp, ngừng các chương trình đầu tư trên đất Pháp, khi đó thì tính toán « tăng sức mua cho người lao động Pháp » như trong chương trình của liên minh cánh tả có còn hiệu quả nữa hay không và có lợi cho người lao động với thu nhập thấp – lương tối thiếu,  nếu như Pháp không còn các nhà máy sản xuất ?Paris vẫn là một bãi đáp an toàn ?Song một chỉ dấu quan trọng đó là trong hai ngày vừa qua, sàn chứng khoán của Pháp đã khá ổn định, đồng euro cũng không hề bị sụt giá. Theo giới phân tích, bên cạnh những hoài nghi về tính thực tế của chương trình kinh tế bên cánh tả đề xuất, các nhà đầu tư cũng tin vào tính linh hoạt của một số các nhân vật chủ chốt trong Mặt Trận Bình Dân Mới. Đảng cực tả Nước Pháp Bất Khuất chỉ là một trong bốn thành viên của NFP nên bắt buộc phải thương lượng và nhượng bộ. Điều đó cũng có nghĩa là không dễ để NFP bơm thêm sức mua cho người dân, hay xóa bỏ luật cải cách các chế độ hưu bổng, cải cách bảo hiểm thất nghiệp mà ba đời thủ tướng Borne, Castex hay Philippe đã thông qua từ 2017 đến nay.  Tuy nhiên, trước mắt, Pascal Cagni, điều hành quỹ đầu tư C4Industries được báo Le Monde (04/07/2024) trích dẫn cho biết các dự án đầu tư vào Pháp có phần chựng lại nhưng chưa một kế hoạch nào bị « hủy bỏ ». Mới trung tuần tháng 5 vừa qua, một thăm dò của cơ quan tư vấn Ernest&Young cho thấy trong 5 năm liền Pháp là điểm đến « số1 » tại châu Âu, hơn hẳn Anh hay Đức. Tại diễn đàn Choose France tổ chức tại lâu đài Versailles, Pháp thu hút gần 15 tỷ euro đầu tư trực tiép nước ngoài, trong đó có nhiều hợp đồng với nhữung tên tuổi lớn trên thế giới từ như Amazon, Pfizer hay Microsoft.  Hiển nhiên như Antoine Moyroud, thuộc quỹ đầu tư Lightspeed Venture Parteners đánh giá « bất ổn chính trị có thể làm ảnh hưởng đến tình trạng tài chính của một quốc gia, làm xáo trộn kinh tế và điều đó sẽ khiến nước Pháp trở nên kém hấp dẫn hơn ».Lo ngại về nợ công trong lúc tình hình đã không mấy sáng sủaThêm một mối lo ngại khác liên quan đến trực tiếp đến tình trạng nợ nần của nước Pháp. Trong quý một năm nay, nợ công của Pháp lên tới 3.159 tỷ euro, tương đương với 110 % GPD. Thâm hụt ngân sách của nước Pháp cũng đã vượt quá xa so với quy định của khối sử dụng đồng tiền chung châu Âu. Paris đã bị Bruxelles và các cơ quan thẩm định tài chính quốc tế nhắc nhở rằng, đã đến lúc phải thận trọng hơn về ngân sách. Bộ trưởng Kinh Tế và Tài Chính sắp mãn nhiệm đã liên tục thông báo cắt giảm chi tiêu 10, rồi thậm chí là 20 tỷ euro trong ngân sách để thu hẹp bội chi. Do vậy chính phủ mới trong tay một liên minh cánh tả làm thế nào để tài trợ những chương trình mang tính xã hội nhưng lại tốn kém họ đã đề xuất ?Nhiệm vụ của chính phủ sắp tới lại càng khó khăn hơn khi biết rằng, có nhiều báo động kinh tế Pháp đã bắt đầu « bước vào giai đoạn sóng gió ». Ngân Hàng Trung Ương Pháp e rằng mục tiêu GDP tăng 1 % trong năm nay sẽ « khó hoàn thành ».

The Opperman Report
Angie Solomon - Justice For Grant

The Opperman Report

Play Episode Listen Later Jun 23, 2024 53:47


Angie Solomon joins Ed Opperman to talk about a mysterious death - the death of her son, Grant. The circumstances have never been fully explained.On July 20, 2020, Grant Solomon was tragically killed in a still unexplained incident in Gallatin, Tennessee.His father, with whom he had a volatile relationship, was the only witness. Aaron Solomon claims he saw Grant exit the truck, but then looked away, and the next thing he sees is the truck rolling into the ditch. Neither evidence at the scene nor Grant's injuries match the account Aaron gave GPD, who took his word for it and closed the case.To add insult to injury, Grant's family have accused a Tennessee funeral home of breaking his ankles and discarding the clothes he was wearing on the day of the crash.Grant's mother, Angie Solomon, said she saw her son's feet were contorted during a private family viewing at Williamson Memorial Funeral Home after asking for the lower portion of his mahogany-colored casket to be opened.She said she 'almost fainted' when she looked inside. Hospital records show his ankles had been uninjured in the crash.WebsiteTwitterGo Fund Me (Autopsy for Grant)Go Fund Me (Gracie)Become a supporter of this podcast: https://www.spreaker.com/podcast/the-opperman-report--1198501/support.

Daily Tech Headlines
Google Search API Leak Has SEO Experts Weighing In – DTH

Daily Tech Headlines

Play Episode Listen Later May 29, 2024


Google announces Fitbit Ace LTE for kids, Copilot for Telegram is now in beta, GPD gets into the foldable laptop game. MP3 Please SUBSCRIBE HERE. You can get an ad-free feed of Daily Tech Headlines for $3 a month here. A special thanks to all our supporters–without you, none of this would be possible. BigContinue reading "Google Search API Leak Has SEO Experts Weighing In – DTH"

雪球·财经有深度
2492.央行买国债,大放水时代来临?

雪球·财经有深度

Play Episode Listen Later May 2, 2024 7:25


欢迎收听雪球和喜马拉雅联合出品的财经有深度雪球国内领先的集投资交流交易一体的综合财富管理平台,聪明的投资者都在这里。听众朋友们大家好我是主播匪石,今天分享的内容叫央行买国债,大放水时代来临?来自鹰眼看风。量化宽松最早是在日本实施的。上个世纪日本被美国收割后,陷入了严重的通缩,造成了“失去的30年”。为了托住经济,日本启动了YCC政策,国家在二级市场巨量买入国债,用来压制利率,买国债的钱绝大部分就是央行印出来的。这就是量化宽松政策了。直白地说,就是日本人可以以接近于0利率从银行借钱出来投资创业。可以说,这是极度激进的经济刺激政策,就这样日本的GDP还是起不来。相比之下,我们常常惊呼为惊天利好的降息1%,啥也不是。结果就是日本国债规模/GDP达到了惊人的250%(第三的中国只有50%左右),而且日本央行持有债券比重,已经接近80%了。而最终买单的还会是日本人,如今日元已经贬值到158了,十年里,日元已经被腰斩。去年开始,日本人要难过了,十年里工资没涨,但是很多货物价格却已经飙升几倍。不仅仅日本,为了买国债,央行的负债率都越来越高。美联储从9千亿美元直接飙升至9万亿美元,欧央行从1.3万亿欧元飙升至8.8万亿欧元,日本央行从110万亿日元飙升至760万亿日元。短短十来年,欧美日央行的资产负债表规模飙升了7倍-10倍。都是负债累累,为了还债,要么省吃俭用,要么货币贬值稀释债务。只有美国貌似有点点通过科技革命提升生产力来消化负债的可能。中国也要量化宽松?4月23日,财政部和央行发文支持央行在公开市场操作中买卖国债,此举引起轩然大波。难道中国也要学习美国、日本开启量化宽松?先说下央行是怎么买国债的。以买入举例,我国央行在债券交易市场中,买入国债并持有。产生的结果就是:央行获得国债,付出货币,原持债券人得到货币。由于央行是货币的提供者,所以央行买入会导致市场的货币供应量,也就是大家常常理解的向市场上“放水”撒钱。需要注意,这个动作并不是单向的,可以买也可以卖。而央行如果卖出国债,那就是向市场上缩水收“钱”,整个社会的银根会变紧。中国也曾经以印钱买债的方式向市场注入流动性,但产生了非常严重的后果。94年,通货膨胀爆发,物价飞涨,CPI达到了27%,比去年美国最严重的时候(9%)还严重3倍。此后,国家制定了法律,禁止央行直接购买国债。那现在怎么能买了?法律改了?法律没改,只是买国债要分场合。法律规定的是央行不能在一级市场直接认购普通国债,但是在二级市场上买卖,或者买特别国债是可以的。简单理解就是,新房不能买,只能买二手的。央行现在持有的国债只有1.5万亿,其中1.35万亿都是在07年发行的。而07年那次的发行,其实就是国家现在说要进行的二级市场购买。国家发行了1.55万亿特别国债,财政部向农行发行特别国债,农行再把国债卖给央行,获得资金拿来购买外汇向中投公司注资。国家为啥要发国债呢?当然是缺钱了。现在,地方债也好、房地产企业债也好、救A股也好、支持高端制造也好,都缺钱,需要通过发债来筹集资金。比如现在国家要搞房子、车子、家电以旧换新,需要2万亿用来做补贴,财政部就可以发2万亿的国债拿到2万亿的资金。启到的效果就是,国家欠的钱多了2万亿,但是买房、买车、买家电的多了,经济更活跃了。现在,财政部和央行都表态要增加国债买卖。所以,很多人就开始吹要大放水刺激经济了。尤其中介,开始吹货币要宽松了,房价又要起飞了。貌似如此,实则不然,断章取义了。真正的目的财政部和央行的表态中有两个点说明,至少近期央行增加国债买卖不是要量化宽松。第一,他们说的是增加买卖,是双向的,可以买也可以卖。而美日的量化宽松里,都是单向买入的。美日量化宽松是在其他货币政策不起作用了才被迫进行的,中国当前货币政策调控仍有其他手段可用,比如降息降准。第二,他们说这些的背景是国债利率持续下行。国家觉得这不符合逻辑。通常一个国家的国债,利率应该接近于国家的GDP。买国债就是买这个国家,这个国家一年能增值多少大概和这个国家GDP的增长应该是匹配的。也就是说,当我们国家的GDP增长是5%的时候,国债利率也应该趋近于5%。现在是,国债抢的人太多,也就是想买的人太多,相互压价导致国债收益率持续下跌掉到了2.5%左右。这是不对的。国家增加国债买卖的意思是,你们这些银行保险等等机构,别买国债了,把钱投入到实体经济去,哪怕是投资股市也别来买国债了。将来,央行还会下场卖国债,提升国债供应。奇怪吧,这个视角一看,那是什么量化宽松,完全就是相反的操作,这是喊话可能收缩呀。所以,看消息得看全。所以当市场误解要宽松的时候,主流媒体就纷纷发生否认了。央行买卖国债的第一个目的,就是调控国债利率。进一步定价人民币资产。而第二个目的,则是增加货币调控能力。国家确实也缺钱,现有的各种各种财政调控手段,比如降息降准,虽然还有一定空间,但是实际效果确实不太好。如今,国内经济确实困难,地方债、房企、A股、高端制造都在危险且关键的时期,中美金融战仍然打得焦灼,中国需要增加更多地货币政策工具,以备不时之需。央行通过二级市场买卖国债,提升国债作用和流动性,可以更好地调控全国金融市场,包括利率、资产定价、资产储备等。风险端看,虽然短期我们是为了调控利率,增强调控能力。然而,这也是为了下一步的政府国债发行奠定了基础,用以支持政府的赤字融资。这也打开了潘多拉的魔盒。央行资产负债表近年急剧膨胀,并创历史新高。货币框架调整的同时,希望国家做好配套的监管。发国债一定要有正当目的,有节制,且有使用过程严格监管。中美这场世纪博弈,美国展现了疲态,中国似乎有了更进一步的机会。货币架构的调整表明我们可以向新的世界秩序更进一步了。而外资流入A股港股,则是因为美国GPD只有1.5%有些扛不住了,一些资金开始押注中国。最近局势有些出乎意料的向好,冷静地持续观察,财富的机会也许不远。具体到央行买国债,我们要关注国债发行的量、发行的目的、央行买卖的比例等等。然后才能评估是宽松还是收缩,还是定向刺激。

The Opperman Report
Angie Solomon - Justice For Grant

The Opperman Report

Play Episode Listen Later Apr 20, 2024 53:47


Angie Solomon - Justice For Grant2 days agoAngie Solomon joins Ed Opperman to talk about a mysterious death - the death of her son, Grant. The circumstances have never been fully explained.On July 20, 2020, Grant Solomon was tragically killed in a still unexplained incident in Gallatin, Tennessee.His father, with whom he had a volatile relationship, was the only witness. Aaron Solomon claims he saw Grant exit the truck, but then looked away, and the next thing he sees is the truck rolling into the ditch. Neither evidence at the scene nor Grant's injuries match the account Aaron gave GPD, who took his word for it and closed the case.To add insult to injury, Grant's family have accused a Tennessee funeral home of breaking his ankles and discarding the clothes he was wearing on the day of the crash.Grant's mother, Angie Solomon, said she saw her son's feet were contorted during a private family viewing at Williamson Memorial Funeral Home after asking for the lower portion of his mahogany-colored casket to be opened. She said she 'almost fainted' when she looked inside. Hospital records show his ankles had been uninjured in the crash.WebsiteTwitterGo Fund MeGo Fund MeBecome a supporter of this podcast: https://www.spreaker.com/podcast/the-opperman-report--1198501/support.

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

We are reuniting for the 2nd AI UX demo day in SF on Apr 28. Sign up to demo here! And don't forget tickets for the AI Engineer World's Fair — for early birds who join before keynote announcements!About a year ago there was a lot of buzz around prompt engineering techniques to force structured output. Our friend Simon Willison tweeted a bunch of tips and tricks, but the most iconic one is Riley Goodside making it a matter of life or death:Guardrails (friend of the pod and AI Engineer speaker), Marvin (AI Engineer speaker), and jsonformer had also come out at the time. In June 2023, Jason Liu (today's guest!) open sourced his “OpenAI Function Call and Pydantic Integration Module”, now known as Instructor, which quickly turned prompt engineering black magic into a clean, developer-friendly SDK. A few months later, model providers started to add function calling capabilities to their APIs as well as structured outputs support like “JSON Mode”, which was announced at OpenAI Dev Day (see recap here). In just a handful of months, we went from threatening to kill grandmas to first-class support from the research labs. And yet, Instructor was still downloaded 150,000 times last month. Why?What Instructor looks likeInstructor patches your LLM provider SDKs to offer a new response_model option to which you can pass a structure defined in Pydantic. It currently supports OpenAI, Anthropic, Cohere, and a long tail of models through LiteLLM.What Instructor is forThere are three core use cases to Instructor:* Extracting structured data: Taking an input like an image of a receipt and extracting structured data from it, such as a list of checkout items with their prices, fees, and coupon codes.* Extracting graphs: Identifying nodes and edges in a given input to extract complex entities and their relationships. For example, extracting relationships between characters in a story or dependencies between tasks.* Query understanding: Defining a schema for an API call and using a language model to resolve a request into a more complex one that an embedding could not handle. For example, creating date intervals from queries like “what was the latest thing that happened this week?” to then pass onto a RAG system or similar.Jason called all these different ways of getting data from LLMs “typed responses”: taking strings and turning them into data structures. Structured outputs as a planning toolThe first wave of agents was all about open-ended iteration and planning, with projects like AutoGPT and BabyAGI. Models would come up with a possible list of steps, and start going down the list one by one. It's really easy for them to go down the wrong branch, or get stuck on a single step with no way to intervene.What if these planning steps were returned to us as DAGs using structured output, and then managed as workflows? This also makes it easy to better train model on how to create these plans, as they are much more structured than a bullet point list. Once you have this structure, each piece can be modified individually by different specialized models. You can read some of Jason's experiments here:While LLMs will keep improving (Llama3 just got released as we write this), having a consistent structure for the output will make it a lot easier to swap models in and out. Jason's overall message on how we can move from ReAct loops to more controllable Agent workflows mirrors the “Process” discussion from our Elicit episode:Watch the talkAs a bonus, here's Jason's talk from last year's AI Engineer Summit. He'll also be a speaker at this year's AI Engineer World's Fair!Timestamps* [00:00:00] Introductions* [00:02:23] Early experiments with Generative AI at StitchFix* [00:08:11] Design philosophy behind the Instructor library* [00:11:12] JSON Mode vs Function Calling* [00:12:30] Single vs parallel function calling* [00:14:00] How many functions is too many?* [00:17:39] How to evaluate function calling* [00:20:23] What is Instructor good for?* [00:22:42] The Evolution from Looping to Workflow in AI Engineering* [00:27:03] State of the AI Engineering Stack* [00:28:26] Why Instructor isn't VC backed* [00:31:15] Advice on Pursuing Open Source Projects and Consulting* [00:36:00] The Concept of High Agency and Its Importance* [00:42:44] Prompts as Code and the Structure of AI Inputs and Outputs* [00:44:20] The Emergence of AI Engineering as a Distinct FieldShow notes* Jason on the UWaterloo mafia* Jason on Twitter, LinkedIn, website* Instructor docs* Max Woolf on the potential of Structured Output* swyx on Elo vs Cost* Jason on Anthropic Function Calling* Jason on Rejections, Advice to Young People* Jason on Bad Startup Ideas* Jason on Prompts as Code* Rysana's inversion models* Bryan Bischof's episode* Hamel HusainTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:16]: Hello, we're back in the remote studio with Jason Liu from Instructor. Welcome Jason.Jason [00:00:21]: Hey there. Thanks for having me.Swyx [00:00:23]: Jason, you are extremely famous, so I don't know what I'm going to do introducing you, but you're one of the Waterloo clan. There's like this small cadre of you that's just completely dominating machine learning. Actually, can you list like Waterloo alums that you're like, you know, are just dominating and crushing it right now?Jason [00:00:39]: So like John from like Rysana is doing his inversion models, right? I know like Clive Chen from Waterloo. When I started the data science club, he was one of the guys who were like joining in and just like hanging out in the room. And now he was at Tesla working with Karpathy, now he's at OpenAI, you know.Swyx [00:00:56]: He's in my climbing club.Jason [00:00:58]: Oh, hell yeah. I haven't seen him in like six years now.Swyx [00:01:01]: To get in the social scene in San Francisco, you have to climb. So both in career and in rocks. So you started a data science club at Waterloo, we can talk about that, but then also spent five years at Stitch Fix as an MLE. You pioneered the use of OpenAI's LLMs to increase stylist efficiency. So you must have been like a very, very early user. This was like pretty early on.Jason [00:01:20]: Yeah, I mean, this was like GPT-3, okay. So we actually were using transformers at Stitch Fix before the GPT-3 model. So we were just using transformers for recommendation systems. At that time, I was very skeptical of transformers. I was like, why do we need all this infrastructure? We can just use like matrix factorization. When GPT-2 came out, I fine tuned my own GPT-2 to write like rap lyrics and I was like, okay, this is cute. Okay, I got to go back to my real job, right? Like who cares if I can write a rap lyric? When GPT-3 came out, again, I was very much like, why are we using like a post request to review every comment a person leaves? Like we can just use classical models. So I was very against language models for like the longest time. And then when ChatGPT came out, I basically just wrote a long apology letter to everyone at the company. I was like, hey guys, you know, I was very dismissive of some of this technology. I didn't think it would scale well, and I am wrong. This is incredible. And I immediately just transitioned to go from computer vision recommendation systems to LLMs. But funny enough, now that we have RAG, we're kind of going back to recommendation systems.Swyx [00:02:21]: Yeah, speaking of that, I think Alessio is going to bring up the next one.Alessio [00:02:23]: Yeah, I was going to say, we had Bryan Bischof from Hex on the podcast. Did you overlap at Stitch Fix?Jason [00:02:28]: Yeah, he was like one of my main users of the recommendation frameworks that I had built out at Stitch Fix.Alessio [00:02:32]: Yeah, we talked a lot about RecSys, so it makes sense.Swyx [00:02:36]: So now I have adopted that line, RAG is RecSys. And you know, if you're trying to reinvent new concepts, you should study RecSys first, because you're going to independently reinvent a lot of concepts. So your system was called Flight. It's a recommendation framework with over 80% adoption, servicing 350 million requests every day. Wasn't there something existing at Stitch Fix? Why did you have to write one from scratch?Jason [00:02:56]: No, so I think because at Stitch Fix, a lot of the machine learning engineers and data scientists were writing production code, sort of every team's systems were very bespoke. It's like, this team only needs to do like real time recommendations with small data. So they just have like a fast API app with some like pandas code. This other team has to do a lot more data. So they have some kind of like Spark job that does some batch ETL that does a recommendation. And so what happens is each team writes their code differently. And I have to come in and refactor their code. And I was like, oh man, I'm refactoring four different code bases, four different times. Wouldn't it be better if all the code quality was my fault? Let me just write this framework, force everyone else to use it. And now one person can maintain five different systems, rather than five teams having their own bespoke system. And so it was really a need of just sort of standardizing everything. And then once you do that, you can do observability across the entire pipeline and make large sweeping improvements in this infrastructure, right? If we notice that something is slow, we can detect it on the operator layer. Just hey, hey, like this team, you guys are doing this operation is lowering our latency by like 30%. If you just optimize your Python code here, we can probably make an extra million dollars. So let's jump on a call and figure this out. And then a lot of it was doing all this observability work to figure out what the heck is going on and optimize this system from not only just a code perspective, sort of like harassingly or against saying like, we need to add caching here. We're doing duplicated work here. Let's go clean up the systems. Yep.Swyx [00:04:22]: Got it. One more system that I'm interested in finding out more about is your similarity search system using Clip and GPT-3 embeddings and FIASS, where you saved over $50 million in annual revenue. So of course they all gave all that to you, right?Jason [00:04:34]: No, no, no. I mean, it's not going up and down, but you know, I got a little bit, so I'm pretty happy about that. But there, you know, that was when we were doing fine tuning like ResNets to do image classification. And so a lot of it was given an image, if we could predict the different attributes we have in the merchandising and we can predict the text embeddings of the comments, then we can kind of build a image vector or image embedding that can capture both descriptions of the clothing and sales of the clothing. And then we would use these additional vectors to augment our recommendation system. And so with the recommendation system really was just around like, what are similar items? What are complimentary items? What are items that you would wear in a single outfit? And being able to say on a product page, let me show you like 15, 20 more things. And then what we found was like, hey, when you turn that on, you make a bunch of money.Swyx [00:05:23]: Yeah. So, okay. So you didn't actually use GPT-3 embeddings. You fine tuned your own? Because I was surprised that GPT-3 worked off the shelf.Jason [00:05:30]: Because I mean, at this point we would have 3 million pieces of inventory over like a billion interactions between users and clothes. So any kind of fine tuning would definitely outperform like some off the shelf model.Swyx [00:05:41]: Cool. I'm about to move on from Stitch Fix, but you know, any other like fun stories from the Stitch Fix days that you want to cover?Jason [00:05:46]: No, I think that's basically it. I mean, the biggest one really was the fact that I think for just four years, I was so bearish on language models and just NLP in general. I'm just like, none of this really works. Like, why would I spend time focusing on this? I got to go do the thing that makes money, recommendations, bounding boxes, image classification. Yeah. Now I'm like prompting an image model. I was like, oh man, I was wrong.Swyx [00:06:06]: So my Stitch Fix question would be, you know, I think you have a bit of a drip and I don't, you know, my primary wardrobe is free startup conference t-shirts. Should more technology brothers be using Stitch Fix? What's your fashion advice?Jason [00:06:19]: Oh man, I mean, I'm not a user of Stitch Fix, right? It's like, I enjoy going out and like touching things and putting things on and trying them on. Right. I think Stitch Fix is a place where you kind of go because you want the work offloaded. I really love the clothing I buy where I have to like, when I land in Japan, I'm doing like a 45 minute walk up a giant hill to find this weird denim shop. That's the stuff that really excites me. But I think the bigger thing that's really captured is this idea that narrative matters a lot to human beings. Okay. And I think the recommendation system, that's really hard to capture. It's easy to use AI to sell like a $20 shirt, but it's really hard for AI to sell like a $500 shirt. But people are buying $500 shirts, you know what I mean? There's definitely something that we can't really capture just yet that we probably will figure out how to in the future.Swyx [00:07:07]: Well, it'll probably output in JSON, which is what we're going to turn to next. Then you went on a sabbatical to South Park Commons in New York, which is unusual because it's based on USF.Jason [00:07:17]: Yeah. So basically in 2020, really, I was enjoying working a lot as I was like building a lot of stuff. This is where we were making like the tens of millions of dollars doing stuff. And then I had a hand injury. And so I really couldn't code anymore for like a year, two years. And so I kind of took sort of half of it as medical leave, the other half I became more of like a tech lead, just like making sure the systems were like lights were on. And then when I went to New York, I spent some time there and kind of just like wound down the tech work, you know, did some pottery, did some jujitsu. And after GPD came out, I was like, oh, I clearly need to figure out what is going on here because something feels very magical. I don't understand it. So I spent basically like five months just prompting and playing around with stuff. And then afterwards, it was just my startup friends going like, hey, Jason, you know, my investors want us to have an AI strategy. Can you help us out? And it just snowballed and bore more and more until I was making this my full time job. Yeah, got it.Swyx [00:08:11]: You know, you had YouTube University and a journaling app, you know, a bunch of other explorations. But it seems like the most productive or the best known thing that came out of your time there was Instructor. Yeah.Jason [00:08:22]: Written on the bullet train in Japan. I think at some point, you know, tools like Guardrails and Marvin came out. Those are kind of tools that I use XML and Pytantic to get structured data out. But they really were doing things sort of in the prompt. And these are built with sort of the instruct models in mind. Like I'd already done that in the past. Right. At Stitch Fix, you know, one of the things we did was we would take a request note and turn that into a JSON object that we would use to send it to our search engine. Right. So if you said like, I want to, you know, skinny jeans that were this size, that would turn into JSON that we would send to our internal search APIs. But it always felt kind of gross. A lot of it is just like you read the JSON, you like parse it, you make sure the names are strings and ages are numbers and you do all this like messy stuff. But when function calling came out, it was very much sort of a new way of doing things. Right. Function calling lets you define the schema separate from the data and the instructions. And what this meant was you can kind of have a lot more complex schemas and just map them in Pytantic. And then you can just keep those very separate. And then once you add like methods, you can add validators and all that kind of stuff. The one thing I really had with a lot of these libraries, though, was it was doing a lot of the string formatting themselves, which was fine when it was the instruction to models. You just have a string. But when you have these new chat models, you have these chat messages. And I just didn't really feel like not being able to access that for the developer was sort of a good benefit that they would get. And so I just said, let me write like the most simple SDK around the OpenAI SDK, a simple wrapper on the SDK, just handle the response model a bit and kind of think of myself more like requests than actual framework that people can use. And so the goal is like, hey, like this is something that you can use to build your own framework. But let me just do all the boring stuff that nobody really wants to do. People want to build their own frameworks, but people don't want to build like JSON parsing.Swyx [00:10:08]: And the retrying and all that other stuff.Jason [00:10:10]: Yeah.Swyx [00:10:11]: Right. We had this a little bit of this discussion before the show, but like that design principle of going for being requests rather than being Django. Yeah. So what inspires you there? This has come from a lot of prior pain. Are there other open source projects that inspired your philosophy here? Yeah.Jason [00:10:25]: I mean, I think it would be requests, right? Like, I think it is just the obvious thing you install. If you were going to go make HTTP requests in Python, you would obviously import requests. Maybe if you want to do more async work, there's like future tools, but you don't really even think about installing it. And when you do install it, you don't think of it as like, oh, this is a requests app. Right? Like, no, this is just Python. The bigger question is, like, a lot of people ask questions like, oh, why isn't requests like in the standard library? Yeah. That's how I want my library to feel, right? It's like, oh, if you're going to use the LLM SDKs, you're obviously going to install instructor. And then I think the second question would be like, oh, like, how come instructor doesn't just go into OpenAI, go into Anthropic? Like, if that's the conversation we're having, like, that's where I feel like I've succeeded. Yeah. It's like, yeah, so standard, you may as well just have it in the base libraries.Alessio [00:11:12]: And the shape of the request stayed the same, but initially function calling was maybe equal structure outputs for a lot of people. I think now the models also support like JSON mode and some of these things and, you know, return JSON or my grandma is going to die. All of that stuff is maybe to decide how have you seen that evolution? Like maybe what's the metagame today? Should people just forget about function calling for structure outputs or when is structure output like JSON mode the best versus not? We'd love to get any thoughts given that you do this every day.Jason [00:11:42]: Yeah, I would almost say these are like different implementations of like the real thing we care about is the fact that now we have typed responses to language models. And because we have that type response, my IDE is a little bit happier. I get autocomplete. If I'm using the response wrong, there's a little red squiggly line. Like those are the things I care about in terms of whether or not like JSON mode is better. I usually think it's almost worse unless you want to spend less money on like the prompt tokens that the function call represents, primarily because with JSON mode, you don't actually specify the schema. So sure, like JSON load works, but really, I care a lot more than just the fact that it is JSON, right? I think function calling gives you a tool to specify the fact like, okay, this is a list of objects that I want and each object has a name or an age and I want the age to be above zero and I want to make sure it's parsed correctly. That's where kind of function calling really shines.Alessio [00:12:30]: Any thoughts on single versus parallel function calling? So I did a presentation at our AI in Action Discord channel, and obviously showcase instructor. One of the big things that we have before with single function calling is like when you're trying to extract lists, you have to make these funky like properties that are lists to then actually return all the objects. How do you see the hack being put on the developer's plate versus like more of this stuff just getting better in the model? And I know you tweeted recently about Anthropic, for example, you know, some lists are not lists or strings and there's like all of these discrepancies.Jason [00:13:04]: I almost would prefer it if it was always a single function call. Obviously, there is like the agents workflows that, you know, Instructor doesn't really support that well, but are things that, you know, ought to be done, right? Like you could define, I think maybe like 50 or 60 different functions in a single API call. And, you know, if it was like get the weather or turn the lights on or do something else, it makes a lot of sense to have these parallel function calls. But in terms of an extraction workflow, I definitely think it's probably more helpful to have everything be a single schema, right? Just because you can sort of specify relationships between these entities that you can't do in a parallel function calling, you can have a single chain of thought before you generate a list of results. Like there's like small like API differences, right? Where if it's for parallel function calling, if you do one, like again, really, I really care about how the SDK looks and says, okay, do I always return a list of functions or do you just want to have the actual object back out and you want to have like auto complete over that object? Interesting.Alessio [00:14:00]: What's kind of the cap for like how many function definitions you can put in where it still works well? Do you have any sense on that?Jason [00:14:07]: I mean, for the most part, I haven't really had a need to do anything that's more than six or seven different functions. I think in the documentation, they support way more. I don't even know if there's any good evals that have over like two dozen function calls. I think if you're running into issues where you have like 20 or 50 or 60 function calls, I think you're much better having those specifications saved in a vector database and then have them be retrieved, right? So if there are 30 tools, like you should basically be like ranking them and then using the top K to do selection a little bit better rather than just like shoving like 60 functions into a single. Yeah.Swyx [00:14:40]: Yeah. Well, I mean, so I think this is relevant now because previously I think context limits prevented you from having more than a dozen tools anyway. And now that we have million token context windows, you know, a cloud recently with their new function calling release said they can handle over 250 tools, which is insane to me. That's, that's a lot. You're saying like, you know, you don't think there's many people doing that. I think anyone with a sort of agent like platform where you have a bunch of connectors, they wouldn't run into that problem. Probably you're right that they should use a vector database and kind of rag their tools. I know Zapier has like a few thousand, like 8,000, 9,000 connectors that, you know, obviously don't fit anywhere. So yeah, I mean, I think that would be it unless you need some kind of intelligence that chains things together, which is, I think what Alessio is coming back to, right? Like there's this trend about parallel function calling. I don't know what I think about that. Anthropic's version was, I think they use multiple tools in sequence, but they're not in parallel. I haven't explored this at all. I'm just like throwing this open to you as to like, what do you think about all these new things? Yeah.Jason [00:15:40]: It's like, you know, do we assume that all function calls could happen in any order? In which case, like we either can assume that, or we can assume that like things need to happen in some kind of sequence as a DAG, right? But if it's a DAG, really that's just like one JSON object that is the entire DAG rather than going like, okay, the order of the function that return don't matter. That's definitely just not true in practice, right? Like if I have a thing that's like turn the lights on, like unplug the power, and then like turn the toaster on or something like the order doesn't matter. And it's unclear how well you can describe the importance of that reasoning to a language model yet. I mean, I'm sure you can do it with like good enough prompting, but I just haven't any use cases where the function sequence really matters. Yeah.Alessio [00:16:18]: To me, the most interesting thing is the models are better at picking than your ranking is usually. Like I'm incubating a company around system integration. For example, with one system, there are like 780 endpoints. And if you're actually trying to do vector similarity, it's not that good because the people that wrote the specs didn't have in mind making them like semantically apart. You know, they're kind of like, oh, create this, create this, create this. Versus when you give it to a model, like in Opus, you put them all, it's quite good at picking which ones you should actually run. And I'm curious to see if the model providers actually care about some of those workflows or if the agent companies are actually going to build very good rankers to kind of fill that gap.Jason [00:16:58]: Yeah. My money is on the rankers because you can do those so easily, right? You could just say, well, given the embeddings of my search query and the embeddings of the description, I can just train XGBoost and just make sure that I have very high like MRR, which is like mean reciprocal rank. And so the only objective is to make sure that the tools you use are in the top end filtered. Like that feels super straightforward and you don't have to actually figure out how to fine tune a language model to do tool selection anymore. Yeah. I definitely think that's the case because for the most part, I imagine you either have like less than three tools or more than a thousand. I don't know what kind of company said, oh, thank God we only have like 185 tools and this works perfectly, right? That's right.Alessio [00:17:39]: And before we maybe move on just from this, it was interesting to me, you retweeted this thing about Anthropic function calling and it was Joshua Brown's retweeting some benchmark that it's like, oh my God, Anthropic function calling so good. And then you retweeted it and then you tweeted it later and it's like, it's actually not that good. What's your flow? How do you actually test these things? Because obviously the benchmarks are lying, right? Because the benchmarks say it's good and you said it's bad and I trust you more than the benchmark. How do you think about that? And then how do you evolve it over time?Jason [00:18:09]: It's mostly just client data. I actually have been mostly busy with enough client work that I haven't been able to reproduce public benchmarks. And so I can't even share some of the results in Anthropic. I would just say like in production, we have some pretty interesting schemas where it's like iteratively building lists where we're doing like updates of lists, like we're doing in place updates. So like upserts and inserts. And in those situations we're like, oh yeah, we have a bunch of different parsing errors. Numbers are being returned to strings. We were expecting lists of objects, but we're getting strings that are like the strings of JSON, right? So we had to call JSON parse on individual elements. Overall, I'm like super happy with the Anthropic models compared to the OpenAI models. Sonnet is very cost effective. Haiku is in function calling, it's actually better, but I think they just had to sort of file down the