POPULARITY
In this episode of Speaking of Mol Bio, Dr. Cath Moore of the Australian Genome Research Facility (AGRF) discusses how molecular biology technologies are helping to shape Australia's scientific landscape—from clinical genomics and conservation to bioremediation and agriculture. With over 20 years of experience in both academia and industry, Dr. Moore reflects on the remarkable evolution of genomic tools, from Sanger sequencing to high-resolution spatial multiomics.She unpacks AGRF's mission to democratize access to emerging technologies and highlights its role as an early adopter of platforms that help scientists translate academic research into real-world impact. Topics include non-mass spec proteomics, mine site rehabilitation through soil microbiome analysis, and the role of systems biology in modern science.Dr. Moore also discusses the importance of community education and literacy around genomics, emphasizing how public understanding is key to the safe adoption of emerging technologies like synthetic biology. Finally, she shares career insights and advice for aspiring scientists: stay curious, stay broad, and don't be afraid to pivot when your work no longer brings joy. Subscribe to get future episodes as they drop and if you like what you're hearing we hope you'll share a review or recommend the series to a colleague. Visit the Invitrogen School of Molecular Biology to access helpful molecular biology resources and educational content, and please share this resource with anyone you know working in molecular biology. For Research Use Only. Not for use in diagnostic procedures.
When I think of digital biology, I think of Patrick Hsu—he's the prototype, a rarified talent in both life and computer science, who recently led the team that discovered bridge RNAs, what may be considered CRISPR 3.0 for genome editing, and is building new generative A.I. models for life science. You might call them LLLMs-large language of life models. He is Co-Founder and a Core Investigator of the Arc Institute and Assistant Professor of Bioengineering and Deb Faculty Fellow at the University of California, Berkeley.Above is a brief snippet of our conversation. Full videos of all Ground Truths podcasts can be seen on YouTube here. The audios are also available on Apple and Spotify.Here's the transcript with links to the audio and external links to relevant papers and things we discussed.Eric Topol (00:06):Well hello, it's Eric Topol with Ground Truths and I'm really delighted to have with me today Patrick Hsu. Patrick is a co-founder and core investigator at the Arc Institute and he is also on the faculty at the University of California Berkeley. And he has been lighting things up in the world of genome editing and AI and we have a lot to talk about. So welcome, Patrick.Patrick Hsu (00:29):Thanks so much. I'm looking forward to it. Appreciate you having me on, Eric.The Arc InstituteEric Topol (00:33):Well, the first thing I'd like to get into, because you're into so many important things, but one that stands out of course is this Arc Institute with Patrick Collison who I guess if you can tell us a bit about how you two young guys got to meet and developed something that's really quite unique that I think brings together investigators at Stanford, UCSF, and Berkeley. Is that right? So maybe you can give us the skinny about you and Patrick and how all this got going.Patrick Hsu (01:05):Yeah, sure. That sounds great. So we started Arc with Patrick C and with Silvana Konermann, a longtime colleague and chemistry faculty at Stanford about three years ago now, though we've been physically operational just over two years and we're an independent research institute working at the interface of biomedical science and machine learning. And we have a few different aspects of our model, but our overall mission is to understand and treat complex human diseases. And we have three pillars to our model. We have this PI driven side of the house where we centrally fund our investigators so that they don't have to write grants and work on their very best ideas. We have a technical staff side of the house more like you'd see in a frontier AI lab or in biotech industry where we have professional teams of R&D scientists working cross-functionally on higher level organizational wide goals that we call our institute initiatives.(02:05):One focused on Alzheimer's disease experimentally and one that we call a virtual cell initiative to simulate human biology with AI foundation models. And our third pillar over time is to have things not just end up as academic papers, but really get things out into the real world as products or as medicines that can actually help patients on the translational side. And so, we thought that some really important scientific programs could be unlocked by enabling new organizational models and we are experimenting at the institutional scale with how we can better organize and incentivize and support scientists to reach these long-term capability breakthroughs.Patrick, Patrick and SilvanaEric Topol (02:52):So the two Patrick's. How did you, one Patrick I guess is a multi-billionaire from Stripe and then there's you who I suspect maybe not quite as wealthy as the other Patrick, how did you guys come together to do this extraordinary thing?Patrick Hsu (03:08):Yeah, no, science is certainly expensive. I met Patrick originally through Silvana actually. They actually met, so funny trivia, all three Arc founders did high school science together. Patrick and Silvana originally met in the European version of the European Young Scientist competition in high school. And Silvana and I met during our PhDs in her case at MIT and I was at Harvard, but we met at the Broad Institute sort of also a collaborative Harvard, MIT and Harvard hospitals Institute based in Kendall Square. And so, we sort of in various pairwise combinations known each other for decades and worked together for decades and have all collectively been really excited about science and technology and its potential to accelerate societal progress. Yet we also felt in our own ways that despite a lot of the tremendous progress, the structures in which we do this work, fund it, incentivize it and roll it out into the real world, seems like it's really possible that we'll undershoot that potential. And if you take 15 years ago, we didn't have the modern transformer that launched the current AI revolution, CRISPR technology, single-cell, mRNA technology or broadly addressable LNPs. That's a tremendous amount of technologies have developed in the next 15 years. We think there's a real unique opportunity for new institutes in the 2020s to take advantage of all of these breakthroughs and the new ones that are coming to continue to accelerate biological progress but do so in a way that's fast and flexible and really focused.Eric Topol (04:58):Yeah, I did want to talk with you a bit. First of all before I get to the next related topic, I get a kick out of you saying you've worked or known each other for decades because I think you're only in your early thirties. Is that right?Patrick Hsu (05:14):I was lucky to get an early start. I first started doing research at the local university when I was 14 actually, and I was homeschooled actually until college. And so, one of the funny things that you got to do when you're homeschooled is well, you could do whatever you want. And in my case that was work in the lab. And so, I actually worked basically full time as an intern volunteer, cut my teeth in single cell patch clamp, molecular biology, protein biochemistry, two photon and focal imaging and kind of spiraled from there. I loved the lab, I loved doing bench work. It was much more exciting to me than programming computers, which was what I was doing at the time. And I think these sort of two loves have kind of brought me and us to where we are today.Eric Topol (06:07):Before you got to Berkeley and Arc, I know you were at Broad Institute, but did you also pick up formal training in computer science and AI or is that something that was just part of the flow?Patrick Hsu (06:24):So I grew up coding. I used to work through problems sets before dinner growing up. And so, it's just something that you kind of learn natively just like learning French or Mandarin.New Models of Funding Life ScienceEric Topol (06:42):That's what I figured. Okay. Now this model of Arc Institute came along in a kind of similar timeframe as the Arena BioWorks in Boston, where some of the faculty left to go to Arena like my friend Stuart Schreiber and many others. And then of course Priscilla and Mark formed the Chan Zuckerberg Institute and its biohub and its support. So can you contrast for one, these three different models because they're both very different than of course the traditional NIH pathway, how Arc is similar or different to the others, and obviously the goal here is accelerating things that are going to really make a difference.Patrick Hsu (07:26):Yeah, the first thing I would say is zooming out. There have been lots of efforts to experiment with how we do science, the practice of science itself. And in fact, I've recently been reading this book, the Demon Under the Microscope about the history of infectious disease, and it talks about how in the 1910s through the 1930s, these German industrial dye manufacturing companies like Bayer and BASF actually launched what became essentially an early model for industrial scale science, where they were trying to develop Prontosil, Salvarsan and some of these early anti-infectives that targeted streptococcus. And these were some of the major breakthroughs that led to huge medical advances on tackling infectious disease compared to the more academic university bound model. So these trends of industrial versus academic labs and different structures to optimize breakthroughs and applications has been a through current throughout international science for the last century.(08:38):And so, the way that we do research today, and that's some of our core tenets at Arc is basically it hasn't always been this way. It doesn't need to necessarily be this way. And so, I think organizational experiments should really matter. And so, there's CZI, Altos, Arena, Calico, a variety of other organizational experiments and similarly we had MRC and Bell Labs and Xerox PARCS, NIBRT, GNF, Google Research, and so on. And so, I think there are lots of different ways that you can organize folks. I think at a high level you can think about ways that you can play with for-profit versus nonprofit structures. Whether you want to be a completely independent organization or if you want to be partnered with universities. If you want to be doing application driven science or really blue sky curiosity driven work. And I think also thinking through internally the types of expertise that you bring together.(09:42):You can think of it like a cancer institute maybe as a very vertically integrated model. You have folks working on all kinds of different areas surrounding oncology or immunotherapy and you might call that the Tower of Babel model. The other way that folks have built institutes, you might call the lily pad model where you have coverage of as many areas of biomedical research as possible. Places like the Whitehead or Salk, it will be very broad. You'll have planned epigenetics, folks looking at RNA structural biology, people studying yeast cell cycle, folks doing in vivo melanoma models. It's very broad and I think what we try to do at Arc is think about a model that you might liken more to overlapping Viking shields where there's sort of five core areas that we're deeply investing in, in genetics and genomics, computation, neuroscience, immunology and chemical biology. Now we really think of these as five areas that are maybe the minimal critical mass that you would need to make a dent on something as complicated as complex human diseases. It's certainly not the only thing that you need, but we needed a critical mass of investigators working at least in these areas.Eric Topol (11:05):Well, yeah, and they really converge on where the hottest advances are being made these days. Now can you work at Arc Institute without being one of these three universities or is it really that you maintain your faculty and your part of this other entity?Patrick Hsu (11:24):So we have a few elements to even just the academic side of the house. We have our core investigators. I'm one of them, where we have dually appointed faculty who retain their latter rank or tenured appointment in their home department, but their labs are physically cited at the Arc headquarters where we built out a lab in Stanford Research Park in Palo Alto. And so, folks move their labs there. They continue to train graduate students based on whatever graduate programs they're formally affiliated with through their university affiliation. And so, we have nearly 40 PhD students across our labs that are training on site every day.