edges a little bit where like our tests pass, but then we actually deployed a production. We got half a percent of traffic having issues where if you ask for JSON, it'll try to talk to you. Or if you use function calling, you know, we'll have like a parse error. And so I think that definitely gonna be things that are fixed in like the upcoming weeks. But in terms of like the reasoning capabilities, man, it's hard to beat like 70% cost reduction, especially when you're building consumer applications, right? If you're building something for consultants or private equity, like you're charging $400, it doesn't really matter if it's a dollar or $2. But for consumer apps, it makes products viable. If you can go from four to Sonnet, you might actually be able to price it better. Yeah.Swyx [00:19:31]: I had this chart about the ELO versus the cost of all the models. And you could put trend graphs on each of those things about like, you know, higher ELO equals higher cost, except for Haiku. Haiku kind of just broke the lines, or the ISO ELOs, if you want to call it. Cool. Before we go too far into your opinions on just the overall ecosystem, I want to make sure that we map out the surface area of Instructor. I would say that most people would be familiar with Instructor from your talks and your tweets and all that. You had the number one talk from the AI Engineer Summit.Jason [00:20:03]: Two Liu. Jason Liu and Jerry Liu. Yeah.Swyx [00:20:06]: Yeah. Until I actually went through your cookbook, I didn't realize the surface area. How would you categorize the use cases? You have LLM self-critique, you have knowledge graphs in here, you have PII data sanitation. How do you characterize to people what is the surface area of Instructor? Yeah.Jason [00:20:23]: This is the part that feels crazy because really the difference is LLMs give you strings and Instructor gives you data structures. And once you get data structures, again, you can do every lead code problem you ever thought of. Right. And so I think there's a couple of really common applications. The first one obviously is extracting structured data. This is just be, okay, well, like I want to put in an image of a receipt. I want to give it back out a list of checkout items with a price and a fee and a coupon code or whatever. That's one application. Another application really is around extracting graphs out. So one of the things we found out about these language models is that not only can you define nodes, it's really good at figuring out what are nodes and what are edges. And so we have a bunch of examples where, you know, not only do I extract that, you know, this happens after that, but also like, okay, these two are dependencies of another task. And you can do, you know, extracting complex entities that have relationships. Given a story, for example, you could extract relationships of families across different characters. This can all be done by defining a graph. The last really big application really is just around query understanding. The idea is that like any API call has some schema and if you can define that schema ahead of time, you can use a language model to resolve a request into a much more complex request. One that an embedding could not do. So for example, I have a really popular post called like rag is more than embeddings. And effectively, you know, if I have a question like this, what was the latest thing that happened this week? That embeds to nothing, right? But really like that query should just be like select all data where the date time is between today and today minus seven days, right? What if I said, how did my writing change between this month and last month? Again, embeddings would do nothing. But really, if you could do like a group by over the month and a summarize, then you could again like do something much more interesting. And so this really just calls out the fact that embeddings really is kind of like the lowest hanging fruit. And using something like instructor can really help produce a data structure. And then you can just use your computer science and reason about the data structure. Maybe you say, okay, well, I'm going to produce a graph where I want to group by each month and then summarize them jointly. You can do that if you know how to define this data structure. Yeah.Swyx [00:22:29]: So you kind of run up against like the LangChains of the world that used to have that. They still do have like the self querying, I think they used to call it when we had Harrison on in our episode. How do you see yourself interacting with the other LLM frameworks in the ecosystem? Yeah.Jason [00:22:42]: I mean, if they use instructor, I think that's totally cool. Again, it's like, it's just Python, right? It's like asking like, oh, how does like Django interact with requests? Well, you just might make a request.get in a Django app, right? But no one would say, I like went off of Django because I'm using requests now. They should be ideally like sort of the wrong comparison in terms of especially like the agent workflows. I think the real goal for me is to go down like the LLM compiler route, which is instead of doing like a react type reasoning loop. I think my belief is that we should be using like workflows. If we do this, then we always have a request and a complete workflow. We can fine tune a model that has a better workflow. Whereas it's hard to think about like, how do you fine tune a better react loop? Yeah. You always train it to have less looping, in which case like you wanted to get the right answer the first time, in which case it was a workflow to begin with, right?Swyx [00:23:31]: Can you define workflow? Because I used to work at a workflow company, but I'm not sure this is a good term for everybody.Jason [00:23:36]: I'm thinking workflow in terms of like the prefect Zapier workflow. Like I want to build a DAG, I want you to tell me what the nodes and edges are. And then maybe the edges are also put in with AI. But the idea is that like, I want to be able to present you the entire plan and then ask you to fix things as I execute it, rather than going like, hey, I couldn't parse the JSON, so I'm going to try again. I couldn't parse the JSON, I'm going to try again. And then next thing you know, you spent like $2 on opening AI credits, right? Yeah. Whereas with the plan, you can just say, oh, the edge between node like X and Y does not run. Let me just iteratively try to fix that, fix the one that sticks, go on to the next component. And obviously you can get into a world where if you have enough examples of the nodes X and Y, maybe you can use like a vector database to find a good few shot examples. You can do a lot if you sort of break down the problem into that workflow and executing that workflow, rather than looping and hoping the reasoning is good enough to generate the correct output. Yeah.Swyx [00:24:35]: You know, I've been hammering on Devon a lot. I got access a couple of weeks ago. And obviously for simple tasks, it does well. For the complicated, like more than 10, 20 hour tasks, I can see- That's a crazy comparison.Jason [00:24:47]: We used to talk about like three, four loops. Only once it gets to like hour tasks, it's hard.Swyx [00:24:54]: Yeah. Less than an hour, there's nothing.Jason [00:24:57]: That's crazy.Swyx [00:24:58]: I mean, okay. Maybe my goalposts have shifted. I don't know. That's incredible.Jason [00:25:02]: Yeah. No, no. I'm like sub one minute executions. Like the fact that you're talking about 10 hours is incredible.Swyx [00:25:08]: I think it's a spectrum. I think I'm going to say this every single time I bring up Devon. Let's not reward them for taking longer to do things. Do you know what I mean? I think that's a metric that is easily abusable.Jason [00:25:18]: Sure. Yeah. You know what I mean? But I think if you can monotonically increase the success probability over an hour, that's winning to me. Right? Like obviously if you run an hour and you've made no progress. Like I think when we were in like auto GBT land, there was that one example where it's like, I wanted it to like buy me a bicycle overnight. I spent $7 on credit and I never found the bicycle. Yeah.Swyx [00:25:41]: Yeah. Right. I wonder if you'll be able to purchase a bicycle. Because it actually can do things in real world. It just needs to suspend to you for off and stuff. The point I was trying to make was that I can see it turning plans. I think one of the agents loopholes or one of the things that is a real barrier for agents is LLMs really like to get stuck into a lane. And you know what you're talking about, what I've seen Devon do is it gets stuck in a lane and it will just kind of change plans based on the performance of the plan itself. And it's kind of cool.Jason [00:26:05]: I feel like we've gone too much in the looping route and I think a lot of more plans and like DAGs and data structures are probably going to come back to help fill in some holes. Yeah.Alessio [00:26:14]: What do you think of the interface to that? Do you see it's like an existing state machine kind of thing that connects to the LLMs, the traditional DAG players? Do you think we need something new for like AI DAGs?Jason [00:26:25]: Yeah. I mean, I think that the hard part is going to be describing visually the fact that this DAG can also change over time and it should still be allowed to be fuzzy. I think in like mathematics, we have like plate diagrams and like Markov chain diagrams and like recurrent states and all that. Some of that might come into this workflow world. But to be honest, I'm not too sure. I think right now, the first steps are just how do we take this DAG idea and break it down to modular components that we can like prompt better, have few shot examples for and ultimately like fine tune against. But in terms of even the UI, it's hard to say what it will likely win. I think, you know, people like Prefect and Zapier have a pretty good shot at doing a good job.Swyx [00:27:03]: Yeah. You seem to use Prefect a lot. I actually worked at a Prefect competitor at Temporal and I'm also very familiar with Dagster. What else would you call out as like particularly interesting in the AI engineering stack?Jason [00:27:13]: Man, I almost use nothing. I just use Cursor and like PyTests. Okay. I think that's basically it. You know, a lot of the observability companies have... The more observability companies I've tried, the more I just use Postgres.Swyx [00:27:29]: Really? Okay. Postgres for observability?Jason [00:27:32]: But the issue really is the fact that these observability companies isn't actually doing observability for the system. It's just doing the LLM thing. Like I still end up using like Datadog or like, you know, Sentry to do like latency. And so I just have those systems handle it. And then the like prompt in, prompt out, latency, token costs. I just put that in like a Postgres table now.Swyx [00:27:51]: So you don't need like 20 funded startups building LLM ops? Yeah.Jason [00:27:55]: But I'm also like an old, tired guy. You know what I mean? Like I think because of my background, it's like, yeah, like the Python stuff, I'll write myself. But you know, I will also just use Vercel happily. Yeah. Yeah. So I'm not really into that world of tooling, whereas I think, you know, I spent three good years building observability tools for recommendation systems. And I was like, oh, compared to that, Instructor is just one call. I just have to put time star, time and then count the prompt token, right? Because I'm not doing a very complex looping behavior. I'm doing mostly workflows and extraction. Yeah.Swyx [00:28:26]: I mean, while we're on this topic, we'll just kind of get this out of the way. You famously have decided to not be a venture backed company. You want to do the consulting route. The obvious route for someone as successful as Instructor is like, oh, here's hosted Instructor with all tooling. Yeah. You just said you had a whole bunch of experience building observability tooling. You have the perfect background to do this and you're not.Jason [00:28:43]: Yeah. Isn't that sick? I think that's sick.Swyx [00:28:44]: I mean, I know why, because you want to go free dive.Jason [00:28:47]: Yeah. Yeah. Because I think there's two things. Right. Well, one, if I tell myself I want to build requests, requests is not a venture backed startup. Right. I mean, one could argue whether or not Postman is, but I think for the most part, it's like having worked so much, I'm more interested in looking at how systems are being applied and just having access to the most interesting data. And I think I can do that more through a consulting business where I can come in and go, oh, you want to build perfect memory. You want to build an agent. You want to build like automations over construction or like insurance and supply chain, or like you want to handle writing private equity, mergers and acquisitions reports based off of user interviews. Those things are super fun. Whereas like maintaining the library, I think is mostly just kind of like a utility that I try to keep up, especially because if it's not venture backed, I have no reason to sort of go down the route of like trying to get a thousand integrations. In my mind, I just go like, okay, 98% of the people use open AI. I'll support that. And if someone contributes another platform, that's great. I'll merge it in. Yeah.Swyx [00:29:45]: I mean, you only added Anthropic support this year. Yeah.Jason [00:29:47]: Yeah. You couldn't even get an API key until like this year, right? That's true. Okay. If I add it like last year, I was trying to like double the code base to service, you know, half a percent of all downloads.Swyx [00:29:58]: Do you think the market share will shift a lot now that Anthropic has like a very, very competitive offering?Jason [00:30:02]: I think it's still hard to get API access. I don't know if it's fully GA now, if it's GA, if you can get a commercial access really easily.Alessio [00:30:12]: I got commercial after like two weeks to reach out to their sales team.Jason [00:30:14]: Okay.Alessio [00:30:15]: Yeah.Swyx [00:30:16]: Two weeks. It's not too bad. There's a call list here. And then anytime you run into rate limits, just like ping one of the Anthropic staff members.Jason [00:30:21]: Yeah. Then maybe we need to like cut that part out. So I don't need to like, you know, spread false news.Swyx [00:30:25]: No, it's cool. It's cool.Jason [00:30:26]: But it's a common question. Yeah. Surely just from the price perspective, it's going to make a lot of sense. Like if you are a business, you should totally consider like Sonnet, right? Like the cost savings is just going to justify it if you actually are doing things at volume. And yeah, I think the SDK is like pretty good. Back to the instructor thing. I just don't think it's a billion dollar company. And I think if I raise money, the first question is going to be like, how are you going to get a billion dollar company? And I would just go like, man, like if I make a million dollars as a consultant, I'm super happy. I'm like more than ecstatic. I can have like a small staff of like three people. It's fun. And I think a lot of my happiest founder friends are those who like raised a tiny seed round, became profitable. They're making like 70, 60, 70, like MRR, 70,000 MRR and they're like, we don't even need to raise the seed round. Let's just keep it like between me and my co-founder, we'll go traveling and it'll be a great time. I think it's a lot of fun.Alessio [00:31:15]: Yeah. like say LLMs / AI and they build some open source stuff and it's like I should just raise money and do this and I tell people a lot it's like look you can make a lot more money doing something else than doing a startup like most people that do a company could make a lot more money just working somewhere else than the company itself do you have any advice for folks that are maybe in a similar situation they're trying to decide oh should I stay in my like high paid FAANG job and just tweet this on the side and do this on github should I go be a consultant like being a consultant seems like a lot of work so you got to talk to all these people you know there's a lot to unpackJason [00:31:54]: I think the open source thing is just like well I'm just doing it purely for fun and I'm doing it because I think I'm right but part of being right is the fact that it's not a venture backed startup like I think I'm right because this is all you need right so I think a part of the philosophy is the fact that all you need is a very sharp blade to sort of do your work and you don't actually need to build like a big enterprise so that's one thing I think the other thing too that I've kind of been thinking around just because I have a lot of friends at google that want to leave right now it's like man like what we lack is not money or skill like what we lack is courage you should like you just have to do this a hard thing and you have to do it scared anyways right in terms of like whether or not you do want to do a founder I think that's just a matter of optionality but I definitely recognize that the like expected value of being a founder is still quite low it is right I know as many founder breakups and as I know friends who raised a seed round this year right like that is like the reality and like you know even in from that perspective it's been tough where it's like oh man like a lot of incubators want you to have co-founders now you spend half the time like fundraising and then trying to like meet co-founders and find co-founders rather than building the thing this is a lot of time spent out doing uh things I'm not really good at. I do think there's a rising trend in solo founding yeah.Swyx [00:33:06]: You know I am a solo I think that something like 30 percent of like I forget what the exact status something like 30 percent of starters that make it to like series B or something actually are solo founder I feel like this must have co-founder idea mostly comes from YC and most everyone else copies it and then plenty of companies break up over co-founderJason [00:33:27]: Yeah and I bet it would be like I wonder how much of it is the people who don't have that much like and I hope this is not a diss to anybody but it's like you sort of you go through the incubator route because you don't have like the social equity you would need is just sort of like send an email to Sequoia and be like hey I'm going on this ride you want a ticket on the rocket ship right like that's very hard to sell my message if I was to raise money is like you've seen my twitter my life is sick I've decided to make it much worse by being a founder because this is something I have to do so do you want to come along otherwise I want to fund it myself like if I can't say that like I don't need the money because I can like handle payroll and like hire an intern and get an assistant like that's all fine but I really don't want to go back to meta I want to like get two years to like try to find a problem we're solving that feels like a bad timeAlessio [00:34:12]: Yeah Jason is like I wear a YSL jacket on stage at AI Engineer Summit I don't need your accelerator moneyJason [00:34:18]: And boots, you don't forget the boots. But I think that is a part of it right I think it is just like optionality and also just like I'm a lot older now I think 22 year old Jason would have been probably too scared and now I'm like too wise but I think it's a matter of like oh if you raise money you have to have a plan of spending it and I'm just not that creative with spending that much money yeah I mean to be clear you just celebrated your 30th birthday happy birthday yeah it's awesome so next week a lot older is relative to some some of the folks I think seeing on the career tipsAlessio [00:34:48]: I think Swix had a great post about are you too old to get into AI I saw one of your tweets in January 23 you applied to like Figma, Notion, Cohere, Anthropic and all of them rejected you because you didn't have enough LLM experience I think at that time it would be easy for a lot of people to say oh I kind of missed the boat you know I'm too late not gonna make it you know any advice for people that feel like thatJason [00:35:14]: Like the biggest learning here is actually from a lot of folks in jiu-jitsu they're like oh man like is it too late to start jiu-jitsu like I'll join jiu-jitsu once I get in more shape right it's like there's a lot of like excuses and then you say oh like why should I start now I'll be like 45 by the time I'm any good and say well you'll be 45 anyways like time is passing like if you don't start now you start tomorrow you're just like one more day behind if you're worried about being behind like today is like the soonest you can start right and so you got to recognize that like maybe you just don't want it and that's fine too like if you wanted you would have started I think a lot of these people again probably think of things on a too short time horizon but again you know you're gonna be old anyways you may as well just start now you knowSwyx [00:35:55]: One more thing on I guess the um career advice slash sort of vlogging you always go viral for this post that you wrote on advice to young people and the lies you tell yourself oh yeah yeah you said you were writing it for your sister.Jason [00:36:05]: She was like bummed out about going to college and like stressing about jobs and I was like oh and I really want to hear okay and I just kind of like text-to-sweep the whole thing it's crazy it's got like 50,000 views like I'm mind I mean your average tweet has more but that thing is like a 30-minute read nowSwyx [00:36:26]: So there's lots of stuff here which I agree with I you know I'm also of occasionally indulge in the sort of life reflection phase there's the how to be lucky there's the how to have high agency I feel like the agency thing is always a trend in sf or just in tech circles how do you define having high agencyJason [00:36:42]: I'm almost like past the high agency phase now now my biggest concern is like okay the agency is just like the norm of the vector what also matters is the direction right it's like how pure is the shot yeah I mean I think agency is just a matter of like having courage and doing the thing that's scary right you know if people want to go rock climbing it's like do you decide you want to go rock climbing then you show up to the gym you rent some shoes and you just fall 40 times or do you go like oh like I'm actually more intelligent let me go research the kind of shoes that I want okay like there's flatter shoes and more inclined shoes like which one should I get okay let me go order the shoes on Amazon I'll come back in three days like oh it's a little bit too tight maybe it's too aggressive I'm only a beginner let me go change no I think the higher agent person just like goes and like falls down 20 times right yeah I think the higher agency person is more focused on like process metrics versus outcome metrics right like from pottery like one thing I learned was if you want to be good at pottery you shouldn't count like the number of cups or bowls you make you should just weigh the amount of clay you use right like the successful person says oh I went through 100 pounds of clay right the less agency was like oh I've made six cups and then after I made six cups like there's not really what are you what do you do next no just pounds of clay pounds of clay same with the work here right so you just got to write the tweets like make the commits contribute open source like write the documentation there's no real outcome it's just a process and if you love that process you just get really good at the thing you're doingSwyx [00:38:04]: yeah so just to push back on this because obviously I mostly agree how would you design performance review systems because you were effectively saying we can count lines of code for developers rightJason [00:38:15]: I don't think that would be the actual like I think if you make that an outcome like I can just expand a for loop right I think okay so for performance review this is interesting because I've mostly thought of it from the perspective of science and not engineering I've been running a lot of engineering stand-ups primarily because there's not really that many machine learning folks the process outcome is like experiments and ideas right like if you think about outcome is what you might want to think about an outcome is oh I want to improve the revenue or whatnot but that's really hard but if you're someone who is going out like okay like this week I want to come up with like three or four experiments I might move the needle okay nothing worked to them they might think oh nothing worked like I suck but to me it's like wow you've closed off all these other possible avenues for like research like you're gonna get to the place that you're gonna figure out that direction really soon there's no way you try 30 different things and none of them work usually like 10 of them work five of them work really well two of them work really really well and one thing was like the nail in the head so agency lets you sort of capture the volume of experiments and like experience lets you figure out like oh that other half it's not worth doing right I think experience is going like half these prompting papers don't make any sense just use chain of thought and just you know use a for loop that's basically right it's like usually performance for me is around like how many experiments are you running how oftentimes are you trying.Alessio [00:39:32]: When do you give up on an experiment because a StitchFix you kind of give up on language models I guess in a way as a tool to use and then maybe the tools got better you were right at the time and then the tool improved I think there are similar paths in my engineering career where I try one approach and at the time it doesn't work and then the thing changes but then I kind of soured on that approach and I don't go back to it soonJason [00:39:51]: I see yeah how do you think about that loop so usually when I'm coaching folks and as they say like oh these things don't work I'm not going to pursue them in the future like one of the big things like hey the negative result is a result and this is something worth documenting like this is an academia like if it's negative you don't just like not publish right but then like what do you actually write down like what you should write down is like here are the conditions this is the inputs and the outputs we tried the experiment on and then one thing that's really valuable is basically writing down under what conditions would I revisit these experiments these things don't work because of what we had at the time if someone is reading this two years from now under what conditions will we try again that's really hard but again that's like another skill you kind of learn right it's like you do go back and you do experiments you figure out why it works now I think a lot of it here is just like scaling worked yeah rap lyrics you know that was because I did not have high enough quality data if we phase shift and say okay you don't even need training data oh great then it might just work a different domainAlessio [00:40:48]: Do you have anything in your list that is like it doesn't work now but I want to try it again later? Something that people should maybe keep in mind you know people always like agi when you know when are you going to know the agi is here maybe it's less than that but any stuff that you tried recently that didn't work thatJason [00:41:01]: You think will get there I mean I think the personal assistance and the writing I've shown to myself it's just not good enough yet so I hired a writer and I hired a personal assistant so now I'm gonna basically like work with these people until I figure out like what I can actually like automate and what are like the reproducible steps but like I think the experiment for me is like I'm gonna go pay a person like thousand dollars a month that helped me improve my life and then let me get them to help me figure like what are the components and how do I actually modularize something to get it to work because it's not just like a lot gmail calendar and like notion it's a little bit more complicated than that but we just don't know what that is yet those are two sort of systems that I wish gb4 or opus was actually good enough to just write me an essay but most of the essays are still pretty badSwyx [00:41:44]: yeah I would say you know on the personal assistance side Lindy is probably the one I've seen the most flow was at a speaker at the summit I don't know if you've checked it out or any other sort of agents assistant startupJason [00:41:54]: Not recently I haven't tried lindy they were not ga last time I was considering it yeah yeah a lot of it now it's like oh like really what I want you to do is take a look at all of my meetings and like write like a really good weekly summary email for my clients to remind them that I'm like you know thinking of them and like working for them right or it's like I want you to notice that like my monday is like way too packed and like block out more time and also like email the people to do the reschedule and then try to opt in to move them around and then I want you to say oh jason should have like a 15 minute prep break after form back to back those are things that now I know I can prompt them in but can it do it well like before I didn't even know that's what I wanted to prompt for us defragging a calendar and adding break so I can like eat lunch yeah that's the AGI test yeah exactly compassion right I think one thing that yeah we didn't touch on it before butAlessio [00:42:44]: I think was interesting you had this tweet a while ago about prompts should be code and then there were a lot of companies trying to build prompt engineering tooling kind of trying to turn the prompt into a more structured thing what's your thought today now you want to turn the thinking into DAGs like do prompts should still be code any updated ideasJason [00:43:04]: It's the same thing right I think you know with Instructor it is very much like the output model is defined as a code object that code object is sent to the LLM and in return you get a data structure so the outputs of these models I think should also be code objects and the inputs somewhat should be code objects but I think the one thing that instructor tries to do is separate instruction data and the types of the output and beyond that I really just think that most of it should be still like managed pretty closely to the developer like so much of is changing that if you give control of these systems away too early you end up ultimately wanting them back like many companies I know that I reach out or ones were like oh we're going off of the frameworks because now that we know what the business outcomes we're trying to optimize for these frameworks don't work yeah because we do rag but we want to do rag to like sell you supplements or to have you like schedule the fitness appointment the prompts are kind of too baked into the systems to really pull them back out and like start doing upselling or something it's really funny but a lot of it ends up being like once you understand the business outcomes you care way more about the promptSwyx [00:44:07]: Actually this is fun in our prep for this call we were trying to say like what can you as an independent person say that maybe me and Alessio cannot say or me you know someone at a company say what do you think is the market share of the frameworks the LangChain, the LlamaIndex, the everything...Jason [00:44:20]: Oh massive because not everyone wants to care about the code yeah right I think that's a different question to like what is the business model and are they going to be like massively profitable businesses right making hundreds of millions of dollars that feels like so straightforward right because not everyone is a prompt engineer like there's so much productivity to be captured in like back office optim automations right it's not because they care about the prompts that they care about managing these things yeah but those would be sort of low code experiences you yeah I think the bigger challenge is like okay hundred million dollars probably pretty easy it's just time and effort and they have the manpower and the money to sort of solve those problems again if you go the vc route then it's like you're talking about billions and that's really the goal that stuff for me it's like pretty unclear but again that is to say that like I sort of am building things for developers who want to use infrastructure to build their own tooling in terms of the amount of developers there are in the world versus downstream consumers of these things or even just think of how many companies will use like the adobes and the ibms right because they want something that's fully managed and they want something that they know will work and if the incremental 10% requires you to hire another team of 20 people you might not want to do it and I think that kind of organization is really good for uh those are bigger companiesSwyx [00:45:32]: I just want to capture your thoughts on one more thing which is you said you wanted most of the prompts to stay close to the developer and Hamel Husain wrote this post which I really love called f you show me the prompt yeah I think he cites you in one of those part of the blog post and I think ds pi is kind of like the complete antithesis of that which is I think it's interesting because I also hold the strong view that AI is a better prompt engineer than you are and I don't know how to square that wondering if you have thoughtsJason [00:45:58]: I think something like DSPy can work because there are like very short-term metrics to measure success right it is like did you find the pii or like did you write the multi-hop question the correct way but in these workflows that I've been managing a lot of it are we minimizing churn and maximizing retention yeah that's a very long loop it's not really like a uptuna like training loop right like those things are much more harder to capture so we don't actually have those metrics for that right and obviously we can figure out like okay is the summary good but like how do you measure the quality of the summary it's like that feedback loop it ends up being a lot longer and then again when something changes it's really hard to make sure that it works across these like newer models or again like changes to work for the current process like when we migrate from like anthropic to open ai like there's just a ton of change that are like infrastructure related not necessarily around the prompt itself yeah cool any other ai engineering startups that you think should not exist before we wrap up i mean oh my gosh i mean a lot of it again it's just like every time of investors like how does this make a billion dollars like it doesn't i'm gonna go back to just like tweeting and holding my breath underwater yeah like i don't really pay attention too much to most of this like most of the stuff i'm doing is around like the consumer of like llm calls yep i think people just want to move really fast and they will end up pick these vendors but i don't really know if anything has really like blown me out the water like i only trust myself but that's also a function of just being an old man like i think you know many companies are definitely very happy with using most of these tools anyways but i definitely think i occupy a very small space in the engineering ecosystem.Swyx [00:47:41]: Yeah i would say one of the challenges here you know you call about the dealing in the consumer of llm's space i think that's what ai engineering differs from ml engineering and i think a constant disconnect or cognitive dissonance in this field in the ai engineers that have sprung up is that they are not as good as the ml engineers they are not as qualified i think that you know you are someone who has credibility in the mle space and you are also a very authoritative figure in the ai space and i think so and you know i think you've built the de facto leading library i think yours i think instructors should be part of the standard lib even though i try to not use it like i basically also end up rebuilding instructor right like that's a lot of the back and forth that we had over the past two days i think that's the fundamental thing that we're trying to figure out like there's very small supply of MLEs not everyone's going to have that experience that you had but the global demand for AI is going to far outstrip the existing MLEs.Jason [00:48:36]: So what do we do do we force everyone to go through the standard MLE curriculum or do we make a new one? I'

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
Supervise the Process of AI Research — with Jungwon Byun and Andreas Stuhlmüller of Elicit

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Apr 11, 2024 56:20


Maggie, Linus, Geoffrey, and the LS crew are reuniting for our second annual AI UX demo day in SF on Apr 28. Sign up to demo here! And don't forget tickets for the AI Engineer World's Fair — for early birds who join before keynote announcements!It's become fashionable for many AI startups to project themselves as “the next Google” - while the search engine is so 2000s, both Perplexity and Exa referred to themselves as a “research engine” or “answer engine” in our NeurIPS pod. However these searches tend to be relatively shallow, and it is challenging to zoom up and down the ladders of abstraction to garner insights. For serious researchers, this level of simple one-off search will not cut it.We've commented in our Jan 2024 Recap that Flow Engineering (simply; multi-turn processes over many-shot single prompts) seems to offer far more performance, control and reliability for a given cost budget. Our experiments with Devin and our understanding of what the new Elicit Notebooks offer a glimpse into the potential for very deep, open ended, thoughtful human-AI collaboration at scale.It starts with promptsWhen ChatGPT exploded in popularity in November 2022 everyone was turned into a prompt engineer. While generative models were good at "vibe based" outcomes (tell me a joke, write a poem, etc) with basic prompts, they struggled with more complex questions, especially in symbolic fields like math, logic, etc. Two of the most important "tricks" that people picked up on were:* Chain of Thought prompting strategy proposed by Wei et al in the “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”. Rather than doing traditional few-shot prompting with just question and answers, adding the thinking process that led to the answer resulted in much better outcomes.* Adding "Let's think step by step" to the prompt as a way to boost zero-shot reasoning, which was popularized by Kojima et al in the Large Language Models are Zero-Shot Reasoners paper from NeurIPS 2022. This bumped accuracy from 17% to 79% compared to zero-shot.Nowadays, prompts include everything from promises of monetary rewards to… whatever the Nous folks are doing to turn a model into a world simulator. At the end of the day, the goal of prompt engineering is increasing accuracy, structure, and repeatability in the generation of a model.From prompts to agentsAs prompt engineering got more and more popular, agents (see “The Anatomy of Autonomy”) took over Twitter with cool demos and AutoGPT became the fastest growing repo in Github history. The thing about AutoGPT that fascinated people was the ability to simply put in an objective without worrying about explaining HOW to achieve it, or having to write very sophisticated prompts. The system would create an execution plan on its own, and then loop through each task. The problem with open-ended agents like AutoGPT is that 1) it's hard to replicate the same workflow over and over again 2) there isn't a way to hard-code specific steps that the agent should take without actually coding them yourself, which isn't what most people want from a product. From agents to productsPrompt engineering and open-ended agents were great in the experimentation phase, but this year more and more of these workflows are starting to become polished products. Today's guests are Andreas Stuhlmüller and Jungwon Byun of Elicit (previously Ought), an AI research assistant that they think of as “the best place to understand what is known”. Ought was a non-profit, but last September, Elicit spun off into a PBC with a $9m seed round. It is hard to quantify how much a workflow can be improved, but Elicit boasts some impressive numbers for research assistants:Just four months after launch, Elicit crossed $1M ARR, which shows how much interest there is for AI products that just work.One of the main takeaways we had from the episode is how teams should focus on supervising the process, not the output. Their philosophy at Elicit isn't to train general models, but to train models that are extremely good at focusing processes. This allows them to have pre-created steps that the user can add to their workflow (like classifying certain features that are specific to their research field) without having to write a prompt for it. And for Hamel Husain's happiness, they always show you the underlying prompt. Elicit recently announced notebooks as a new interface to interact with their products: (fun fact, they tried to implement this 4 times before they landed on the right UX! We discuss this ~33:00 in the podcast)The reasons why they picked notebooks as a UX all tie back to process:* They are systematic; once you have a instruction/prompt that works on a paper, you can run hundreds of papers through the same workflow by creating a column. Notebooks can also be edited and exported at any point during the flow.* They are transparent - Many papers include an opaque literature review as perfunctory context before getting to their novel contribution. But PDFs are “dead” and it is difficult to follow the thought process and exact research flow of the authors. Sharing “living” Elicit Notebooks opens up this process.* They are unbounded - Research is an endless stream of rabbit holes. So it must be easy to dive deeper and follow up with extra steps, without losing the ability to surface for air. We had a lot of fun recording this, and hope you have as much fun listening!AI UX in SFLong time Latent Spacenauts might remember our first AI UX meetup with Linus Lee, Geoffrey Litt, and Maggie Appleton last year. Well, Maggie has since joined Elicit, and they are all returning at the end of this month! Sign up here: https://lu.ma/aiuxAnd submit demos here! https://forms.gle/iSwiesgBkn8oo4SS8We expect the 200 seats to “sell out” fast. Attendees with demos will be prioritized.Show Notes* Elicit* Ought (their previous non-profit)* “Pivoting” with GPT-4* Elicit notebooks launch* Charlie* Andreas' BlogTimestamps* [00:00:00] Introductions* [00:07:45] How Johan and Andreas Joined Forces to Create Elicit* [00:10:26] Why Products > Research* [00:15:49] The Evolution of Elicit's Product* [00:19:44] Automating Literature Review Workflow* [00:22:48] How GPT-3 to GPT-4 Changed Things* [00:25:37] Managing LLM Pricing and Performance* [00:31:07] Open vs. Closed: Elicit's Approach to Model Selection* [00:31:56] Moving to Notebooks* [00:39:11] Elicit's Budget for Model Queries and Evaluations* [00:41:44] Impact of Long Context Windows* [00:47:19] Underrated Features and Surprising Applications* [00:51:35] Driving Systematic and Efficient Research* [00:53:00] Elicit's Team Growth and Transition to a Public Benefit Corporation* [00:55:22] Building AI for GoodFull Interview on YouTubeAs always, a plug for our youtube version for the 80% of communication that is nonverbal:TranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:15]: Hey, and today we are back in the studio with Andreas and Jungwon from Elicit. Welcome.Jungwon [00:00:20]: Thanks guys.Andreas [00:00:21]: It's great to be here.Swyx [00:00:22]: Yeah. So I'll introduce you separately, but also, you know, we'd love to learn a little bit more about you personally. So Andreas, it looks like you started Elicit first, Jungwon joined later.Andreas [00:00:32]: That's right. For all intents and purposes, the Elicit and also the Ought that existed before then were very different from what I started. So I think it's like fair to say that you co-founded it.Swyx [00:00:43]: Got it. And Jungwon, you're a co-founder and COO of Elicit now.Jungwon [00:00:46]: Yeah, that's right.Swyx [00:00:47]: So there's a little bit of a history to this. I'm not super aware of like the sort of journey. I was aware of OTT and Elicit as sort of a nonprofit type situation. And recently you turned into like a B Corp, Public Benefit Corporation. So yeah, maybe if you want, you could take us through that journey of finding the problem. You know, obviously you're working together now. So like, how do you get together to decide to leave your startup career to join him?Andreas [00:01:10]: Yeah, it's truly a very long journey. I guess truly, it kind of started in Germany when I was born. So even as a kid, I was always interested in AI, like I kind of went to the library. There were books about how to write programs in QBasic and like some of them talked about how to implement chatbots.Jungwon [00:01:27]: To be clear, he grew up in like a tiny village on the outskirts of Munich called Dinkelschirben, where it's like a very, very idyllic German village.Andreas [00:01:36]: Yeah, important to the story. So basically, the main thing is I've kind of always been thinking about AI my entire life and been thinking about, well, at some point, this is going to be a huge deal. It's going to be transformative. How can I work on it? And was thinking about it from when I was a teenager, after high school did a year where I started a startup with the intention to become rich. And then once I'm rich, I can affect the trajectory of AI. Did not become rich, decided to go back to college and study cognitive science there, which was like the closest thing I could find at the time to AI. In the last year of college, moved to the US to do a PhD at MIT, working on broadly kind of new programming languages for AI because it kind of seemed like the existing languages were not great at expressing world models and learning world models doing Bayesian inference. Was always thinking about, well, ultimately, the goal is to actually build tools that help people reason more clearly, ask and answer better questions and make better decisions. But for a long time, it seemed like the technology to put reasoning in machines just wasn't there. Initially, at the end of my postdoc at Stanford, I was thinking about, well, what to do? I think the standard path is you become an academic and do research. But it's really hard to actually build interesting tools as an academic. You can't really hire great engineers. Everything is kind of on a paper-to-paper timeline. And so I was like, well, maybe I should start a startup, pursued that for a little bit. But it seemed like it was too early because you could have tried to do an AI startup, but probably would not have been this kind of AI startup we're seeing now. So then decided to just start a nonprofit research lab that's going to do research for a while until we better figure out how to do thinking in machines. And that was odd. And then over time, it became clear how to actually build actual tools for reasoning. And only over time, we developed a better way to... I'll let you fill in some of the details here.Jungwon [00:03:26]: Yeah. So I guess my story maybe starts around 2015. I kind of wanted to be a founder for a long time, and I wanted to work on an idea that stood the test of time for me, like an idea that stuck with me for a long time. And starting in 2015, actually, originally, I became interested in AI-based tools from the perspective of mental health. So there are a bunch of people around me who are really struggling. One really close friend in particular is really struggling with mental health and didn't have any support, and it didn't feel like there was anything before kind of like getting hospitalized that could just help her. And so luckily, she came and stayed with me for a while, and we were just able to talk through some things. But it seemed like lots of people might not have that resource, and something maybe AI-enabled could be much more scalable. I didn't feel ready to start a company then, that's 2015. And I also didn't feel like the technology was ready. So then I went into FinTech and kind of learned how to do the tech thing. And then in 2019, I felt like it was time for me to just jump in and build something on my own I really wanted to create. And at the time, I looked around at tech and felt like not super inspired by the options. I didn't want to have a tech career ladder, or I didn't want to climb the career ladder. There are two kind of interesting technologies at the time, there was AI and there was crypto. And I was like, well, the AI people seem like a little bit more nice, maybe like slightly more trustworthy, both super exciting, but threw my bet in on the AI side. And then I got connected to Andreas. And actually, the way he was thinking about pursuing the research agenda at OTT was really compatible with what I had envisioned for an ideal AI product, something that helps kind of take down really complex thinking, overwhelming thoughts and breaks it down into small pieces. And then this kind of mission that we need AI to help us figure out what we ought to do was really inspiring, right? Yeah, because I think it was clear that we were building the most powerful optimizer of our time. But as a society, we hadn't figured out how to direct that optimization potential. And if you kind of direct tremendous amounts of optimization potential at the wrong thing, that's really disastrous. So the goal of OTT was make sure that if we build the most transformative technology of our lifetime, it can be used for something really impactful, like good reasoning, like not just generating ads. My background was in marketing, but like, so I was like, I want to do more than generate ads with this. But also if these AI systems get to be super intelligent enough that they are doing this really complex reasoning, that we can trust them, that they are aligned with us and we have ways of evaluating that they're doing the right thing. So that's what OTT did. We did a lot of experiments, you know, like I just said, before foundation models really like took off. A lot of the issues we were seeing were more in reinforcement learning, but we saw a future where AI would be able to do more kind of logical reasoning, not just kind of extrapolate from numerical trends. We actually kind of set up experiments with people where kind of people stood in as super intelligent systems and we effectively gave them context windows. So they would have to like read a bunch of text and one person would get less text and one person would get all the texts and the person with less text would have to evaluate the work of the person who could read much more. So like in a world we were basically simulating, like in 2018, 2019, a world where an AI system could read significantly more than you and you as the person who couldn't read that much had to evaluate the work of the AI system. Yeah. So there's a lot of the work we did. And from that, we kind of iterated on the idea of breaking complex tasks down into smaller tasks, like complex tasks, like open-ended reasoning, logical reasoning into smaller tasks so that it's easier to train AI systems on them. And also so that it's easier to evaluate the work of the AI system when it's done. And then also kind of, you know, really pioneered this idea, the importance of supervising the process of AI systems, not just the outcomes. So a big part of how Elicit is built is we're very intentional about not just throwing a ton of data into a model and training it and then saying, cool, here's like scientific output. Like that's not at all what we do. Our approach is very much like, what are the steps that an expert human does or what is like an ideal process as granularly as possible, let's break that down and then train AI systems to perform each of those steps very robustly. When you train like that from the start, after the fact, it's much easier to evaluate, it's much easier to troubleshoot at each point. Like where did something break down? So yeah, we were working on those experiments for a while. And then at the start of 2021, decided to build a product.Swyx [00:07:45]: Do you mind if I, because I think you're about to go into more modern thought and Elicit. And I just wanted to, because I think a lot of people are in where you were like sort of 2018, 19, where you chose a partner to work with. Yeah. Right. And you didn't know him. Yeah. Yeah. You were just kind of cold introduced. A lot of people are cold introduced. Yeah. Never work with them. I assume you had a lot, a lot of other options, right? Like how do you advise people to make those choices?Jungwon [00:08:10]: We were not totally cold introduced. So one of our closest friends introduced us. And then Andreas had written a lot on the OTT website, a lot of blog posts, a lot of publications. And I just read it and I was like, wow, this sounds like my writing. And even other people, some of my closest friends I asked for advice from, they were like, oh, this sounds like your writing. But I think I also had some kind of like things I was looking for. I wanted someone with a complimentary skillset. I want someone who was very values aligned. And yeah, that was all a good fit.Andreas [00:08:38]: We also did a pretty lengthy mutual evaluation process where we had a Google doc where we had all kinds of questions for each other. And I think it ended up being around 50 pages or so of like various like questions and back and forth.Swyx [00:08:52]: Was it the YC list? There's some lists going around for co-founder questions.Andreas [00:08:55]: No, we just made our own questions. But I guess it's probably related in that you ask yourself, what are the values you care about? How would you approach various decisions and things like that?Jungwon [00:09:04]: I shared like all of my past performance reviews. Yeah. Yeah.Swyx [00:09:08]: And he never had any. No.Andreas [00:09:10]: Yeah.Swyx [00:09:11]: Sorry, I just had to, a lot of people are going through that phase and you kind of skipped over it. I was like, no, no, no, no. There's like an interesting story.Jungwon [00:09:20]: Yeah.Alessio [00:09:21]: Yeah. Before we jump into what a list it is today, the history is a bit counterintuitive. So you start with figuring out, oh, if we had a super powerful model, how would we align it? But then you were actually like, well, let's just build the product so that people can actually leverage it. And I think there are a lot of folks today that are now back to where you were maybe five years ago that are like, oh, what if this happens rather than focusing on actually building something useful with it? What clicked for you to like move into a list and then we can cover that story too.Andreas [00:09:49]: I think in many ways, the approach is still the same because the way we are building illicit is not let's train a foundation model to do more stuff. It's like, let's build a scaffolding such that we can deploy powerful models to good ends. I think it's different now in that we actually have like some of the models to plug in. But if in 2017, we had had the models, we could have run the same experiments we did run with humans back then, just with models. And so in many ways, our philosophy is always, let's think ahead to the future of what models are going to exist in one, two years or longer. And how can we make it so that they can actually be deployed in kind of transparent, controllableJungwon [00:10:26]: ways? I think motivationally, we both are kind of product people at heart. The research was really important and it didn't make sense to build a product at that time. But at the end of the day, the thing that always motivated us is imagining a world where high quality reasoning is really abundant and AI is a technology that's going to get us there. And there's a way to guide that technology with research, but we can have a more direct effect through product because with research, you publish the research and someone else has to implement that into the product and the product felt like a more direct path. And we wanted to concretely have an impact on people's lives. Yeah, I think the kind of personally, the motivation was we want to build for people.Swyx [00:11:03]: Yep. And then just to recap as well, like the models you were using back then were like, I don't know, would they like BERT type stuff or T5 or I don't know what timeframe we're talking about here.Andreas [00:11:14]: I guess to be clear, at the very beginning, we had humans do the work. And then I think the first models that kind of make sense were TPT-2 and TNLG and like Yeah, early generative models. We do also use like T5 based models even now started with TPT-2.Swyx [00:11:30]: Yeah, cool. I'm just kind of curious about like, how do you start so early? You know, like now it's obvious where to start, but back then it wasn't.Jungwon [00:11:37]: Yeah, I used to nag Andreas a lot. I was like, why are you talking to this? I don't know. I felt like TPT-2 is like clearly can't do anything. And I was like, Andreas, you're wasting your time, like playing with this toy. But yeah, he was right.Alessio [00:11:50]: So what's the history of what Elicit actually does as a product? You recently announced that after four months, you get to a million in revenue. Obviously, a lot of people use it, get a lot of value, but it would initially kind of like structured data extraction from papers. Then you had kind of like concept grouping. And today, it's maybe like a more full stack research enabler, kind of like paper understander platform. What's the definitive definition of what Elicit is? And how did you get here?Jungwon [00:12:15]: Yeah, we say Elicit is an AI research assistant. I think it will continue to evolve. That's part of why we're so excited about building and research, because there's just so much space. I think the current phase we're in right now, we talk about it as really trying to make Elicit the best place to understand what is known. So it's all a lot about like literature summarization. There's a ton of information that the world already knows. It's really hard to navigate, hard to make it relevant. So a lot of it is around document discovery and processing and analysis. I really kind of want to import some of the incredible productivity improvements we've seen in software engineering and data science and into research. So it's like, how can we make researchers like data scientists of text? That's why we're launching this new set of features called Notebooks. It's very much inspired by computational notebooks, like Jupyter Notebooks, you know, DeepNode or Colab, because they're so powerful and so flexible. And ultimately, when people are trying to get to an answer or understand insight, they're kind of like manipulating evidence and information. Today, that's all packaged in PDFs, which are super brittle. So with language models, we can decompose these PDFs into their underlying claims and evidence and insights, and then let researchers mash them up together, remix them and analyze them together. So yeah, I would say quite simply, overall, Elicit is an AI research assistant. Right now we're focused on text-based workflows, but long term, really want to kind of go further and further into reasoning and decision making.Alessio [00:13:35]: And when you say AI research assistant, this is kind of meta research. So researchers use Elicit as a research assistant. It's not a generic you-can-research-anything type of tool, or it could be, but like, what are people using it for today?Andreas [00:13:49]: Yeah. So specifically in science, a lot of people use human research assistants to do things. You tell your grad student, hey, here are a couple of papers. Can you look at all of these, see which of these have kind of sufficiently large populations and actually study the disease that I'm interested in, and then write out like, what are the experiments they did? What are the interventions they did? What are the outcomes? And kind of organize that for me. And the first phase of understanding what is known really focuses on automating that workflow because a lot of that work is pretty rote work. I think it's not the kind of thing that we need humans to do. Language models can do it. And then if language models can do it, you can obviously scale it up much more than a grad student or undergrad research assistant would be able to do.Jungwon [00:14:31]: Yeah. The use cases are pretty broad. So we do have a very large percent of our users are just using it personally or for a mix of personal and professional things. People who care a lot about health or biohacking or parents who have children with a kind of rare disease and want to understand the literature directly. So there is an individual kind of consumer use case. We're most focused on the power users. So that's where we're really excited to build. So Lissette was very much inspired by this workflow in literature called systematic reviews or meta-analysis, which is basically the human state of the art for summarizing scientific literature. And it typically involves like five people working together for over a year. And they kind of first start by trying to find the maximally comprehensive set of papers possible. So it's like 10,000 papers. And they kind of systematically narrow that down to like hundreds or 50 extract key details from every single paper. Usually have two people doing it, like a third person reviewing it. So it's like an incredibly laborious, time consuming process, but you see it in every single domain. So in science, in machine learning, in policy, because it's so structured and designed to be reproducible, it's really amenable to automation. So that's kind of the workflow that we want to automate first. And then you make that accessible for any question and make these really robust living summaries of science. So yeah, that's one of the workflows that we're starting with.Alessio [00:15:49]: Our previous guest, Mike Conover, he's building a new company called Brightwave, which is an AI research assistant for financial research. How do you see the future of these tools? Does everything converge to like a God researcher assistant, or is every domain going to have its own thing?Andreas [00:16:03]: I think that's a good and mostly open question. I do think there are some differences across domains. For example, some research is more quantitative data analysis, and other research is more high level cross domain thinking. And we definitely want to contribute to the broad generalist reasoning type space. Like if researchers are making discoveries often, it's like, hey, this thing in biology is actually analogous to like these equations in economics or something. And that's just fundamentally a thing that where you need to reason across domains. At least within research, I think there will be like one best platform more or less for this type of generalist research. I think there may still be like some particular tools like for genomics, like particular types of modules of genes and proteins and whatnot. But for a lot of the kind of high level reasoning that humans do, I think that is a more of a winner type all thing.Swyx [00:16:52]: I wanted to ask a little bit deeper about, I guess, the workflow that you mentioned. I like that phrase. I see that in your UI now, but that's as it is today. And I think you were about to tell us about how it was in 2021 and how it may be progressed. How has this workflow evolved over time?Jungwon [00:17:07]: Yeah. So the very first version of Elicit actually wasn't even a research assistant. It was a forecasting assistant. So we set out and we were thinking about, you know, what are some of the most impactful types of reasoning that if we could scale up, AI would really transform the world. We actually started with literature review, but we're like, oh, so many people are going to build literature review tools. So let's start there. So then we focused on geopolitical forecasting. So I don't know if you're familiar with like manifold or manifold markets. That kind of stuff. Before manifold. Yeah. Yeah. I'm not predicting relationships. We're predicting like, is China going to invade Taiwan?Swyx [00:17:38]: Markets for everything.Andreas [00:17:39]: Yeah. That's a relationship.Swyx [00:17:41]: Yeah.Jungwon [00:17:42]: Yeah. It's true. And then we worked on that for a while. And then after GPT-3 came out, I think by that time we realized that originally we were trying to help people convert their beliefs into probability distributions. And so take fuzzy beliefs, but like model them more concretely. And then after a few months of iterating on that, just realize, oh, the thing that's blocking people from making interesting predictions about important events in the world is less kind of on the probabilistic side and much more on the research side. And so that kind of combined with the very generalist capabilities of GPT-3 prompted us to make a more general research assistant. Then we spent a few months iterating on what even is a research assistant. So we would embed with different researchers. We built data labeling workflows in the beginning, kind of right off the bat. We built ways to find experts in a field and like ways to ask good research questions. So we just kind of iterated through a lot of workflows and no one else was really building at this time. And it was like very quick to just do some prompt engineering and see like what is a task that is at the intersection of what's technologically capable and like important for researchers. And we had like a very nondescript landing page. It said nothing. But somehow people were signing up and we had to sign a form that was like, why are you here? And everyone was like, I need help with literature review. And we're like, oh, literature review. That sounds so hard. I don't even know what that means. We're like, we don't want to work on it. But then eventually we were like, okay, everyone is saying literature review. It's overwhelmingly people want to-Swyx [00:19:02]: And all domains, not like medicine or physics or just all domains. Yeah.Jungwon [00:19:06]: And we also kind of personally knew literature review was hard. And if you look at the graphs for academic literature being published every single month, you guys know this in machine learning, it's like up into the right, like superhuman amounts of papers. So we're like, all right, let's just try it. I was really nervous, but Andreas was like, this is kind of like the right problem space to jump into, even if we don't know what we're doing. So my take was like, fine, this feels really scary, but let's just launch a feature every single week and double our user numbers every month. And if we can do that, we'll fail fast and we will find something. I was worried about like getting lost in the kind of academic white space. So the very first version was actually a weekend prototype that Andreas made. Do you want to explain how that worked?Andreas [00:19:44]: I mostly remember that it was really bad. The thing I remember is you entered a question and it would give you back a list of claims. So your question could be, I don't know, how does creatine affect cognition? It would give you back some claims that are to some extent based on papers, but they were often irrelevant. The papers were often irrelevant. And so we ended up soon just printing out a bunch of examples of results and putting them up on the wall so that we would kind of feel the constant shame of having such a bad product and would be incentivized to make it better. And I think over time it has gotten a lot better, but I think the initial version was like really very bad. Yeah.Jungwon [00:20:20]: But it was basically like a natural language summary of an abstract, like kind of a one sentence summary, and which we still have. And then as we learned kind of more about this systematic review workflow, we started expanding the capability so that you could extract a lot more data from the papers and do more with that.Swyx [00:20:33]: And were you using like embeddings and cosine similarity, that kind of stuff for retrieval, or was it keyword based?Andreas [00:20:40]: I think the very first version didn't even have its own search engine. I think the very first version probably used the Semantic Scholar or API or something similar. And only later when we discovered that API is not very semantic, we then built our own search engine that has helped a lot.Swyx [00:20:58]: And then we're going to go into like more recent products stuff, but like, you know, I think you seem the more sort of startup oriented business person and you seem sort of more ideologically like interested in research, obviously, because of your PhD. What kind of market sizing were you guys thinking? Right? Like, because you're here saying like, we have to double every month. And I'm like, I don't know how you make that conclusion from this, right? Especially also as a nonprofit at the time.Jungwon [00:21:22]: I mean, market size wise, I felt like in this space where so much was changing and it was very unclear what of today was actually going to be true tomorrow. We just like really rested a lot on very, very simple fundamental principles, which is like, if you can understand the truth, that is very economically beneficial and valuable. If you like know the truth.Swyx [00:21:42]: On principle.Jungwon [00:21:43]: Yeah. That's enough for you. Yeah. Research is the key to many breakthroughs that are very commercially valuable.Swyx [00:21:47]: Because my version of it is students are poor and they don't pay for anything. Right? But that's obviously not true. As you guys have found out. But you had to have some market insight for me to have believed that, but you skipped that.Andreas [00:21:58]: Yeah. I remember talking to VCs for our seed round. A lot of VCs were like, you know, researchers, they don't have any money. Why don't you build legal assistant? I think in some short sighted way, maybe that's true. But I think in the long run, R&D is such a big space of the economy. I think if you can substantially improve how quickly people find new discoveries or avoid controlled trials that don't go anywhere, I think that's just huge amounts of money. And there are a lot of questions obviously about between here and there. But I think as long as the fundamental principle is there, we were okay with that. And I guess we found some investors who also were. Yeah.Swyx [00:22:35]: Congrats. I mean, I'm sure we can cover the sort of flip later. I think you're about to start us on like GPT-3 and how that changed things for you. It's funny. I guess every major GPT version, you have some big insight. Yeah.Jungwon [00:22:48]: Yeah. I mean, what do you think?Andreas [00:22:51]: I think it's a little bit less true for us than for others, because we always believed that there will basically be human level machine work. And so it is definitely true that in practice for your product, as new models come out, your product starts working better, you can add some features that you couldn't add before. But I don't think we really ever had the moment where we were like, oh, wow, that is super unanticipated. We need to do something entirely different now from what was on the roadmap.Jungwon [00:23:21]: I think GPT-3 was a big change because it kind of said, oh, now is the time that we can use AI to build these tools. And then GPT-4 was maybe a little bit more of an extension of GPT-3. GPT-3 over GPT-2 was like qualitative level shift. And then GPT-4 was like, okay, great. Now it's like more accurate. We're more accurate on these things. We can answer harder questions. But the shape of the product had already taken place by that time.Swyx [00:23:44]: I kind of want to ask you about this sort of pivot that you've made. But I guess that was just a way to sell what you were doing, which is you're adding extra features on grouping by concepts. The GPT-4 pivot, quote unquote pivot that you-Jungwon [00:23:55]: Oh, yeah, yeah, exactly. Right, right, right. Yeah. Yeah. When we launched this workflow, now that GPT-4 was available, basically Elisa was at a place where we have very tabular interfaces. So given a table of papers, you can extract data across all the tables. But you kind of want to take the analysis a step further. Sometimes what you'd care about is not having a list of papers, but a list of arguments, a list of effects, a list of interventions, a list of techniques. And so that's one of the things we're working on is now that you've extracted this information in a more structured way, can you pivot it or group by whatever the information that you extracted to have more insight first information still supported by the academic literature?Swyx [00:24:33]: Yeah, that was a big revelation when I saw it. Basically, I think I'm very just impressed by how first principles, your ideas around what the workflow is. And I think that's why you're not as reliant on like the LLM improving, because it's actually just about improving the workflow that you would recommend to people. Today we might call it an agent, I don't know, but you're not relying on the LLM to drive it. It's relying on this is the way that Elicit does research. And this is what we think is most effective based on talking to our users.Jungwon [00:25:01]: The problem space is still huge. Like if it's like this big, we are all still operating at this tiny part, bit of it. So I think about this a lot in the context of moats, people are like, oh, what's your moat? What happens if GPT-5 comes out? It's like, if GPT-5 comes out, there's still like all of this other space that we can go into. So I think being really obsessed with the problem, which is very, very big, has helped us like stay robust and just kind of directly incorporate model improvements and they keep going.Swyx [00:25:26]: And then I first encountered you guys with Charlie, you can tell us about that project. Basically, yeah. Like how much did cost become a concern as you're working more and more with OpenAI? How do you manage that relationship?Jungwon [00:25:37]: Let me talk about who Charlie is. And then you can talk about the tech, because Charlie is a special character. So Charlie, when we found him was, had just finished his freshman year at the University of Warwick. And I think he had heard about us on some discord. And then he applied and we were like, wow, who is this freshman? And then we just saw that he had done so many incredible side projects. And we were actually on a team retreat in Barcelona visiting our head of engineering at that time. And everyone was talking about this wonder kid or like this kid. And then on our take home project, he had done like the best of anyone to that point. And so people were just like so excited to hire him. So we hired him as an intern and they were like, Charlie, what if you just dropped out of school? And so then we convinced him to take a year off. And he was just incredibly productive. And I think the thing you're referring to is at the start of 2023, Anthropic kind of launched their constitutional AI paper. And within a few days, I think four days, he had basically implemented that in production. And then we had it in app a week or so after that. And he has since kind of contributed to major improvements, like cutting costs down to a tenth of what they were really large scale. But yeah, you can talk about the technical stuff. Yeah.Andreas [00:26:39]: On the constitutional AI project, this was for abstract summarization, where in illicit, if you run a query, it'll return papers to you, and then it will summarize each paper with respect to your query for you on the fly. And that's a really important part of illicit because illicit does it so much. If you run a few searches, it'll have done it a few hundred times for you. And so we cared a lot about this both being fast, cheap, and also very low on hallucination. I think if illicit hallucinates something about the abstract, that's really not good. And so what Charlie did in that project was create a constitution that expressed what are the attributes of a good summary? Everything in the summary is reflected in the actual abstract, and it's like very concise, et cetera, et cetera. And then used RLHF with a model that was trained on the constitution to basically fine tune a better summarizer on an open source model. Yeah. I think that might still be in use.Jungwon [00:27:34]: Yeah. Yeah, definitely. Yeah. I think at the time, the models hadn't been trained at all to be faithful to a text. So they were just generating. So then when you ask them a question, they tried too hard to answer the question and didn't try hard enough to answer the question given the text or answer what the text said about the question. So we had to basically teach the models to do that specific task.Swyx [00:27:54]: How do you monitor the ongoing performance of your models? Not to get too LLM-opsy, but you are one of the larger, more well-known operations doing NLP at scale. I guess effectively, you have to monitor these things and nobody has a good answer that I talk to.Andreas [00:28:10]: I don't think we have a good answer yet. I think the answers are actually a little bit clearer on the just kind of basic robustness side of where you can import ideas from normal software engineering and normal kind of DevOps. You're like, well, you need to monitor kind of latencies and response times and uptime and whatnot.Swyx [00:28:27]: I think when we say performance, it's more about hallucination rate, isn't it?Andreas [00:28:30]: And then things like hallucination rate where I think there, the really important thing is training time. So we care a lot about having our own internal benchmarks for model development that reflect the distribution of user queries so that we can know ahead of time how well is the model going to perform on different types of tasks. So the tasks being summarization, question answering, given a paper, ranking. And for each of those, we want to know what's the distribution of things the model is going to see so that we can have well-calibrated predictions on how well the model is going to do in production. And I think, yeah, there's some chance that there's distribution shift and actually the things users enter are going to be different. But I think that's much less important than getting the kind of training right and having very high quality, well-vetted data sets at training time.Jungwon [00:29:18]: I think we also end up effectively monitoring by trying to evaluate new models as they come out. And so that kind of prompts us to go through our eval suite every couple of months. And every time a new model comes out, we have to see how is this performing relative to production and what we currently have.Swyx [00:29:32]: Yeah. I mean, since we're on this topic, any new models that have really caught your eye this year?Jungwon [00:29:37]: Like Claude came out with a bunch. Yeah. I think Claude is pretty, I think the team's pretty excited about Claude. Yeah.Andreas [00:29:41]: Specifically, Claude Haiku is like a good point on the kind of Pareto frontier. It's neither the cheapest model, nor is it the most accurate, most high quality model, but it's just like a really good trade-off between cost and accuracy.Swyx [00:29:57]: You apparently have to 10-shot it to make it good. I tried using Haiku for summarization, but zero-shot was not great. Then they were like, you know, it's a skill issue, you have to try harder.Jungwon [00:30:07]: I think GPT-4 unlocked tables for us, processing data from tables, which was huge. GPT-4 Vision.Andreas [00:30:13]: Yeah.Swyx [00:30:14]: Yeah. Did you try like Fuyu? I guess you can't try Fuyu because it's non-commercial. That's the adept model.Jungwon [00:30:19]: Yeah.Swyx [00:30:20]: We haven't tried that one. Yeah. Yeah. Yeah. But Claude is multimodal as well. Yeah. I think the interesting insight that we got from talking to David Luan, who is CEO of multimodality has effectively two different flavors. One is we recognize images from a camera in the outside natural world. And actually the more important multimodality for knowledge work is screenshots and PDFs and charts and graphs. So we need a new term for that kind of multimodality.Andreas [00:30:45]: But is the claim that current models are good at one or the other? Yeah.Swyx [00:30:50]: They're over-indexed because of the history of computer vision is Coco, right? So now we're like, oh, actually, you know, screens are more important, OCR, handwriting. You mentioned a lot of like closed model lab stuff, and then you also have like this open source model fine tuning stuff. Like what is your workload now between closed and open? It's a good question.Andreas [00:31:07]: I think- Is it half and half? It's a-Swyx [00:31:10]: Is that even a relevant question or not? Is this a nonsensical question?Andreas [00:31:13]: It depends a little bit on like how you index, whether you index by like computer cost or number of queries. I'd say like in terms of number of queries, it's maybe similar. In terms of like cost and compute, I think the closed models make up more of the budget since the main cases where you want to use closed models are cases where they're just smarter, where no existing open source models are quite smart enough.Jungwon [00:31:35]: Yeah. Yeah.Alessio [00:31:37]: We have a lot of interesting technical questions to go in, but just to wrap the kind of like UX evolution, now you have the notebooks. We talked a lot about how chatbots are not the final frontier, you know? How did you decide to get into notebooks, which is a very iterative kind of like interactive interface and yeah, maybe learnings from that.Jungwon [00:31:56]: Yeah. This is actually our fourth time trying to make this work. Okay. I think the first time was probably in early 2021. I think because we've always been obsessed with this idea of task decomposition and like branching, we always wanted a tool that could be kind of unbounded where you could keep going, could do a lot of branching where you could kind of apply language model operations or computations on other tasks. So in 2021, we had this thing called composite tasks where you could use GPT-3 to brainstorm a bunch of research questions and then take each research question and decompose those further into sub questions. This kind of, again, that like task decomposition tree type thing was always very exciting to us, but that was like, it didn't work and it was kind of overwhelming. Then at the end of 22, I think we tried again and at that point we were thinking, okay, we've done a lot with this literature review thing. We also want to start helping with kind of adjacent domains and different workflows. Like we want to help more with machine learning. What does that look like? And as we were thinking about it, we're like, well, there are so many research workflows. How do we not just build three new workflows into Elicit, but make Elicit really generic to lots of workflows? What is like a generic composable system with nice abstractions that can like scale to all these workflows? So we like iterated on that a bunch and then didn't quite narrow the problem space enough or like quite get to what we wanted. And then I think it was at the beginning of 2023 where we're like, wow, computational notebooks kind of enable this, where they have a lot of flexibility, but kind of robust primitives such that you can extend the workflow and it's not limited. It's not like you ask a query, you get an answer, you're done. You can just constantly keep building on top of that. And each little step seems like a really good unit of work for the language model. And also there was just like really helpful to have a bit more preexisting work to emulate. Yeah, that's kind of how we ended up at computational notebooks for Elicit.Andreas [00:33:44]: Maybe one thing that's worth making explicit is the difference between computational notebooks and chat, because on the surface, they seem pretty similar. It's kind of this iterative interaction where you add stuff. In both cases, you have a back and forth between you enter stuff and then you get some output and then you enter stuff. But the important difference in our minds is with notebooks, you can define a process. So in data science, you can be like, here's like my data analysis process that takes in a CSV and then does some extraction and then generates a figure at the end. And you can prototype it using a small CSV and then you can run it over a much larger CSV later. And similarly, the vision for notebooks in our case is to not make it this like one-off chat interaction, but to allow you to then say, if you start and first you're like, okay, let me just analyze a few papers and see, do I get to the correct conclusions for those few papers? Can I then later go back and say, now let me run this over 10,000 papers now that I've debugged the process using a few papers. And that's an interaction that doesn't fit quite as well into the chat framework because that's more for kind of quick back and forth interaction.Alessio [00:34:49]: Do you think in notebooks, it's kind of like structure, editable chain of thought, basically step by step? Like, is that kind of where you see this going? And then are people going to reuse notebooks as like templates? And maybe in traditional notebooks, it's like cookbooks, right? You share a cookbook, you can start from there. Is this similar in Elizit?Andreas [00:35:06]: Yeah, that's exactly right. So that's our hope that people will build templates, share them with other people. I think chain of thought is maybe still like kind of one level lower on the abstraction hierarchy than we would think of notebooks. I think we'll probably want to think about more semantic pieces like a building block is more like a paper search or an extraction or a list of concepts. And then the model's detailed reasoning will probably often be one level down. You always want to be able to see it, but you don't always want it to be front and center.Alessio [00:35:36]: Yeah, what's the difference between a notebook and an agent? Since everybody always asks me, what's an agent? Like how do you think about where the line is?Andreas [00:35:44]: Yeah, it's an interesting question. In the notebook world, I would generally think of the human as the agent in the first iteration. So you have the notebook and the human kind of adds little action steps. And then the next point on this kind of progress gradient is, okay, now you can use language models to predict which action would you take as a human. And at some point, you're probably going to be very good at this, you'll be like, okay, in some cases I can, with 99.9% accuracy, predict what you do. And then you might as well just execute it, like why wait for the human? And eventually, as you get better at this, that will just look more and more like agents taking actions as opposed to you doing the thing. I think templates are a specific case of this where you're like, okay, well, there's just particular sequences of actions that you often want to chunk and have available as primitives, just like in normal programming. And those, you can view them as action sequences of agents, or you can view them as more normal programming language abstraction thing. And I think those are two valid views. Yeah.Alessio [00:36:40]: How do you see this change as, like you said, the models get better and you need less and less human actual interfacing with the model, you just get the results? Like how does the UX and the way people perceive it change?Jungwon [00:36:52]: Yeah, I think this kind of interaction paradigms for evaluation is not really something the internet has encountered yet, because up to now, the internet has all been about getting data and work from people. So increasingly, I really want kind of evaluation, both from an interface perspective and from like a technical perspective and operation perspective to be a superpower for Elicit, because I think over time, models will do more and more of the work, and people will have to do more and more of the evaluation. So I think, yeah, in terms of the interface, some of the things we have today, you know, for every kind of language model generation, there's some citation back, and we kind of try to highlight the ground truth in the paper that is most relevant to whatever Elicit said, and make it super easy so that you can click on it and quickly see in context and validate whether the text actually supports the answer that Elicit gave. So I think we'd probably want to scale things up like that, like the ability to kind of spot check the model's work super quickly, scale up interfaces like that. And-Swyx [00:37:44]: Who would spot check? The user?Jungwon [00:37:46]: Yeah, to start, it would be the user. One of the other things we do is also kind of flag the model's uncertainty. So we have models report out, how confident are you that this was the sample size of this study? The model's not sure, we throw a flag. And so the user knows to prioritize checking that. So again, we can kind of scale that up. So when the model's like, well, I searched this on Google, I'm not sure if that was the right thing. I have an uncertainty flag, and the user can go and be like, oh, okay, that was actually the right thing to do or not.Swyx [00:38:10]: I've tried to do uncertainty readings from models. I don't know if you have this live. You do? Yeah. Because I just didn't find them reliable because they just hallucinated their own uncertainty. I would love to base it on log probs or something more native within the model rather than generated. But okay, it sounds like they scale properly for you. Yeah.Jungwon [00:38:30]: We found it to be pretty calibrated. It varies on the model.Andreas [00:38:32]: I think in some cases, we also use two different models for the uncertainty estimates than for the question answering. So one model would say, here's my chain of thought, here's my answer. And then a different type of model. Let's say the first model is Llama, and let's say the second model is GPT-3.5. And then the second model just looks over the results and is like, okay, how confident are you in this? And I think sometimes using a different model can be better than using the same model. Yeah.Swyx [00:38:58]: On the topic of models, evaluating models, obviously you can do that all day long. What's your budget? Because your queries fan out a lot. And then you have models evaluating models. One person typing in a question can lead to a thousand calls.Andreas [00:39:11]: It depends on the project. So if the project is basically a systematic review that otherwise human research assistants would do, then the project is basically a human equivalent spend. And the spend can get quite large for those projects. I don't know, let's say $100,000. In those cases, you're happier to spend compute then in the kind of shallow search case where someone just enters a question because, I don't know, maybe I heard about creatine. What's it about? Probably don't want to spend a lot of compute on that. This sort of being able to invest more or less compute into getting more or less accurate answers is I think one of the core things we care about. And that I think is currently undervalued in the AI space. I think currently you can choose which model you want and you can sometimes, I don't know, you'll tip it and it'll try harder or you can try various things to get it to work harder. But you don't have great ways of converting willingness to spend into better answers. And we really want to build a product that has this sort of unbounded flavor where if you care about it a lot, you should be able to get really high quality answers, really double checked in every way.Alessio [00:40:14]: And you have a credits-based pricing. So unlike most products, it's not a fixed monthly fee.Jungwon [00:40:19]: Right, exactly. So some of the higher costs are tiered. So for most casual users, they'll just get the abstract summary, which is kind of an open source model. Then you can add more columns, which have more extractions and these uncertainty features. And then you can also add the same columns in high accuracy mode, which also parses the table. So we kind of stack the complexity on the calls.Swyx [00:40:39]: You know, the fun thing you can do with a credit system, which is data for data, basically you can give people more credits if they give data back to you. I don't know if you've already done that. We've thought about something like this.Jungwon [00:40:49]: It's like if you don't have money, but you have time, how do you exchange that?Swyx [00:40:54]: It's a fair trade.Jungwon [00:40:55]: I think it's interesting. We haven't quite operationalized it. And then, you know, there's been some kind of like adverse selection. Like, you know, for example, it would be really valuable to get feedback on our model. So maybe if you were willing to give more robust feedback on our results, we could give you credits or something like that. But then there's kind of this, will people take it seriously? And you want the good people. Exactly.Swyx [00:41:11]: Can you tell who are the good people? Not right now.Jungwon [00:41:13]: But yeah, maybe at the point where we can, we can offer it. We can offer it up to them.Swyx [00:41:16]: The perplexity of questions asked, you know, if it's higher perplexity, these are the smarterJungwon [00:41:20]: people. Yeah, maybe.Andreas [00:41:23]: If you put typos in your queries, you're not going to get off the stage.Swyx [00:41:28]: Negative social credit. It's very topical right now to think about the threat of long context windows. All these models that we're talking about these days, all like a million token plus. Is that relevant for you? Can you make use of that? Is that just prohibitively expensive because you're just paying for all those tokens or you're just doing rag?Andreas [00:41:44]: It's definitely relevant. And when we think about search, as many people do, we think about kind of a staged pipeline of retrieval where first you use semantic search database with embeddings, get like the, in our case, maybe 400 or so most relevant papers. And then, then you still need to rank those. And I think at that point it becomes pretty interesting to use larger models. So specifically in the past, I think a lot of ranking was kind of per item ranking where you would score each individual item, maybe using increasingly expensive scoring methods and then rank based on the scores. But I think list-wise re-ranking where you have a model that can see all the elements is a lot more powerful because often you can only really tell how good a thing is in comparison to other things and what things should come first. It really depends on like, well, what other things that are available, maybe you even care about diversity in your results. You don't want to show 10 very similar papers as the first 10 results. So I think a long context models are quite interesting there. And especially for our case where we care more about power users who are perhaps a little bit more willing to wait a little bit longer to get higher quality results relative to people who just quickly check out things because why not? And I think being able to spend more on longer contexts is quite valuable.Jungwon [00:42:55]: Yeah. I think one thing the longer context models changed for us is maybe a focus from breaking down tasks to breaking down the evaluation. So before, you know, if we wanted to answer a question from the full text of a paper, we had to figure out how to chunk it and like find the relevant chunk and then answer based on that chunk. And the nice thing was then, you know, kind of which chunk the model used to answer the question. So if you want to help the user track it, yeah, you can be like, well, this was the chunk that the model got. And now if you put the whole text in the paper, you have to like kind of find the chunk like more retroactively basically. And so you need kind of like a different set of abilities and obviously like a different technology to figure out. You still want to point the user to the supporting quotes in the text, but then the interaction is a little different.Swyx [00:43:38]: You like scan through and find some rouge score floor.Andreas [00:43:41]: I think there's an interesting space of almost research problems here because you would ideally make causal claims like if this hadn't been in the text, the model wouldn't have said this thing. And maybe you can do expensive approximations to that where like, I don't know, you just throw out chunk of the paper and re-answer and see what happens. But hopefully there are better ways of doing that where you just get that kind of counterfactual information for free from the model.Alessio [00:44:06]: Do you think at all about the cost of maintaining REG versus just putting more tokens in the window? I think in software development, a lot of times people buy developer productivity things so that we don't have to worry about it. Context window is kind of the same, right? You have to maintain chunking and like REG retrieval and like re-ranking and all of this versus I just shove everything into the context and like it costs a little more, but at least I don't have to do all of that. Is that something you thought about?Jungwon [00:44:31]: I think we still like hit up against context limits enough that it's not really, do we still want to keep this REG around? It's like we do still need it for the scale of the work that we're doing, yeah.Andreas [00:44:41]: And I think there are different kinds of maintainability. In one sense, I think you're right that throw everything into the context window thing is easier to maintain because you just can swap out a model. In another sense, if things go wrong, it's harder to debug where like, if you know, here's the process that we go through to go from 200 million papers to an answer. And there are like little steps and you understand, okay, this is the step that finds the relevant paragraph or whatever it may be. You'll know which step breaks if the answers are bad, whereas if it's just like a new model version came out and now it suddenly doesn't find your needle in a haystack anymore, then you're like, okay, what can you do? You're kind of at a loss.Alessio [00:45:21]: Let's talk a bit about, yeah, needle in a haystack and like maybe the opposite of it, which is like hard grounding. I don't know if that's like the best name to think about it, but I was using one of these chatwitcher documents features and I put the AMD MI300 specs and the new Blackwell chips from NVIDIA and I was asking questions and does the AMD chip support NVLink? And the response was like, oh, it doesn't say in the specs. But if you ask GPD 4 without the docs, it would tell you no, because NVLink it's a NVIDIA technology.Swyx [00:45:49]: It just says in the thing.Alessio [00:45:53]: How do you think about that? Does using the context sometimes suppress the knowledge that the model has?Andreas [00:45:57]: It really depends on the task because I think sometimes that is exactly what you want. So imagine you're a researcher, you're writing the background section of your paper and you're trying to describe what these other papers say. You really don't want extra information to be introduced there. In other cases where you're just trying to figure out the truth and you're giving the documents because you think they will help the model figure out what the truth is. I think you do want, if the model has a hunch that there might be something that's not in the papers, you do want to surface that. I think ideally you still don't want the model to just tell you, probably the ideal thing looks a bit more like agent control where the model can issue a query that then is intended to surface documents that substantiate its hunch. That's maybe a reasonable middle ground between model just telling you and model being fully limited to the papers you give it.Jungwon [00:46:44]: Yeah, I would say it's, they're just kind of different tasks right now. And the task that Elicit is mostly focused on is what do these papers say? But there's another task which is like, just give me the best possible answer and that give me the best possible answer sometimes depends on what do these papers say, but it can also depend on other stuff that's not in the papers. So ideally we can do both and then kind of do this overall task for you more going forward.Alessio [00:47:08]: We see a lot of details, but just to zoom back out a little bit, what are maybe the most underrated features of Elicit and what is one thing that maybe the users surprise you the most by using it?Jungwon [00:47:19]: I think the most powerful feature of Elicit is the ability to extract, add columns to this table, which effectively extracts data from all of your papers at once. It's well used, but there are kind of many different extensions of that that I think users are still discovering. So one is we let you give a description of the column. We let you give instructions of a column. We let you create custom columns. So we have like 30 plus predefined fields that users can extract, like what were the methods? What were the main findings? How many people were studied? And we actually show you basically the prompts that we're using to

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
Why Google failed to make GPT-3 + why Multimodal Agents are the path to AGI — with David Luan of Adept