(12:03):So in addition to our core investigators, we also have what we call our innovation investigators, which is more of a grant program to faculty at our partner universities. They receive unrestricted funding from us to seed a new project or accelerate an existing area in their group and their labs stay at their home campus and they just get that funding to augment their work. The third way is our technical staff model where folks basically just come work at Arc and many of them also are establishing their own research groups focusing on technology R&D areas. And so, we have five of those technology centers working in molecular engineering, multi-omics, complex cellular models, in vivo models, and in machine learning.Discovery of Bridge RNAsEric Topol (12:54):Yeah, that's a great structure. In fact, just a few months ago, Patrick Collison, the other Patrick came to Stanford HAI where I'm on the board and you've summarized it really well and it's very different than the other models and other entities, companies included that you mentioned. It's really very impressive. Now speaking of impressive on June 26, this past few months ago, which incidentally is coincident with the draft genome in the year 2000, the human sequence. You and your colleagues, perhaps the most impressive jump in terms of an Arc Institute contribution published two papers back-to-back in Nature about bridge RNA: [Bridge RNAs direct programmable recombination of target and donor DNA] and [Structural mechanism of bridge RNA-guided recombination.] And before I get you to describe this breakthrough in genome editing, some would call it genome editing 3.0 or CRISPR 3.0, whatever. But what we have today in the clinic with the approval of CRISPR 1.0 for sickle cell and thalassemia is actually quite crude. I think most people will know it's just a double stranded DNA cleavage with all sorts of issues about repair and it's not very precise. And so, CRISPR 2.0 is supposed to be represented by David Liu's contributions and his efforts at Broad like prime and base editing and then comes yours. So maybe you can tell us about it and how it is has to be viewed as quite an important advance.Patrick Hsu (14:39):The first thing I would say before CRISPR, is that we had RNA interference. And so, even before this modern genome editing revolution with programmable CRISPRs, we had this technology that had a lot of the core selling points as well. Any target will now become druggable to us. We simply need to reprogram a guide RNA and we can get genetic access to things that are intracellular. And I think both the discovery of RNA interference by Craig Mello and Andy Fire or the invention or discovery of programmable CRISPR technologies, both depend on the same fundamental biological mechanism. These non-coding guide RNAs that are essentially a short RNA search string that you can easily reprogram to retarget a desired enzyme function, and natively both RNAi and CRISPR are molecular scissors. Their RNA or DNA nucleases that can be reprogrammed to different regions of the genome or the transcriptome to make a cut.(15:48):And as bioengineers, we have come up with all kinds of creative ways to leverage the ability to make site specific cuts to do all kinds of incredible things including genome editing or beyond transcriptional up or down regulation, molecular imaging and so on and so forth. And so, the first thing that we started thinking about in our lab was, why would mother nature have stopped only RNAi and CRISPR? There probably are lots of other non-coding RNAs out there that might be able to be programmable and if they did exist, they probably also do more complicated and interesting things than just guide a molecular scissors. So that was sort of the first core kind of intuition that we had. The second intuition that we had on the technology side, I was just wearing my biology hat, I'll put on my technology hat, is the thing that we call genome editing today hardly involves the genome.(16:50):It's really you're making a cut to change an individual base or an individual gene or locus. So really you're doing small scale single locus editing, so you might call it gene level or locus level cuts. And what you really want to be able to do is do things at the genome scale at 100 kb, a megabase at the chromosome scale. And I think that's where I think the field will inevitably go if you follow the technology curves of longer and longer range gene sequencing, longer and longer range gene synthesis, and then longer and longer range gene editing. And so, what would that look like? And we started thinking, could there be essentially recombination technologies that allow you to do cut and paste in a single step. Now, the reason for that is the way that we do gene editing today involves a cut and then a multi-step process of cellular DNA repair that resolves the cut to make the exertion or the error prone deletion or the modification that ends up happening.(17:59):And so, it's very complicated and whether that's nucleases or base or prime editing, you're all generally limited to the small-scale single locus changes. However, there are natural mechanisms that have solved this cut and paste problem, right? There are these viruses or bacterial versions of viruses known as phage that have generally been trying to exert their multi kilobase genomes into bacterial hosts and specialize throughout billions of years. So our core thought was, well, if there are these new non-coding RNAs, what kind of functions would we be excited about? Can we look in these mobile genetic elements, these so-called jumping genes for new mechanisms? They're incredibly widespread. Transposons are thought to be some of the most diverse enzyme mechanisms found in nature. And so, we started computationally by asking ourselves a very simple question. If a mobile element inserts itself into foreign DNA and it's able to somehow be programmable, presumably the inside or something encoded in the inside of the element is predictive of some sequence on the outside of the element.(19:15):And so, that was the core insight we took, and we thought let's look across the boundaries of many different mobile genetic elements and we zoomed in on a particular sub family of these MGE known as insertion sequence (IS) elements which are the most autonomous minimal transposons. Normally transposons have all kinds of genes that they use to hitchhike around the genomic galaxy and endow the bacterial host with some fitness advantage like some ability to metabolize some copper and some host or some metal. And these IS elements have only the enzymes that they need to jump around. And if you identify the boundaries of these using modern computational methods, this is actually a really non-trivial problem. But if you solve that problem to figure out with nucleotide resolution where the element boundaries end and then you look for the open reading frame of the transposases enzyme inside of this element, you'll find that it's not just that coding sequence.(20:19):There are also these non-coding flanks inside of the element boundaries. And when we looked across the non-coding, the entire IS family tree, there are hundreds of these different types of elements. We found that this particular family IS110, had the longest non-coding ends of all IS elements. And we started doing experiments in the lab to try to figure out how these work. And what we found was that these elements are cut and paste elements, so they excise themselves into a circular form and paste themselves back in into a target site linearly. But the circularization of this element brings together two distal ends together, which brings together a -35 and a -10 box that create and reconstitute a canonical bacterial transcriptional promoter. This essentially is like plugging a plug into an electrical socket in the wall and it jacks up transcription. Now you would think this transcription would turn on the transposase enzyme so it can jump around more but it transcribes a non-coding RNA out of this non-coding end.(21:30):We're like, holy crap, are these RNAs actually involved in regulating the transposon? Now the boring answer would be, oh, it regulates the expression. It's like an antisense regulate or something. The exciting answer would be, oh, it's a new type of guide RNA and you found an RNA guided integrase. So we started zooming in bound dramatically on this and we undertook a covariation analysis where we were able to show that this cryptic non-coding RNA has a totally novel guide RNA structure, totally distinct from RNAi or CRISPR guide RNAs. And it had a target site that covaried with the target site of the element. And so we're like, oh wow, this could be a programmable transposase. The second thing that we found was even more surprising, there was a second region of complementarity in that same RNA that recognized the donor sequence, which is the circularized element itself. And so, this was the first example of a bispecific guide RNA, and also the first example of RNA guided self-recognition by a mobile genetic element.Eric Topol (22:39):It's pretty extraordinary because basically you did a systematic assessment of jumping genes or transposons and you found that they contain things that previously were not at all recognized. And then you have a way to program these to edit, change the genome without having to do any cuts or nicks, right?Patrick Hsu (23:05):Yeah. So what we showed in a test tube is when we took this, so-called bridge RNA, which we named because it bridges the target and donor together along with the recombinase enzyme. So the two component system, those are the only two things that you need. They're able to cut and paste DNA and recombine them in a test tube without any DNA repair, meaning that it's independent of cellular DNA repair and it does strand nicking, exchange, junction resolution and religation all in a single mechanism. So that's when we got super excited about its potential applications as bioengineering tool.Eric Topol (23:46):Yeah, it's pretty extraordinary. And have you already gone into in vivo assessment?Patrick Hsu (23:54):Yes, in our initial set of papers, what we showed is that these are programmable and functional or recombinases in a test tube and in bacterial cells. And by reprogramming the target and donor the right way, you can use these enzymes not just for insertion, but also for flipping and cutting out DNA. And so, we actually have in a single mechanism the ability to do bridge editing, if you will, for universal DNA recombination, insertion, excision or inversion, similar to what folks have been doing for decades with Cre recombinase, but with fully programmable recognition sequences. The work that we're doing now in the lab as you can imagine is to adapt these into robust tools for mammalian genome editing, including of course, human genomes. We're excited about this, we're making good progress. The CRISPR has had thousands of labs over the last 10, 15 years working on it to make these therapeutic level potency and selectivity. We're going to work and follow that same blueprint for getting bridge systems to get to that level of performance, but we're on the path and we're very optimistic for the future.Exemplar of Digital BiologyEric Topol (25:13):Yeah, I think it's quite extraordinary and it's a whole different look to what we've been seeing in the CRISPR era for over the past decade and how that's been advancing and getting more specific and less need for repair and being able to be more versatile. But this takes it to yet another dimension. Now, this brings me to the field that when I think of this term digital biology, I think of you and now our mutual acquaintance, Jensen Huang, who everybody knows now. Back some months ago, he wrote and said at a conference, “Where do I think the next amazing revolution is going to come? And this is going to be flat out one of the biggest ones ever. There's no question that digital biology is going to be it. For the first time in human history, biology has the opportunity to be engineering, not science.” So can you critique Jensen? Is he right? And tell us how you conceive the field of digital biology.Patrick Hsu (26:20):If you look at gene therapy today, the core concepts are actually remarkably simple. They're elegant. Of course, you're missing a broken gene, you need to put it back. And that can be curative. Very simple, powerful concept. However, for complex diseases where you don't have just a single gene that goes wrong, in many cases we actually have no idea what to do. And in fact, when you're trying to put in DNA, that's over more than a gene scale. We kind of very quickly run out of ideas. Is it a CAR and a cytokine, a CAR and a cytokine and another thing? And then we're kind of out of ideas. And so, we started thinking in the lab, how can we actually design genomes where it's not just let's reduce the genome into individual Lego blocks, iGem style with promoters and different genes that we just sort of shuffle the Lego blocks around, but actually use AI to design genome sequences.(27:29):So to do that, we thought we would have to first of all, train a model that can learn and decode the foreign language of biology and use that in order to design sequences. And so, we sort of have been training DNA foundation models and virtual cell models at Arc, sort of a major effort of ours where the first thing that we tried was to take a variance of transformer architecture that's used to train ChatGPT from OpenAI, but instead apply this to study the next DNA token, right? Now, the interesting thing about next token prediction in English is that you can actually learn a surprising amount of information by just predicting the next word. You can learn world knowledge is the capital of Azerbaijan, is it Baku or is it London, right? Or if you're walking around in the kitchen, then the next text is, I then left the kitchen or the bathroom, right?(28:33):Now you're learning about spatial reasoning, and so you can also learn translation obviously. And so similarly, I think predicting the next token or the next base and DNA can lead you to learn about molecular biochemistry, is the next amino acid residue, hydrophobic or hydrophilic. And it can teach you about the mechanics of some catalytic binding pocket or something. You can learn about a disease mutation. Is the next base, the sick linked base or the wild type base and so on and so forth. And what we found was that at massive scale, DNA foundation models learn about molecular function, not just at the DNA level, but also at the RNA and the protein. And indeed, we could use these to design molecular systems like CRISPR-Cas systems, where you have a protein and the guide RNA. It could also design new DNA transposons, and we could design sequences that look plausibly like real genomes, where we generate a megabase a million bases of continuous genome sequence. And it really looks and feels like it could be a blurry picture of something that you would actually sequence. This has been a wonderful collaboration with Brian Hie, a PI at Stanford and an Arc investigator, and we're really excited about what we've seen in this work because it promises the better performance with even more scale. And so, simply by scaling up these models, by adding in more compute, more training data or more powerful models, they're going to get sharper and sharper.New A.I. Models in Life ScienceEric Topol (30:25):Yeah. Well, this whole use of large language models for the language of life, whether it's the genome proteins and on and on, actually RNA and even cells has really taken root. And of course, this is really one of the foundations of that field of digital biology, which brings together generative AI, AI tools and trying to push forward our understanding in biology. And also, obviously what's been emphasized in drug discovery, perhaps it's been emphasized even too much because we still have a lot to learn about biology, but that gets me to these models. Like today, AlphaProteo was announced by DeepMind, as we all know, AlphaFold 1, 2, now 3. They were kind of precursors of being able to predict proteins from amino acid 3D structure. And that kind of took the field by a little bit like ChatGPT for life science, but now it's a new model all the time. So you've been working on various models and Arc Institute, how do you see this unfolding? Are we just going to have every aspect of the language of life being approached in all the different interactions? And this is going to help us get to a much more deep level of understanding.Patrick Hsu (31:56):I'll say two things. The first is a lot of models that you just described are what I would call task specific models. A model for de novo design of a binder, a model for protein structure prediction. And there are other models for protein fitness or for RNA structure prediction, et cetera, et cetera. And I think what we're going to move towards are more unifying models where there's different classes of models at different levels of scale. So we will have these atomic level models for looking at generative chemistry or ligand docking. We have models that can unify genomes and their molecules, and then we have models that can unify cells and tissues. And so, for example, if you took an H&E stain of some liver, there are folks building models where you can then predict what the single cell spatial transcriptome will look like of that model. And that's obviously operating at a very different level of abstraction than a de novo protein binder. But in the long run, all of these are going to get, I think unified. I think the reason why this is possible is that biology, unlike physics, actually has this unifying theory of evolution that runs across all of its length scales from atomic, molecular, cellular, organismal to entire ecosystem. And the promise of these models is no short then to make biology a predictive discipline.Patrick Hsu (33:37):In physics, the experimentalists win the big prizes for the theorists when they measure gravitational waves or whatever. But in biology, we're very practical people. You do something three times and do a T-test. And I think my prediction is we can actually gauge the success of these LLMs or whatever in biology by how much we respect theory in this field.The A.I. ScientistEric Topol (34:05):Yeah. Well, that's a really interesting perspective, an important perspective because the proliferation of models, which we're going to get into not just doing the things that you described, but also being able to be “pseudo” scientists, the so-called AI scientist. Maybe you could comment about that concept because that's been the idea that everything from the question that could be asked to the hypothesis and the experiment design and the analysis of data and then the feedback. So what is the role of the scientists, that seems to have been overplayed? And maybe you can put that in context.Patrick Hsu (34:48):So yeah, right now there's a lot of excitement that we can use AI agents not just to do software enterprise workflows, but to be a research assistant. And then over time, itself an autonomous research scientist that can read the literature, come up with an idea, maybe run a bunch of robots in the lab or do a bunch of computational analyses and then potentially even analyze data, conclude what is going on and actually write an entire paper. Now, I think the vision of this is compelling in the long term. I think the question is really about timescale. If you break down the scientific method into its constituent parts, like hypothesis generation, doing an experiment, analyzing experiment and iterating, we're clearly going to use AI of some kind at every single step of this cycle. I think different steps will require different levels of maturity. The way that I would liken this is just wet lab automation, folks have dreamed about having pipetting robots that just do their western blots and do their cell culture for them for generations.(36:01):But of course, today they don't actually really feel fundamentally different from the same ones that we had in the 90s, let's say. Right? And so, obviously they're getting better, but it seems to me one of the trends I'm very bullish about is the explosion of humanoid robots and robot foundation models that have a world model and a sense of physics and proportionate space loaded onto them. Within five years, we're going to have home robots that can fold your clothes, that can organize your kitchen and do all of this while you're sleeping, so you wake up to a clean home every day.Eric Topol (36:40):It's not going to be just Roomba anymore. There's going to be a lot more, but it isn't just the hardware, it's also the agents playing in software, right?Patrick Hsu (36:50):It's the integrated loop of the hardware and the software where the ability to make the same machine generally intelligent will make it adaptable to a broad array of tasks. Now, what I'm excited about is those generally intelligent humanoid robots coming into the lab, where instead of creating a centrifuge or a new type of pipetter that's optimized for your Beckman or Hamilton device, instead you just have robot arms that you snap onto the edge of the bench and then they just work alongside you. And I do think that's coming, although it'll take a lot of hardware and software and computer vision engineering to make that possible.A Sense of HumorEric Topol (37:32):Yeah, and I think also going back to originating the question, there still is quite a debate about the creativity and the lack of any simulation of AGI, whatever that means anymore. And so, the human in the loop part of this is obviously I think it's still of critical nature. Now, the other thing I learned about you is you have a great sense of humor, which is really important by the way. And recently, which is great that you're active on X or Twitter because that's one way we get to see what you're thinking on a day-to-day basis. But I think you put out a poll which was really quite provocative , and it was about, here's what it said, “do more people in the world *truly* understand transformers or health insurance?” And interestingly, you got 49% for transformers at 51% for health insurance. Can you tell us what you're thinking when you put that poll together? Because obviously a lot of people don't understand either of these.Patrick Hsu (38:44):I think the core question is, there are different ways of looking at the world, some of which are very bottom up and some of which are very top down. And one of the very surprising things about transformers is they're taking something that is in principle, an incredibly simple task, which is if you have a string of text, what is the next letter? And somehow at massive, massive scale, you can unlock something that looks an awful lot like reasoning, and you've got these emergent behaviors. Now the bottoms up theory of just the linear algebra that's going on in these models couldn't possibly really help us predict that we have these emerging capabilities. And I think similarly in healthcare, there's a literal set of parts that are operating in some complex way that at massive scale becomes this incredibly confusing and dynamic system for how we can actually incentivize how we make medicines, how we actually take care of people, and how we actually pay for any of this from an economic point of view. And so, I think it was, in some sense if transformers can actually be an explainable by just linear algebra equations, maybe there will be a way to decompose the seemingly incredibly confusing world of healthcare in order to actually build a better way forward.Computing Power and the GPU Arms RaceEric Topol (40:12):Yeah. Well that's great. Now the other thing I wanted to ask you about, we open source and the arms race of GPUs and this whole kind of idea is you touched on the need for coalescing a lot of these tools to exploit the synergy. But we have an issue because many academic labs like here at Scripps Research and so many others, including as I learned even at Stanford, have limited access to GPUs. So computing power of large language models is a problem. And then the models that exist today that can be adopted like Llama or others, and they're somewhat limited. And then we also have a movement towards trying to make things more open source, like for example, recently OpenCRISPR with Profluent Bio that is basically trying to use AI for CRISPR guides. And so, how do you deal with this arms race, computing power, open source, proprietary models that are not easily accessible without a lot of resources?Patrick Hsu (41:30):So the first thing I would say is, we are in the academic science sphere really unprepared for the level of resources that are required for doing this type of cutting edge computational work. There are top Stanford computer science professors or computational researchers who have a single GPU in their office, and that's actually what their whole lab runs off of.