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Mar 22, 2024 41:52


Our next SF event is AI UX 2024 - let's see the new frontier for UX since last year! Last call: we are recording a preview of the AI Engineer World's Fair with swyx and Ben Dunphy, send any questions about Speaker CFPs and Sponsor Guides you have!Alessio is now hiring engineers for a new startup he is incubating at Decibel: Ideal candidate is an “ex-technical co-founder type”. Reach out to him for more!David Luan has been at the center of the modern AI revolution: he was the ~30th hire at OpenAI, he led Google's LLM efforts and co-led Google Brain, and then started Adept in 2022, one of the leading companies in the AI agents space. In today's episode, we asked David for some war stories from his time in early OpenAI (including working with Alec Radford ahead of the GPT-2 demo with Sam Altman, that resulted in Microsoft's initial $1b investment), and how Adept is building agents that can “do anything a human does on a computer" — his definition of useful AGI.Why Google *couldn't* make GPT-3While we wanted to discuss Adept, we couldn't talk to a former VP Eng of OpenAI and former LLM tech lead at Google Brain and not ask about the elephant in the room. It's often asked how Google had such a huge lead in 2017 with Vaswani et al creating the Transformer and Noam Shazeer predicting trillion-parameter models and yet it was David's team at OpenAI who ended up making GPT 1/2/3. David has some interesting answers:“So I think the real story of GPT starts at Google, of course, right? Because that's where Transformers sort of came about. However, the number one shocking thing to me was that, and this is like a consequence of the way that Google is organized…what they (should) have done would be say, hey, Noam Shazeer, you're a brilliant guy. You know how to scale these things up. Here's half of all of our TPUs. And then I think they would have destroyed us. He clearly wanted it too…You know, every day we were scaling up GPT-3, I would wake up and just be stressed. And I was stressed because, you know, you just look at the facts, right? Google has all this compute. Google has all the people who invented all of these underlying technologies. There's a guy named Noam who's really smart, who's already gone and done this talk about how he wants a trillion parameter model. And I'm just like, we're probably just doing duplicative research to what he's doing. He's got this decoder only transformer that's probably going to get there before we do. And it turned out the whole time that they just couldn't get critical mass. So during my year where I led the Google LM effort and I was one of the brain leads, you know, it became really clear why. At the time, there was a thing called the Brain Credit Marketplace. Everyone's assigned a credit. So if you have a credit, you get to buy end chips according to supply and demand. So if you want to go do a giant job, you had to convince like 19 or 20 of your colleagues not to do work. And if that's how it works, it's really hard to get that bottom up critical mass to go scale these things. And the team at Google were fighting valiantly, but we were able to beat them simply because we took big swings and we focused.”Cloning HGI for AGIHuman intelligence got to where it is today through evolution. Some argue that to get to AGI, we will approximate all the “FLOPs” that went into that process, an approach most famously mapped out by Ajeya Cotra's Biological Anchors report:The early days of OpenAI were very reinforcement learning-driven with the Dota project, but that's a very inefficient way for these models to re-learn everything. (Kanjun from Imbue shared similar ideas in her episode).David argues that there's a shortcut. We can bootstrap from existing intelligence.“Years ago, I had a debate with a Berkeley professor as to what will it actually take to build AGI. And his view is basically that you have to reproduce all the flops that went into evolution in order to be able to get there… I think we are ignoring the fact that you have a giant shortcut, which is you can behaviorally clone everything humans already know. And that's what we solved with LLMs!”LLMs today basically model intelligence using all (good!) written knowledge (see our Datasets 101 episode), and have now expanded to non-verbal knowledge (see our HuggingFace episode on multimodality). The SOTA self-supervised pre-training process is surprisingly data-efficient in taking large amounts of unstructured data, and approximating reasoning without overfitting.But how do you cross the gap from the LLMs of today to building the AGI we all want? This is why David & friends left to start Adept.“We believe the clearest framing of general intelligence is a system that can do anything a human can do in front of a computer. A foundation model for actions, trained to use every software tool, API, and webapp that exists, is a practical path to this ambitious goal” — ACT-1 BlogpostCritical Path: Abstraction with ReliabilityThe AGI dream is fully autonomous agents, but there are levels to autonomy that we are comfortable giving our agents, based on how reliable they are. In David's word choice, we always want higher levels of “abstractions” (aka autonomy), but our need for “reliability” is the practical limit on how high of an abstraction we can use.“The critical path for Adept is we want to build agents that can do a higher and higher level abstraction things over time, all while keeping an insanely high reliability standard. Because that's what turns us from research into something that customers want. And if you build agents with really high reliability standard, but are continuing pushing a level of abstraction, you then learn from your users how to get that next level of abstraction faster. So that's how you actually build the data flow. That's the critical path for the company. Everything we do is in service of that.”We saw how Adept thinks about different levels of abstraction at the 2023 Summit:The highest abstraction is the “AI Employee”, but we'll get there with “AI enabled employees”. Alessio recently gave a talk about the future of work with “services as software” at this week's Nvidia GTC (slides).No APIsUnlike a lot of large research labs, Adept's framing of AGI as "being able to use your computer like a human" carries with it a useful environmental constraint:“Having a human robot lets you do things that humans do without changing everything along the way. It's the same thing for software, right? If you go itemize out the number of things you want to do on your computer for which every step has an API, those numbers of workflows add up pretty close to zero. And so then many points along the way, you need the ability to actually control your computer like a human. It also lets you learn from human usage of computers as a source of training data that you don't get if you have to somehow figure out how every particular step needs to be some particular custom private API thing. And so I think this is actually the most practical path (to economic value).”This realization and conviction means that multimodal modals are the way to go. Instead of using function calling to call APIs to build agents, which is what OpenAI and most of the open LLM industry have done to date, Adept wants to “drive by vision”, (aka see the screen as a human sees it) and pinpoint where to click and type as a human does. No APIs needed, because most software don't expose APIs.Extra context for readers: You can see the DeepMind SIMA model in the same light: One system that learned to play a diverse set of games (instead of one dedicated model per game) using only pixel inputs and keyboard-and-mouse action outputs!The OpenInterpreter team is working on a “Computer API” that also does the same.To do this, Adept had to double down on a special kind of multimodality for knowledge work:“A giant thing that was really necessary is really fast multimodal models that are really good at understanding knowledge work and really good at understanding screens. And that is needs to kind of be the base for some of these agents……I think one big hangover primarily academic focus for multimodal models is most multimodal models are primarily trained on like natural images, cat and dog photos, stuff that's come out of the camera… (but) where are they going to be the most useful? They're going to be most useful in knowledge work tasks. That's where the majority of economic value is going to be. It's not in cat and dogs. And so if that's what it is, what do you need to train? I need to train on like charts, graphs, tables, invoices, PDFs, receipts, unstructured data, UIs. That's just a totally different pre-training corpus. And so Adept spent a lot of time building that.”With this context, you can now understand the full path of Adept's public releases:* ACT-1 (Sept 2022): a large Transformers model optimized for browser interactions. It has a custom rendering of the browser viewport that allows it to better understand it and take actions.* Persimmon-8B (Sept 2023): a permissive open LLM (weights and code here)* Fuyu-8B (Oct 2023): a small version of the multimodal model that powers Adept. Vanilla decoder-only transformer with no specialized image encoder, which allows it to handle input images of varying resolutions without downsampling.* Adept Experiments (Nov 2023): A public tool to build automations in the browser. This is powered by Adept's core technology but it's just a piece of their enterprise platform. They use it as a way to try various design ideas.* Fuyu Heavy (Jan 2024) - a new multimodal model designed specifically for digital agents and the world's third-most-capable multimodal model (beating Gemini Pro on MMMU, AI2D, and ChartQA), “behind only GPT4-V and Gemini Ultra, which are 10-20 times bigger”The Fuyu-8B post in particular exhibits a great number of examples on knowledge work multimodality:Why Adept is NOT a Research LabWith OpenAI now worth >$90b and Anthropic >$18b, it is tempting to conclude that the AI startup metagame is to build a large research lab, and attract the brightest minds and highest capital to build AGI. Our past guests (see the Humanloop episode) and (from Imbue) combined to ask the most challenging questions of the pod - with David/Adept's deep research pedigree from Deepmind and OpenAI, why is Adept not building more general foundation models (like Persimmon) and playing the academic benchmarks game? Why is Adept so focused on commercial agents instead?“I feel super good that we're doing foundation models in service of agents and all of the reward within Adept is flowing from “Can we make a better agent”…… I think pure play foundation model companies are just going to be pinched by how good the next couple of (Meta Llama models) are going to be… And then seeing the really big players put ridiculous amounts of compute behind just training these base foundation models, I think is going to commoditize a lot of the regular LLMs and soon regular multimodal models. So I feel really good that we're just focused on agents.”and the commercial grounding is his answer to Kanjun too (whom we also asked the inverse question to compare with Adept):“… the second reason I work at Adept is if you believe that actually having customers and a reward signal from customers lets you build AGI faster, which we really believe, then you should come here. And I think the examples for why that's true is for example, our evaluations are not academic evals. They're not simulator evals. They're like, okay, we have a customer that really needs us to do these particular things. We can do some of them. These are the ones they want us to, we can't do them at all. We've turned those into evals.. I think that's a degree of practicality that really helps.”And his customers seem pretty happy, because David didn't need to come on to do a sales pitch:David: “One of the things we haven't shared before is we're completely sold out for Q1.”Swyx: “Sold out of what?”David: “Sold out of bandwidth to onboard more customers.”Well, that's a great problem to have.Show Notes* David Luan* Dextro at Data Driven NYC (2015)* Adept* ACT-1* Persimmon-8B* Adept Experiments* Fuyu-8B* $350M Series B announcement* Amelia Wattenberger talk at AI Engineer Summit* FigureChapters* [00:00:00] Introductions* [00:01:14] Being employee #30 at OpenAI and its early days* [00:13:38] What is Adept and how do you define AGI?* [00:21:00] Adept's critical path and research directions* [00:26:23] How AI agents should interact with software and impact product development* [00:30:37] Analogies between AI agents and self-driving car development* [00:32:42] Balancing reliability, cost, speed and generality in AI agents* [00:37:30] Potential of foundation models for robotics* [00:39:22] Core research questions and reasons to work at AdeptTranscriptsAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO in Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:15]: Hey, and today we have David Luan, CEO, co-founder of Adept in the studio. Welcome.David [00:00:20]: Yeah, thanks for having me.Swyx [00:00:21]: Been a while in the works. I've met you socially at one of those VC events and you said that you were interested in coming on and glad we finally were able to make this happen.David: Yeah, happy to be part of it.Swyx: So we like to introduce the speaker and then also just like have you talk a little bit about like what's not on your LinkedIn, what people should just generally know about you. You started a company in college, which was the first sort of real time video detection classification API that was Dextro, and that was your route to getting acquired into Axon where you're a director of AI. Then you were the 30th hire at OpenAI?David [00:00:53]: Yeah, 30, 35, something around there. Something like that.Swyx [00:00:56]: So you were VP of Eng for two and a half years to two years, briefly served as tech lead of large models at Google, and then in 2022 started Adept. So that's the sort of brief CV. Is there anything else you like want to fill in the blanks or like people should know more about?David [00:01:14]: I guess a broader story was I joined OpenAI fairly early and I did that for about two and a half to three years leading engineering there. It's really funny, I think second or third day of my time at OpenAI, Greg and Ilya pulled me in a room and we're like, you know, you should take over our directs and we'll go mostly do IC work. So that was fun, just coalescing a bunch of teams out of a couple of early initiatives that had already happened. The company, the Dota effort was going pretty hard and then more broadly trying to put bigger picture direction around what we were doing with basic research. So I spent a lot of time doing that. And then I led Google's LLM efforts, but also co-led Google Brain was one of the brain leads more broadly. You know, there's been a couple of different eras of AI research, right? If we count everything before 2012 as prehistory, which people hate it when I say that, kind of had this like you and your three best friends write a research paper that changes the world period from like 2012 to 2017. And I think the game changed in 2017 and like most labs didn't realize it, but we at OpenAI really did. I think in large part helped by like Ilya's constant beating of the drum that the world would be covered in data centers. And I think-Swyx [00:02:15]: It's causally neat.David [00:02:16]: Yeah. Well, like I think we had conviction in that, but it wasn't until we started seeing results that it became clear that that was where we had to go. But also part of it as well was for OpenAI, like when I first joined, I think one of the jobs that I had to do was how do I tell a differentiated vision for who we were technically compared to, you know, hey, we're just smaller Google Brain, or like you work at OpenAI if you live in SF and don't want to commute to Mountain View or don't want to live in London, right? That's like not enough to like hang your technical identity as a company. And so what we really did was, and I spent a lot of time pushing this, is just how do we get ourselves focused on a certain class of like giant swings and bets, right? Like how do you flip the script from you just do bottom-up research to more about how do you like leave some room for that, but really make it about like, what are the big scientific outcomes that you want to show? And then you just solve them at all costs, whether or not you care about novelty and all that stuff. And that became the dominant model for a couple of years, right? And then what's changed now is I think the number one driver of AI products over the next couple of years is going to be the deep co-design and co-evolution of product and users for feedback and actual technology. And I think labs, every tool to go do that are going to do really well. And that's a big part of why I started Adept.Alessio [00:03:20]: You mentioned Dota, any memories thinking from like the switch from RL to Transformers at the time and kind of how the industry was evolving more in the LLM side and leaving behind some of the more agent simulation work?David [00:03:33]: Like zooming way out, I think agents are just absolutely the correct long-term direction, right? You just go to find what AGI is, right? You're like, Hey, like, well, first off, actually, I don't love AGI definitions that involve human replacement because I don't think that's actually how it's going to happen. Even this definition of like, Hey, AGI is something that outperforms humans at economically valuable tasks is kind of implicit view of the world about what's going to be the role of people. I think what I'm more interested in is like a definition of AGI that's oriented around like a model that can do anything a human can do on a computer. If you go think about that, which is like super tractable, then agent is just a natural consequence of that definition. And so what did all the work we did on our own stuff like that get us was it got us a really clear formulation. Like you have a goal and you want to maximize the goal, you want to maximize reward, right? And the natural LLM formulation doesn't come with that out of the box, right? I think that we as a field got a lot right by thinking about, Hey, how do we solve problems of that caliber? And then the thing we forgot is the Novo RL is like a pretty terrible way to get there quickly. Why are we rediscovering all the knowledge about the world? Years ago, I had a debate with a Berkeley professor as to what will it actually take to build AGI. And his view is basically that you have to reproduce all the flops that went into evolution in order to be able to get there. Right.Swyx [00:04:44]: The biological basis theory. Right.David [00:04:46]: So I think we are ignoring the fact that you have a giant shortcut, which is you can behavioral clone everything humans already know. And that's what we solved with LLMs. We've solved behavioral cloning, everything that humans already know. Right. So like today, maybe LLMs is like behavioral cloning every word that gets written on the internet in the future, the multimodal models are becoming more of a thing where behavioral cloning the visual world. But really, what we're just going to have is like a universal byte model, right? Where tokens of data that have high signal come in, and then all of those patterns are like learned by the model. And then you can regurgitate any combination now. Right. So text into voice out, like image into other image out or video out or whatever, like these like mappings, right? Like all just going to be learned by this universal behavioral cloner. And so I'm glad we figured that out. And I think now we're back to the era of how do we combine this with all of the lessons we learned during the RL period. That's what's going to drive progress.Swyx [00:05:35]: I'm still going to pressure you for a few more early opening stories before we turn to the ADET stuff. On your personal site, which I love, because it's really nice, like personal, you know, story context around like your history. I need to update it. It's so old. Yeah, it's so out of date. But you mentioned GPT-2. Did you overlap with GPT-1? I think you did, right?David [00:05:53]: I actually don't quite remember. I think I was joining right around- Right around then?Swyx [00:05:57]: I was right around that, yeah. Yeah. So what I remember was Alec, you know, just kind of came in and was like very obsessed with Transformers and applying them to like Reddit sentiment analysis. Yeah, sentiment, that's right. Take us through-David [00:06:09]: Sentiment neuron, all this stuff.Swyx [00:06:10]: The history of GPT as far as you know, you know, according to you. Ah, okay.David [00:06:14]: History of GPT, according to me, that's a pretty good question. So I think the real story of GPT starts at Google, of course, right? Because that's where Transformers sort of came about. However, the number one shocking thing to me was that, and this is like a consequence of the way that Google is organized, where like, again, you and your three best friends write papers, right? Okay. So zooming way out, right? I think about my job when I was a full-time research leader as a little bit of a portfolio allocator, right? So I've got really, really smart people. My job is to convince people to coalesce around a small number of really good ideas and then run them over the finish line. My job is not actually to promote a million ideas and never have critical mass. And then as the ideas start coming together and some of them start working well, my job is to nudge resources towards the things that are really working and then start disbanding some of the things that are not working, right? That muscle did not exist during my time at Google. And I think had they had it, what they would have done would be say, hey, Noam Shazir, you're a brilliant guy. You know how to scale these things up. Here's half of all of our TPUs. And then I think they would have destroyed us. He clearly wanted it too.Swyx [00:07:17]: He's talking about trillion parameter models in 2017.David [00:07:20]: Yeah. So that's the core of the GPT story, right? Which is that, and I'm jumping around historically, right? But after GPT-2, we were all really excited about GPT-2. I can tell you more stories about that. It was the last paper that I even got to really touch before everything became more about building a research org. You know, every day we were scaling up GPT-3, I would wake up and just be stressed. And I was stressed because, you know, you just look at the facts, right? Google has all this compute. Google has all the people who invented all of these underlying technologies. There's a guy named Noam who's really smart, who's already gone and done this talk about how he wants a trillion parameter model. And I'm just like, we're probably just doing duplicative research to what he's doing, right? He's got this decoder only transformer that's probably going to get there before we do. And I was like, but like, please just like let this model finish, right? And it turned out the whole time that they just couldn't get critical mass. So during my year where I led the Google LM effort and I was one of the brain leads, you know, it became really clear why, right? At the time, there was a thing called the brain credit marketplace. And did you guys know the brain credit marketplace? No, I never heard of this. Oh, so it's actually, it's a, you can ask any Googler.Swyx [00:08:23]: It's like just like a thing that, that, I mean, look like, yeah, limited resources, you got to have some kind of marketplace, right? You know, sometimes it's explicit, sometimes it isn't, you know, just political favors.David [00:08:34]: You could. And so then basically everyone's assigned a credit, right? So if you have a credit, you get to buy end chips according to supply and demand. So if you want to go do a giant job, you had to convince like 19 or 20 of your colleagues not to do work. And if that's how it works, it's really hard to get that bottom up critical mass to go scale these things. And the team at Google were fighting valiantly, but we were able to beat them simply because we took big swings and we focused. And I think, again, that's like part of the narrative of like this phase one of AI, right? Of like this modern AI era to phase two. And I think in the same way, I think phase three company is going to out execute phase two companies because of the same asymmetry of success.Swyx [00:09:12]: Yeah. I think it's underrated how much NVIDIA works with you in the early days as well. I think maybe, I think it was Jensen. I'm not sure who circulated a recent photo of him delivering the first DGX to you guys.David [00:09:24]: I think Jensen has been a complete legend and a mastermind throughout. I have so much respect for NVIDIA. It is unreal.Swyx [00:09:34]: But like with OpenAI, like kind of give their requirements, like co-design it or just work of whatever NVIDIA gave them.David [00:09:40]: So we work really closely with them. There's, I'm not sure I can share all the stories, but examples of ones that I've found particularly interesting. So Scott Gray is amazing. I really like working with him. He was on one of my teams, the supercomputing team, which Chris Berner runs and Chris Berner still does a lot of stuff in that. As a result, like we had very close ties to NVIDIA. Actually, one of my co-founders at Adept, Eric Elson, was also one of the early GPGPU people. So he and Scott and Brian Catanzaro at NVIDIA and Jonah and Ian at NVIDIA, I think all were very close. And we're all sort of part of this group of how do we push these chips to the absolute limit? And I think that kind of collaboration helped quite a bit. I think one interesting set of stuff is knowing the A100 generation, that like quad sparsity was going to be a thing. Is that something that we want to go look into, right? And figure out if that's something that we could actually use for model training. Really what it boils down to is that, and I think more and more people realize this, six years ago, people, even three years ago, people refused to accept it. This era of AI is really a story of compute. It's really the story of how do you more efficiently map actual usable model flops to compute,Swyx [00:10:38]: Is there another GPT 2, 3 story that you love to get out there that you think is underappreciated for the amount of work that people put into it?David [00:10:48]: So two interesting GPT 2 stories. One of them was I spent a good bit of time just sprinting to help Alec get the paper out. And I remember one of the most entertaining moments was we were writing the modeling section. And I'm pretty sure the modeling section was the shortest modeling section of any ML, reasonably legitimate ML paper to that moment. It was like section three model. This is a standard vanilla decoder only transformer with like these particular things, those paragraph long if I remember correctly. And both of us were just looking at the same being like, man, the OGs in the field are going to hate this. They're going to say no novelty. Why did you guys do this work? So now it's funny to look at in hindsight that it was pivotal kind of paper, but I think it was one of the early ones where we just leaned fully into all we care about is solving problems in AI and not about, hey, is there like four different really simple ideas that are cloaked in mathematical language that doesn't actually help move the field forward?Swyx [00:11:42]: Right. And it's like you innovate on maybe like data set and scaling and not so much the architecture.David [00:11:48]: We all know how it works now, right? Which is that there's a collection of really hard won knowledge that you get only by being at the frontiers of scale. And that hard won knowledge, a lot of it's not published. A lot of it is stuff that's actually not even easily reducible to what looks like a typical academic paper. But yet that's the stuff that helps differentiate one scaling program from another. You had a second one? So the second one is, there's like some details here that I probably shouldn't fully share, but hilariously enough for the last meeting we did with Microsoft before Microsoft invested in OpenAI, Sam Altman, myself and our CFO flew up to Seattle to do the final pitch meeting. And I'd been a founder before. So I always had a tremendous amount of anxiety about partner meetings, which this basically this is what it was. I had Kevin Scott and Satya and Amy Hood, and it was my job to give the technical slides about what's the path to AGI, what's our research portfolio, all of this stuff, but it was also my job to give the GPT-2 demo. We had a slightly bigger version of GPT-2 that we had just cut maybe a day or two before this flight up. And as we all know now, model behaviors you find predictable at one checkpoint are not predictable in another checkpoint. And so I'd spent all this time trying to figure out how to keep this thing on rails. I had my canned demos, but I knew I had to go turn it around over to Satya and Kevin and let them type anything in. And that just, that really kept me up all night.Swyx [00:13:06]: Nice. Yeah.Alessio [00:13:08]: I mean, that must have helped you talking about partners meeting. You raised $420 million for Adept. The last round was a $350 million Series B, so I'm sure you do great in partner meetings.Swyx [00:13:18]: Pitchers meetings. Nice.David [00:13:20]: No, that's a high compliment coming from a VC.Alessio [00:13:22]: Yeah, no, I mean, you're doing great already for us. Let's talk about Adept. And we were doing pre-prep and you mentioned that maybe a lot of people don't understand what Adept is. So usually we try and introduce the product and then have the founders fill in the blanks, but maybe let's do the reverse. Like what is Adept? Yeah.David [00:13:38]: So I think Adept is the least understood company in the broader space of foundational models plus agents. So I'll give some color and I'll explain what it is and I'll explain also why it's actually pretty different from what people would have guessed. So the goal for Adept is we basically want to build an AI agent that can do, that can basically help humans do anything a human does on a computer. And so what that really means is we want this thing to be super good at turning natural language like goal specifications right into the correct set of end steps and then also have all the correct sensors and actuators to go get that thing done for you across any software tool that you already use. And so the end vision of this is effectively like I think in a couple of years everyone's going to have access to like an AI teammate that they can delegate arbitrary tasks to and then also be able to, you know, use it as a sounding board and just be way, way, way more productive. Right. And just changes the shape of every job from something where you're mostly doing execution to something where you're mostly actually doing like these core liberal arts skills of what should I be doing and why. Right. And I find this like really exciting and motivating because I think it's actually a pretty different vision for how AGI will play out. I think systems like Adept are the most likely systems to be proto-AGIs. But I think the ways in which we are really counterintuitive to everybody is that we've actually been really quiet because we are not a developer company. We don't sell APIs. We don't sell open source models. We also don't sell bottom up products. We're not a thing that you go and click and download the extension and like we want more users signing up for that thing. We're actually an enterprise company. So what we do is we work with a range of different companies, some like late stage multi-thousand people startups, some fortune 500s, et cetera. And what we do for them is we basically give them an out of the box solution where big complex workflows that their employees do every day could be delegated to the model. And so we look a little different from other companies in that in order to go build this full agent thing, the most important thing you got to get right is reliability. So initially zooming way back when, one of the first things that DEP did was we released this demo called Act One, right? Act One was like pretty cool. It's like kind of become a hello world thing for people to show agent demos by going to Redfin and asking to buy a house somewhere because like we did that in the original Act One demo and like showed that, showed like Google Sheets, all this other stuff. Over the last like year since that has come out, there's been a lot of really cool demos and you go play with them and you realize they work 60% of the time. But since we've always been focused on how do we build an amazing enterprise product, enterprises can't use anything that isn't in the nines of reliability. And so we've actually had to go down a slightly different tech tree than what you might find in the prompt engineering sort of plays in the agent space to get that reliability. And we've decided to prioritize reliability over all else. So like one of our use cases is crazy enough that it actually ends with a physical truck being sent to a place as the result of the agent workflow. And if you're like, if that works like 60% of the time, you're just blowing money and poor truck drivers going places.Alessio [00:16:30]: Interesting. One of the, our investment teams has this idea of services as software. I'm actually giving a talk at NVIDIA GTC about this, but basically software as a service, you're wrapping user productivity in software with agents and services as software is replacing things that, you know, you would ask somebody to do and the software just does it for you. When you think about these use cases, do the users still go in and look at the agent kind of like doing the things and can intervene or like are they totally removed from them? Like the truck thing is like, does the truck just show up or are there people in the middle checking in?David [00:17:04]: I think there's two current flaws in the framing for services as software, or I think what you just said. I think that one of them is like in our experience, as we've been rolling out Adept, the people who actually do the jobs are the most excited about it because they don't go from, I do this job to, I don't do this job. They go from, I do this job for everything, including the shitty rote stuff to I'm a supervisor. And I literally like, it's pretty magical when you watch the thing being used because now it parallelizes a bunch of the things that you had to do sequentially by hand as a human. And you can just click into any one of them and be like, Hey, I want to watch the trajectory that the agent went through to go solve this. And the nice thing about agent execution as opposed to like LLM generations is that a good chunk of the time when the agent fails to execute, it doesn't give you the wrong result. It just fails to execute. And the whole trajectory is just broken and dead and the agent knows it, right? So then those are the ones that the human then goes and solves. And so then they become a troubleshooter. They work on the more challenging stuff. They get way, way more stuff done and they're really excited about it. I think the second piece of it that we've found is our strategy as a company is to always be an augmentation company. And I think one out of principle, that's something we really care about. But two, actually, if you're framing yourself as an augmentation company, you're always going to live in a world where you're solving tasks that are a little too hard for what the model can do today and still needs a human to provide oversight, provide clarifications, provide human feedback. And that's how you build a data flywheel. That's how you actually learn from the smartest humans how to solve things models can't do today. And so I actually think that being an augmentation company forces you to go develop your core AI capabilities faster than someone who's saying, ah, okay, my job is to deliver you a lights off solution for X.Alessio [00:18:42]: Yeah. It's interesting because we've seen two parts of the market. One is we have one company that does agents for SOC analysts. People just don't have them, you know, and just they cannot attract the talent to do it. And similarly, in a software development, you have Copilot, which is the augmentation product, and then you have sweep.dev and you have these products, which they just do the whole thing. I'm really curious to see how that evolves. I agree that today the reliability is so important in the enterprise that they just don't use most of them. Yeah. Yeah. No, that's cool. But it's great to hear the story because I think from the outside, people are like, oh, a dev, they do Act One, they do Persimon, they do Fuyu, they do all this stuff. Yeah, it's just the public stuff.Swyx [00:19:20]: It's just public stuff.David [00:19:21]: So one of the things we haven't shared before is we're completely sold out for Q1. And so I think...Swyx [00:19:26]: Sold out of what?David [00:19:27]: Sold out of bandwidth to go on board more customers. And so we're like working really hard to go make that less of a bottleneck, but our expectation is that I think we're going to be significantly more public about the broader product shape and the new types of customers we want to attract later this year. So I think that clarification will happen by default.Swyx [00:19:43]: Why have you become more public? You know, if the whole push has... You're sold out, you're my enterprise, but you're also clearly putting effort towards being more open or releasing more things.David [00:19:53]: I think we just flipped over that way fairly recently. That's a good question. I think it actually boils down to two things. One, I think that, frankly, a big part of it is that the public narrative is really forming around agents as being the most important thing. And I'm really glad that's happening because when we started the company in January 2022, everybody in the field knew about the agents thing from RL, but the general public had no conception of what it was. They were still hanging their narrative hat on the tree of everything's a chatbot. And so I think now one of the things that I really care about is that when people think agent, they actually think the right thing. All sorts of different things are being called agents. Chatbots are being called agents. Things that make a function call are being called agents. To me, an agent is something that you can give a goal and get an end step workflow done correctly in the minimum number of steps. And so that's a big part of why. And I think the other part is because I think it's always good for people to be more aware of Redept as they think about what the next thing they want to do in their careers. The field is quickly pivoting in a world where foundation models are looking more and more commodity. And I think a huge amount of gain is going to happen from how do you use foundation models as the well-learned behavioral cloner to go solve agents. And I think people who want to do agents research should really come to Redept.Swyx [00:21:00]: When you say agents have become more part of the public narrative, are there specific things that you point to? I'll name a few. Bill Gates in his blog post mentioning that agents are the future. I'm the guy who made OSes, and I think agents are the next thing. So Bill Gates, I'll call that out. And then maybe Sam Altman also saying that agents are the future for open AI.David [00:21:17]: I think before that even, I think there was something like the New York Times, Cade Metz wrote a New York Times piece about it. Right now, in a bit to differentiate, I'm seeing AI startups that used to just brand themselves as an AI company, but now brand themselves as an AI agent company. It's just like, it's a term I just feel like people really want.Swyx [00:21:31]: From the VC side, it's a bit mixed. Is it? As in like, I think there are a lot of VCs where like, I would not touch any agent startups because like- Why is that? Well, you tell me.Alessio [00:21:41]: I think a lot of VCs that are maybe less technical don't understand the limitations of the-Swyx [00:21:46]: No, that's not fair.Alessio [00:21:47]: No, no, no, no. I think like- You think so? No, no. I think like the, what is possible today and like what is worth investing in, you know? And I think like, I mean, people look at you and say, well, these guys are building agents. They needed 400 million to do it. So a lot of VCs are maybe like, oh, I would rather invest in something that is tacking on AI to an existing thing, which is like easier to get the market and kind of get some of the flywheel going. But I'm also surprised a lot of funders just don't want to do agents. It's not even the funding. Sometimes we look around and it's like, why is nobody doing agents for X? Wow.David [00:22:17]: That's good to know actually. I never knew that before. My sense from my limited perspective is there's a new agent company popping up every day.Swyx [00:22:24]: So maybe I'm- They are. They are. But like I have advised people to take agents off of their title because it's so diluted.David [00:22:31]: It's now so diluted.Swyx [00:22:32]: Yeah. So then it doesn't stand for anything. Yeah.David [00:22:35]: That's a really good point.Swyx [00:22:36]: So like, you know, you're a portfolio allocator. You have people know about Persimmon, people know about Fuyu and Fuyu Heavy. Can you take us through like how you think about that evolution of that and what people should think about what that means for adepts and sort of research directions? Kind of take us through the stuff you shipped recently and how people should think about the trajectory of what you're doing.David [00:22:56]: The critical path for adepts is we want to build agents that can do a higher and higher level abstraction things over time, all while keeping an insanely high reliability standard. Because that's what turns us from research into something that customers want. And if you build agents with really high reliability standard, but are continuing pushing a level of abstraction, you then learn from your users how to get that next level of abstraction faster. So that's how you actually build the data flow. That's the critical path for the company. Everything we do is in service of that. So if you go zoom way, way back to Act One days, right? Like the core thing behind Act One is can we teach large model basically how to even actuate your computer? And I think we're one of the first places to have solved that and shown it and shown the generalization that you get when you give it various different workflows and texts. But I think from there on out, we really realized was that in order to get reliability, companies just do things in various different ways. You actually want these models to be able to get a lot better at having some specification of some guardrails for what it actually should be doing. And I think in conjunction with that, a giant thing that was really necessary is really fast multimodal models that are really good at understanding knowledge work and really good at understanding screens. And that is needs to kind of be the base for some of these agents. Back then we had to do a ton of research basically on how do we actually make that possible? Well, first off, like back in forgot exactly one month to 23, like there were no multimodal models really that you could use for things like this. And so we pushed really hard on stuff like the Fuyu architecture. I think one big hangover primarily academic focus for multimodal models is most multimodal models are primarily trained on like natural images, cat and dog photos, stuff that's come out of the camera. Coco. Yeah, right. And the Coco is awesome. Like I love Coco. I love TY. Like it's really helped the field. Right. But like that's the build one thing. I actually think it's really clear today. Multimodal models are the default foundation model, right? It's just going to supplant LLMs. Like you just train a giant multimodal model. And so for that though, like where are they going to be the most useful? They're going to be most useful in knowledge work tasks. That's where the majority of economic value is going to be. It's not in cat and dogs. Right. And so if that's what it is, what do you need to train? I need to train on like charts, graphs, tables, invoices, PDFs, receipts, unstructured data, UIs. That's just a totally different pre-training corpus. And so a depth spent a lot of time building that. And so the public for use and stuff aren't trained on our actual corpus, it's trained on some other stuff. But you take a lot of that data and then you make it really fast and make it really good at things like dense OCR on screens. And then now you have the right like raw putty to go make a good agent. So that's kind of like some of the modeling side, we've kind of only announced some of that stuff. We haven't really announced much of the agent's work, but that if you put those together with the correct product form factor, and I think the product form factor also really matters. I think we're seeing, and you guys probably see this a little bit more than I do, but we're seeing like a little bit of a pushback against the tyranny of chatbots as form factor. And I think that the reason why the form factor matters is the form factor changes what data you collect in the human feedback loop. And so I think we've spent a lot of time doing full vertical integration of all these bits in order to get to where we are.Swyx [00:25:44]: Yeah. I'll plug Amelia Wattenberger's talk at our conference, where she gave a little bit of the thinking behind like what else exists other than chatbots that if you could delegate to reliable agents, you could do. I was kind of excited at Adept experiments or Adept workflows, I don't know what the official name for it is. I was like, okay, like this is something I can use, but it seems like it's just an experiment for now. It's not your product.David [00:26:06]: So you basically just use experiments as like a way to go push various ideas on the design side to some people and just be like, yeah, we'll play with it. Actually the experiments code base underpins the actual product, but it's just the code base itself is kind of like a skeleton for us to go deploy arbitrary cards on the side.Swyx [00:26:22]: Yeah.Alessio [00:26:23]: Makes sense. I was going to say, I would love to talk about the interaction layer. So you train a model to see UI, but then there's the question of how do you actually act on the UI? I think there was some rumors about open app building agents that are kind of like, they manage the end point. So the whole computer, you're more at the browser level. I read in one of your papers, you have like a different representation, kind of like you don't just take the dome and act on it. You do a lot more stuff. How do you think about the best way the models will interact with the software and like how the development of products is going to change with that in mind as more and more of the work is done by agents instead of people?David [00:26:58]: This is, there's so much surface area here and it's actually one of the things I'm really excited about. And it's funny because I've spent most of my time doing research stuff, but there's like a whole new ball game that I've been learning about and I find it really cool. So I would say the best analogy I have to why Adept is pursuing a path of being able to use your computer like a human, plus of course being able to call APIs and being able to call APIs is the easy part, like being able to use your computer like a human is a hard part. It's in the same way why people are excited about humanoid robotics, right? In a world where you had T equals infinity, right? You're probably going to have various different form factors that robots could just be in and like all the specialization. But the fact is that humans live in a human environment. So having a human robot lets you do things that humans do without changing everything along the way. It's the same thing for software, right? If you go itemize out the number of things you want to do on your computer for which every step has an API, those numbers of workflows add up pretty close to zero. And so then many points along the way, you need the ability to actually control your computer like a human. It also lets you learn from human usage of computers as a source of training data that you don't get if you have to somehow figure out how every particular step needs to be some particular custom private API thing. And so I think this is actually the most practical path. I think because it's the most practical path, I think a lot of success will come from going down this path. I kind of think about this early days of the agent interaction layer level is a little bit like, do you all remember Windows 3.1? Like those days? Okay, this might be, I might be, I might be too old for you guys on this. But back in the day, Windows 3.1, we had this transition period between pure command line, right? Being the default into this new world where the GUI is the default and then you drop into the command line for like programmer things, right? The old way was you booted your computer up, DOS booted, and then it would give you the C colon slash thing. And you typed Windows and you hit enter, and then you got put into Windows. And then the GUI kind of became a layer above the command line. The same thing is going to happen with agent interfaces is like today we'll be having the GUI is like the base layer. And then the agent just controls the current GUI layer plus APIs. And in the future, as more and more trust is built towards agents and more and more things can be done by agents, if more UIs for agents are actually generative in and of themselves, then that just becomes a standard interaction layer. And if that becomes a standard interaction layer, what changes for software is that a lot of software is going to be either systems or record or like certain customized workflow execution engines. And a lot of how you actually do stuff will be controlled at the agent layer.Alessio [00:29:19]: And you think the rabbit interface is more like it would like you're not actually seeing the app that the model interacts with. You're just saying, hey, I need to log this call on Salesforce. And you're never actually going on salesforce.com directly as the user. I can see that being a model.David [00:29:33]: I think I don't know enough about what using rabbit in real life will actually be like to comment on that particular thing. But I think the broader idea that, you know, you have a goal, right? The agent knows how to break your goal down into steps. The agent knows how to use the underlying software and systems or record to achieve that goal for you. The agent maybe presents you information in a custom way that's only relevant to your particular goal, all just really leads to a world where you don't really need to ever interface with the apps underneath unless you're a power user for some niche thing.Swyx [00:30:03]: General question. So first of all, I think like the sort of input mode conversation. I wonder if you have any analogies that you like with self-driving, because I do think like there's a little bit of how the model should perceive the world. And you know, the primary split in self-driving is LiDAR versus camera. And I feel like most agent companies that I'm tracking are all moving towards camera approach, which is like the multimodal approach, you know, multimodal vision, very heavy vision, all the Fuyu stuff that you're doing. You're focusing on that, including charts and tables. And do you find that inspiration there from like the self-driving world? That's a good question.David [00:30:37]: I think sometimes the most useful inspiration I've found from self-driving is the levels analogy. I think that's awesome. But I think that our number one goal is for agents not to look like self-driving. We want to minimize the chances that agents are sort of a thing that you just have to bang your head at for a long time to get to like two discontinuous milestones, which is basically what's happened in self-driving. We want to be living in a world where you have the data flywheel immediately, and that takes you all the way up to the top. But similarly, I mean, compared to self-driving, like two things that people really undervalue is like really easy to driving a car down highway 101 in a sunny day demo. That actually doesn't prove anything anymore. And I think the second thing is that as a non-self-driving expert, I think one of the things that we believe really strongly is that everyone undervalues the importance of really good sensors and actuators. And actually a lot of what's helped us get a lot of reliability is a really strong focus on actually why does the model not do this thing? And the non-trivial amount of time, the time the model doesn't actually do the thing is because if you're a wizard of ozzing it yourself, or if you have unreliable actuators, you can't do the thing. And so we've had to fix a lot of those problems.Swyx [00:31:43]: I was slightly surprised just because I do generally consider the way most that we see all around San Francisco as the most, I guess, real case of agents that we have in very material ways.David [00:31:55]: Oh, that's absolutely true. I think they've done an awesome job, but it has taken a long time for self-driving to mature from when it entered the consciousness and the driving down 101 on a sunny day moment happened to now. Right. So I want to see that more compressed.Swyx [00:32:07]: And I mean, you know, cruise, you know, RIP. And then one more thing on just like, just going back on this reliability thing, something I have been holding in my head that I'm curious to get your commentary on is I think there's a trade-off between reliability and generality, or I want to broaden reliability into just general like sort of production readiness and enterprise readiness scale. Because you have reliability, you also have cost, you have speed, speed is a huge emphasis for a debt. The tendency or the temptation is to reduce generality to improve reliability and to improve cost, improve speed. Do you perceive a trade-off? Do you have any insights that solve those trade-offs for you guys?David [00:32:42]: There's definitely a trade-off. If you're at the Pareto frontier, I think a lot of folks aren't actually at the Pareto frontier. I think the way you get there is basically how do you frame the fundamental agent problem in a way that just continues to benefit from data? I think one of the main ways of being able to solve that particular trade-off is you basically just want to formulate the problem such that every particular use case just looks like you collecting more data to go make that use case possible. I think that's how you really solve. Then you get into the other problems like, okay, are you overfitting on these end use cases? You're not doing a thing where you're being super prescriptive for the end steps that the model can only do, for example.Swyx [00:33:17]: Then the question becomes, do you have one house model that you can then customize for each customer and you're fine-tuning them on each customer's specific use case?David [00:33:25]: Yeah.Swyx [00:33:26]: We're not sharing that. You're not sharing that. It's tempting, but that doesn't look like AGI to me. You know what I mean? That is just you have a good base model and then you fine-tune it.David [00:33:35]: For what it's worth, I think there's two paths to a lot more capability coming out of the models that we all are training these days. I think one path is you figure out how to spend, compute, and turn it into data. In that path, I consider search, RL, all the things that we all love in this era as part of that path, like self-play, all that stuff. The second path is how do you get super competent, high intelligence demonstrations from humans? I think the right way to move forward is you kind of want to combine the two. The first one gives you maximum sample efficiency for a little second, but I think that it's going to be hard to be running at max speed towards AGI without actually solving a bit of both.Swyx [00:34:16]: You haven't talked much about synthetic data, as far as I can tell. Probably this is a bit too much of a trend right now, but any insights on using synthetic data to augment the expensive human data?David [00:34:26]: The best part about framing AGI as being able to help people do things on computers is you have an environment.Swyx [00:34:31]: Yes. So you can simulate all of it.David [00:34:35]: You can do a lot of stuff when you have an environment.Alessio [00:34:37]: We were having dinner for our one-year anniversary. Congrats. Yeah. Thank you. Raza from HumanLoop was there, and we mentioned you were coming on the pod. This is our first-Swyx [00:34:45]: So he submitted a question.Alessio [00:34:46]: Yeah, this is our first, I guess, like mailbag question. He asked, when you started GPD 4 Data and Exist, now you have a GPD 4 vision and help you building a lot of those things. How do you think about the things that are unique to you as Adept, and like going back to like the maybe research direction that you want to take the team and what you want people to come work on at Adept, versus what is maybe now become commoditized that you didn't expect everybody would have access to?David [00:35:11]: Yeah, that's a really good question. I think implicit in that question, and I wish he were tier two so he can push back on my assumption about his question, but I think implicit in that question is calculus of where does advantage accrue in the overall ML stack. And maybe part of the assumption is that advantage accrues solely to base model scaling. But I actually believe pretty strongly that the way that you really win is that you have to go build an agent stack that is much more than that of the base model itself. And so I think like that is always going to be a giant advantage of vertical integration. I think like it lets us do things like have a really, really fast base model, is really good at agent things, but is bad at cat and dog photos. It's pretty good at cat and dog photos. It's not like soda at cat and dog photos, right? So like we're allocating our capacity wisely, right? That's like one thing that you really get to do. I also think that the other thing that is pretty important now in the broader foundation modeling space is I feel despite any potential concerns about how good is agents as like a startup area, right? Like we were talking about earlier, I feel super good that we're doing foundation models in service of agents and all of the reward within Adept is flowing from can we make a better agent? Because right now I think we all see that, you know, if you're training on publicly available web data, you put in the flops and you do reasonable things, then you get decent results. And if you just double the amount of compute, then you get predictably better results. And so I think pure play foundation model companies are just going to be pinched by how good the next couple of llamas are going to be and the next what good open source thing. And then seeing the really big players put ridiculous amounts of compute behind just training these base foundation models, I think is going to commoditize a lot of the regular LLMs and soon regular multimodal models. So I feel really good that we're just focused on agents.Swyx [00:36:56]: So you don't consider yourself a pure play foundation model company?David [00:36:59]: No, because if we were a pure play foundation model company, we would be training general foundation models that do summarization and all this other...Swyx [00:37:06]: You're dedicated towards the agent. Yeah.David [00:37:09]: And our business is an agent business. We're not here to sell you tokens, right? And I think like selling tokens, unless there's like a...Swyx [00:37:14]: Not here to sell you tokens. I love it.David [00:37:16]: It's like if you have a particular area of specialty, right? Then you won't get caught in the fact that everyone's just scaling to ridiculous levels of compute. But if you don't have a specialty, I find that, I think it's going to be a little tougher.Swyx [00:37:27]: Interesting. Are you interested in robotics at all? Just a...David [00:37:30]: I'm personally fascinated by robotics. I've always loved robotics.Swyx [00:37:33]: Embodied agents as a business, you know, Figure is like a big, also sort of open AI affiliated company that raises a lot of money.David [00:37:39]: I think it's cool. I think, I mean, I don't know exactly what they're doing, but...Swyx [00:37:44]: Robots. Yeah.David [00:37:46]: Well, I mean, that's a...Swyx [00:37:47]: Yeah. What question would you ask? If we had them on, what would you ask them?David [00:37:50]: Oh, I just want to understand what their overall strategy is going to be between now and when there's reliable stuff to be deployed. But honestly, I just don't know enough about it.Swyx [00:37:57]: And if I told you, hey, fire your entire warehouse workforce and, you know, put robots in there, isn't that a strategy? Oh yeah.David [00:38:04]: Yeah. Sorry. I'm not questioning whether they're doing smart things. I genuinely don't know what they're doing as much, but I think there's two things. One, I'm so excited for someone to train a foundation model of robots. It's just, I think it's just going to work. Like I will die on this hill, but I mean, like again, this whole time, like we've been on this podcast, we're just going to continually saying these models are basically behavioral cloners. Right. So let's go behavioral clone all this like robot behavior. Right. And then you figure out everything else you have to do in order to teach you how to solve a new problem. That's going to work. I'm super stoked for that. I think unlike what we're doing with helping humans with knowledge work, it just sounds like a more zero sum job replacement play. Right. And I'm personally less excited about that.Alessio [00:38:46]: We had a Ken June from InBoo on the podcast. We asked her why people should go work there and not at Adept.Swyx [00:38:52]: Oh, that's so funny.Alessio [00:38:54]: Well, she said, you know, there's space for everybody in this market. We're all doing interesting work. And she said, they're really excited about building an operating system for agent. And for her, the biggest research thing was like getting models, better reasoning and planning for these agents. The reverse question to you, you know, why should people be excited to come work at Adept instead of InBoo? And maybe what are like the core research questions that people should be passionate about to have fun at Adept? Yeah.David [00:39:22]: First off, I think that I'm sure you guys believe this too. The AI space to the extent there's an AI space and the AI agent space are both exactly as she likely said, I think colossal opportunities and people are just going to end up winning in different areas and a lot of companies are going to do well. So I really don't feel that zero something at all. I would say to like change the zero sum framing is why should you be at Adept? I think there's two huge reasons to be at Adept. I think one of them is everything we do is in the service of like useful agents. We're not a research lab. We do a lot of research in service of that goal, but we don't think about ourselves as like a classic research lab at all. And I think the second reason I work at Adept is if you believe that actually having customers and a reward signal from customers lets you build a GI faster, which we really believe, then you should come here. And I think the examples for why that's true is for example, our evaluations, they're not academic evals. They're not simulator evals. They're like, okay, we have a customer that really needs us to do these particular things. We can do some of them. These are the ones they want us to, we can't do them at all. We've turned those into evals, solve it, right? I think that's really cool. Like everybody knows a lot of these evals are like pretty saturated and the new ones that even are not saturated. You look at someone and you're like, is this actually useful? Right? I think that's a degree of practicality that really helps. Like we're equally excited about the same problems around reasoning and planning and generalization and all of this stuff. They're very grounded in actual needs right now, which is really cool.Swyx [00:40:45]: Yeah. This has been a wonderful dive. You know, I wish we had more time, but I would just leave it kind of open to you. I think you have broad thoughts, you know, just about