(41:58):The UC Berkeley campus, the grid runs on something like 12 megawatts of power and how are they going to build an on-premises GPU clusters, like a central question that can scale across the entire needs? And these are two of the top computer science universities in the world. And so, I think one of our kind of core beliefs at Arc is, as science both experimentally and computationally has gotten incredibly complex, not just in terms of conceptually, but also just the actual infrastructure and machines and know-how that you need to do things. We actually need to essentially support this. So we have a private GPU cloud that we use to train our models, and we have access to significantly large clusters for large burst kind of train outs as necessary. And I think infrastructurally for running genomics experiments or doing scalable brain organoid screens, right, we're also building out the infrastructure to support that experimentally.Eric Topol (43:01):Yeah, no, I think this is one of the advantages of the new model like the Arc Institute because not many centers have that type of plasticity with access to computing power when needed. So that's where a brilliant mind you and the Arc Institute together makes for a formidable recipe for future advances and of course building on the ones you've already accomplished.The Primacy of Human TalentPatrick Hsu (43:35):I would just say, my main skill, if I have one, is to recruit really, really smart people. And so, everything that you're seeing and hearing about is the work of unbelievable colleagues who are curious, passionate, and incredible scientists.Eric Topol (43:53):But it also takes the person who can judge those who are in that category set as a role model. And you're certainly doing that. I guess just in closing, I mean, it's just such a delight to get to meet you here and kind of get your thoughts on what is the hottest thing in life science without question, which brings together the fields of AI and what's going on, not just obviously in genome editing, but this digital biology era that we're still in the early phases of, I mean, I think you could say that it's just going to continue to accelerate the exponential curve. We're still kind of on the bottom of that, I would imagine where we're headed. Any other things that you want to bring up that I haven't touched on that will round out this conversation?Patrick Hsu (44:50):I mean, I think it's very early days here at Arc.Patrick Hsu (44:53):When we founded Arc, we asked ourselves, how do we measure success? We don't have customers or revenue in the way that a typical startup does. And we felt sort of three things. The first was research institutes live and die by their talent. Can we actually hire incredible people when we make offers to people we want to come, do they come? The second was, when those folks do come to Arc, do they feel like they're able to work on important research programs that they couldn't do sort of at their prior university or company? And then longer term, the third thing was, and there's just no shortcut around this, you need to do important work. And I think we've been really excited that there are early signs that we're able to do all three of these things, and we're still, again, just following the same scaling laws that we're seeing in natural language and vision, but for the domain of biology. And so, we're excited about what's ahead and think if there are folks who are interested in learning more about Arc, just shoot me an email or DM.Eric Topol (46:07):Yeah, well I would just say, congratulations on what you've already achieved. I know you're going to keep rocking it because you already have in a short time. And for anybody who doesn't know about Arc Institute and your work and your team, I hope this is going to be putting them on notice actually what can be accomplished outside of the usual NIH funded model, which is kind of a risk-free zone where you basically have to have your results nailed down before you send in your proposal frequently, and it doesn't do great things for young people. Really, I think you actually qualify in that demographic where it's hard for them to break in for getting NIH grants and also for this type of work that you're doing. So we'll look for the next bridge beyond bridge RNAs of your just fantastic efforts. So Patrick, thanks so much for joining us today, and we'll be checking back with you and following all the great work that you'll be doing in the times ahead.Patrick Hsu (47:14):Thanks so much, Eric. It was such a pleasure to be here today. Appreciate the opportunity.*******************Thanks for listening, reading or watching!The Ground Truths newsletters and podcasts are all free, open-access, without ads.Please share this post/podcast with your friends and network if you found it informative!Voluntary paid subscriptions all go to support Scripps Research. Many thanks for that—they greatly help fund our summer internship programs.Thanks to my producer Jessica Nguyen and Sinjun Balabanoff for audio and video support at Scripps Research.Note: you can select preferences to receive emails about newsletters, podcasts, or all I don't want to bother you with an email for content that you're not interested in. Get full access to Ground Truths at erictopol.substack.com/subscribe
Julia Klein is a partner at March Capital, a growth-stage VC firm. Prior to this, she was the cofounder and CEO of CareerPeer. She has an MBA from Harvard.Julia's favorite books: - Brandon Sanderson's books- The Nightingale (Author: Kristin Hannah)- Crime and Punishment (Author: Fyodor Dostoevsky)- The Will of the Many (Author: James Islington)(00:00) Introduction(00:07) What Sets an AI Startup Apart(05:14) The Rise of Generative AI(08:00) AI and Digital Biology(08:38) Opportunities in Computer Vision(12:02) The Potential of Synthetic Data(13:55) Metrics and Challenges for AI Startups(19:27) Important Metrics for Growth Stage AI Startups(25:12) Exciting Technological Breakthroughs in AI(27:41) Future Opportunities for AI Founders(29:28) Rapid Fire Round--------Where to find Prateek Joshi: Newsletter: https://prateekjoshi.substack.com Website: https://prateekj.com LinkedIn: https://www.linkedin.com/in/prateek-joshi-91047b19 Twitter: https://twitter.com/prateekvjoshi
“Where do I think the next amazing revolution is going to come? … There's no question that digital biology is going to be it. For the very first time in our history, in human history, biology has the opportunity to be engineering, not science.” —Jensen Huang, NVIDIA CEOAviv Regev is one of the leading life scientists of our time. In this conversation, we cover the ongoing revolution in digital biology that has been enabled by new deep knowledge on cells, proteins and genes, and the use of generative A.I .Transcript with audio and external linksEric Topol (00:05):Hello, it's Eric Topol with Ground Truths and with me today I've really got the pleasure of welcoming Aviv Regev, who is the Executive Vice President of Research and Early Development at Genentech, having been 14 years a leader at the Broad Institute and who I view as one of the leading life scientists in the world. So Aviv, thanks so much for joining.Aviv Regev (00:33):Thank you for having me and for the very kind introduction.The Human Cell AtlasEric Topol (00:36):Well, it is no question in my view that is the truth and I wanted to have a chance to visit a few of the principal areas that you have been nurturing over many years. First of all, the Human Cell Atlas (HCA), the 37 trillion cells in our body approximately a little affected by size and gender and whatnot, but you founded the human cell atlas and maybe you can give us a little background on what you were thinking forward thinking of course when you and your colleagues initiated that big, big project.Aviv Regev (01:18):Thanks. Co-founded together with my very good friend and colleague, Sarah Teichmann, who was at the Sanger and just moved to Cambridge. I think our community at the time, which was still small at the time, really had the vision that has been playing out in the last several years, which is a huge gratification that if we had a systematic map of the cells of the body, we would be able both to understand biology better as well as to provide insight that would be meaningful in trying to diagnose and to treat disease. The basic idea behind that was that cells are the basic unit of life. They're often the first level at which you understand disease as well as in which you understand health and that in the human body, given the very large number of individual cells, 37.2 trillion give or take, and there are many different characteristics.(02:16):Even though biologists have been spending decades and centuries trying to characterize cells, they still had a haphazard view of them and that the advancing technology at the time – it was mostly single cell genomics, it was the beginnings also of spatial genomics – suggested that now there would be a systematic way, like a shared way of doing it across all cells in the human body rather than in ways that were niche and bespoke and as a result didn't unify together. I will also say, and if you go back to our old white paper, you will see some of it that we had this feeling because many of us were computational scientists by training, including both myself and Sarah Teichmann, that having a map like this, an atlas as we call it, a data set of this magnitude and scale, would really allow us to build a model to understand cells. Today, we call them foundational models or foundation models. We knew that machine learning is hungry for these kinds of data and that once you give it to machine learning, you get amazing things in return. We didn't know exactly what those things would be, and that has been playing out in front of our eyes as well in the last couple of years.Spatial OmicsEric Topol (03:30):Well, that gets us to the topic you touched on the second area I wanted to get into, which is extraordinary, which is the spatial omics, which is related to the ability to the single cell sequencing of cells and nuclei and not just RNA and DNA and methylation and chromatin. I mean, this is incredible that you can track the evolution of cancer, that the old word that we would say is a tumor is heterogeneous, is obsolete because you can map every cell. I mean, this is just changing insights about so much of disease health mechanisms, so this is one of the hottest areas of all of life science. It's an outgrowth of knowing about cells. How do you summarize this whole era of spatial omics?Aviv Regev (04:26):Yeah, so there's a beautiful sentence in the search for lost time from Marcel Proust that I'm going to mess up in paraphrasing, but it is roughly that going on new journeys is not about actually going somewhere physically but looking with new eyes and I butchered the quote completely.[See below for actual quote.] I think that is actually what single cells and then spatial genomics or spatial omics more broadly has given us. It's the ability to look at the same phenomenon that we looked at all along, be it cancer or animal development or homeostasis in the lung or the way our brain works, but having new eyes in looking and because these new eyes are not just seeing more of something we've seen before, but actually seeing things that we couldn't realize were there before. It starts with finding cells we didn't know existed, but it's also the processes that these cells undergo, the mechanisms that actually control that, the causal mechanisms that control that, and especially in the case of spatial genomics, the ways in which cells come together.(05:43):And so we often like to think about the cell because it's the unit of life, but in a multicellular organism we just as much have to think about tissues and after that organs and systems and so on. In a tissue, you have this amazing orchestration of the interactions between different kinds of cells, and this happens in space and in time and as we're able to look at this in biology often structure is tightly associated to function. So the structure of the protein to the function of the protein in the same way, the way in which things are structured in tissue, which cells are next to each other, what molecules are they expressing, how are they physically interacting, really tells us how they conduct the business of the tissue. When the tissue functions well, it is this multicellular circuit that performs this amazing thing known as homeostasis.(06:36):Everything changes and yet the tissue stays the same and functions, and in disease, of course, when these connections break, they're not done in the right way you end up with pathology, which is of course something that even historically we have always looked at in the level of the tissue. So now we can see it in a much better way, and as we see it in a better way, we resolve better things. Yes, we can understand better the mechanisms that underlie the resistance to therapeutics. We can follow a temporal process like cancer as it unfortunately evolves. We can understand how autoimmune disease plays out with many cells that are actually bent out of shape in their interactions. We can also follow magnificent things like how we start from a single cell, the fertilized egg, and we become 37.2 trillion cell marvel. These are all things that this ability to look in a different way allows us to do.Eric Topol (07:34):It's just extraordinary. I wrote at Ground Truths about this. I gave all the examples at that time, and now there's about 50 more in the cardiovascular arena, knowing with single cell of the pineal gland that the explanation of why people with heart failure have sleep disturbances. I mean that's just one of the things of so many now these new insights it's really just so remarkable. Now we get to the current revolution, and I wanted to read to you a quote that I have.Digital BiologyAviv Regev (08:16):I should have prepared mine. I did it off the top of my head.Eric Topol (08:20):It's actually from Jensen Huang at NVIDIA about the digital biology [at top of the transcript] and how it changes the world and how you're changing the world with AI and lab in the loop and all these things going on in three years that you've been at Genentech. So maybe you can tell us about this revolution of AI and how you're embracing it to have AI get into positive feedbacks as to what experiment to do next from all the data that is generated.Aviv Regev (08:55):Yeah, so Jensen and NVIDIA are actually great partners for us in Genentech, so it's fun to contemplate any quote that comes from there. I'll actually say this has been in the making since the early 2010s. 2012 I like to reflect on because I think it was a remarkable year for what we're seeing right now in biology, specifically in biology and medicine. In 2012, we had the beginnings of really robust protocols for single cell genomics, the first generation of those, we had CRISPR happen as a method to actually edit cells, so we had the ability to manipulate systems at a much better way than we had before, and deep learning happened in the same year as well. Wasn't that a nice year? But sometimes people only realize the magnitude of the year that happened years later. I think the deep learning impact people realized first, then the single cells, and then the CRISPR, then the single cells.