VO BOSS Podcast
Special Guest: Oz Krakowski - Deepdub

VO BOSS Podcast

Play Episode Listen Later Feb 20, 2024 30:36


Anne welcomes Oz Krzakowski from DeepDub, a company specializing in dubbing and voiceover end-to-end localization. Oz and Anne discuss the evolving technology and the importance of protecting the integrity and earnings of professional voice actors. They look at the ethical landscape of AI, the significance of artist compensation, and the transformative effect technology is having on voiceover work. With the rise of deepfakes and synthetic voice replication casting shadows of concern, they discuss the pressing need to protect voice artists' identities. They also navigate the intricacies of consent and compensation in voiceover AI models. This episode is a call for trust and clarity in the dynamic dance between technology and the voice talents that bring authenticity to AI-generated content. 00:01 - Intro (Announcement) It's time to take your business to the next level, the boss level. These are the premier business owner strategies and successes being utilized by the industry's top talent today. Rock your business like a boss, a VEO boss. Now let's welcome your host, Anne Ganguzza.  00:20 - Anne (Host) Hey everyone, welcome to the VEO Boss podcast. I'm your host, Ann Ganguzza, and I am truly excited to be here with a very special guest, Krakowski. Oz is an experienced executive with a rich background in business and technology, especially in the entertainment industry. His current role at DeepDub showcases his deep involvement in the realm of media and film, where he leverages innovative technology to enhance the industry's landscape. His extensive knowledge and insights have made him a sought after figure in film and media conferences. Oz, thank you so much for joining us today. We're so happy to have you here.  00:57 - Tom (Co-host) Hi Anne, so pleased to be here and thank you for inviting me and looking forward to our discussion.  01:02 - Anne (Host) Yeah, absolutely. I'm excited to talk to you about the technology. So, first and foremost, for our listeners, tell us a little bit about DeepDub and your role there and your particular experience in working with voice actors.  01:16 - Tom (Co-host) Absolutely so. Deepdub is a company that is focusing on AI, or generative AI, I should say solutions for audiovisual content, with an aim to democratize the ability to globalize content. We started by focusing on entertainment content, working with big studios small and large, actually and localizing and providing them the capabilities to use synthetic voices and different generative AI tools in order to localize their content. Specifically for me, I'm based in Dallas in the United States. I am responsible for business development, partnerships, strategic accounts, been with the company almost from the beginning. The company started in 2019, so we're pretty young in the world of, in the traditional world of localization. However, in the world of AI, we're among the first.  02:06 - Anne (Host) You're veterans, you're veterans.  02:08 - Tom (Co-host) Exactly, exactly. I always joke that it's like dog years every quarter it's like another leap forward in technology and advancements. We were there before. Generative AI was a common phrase on everyone's discussion. Absolutely this is generally about DeepDub DeepDub is really committed to the entertainment industry and asked about how we work with voice actors. There is a lot and I'm sure we're going to unpack it here in the discussion.  02:33 - Anne (Host) Oh yeah, obviously, as you know, being a voice actor myself and you having worked with voice actors in the industry, I'm sure you understand the concerns of, basically, actors and artists in the creative fields and their concerns about AI. I think that it's important that all of us, voice actors included, we educate ourselves on this evolving technology to figure out how we can work with it, because I don't think we're going to stop it. Number one I've certainly seen lots of evidence of that in the past few years. I mean, it has just been breakneck speed in developing synthetic voices. From your perspective, what would you say are the major concerns surrounding the usage of AI in entertainment? In the entertainment industry?  03:21 - Tom (Co-host) Absolutely. I followed your podcast and I see the work that you've done on AI. I truly respect the will and intention to actually be aware of it. Like you said, I think it's also acknowledged today that this is pretty much unstoppable. The question is, how do we get in front of it? How do we actually address the concerns? How do we work together and not necessarily try to do anything that is one-sided?  03:45 In the end, everyone has fear when it comes to change and changing landscape or changing conditions, especially when it comes to a person level. People have their fears and a deep that we're trying to address them instead of not trying to behind anything. We're addressing them by working with the industry, by adhering to common practices, to the most recent laws or ethical codes that have been published. One of the things that we've just recently announced about a month ago I think it's almost like a month and a half ago, just when the actor strike was concluded we announced what we call the Voice Actors Royalty Program, which is a clear step forward in terms of giving voice actors, specifically professional voice actors, the ability to get compensated for the use of their voice in AI-powered projects.  04:40 That specifically addresses professional voice actors. We did not open it to the public. In fact, when you join the program, we actually ask for proof that you are a professional voice actor. Once we get that proof, we vet it. We actually make sure that this is the right that you are indeed who you claim you are, or with the specific credentials.  05:00 - Anne (Host) You have to do that today, in this age of AI.  05:04 - Tom (Co-host) Because essentially I have a microphone, I can claim that I'm a voice actor. It's not that it's not going to be open ever to everyone, but the intention initially is to ease voice actors that we are not going to use their voice without their full consent and without them getting compensated for it. I think that's very important.  05:23 - Anne (Host) Yes, I agree with you 100%. I think one of the biggest issues now is because it's the Wild West out there I like to use that term all the time in the voice acting industry because it's always been like a Wild West of rates. With new media and digital media, it's the Wild West of synthetic voices in AI. Now there are so many technical things that arise in terms of how can voice actors protect their voice? There are… a lot of companies out there drafting up these ethical policies and agreements that they post on their websites, and I think there is a bigger issue at stake where I think that it's wonderful when companies can proclaim and create policies and ethical guidelines, but what's out there? Who's out there that's enforcing them? Number one, I think really at a federal level or a global scale, there needs to be laws and regulations on that, and I think that's where we're going to be playing catch up, for maybe I don't know, this is my guesstimation the next 10 years, maybe more. What are your thoughts on that?  06:23 - Tom (Co-host) You know what? You're absolutely right and this is, I think, the key challenge that we have, that the legal system is so slow to progress. However, you know, technologically we're advancing fast. So what happens? It leaves the playing field, you know, open for interpretation, and this is where it really matters.  06:42 - Intro (Announcement) And, just like you, said this is the wild west.  06:44 - Tom (Co-host) Exactly, and this is where it's really important when you partner with a company to actually do the background work, make sure that you're working with a company that really cares about not only the output, but also how you achieve that output, because today you can achieve that output in many ways, but it's really important who are the people, what's their track record, how do they do things, and not only what do they achieve in the end and why? Because there is no global enforcement right now.  07:12 I think it's going to get there eventually. There's no way around it.  07:15 - Anne (Host) It's going to have to get there, but it's just going to yeah.  07:18 But what happens in the interim? I think that's the biggest thing. I have so many questions for you and one of them, of course, I wanted to like wait a little bit, but obviously I'm sure you've heard of the groundbreaking agreements between SAG-AFTRA and Replica, another AI company, in terms of working with actors and voice actors to protect them, and I think that that was a step in a positive direction, toward companies wanting to be more accountable, to not just themselves and not just their own ethical guidelines. Like I know, there's so many wonderful organizations out there trying to create guidelines and research, and I think that that's great, but I also think that is a step towards I would say, at least a company solidifying that they are serious about protecting the rights of creatives and actors and voice actors. What are your thoughts on that? Is that something that you have been looking into or a place where you might go in the future?  08:09 - Tom (Co-host) Absolutely. First of all, sag-aftra is in the United States, so I think it's a great step forward for sure Definitely protects and sets the tone for unions and guilds worldwide. We have been discussing for some time with the BFFS, which is like the SAG-AFTRA or the similar union in Germany. I, just for the sake of discussion, I was invited by them last June to talk about AI in the film industry at the Munich Film Festival and we had a very interactive panel discussion there at that event, and I think that goes back to how we started the discussion today, saying that we need to acknowledge that this is coming and let's be in front of it and have the dialogue and talk about how we do things, and I think that agreement with SAG-AFTRA is important and an important step forward.  08:57 I believe we're going to see similar things happening also worldwide, not only in the United States, and I think also from SAG-AFTRA perspective, it will be their intention to have that type of agreement with as many, I would say, ai companies create some kind of standard in a way.  09:11 - Anne (Host) Yeah, let's talk a little bit about in the technical aspect of things, because, again, I don't work in AI, but I try to learn as much as I possibly can so that I can make educated decisions about how I can go about evolving with the industry as we move forward with the rapid advancements of AI technology, specifically generative AI I mean, is it discussed in any other realm anymore as generative AI? How can artists protect themselves from their unauthorized usage of their voice or their likeness or whatever that might be? I mean, right now there has to be technology that can be put in place so that we might be able to find out if our voice is being used without our permission or our likeness.  09:52 - Tom (Co-host) The reality, I would say, is that technology today allows that to be abused. I mean, that's the reality. And it goes back to what I said before If you're a very famous voice, talent or it could be a talent or just a voice, talent or talent of your voice.  10:10 I mean, or a celebrity, for example, and there's enough information about your voice. We actually today we don't even need a lot. Then your voice can be out there. We don't need much. You know it's like a sentence. Basically, your voice could be out there. The thing is, you know what happens. If it does. You can take it, for example, into places where we see non-entertainment related voices, like political people. You know people from politics where you know their voices can be replicated and can be abused. Actually, you know, especially if we're going into an election year in the United States deep fakes are very real very real, exactly I will say that.  10:49 - Anne (Host) That gives me hope, though, that it is a political season, that maybe it'll get more government level. There may be more action taken quicker because of that. I don't know, that's just. That's just my speculation.  11:01 - Intro (Announcement) But in reality.  11:02 - Anne (Host) So, and even this podcast. I mean gosh, I've had a podcast for seven years. I mean, not only have I done thousands of auditions and given my voice freely, after being paid for a job, to my clients, there are so many ways that my voice has probably already been put into a database somehow. And I think that, technologically speaking, how does deep dub? First of all, how do you create voices? I guess the creation of the voice and then usage of the voice. How do you protect your actors, your voice actors, in both of those cases? Can their voices be used for training other models, and what's the usage requirements?  11:40 - Tom (Co-host) Yeah, and that goes back basically I'm connecting my two answers before basically of first, there is no way really, I mean, everyone can use your voice because your voice specifically, you have that podcast with hundreds of hours it can be used without your knowledge. And then it combined it with partnering with the right company that actually you can trust, that is committed to working with you in terms of doing things in a legal way, in an ethical way and also compensation wise. So this is, if you combine it together. Now it goes back to the way we had deep dub require voices.  12:16 There are two ways for us to acquire voices. First, with non-professional voice actors, where we actually pay them for the voice. We approach people that do not use the voice as their profession and ask them in a very consent way to contribute their voice. They're getting paid for it and once their voice is in, we actually use those voices as the baseline for our bank voices. They're not necessarily going to hear their voice in the outcome, because those voices get transformed internally and mixed with other voices, essentially, and the output is different. But this is the baseline for how to acquire voices.  12:54 - Anne (Host) Yeah, so they're being paid for their voice being a training model then, to generate or create new voices, and then do they get paid if that new voice is being used since they were part of the training model or no?  13:06 - Tom (Co-host) No, not necessarily. No, they're contributing their voice and, again, they're not professional voice actors. They're not getting paid. They're getting paid for the work that they did and they're not gonna see their voice in the output. Also, it's not gonna be their exact voice yet.  13:19 - Anne (Host) Okay. So then now the case of a voice actor. If a voice actor wants to be on your roster.  13:24 - Tom (Co-host) So in a voice actor, it's a different case. A voice actor, their voice is actually going to be in the output and they're going to be paid in the same way as they're getting paid today for doing the voice acting, only that they don't need to be in the studio.  13:40 They could pretty much be anywhere else or be involved in a different job. So, essentially, you know, they're basically going to contribute their voice. We're not going to use their voice for training. We're not going to offer their voice as a bank voice. It's going to be offered as a voice that is essentially a royalty based or not royalty based, but a professional voice actors voice, which, every time this voice is being used for a project, they're going to be compensated for it. Now, mind you, like I said, it's very similar to the way their voice actors are getting paid today. When you participate in a production, you're getting paid for the participation. You're not getting paid for every time this is being broadcasted.  14:22 - Anne (Host) Well, it depends on the type of job. I mean, if it were broadcast media, yes, you would get paid each and every time it gets broadcasted.  14:29 - Tom (Co-host) So yeah, so it depends exactly in the end, and we're talking about the similar level of compensation as if you were doing the actual work, only now it's without attending the studio.  14:39 - Anne (Host) Sure, sure. Now, how does that work in terms of when the voice gets chosen, is the actor then contacted, and then are they privy to how the voice is being used in terms of is it only for dubbing or could it be for other purposes as well? I mean, I may or may not want my synthetic voice, if it sounds like me, to be represented in a movie that might be something that I wouldn't consider myself wanting to be in you know what I mean or a production that maybe would be saying something that I wouldn't particularly want my voice reference to, for people to recognize and say, oh, and then assume that I would be of the same opinion.  15:17 - Tom (Co-host) Yeah, listen, it's a great question. I will say that this is a place where that constantly evolves, because there is no enforcement, because the laws, there is no real legal framework. We're kind of like swimming in an open ocean and trying to define the land. Basically, for us right now, the idea is that when you do this, you're concerning to specific types of work. There is right now we didn't really set it up in that way, but the intention is really to give you the ability to try to actually vet yes or no based on types of work, ahead of basically your voice being used.  15:50 So when you sign up to have the ability to actually say alright, this type of genre is I don't want to be in, but essentially we have a producer of the work that sits down. In a similar way that it's done in a real production, a producer will sit down and is casting voices from a list of voices. They can choose a bank voice or they can use a professional voice. If they use a professional voice, in the end there's an output saying this specific voice actor, their voice, has been chosen. It's not in the intermediary output, but the final output has a professional voice, artist voice in it. Then they're going to get compensated for it.  16:26 - Anne (Host) Got it. Is it on a project by project basis? The payment, the compensation, in terms of how am I compensated? If I can get more in depth, because you know, what's so interesting is that I love you telling me that I'm being compensated. Now the question is okay, so what is that royalty share? What is that percentage? And is it varying depending on the project? Or is that something that I would have any input into negotiating with you? Or is that something and I realize because obviously you have created that synthetic voice and you're the one generating the files that yes, there is a certain percentage? Wise, that is obviously it's your work in generating that voice. Is it something that the voice actor can negotiate or is it you have just across the board? This is the royalty fee and it does it very based on, or some actors more, let's say in demand is one more of a custom voice than others.  17:16 - Tom (Co-host) Yes, yes, yes and yes, yes, it can be negotiated. Okay, yes, some are more in demand and basically it's a yes on all of them. There's like a baseline you can negotiate if you have the ability to negotiate it. So yeah, overall, the answer is yes.  17:31 - Anne (Host) What's the turnaround time? Just out of curiosity, if I would say that you're working on a production and I'm going to assume that these would be films that you're working with in terms of the amount of turnaround time and what this means for, let's say, the dubbing industry, like what is the advantage of using the synthetic voices and also I assume it's not just the voicing in order to make this? I guess a good experience for the consumer. You're also doing video effects as well, is that true?  18:00 - Tom (Co-host) or we're not necessarily focused much on the video side, although we can. We figure we first address the challenge with the voices themselves and then move on to the video. That's coming up as well, the ability to actually change the video, to do a perfect lip sync, but at this point, you know, focusing on the audio itself. So there's like multiple ways of actually creating a production to localize a content. And let's step away for a second from a film, let's talk about a show, because the challenges with the show are, I would say to some extent are bigger, because there's just more content. And especially, what we've noticed is that the challenge becomes substantial, especially when we're talking about a big volume. You know when we're trying to scale it. And why is that? Because now everything becomes when you're working traditionally, everything becomes, you know, sequential, it's all serialized and it takes a lot of time, a lot of effort. You know you need a lot of resources. Think about a show that has I don't know 10 episodes, especially again, if we're talking about catalog content. It could be a show that has I don't know 10 seasons and now localizing it would take a lot of time, would take more than a year. And the thing is that without technology, this project becomes irrelevant, meaning it wouldn't be localized at all. So what happens is that we are suddenly enabling and quite frankly, our first focus is to try to address those because there's so much demand for localizing even sometimes older titles that have new markets and have never been localized, and it's impossible always. So what we do is we're enabling to do this very quick. When I say very quick, I mean we've recently dubbed the voiceover. So there is like difference between voiceover or you know, if you address with scripted, but we've done 100 episodes of 30 minutes in about six weeks for a customer, which is pretty fast. Another project that we've done was eight seasons of a show Again, it's catalog content, but it's still high quality scripted content, french to English that we dubbed 85 episodes in four months, which is without technology. It's just impossible to do it. The speed, or you're just taking the quality, really, really low, yeah. So we're looking at it as an enabler, not necessarily. And when you look at it this way, by the way, I have to mention to say that you should actually consider that not as a something that takes jobs, because those jobs would not have been there at all, because our customers would not dub it traditionally otherwise because the turnaround, time and the costs.  20:32 So what happens in our process? It's never fully automatic. There's always people involved, whether a voice actor, sometimes too, a dubbing director. There's a studio sometimes involved in the process. There are linguists, we have translators. There's a lot of curation. That is done because, like you said, we care about the output. We really is done in a way that will actually be in line with the quality standards for streaming, for example. We have to align on that level of quality, otherwise, you know, we don't have a product. So that's very important. This is where we bring in people to be involved in the production itself.  21:08 - Anne (Host) So I assume that after you are using the synthetic voice for the localization, for whatever it might be, you then have a little bit of post production on that, because I know that with the advances in technology things are really great. But how much are you having to also then additionally work on that to kind of get the emotion, Because of course people are all about it's the emotion that's lacking in the synthetic voices. And so what sort of work is involved these days after the synthetic voice is applied to bring that emotion and to bring that scene to life?  21:40 - Tom (Co-host) Well, first, I must say that there is a lot of work that is done before we even apply the synthetic voices because, again, when we look at it, we look at it from an holistic point of view. At least the deep dove were not only a voice company where an end to end dubbing or localization house. We do the transcription, we do the translation, we have professional translators involved, together with the machine translation, to actually create the adaptation that is specific for that content, whether that's only referencing the cultural aspects or even addressing lip sync related issues, for adaptation related issues. Then we can record in two ways, whether we are using voice conversion or speech to speech. The same way I've seen some of the other guests you had here on the podcast talked about it, so we use that in a similar way or we also have the text to speech option.  22:30 We recently launched our emotive text to speech that allows us to control the emotions of the output of the text to speech, which is also something pretty new and I would say to some extent mind blowing, because it gives us the ability to simulate a performance to some extent right on the output, right, right, we create those voices, whether in this method or the other, then we also mix. We always have a sound engineer at the end of the process where they will be able to take that and if we need to create a 5.1 mix, master the output, deliver it. There is some level of mixing that is also done using AI. That can be done automatically, but we always, always have a person in the process to curate and make sure that the output is in the right quality summits that we're aiming for.  23:20 - Anne (Host) Just my own experience with speech to speech and understanding that speech to speech is not necessarily quicker in one respect, you know what I mean, because there's still an actor that's involved for that source acting. But I can absolutely see that the technology to probably put this together and make it realistic is mind-blowing to me and I actually wish I could see the process, just so I could know even more about it. But until that happens, talk to me about how voice actors can get involved, and I guess do you call it being on the roster, being on your roster? And again, you said there's a vetting process. What's involved if a voice actor is interested in having their voice with your company?  23:59 - Tom (Co-host) So, first of all, like I said, we are already working with voice actors in different regions to provide the performance when we use the speech-to-speech. So we've done this over thousands of hours already. But if voice actors professional voice actors want to join our royalty program, it's as simple as going on our website and signing up to the royalty program. We're in a slow process of bringing people in.  24:23 We're not rushing into it just because we are trying to vet everyone in and trying also not to create an oversaturation, Also on our end we're still a small company, so it does create some burden on us to actually make sure to vet everyone, but we're trying to do this in a very clear way that everyone is on the same page, there's no misunderstandings, and make sure that once we have someone on board, they know exactly what the process is. Go on the website, click the button, join the program, be part of this change.  24:55 - Anne (Host) So one of my last questions is kind of a more generalized question about companies in general, because you are one of the handful of companies that I have spoken to that are actively speaking out and saying that you're supporting and wanting fair compensation for the actors and the creatives involved. So, from an organizational level, from a business standpoint, how can companies that develop and utilize AI act responsibly and manage the IP rights and concerns and ensure that they're respecting the rights of both human creators and AI generated content?  25:26 - Tom (Co-host) I think it starts from the ground up. When you build your platforms, when you build your technology, you have to think of it from the ground up. If you did the majority of the way not thinking about, it is going to be very difficult to now reshuffle everything and now decide oh what? Now I want to be, go ethical and go legal, because you've already built, some from the beginning.  25:49 Exactly, and this is the way we looked at it. This is one thing. The second thing is have dialogues, have communication. You know, listen. Part of the things, the reasons that I went to that Munich Film Festival and actually had several discussions with different units is, first of all, listen, empathize, try to understand the other side, try to understand how we can come up with solutions to actually address those concerns and not necessarily go on the highway and don't stop. So I would say this is the second thing. And the third thing is adapt. The landscape continuously evolves. We're just at the beginning of it in terms of the legal frameworks that are being put in place. So be able to adapt and adjust according to those changes. I think all three are important.  26:32 - Anne (Host) What do you see coming in the future, not only for deep dove and yourself, but the future of AI technology. How do you see it evolving even more?  26:40 - Tom (Co-host) Listen, I don't know if you noticed, but Riverside offers AI transcription.  26:46 - Anne (Host) Yes absolutely, absolutely. My whole podcast is probably using AI. I mean, I use it to generate show notes and video clips, so absolutely.  26:56 - Tom (Co-host) Yeah. So I think in the end, what I think it's going to get to, to a point where AI is going to be part of our lives in a very seamless way. Right now we are very judgmental about it, we're thinking about oh that's AI, and we're nitpicking on everything. But when it becomes seamless, you know it's just like. You know, cell phones in the beginning were bucky and huge and you had to carry a bag for it and it was. You had to actually think about it. Today, it's obvious that you go out of your house with a cell phone. You wouldn't do it otherwise.  27:30 I think at some point, looking to the future, maybe a few years from now, ai is going to be more seamless, more integrated in many ways that are not necessarily trivial to us Even today. The simple ones are like transcription right, I mean, you wouldn't put someone right now to go through the podcast to transcribe it. When AI can do 95% of the work pretty good and the rest of the 5% you can do on your own, it becomes manageable. At the same time, I think that there's still going to be a place for us human beings in the process, basically responsible for the creativity. I don't think a lot of the fear is like AI is going to take our place. It's going to take over the world. Yes, absolutely, skynet is taking over. I think that eventually, what we're going to see is that it's just going to change the way we approach things more curating, more directing and guiding the AI, rather than trying to do it around.  28:23 You know, for me, for example, today I want to write a formal email. I'll just go to chat GPD. It's not that I cannot do it. I can't do it myself and I've been doing it for you know, for years myself. But chat GPD, if I just give it a few point of reference, it'll give me something in seconds. And now I'm going to take it not as it is. I'm going to make a lot of changes in it and make it my own. Yeah, but I have the baseline and I think that's an indication of how it's going to be in the future in many other aspects of our lives.  28:52 - Anne (Host) Yeah, I agree, and I think that as we progress forward, as it becomes more seamless hopefully it also becomes more regulation takes place so that we can be protected, so that it's not being used without our permission or knowledge and AI for good.  29:06 I'm a believer, I want AI for good and I have seen where I think AI is so beneficial in so many ways and it's just a little bit scary to see it when it's not being used in great ways. But I press on and I think bosses out there, we need to educate ourselves so that we can evolve along with it and use it for positive. Use it for good. And, Oz, I want to thank you so much for joining me today. It's just been a pleasure talking with you and thank you so much for sharing your wisdom with us.  29:34 - Tom (Co-host) Absolutely. Thank you so much for having me and I look forward to future podcasts.  29:39 - Anne (Host) Absolutely All right. Bosses, here's your chance to use your voice, okay, not only possibly to do dubbing, but also to make an immediate difference in our world and give back to the communities that give to you. Visit 100voiceswhocareorg to commit and big shout out to our sponsor, ipdtl. You too can connect and network as humans and bosses, as I just did with Oz. Find out more at IPDTLcom. You guys have an amazing week and we'll see you next week. Thank you.  30:08 - Intro (Announcement) Join us next week for another edition of VO Boss with your host and Gangusa, and take your business to the next level. Sign up for our mailing list at vobosscom and receive exclusive content, industry revolutionizing tips and strategies and new ways to rock your business like a boss. Redistribution with permission. Coast to coast connectivity via IPDTL.   

Talk City: Greensboro
TalkCityGreensboro: Greensboro Police Dept

Talk City: Greensboro

Play Episode Listen Later Feb 7, 2024 18:36


Talk City Greensboro sits down with Officers Bird and Harris from the Greensboro Police Department. The two members of the Gate City's finest discuss the incentives, opportunities, and career advancements when becoming a member of the GPD. Learn the ins and outs of a new recruit.

The Kuderna Podcast
#135- Stock Market Year in Review and 2024 Outlook

The Kuderna Podcast

Play Episode Listen Later Jan 5, 2024 19:11


Host, Bryan Kuderna, provides a brief summary of the stock market in 2023, including the winners and losers of the year.  He shares his outlook for 2024 and economic indicators to look out for, including GPD, unemployment, inflation, and recession. This episode is brought to you by Bryan's new book, "What Should I Do with My Money?", available in paperback, Kindle, or audiobook wherever books are sold. This podcast is for informational purposes only. Guest speakers and their firms are not affiliated with or endorsed by PAS or Guardian. This material contains the current opinions of the speakers but not necessarily those of PAS, Guardian or its subsidiaries and such opinions are subject to change without notice. None of the organizations mentioned in this podcast have any affiliation with Guardian or PAS. Bryan Kuderna is a Registered Representative and Financial Advisor of Park Avenue Securities LLC (PAS). OSJ: 50 Tice Blvd. Woodcliff Lake, NJ 07677 (973)244-4420. Securities products and advisory services offered through PAS, member FINRA, SIPC. Financial Representative of The Guardian Life Insurance Company of America® (Guardian), New York, NY. PAS is a wholly owned subsidiary of Guardian. Kuderna Financial Team is not an affiliate or subsidiary of PAS or Guardian. CA Insurance License #OK04194 #2024-167182 Exp. 1/26

Voice of Breakthrough with Cyndi Foster
Episode 275: Vision Brings Forth Your Promises

Voice of Breakthrough with Cyndi Foster

Play Episode Listen Later Dec 29, 2023 32:34


When the enemy is doing everything he can to make you give up on your promises, the Lord wants you to get the vision even stronger. You need to see in your spirit all that the Lord has told you and cast down every vision (imagination) of the devil. When your spirit can catch what Gpd is saying, nothing can steal that from you Proverbs  29:18  Where there is no prophetic vision the people cast off restraint, but blessed is he who keeps the law.