(09:49):So in order maybe a little bit, but now we're really living through what that promise can deliver for us. It's still the early days of that, of the delivery, but we are really seeing it. The thing to realize there is that for many, many of the problems that we try to solve in biomedicine, the problem is bigger than we would ever be able to perform experiments or collect data. Even if we had the genomes of all the people in the world, all billions and billions of them, that's just a smidge compared to all of the ways in which their common variants could combine in the next person. Even if we can perturb and perturb and perturb, we cannot do all of the combinations of perturbations even in one cell type, let alone the many different cell types that are out there. So even if we searched for all the small molecules that are out there, there are 10 to the 60 that have drug-like properties, we can't assess all of them, even computationally, we can't assess numbers like that.(10:52):And so we have to somehow find a way around problems that are as big as that and this is where the lab in the loop idea comes in and why AI is so material. AI is great, taking worlds, universes like that, that appear extremely big, nominally, like in basic numbers, but in fact have a lot of structure and constraint in them so you can reduce them and in this reduced latent space, they actually become doable. You can search them, you can compute on them, you can do all sorts of things on them, and you can predict things that you wouldn't actually do in the real world. Biology is exceptionally good, exceptionally good at lab sciences, where you actually have the ability to manipulate, and in biology in particular, you can manipulate at the causes because you have genetics. So when you put these two worlds together, you can actually go after these problems that appear too big that are so important to understanding the causes of disease or devising the next drug.(11:51):You can iterate. So you start, say, with an experimental system or with all the data that you have already, I don't know from an initiative like the human cell atlas, and from this you generate your original model of how you think the world works. This you do with machine learning applied to previous data. Based on this model, you can make predictions, those predictions suggest the next set of experiments and you can ask the model to make the most optimized set of predictions for what you're trying to learn. Instead of just stopping there, that's a critical point. You go back and you actually do an experiment and you set up your experiments to be scaled like that to be big rather than small. Sometimes it means you actually have to compromise on the quality of any individual part of the experiment, but you more than make up for that with quantity.The A.I. Lab-in-the-Loop(12:38):So now you generate the next data from which you can tell both how well did your algorithm actually predict? Maybe the model didn't predict so well, but you know that because you have lab results and you have more data in order to repeat the loop, train the model again, fit it again, make the new next set of predictions and iterate like this until you're satisfied. Not that you've tried all options, because that's not achievable, but that you can predict all the interesting options. That is really the basis of the idea and it applies whether you're solving a general basic question in biology or you're interested in understanding the mechanism of the disease or you're trying to develop a therapeutic like a small molecule or a large molecule or a cell therapy. In all of these contexts, you can apply this virtual loop, but to apply it, you have to change how you do things. You need algorithms that solve problems that are a little different than the ones they solved before and you need lab experiments that are conducted differently than they were conducted before and that's actually what we're trying to do.Eric Topol (13:39):Now I did find the quote, I just want to read it so we have it, “biology has the opportunity to be engineering, not science. When something becomes engineering, not science, it becomes exponentially improving. It can compound on the benefits of previous years.” Which is kind of a nice summary of what you just described. Now as we go forward, you mentioned the deep learning origin back at the same time of CRISPR and so many things happening and this convergence continues transformer models obviously one that's very well known, AlphaFold, AlphaFold2, but you work especially in antibodies and if I remember correctly from one of your presentations, there's 20 to the 32nd power of antibody sequences, something like that, so it's right up there with the 10 to the 60th number of small molecules. How do transformer models enhance your work, your discovery efforts?Aviv Regev (14:46):And not just in antibodies, I'll give you three brief examples. So absolutely in antibodies it's an example where you have a very large space and you can treat it as a language and transformers are one component of it. There's other related and unrelated models that you would use. For example, diffusion based models are very useful. They're the kind that people are used to when you do things, you use DALL-E or Midjourney and so on makes these weird pictures, think about that picture and not as a picture and now you're thinking about a three-dimensional object which is actually an antibody, a molecule. You also mentioned AlphaFold and AlphaFold 2, which are great advances with some components related to transformers and some otherwise, but those were done as general purpose machines for proteins and antibodies are actually not general purpose proteins. They're antibodies and therapeutic antibodies are even further constrained.(15:37):Antibodies also really thrive, especially for therapeutics and also in our body, they need diversity and many of these first models that were done for protein structure really focused on using conservation as an evolutionary signal comparison across species in order to learn the model that predicts the structure, but with antibodies you have these regions of course that don't repeat ever. They're special, they're diverse, and so you need to do a lot of things in the process in order to make the model fit in the best possible way. And then again, this loop really comes in. You have data from many, many historical antibodies. You use that to train the model. You use that model in order to make particular predictions for antibodies that you either want to generate de novo or that you want to optimize for particular properties. You make those actually in the lab and in this way gradually your models become better and better at this task with antibodies.(16:36):I do want to say this is not just about antibodies. So for example, we develop cancer vaccines. These are personalized vaccines and there is a component in making a personalized cancer vaccine, which is choosing which antigens you would actually encode into the vaccine and transformers play a crucial role in actually making this prediction today of what are good neoantigens that will get presented to the immune system. You sometimes want to generate a regulatory sequence because you want to generate a better AAV-like molecule or to engineer something in a cell therapy, so you want to put a cis-regulatory sequence that controls gene expression. Actually personally for me, this was the first project where I used a transformer, which we started years ago. It was published a couple of years ago where we learned a general model that can predict in a particular system. Literally you throw a sequence at that model now and it will predict how much expression it would drive. So these models are very powerful. They are not the be all and end all of all problems that we have, but they are fantastically useful, especially for molecular therapeutics.Good Trouble: HallucinationsEric Topol (17:48):Well, one of the that has been an outgrowth of this is to actually take advantage of the hallucinations or confabulation of molecules. For example, the work of David Baker, who I'm sure you know well at University of Washington, the protein design institute. We are seeing now molecules, antibodies, proteins that don't exist in nature from actually, and all the things that are dubbed bad in GPT-4 and ChatGPT may actually help in the discovery in life science and biomedicine. Can you comment about that?Aviv Regev (18:29):Yeah, I think much more broadly about hallucinations and what you want to think about is something that's like constrained hallucination is how we're creative, right? Often people talk about hallucinations and they shudder at it. It sounds to them insane because if you think about your, say a large language model as a search tool and it starts inventing papers that don't exist. You might be like, I don't like that, but in reality, if it invents something meaningful that doesn't exist, I love that. So that constrained hallucination, I'm just using that colloquially, is a great property if it's constrained and harnessed in the right way. That's creativity, and creativity is very material for what we do. So yes, absolutely in what we call the de novo domain making new things that don't exist. This generative process is the heart of drug discovery. We make molecules that didn't exist before.(19:22):They have to be imagined out of something. They can't just be a thing that was there already and that's true for many different kinds of therapeutic molecules and for other purposes as well, but of course they still have to function in an effective way in the real world. So that's where you want them to be constrained in some way and that's what you want out of the model. I also want to say one of the areas that personally, and I think for the field as a whole, I find the most exciting and still underused is the capacity of these models to hallucinate for us or help us with the creative endeavors of identifying the causes of processes, which is very different than the generative process of making molecules. Thinking about the web of interactions that exist inside a cell and between cells that drives disease processes that is very hard for us to reason through and to collect all the bits of information and to fill in blanks, those fillings of the blanks, that's our creativity, that's what generates the next hypothesis for us. I'm very excited about that process and about that prospect, and I think that's where the hallucination of models might end up proving to be particularly impressive.A.I. Accelerated Drug DiscoveryEric Topol (20:35):Yeah. Now obviously the field of using AI to accelerate drug discovery is extremely hot, just as we were talking about with spatial omics. Do you think that is warranted? I mean you've made a big bet on that you and your folks there at Genentech of course, and so many others, and it's a very crowded space with so many big pharma partnering with AI. What do you see about this acceleration? Is it really going to reap? Is it going to bear fruit? Are we going to see, we've already seen some drugs of course, that are outgrowths, like Baricitinib in the pandemic and others, but what are your expectations? I know you're not one to get into any hyperbole, so I'm really curious as to what you think is the future path.Aviv Regev (21:33):So definitely my hypothesis is that this will be highly, highly impactful. I think it has the potential to be as impactful as molecular biology has been for drug discovery in the 1970s and 1980s. We still live that impact. We now take it for granted. But, of course that's a hypothesis. I also believe that this is a long game and it's a deep investment, meaning decorating what you currently do with some additions from right and left is not going to be enough. This lab in the loop requires deep work working at the heart of how you do science, not as an add-on or in addition to or yet another variant on what has become a pretty established approach to how things are done. That is where I think the main distinction would be and that requires both the length of the investment, the effort to invest in, and also the willingness to really go all out, all in and all out.