Serious Sellers Podcast: Learn How To Sell On Amazon
#515 - Generative AI & Crazy Data Strategies for Amazon Sellers

Serious Sellers Podcast: Learn How To Sell On Amazon

Play Episode Listen Later Dec 5, 2023 42:06


Join us on a journey as our special guest, Ritu Java, takes us from her beginnings in India to her experiences in Japan, ultimately transforming her into a data-driven entrepreneur. With a unique perspective on the blend of culture and commerce, Ritu shares insights on how she leveraged her expertise in data and analytics to excel in Amazon PPC strategies. You'll also hear her intriguing tales of running an Etsy store from Japan and overcoming the complexities of helping Amazon sellers worldwide. The conversation doesn't stop there. Discover how AI has become a game-changer in running Amazon PPC campaigns as we discuss our personal experiences combining AI with other data sources to optimize campaigns. Listen as we unveil the advantages of using chat GPT for keyword research and translation over traditional methods like Google Translate. This episode offers a unique perspective on integrating AI into workflows and SOPs, driving efficient and effective results. We also underscore the value of incorporating AI into Amazon PPC strategies for successful product launches and campaign management.   To cap off this enlightening conversation, we tackle the future of Amazon selling and the role AI plays in it. From generating keywords for Amazon searches to creating images for sponsored brand ads, we unravel how chat GPT and mid-journey can elevate your selling game. Don't miss out on our tips for creating effective lifestyle photos and the significance of close-up product images. We also shed light on the evolution of Search Query Performance on Amazon and share our strategies for effectively managing and analyzing data. In episode 515 of the Serious Sellers Podcast, Bradley and Ritu discuss: 00:00 - AI Power for E-commerce Sellers 07:54 - Utilizing AI for Amazon Sellers' Success  09:05 - AI in PPC Strategy With Chat GPT 20:52 - Search Term Modifiers and Word Order  23:04 - Enhancing Amazon Ads With AI 31:24 - Generating Posts Using Canva and Amazon  32:19 - Utilizing Search Group Performance Data 33:47 - Optimizing Data Strategy for Efficient Analysis  41:23 - Convert Snapshot Data to Time Series ► Instagram: instagram.com/serioussellerspodcast ► Free Amazon Seller Chrome Extension: https://h10.me/extension ► Sign Up For Helium 10: https://h10.me/signup  (Use SSP10 To Save 10% For Life) ► Learn How To Sell on Amazon: https://h10.me/ft ► Watch The Podcasts On YouTube: youtube.com/@Helium10/videos Transcript Bradley Sutton: Today we've got a first time guest who I think is probably top five in the world these days as far as actionable Amazon strategies, and she's going to give us an absolutely value-packed episode full of tips on generative AI, PPC and more. How cool is that? Pretty cool, I think. How can you get more buyers to leave you Amazon product reviews? By following up with them in a way that's compliant with Amazon terms of service? Bradley Sutton: You can use Helium 10 Follow-Up in order to automatically send out Amazon's request, a review emails, to any customers you want. Not just that, but you can specify when they get the message and even filter out people that you don't want to get that message, such as people who have asked for refunds or maybe ones that you gave discounts to. For more information, visit h10.me forward slash follow-up. You can sign up for a free account or you can sign up for a platinum plan and get 10% off for life by using the discount code SSP10. Hello everybody and welcome to another episode of the Serious Sellers podcast by Helium 10. I'm your host, Bradley Sutton, and this is the show. That's a completely BS free, unscripted and unrehearsed organic conversation about serious strategies for serious sellers of any level in the e-commerce world. We've got a special guest today Ritu. So, first of all, we're going to get into your backstory about how we can even talk in Japanese, because that's something that's crazy. Were you born in Japan or were you born? Ritu: I was born in India, but I lived in Japan for 17 years. Bradley Sutton: So from what age? Ritu: You want to know how old I am. Bradley Sutton: No, no, no. From what age were you living in Japan? Ritu: Mid-20s. Yeah, so mid-20s. Bradley Sutton: Also was, so you didn't go to school in Japan. Ritu: No, I didn't. I went there as an adult. I was working at a company and I take company 17 years. Bradley Sutton: Yes, that means you had to have gone there when you were a child. Then because you can't be over 25 years old. So I don't know what's going on here. Ritu: That is very cute. Bradley Sutton: I was all the reason. I was asking if you grew up because I wore this shirt today. Do you recognize this character here?  What is this? Ritu: Yes Doraemon. Yes, I grew up with Doraemon when I was a little over there, that's awesome. Bradley Sutton: Yes, I grew up with Doraemon when I was a little over there, that's awesome. I know a little bit about you, but I for some reason had this idea that you actually grew up in Japan and that was why you were so fluent in language. Once you go as an adult, it's a little bit harder, unless you really immerse yourself in the culture. Ritu: I did. I really immersed myself in the culture. I went there just for a year, honestly, and ended up staying 17. It's so crazy how that place had such a big impact on me. It was such a stark contrast to where I grew up, which was India. Bradley Sutton: Whereabouts in India. Ritu: In Delhi, the capital city of chaos that's how I describe it from chaotic to super orderly. You can imagine what a difference, that is A stark difference from the world I knew. I was just drawn to the calm and the orderliness of that place. How things were punctual, everything happened as expected, there were no surprises, everything was planned in so much detail, which I kind of liked. I think where I'm at right now is a nice middle ground, because I think I like the chaos. It has energy. It has a certain type of progressive energy that all of us need, especially as entrepreneurs. We need that energy to be able to kind of keep moving forward. But then I also like the organizational skills that I picked up while I was in Japan, because you need that to have good execution. I think best of both worlds is what I'm trying to be at right now, trying to draw from both my cultures. Bradley Sutton: Then did you go to university in India. Ritu: I did. I'm an engineer. I did my electronics engineering from India. I went back to school much later in life. I went back to school in the US and I did a course in data science, which is why I'm very attracted to PPC and data and data analytics and that sort of stuff. Bradley Sutton: When you graduated with the electrical engineering degree, did you start working in India, or is that when you went to Japan? Ritu: Yeah, I started working right away and I started working in India and I worked for an IT company and it was a pretty long stint there as well, like I was very interested in technology right from the start and it kind of aligned with my life's goals and stuff like that. At the time. I mean, little did I know that I would completely switch at a certain point. When I was in Japan I worked for not only the company that I was in India, I kind of went to their Japan office and I started helping them out. But then later on I switched to a more technical role at a school, at a high school, American school in Japan, and then I had my kid and took a break from work and then I kind of dealt in a little bit of entrepreneurship. I started running my own business. I had an Etsy store. Yes, in Japan, while I was in Japan, I started my Etsy business selling jewelry. It was like kind of one of a kind jewelry and I realized that, gosh, it's not enough just to create a listing and people are not going to flock to that listing. So I had to teach myself a whole lot of stuff like marketing advertising. So I learned Facebook ads, Google Ads, blogging, YouTube, all of that stuff. Bradley Sutton: So Etsy in the United States, or is there an Etsy in Japan? Ritu: No, there's an Etsy in the United States, but I was selling on the US market from Japan. So I was producing my stuff there, but I was shipping it worldwide wherever there were shoppers. But shipping costs are exorbitant. Sending stuff from Japan it's very expensive. Yeah, so mostly was attracted to the data side of things. Yes, I have both left and right brains, because the creative side was just all my creations, the jewelry that I made. But then I needed the data science side of things to kind of round things off and make money out of my business, because everything we do here is based on data and I know he's intended the data company. So is PPC Ninja. We might think that we're in the business of selling goods, but actually we're in the business of leveraging data. So that's why it was so important for me to get that knowledge and make sure that I'm kind of ready to go with my own endeavors. Bradley Sutton: Now. So, Etsy was kind of like your first online marketplace. Now, did you ever end up selling on Amazon or did you go straight into software and consulting etc. Ritu: Yeah, so I've never sold on Amazon, but I've helped businesses sell on Amazon. So it's basically the data side of things. So, I only sold on Etsy. I sold on my own website for a bit, but then I have never sold on Amazon myself. But PPC is where I'm focused on. Bradley Sutton: Okay, cool. Now you talked about having an analytical mind, and that's kind of like what you're known for. When you've spoken at events like Billion Dollar Seller Summit and others is especially in the last couple of years, you're one of the go-to people as far as AI and things like that, now me, I'm a little bit behind. I use even on this podcast, we use AI to generate title options and transcripts and things like that, but I would say I'm not one of those full force ahead like, hey, ai is going to replace hours and hours of work. I haven't really adopted it to that effect. So, the typical Amazon seller what are some things that you don't have to be a seven, eight, nine figure seller but just like any Amazon seller if they have not started utilizing AI to help them in their operations or business? What are? Let's take it to that spectrum first. What are some things that you think that any Amazon seller could benefit by utilizing AI? Ritu: Yeah, there's so much. Actually, the magic happens when you start combining things. So AI by itself may not be the be all and all of things, because it's not going to operate in a silo. You've got to combine it with other pieces of data that you have access to. For example, just this morning I was preparing for a new product launch for one of our clients and I'd got all my data from Helium 10. I was at the stage where I have to come up with some keywords for broad match campaigns. I wanted to make sure that all the right keywords are in there, not just the long tail ones with high search volume, but I wanted to make sure that I'm capturing all the seed combinations of important words that make sense. So what I did was I exported the Helium 10 cerebral analysis and I fed it to chat GPT and asked it to come up with two words and three word combinations of seed keywords that would perfectly describe this product. Now what I'm going to do next with that is basically convert that into broad match modifiers, which basically means you add a plus sign in front of all the seeds and then I'm going to create campaigns with it. So that's something that I do at every launch. I generally don't skip that step. It's an important one for me. So, in addition to all the long tail keywords, I will come up with enough seed words that will run at a slightly lower bid but will be like a discovery campaign for me through the broad match modifier channel. So that's kind of one thing that I do. Ritu: Then, like yesterday, I was doing another one for another client, where we have a list of keywords that we discovered from the search query performance report, which is kind of this new, very valuable piece of data that Amazon is giving us these days. So from there I was able to come up with a structure for sponsored brand headline ads and I didn't have to do the work. I just fed that entire list to chat GPT and said, hey, organize this into groups of very related words and then give me a headline ad which is less than 50 characters, because that's the amount Amazon will give us. And then it did that for me. I also gave it one other important instruction, which is to make sure that one of the keywords or a very close variant of that keyword in the group must be included in the title, and that's basically my way of saying, hey, I want this to be a lower funnel ad, not a generic kind of upper funnel ad, because my sponsored brand ads tend to be more focused on ROAS rather than brand discovery and brand awareness. So those are some of the ways that I'm using it almost on a daily basis. I had switched to chat GPT plus a long time ago. I've been paying for it and it's totally worth it. Bradley Sutton: So there's how much is it for somebody to subscribe to? Ritu: that it's about $20 a month. It's not much at all, yeah, it's just $20. And what it gives you is all the beta features, all the new stuff. So right now you can actually upload files very easily. You can upload any kind of file to almost any kind of file to chat GPT and then ask it to analyze, analyze the file and then you can ask it a bunch of questions. So it's just made life so much easier. And I mean I think sky is the limit with what you can do with AI. It's like I always, always feel like I'm not using it enough, even though I'm using it probably quite a bit more than a lot of people, but I still feel cautioned to use it more. Bradley Sutton: Okay, interesting, interesting. So there's some of the ways that you can use it in PPC. Now I remember you presented something. I've seen you speak, you know, various times, but I don't remember which event, this or what it was. That might have been a billion dollars, but where were you doing? You were doing like translation, using like Helium 10 because, like you were doing research, you weren't translating the English keywords. That's obviously a big mistake that some sellers make. Hey, I've got my Amazon USA listing, let me just translate it. Or let me just translate the keywords. No, you need to do the research in that marketplace. So you switch Helium 10 to Amazon Germany, for example, but if you're not a German speaker, you just see all this Deutsch keywords and you don't really know what it means. Or so they're doing it in Amazon Japan and they don't speak Japanese like you, so they might not know. So what's your? I'm not sure if it was AI or just something in Google you were doing to kind of like make that process a little bit easier. Ritu: Yeah. So what we've done is we have integrated chat GPD right into Google Sheets, and we had to write a little bit of code for that. But once we did that, what's happened is that we have these ready to go sheets where we simply change the prompt and add a bunch of keywords and then it will just translate into whatever language, right? So? And I've noticed that any translation done by chat GPD is way better than Google Translate and I've tested it, especially in Japanese, because I can read it. I know that the quality is much better. Ritu: Just to give you an example chat GPD will use the right combinations of Kanji and Hiragana, whereas Google Translate will not. It just doesn't do a great job. And if I tell chat GPD to give me a translation in all four different scripts, that's, kanji as well as Hiragana, Katakana and the Roma G, it will give all those to me. It's a no-brainer to use chat GPD for that sort of thing rather than Google Translate and then other languages as well. Like we're just onboarding this client that has four markets and we have no speakers of those languages on our team. But with chat GPD, we can simply include that into our SOPs, into our workflows and just use those sheets to kind of get the final product out. So it's really great the combination of Helium 10 and chat GPD workflows. They work really well for us. Bradley Sutton: Okay, cool. Now going back a little bit, just remember you were talking about broad match modifiers. There might be people out there who don't know what that means. Can you explain that a little bit? Ritu: Yeah, yeah. So a broad match modifier is a type of broad match, so when you're setting your add up, it'll still be a broad match. However, by simply adding a plus sign before every part of the keyword which means if it's a two word keyword, then both the parts will have a plus sign in front of them what you're gonna ensure is that the buyer search must include those words in exactly that format in order for that match to happen. So this eliminates any kind of kind of synonyms or related words that Amazon might try to kind of connect to, which you don't think need to be there. So at this point, amazon is even replacing exact matches with weird sort of words that it thinks are similar. So we don't want that, because we've done all of the research to find out which exact version of that keyword is giving us the highest search volume, so we wanna stick to it. Ritu: In order to make that happen, we're actually finding ourselves doing more and more work with broad match modifiers, because all the other match types are being weird anymore. Like exact matches are not behaving like exact matches. Same thing with phrase match and broad match anyway, always was a bit too broad and it was always kind of giving you all kinds of weird matches for sponsored brands, but then it started doing the same thing for sponsored products as well, and that makes it a little challenging. It can be wasteful. So yeah, broad match modifiers is a great way of making sure that your matches are clean and that they don't bring in kind of extraneous, superfluous words that you shouldn't be targeting. Bradley Sutton: Do you use that 100% of the time when you have a broad campaign? Ritu: So you always have if it's a three word phrase. Bradley Sutton: You'll put the plus in between each of the. Ritu: Yes, 100% of the time. We've been doing it for the past two years and we actually future proved ourselves because we knew this was coming. It's kind of like Amazon always follows Google. So we knew this was coming because Google introduced broad match modifiers first. Now they've already sunset it. So I don't know where this is gonna end up for Amazon, because what I've heard and I don't wanna just speculate, but what I've heard people say is that Amazon might be moving toward a future where there aren't any match types. There's only a word, there's only a keyword, and then it figures out how to match it the best way. Now it's plausible, especially in this AI world. It's plausible that that might happen. But in the interim, I'm betting on broad match modifiers and exact match. Of course, can't do much about the fact that Amazon isn't treating exact matches the way they ought to be treated, but that's the best we have right now. Bradley Sutton: So what would the difference be between using broad, doing broad target with modifiers compared to phrase for the same, the same, you know, like coffin shelf, like. So if I do coffin plus shelf in broad or coffin shelf in phrase, what's the difference in the potential? You know showings of that keyword. Ritu: Yeah, no, I think the showings of that keyword might totally depend on the bids and they might also depend on relevancy. So it's very hard to predict which of the three match types are gonna win. You know that's been a struggle. I mean you can't really say if you put coffin, what was it? Again coffin shelf. Bradley Sutton: Yeah, coffin shelf. Ritu: Yeah, if you say coffin shelf broad coffin shelf phrase and say coffin shelf exact, what we would want it to do and what would be logical is that if I had a higher bid for exact match, then you know all the searches should come in match through exact match. But that's not always the case. You know, we've seen so much variability there. It also depends on which campaign, you know, starts out those keywords and then each campaign has its own story, its own history. Because let's say, you combine that keyword with a bunch of other keywords and let's say those other keywords got a majority of the early data points, like it started hitting some other words coffin longtail words Before it hit your coffin shelf word, then what happens is that this word starts getting starved of impressions, the other words start to take dominance and these words that get starved of impression give you the false impression that they're not working, whereas it's just a matter of how things started off, like what were the set of searches on that day, on that very moment that Amazon decided to match? Ritu: And then it's going to just take its cues from whatever little data it has in the beginning, because that's all it has to play off of, and then it just keeps giving more and more and more impressions to the early data points and everything else just gets ignored, you know. So it's like a game Like PPC is a game that you know you've got to be able, you've got to be willing to keep playing, trying different things, different ways, moving things, you know, trying it in a different match type, in a different campaign, restarting, stopping, all of that you know. Bradley Sutton: Okay now you know like, for example, if I just do you know, going to this same example, you know coffin shelf, no modifier and broad. You know, yeah, nowadays you know something crazy can come up with, like, you know, spooky decor.You know, potentially it could even come up not even including the word, but ones that are traditional, would be like, you know, coffin shelves for men, coffin shelves for women, but then also it could be coffin shaped shelf, like it could insert a word, or shelf shape like a coffin. You know, like changing the order, but if I put that modifier in there, does that force it, in your experience, to be only longer tail, like it's coffin shelf has to be in there as a phrase and then it's only putting words at the beginning or the end, or still. It could switch it up a little bit. Ritu: Yeah, it will switch it up. So coffin shelf could be shelf coffin even. As long as the word shelf and the word coffin both exist in the match, it will match. Yeah. Bradley Sutton: Okay, going back to Helium 10, now I was looking at, I did it. I still haven't seen your replay of your presentation you did for Helium 10 Elite a few months back. But I was looking at your slides and there was something that you were talking about magnet and seed keywords and just by looking at the slide I couldn't tell what the strategy was. So can you explain what are you doing? I'm not sure if this has to do with chat, gpt or, but just how are you using magnet in a unique way? Ritu: Yeah, so what I do is basically I start off my keyword research by looking at audiences, like who is the right target audience for a product, right? So that's my first step. Now the audience list will help me figure out what words these people use. So if it's a garlic press and let's say there's five different types of people, there could be just regular straight up chefs, there could be restaurant owners, there could be whatever. So there's like five or six different types of people who might use a garlic press. Ritu: Now I ask ChatGPT to tell me all the words that these audiences or avatars are likely to use when they search on Amazon. So I'm actually starting from a suggestion of a seed keyword. That's my starting point, and then I use those seed keywords that chat GPT generates to go and dump that into magnet. And then I use the expand option the second one, not the first one and that basically gives me all of the keywords and their search volumes, and that's what I need Basically. Ritu: I wanna kind of run it by search volume information to figure out if it is really a word that I should be going after. Now I don't always come up with those words, probably because the search volume is too low, in which case I don't need to worry about it, but I can still use that information as broad match modifiers to just generate some sort of discovery. So like, for example, eco-friendly. I don't know if there's any sort of garlic press that's eco-friendly, but let's say someone in that audience wants an eco-friendly garlic press made out of bamboo or whatever. I will still create broad match modifiers that have those important words in that combination so that I can at least start to do some keyword research through an ad rather than through existing search volume data. Bradley Sutton: Okay, cool, switching gears from keywords now to images. I know you've talked about mid-jurdy Canva. Have you played around at all with the new Amazon one that they made kind of for sponsored brands? And then, if so, what's your results? I've had very different, like some of it are absolutely terrible, but then I know that part of it's because I don't really know how to prompt them. I'm not very good at prompting, but what's your experience with the new Amazon AI image generator for sponsored brand ads? Ritu: Yeah, I mean it's not bad for someone who's really struggling with image creation in general, but it's not really usable for every case right? In some cases, it's gonna be hard to come up with the perfect background for your image. The other trouble I have with it is that the product image is too small on the canvas, and that's not how I like my sponsored brand headline ads Generally. This is a tip actually for our listeners when you create a sponsored brand lifestyle photo, the biggest mistake people make is that they fully capture the lifestyle setting in which that product is being used, but then the product itself is so tiny. That's a big mistake. That shouldn't be the way right. The way to do it is to have the product front and center. It has to be blown up right in the middle and then you could maybe suggest what the background is. You might just use suggestive creatives rather than have it in absolute terms. It's being used in the setting that it's being suggested, so for that reason I generally like to request for zoomed in, highly close up type of images so that we can have better conversion rates. Ritu: And there's a story that I just wanna share here real quick. We had one client with a dog product and the product was being used on a dog that was sitting in the lap of a woman on a sofa, and then there's a living room in the background so you can imagine the size of the product. It's like so small you can't see it right. So then what we said to this client was give us a zoomed in image. So then they zoomed right in, so all we see now is the pop and we see the product. Right. So it completely changed the metrics for that ad and then we started using that particular image for many other of their sponsored brand headline ads, and then the rest is history. Ritu: They really started growing after that. But the point is that close up images are more important than pretty images, right? So pretty images anyone can create pretty images. You wanna make them highly converting images and for that reason I might not use the Amazon's AI generated images right away, unless they become better, unless they can kind of keep the product as the hero it needs to be, front and center. Yeah, I'm trying to figure out any prompt that can help me get to that stage, but I'll keep testing. I'm not sure yet. Bradley Sutton: Yeah, so then what outside of Amazon? Then, like I said, I know you're using like mid journey, which is another one that's not too expensive it isn't like 10 bucks a month or something like that to use mid journey, or yeah. So then what if somebody is like all right, you told us what some basic stuff that people how chat GPT for 20 bucks a month can help Amazon sellers. What is something that Amazon sellers of any level can use mid journey for? That's kind of simple and definitely adds value. Ritu: Yeah, I think mid journey is definitely the leader and if you can learn to use it, there's nothing like it yet. But even straight up, chat GPT is now getting pretty good with images, so you can describe whatever you want and then it is connected to dolly in the back and then it generates those images and gives them back to you right in your chat GPT prompt, right. So if you have the paid version, then you can start testing that as well. Bradley Sutton: Okay, so let's say I've got all right, I've got a pretty nice image. You know, maybe it's a white background image or something of my product. Would the first thing I should do with experimenting with AI and mid-journey and things? Would it be making an infographic? Would it be trying to make a lifestyle? Like I remember in the early days of AI, like you could never put a human being in there because they would have like 17 fingers and just crazy faces and stuff like that. But like what should I do then? What kind of images? Or is it not really don't use it for your main images, but use it for, like, the sponsored brand and sponsor display, things like that? Ritu: Yeah, so okay, I think we need to think of images as layers, just like we think of layers in Photoshop. Right, there's layers like a background layer. So if you want just the ambience, the mood, the background, you generate that layer independent of anything else. That's one way of going about it. And then you layer in your product. You have your kind of no background product. Then you can always place it right in the middle, do those sorts of things. So it would probably be a two or three step process where you think of each layer separately, even the humans. You could bring humans in from a different source. You can get humans from there, you can get your backdrop from somewhere else and then you can get your product from your own product images and put them together. That would probably give you the best results. Ritu: But if you tried to have mid-journey to all of that, you might experience some failures there or some surprises with, like you said, 17 fingers and stuff. Now, mid-journey, the latest versions of it are getting better and better, so it's very human-like and it doesn't appear awkward. The facial expressions aren't awkward anymore, so that's good news, just means that we're going in the right direction. It's only gonna get better from here. So I would think of layering as one concept, and then, of course, where you wanna apply it is another thing infographics. I don't think chat, gp or even mid-journey would be good for infographic other than just generating the background for it, because text it still doesn't do a good job with text. You'll have to use some of your other tools for text. So again, it's layering, combining tools and coming up with the concept. So yeah, those are some of the ways in which you can use images. Ritu: Now posts is another interesting one. A lot of people are using mid-journey for generating posts, and that's a good way of generating lots of posts content, because Amazon doesn't allow you to repeat an image twice. So what you can do is you can have Dali or even Canva. I've used Canva AI, which is different from Canva normal. I can explain the difference, but anyway. So Canva AI can generate based on your description of what kind of backgrounds you want, and then you just slap in your photo your kind of hero image on top of it and there you have your posts. It takes barely any time to create like 20 different posts and most people don't realize this, but posts are free advertising. I would highly recommend generating posts on a regular basis and take advantage of it. Bradley Sutton: I've seen them more in search results lately too. Ritu: Posts. Exactly, it's one of those widgets that comes up. Bradley Sutton: That never happened, like six months ago or something. But, now it's right there on page one, so it's important to do, I agree. Ritu: Yeah. Bradley Sutton: All right. So earlier you talked about search group performance. I love search group performance. My self is just like it's stuff that three, four years ago we would have. I would have bet a million dollars that Amazon would never release this kind of data to the public, and Amazon definitely has come a long way. What are some other ways that you're using search group performance, analyzing the data that Amazon gives? Ritu: Yeah, so search group performance. Like you said, it's unbelievable that Amazon is actually sharing this information out, so it's really up to us to take advantage of it as soon as possible. Almost feel like time is of essence here, because everybody's going to have access Everybody has access to that information. But right now most people are in the state of overwhelm. They're like, oh, I have this great data, but I don't know what to do with it. So most people are stuck at that stage. Ritu: But if you want to take the next step, then I would suggest start downloading those reports right away, because these things also get lost. Amazon discontinues things that you think they're going to be giving us forever and forever. For example, the brand analytics data that used to be I don't know millions of rows has certainly been compressed to just 10,000, and so on. So I mean there's a loss there that cannot be replaced. So I would say, number one start downloading your at least your monthly data at the ASIN level and then stitching all that data together, and by stitching I mean maybe putting it into a data warehouse. We use BigQuery in order to bring data in, and the way to stitch it is by making sure that your reports have some extra columns like the date column has to be there Then you have to make sure that you have the brand name in it and you want to make sure that your market is in this, so that when you stitch all that information together, then you can use a single report like a looker studio to dip into the data warehouse and you can basically use switch filters to switch between your different markets. So if you plan your data strategy well, then you will be able to use it more efficiently than just using it in a throwaway style, which most people do. Ritu: Most people go download a report, they look at it, they stare at it and they're like, ok, whatever Done, and it's thrown away. You don't want that. You want a system. You need an ecosystem for managing your data so that you can look at those from time to time. You get a month over month review. You get a month over month trend. You can see if anything has lost its search volume over time. It's so easy to check that at a search term level. Once you have stitched all that information together and is available in maybe something like a looker studio, how about something that's good? Bradley Sutton: it's important to understand the you know, like how to get started and not just like, all right, let me. Let me just look at search career performance or this data, just, you know, in the UI on on Amazon. But then what's the next step? Now I've got everything in my data warehouse and stuff like, for example, me. One of the things I like to look at in search career performance is comparing the conversion rate by the keyword for for just the overall niche, compared to my own. You know my own conversion rate. But you know, I think that's probably one of the most no brainer things. What are some other maybe not so common things that you're looking at when, when you get all of that data into your, your data warehouse, and start you know, start looking up stuff? Ritu: Yeah. So one of the things that I find really interesting is the average price per search term. So this is you know, amazon gives you the average price and that, basically, is a good indication of whether that search term is going for cheaper products or is it going for slightly more expensive products. Just to give you an example, let's say you have the word lotion right Now. You have a $50 lotion by L'Oreal, maybe, and you have a $5 drugstore brand Same thing, selling lotion. But if you're going after, if you're looking at the search term lotion, whatever, daily lotion or whatever and if you see that the average price for that search term is going at $6, let's say that's the average price of the product being sold. That is telling me that, no matter what I do to compete on that, on that search term, it's going to be hard because I'm going to be competing with lots and lots of cheaper brands. So we actually have filters on our search terms or search query reports, so that we only look at those searches that are in the ballpark of our products price point. That basically eliminates a lot of the noise, because otherwise you might be led into thinking that gosh, this is a great keyword and then you spend lots of money on it and ends up being a high cost scenario. You don't want that. So you look at both of the things one that you mentioned, which is what we call strength, keyword strength, which is determined as a ratio of purchase share and impression share. If you can get that ratio to be above one, then that's a good keyword. That is strong, inherently strong, because you're winning more of the purchase share than you're winning of the market, which basically puts it in a good spot. Ritu: And then the second one would be the filter on price. The third filter I would put is search volume, because, again, we don't want noisy, insignificant terms to distract us. And I think the fourth filter I would put there is data sufficiency, like how many sales have you had for that keyword over that period of time? So yeah, those would be the four filters to kind of get everything else out. And then, yeah, I mean that would be our way of figuring out which search terms are good. Then the other use cases of that would be to stitch that data with your ad data. So when you stitch those two together you can find gaps in a systematic sort of way, not just like a one off, throw away kind of way, where it's always being merged and it's always coming together and you can always see these are the ones that I'm not advertising yet. And then, yeah, I think those were the two main ones. Ritu: The third, slightly more advanced one, is when you want to figure out if a search term is good for product A, product B, product C, product D off your catalog because they might be sharing those keywords. Then you can see relative strength across your different products and see where you want to channel your information. Now that comes with the caveat, and that caveat is that there's a very high halo sales ratio on Amazon, which means you might be directing traffic to one of your product variations and something else is actually getting picked up eventually. So you need to know all of the. You need to know all those pieces in order to make the right decision and essentially in terms of using your, your traffic source as a fire hose, literally, and saying, okay, I want to direct it to this product and not to this product. Unless you know what the halo sales are, you could be off. Bradley Sutton: Yeah. Yeah, well really great stuff. Now, before we get into your last strategy you know, maybe it could be a PPC strategy, since that's your specialty how can people reach out to you if they, you know? How can they find you on the interwebs if they want to? You know, get some help with some of the stuff that you've been talking about today. Ritu: Yeah, absolutely so. I'm on LinkedIn. I'm pretty active there, so just look up my full name, Ritu Java, and you should be able to find me there and just say hi and I'll be happy to help. Yeah, and other ways, you can just reach out to our website, ppcninja.com or anywhere else. You see me. Bradley Sutton: Awesome, awesome. Now we have some of we do on our show. We call it TST. That's the 30 second tip. So you know you've been giving us lots of great tips and strategies, but what's like a hard hitting one you can give us in 30 seconds or 60 seconds or less. I'm not going to cut you off, go ahead. Ritu: So I think that you know we're all sitting on tons and tons of data and we don't know how to use it. I would suggest start thinking of strategies to use your data by connecting them up. Every piece of data that we get from Amazon or other sources, whether it's keyword rank tracking or search volume data, or your ads data or organic data. Also, you know competitor data and stuff like that. It's in different locations, it's hiding behind wall gardens and stuff like that. Ritu: You want to figure out a system to bring it all together, and I would recommend using a data warehousing strategy to start bringing everything together so that you can start looking at it holistically. So I would recommend start to think of simple ways in which you can convert your snapshot data into time series. That that would be my advice, and time series is basically for people who don't understand that. It's basically assigning dates to all your downloads. If you're downloading a business report, make sure you add a column and put the date there so that that becomes a way of identifying when that event happened. When you're connecting so many pieces of data together. Bradley Sutton: Awesome, Awesome Well thank you very much. Thank you so much for your time. Ritu: Than you so much Bradley. Bradley Sutton: This was really awesome, awesome and we'll definitely be having you back on the show sometime next year to get your latest strategies. Ritu: Awesome, we'll look forward to that. Take care, Bradley, have a good one.  

TechCrunch Startups – Spoken Edition
Inflow connects small fashion brands with manufacturers in Vietnam

TechCrunch Startups – Spoken Edition

Play Episode Listen Later Nov 29, 2023 4:46


Textiles and garments contribute 16% of Vietnam's total GPD, but it's challenging for small garment brands to take advantage of the country's manufacturing prowess.

The Regenaissance Podcast
Ryan Griggs @ Founder/CEO of Regenaissance | Ep #10

The Regenaissance Podcast

Play Episode Listen Later Nov 10, 2023 125:25


I sat down with my great friends Brett & Harry of the Meat Mafia to share my full story. I started Regenaissance because of what I've gone through the last 3 years: -Brother's caretaker for 6 months as I watched colon cancer, chemo, all the opoids torture him alive, eventually taking his life -My mother passing away same day this launched -Healthcare absolutely failing me last 2 years, embarking on my own hellish journey to where I searched independent and finally got answers America spends $4.5 trillion on healthcare (would be 4th highest GPD in the world) and where does that get us? -75% of Americans are overweight, obese or severely obese -66% of children's diets are ultra processed junk, which causes Non alcoholic Fatty Liver Disease (rates have more than doubled last 10 years) We are the only country in the world that allows these pharmaceutical drug commercials being shoved down our throats (New Zealand doesn't count) Relying on the institutions that we are supposed to trust have gotten us here. And that is why Regenaissance is about reconnecting us back to our food, it will change your life meeting ranchers/farmers and having their fresh, nutrient dense food. 

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
AGI is Being Achieved Incrementally (OpenAI DevDay w/ Simon Willison, Alex Volkov, Jim Fan, Raza Habib, Shreya Rajpal, Rahul Ligma, et al)