(22:36):And that takes time. The real risk is the hype. It's actually the enthusiasm now compared to say 2020 is risky for us because people get very enthusiastic and then it doesn't pay off immediately. No, these iterations of a lab in the loop, they take time and they take effort and they take a lot of changes and at first, algorithms often fail before they succeed. You have to iterate them and so that is actually one of the biggest risks that people would be like, but I tried it. It didn't work. This was just some over-hyped thing. I'm walking away and doing it the old way. So that's where we actually have to keep at it, but also keep our expectations not low in magnitude. I think that it would actually deliver, but understanding that it's actually a long investment and that unless you do it deeply, it's not going to deliver the goods.Eric Topol (23:32):I think this point warrants emphasis because the success already we've seen has not been in necessarily discovery and in preliminary validation of new molecules, but rather data mining repurposing, which is a much easier route to go quicker, but also there's so many nodes on past whereby AI can make a difference even in clinical trials, in synthetic efforts to project how a clinical trial will turn out and being able to do toxic screens without preclinical animal work. There's just so many aspects of this that are AI suited to rev it up, but the one that you're working on, of course is the kind of main agenda and I think you framed it so carefully that we have to be patient here, that it has a chance to be so transformative. Now, you touched on the parallels to things like DALL-E and Midjourney and large language models. A lot of our listeners will be thinking only of ChatGPT or GPT-4 or others. This is what you work on, the language of life. This is not text of having a conversation with a chatbot. Do you think that as we go forward, that we have to rename these models because they're known today as language models? Or do you think that, hey, you know what, this is another language. This is a language that life science and biomedicine works with. How do you frame it all?Large Non-Human Language ModelsAviv Regev (25:18):First of all, they absolutely can remain large language models because these are languages, and that's not even a new insight. People have treated biological sequences, for example, in the past too, using language models. The language models were just not as great as the ones that we have right now and the data that were available to train models in the past were not as amazing as what we have right now. So often these are really the shifts. We also actually should pay respect to human language. Human language encodes a tremendous amount of our current scientific knowledge and even language models of human language are tremendously important for this scientific endeavor that I've just described. On top of them come language models of non-human language such as the language of DNA or the language of protein sequences, which are also tremendously important as well as many other generative models, representation learning, and other approaches for machine learning that are material for handling the different kinds of data and questions that we have.(26:25):It is not a single thing. What large language models and especially ChatGPT, this is an enormous favor for which I am very grateful, is that I think it actually convinced people of the power. That conviction is extremely important when you're solving a difficult problem. If you feel that there's a way to get there, you're going to behave differently than if you're like, nothing will ever come out of it. When people experience ChatGPT actually in their daily lives in basic things, doing things that felt to them so human, this feeling overrides all the intellectual part of things. It's better than the thinking and then they're like, in that case, this could actually play out in my other things as well. That, I think, was actually materially important and was a substantial moment and we could really feel it. I could feel it in my interactions with people before and after how their thinking shifted. Even though we were on this journey from before.Aviv Regev (27:30):We were. It felt different.Eric Topol (27:32):Right, the awareness of hundreds of millions of people suddenly in end of November 2022 and then you were of course going to Genentech years before that, a couple few years before that, and you already knew this was on the move and you were redesigning the research at Genentech.Aviv Regev (27:55):Yes, we changed things well before, but it definitely helps in how people embrace and engage feels different because they've seen something like that demonstrated in front of them in a way that felt very personal, that wasn't about work. It's also about work, but it's about everything. That was very material actually and I am very grateful for that as well as for the tool itself and the many other things that this allows us to do but we have, as you said, we have been by then well on our way, and it was actually a fun moment for that reason as well.Eric Topol (28:32):So one of the things I'm curious about is we don't think about the humans enough, and we're talking about the models and the automation, but you have undoubtedly a large team of computer scientists and life scientists. How do you get them to interact? They're of course, in many respects, in different orbits, and the more they interact, the more synergy will come out of that. What is your recipe for fostering their crosstalk?Aviv Regev (29:09):Yeah, this is a fantastic question. I think the future is in figuring out the human question always above all and usually when I draw it, like on the slide, you can draw the loop, but we always put the people in the center of that loop. It's very material to us and I will highlight a few points. One crucial thing that we've done is that we made sure that we have enough critical mass across the board, and it played out in different ways. For example, we built a new computational organization, gRED Computational Sciences, from what was before many different parts rather than one consolidated whole. Of course within that we also built a very strong AI machine learning team, which we didn't have as much before, so some of it was new people that we didn't have before, but some of it was also putting it with its own identity.(29:56):So it is just as much, not more, but also not less just as much of a pillar, just as much of a driver as our biology is, as our chemistry and molecule making is, as our clinical work is. This equal footing is essential and extremely important. The second important point is you really have to think about how you do your project. For example, when we acquired Prescient, at the time they were three people, tiny, tiny company became our machine learning for drug discovery. It's not tiny anymore, but when we acquired them, we also invested in our antibody engineering so that we could do antibody engineering in a lab in the loop, which is not how we did it before, which meant we invested in our experiments in a different way. We built a department for cell and tissue genomics so we can conduct biology experiments also in a different way.(30:46):So we changed our experiments, not just our computation. The third point that I think is really material, I often say that when I'm getting asked, everyone should feel very comfortable talking with an accent. We don't expect our computational scientists to start behaving like they were actually biology trained in a typical way all along, or chemists trained in a typical way all along and by the same token, we don't actually expect our biologists to just embrace wholeheartedly and relinquish completely one way of thinking for another way of thinking, not at all. To the contrary, we actually think all these accents, that's a huge strength because the computer scientist thinks about biology or about chemistry or about medical work differently than a medical doctor or a chemist or a biologist would because a biologist thinks about a model differently and sometimes that is the moment of brilliance that defines the problem and the model in the most impactful way.(31:48):We want all of that and that requires both this equal footing and this willingness to think beyond your domain, not just hand over things, but actually also be there in this other area where you're not the expert but you're weird. Talking with an accent can actually be super beneficial. Plus it's a lot of fun. We're all scientists, we all love learning new things. So that's some of the features of how we try to build that world and you kind of do it in the same way. You iterate, you try it out, you see how it works, and you change things. It's not all fixed and set in stone because no one actually wrote a recipe, or at least I didn't find that cookbook yet. You kind of invent it as you go on.Eric Topol (32:28):That's terrific. Well, there's so much excitement in this convergence of life science and the digital biology we've been talking about, have I missed anything? We covered human cell atlas, the spatial omics, the lab in the loop. Is there anything that I didn't touch on that you find important?Aviv Regev (32:49):There's something we didn't mention and is the reason I come to work every day and everyone I work with here, and I actually think also the people of the human cell atlas, we didn't really talk about the patients.(33:00):There's so much, I think you and I share this perspective, there's so much trepidation around some of these new methods and we understand why and also we all saw that technology sometimes can play out in ways that are really with unintended consequences, but there's also so much hope for patients. This is what drives people to do this work every day, this really difficult work that tends not to work out much more frequently than it works out now that we're trying to move that needle in a substantial way. It's the patients, and that gives this human side to all of it. I think it's really important to remember. It also makes us very responsible. We look at things very responsibly when we do this work, but it also gives us this feeling in our hearts that is really unbeatable, that you're doing it for something good.Eric Topol (33:52):I think that emphasis couldn't be more appropriate. One of the things I think about all the time is that because we're moving into this, if you will, hyper accelerated phase of discovery over the years ahead with this just unparallel convergence of tools to work with, that somebody could be cured of a condition, somebody could have an autoimmune disease that we will be able to promote tolerogenicity and they wouldn't have the autoimmune disease and if they could just sit tight and wait a few years before this comes, as opposed to just missing out because it takes time to get this all to gel. So I'm glad you brought that up, Aviv, because I do think that's what it's all about and that's why we're cheering for your work and so many others to get it done, get across the goal line because there's these 10,000 diseases out there and there's so many unmet needs across them where we don't have treatments that are very effective or have all sorts of horrible side effects. We don't have cures, and we've got all the things now, as we've mentioned here in this conversation, whether it's genome editing and ability to process massive scale data in a way that never could be conceived some years ago. Let's hope that we help the patients, and go ahead.Aviv Regev (35:25):I found the Proust quote, if you want it recorded correctly.Eric Topol (35:29):Yeah, good.Aviv Regev (35:30):It's much longer than what I did. It says, “the only true voyage, the only bath in the Fountain of Youth would be not to visit strange lands but to possess other eyes, to see the universe through the eyes of another, of a hundred others, to see the hundred universes that each of them sees, that each of them is; and this we do, with great artists; with artists like these we do fly from star to star.”—Marcel ProustEric Topol (35:57):I love that and what a wonderful way to close our conversation today. Aviv, I look forward to more conversations with you. You are an unbelievable gem. Thanks so much for joining today.Aviv Regev (36:10):Thank you so much.*************************************Thanks for listening or reading to this Ground Truths Podcast.Please share if you found it of interestThe Ground Truths newsletters and podcasts are all free, open-access, without ads.Voluntary paid subscriptions all go to support Scripps Research. Many thanks for that—they greatly helped fund our summer internship programs for 2023 and 2024.Note: you can select preferences to receive emails about newsletters, podcasts, or all I don't want to bother you with an email for content that you're not interested in.Comments are welcome from all subscribers. Get full access to Ground Truths at erictopol.substack.com/subscribe
In this episode of the She Geeks Out podcast, Felicia and Rachel interview two remarkable scientists who were part of the Homeward Bound expedition to Antarctica. Tiffany Vora is the Vice Chair of Digital Biology at Singularity University and a faculty member at EY Tech University. Dr. Judit Jimenez Sainz is an Assistant Professor of Biochemistry and Molecular Biology with a PhD in Biotechnology from the University of Valencia and University College London. They discuss their passions for mentorship, diversity, and translating cutting-edge science into practical solutions for societal advancement.[00:01:09] Women in STEM advancement.[00:04:36] Subverting the white savior trope.[00:07:59] The power of fictional characters.[00:12:23] STEM careers and Mars exploration.[00:15:31] Technology and healthcare advancements.[00:21:55] Future of cancer research.[00:24:07] Genetic testing and preventive surgery.[00:29:01] Space exploration benefits humanity.[00:32:45] Space community joy.[00:35:28] Women in STEM and Antarctica.[00:39:02] Mars simulation in high Canadian Arctic.[00:42:22] Women in Antarctica community.[00:46:49] Climate change and advocacy.[00:49:37] Transforming Doom and Gloom into Action.[00:56:09] Future plans and goals.[00:58:39] Future priorities in science.[01:01:31] Party and dancing passion.[01:03:50] New podcast merch available.Links mentioned:https://homewardboundprojects.com.au/https://tiffanyvora.comhttps://www.linkedin.com/in/tiffanyvora/https://jimenezsainzlab.comhttps://www.linkedin.com/in/juditjimenezsainz/https://www.teepublic.com/user/she-geeks-out Visit us at https://shegeeksout.com to stay up to date on all the ways you can make the workplace work for everyone! Check out SGOLearning.com and SheGeeksOut.com/podcast for the code to get a free mini course.
Transcript Eric Topol (00:06):Well, hello, this is Eric Topol with Ground Truths and I am absolutely thrilled to welcome Daphne Koller, the founder and CEO of insitro, and a person who I've been wanting to meet for some time. Finally, we converged so welcome, Daphne.Daphne Koller (00:21):Thank you Eric. And it's a pleasure to finally meet you as well.Eric Topol (00:24):Yeah, I mean you have been rocking everybody over the years with elected to the National Academy of Engineering and Science and right at the interface of life science and computer science and in my view, there's hardly anyone I can imagine who's doing so much at that interface. I wanted to first start with your meeting in Davos last month because I kind of figured we start broad AI rather than starting to get into what you're doing these days. And you had a really interesting panel [←transcript] with Yann LeCun, Andrew Ng and Kai-Fu Lee and others, and I wanted to get your impression about that and also kind of the general sense. I mean AI is just moving it at speed, that is just crazy stuff. What were your thoughts about that panel just last month, where are we?Video link for the WEF PanelDaphne Koller (01:25):I think we've been living on an exponential curve for multiple decades and the thing about exponential curves is they are very misleading things. In the early stages people basically take the line between whatever we were last year, and this year and they interpolate linearly, and they say, God, things are moving so slowly. Then as the exponential curve starts to pick up, it becomes more and more evident that things are moving faster, but it's still people interpolate linearly and it's only when things really hit that inflection point that people realize that even with the linear interpolation where we'll be next year is just mind blowing. And if you realize that you're on that exponential curve where we will be next year is just totally unanticipatable. I think what we started to discuss in that panel was, are we in fact on an exponential curve? What are the rate limiting factors that may or may not enable that curve to continue specifically availability of data and what it would take to make that curve available in areas outside of the speech, whatever natural language, large language models that exist today and go far beyond that, which is what you would need to have these be applicable to areas such as biology and medicine.Daphne Koller (02:47):And so that was kind of the message to my mind from the panel.Eric Topol (02:53):And there was some differences in opinion, of course Yann can be a little strong and I think it was good to see that you're challenging on some things and how there is this “world view” of AI and how, I guess where we go from here. As you mentioned in the area of life science, there already had been before large language models hit stride, so much progress particularly in imaging cells, subcellular, I mean rare cells, I mean just stuff that was just without any labeling, without fluorescein, just amazing stuff. And then now it's gone into another level. So as we get into that, just before I do that, I want to ask you about this convergence story. Jensen Huang, I'm sure you heard his quote about biology as the opportunity to be engineering, not science. I'm sure if I understand, not science, but what about this convergence? Because it is quite extraordinary to see two fields coming together moving at such high velocity."Biology has the opportunity to be engineering not science. When something becomes engineering not science it becomes...exponentially improving, it can compound on the benefits of previous years." -Jensen Huang, NVIDIA.Daphne Koller (04:08):So, a quote that I will replace Jensen's or will propose a replacement for Jensen's quote, which is one that many people have articulated, is that math is to physics as machine learning is to biology. It is a mathematical foundation that allows you to take something that up until that point had been kind of mysterious and fuzzy and almost magical and create a formal foundation for it. Now physics, especially Newtonian physics, is simple enough that math is the right foundation to capture what goes on in a lot of physics. Biology as an evolved natural system is so complex that you can't articulate a mathematical model for that de novo. You need to actually let the data speak and then let machine learning find the patterns in those data and really help us create a predictability, if you will, for biological systems that you can start to ask what if questions, what would happen if we perturb the system in this way?The ConvergenceDaphne Koller (05:17):How would it react? We're nowhere close to being able to answer those questions reliably today, but as you feed a machine learning system more and more data, hopefully it'll become capable of making those predictions. And in order to do that, and this is where it comes to this convergence of these two disciplines, the fodder, the foundation for all of machine learning is having enough data to feed the beast. The miracle of the convergence that we're seeing is that over the last 10, 15 years, maybe 20 years in biology, we've been on a similar, albeit somewhat slower exponential curve of data generation in biology where we are turning it into a quantitative discipline from something that is entirely observational qualitative, which is where it started, to something that becomes much more quantitative and broad based in how we measure biology. And so those measurements, the tools that life scientists and bioengineers have developed that allow us to measure biological systems is what produces that fodder, that energy that you can then feed into the machine learning models so that they can start making predictions.Eric Topol (06:32):Yeah, well I think the number of layers of data no less what's in these layers is quite extraordinary. So some years ago when all the single cell sequencing was started, I said, well, that's kind of academic interest and now the field of spatial omics has exploded. And I wonder how you see the feeding the beast here. It's at every level. It's not just the cell level subcellular and single cell nuclei sequencing single cell epigenomics, and then you go all the way to these other layers of data. I know you plug into the human patient side as well as it could be images, it could be past slides, it could be the outcomes and treatments and on and on and on. I mean, so when you think about multimodal AI, has anybody really done that yet?Daphne Koller (07:30):I think that there are certainly beginnings of multimodal AI and we have started to see some of the benefits of the convergence of say, imaging and omics. And I will give an example from some of the work that we've recently distributed on a preprint server work that we did at insitro, which took imaging data from standard histopathology slides, H&E slides and aligned them with simple bulk RNA-Seq taken from those same tumor samples. And what we find is that by training models that translate from one to the other, specifically from the imaging to the omics, you're able to, for a fairly large fraction of genes, make very accurate predictions of gene expression levels by looking at the histopath images alone. And in fact, because many of the predictions are made at the tile level, not at the entire slide level, even though the omics was captured in bulk, you're able to spatially resolve the signal and get kind of like a pseudo spatial biology just by making predictions from the H&E image into these omic modalities.Multimodal A.I. and Life ScienceDaphne Koller (08:44):So there are I think beginnings of multimodality, but in order to get to multimodality, you really need to train on at least some data where the two modalities are simultaneously. And so at this point, I think the rate limiting factor is more a matter of data acquisition for training the models. It is for building the models themselves. And so that's where I think things like spatial biology, which I think like you are very excited about, are one of the places where we can really start to capture these paired modalities and get to some of those multimodal capabilities.Eric Topol (09:23):Yeah, I wanted to ask you because I mean spatial temporal is so perfect. It is two modes, and you have as the preprint you refer to and you see things like electronic health records in genomics, electronic health records in medical images. The most we've done is getting two modes of data together. And the question is as this data starts to really accrue, do we need new models to work with it or do you actually foresee that that is not a limiting step?Daphne Koller (09:57):So I think currently data availability is the most significant rate limiting step. The nice thing about modern day machine learning is that it really is structured as a set of building blocks that you can start to put together in different ways for different situations. And so, do we have the exact right models available to us today for these multimodal systems? Probably not, but do we have the right building blocks that if we creatively put them together from what has already been deployed in other settings? Probably, yes. So of course there's still a model exploration to be done and a lot of creativity in how these building blocks should be put together, but I think we have the tools available to solve these problems. What we really need is first I think a really significant data acquisition effort. And the other thing that we need, which is also something that has been a priority for us at insitro, is the right mix of people to be put together so that you can, because what happens is if you take a bunch of even extremely talented and sophisticated machine learning scientists and say, solve a biological problem, here's a dataset, they don't know what questions to ask and oftentimes end up asking questions that might be kind of interesting from machine learning perspective, but don't really answer fundamental biology questions.Daphne Koller (11:16):And conversely, you can take biologists and say, hey, what would you have machine learning do? And they will tell you, well, in our work we do A to B to C to D, and B to C is kind of painful, like counting nuclei is really painful, so can we have the machine do that for us? And it's kind of like that. Yeah, but that's boring. So what you get if you put them in a room together and actually get to the point where they communicate with each other effectively, is that not only do you get better solutions, you get better problems. I think that's really the crux of making progress here besides data is the culture and the people.A.I. and Drug DiscoveryEric Topol (11:54):Well, I'm sure you've assembled that at insitro knowing you, and I mean people tend to forget it's about the people, it's not about the models or even the data when you have all that. Now you've been onto drug discovery paths, there's at least 20 drugs that are AI driven that are in the clinic in phase one or two at some point. Obviously these are not only ones that you've been working on, but do you see this whole field now going into high gear because of this? Or is that the fact that there's all these AI companies partnering with big pharma? Is it a lot of nice agreements that are drawn up with multimillion dollar milestones or is this real?Daphne Koller (12:47):So there's a number of different layers to your question. First of all, let me start by saying that I find the notion of AI driven drugs to be a bit of a weird concept because over time most drugs will have some element of AI in them. I mean, even some of the earlier work used data science in many cases. So where do you draw the boundary? I mean, we're not going to be in a world anytime soon where AI starts out with, oh, I need to work on ALS and at the end there is a clinical trial design ready to be submitted to the FDA without anything, any human intervention in the middle. So, it's always going to be an interplay between a machine and a human with over time more and more capabilities I think being taken on by the machine, but I think inevitably a partnership for a long time to come.Daphne Koller (13:41):But coming to the second part of your question, is this real? Every big pharma has gotten to the