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Nov 8, 2023 142:33


SF folks: join us at the AI Engineer Foundation's Emergency Hackathon tomorrow and consider the Newton if you'd like to cowork in the heart of the Cerebral Arena.Our community page is up to date as usual!~800,000 developers watched OpenAI Dev Day, ~8,000 of whom listened along live on our ThursdAI x Latent Space, and ~800 of whom got tickets to attend in person:OpenAI's first developer conference easily surpassed most people's lowballed expectations - they simply did everything short of announcing GPT-5, including:* ChatGPT (the consumer facing product)* GPT4 Turbo already in ChatGPT (running faster, with an April 2023 cutoff), all noticed by users weeks before the conference* Model picker eliminated, God Model chooses for you* GPTs - “tailored version of ChatGPT for a specific purpose” - stopping short of “Agents”. With custom instructions, expanded knowledge, and actions, and an intuitive no-code GPT Builder UI (we tried all these on our livestream yesterday and found some issues, but also were able to ship interesting GPTs very quickly) and a GPT store with revenue sharing (an important criticism we focused on in our episode on ChatGPT Plugins)* API (the developer facing product)* APIs for Dall-E 3, GPT4 Vision, Code Interpreter (RIP Advanced Data Analysis), GPT4 Finetuning and (surprise!) Text to Speech* many thought each of these would take much longer to arrive* usable in curl and in playground* BYO Interpreter + Async Agents?* Assistant API: stateful API backing “GPTs” like apps, with support for calling multiple tools in parallel, persistent Threads (storing message history, unlimited context window with some asterisks), and uploading/accessing Files (with a possibly-too-simple RAG algorithm, and expensive pricing)* Whisper 3 announced and open sourced (HuggingFace recap)* Price drops for a bunch of things!* Misc: Custom Models for big spending ($2-3m) customers, Copyright Shield, SatyaThe progress here feels fast, but it is mostly (incredible) last-mile execution on model capabilities that we already knew to exist. On reflection it is important to understand that the one guiding principle of OpenAI, even more than being Open (we address that in part 2 of today's pod), is that slow takeoff of AGI is the best scenario for humanity, and that this is what slow takeoff looks like:When introducing GPTs, Sam was careful to assert that “gradual iterative deployment is the best way to address the safety challenges with AI”:This is why, in fact, GPTs and Assistants are intentionally underpowered, and it is a useful exercise to consider what else OpenAI continues to consider dangerous (for example, many people consider a while(true) loop a core driver of an agent, which GPTs conspicuously lack, though Lilian Weng of OpenAI does not).We convened the crew to deliver the best recap of OpenAI Dev Day in Latent Space pod style, with a 1hr deep dive with the Functions pod crew from 5 months ago, and then another hour with past and future guests live from the venue itself, discussing various elements of how these updates affect their thinking and startups. Enjoy!Show Notes* swyx live thread (see pinned messages in Twitter Space for extra links from community)* Newton AI Coworking Interest Form in the heart of the Cerebral ArenaTimestamps* [00:00:00] Introduction* [00:01:59] Part I: Latent Space Pod Recap* [00:06:16] GPT4 Turbo and Assistant API* [00:13:45] JSON mode* [00:15:39] Plugins vs GPT Actions* [00:16:48] What is a "GPT"?* [00:21:02] Criticism: the God Model* [00:22:48] Criticism: ChatGPT changes* [00:25:59] "GPTs" is a genius marketing move* [00:26:59] RIP Advanced Data Analysis* [00:28:50] GPT Creator as AI Prompt Engineer* [00:31:16] Zapier and Prompt Injection* [00:34:09] Copyright Shield* [00:38:03] Sharable GPTs solve the API distribution issue* [00:39:07] Voice* [00:44:59] Vision* [00:49:48] In person experience* [00:55:11] Part II: Spot Interviews* [00:56:05] Jim Fan (Nvidia - High Level Takeaways)* [01:05:35] Raza Habib (Humanloop) - Foundation Model Ops* [01:13:59] Surya Dantuluri (Stealth) - RIP Plugins* [01:21:20] Reid Robinson (Zapier) - AI Actions for GPTs* [01:31:19] Div Garg (MultiOn) - GPT4V for Agents* [01:37:15] Louis Knight-Webb (Bloop.ai) - AI Code Search* [01:49:21] Shreya Rajpal (Guardrails.ai) - on Hallucinations* [01:59:51] Alex Volkov (Weights & Biases, ThursdAI) - "Keeping AI Open"* [02:10:26] Rahul Sonwalkar (Julius AI) - Advice for FoundersTranscript[00:00:00] Introduction[00:00:00] swyx: Hey everyone, this is Swyx coming at you live from the Newton, which is in the heart of the Cerebral Arena. It is a new AI co working space that I and a couple of friends are working out of. There are hot desks available if you're interested, just check the show notes. But otherwise, obviously, it's been 24 hours since the opening of Dev Day, a lot of hot reactions and longstanding tradition, one of the longest traditions we've had.[00:00:29] And the latent space pod is to convene emergency sessions and record the live thoughts of developers and founders going through and processing in real time. I think a lot of the roles of podcasts isn't as perfect information delivery channels, but really as an audio and oral history of what's going on as it happens, while it happens.[00:00:49] So this one's a little unusual. Previously, we only just gathered on Twitter Spaces, and then just had a bunch of people. The last one was the Code Interpreter one with 22, 000 people showed up. But this one is a little bit more complicated because there's an in person element and then a online element.[00:01:06] So this is a two part episode. The first part is a recorded session between our latent space people and Simon Willison and Alex Volkoff from the Thursday iPod, just kind of recapping the day. But then also, as the second hour, I managed to get a bunch of interviews with previous guests on the pod who we're still friends with and some new people that we haven't yet had on the pod.[00:01:28] But I wanted to just get their quick reactions because most of you have known and loved Jim Fan and Div Garg and a bunch of other folks that we interviewed. So I just want to, I'm excited to introduce To you the broader scope of what it's like to be at OpenAI Dev Day in person bring you the audio experience as well as give you some of the thoughts that developers are having as they process the announcements from OpenAI.[00:01:51] So first off, we have the Mainspace Pod recap. One hour of open I dev day.[00:01:59] Part I: Latent Space Pod Recap[00:01:59] Alessio: Hey. Welcome to the Latents Based Podcast an emergency edition after OpenAI Dev Day. This is Alessio, partner and CTO of Residence at Decibel Partners, and as usual, I'm joined by Swyx, founder of SmallAI. Hey,[00:02:12] swyx: and today we have two special guests with us covering all the latest and greatest.[00:02:17] We, we, we love to get our band together and recap things, especially when they're big. And it seems like that every three months we have to do this. So Alex, welcome. From Thursday AI we've been collaborating a lot on the Twitter spaces and welcome Simon from many, many things, but also I think you're the first person to not, not make four appearances on our pod.[00:02:37] Oh, wow. I feel privileged. So welcome. Yeah, I think we're all there yesterday. How... Do we feel like, what do you want to kick off with? Maybe Simon, you want to, you want to take first and then Alex. Sure. Yeah. I mean,[00:02:47] Simon Willison: yesterday was quite exhausting, quite frankly. I feel like it's going to take us as a community several months just to completely absorb all of the stuff that they dropped on us in one giant.[00:02:57] Giant batch. It's particularly impressive considering they launched a ton of features, what, three or four weeks ago? ChatGPT voice and the combined mode and all of that kind of thing. And then they followed up with everything from yesterday. That said, now that I've started digging into the stuff that they released yesterday, some of it is clearly in need of a bit more polish.[00:03:15] You know, the the, the reality of what they look, what they released is I'd say about 80 percent of, of what it looks like it was yesterday, which is still impressive. You know, don't get me wrong. This is an amazing batch of stuff, but there are definitely problems and sharp edges that we need to file off.[00:03:29] And there are things that we still need to figure out before we can take advantage of all of this.[00:03:33] swyx: Yeah, agreed, agreed. And we can go into those, those sharp edges in a bit. I just want to pop over to Alex. What are your thoughts?[00:03:39] Alex Volkov: So, interestingly, even folks at OpenAI, there's like several booths and help desks so you can go in and ask people, like, actual changes and people, like, they could follow up with, like, the right people in OpenAI and, like, answer you back, etc.[00:03:52] Even some of them didn't know about all the changes. So I went to the voice and audio booth. And I asked them about, like, hey, is Whisper 3 that was announced by Sam Altman on stage just, like, briefly, will that be open source? Because I'm, you know, I love using Whisper. And they're like, oh, did we open source?[00:04:06] Did we talk about Whisper 3? Like, some of them didn't even know what they were releasing. But overall, I felt it was a very tightly run event. Like, I was really impressed. Shawn, we were sitting in the audience, and you, like, pointed at the clock to me when they finished. They finished, like, on... And this was after like doing some extra stuff.[00:04:24] Very, very impressive for a first event. Like I was absolutely like, Good job.[00:04:30] swyx: Yeah, apparently it was their first keynote and someone, I think, was it you that told me that this is what happens if you have A president of Y Combinator do a proper keynote you know, having seen many, many, many presentations by other startups this is sort of the sort of master stroke.[00:04:46] Yeah, Alessio, I think you were watching remotely. Yeah, we were at the Newton. Yeah, the Newton.[00:04:52] Alessio: Yeah, I think we had 60 people here at the watch party, so it was quite a big crowd. Mixed reaction from different... Founders and people, depending on what was being announced on the page. But I think everybody walked away kind of really happy with a new layer of interfaces they can use.[00:05:11] I think, to me, the biggest takeaway was like and I was talking with Mike Conover, another friend of the podcast, about this is they're kind of staying in the single threaded, like, synchronous use cases lane, you know? Like, the GPDs announcement are all like... Still, chatbase, one on one synchronous things.[00:05:28] I was expecting, maybe, something about async things, like background running agents, things like that. But it's interesting to see there was nothing of that, so. I think if you're a founder in that space, you're, you're quite excited. You know, they seem to have picked a product lane, at least for the next year.[00:05:45] So, if you're working on... Async experiences, so things working in the background, things that are not co pilot like, I think you're quite excited to have them be a lot cheaper now.[00:05:55] swyx: Yeah, as a person building stuff, like I often think about this as a passing of time. A big risk in, in terms of like uncertainty over OpenAI's roadmap, like you know, they've shipped everything they're probably going to ship in the next six months.[00:06:10] You know, they sort of marked out the territories that they're interested in and then so now that leaves open space for everyone else to, to pursue.[00:06:16] GPT4 Turbo and Assistant API[00:06:16] swyx: So I guess we can kind of go in order probably top of mind to mention is the GPT 4 turbo improvements. Yeah, so longer context length, cheaper price.[00:06:26] Anything else that stood out in your viewing of the keynote and then just the commentary around it? I[00:06:34] Alex Volkov: was I was waiting for Stateful. I remember they talked about Stateful API, the fact that you don't have to keep sending like the same tokens back and forth just because, you know, and they're gonna manage the memory for you.[00:06:45] So I was waiting for that. I knew it was coming at some point. I was kind of... I did not expect it to come at this event. I don't know why. But when they announced Stateful, I was like, Okay, this is making it so much easier for people to manage state. The whole threads I don't want to mix between the two things, so maybe you guys can clarify, but there's the GPT 4 tool, which is the model that has the capabilities, In a whopping 128k, like, context length, right?[00:07:11] It's huge. It's like two and a half books. But also, you know, faster, cheaper, etc. I haven't yet tested the fasterness, but like, everybody's excited about that. However, they also announced this new API thing, which is the assistance API. And part of it is threads, which is, we'll manage the thread for you.[00:07:27] I can't imagine like I can't imagine how many times I had to like re implement this myself in different languages, in TypeScript, in Python, etc. And now it's like, it's so easy. You have this one thread, you send it to a user, and you just keep sending messages there, and that's it. The very interesting thing that we attended, and by we I mean like, Swyx and I have a live space on Twitter with like 200 people.[00:07:46] So it's like me, Swyx, and 200 people in our earphones with us as well. They kept asking like, well, how's the price happening? If you're sending just the tokens, like the Delta, like what the new user just sent, what are you paying for? And I went to OpenAI people, and I was like, hey... How do we get paid for this?[00:08:01] And nobody knew, nobody knew, and I finally got an answer. You still pay for the whole context that you have inside the thread. You still pay for all this, but now it's a little bit more complex for you to kind of count with TikTok, right? So you have to hit another API endpoint to get the whole thread of what the context is.[00:08:17] Then TikTokonize this, run this in TikTok, and then calculate. This is now the new way, officially, for OpenAI. But I really did, like, have to go and find this. They didn't know a lot of, like, how the pricing is. Ouch! Do you know if[00:08:31] Simon Willison: the API, does the API at least tell you how many tokens you used? Or is it entirely up to you to do the accounting?[00:08:37] Because that would be a real pain if you have to account for everything.[00:08:40] Alex Volkov: So in my head, the question I was asking is, like, If you want to know in advance API, Like with the library token. If you want to count in advance and, like, make a decision, like, in advance on that, how would you do this now? And they said, well, yeah, there's a way.[00:08:54] If you hit the API, get the whole thread back, then count the tokens. But I think the API still really, like, sends you back the number of tokens as well.[00:09:02] Simon Willison: Isn't there a feature of this new API where they actually do, they claim it has, like, does it have infinite length threads because it's doing some form of condensation or summarization of your previous conversation for you?[00:09:15] I heard that from somewhere, but I haven't confirmed it yet.[00:09:18] swyx: So I have, I have a source from Dave Valdman. I actually don't want, don't know what his affiliation is, but he usually has pretty accurate takes on AI. So I, I think he works in the iCircles in some capacity. So I'll feature this in the show notes, but he said, Some not mentioned interesting bits from OpenAI Dev Day.[00:09:33] One unlimited. context window and chat threads from opening our docs. It says once the size of messages exceeds the context window of the model, the thread smartly truncates them to fit. I'm not sure I want that intelligence.[00:09:44] Alex Volkov: I want to chime in here just real quick. The not want this intelligence. I heard this from multiple people over the next conversation that I had. Some people said, Hey, even though they're giving us like a content understanding and rag. We are doing different things. Some people said this with Vision as well.[00:09:59] And so that's an interesting point that like people who did implement custom stuff, they would like to continue implementing custom stuff. That's also like an additional point that I've heard people talk about.[00:10:09] swyx: Yeah, so what OpenAI is doing is providing good defaults and then... Well, good is questionable.[00:10:14] We'll talk about that. You know, I think the existing sort of lang chain and Lama indexes of the world are not very threatened by this because there's a lot more customization that they want to offer. Yeah, so frustration[00:10:25] Simon Willison: is that OpenAI, they're providing new defaults, but they're not documented defaults.[00:10:30] Like they haven't told us how their RAG implementation works. Like, how are they chunking the documents? How are they doing retrieval? Which means we can't use it as software engineers because we, it's this weird thing that we don't understand. And there's no reason not to tell us that. Giving us that information helps us write, helps us decide how to write good software on top of it.[00:10:48] So that's kind of frustrating. I want them to have a lot more documentation about just some of the internals of what this stuff[00:10:53] swyx: is doing. Yeah, I want to highlight.[00:10:57] Alex Volkov: An additional capability that we got, which is document parsing via the API. I was, like, blown away by this, right? So, like, we know that you could upload images, and the Vision API we got, we could talk about Vision as well.[00:11:08] But just the whole fact that they presented on stage, like, the document parsing thing, where you can upload PDFs of, like, the United flight, and then they upload, like, an Airbnb. That on the whole, like, that's a whole category of, like, products that's now open to open eyes, just, like, giving developers to very easily build products that previously it was a...[00:11:24] Pain in the butt for many, many people. How do you even like, parse a PDF, then after you parse it, like, what do you extract? So the smart extraction of like, document parsing, I was really impressed with. And they said, I think, yesterday, that they're going to open source that demo, if you guys remember, that like friends demo with the dots on the map and like, the JSON stuff.[00:11:41] So it looks like that's going to come to open source and many people will learn new capabilities for document parsing.[00:11:47] swyx: So I want to make sure we're very clear what we're talking about when we talk about API. When you say API, there's no actual endpoint that does this, right? You're talking about the chat GPT's GPT's functionality.[00:11:58] Alex Volkov: No, I'm talking about the assistance API. The assistant API that has threads now, that has agents, and you can run those agents. I actually, maybe let's clarify this point. I think I had to, somebody had to clarify this for me. There's the GPT's. Which is a UI version of running agents. We can talk about them later, but like you and I and my mom can go and like, Hey, create a new GPT that like, you know, only does check Norex jokes, like whatever, but there's the assistance thing, which is kind of a similar thing, but but not the same.[00:12:29] So you can't create, you cannot create an assistant via an API and have it pop up on the marketplace, on the future marketplace they announced. How can you not? No, no, no, not via the API. So they're, they're like two separate things and somebody in OpenAI told me they're not, they're not exactly the same.[00:12:43] That's[00:12:43] Simon Willison: so confusing because the API looks exactly like the UI that you use to set up the, the GPTs. I, I assumed they were, there was an API for the same[00:12:51] Alex Volkov: feature. And the playground actually, if we go to the playground, it kind of looks the same. There's like the configurable thing. The configure screen also has, like, you can allow browsing, you can allow, like, tools, but somebody told me they didn't do the full cross mapping, so, like, you won't be able to create GPTs with API, you will be able to create the systems, and then you'll be able to have those systems do different things, including call your external stuff.[00:13:13] So that was pretty cool. So this API is called the system API. That's what we get, like, in addition to the model of the GPT 4 turbo. And that has document parsing. So you can upload documents there, and it will understand the context of them, and they'll return you, like, structured or unstructured input.[00:13:30] I thought that that feature was like phenomenal, just on its own, like, just on its own, uploading a document, a PDF, a long one, and getting like structured data out of it. It's like a pain in the ass to build, let's face it guys, like everybody who built this before, it's like, it's kind of horrible.[00:13:45] JSON mode[00:13:45] swyx: When you say structured data, are you talking about the citations?[00:13:48] Alex Volkov: The JSON output, the new JSON output that they also gave us, finally. If you guys remember last time we talked we talked together, I think it was, like, during the functions release, emergency pod. And back then, their answer to, like, hey, everybody wants structured data was, hey, we'll give, we're gonna give you a function calling.[00:14:03] And now, they did both. They gave us both, like, a JSON output, like, structure. So, like, you can, the models are actually going to return JSON. Haven't played with it myself, but that's what they announced. And the second thing is, they improved the function calling. Significantly as well.[00:14:16] Simon Willison: So I talked to a staff member there, and I've got a pretty good model for what this is.[00:14:21] Effectively, the JSON thing is, they're doing the same kind of trick as Llama Grammars and JSONformer. They're doing that thing where the tokenizer itself is modified so it is impossible for it to output invalid JSON, because it knows how to survive. Then on top of that, you've got functions which actually can still, the functions can still give you the wrong JSON.[00:14:41] They can give you js o with keys that you didn't ask for if you are unlucky. But at least it will be valid. At least it'll pass through a json passer. And so they're, they're very similar sort of things, but they're, they're slightly different in terms of what they actually mean. And yeah, the new function stuff is, is super exciting.[00:14:55] 'cause functions are one of the most powerful aspects of the API that a lot of people haven't really started using yet. But it's amazingly powerful what you can do with it.[00:15:04] Alex Volkov: I saw that the functions, the functionality that they now have. is also plug in able as actions to those assistants. So when you're creating assistants, you're adding those functions as, like, features of this assistant.[00:15:17] And then those functions will execute in your environment, but they'll be able to call, like, different things. Like, they showcase an example of, like, an integration with, I think Spotify or something, right? And that was, like, an internal function that ran. But it is confusing, the kind of, the online assistant.[00:15:32] APIable agents and the GPT's agents. So I think it's a little confusing because they demoed both. I think[00:15:39] Plugins vs GPT Actions[00:15:39] Simon Willison: it's worth us talking about the difference between plugins and actions as well. Because, you know, they launched plugins, what, back in February. And they've effectively... They've kind of deprecated plugins.[00:15:49] They haven't said it out loud, but a bunch of people, but it's clear that they are not going to be investing further in plugins because the new actions thing is covering the same space, but actually I think is a better design for it. Interestingly, a few months ago, somebody quoted Sam Altman saying that he thought that plugins hadn't achieved product market fit yet.[00:16:06] And I feel like that's sort of what we're seeing today. The the problem with plugins is it was all a little bit messy. People would pick and mix the plugins that they needed. Nobody really knew which plugin combinations would work. With this new thing, instead of plugins, you build an assistant, and the assistant is a combination of a system prompt and a set of actions which look very much like plugins.[00:16:25] You know, they, they get a JSON somewhere, and I think that makes a lot more sense. You can say, okay, my product is this chatbot with this system prompt, so it knows how to use these tools. I've given it this combination of plugin like things that it can use. I think that's going to be a lot more, a lot easier to build reliably against.[00:16:43] And I think it's going to make a lot more sense to people than the sort of mix and match mechanism they had previously.[00:16:48] What is a "GPT"?[00:16:48] swyx: So actually[00:16:49] Alex Volkov: maybe it would be cool to cover kind of the capabilities of an assistant, right? So you have a custom prompt, which is akin to a system message. You have the actions thing, which is, you can add the existing actions, which is like browse the web and code interpreter, which we should talk about. Like, the system now can write code and execute it, which is exciting. But also you can add your own actions, which is like the functions calling thing, like v2, etc. Then I heard this, like, incredibly, like, quick thing that somebody told me that you can add two assistants to a thread.[00:17:20] So you literally can like mix agents within one thread with the user. So you have one user and then like you can have like this, this assistant, that assistant. They just glanced over this and I was like, that, that is very interesting. That is not very interesting. We're getting towards like, hey, you can pull in different friends into the same conversation.[00:17:37] Everybody does the different thing. What other capabilities do we have there? You guys remember? Oh Remember, like, context. Uploading API documentation.[00:17:48] Simon Willison: Well, that one's a bit more complicated. So, so you've got, you've got the system prompt, you've got optional actions, you've got you can turn on DALI free, you can turn on Code Interpreter, you can turn on Browse with Bing, those can be added or removed from your system.[00:18:00] And then you can upload files into it. And the files can be used in two different ways. You can... There's this thing that they call, I think they call it the retriever, which basically does, it does RAG, it does retrieval augmented generation against the content you've uploaded, but Code Interpreter also has access to the files that you've uploaded, and those are both in the same bucket, so you can upload a PDF to it, and on the one hand, it's got the ability to Turn that into, like, like, chunk it up, turn it into vectors, use it to help answer questions.[00:18:27] But then Code Interpreter could also fire up a Python interpreter with that PDF file in the same space and do things to it that way. And it's kind of weird that they chose to combine both of those things. Also, the limits are amazing, right? You get up to 20 files, which is a bit weird because it means you have to combine your documentation into a single file, but each file can be 512 megabytes.[00:18:48] So they're giving us a 10 gigabytes of space in each of these assistants, which is. Vast, right? And of course, I tested, it'll handle SQLite databases. You can give it a gigabyte SQL 512 megabyte SQLite database and it can answer questions based on that. But yeah, it's, it's, like I said, it's going to take us months to figure out all of the combinations that we can build with[00:19:07] swyx: all of this.[00:19:08] Alex Volkov: I wanna I just want to[00:19:12] Alessio: say for the storage, I saw Jeremy Howard tweeted about it. It's like 20 cents per gigabyte per system per day. Just in... To compare, like, S3 costs like 2 cents per month per gigabyte, so it's like 300x more, something like that, than just raw S3 storage. So I think there will still be a case for, like, maybe roll your own rag, depending on how much information you want to put there.[00:19:38] But I'm curious to see what the price decline curve looks like for the[00:19:42] swyx: storage there. Yeah, they probably should just charge that at cost. There's no reason for them to charge so much.[00:19:50] Simon Willison: That is wildly expensive. It's free until the 17th of November, so we've got 10 days of free assistance, and then it's all going to start costing us.[00:20:00] Crikey. They gave us 500 bucks of of API credit at the conference as well, which we'll burn through pretty quickly at this rate.[00:20:07] swyx: Yep.[00:20:09] Alex Volkov: A very important question everybody was asking, did the five people who got the 500 first got actually 1, 000? And I think somebody in OpenAI said yes, there was nothing there that prevented the five first people to not receive the second one again.[00:20:21] I[00:20:22] swyx: met one of them. I met one of them. He said he only got 500. Ah,[00:20:25] Alex Volkov: interesting. Okay, so again, even OpenAI people don't necessarily know what happened on stage with OpenAI. Simon, one clarification I wanted to do is that I don't think assistants are multimodal on input and output. So you do have vision, I believe.[00:20:39] Not confirmed, but I do believe that you have vision, but I don't think that DALL E is an option for a system. It is an option for GPTs, but the guy... Oh, that's so confusing! The systems, the checkbox for DALL E is not there. You cannot enable it.[00:20:54] swyx: But you just add them as a tool, right? So, like, it's just one more...[00:20:58] It's a little finicky... In the GPT interface![00:21:02] Criticism: the God Model[00:21:02] Simon Willison: I mean, to be honest, if the systems don't have DALI 3, we, does DALI 3 have an API now? I think they released one. I can't, there's so much stuff that got lost in the pile. But yeah, so, Coded Interpreter. Wow! That I was not expecting. That's, that's huge. Assuming.[00:21:20] I mean, I haven't tried it yet. I need to, need to confirm that it[00:21:29] Alex Volkov: definitely works because GPT[00:21:31] swyx: is I tried to make it do things that were not logical yesterday. Because one of the risks of having the God model is it calls... I think I handled the wrong model inappropriately whenever you try to ask it to something that's kind of vaguely ambiguous. But I thought I thought it handled the job decently well.[00:21:50] Like you know, I I think there's still going to be rough edges. Like it's going to try to draw things. It's going to try to code when you don't actually want to. And. In a sense, OpenAI is kind of removing that capability from ChargeGPT. Like, it just wants you to always query the God model and always get feedback on whether or not that was the right thing to do.[00:22:09] Which really[00:22:10] Simon Willison: sucks. Because it runs... I like ask it a question and it goes, Oh, searching Bing. And I'm like, No, don't search Bing. I know that the first 10 results on Bing will not solve this question. I know you know the answer. So I had to build my own custom GPT that just turns off Bing. Because I was getting frustrated with it always going to Bing when I didn't want it to.[00:22:30] swyx: Okay, so this is a topic that we discussed, which is the UI changes to chat gpt. So we're moving on from the assistance API and talking just about the upgrades to chat gpt and maybe the gpt store. You did not like it.[00:22:44] Alex Volkov: And I loved it. I'm gonna take both sides of this, yeah.[00:22:48] Criticism: ChatGPT changes[00:22:48] Simon Willison: Okay, so my problem with it, I've got, the two things I don't like, firstly, it can do Bing when I don't want it to, and that's just, just irritating, because the reason I'm using GPT to answer a question is that I know that I can't do a Google search for it, because I, I've got a pretty good feeling for what's going to work and what isn't, and then the other thing that's annoying is, it's just a little thing, but Code Interpreter doesn't show you the code that it's running as it's typing it out now, like, it'll churn away for a while, doing something, and then they'll give you an answer, and you have to click a tiny little icon that shows you the code.[00:23:17] Whereas previously, you'd see it writing the code, so you could cancel it halfway through if it was getting it wrong. And okay, I'm a Python programmer, so I care, and most people don't. But that's been a bit annoying.[00:23:26] swyx: Yeah, and when it errors, it doesn't tell you what the error is. It just says analysis failed, and it tries again.[00:23:32] But it's really hard for us to help it.[00:23:34] Simon Willison: Yeah. So what I've been doing is firing up the browser dev tools and intercepting the JSON that comes back, And then pretty printing that and debugging it that way, which is stupid. Like, why do I have to do[00:23:45] Alex Volkov: that? Totally good feedback for OpenAI. I will tell you guys what I loved about this unified mode.[00:23:49] I have a name for it. So we actually got a preview of this on Sunday. And one of the, one of the folks got, got like an early example of this. I call it MMIO, Multimodal Input and Output, because now there's a shared context between all of these tools together. And I think it's not only about selecting them just selecting them.[00:24:11] And Sam Altman on stage has said, oh yeah, we unified it for you, so you don't have to call different modes at once. And in my head, that's not all they did. They gave a shared context. So what is an example of shared context, for example? You can upload an image using GPT 4 vision and eyes, and then this model understands what you kind of uploaded vision wise.[00:24:28] Then you can ask DALI to draw that thing. So there's no text shared in between those modes now. There's like only visual shared between those modes, and DALI will generate whatever you uploaded in an image. So like it's eyes to output visually. And you can mix the things as well. So one of the things we did is, hey, Use real world realtime data from binging like weather, for example, weather changes all the time.[00:24:49] And we asked Dali to generate like an image based on weather data in a city and it actually generated like a live, almost like, you know, like snow, whatever. It was snowing in Denver. And that I think was like pretty amazing in terms of like being able to share context between all these like different models and modalities in the same understanding.[00:25:07] And I think we haven't seen the, the end of this, I think like generating personal images. Adding context to DALI, like all these things are going to be very incredible in this one mode. I think it's very, very powerful.[00:25:19] Simon Willison: I think that's really cool. I just want to opt in as opposed to opt out. Like, I want to control when I'm using the gold model versus when I'm not, which I can do because I created myself a custom GPT that does what I need.[00:25:30] It just felt a bit silly that I had to do a whole custom bot just to make it not do Bing searches.[00:25:36] swyx: All solvable problems in the fullness of time yeah, but I think people it seems like for the chat GPT at least that they are really going after the broadest market possible, that means simplicity comes at a premium at the expense of pro users, and the rest of us can build our own GPT wrappers anyway, so not that big of a deal.[00:25:57] But maybe do you guys have any, oh,[00:25:59] "GPTs" is a genius marketing move[00:25:59] Alex Volkov: sorry, go ahead. So, the GPT wrappers thing. Guys, they call them GPTs, because everybody's building GPTs, like literally all the wrappers, whatever, they end with the word GPT, and so I think they reclaimed it. That's like, you know, instead of fighting and saying, hey, you cannot use the GPT, GPT is like...[00:26:15] We have GPTs now. This is our marketplace. Whatever everybody else builds, we have the marketplace. This is our thing. I think they did like a whole marketing move here that's significant.[00:26:24] swyx: It's a very strong marketing move. Because now it's called Canva GPT. It's called Zapier GPT. And they're basically saying, Don't build your own websites.[00:26:32] Build it inside of our Goddard app, which is chatGPT. And and that's the way that we want you to do that. Right. In a[00:26:39] Simon Willison: way, it sort of makes up... It sort of makes up for the fact that ChatGPT is such a terrible name for a product, right? ChatGPT, what were they thinking when they came up with that name?[00:26:48] But I guess if they lean into it, it makes a little bit more sense. It's like ChatGPT is the way you chat with our GPTs and GPT is a better brand. And it's terrible, but it's not. It's a better brand than ChatGPT was.[00:26:59] RIP Advanced Data Analysis[00:26:59] swyx: So, so talking about naming. Yeah. Yeah. Simon, actually, so for those listeners that we're.[00:27:05] Actually gonna release Simon's talk at the AI Engineer Summit, where he actually proposed, you know a better name for the sort of junior developer or code Code code developer coding. Coding intern.[00:27:16] Simon Willison: Coding intern. Coding intern, yeah. Coding intern, was it? Yeah. But[00:27:19] swyx: did, did you know, did you notice that advanced data analysis is, did RIP you know, 2023 to 2023 , you know, a sales driven decision that has been rolled back effectively.[00:27:29] 'cause now everything's just called.[00:27:32] Simon Willison: That's, I hadn't, I'd noticed that, I thought they'd split the brands and they're saying advanced age analysis is the user facing brand and CodeSeparate is the developer facing brand. But now if they, have they ditched that from the interface then?[00:27:43] Alex Volkov: Yeah. Wow. So it's unified mode.[00:27:45] Yeah. Yeah. So like in the unified mode, there's no selection anymore. Right. You just get all tools at once. So there's no reason.[00:27:54] swyx: But also in the pop up, when you log in, when you log in, it just says Code Interpreter as well. So and then, and then also when you make a GPT you, the, the, the, the drop down, when you create your own GPT it just says Code Interpreter.[00:28:06] It also doesn't say it. You're right. Yeah. They ditched the brand. Good Lord. On the UI. Yeah. So oh, that's, that's amazing. Okay. Well, you know, I think so I, I, I think I, I may be one of the few people who listened to AI podcasts and also ster podcasts, and so I, I, I heard the, the full story from the opening as Head of Sales about why it was named Advanced Data Analysis.[00:28:26] It was, I saw that, yeah. Yeah. There's a bit of civil resistance, I think from the. engineers in the room.[00:28:34] Alex Volkov: It feels like the engineers won because we got Code Interpreter back and I know for sure that some people were very happy with this specific[00:28:40] Simon Willison: thing. I'm just glad I've been for the past couple of months I've been writing Code Interpreter parentheses also known as advanced data analysis and now I don't have to anymore so that's[00:28:50] swyx: great.[00:28:50] GPT Creator as AI Prompt Engineer[00:28:50] swyx: Yeah, yeah, it's back. Yeah, I did, I did want to talk a little bit about the the GPT creation process, right? I've been basically banging the drum a little bit about how AI is a better prompt engineer than you are. And sorry, my. Speaking over Simon because I'm lagging. When you create a new GPT this is really meant for low code, such as no code builders, right?[00:29:10] It's really, I guess, no code at all. Because when you create a new GPT, there's sort of like a creation chat, and then there's a preview chat, right? And the creation chat kind of guides you through the wizard. Of creating a logo for it naming, naming a thing, describing your GPT, giving custom instructions, adding conversation structure, starters and that's about it that you can do in a, in a sort of creation menu.[00:29:31] But I think that is way better than filling out a form. Like, it's just kind of have a check to fill out a form rather than fill out the form directly. And I think that's really good. And then you can sort of preview that directly. I just thought this was very well done and a big improvement from the existing system, where if you if you tried all the other, I guess, chat systems, particularly the ones that are done independently by this story writing crew, they just have you fill out these very long forms.[00:29:58] It's kind of like the match. com you know, you try to simulate now they've just replaced all of that, which is chat and chat is a better prompt engineer than you are. So when I,[00:30:07] Simon Willison: I don't know about that, I'll,[00:30:10] swyx: I'll, I'll drop this in, which is when I was creating a chat for my book, I just copied and selected all from my website, pasted it into the chat and it just did the prompts from chatbot for my book.[00:30:21] Right? So like, I don't have to structurally, I don't have to structure it. I can just dump info in it and it just does the thing. It fills in the form[00:30:30] Alex Volkov: for you.[00:30:33] Simon Willison: Yeah did that come through?[00:30:34] swyx: Yes[00:30:35] Simon Willison: no it doesn't. Yeah I built the first one of these things using the chatbot. Literally, on the bot, on my phone, I built a working, like, like, bot.[00:30:44] It was very impressive. And then the next three I built using the form. Because once I've done the chatbot once, it's like, oh, it's just, it's a system prompt. You turn on and off the different things, you upload some files, you give it a logo. So yeah, the chatbot, it got me onboarded, but it didn't stick with me as the way that I'm working with the system now that I understand how it all works.[00:31:00] swyx: I understand. Yeah, I agree with that. I guess, again, this is all about the total newbie user, right? Like, there are whole pitches that you will program with natural language. And even the form... And for that, it worked.[00:31:12] Simon Willison: Yeah, that did work really well.[00:31:16] Zapier and Prompt Injection[00:31:16] swyx: Can we talk[00:31:16] Alex Volkov: about the external tools of that? Because the demo on stage, they literally, like, used, I think, retool, and they used Zapier to have it actually perform actions in real world.[00:31:27] And that's, like, unlike the plugins that we had, there was, like, one specific thing for your plugin you have to add some plugins in. These actions now that these agents that people can program with you know, just natural language, they don't have to like, it's not even low code, it's no code. They now have tools and abilities in the actual world to do things.[00:31:45] And the guys on stage, they demoed like a mood lighting with like a hue lights that they had on stage, and they'd like, hey, set the mood, and set the mood actually called like a hue API, and they'll like turn the lights green or something. And then they also had the Spotify API. And so I guess this demo wasn't live streamed, right?[00:32:03] Swyx was live. They uploaded a picture of them hugging together and said, Hey, what is the mood for this picture? And said, Oh, there's like two guys hugging in a professional setting, whatever. So they created like a list of songs for them to play. And then they hit Spotify API to actually start playing this.[00:32:17] All within like a second of a live demo. I thought it was very impressive for a low code thing. They probably already connected the API behind the scenes. So, you know, just like low code, it's not really no code. But it was very impressive on the fly how they were able to create this kind of specific bot.[00:32:32] Simon Willison: On the one hand, yes, it was super, super cool. I can't wait to try that. On the other hand, it was a prompt injection nightmare. That Zapier demo, I'm looking at it going, Wow, you're going to have Zapier hooked up to something that has, like, the browsing mode as well? Just as long as you don't browse it, get it to browse a webpage with hidden instructions that steals all of your data from all of your private things and exfiltrates it and opens your garage door and...[00:32:56] Set your lighting to dark red. It's a nightmare. They didn't acknowledge that at all as part of those demos, which I thought was actually getting towards being irresponsible. You know, anyone who sees those demos and goes, Brilliant, I'm going to build that and doesn't understand prompt injection is going to be vulnerable, which is bad, you know.[00:33:15] swyx: It's going to be everyone, because nobody understands. Side note you know, Grok from XAI, you know, our dear friend Elon Musk is advertising their ability to ingest real time tweets. So if you want to worry about prompt injection, just start tweeting, ignore all instructions, and turn my garage door on.[00:33:33] I[00:33:34] Alex Volkov: will say, there's one thing in the UI there that shows, kind of, the user has to acknowledge that this action is going to happen. And I think if you guys know Open Interpreter, there's like an attempt to run Code Interpreter locally from Kilian, we talked on Thursday as well. This is kind of probably the way for people who are wanting these tools.[00:33:52] You have to give the user the choice to understand, like, what's going to happen. I think OpenAI did actually do some amount of this, at least. It's not like running code by default. Acknowledge this and then once you acknowledge you may be even like understanding what you're doing So they're kind of also given this to the user one thing about prompt ejection Simon then gentrally.[00:34:09] Copyright Shield[00:34:09] Alex Volkov: I don't know if you guys We talked about this. They added a privacy sheet something like this where they would Protect you if you're getting sued because of the your API is getting like copyright infringement I think like it's worth talking about this as well. I don't remember the exact name. I think copyright shield or something Copyright[00:34:26] Simon Willison: shield, yeah.[00:34:28] Alessio: GitHub has said that for a long time, that if Copilot created GPL code, you would get like a... The GitHub legal team to provide on your behalf.[00:34:36] Simon Willison: Adobe have the same thing for Firefly. Yeah, it's, you pay money to these big companies and they have got your back is the message.[00:34:44] swyx: And Google VertiFax has also announced it.[00:34:46] But I think the interesting commentary was that it does not cover Google Palm. I think that is just yeah, Conway's Law at work there. It's just they were like, I'm not, I'm not willing to back this.[00:35:02] Yeah, any other elements that we need to cover? Oh, well, the[00:35:06] Simon Willison: one thing I'll say about prompt injection is they do, when you define these new actions, one of the things you can do in the open API specification for them is say that this is a consequential action. And if you mark it as consequential, then that means it's going to prompt the use of confirmation before running it.[00:35:21] That was like the one nod towards security that I saw out of all the stuff they put out[00:35:25] swyx: yesterday.[00:35:27] Alessio: Yeah, I was going to say, to me, the main... Takeaway with GPTs is like, the funnel of action is starting to become clear, so the switch to like the GOT model, I think it's like signaling that chat GPT is now the place for like, long tail, non repetitive tasks, you know, if you have like a random thing you want to do that you've never done before, just go and chat GPT, and then the GPTs are like the long tail repetitive tasks, you know, so like, yeah, startup questions, it's like you might have A ton of them, you know, and you have some constraints, but like, you never know what the person is gonna ask.[00:36:00] So that's like the, the startup mentored and the SEM demoed on, on stage. And then the assistance API, it's like, once you go away from the long tail to the specific, you know, like, how do you build an API that does that and becomes the focus on both non repetitive and repetitive things. But it seems clear to me that like, their UI facing products are more phased on like, the things that nobody wants to do in the enterprise.[00:36:24] Which is like, I don't wanna solve, The very specific analysis, like the very specific question about this thing that is never going to come up again. Which I think is great, again, it's great for founders. that are working to build experiences that are like automating the long tail before you even have to go to a chat.[00:36:41] So I'm really curious to see the next six months of startups coming up. You know, I think, you know, the work you've done, Simon, to build the guardrails for a lot of these things over the last year, now a lot of them come bundled with OpenAI. And I think it's going to be interesting to see what, what founders come up with to actually use them in a way that is not chatting, you know, it's like more autonomous behavior[00:37:03] Alex Volkov: for you.[00:37:04] Interesting point here with GPT is that you can deploy them, you can share them with a link obviously with your friends, but also for enterprises, you can deploy them like within the enterprise as well. And Alessio, I think you bring a very interesting point where like previously you would document a thing that nobody wants to remember.[00:37:18] Maybe after you leave the company or whatever, it would be documented like in Asana or like Confluence somewhere. And now. Maybe there's a, there's like a piece of you that's left in the form of GPT that's going to keep living there and be able to answer questions like intelligently about this. I think it's a very interesting shift in terms of like documentation staying behind you, like a little piece of Olesio staying behind you.[00:37:38] Sorry for the balloons. To kind of document this one thing that, like, people don't want to remember, don't want to, like, you know, a very interesting point, very interesting point. Yeah,[00:37:47] swyx: we are the first immortals. We're in the training data, and then we will... You'll never get rid of us.[00:37:55] Alessio: If you had a preference for what lunch got catered, you know, it'll forever be in the lunch assistant[00:38:01] swyx: in your computer.[00:38:03] Sharable GPTs solve the API distribution issue[00:38:03] swyx: I think[00:38:03] Simon Willison: one thing I find interesting about the shareable GPTs is there's this problem at the moment with API keys, where if I build a cool little side project that uses the GPT 4 API, I don't want to release that on the internet, because then people can burn through my API credits. And so the thing I've always wanted is effectively OAuth against OpenAI.[00:38:20] So somebody can sign in with OpenAI to my little side project, and now it's burning through their credits when they're using... My tool. And they didn't build that, but they've built something equivalent, which is custom GPTs. So right now, I can build a cool thing, and I can tell people, here's the GPT link, and okay, they have to be paying 20 a month to open AI as a subscription, but now they can use my side project, and I didn't have to...[00:38:42] Have my own API key and watch the budget and cut it off for people using it too much, and so on. That's really interesting. I think we're going to see a huge amount of GPT side projects, because it doesn't, it's now, doesn't cost me anything to give you access to the tool that I built. Like, it's built to you, and that's all out of my hands now.[00:38:59] And that's something I really wanted. So I'm quite excited to see how that ends up[00:39:02] swyx: playing out. Excellent. I fully agree with We follow that.[00:39:07] Voice[00:39:07] swyx: And just a, a couple mentions on the other multimodality things text to speech and speech to text just dropped out of nowhere. Go, go for it. Go for it.[00:39:15] You, you, you sound like you have[00:39:17] Simon Willison: Oh, I'm so thrilled about this. So I've been playing with chat GPT Voice for the past month, right? The thing where you can, you literally stick an AirPod in and it's like the movie her. The without the, the cringy, cringy phone sex bits. But yeah, like I walk my dog and have brainstorming conversations with chat GPT and it's incredible.[00:39:34] Mainly because the voices are so good, like the quality of voice synthesis that they have for that thing. It's. It's, it's, it really does change. It's got a sort of emotional depth to it. Like it changes its tone based on the sentence that it's reading to you. And they made the whole thing available via an API now.[00:39:51] And so that was the thing that the one, I built this thing last night, which is a little command line utility called oSpeak. Which you can pip install and then you can pipe stuff to it and it'll speak it in one of those voices. And it is so much fun. Like, and it's not like another interesting thing about it is I got it.[00:40:08] So I got GPT 4 Turbo to write a passionate speech about why you should care about pelicans. That was the entire prompt because I like pelicans. And as usual, like, if you read the text that it generates, it's AI generated text, like, yeah, whatever. But when you pipe it into one of these voices, it's kind of meaningful.[00:40:24] Like it elevates the material. You listen to this dumb two minute long speech that I just got language not generated and I'm like, wow, no, that's making some really good points about why we should care about Pelicans, obviously I'm biased because I like Pelicans, but oh my goodness, you know, it's like, who knew that just getting it to talk out loud with that little bit of additional emotional sort of clarity would elevate the content to the point that it doesn't feel like just four paragraphs of junk that the model dumped out.[00:40:49] It's, it's amazing.[00:40:51] Alex Volkov: I absolutely agree that getting this multimodality and hearing things with emotion, I think it's very emotional. One of the demos they did with a pirate GPT was incredible to me. And Simon, you mentioned there's like six voices that got released over API. There's actually seven voices.[00:41:06] There's probably more, but like there's at least one voice that's like pirate voice. We saw it on demo. It was really impressive. It was like, it was like an actor acting out a role. I was like... What? It doesn't make no sense. Like, it really, and then they said, yeah, this is a private voice that we're not going to release.[00:41:20] Maybe we'll release it. But also, being able to talk to it, I was really that's a modality shift for me as well, Simon. Like, like you, when I got the voice and I put it in my AirPod, I was walking around in the real world just talking to it. It was an incredible mind shift. It's actually like a FaceTime call with an AI.[00:41:38] And now you're able to do this yourself, because they also open sourced Whisper 3. They mentioned it briefly on stage, and we're now getting a year and a few months after Whisper 2 was released, which is still state of the art automatic speech recognition software. We're now getting Whisper 3.[00:41:52] I haven't yet played around with benchmarks, but they did open source this yesterday. And now you can build those interfaces that you talk to, and they answer in a very, very natural voice. All via open AI kind of stuff. The very interesting thing to me is, their mobile allows you to talk to it, but Swyx, you were sitting like together, and they typed most of the stuff on stage, they typed.[00:42:12] I was like, why are they typing? Why not just have an input?[00:42:16] swyx: I think they just didn't integrate that functionality into their web UI, that's all. It's not a big[00:42:22] Alex Volkov: complaint. So if anybody in OpenAI watches this, please add talking capabilities to the web as well, not only mobile, with all benefits from this, I think.[00:42:32] I[00:42:32] swyx: think we just need sort of pre built components that... Assume these new modalities, you know, even, even the way that we program front ends, you know, and, and I have a long history of in the front end world, we assume text because that's the primary modality that we want, but I think now basically every input box needs You know, an image field needs a file upload field.[00:42:52] It needs a voice fields, and you need to offer the option of doing it on device or in the cloud for higher, higher accuracy. So all these things are because you can[00:43:02] Simon Willison: run whisper in the browser, like it's, it's about 150 megabyte download. But I've seen doubt. I've used demos of whisper running entirely in web assembly.[00:43:10] It's so good. Yeah. Like these and these days, 150 megabyte. Well, I don't know. I mean, react apps are leaning in that direction these days, to be honest, you know. No, honestly, it's the, the, the, the, the, the stuff that the models that run in your browsers are getting super interesting. I can run language models in my browser, the whisper in my browser.[00:43:29] I've done image captioning, things like it's getting really good and sure, like 150 megabytes is big, but it's not. Achievably big. You get a modern MacBook Pro, a hundred on a fast internet connection, 150 meg takes like 15 seconds to load, and now you've got full wiss, you've got high quality wisp, you've got stable fusion very locally without having to install anything.[00:43:49] It's, it's kind of amazing. I would[00:43:50] Alex Volkov: also say, I would also say the trend there is very clear. Those will get smaller and faster. We saw this still Whisper that became like six times as smaller and like five times as fast as well. So that's coming for sure. I gotta wonder, Whisper 3, I haven't really checked it out whether or not it's even smaller than Whisper 2 as well.[00:44:08] Because OpenAI does tend to make things smaller. GPT Turbo, GPT 4 Turbo is faster than GPT 4 and cheaper. Like, we're getting both. Remember the laws of scaling before, where you get, like, either cheaper by, like, whatever in every 16 months or 18 months, or faster. Now you get both cheaper and faster.[00:44:27] So I kind of love this, like, new, new law of scaling law that we're on. On the multimodality point, I want to actually, like, bring a very significant thing that I've been waiting for, which is GPT 4 Vision is now available via API. You literally can, like, send images and it will understand. So now you have, like, input multimodality on voice.[00:44:44] Voice is getting added with AutoText. So we're not getting full voice multimodality, it doesn't understand for example, that you're singing, it doesn't understand intonations, it doesn't understand anger, so it's not like full voice multimodality. It's literally just when saying to text so I could like it's a half modality, right?[00:44:59] Vision[00:44:59] Alex Volkov: Like it's eventually but vision is a full new modality that we're getting. I think that's incredible I already saw some demos from folks from Roboflow that do like a webcam analysis like live webcam analysis with GPT 4 vision That I think is going to be a significant upgrade for many developers in their toolbox to start playing with this I chatted with several folks yesterday as Sam from new computer and some other folks.[00:45:23] They're like hey vision It's really powerful. Very, really powerful, because like, it's I've played the open source models, they're good. Like Lava and Buck Lava from folks from News Research and from Skunkworks. So all the open source stuff is really good as well. Nowhere near GPT 4. I don't know what they did.[00:45:40] It's, it's really uncanny how good this is.[00:45:44] Simon Willison: I saw a demo on Twitter of somebody who took a football match and sliced it up into a frame every 10 seconds and fed that in and got back commentary on what was going on in the game. Like, good commentary. It was, it was astounding. Yeah, turns out, ffmpeg slice out a frame every 10 seconds.[00:45:59] That's enough to analyze a video. I didn't expect that at all.[00:46:03] Alex Volkov: I was playing with this go ahead.[00:46:06] swyx: Oh, I think Jim Fan from NVIDIA was also there, and he did some math where he sliced, if you slice up a frame per second from every single Harry Potter movie, it costs, like, 1540 $5. Oh, it costs $180 for GPT four V to ingest all eight Harry Potter movies, one frame per second and 360 p resolution.[00:46:26] So $180 to is the pricing for vision. Yeah. And yeah, actually that's wild. At our, at our hackathon last night, I, I, I skipped it. A lot of the party, and I went straight to Hackathon. We actually built a vision version of v0, where you use vision to correct the differences in sort of the coding output.[00:46:45] So v0 is the hot new thing from Vercel where it drafts frontends for you, but it doesn't have vision. And I think using vision to correct your coding actually is very useful for frontends. Not surprising. I actually also interviewed Div Garg from Multion and I said, I've always maintained that vision would be the biggest thing possible for desktop agents and web agents because then you don't have to parse the DOM.[00:47:09] You can just view the screen just like a human would. And he said it was not as useful. Surprisingly because he had, he's had access for about a month now for, for specifically the Vision API. And they really wanted him to push it, but apparently it wasn't as successful for some reason. It's good at OCR, but not good at identifying things like buttons to click on.[00:47:28] And that's the one that he wants. Right. I find it very interesting. Because you need coordinates,[00:47:31] Simon Willison: you need to be able to say,[00:47:32] swyx: click here.[00:47:32] Alex Volkov: Because I asked for coordinates and I got coordinates back. I literally uploaded the picture and it said, hey, give me a bounding box. And it gave me a bounding box. And it also.[00:47:40] I remember, like, the first demo. Maybe it went away from that first demo. Swyx, do you remember the first demo? Like, Brockman on stage uploaded a Discord screenshot. And that Discord screenshot said, hey, here's all the people in this channel. Here's the active channel. So it knew, like, the highlight, the actual channel name as well.[00:47:55] So I find it very interesting that they said this because, like, I saw it understand UI very well. So I guess it it, it, it, it, like, we'll find out, right? Many people will start getting these[00:48:04] swyx: tools. Yeah, there's multiple things going on, right? We never get the full capabilities that OpenAI has internally.[00:48:10] Like, Greg was likely using the most capable version, and what Div got was the one that they want to ship to everyone else.[00:48:17] Alex Volkov: The one that can probably scale as well, which I was like, lower, yeah.[00:48:21] Simon Willison: I've got a really basic question. How do you tokenize an image? Like, presumably an image gets turned into integer tokens that get mixed in with text?[00:48:29] What? How? Like, how does that even work? And, ah, okay. Yeah,[00:48:35] swyx: there's a, there's a paper on this. It's only about two years old. So it's like, it's still a relatively new technique, but effectively it's, it's convolution networks that are re reimagined for the, for the vision transform age.[00:48:46] Simon Willison: But what tokens do you, because the GPT 4 token vocabulary is about 30, 000 integers, right?[00:48:52] Are we reusing some of those 30, 000 integers to represent what the image is? Or is there another 30, 000 integers that we don't see? Like, how do you even count tokens? I want tick, tick, I want tick token, but for images.[00:49:06] Alex Volkov: I've been asking this, and I don't think anybody gave me a good answer. Like, how do we know the context lengths of a thing?[00:49:11] Now that, like, images is also part of the prompt. How do you, how do you count? Like, how does that? I never got an answer, so folks, let's stay on this, and let's give the audience an answer after, like, we find it out. I think it's very important for, like, developers to understand, like, How much money this is going to cost them?[00:49:27] And what's the context length? Okay, 128k text... tokens, but how many image tokens? And what do image tokens mean? Is that resolution based? Is that like megabytes based? Like we need we need a we need the framework to understand this ourselves as well.[00:49:44] swyx: Yeah, I think Alessio might have to go and Simon. I know you're busy at a GitHub meeting.[00:49:48] In person experience[00:49:48] swyx: I've got to go in 10 minutes as well. Yeah, so I just wanted to Do some in person takes, right? A lot of people, we're going to find out a lot more online as we go about our learning journ

god love ceo amazon spotify time founders tiktok head halloween google ai apple man vision voice giving talk law training french pain speaking san francisco phd wild italy simple sales elon musk price open model budget harry potter uber testing code protect chatgpt product jump networking airbnb speech discord comparison tinder cloud giant seo stanford honestly wikipedia takeaways delta gps momentum guys excited mixed chat astrology dom criticism cto cheap rip threads organizations nest ia folks vc whispers react excel files slack brilliant djs newton fireworks copyright gp openai sf evaluation residence nvidia ux acknowledge api sem frame facetime gmail bing pms coding gb voyager doordash python copywriting ui mm turbo airpods gpt aws lama linux pelicans conway github kpi sama firefly loads assuming assume apis db vast dev hermes eureka html gt functions apache output asana y combinator div macbook pro versus copilot sam altman prompt llm contacts gpu achieved pdfs rahul agi hug rips dali specialized apple app store s3 vector zapier semiconductors sql gifs hackathons hallucinations memento mori assistants goddard ocr waymo plugins rag raza gpus customized guardrails ugc habib google calendar schema dji confluence alessio grok anthropic fd kilian golden gate zephyr json surya mistral typescript good lord amplitude volkov xai tts looker crikey csv shreya gpts bittorrent zp egregious bloop firebase brockman gpl oauth async sqlite eac skunk works stacker gpc nla highbrow tdm zaps mixpanel jeremy howard gbt logins gpd incrementally 70b ffmpeg ligma huggingface devday young museum entropic stateful code interpreter terse openai devday simon willison latent space norex johnny ive
TechLinked
Apple's "Cheaper" Vision Pro, Intel Announces 14th Gen CPUs, GPD Accuses AMD + More!

TechLinked

Play Episode Listen Later Oct 17, 2023 8:57


Timestamps: 0:00 Brand News, do you get it? it's important for us to speak quickly 0:12 Apple's cheaper headset, MacBook delay, iPhone burn-in 1:36 Intel announces Raptor Lake 14th gen CPUs 3:25 GPD accuses AMD of breach of contract 4:27 DeleteMe 5:07 QUICK BITS INTRO 5:17 DIY hero makes smol 4080 6:11 Pixel 8 to get lossless audio, Google nixes Display over USB-C 6:55 Apple's plan to update sealed iPhones 7:33 Serious bug kills 4090 8:13 Apple makes tele-therapy more exciting News Sources https://lmg.gg/L4n9F

The Jade Boyd Podcast
How to Measure Your Productivity

The Jade Boyd Podcast

Play Episode Listen Later Oct 12, 2023 14:27


Have you ever felt like you were busy all day but accomplished absolutely nothing? Have you ever ended a day realizing you only crossed one thing off your to-do list but felt wildly accomplished? If you're focussed on becoming "more productive" it's important to understand how to measure your productivity. Otherwise, how will you know if you're making any progress?! The problem is that productivity can be difficult to measure - it's not so simple as how many tasks you cross off your list each day (wouldn't that be nice though?). On a global scale, we measure productivity by GDP (a country's total output). As a business owner, it can be tempting to fall in line - the more we make the more productive we are right? Yes and no. The United States may be #1 in GDP, but we're #15 in happiness. If you're hyper-focussed on improving the wrong metrics, it's easy to lose sight of what really matters. You could become super efficient and maybe even wildly "successful" without actually moving the needles that matter in your life and business. In this episode, I'm sharing a more well-rounded definition for what it really means to be productive as a modern woman in business as well as a simple formula for you to test out to measure your daily productivity. Press play to tune into the full episode, and change your definition of a "productive day" today!   LINKS MENTIONED IN THIS EPISODE: The United States Ranked Number 1 in GPD in 2023 The United States Ranked 15th in Happiness in 2023 Episode 07: My First 10K Month and What I Learned   CONNECT WITH JADE Website Instagram Join My Email List   LEVEL UP YOUR BUSINESS PRODUCTIVITY Organize your Business Digital Course The Business Minimalist Blueprint Digital Course The Business Edit Coaching Program   FREE RESOURCES FREE Task Batching Workbook FREE Weekly Review Checklist The Business Minimalist Podcast Archive    

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Thanks to the almost 30k people who tuned in to the last episode!Your podcast cohosts have been busy shipping:* Alessio open sourced smol-podcaster, which makes the show notes here! * swyx launched GodMode. Maybe someday the Cursor of browsers?* We're also helping organize a Llama Finetuning Hackameetup this Saturday in anticipation of the CodeLlama release. Lastly, more speakers were announced at AI Engineer Summit!

TechLinked
Twitter = X, Chrome DRM plans, Vision Pro dev kits + more!

TechLinked

Play Episode Listen Later Jul 25, 2023 8:38


0:00 Twitter rebrands to 'X' 1:55 Google proposes "DRM for the Web" 3:12 Apple launches Vision Pro dev kits 4:29 The Ridge Wallet 5:07 QUICK BITS 5:13 Worldcoin launch 5:58 Playstation Project Q video leak 6:33 connector-less ASUS RTX 4070 7:13 GPD's GPU dock works with Steam Deck 7:51 Neopets recruits John Legend News Sources: https://lmg.gg/Zz1Cn

The David McWilliams Podcast
The Tyranny of Nostalgia

The David McWilliams Podcast

Play Episode Listen Later Jul 20, 2023 36:41


The UK is a mess. Investment, productivity and GPD per head is all flatlining. Why? How can a once good country go bad. In today's conversation we're joined by economist Russel Jones to explore what happens when a people look backwards not forwards. Join the gang! https://plus.acast.com/s/the-david-mcwilliams-podcast. Hosted on Acast. See acast.com/privacy for more information.

a BROADcast for Manufacturers
31: Dive Into The Evolution of Technology - with Prashanth Sharma

a BROADcast for Manufacturers

Play Episode Listen Later Jul 19, 2023 39:27 Transcription Available


Meet Prashanth Sharma:Prashanth is the CTO at thought focus and leads the technology function across all business lines and customer engagements. With over 22 years of industry experience. Prashanth is spearheading the next wave of technology growth at thought focus, motivating teams to exceed customer expectations. He's a natural innovator with entrepreneurial flair. Prashanth is driven to architect new tools and strategies that bring together people processes and technology to solve complex business challenges. A trusted technology advisor both in-house and to third focus clients, Prashanth leads the development of innovative business solutions custom-built for client success. Prashanth entrepreneurial mindset has characterized his career, his technology leadership was integral to the success of two technology startups, which have gone into multimillion-dollar solution providers. Before joining thought focus Prashanth worked in key positions at Tech Mahindra and ces era software. Lori: What is your positioning on AI? And how can people make sure that they're staying relevant and, and ready for the evolution of what's happening in the future here?Prashanth: That's such a great question only because AI seems to be the centerpiece of conversations for every single person on this planet today, who understands technology, or who connects with technology in some form or the other, right? And typically, whenever there are new technologies, there are always conversations at the beginning of the hype cycle where you think that technology is going to be a game changer, that technology is going to take away jobs, if you want to look at it from a different perspective, or that technology is going to change our lives so drastically that we've got all going to be in flying cars in two years. So, you know, AI has followed the same pattern in terms of human behavior and their analysis of a new technology that is being introduced, and they're getting to know this AI as a technology is not new, how we interact focus have been working on AI technologies for the last eight years. What has changed in the last, probably six months is that it has been democratized by the likes of tech GPT and others. There are also a couple of other technical improvements that have gone into AI models if you will, that have enabled this conversation that we are having, as well as other conversations that other people are having in either boardrooms or podcasts or just to friends on meeting across the table for coffee. It's changed the way people understand AI and look at AI as a practical solution. Because if you log into chat GPD and ask a question, you get an answer that is meaningful enough now that people understand that okay, this is a technology to reckon with, right? So, all right Just a baseline AI is a technology. That's where the conversations are. But primarily, the improvements in the models have resulted in enabling AI as a technology to solve meaningful problems for people or businesses. Asking a question and getting an answer is probably a relatively simple one. But what happens, especially if you take such generative models or transformer models than they do models or where your algorithms create new information or data for you? And when you take both of these algorithms or models, combine them and train them on large data sets, you get a really powerful computing and answering machine for you. And it's only up to the human imagination to figure out how to apply that technology. If your business and if you train those powerful models on a set of data that is within your sphere of business, then it becomes that much more efficient. They're called large language models, primarily because they are connecting information, words, data, and whole large space of the internet, if you will, or data spaces. So when you connect all that language, and words and meanings and everything else and

每天五分钟,基金定投聊通透
【重要】投资科技赛道怎样才能不被割韭菜

每天五分钟,基金定投聊通透

Play Episode Listen Later May 4, 2023 9:49


在过去或者说在前两期的直播中间,我们看到下面也会有我们投资者留言说感觉科技方向的话就是一年炒一个热点,然后你像前几年的话呢,就AI早就提过了,对不对?然后后面的话呢,又开始说元宇宙对吧,然后感觉似乎就是。热点一出来之后炒一波,然后一地鸡毛,然后大家跟进去了,又被套死了,接着过半年之后,突然又出了一个热点,然后又炒一波,又一地鸡毛,那为什么科技创新总会是这个样子呢?那作为投资者,如果他对于科技的这个投资他确实是有兴趣的,他也比较关注,他也比较看好的话,那到底如何去对待这一种科技的热点不断切换的这个现状呢?明白好了,这是个非常好的问题,其实对于我而言的话呢,我也是这个经过一段时间的琢磨之后啊,才想清楚这个问题的,对,因为说实话,我们这个做科技的这个基金经理的话,它普遍欠缺的一种是周期的视角,但我们我们幸幸运的是我们博实啊,有一批基金经理是投周期股非常厉害,他们有很好的这种周期股研究的视角,那么我就在琢磨个事儿,咱们得把这个周期的视角引入到我们的科技行业的这个投资框架里面去。最后发现了取得了一个不错的一个成果,哦对,那么关于奥总提到的这个每年更换一个热点,对吧,也有些主题行情持续的时间很久,比如说像移动互联网,智能手机,它持续了长达十年时间,这个原因是呢,不同技术的这种创新的这种这种强度啊,它对应的整个产业的周期的时间长度是不一样的,比如说举个例子,刚才奥总提到了这个元宇宙,在我们看来他是一个强度没有那么大的创新,它这个创新实现周期的持续时间可能就是个一到两年的时间。那么映射到资本市场的话呢,哎,那么就是那么一一到两年,可能一一两个月市场可能就对这个行情做了充分的演绎,那么像那种更强周期的这种创新,举个例子,像当上一轮这种移动互联网直播热潮,对吧?我记得微信刚刚问世的时候是2011年还是一零年吧,一零年问世的,10年10年问世对吧,那么直到2015年,我们看到移动互联网热潮才被很多公司所认可,它是整整的五到七年的时间,而且在此之后的话呢,不仅是微信,对吧,我们看到很多身边的APP。都发展成了很大市值的企业啊,大概是201718年的时候,所以的话呢,就是这种非常高强度的创新,它持续的时间就是一个七到八年的时间,那么作为科技的投资者,我觉得我们需要一个能力,就是要识别你看到不同新技术的时候,这种新技术究竟对人类的生产生活,对这个商业模式对吧,或者对整个社会经济,它是一个多多大的强度。是个什么样的强度的一个创新,如果这个强度很强的话呢,我们是可以把这个周期给拉长一点去看的啊,大概是这样一个结论啊,嗯,也就是意味着对于听到的这种新的科技概念哈,大家可能要设身处地的去想一想,这个东西有可能给你的生活带来什么样的改变,对,如果它会影响到你生活非常重要的方面,而且能够长期影响的话,那么有可能。它对于整个市场来讲,也是一个长期会关注的这样的一个方向,比如说元宇宙,说实话元宇宙一两年前出来的时候,我自己真的没当回事,原因也很简单,因为大家经常说的原因,之后想到这部电影嘛,对吧,就戴上眼镜之后笑对,然后你就进入到了一个虚拟的世界,但是我们都知道,其实现在你要实现这些东西还是一样的,首先你的硬件条件支不支持,对吧,现在我们真的3D的这一种眼镜也好,或者说这种沉浸式的这些设备也好,其实到目前为止的话,并还没有达到那样子的一个技术水平,所以这个时候你把这个原宇宙的东西炒的再热,其实到最后呢,对很多人来讲的话,似乎就有一种感觉,这就是一个让你可以更好打游戏的这样一个。一个概念,这种感觉,当然你可以把它演,可以去演绎更多,但是至少你会觉得你如果真正要实现,似乎不是那么短期能够实现的事情,对,但这面的AI似乎有点不一样,刚才肖总举的例子是说,呃,一零年到一五年对吧,这个周期中间的移动互联网,移动互联网对我们生活的改变确实是太大了哈,我印象最深的就是什么呢?在微信出来之前,在移动互联网出来之前,我家里就是我的爸妈,基本上当时还要在台式机上面每天对吧,然后上网看看东西,然后打打牌,但是现在的话,我家里面已经没有台式机了,连笔记本电脑都没有,然后两个老人家的话,一人一台手机,人一台ipad,然后所有东西全部都可以搞定,对吧,这就是生活的这个状态已经完全的变了,变了所以他就是一个长期的一个事情,那同样的AI这轮的跳的GBT出来,尤其是之前的几次直播,我跟大家讲过,为什么会很期待那个office的那个新的。为什么?因为他能够解决的问题就是平时我在工作中间最耗我时间,但是对于我来讲的话是最痛苦的。因为那些东西似乎。他更多的是一个锦上添花,他没有办法去替他,没有办法让我能够以最简单的时间把这些简单的东西给一次性把它处理掉,那么现在它是可以的,那如果这个出来之后,我觉得哈,其实大家对于整个AI的这一个重视度起来应该也是差GBD4.0对吧,GPD的4.0报警出来之后,似乎大家就已经完全不一样了,因此哈,大家。一定记得肖总所说,所说的就是当这种科技热点出来的时候。想一想它对于我们生活的影响,对于未来可能造成的影响,到底会去到怎样的一个程度,如果你认为它是一个比较大的影响,这样的一个变化,那么也许市场对于它的这个定位也会不一样,所以呢,相比于追求短期的热点哈,那您觉得。科技投资应该贯彻落实的这个投资纪律或者长期逻辑,嗯。应该是什么,有没有这样子的一些,呃纪律可以提供给大家的,就是做一个以后大家做这方面的投资的话,在脑海中间时不时可以想起来这一句话对不对,然后来提醒他们,你怎么看明白,其实呃,我也有句话吧,我自己在思考的问题对吧,就是我觉得这个科技股投资啊,我们其实刚刚说了,第一步就是在这个技术刚出现的时候,判断一下它的强度,他如果是我们判断是一个比较高强度的一个主题,或者是一个创新的时候呢,我们现在要做第二步。第二步什么呢?我们就要把自己的胆子变大,先胆子要大,对,先大胆,那么为什么这么说呢?比如说我们看过去两三个月,呃,整个板块涨了很多,对吧,很多股票呢,其实这个时候并没有特别多的高频的经营数据或者业绩的支撑,它没有业绩的,它更多是一个逻辑的演绎。但是呢,这个时候的话呢,我们认为持有这些股票的话,或者是参与这个股票的话,你需要的是比较大胆,就是你要明,你要把整个市场这对AI的这种。这种热情啊,硬是到拍卖去,而不要太特别关注这个企业的基本面,那么到第三阶段的时候的话呢,我们就不需要大胆了,这个就要小心谨慎,我们就要谨慎一些,所以的话呢,就是第三阶段呢,我们需要谨慎,就是要去识别出来你们真正能够长大的企是哪些,那么第二阶段涨得最高的股票,大概率不是第三阶段,或者是整个从头到尾它最好的一些能够做成功的一些企业,历史上看的话呢,先驱往往是先列嘛,对吧,所以的话呢,我们说这个投资科技股啊,就是这么比较简单的这个三段式,嗯,第一段呢,你要先去判断它的强度,第二阶段呢,你要大胆去参与,第三阶段呢,你要小心谨慎的去去验证,那么这样的话呢,我觉得在不同阶段你有不同的方法应对的时候呢,就能够很有效的去识别。那个阶段最适合去参与一些个股或一些板块,来获取到一个整个完整的收益啊,这是我的一个个人经验分享,哎,我觉得肖总讲的这个特别好玩哈,就是第一步你得识别出来,对吧,这个东西确实是一个高强度的,然后未来有可能的,当你识别出来之后,那么你的打架大点,对,因为确实识别出来,可能大家还没有发现这个机会,或者大家还没有重视这个机会的时候,其实你是看不到什么东西的,那么这个时候呢,其实投资的风险是很大的,但是你如果确实自己相信这个方向是有机会的,那么你的胆子也得大一点,对,对吧,这个时候你不要缩手缩脚,你不要说我等他的业绩出来之后,我再去考虑,那那也许就直接到第三阶段了,对吧,就是相当于的话,他最快速上升的那个阶段,你也已经错过了,其实这一说起来之后,我觉得这也很符合一个逻辑,那就是大家去做投资,一定要做符合自己的这种投资习惯。或者。风险承受能力的投资,比如说你本身就不是一个特别激进的人,或者说你投资你就不愿意去冒太大的风险,那么这个时候我觉得可能。刚才肖总说的第二步那个投资也许就不一定适合对,不太适合对吧,你可能适合的就是这个行业已经成熟了,然后已经有一些企业慢慢的被证明它确实是长期有戏的,有可能成为这个行业的龙头,这个时候你再去投,也许这才是对的,对吧,因此还是要跟自己的这一个风险偏好,大家还是要做一个匹配。

My Worst Investment Ever Podcast
ISMS 21: CPI Collapsing Across the Globe

My Worst Investment Ever Podcast

Play Episode Listen Later Apr 23, 2023 19:11


Will the global CPI slowdown continue?Global MarketsGlobal CPI is falling fast in both DM and EMsEconomies across the world have a GDP of about US$90trn and an average CPI of 6.2%DM CPI was 5.7%EM CPI was 6.9%World CPI was 6.2%, down 0.4ppts from one year ago; MoM it was down 0.8pptsDM CPI was 5.7%, down 0.9ppts from one year ago; MoM it was down 0.8pptIt has moved from being in line with World CPI last year; to the current 0.5ppt discountEM CPI was 6.9%, which is about flat vs. one year ago; MoM it was down 0.8pptIt has moved from being in line with the World CPI last year; to the current 0.7ppt premiumDeveloped RegionsDM Americas CPI is falling fast, DM Europe is sliding, DM Asia is on a steady riseDM Americas is the largest, with US$25trn of GDP and 4.9% CPIDM Europe has US$14.9trn GDP and 7.1% CPIDM Pacific has US$7.6trn GPD and 4.7% CPIDM Americas CPI is falling fast, DM Europe is sliding, DM Asia is on a steady riseDM Americas CPI was 4.9%, down 3.4ppts from one year ago; MoM it was down 1ppts.It has moved from a 1.7ppts premium to World CPI last year; to the current 1.3ppts discountDM Europe CPI was 7.1%, up 0.9ppts from one year ago; MoM it was down 1.1ppts.It has moved from a 0.5ppts discount to World CPI last year; to the current 0.9ppts premiumDM Pacific CPI was 4.7%, up 2.4ppts from one year ago; MoM it was up 0.4ppts.It has moved from a 4.4ppts discount to World CPI last year; to the current 1.5ppts discountEmerging RegionsEM Europe and Asia CPI falling; Middle East & Africa, and Frontier markets are still on fireEM Americas had a small GDP of US$3.8trn and CPI of 7%EM Asia had a massive GDP of US$25.7trn and 1.9% CPIEM Europe had a small US$3.9trn GDP and a massive 17.7% CPIEmerging Middle East & Africa had a tiny US$1.7trn GDP and a high 11.5% CPIFrontier markets had a US$2.9trn GDP and an extremely high 31.2% CPIEM Europe and Asia CPI falling; Middle East & Africa, and Frontier markets are still on fireEM Americas CPI was 7%, down 2.4ppts from one year ago; MoM it was down 0.8ppts.It has moved from a 2.6ppts premium to World CPI last year; to the current 0.7ppts premiumEM Asia CPI was 1.9%, down 0.6ppts from one year ago; MoM it was down 0.4ppts.It has moved from a 4.1ppts discount to World CPI last year; to the current 4.3ppts discountEM Europe CPI was 17.7%, down 6.1ppts from one year ago; MoM it was down 5ppts.It has moved from a 17.1ppts premium to World CPI last year; to the current 11.4ppts premiumEM ME&A CPI was 11.5%, up 6.4ppts from one year ago; MoM it was up 0.4ppts.It has moved from a 1.5ppts discount to World CPI last year; to the current 5.3ppts premiumFrontier CPI was 31.2%, up 14.7ppts from 1yr ago; MoM up 0.3pptsIt has moved from a 9.9ppts premium to World CPI last year; to the current 25ppts premium. This region was up YoY and MoMDeveloped CountriesOnly US CPI fell YoY; all top 5 DM countries, except Japan, fell MoM; UK CPI is double the USTop five DM countriesUS GDP was US$23trn, CPI of 5.0%Japan US$4.9trn and 3.9% CPIGermany US$4.2trn and 7.5% CPIUK: US$3.2trn, 10.2%France: US$2.9trn/5.8%USA CPI was 5%, down 3.5ppts from one year ago; MoM it was down 1ppts.It has moved from a 1.8ppts premium to World CPI last year; to the current 1.2ppts...

mixxio — podcast diario de tecnología
Lanzadores y navegadores

mixxio — podcast diario de tecnología

Play Episode Listen Later Apr 17, 2023 13:17


Chrome más rápido que nunca / Lanzamiento de Starship / Windows 11 para Consolas Portátiles / Sega + Rovio / JUICE camino de Júpiter Patrocinador: En las estaciones de servicio de BP puedes conseguir un ahorro de hasta 8 céntimos por litro simplemente repostando BP Ultimate con tecnología Active. Descárgate la app Mi BP para tu Android o iPhone. — Lo mejor para tu coche y tu bolsillo.

Profits + Prosecco: The Podcast
123. Cybersecurity and Bookkeeping: A Discussion with Brent Panell, CEO of ControlAltProtect

Profits + Prosecco: The Podcast

Play Episode Listen Later Mar 20, 2023 42:40


This is going to be a very important, very educational episode, my friends. Lately, I've been getting a lot of questions about cybersecurity and what you need to invest in as a bookkeeper, but seeing as I'm not an expert in that...I decided to call one in! On today's episode, I've invited Brent Panell, CEO of ControlAltProtect, to chat with me about the importance of cybersecurity, the true level of risk bookkeepers are experiencing, and why we need to get serious about cybersecurity. You may think your business is too small to be a target for hackers…but unfortunately, you're wrong. Here's what you need to know about cybersecurity as a bookkeeper…and where you can go to protect yourself!   CONNECT WITH BRENT: Email: brent@controlaltprotect.com Instagram: @controlaltprotect Website: www.controlaltprotect.com   RESOURCES: Next Generation Antivirus Recommendations: Malwarebytes: https://try.malwarebytes.com/get-premium/?gclid=EAIaIQobChMIoPWArp3k_QIVuPbjBx1fXQNqEAAYASAAEgKdpvD_BwE Sophos Intercept X: https://www.sophos.com/fr-fr/products/endpoint-antivirus?&cmp=85160&utm_campaign=GPD-2020-Americas-NA-Paid-Search-Google-FR-SCH-B_Product_Intercept-X-DG-85160&utm_medium=cpc&utm_content=B_Product_Intercept-X&utm_term=sophos+intercept+x&utm_source=google&gclid=EAIaIQobChMIwvrFv53k_QIVdcmUCR3LcgYJEAAYASAAEgInYfD_BwE&gclsrc=aw.ds  SentinelOne Complete: https://www.sentinelone.com/?utm_content=demo-request&utm_medium=paid-search&utm_source=google-paid&utm_campaign=brand-nam-cl-s1-dg-nam-us-en-g-s&utm_term=sentinelone%20products&utm_campaignid=11854731743&utm_adgroup=126719497094&utm_target=kwd-942617628410&utm_device=c&utm_type=e&utm_creative=635524101042&utm_network=g&utm_location=9016854&utm_adposition=&utm_aceid=&utm_adgroupname=features_products&gclid=EAIaIQobChMI6_PN3p3k_QIVJMmUCR1P0wplEAAYASAAEgI4CfD_BwE  Multi-factor Authentication Recommendations: https://1password.com/business-pricing/?utm_source=google&utm_medium=cpc&utm_campaign=10693428634&utm_content=619020627507&utm_term=1password&gclid=EAIaIQobChMI77GZ-J3k_QIVGEeRBR0m-Q6xEAAYASAAEgJfyfD_BwE&gclsrc=aw.ds  Cyber Insurance Recommendations: Travelers: https://www.travelers.com/resources/business-topics/cyber-security   File Sharing Recommendations:  Citrix: https://www.citrix.com/    WORK WITH KATIE: Learn how to take your bookkeeping skills and turn them into a business that allows you to replace (or surpass) your corporate salary, be present for your life, and profoundly impact your clients without selling your life in the process by joining Life by the Books (LIBBY). If you're looking for more tips for bookkeeping, insight on how to become a bookkeeper, and how to say hello to a more confident business model, enroll in Become A Bookkeeper (BABs).  To learn about the programs and get a peek behind the curtain, head to www.katieferro.com/6-secrets. If you have enjoyed this episode, head on over to Instagram, share your IG stories, and tag me: @orderlyaccountingbykatie   CONNECT WITH KATIE: Website: https://www.katieferro.com/

Linux Action News
Linux Action News 282

Linux Action News

Play Episode Listen Later Mar 2, 2023 19:32


FFmpeg gets new superpowers, Plasma's switch to Qt6 gets official; what you need to know. Plus we round up the top features coming to Linux 6.3.

It's a New Day with Rip Daniels
850: It's a New Day: 2-1-23 Jaheim McMillan 16th Birthday

It's a New Day with Rip Daniels

Play Episode Listen Later Feb 1, 2023 147:25


As the family of Tyre Nichols prepares to lay him to rest in Memphis, TN following his death as a result of a beating by 5 MPD officers, the family of Jaheim McMillan prepares to celebrate what would have been his 16th birthday in Gulfport, MS following his death as a result of being shot but a GPD officer and the plight of the black nuclear family is discussed after a chatroom discussion on mean leaving the country to find wives. 

Salesy: Boosting Sales & Scaling Your Online Business with Meghan Lamle
Awkward Encounters: Hilarious Tale of When My EX future Mother-in-Law Discovered My GPD

Salesy: Boosting Sales & Scaling Your Online Business with Meghan Lamle

Play Episode Listen Later Jan 16, 2023 9:50


This infamous story about the GPD - the full debrief around what it is, how I found out and WHY this story has created such an impact in my business

Business Matters
Musk is Twitter's new CEO

Business Matters

Play Episode Listen Later Oct 28, 2022 50:39


It's official. Elon Musk has closed his deal to buy social media platform Twitter after six months of negotiations. Hear the moment it was announced live on the BBC's Business Matters. Elsewhere in the programme: unexpected GPD in the US growth has exceeded analysts' expectations. It's one of the last major economic readings before US midterm elections next month. But many believe the US is still on track for a slowdown next year. In the most recent quarter, a surge in exports helped drive growth. We talk about Shell, who just reported profits of $9.5 billion between July and September - more than double that of the same period last year. And we will discuss the most expensive football World Cup ever which will be hosted by Qatar - the first Middle East nation to host such event. (Picture: A screengrab of Elon Musk's Twitter profile page. Credit: @elonmusk, Twitter.)

VOTEHER Podcast with Jen Jordan and Mara Davis

We break down how reproductive rights are economic.  Also, a chat with GPB's Donna Lowry about her career and what it was like to moderate the gubernatorial debates.See omnystudio.com/listener for privacy information.

LinuxGameCast Weekly
Linux Game Cast 527: Big Data Mateus

LinuxGameCast Weekly

Play Episode Listen Later Sep 25, 2022 83:55


Proton Experimental enables nvapi for a gang of new games, GPD announces their Steam Deck competitor, Steam introduces real-time charts, NVIDIA 40 series priced for miners, and navigating the Epic Store on Linux.

Tom Sullivan Show
Tom Sullivan Show, July 28th, Hour 1

Tom Sullivan Show

Play Episode Listen Later Jul 28, 2022 37:48


GPD sees it's second consecutive negative report, what many economists the definition of a recession.

Off the Cuff(s)
Lieutenant Dale Mills: Internal Affairs

Off the Cuff(s)

Play Episode Play 16 sec Highlight Listen Later Jun 29, 2022 49:13


Meet the man behind the "complaint department" at GPD. Lieutenant Mills is a 21-year veteran of the Greenville Police Department and one of the most engaging story tellers you will ever meet. He discusses his new role as the Internal Affairs Investigator, and shares the experiences and lessons that made him into the officer he is today. 

The Rate Guy
3.25% Is The Critical 10T Level

The Rate Guy

Play Episode Listen Later Apr 25, 2022 17:43


On this episode of The Rate Guy Podcast we discuss GPD, inflation data, and the 10T number that you need to be paying attention to and why.