point today that they realize they need some of that AI thing that's going around. The level of sophistication of how they incorporate that and their willingness to make some of the hard decisions of, well, if we're going to be doing this with AI, it means we shouldn't be doing it the old way anymore and we need to make a big dramatic internal shift that I think depends very much on the specific company. And some companies have more willingness to take those very big steps than others, so will some companies be able to make the adjustment? Probably. Will all of them? Probably not. I would say however, that in this new world there is also room for companies to emerge that are, if you will, AI native.Daphne Koller (14:39):And we've seen that in every technological revolution that the native companies that were born in the new age move faster, incorporate the technology much more deeply into every aspect of their work, and they end up being dominant players if not the dominant player in that new world. And you could look at the internet revolution and think back to Google did not emerge from the yellow pages. Netflix did not emerge from blockbuster, Amazon did not emerge from Walmart so some of those incumbents did make the adjustment and are still around, some did not and are no longer around. And I think the same thing will happen with drug discovery and development where there will be a new crop of leading companies to I think maybe together with some of the incumbents that we're able to make the adjustment.Eric Topol (15:36):Yeah, I think your point there is essential, and another part of this story is that a lot of people don't realize there's so many nodes of ways that AI can facilitate this whole process. I mean from the elemental data mining that identified Baricitinib for Covid and now being used even for many other indications, repurposing that to how to simulate for clinical trials and everything in between. Now, what seems like because of your incredible knack and this convergence, I mean your middle name is like convergence really, you are working at the level of really in my view, this unique aspect of bringing cells and all the other layers of data together to amp things up. Is that a fair assessment of where insitro in your efforts are directed?Three BucketsDaphne Koller (16:38):So first of all, maybe it's useful to kind of create the high level map and the simplest version I've heard is where you divide the process into three major buckets. One is what you think of as biology discovery, which is the discovery of new therapeutic hypotheses. Basically, if you modulate this target in this group of humans, you will end up affecting this clinical outcome. That's the first third. The middle third is, okay, well now we need to turn that hypothesis into an actual molecule that does that. So basically generating molecules. And then finally there's the enablement and acceleration of the clinical development process, which is the final third. Most companies in the AI space have really focused in on that middle third because it is well-defined, you know when you've succeeded if someone gives you a target and what's called a target product profile (TPP) at the end of whatever, two, three years, whether you've been able to create a molecule that achieves the appropriate properties of selectivity and solubility and all those other things. The first third is where a lot of the mistakes currently happen in drug discovery and development. Most drugs that go into the clinic don't fail because we didn't have the right molecule. I mean that happens, but it's not the most common failure mode. The most common failure mode is that the target was just a wrong target for this disease in this patient population.Daphne Koller (18:09):So the real focus of us, the core of who we are as a company is on that early third of let's make sure we're going after the right clinical hypotheses. Now with that, obviously we need to make molecules and some of those molecules we make in-house, and obviously we use machine learning to do that as well. And then the last third is we discover that if you have the right therapeutic hypothesis, which includes which is the right patient population, that can also accelerate and enable your clinical trials, so we end up doing some of that as well. But the core of what we believe is the failure mode of drug discovery and what it's going to take to move it to the next level is the articulation of therapeutic hypotheses that actually translate into clinical outcome. And so in order to do that, we've put together, to your point about convergence, two very distinct types of data.Daphne Koller (19:04):One is data that we print in our own internal data factory where we have this incredible set of capabilities that uses stem cells and CRISPR and microscopy and single cell measurements and spatial biology and all that to generate massive amounts of in-house data. And then because ultimately you care not about curing cells, you care about curing people, you also need to bring in the clinical data. And again, here also we look at multiple high content data modalities, imaging and omics, and of course human genetics, which is one of the few sources of ground truth for causality that is available in medicine and really bring all those different data modalities across these two different scales together to come up with what we believe are truly high quality therapeutic hypotheses that we then advance into the clinic.AlphaFold2, the ExemplarEric Topol (19:56):Yeah, no, I think that's an extraordinary approach. It's a bold, ambitious one, but at least it is getting to the root of what is needed. One of the things you mentioned of course, is the coming up with molecules, and I wanted to get your comments about the AlphaFold2 world and the ability to not just design proteins now of course that are not extant proteins, but it isn't just proteins, it could be antibodies, it could be peptides and small molecules. How much does that contribute to your perspective?Daphne Koller (20:37):So first of all, let me say that I consider the AlphaFold story across its incarnations to be one of the best examples of the hypothesis that we set out trying to achieve or trying to prove, which is if you feed a machine learning model enough data, it will learn to do amazing things. And the space of protein folding is one of those areas where there has been enough data in biology that is the sequence to structure mapping is something that over the years, because it's so consistent across different cells, across different species even, we have a lot of data of sequence to structure, which is what enabled AlphaFold to be successful. Now since then, of course, they've taken it to a whole new level. I think what we are currently able to do with protein-based therapeutics is entirely sort of a consequence of that line of development. Whether that same line of development is also going to unlock other therapeutic modalities such as small molecules where the amount of data is unfortunately much less abundant and often locked away in the bowels of big pharma companies that are not eager to share.Daphne Koller (21:57):I think that question remains. I have not yet seen that same level of performance in de novo design of small molecule therapeutics because of the data availability limitations. Now people have a lot of creative ideas about that. We use DNA encoded libraries as a way of generating data at scale for small molecules. Others have used other approaches including active learning and pre-training and all sorts of approaches like that. We're still waiting, I think for a truly convincing demonstration that you can get to that same level of de novo design in small molecules as you can in protein therapeutics. Now as to how that affects us, I'm so excited about this development because our focus, as I mentioned, is the discovery of novel therapeutic hypotheses. You then need to turn those therapeutic hypotheses into actual molecules that do the work. We know we're not going to be the expert in every single therapeutic modality from small molecules to macro cycles, to the proteins to mRNA, siRNA, there's so many of those that you need to have therapeutic modality experts in each of those modalities that can then as you discover a target that you want to modulate, you can basically go and ask what is the right partner to help turn this into an actual therapeutic intervention?Daphne Koller (23:28):And we've already had some conversations with some modality partners as we like to call them that help us take some of our hypotheses and turn it into molecules. They often are very hungry for new targets because they oftentimes kind of like, okay, here's the three or four or whatever, five low hanging fruits that our technology uniquely unlocks. But then once you get past those well validated targets like, okay, what's next? Am I just going to go read a bunch of papers and hope for the best? And so oftentimes they're looking for new hypotheses and we're looking for partners to make molecules. It's a great partnership.Can We Slow the Aging Process?Eric Topol (24:07):Oh yeah, no question about that. Now, we've seen in recent times some leaps in drugs that were worked on for decades, like the GLP-1s for obesity, which are having effects potentially well beyond obesity didn't require any AI, but just slogging away at it for decades. And you previously were at Calico, which is trying to deal with aging. Do you think that we're going to see drug interventions that are going to slow the aging process because of this unique time of this exponential point we are in where we're a computer and science and digital biology come together?Daphne Koller (24:52):So I think the GLP-1s are an incredible achievement. And I would point out, I know you said and incorrectly that it didn't use any AI, but they did actually use an understanding of human genetics. And I think human genetics and the genotype phenotype statistical associations that they revealed is in some ways the biological precursor to AI it is a way of leveraging very large amounts of data, admittedly using simpler statistical tools, but still to discover in a data-driven way, novel therapeutic hypothesis. So I consider the work that we do to be a progeny of the kind of work that statistical geneticists have done. And of course a lot of heavy lifting needed to be done after that in order to make a drug that actually worked and kudos to the leaders in that space. In terms of the modulation of aging, I mean aging is a process of decline over time, and the rate of that decline is definitely something that is modifiable.Daphne Koller (26:07):And we all know that external factors such as lifestyle, diet, exercise, even exposure to sun or smoking, accelerates the aging process. And you could easily imagine, as we've seen in the GLP-1s that a therapeutic intervention can change that trajectory. So will we be able to using therapeutic interventions, increase health span so that we live healthy longer? I think the answer to that is undoubtedly, yes. And we've seen that consistently with therapeutic interventions, not even just the GLP-1s, but going backwards, I mean even statins and earlier things. Will we be able to increase the maximum life span so that people habitually live past 120, 150? I don't know. I don't know that anybody knows the answer to that question. I personally would be quite happy with increasing my health span so that at the age of 80, I'm still able to actively go hiking and scuba diving at 90 and 100 and that would be a pretty good place to start.Eric Topol (27:25):Well, I'm with you on that, but I just want to ask though, because the drugs we have today that are highly effective, I mean statins is a good example. They work at a particular level of the body. They don't have across the board modulation of effect. And I guess what I was asking is, do you foresee we will have some way to do that across all systems? I mean, that is getting to, now that we have so many different ways to intervene on the process, is there a way that you envision in the future that we'll be able to here, I'm not talking about in expanding lifespan, I'm talking about promoting health, whether it's the immune system or whether it's through mitochondria and mTOR, caloric, I mean all these different things you think that's conceivable or is that just, I mean companies like Calico and others have been chasing this. What do you think?Daphne Koller (28:30):Again, I think it's a thing that is hard to predict. I mean, we know that different organ systems age at different rates, and is there a single bio even in a single individual, and it's been well established that you can test brain age versus muscle health versus cardiovascular, and they can be quite different in the same individual, so is there a single hub? No, that governs all forms of aging. I don't know if that's true. I think it's oftentimes different. We know protein folding has an effect, you know DNA damage has an effect. That's why our skin ages because it's exposed to sun. Is there going to be a single switch that reverts it all back? Certainly some companies are pursuing that single bullet approach. I personally would probably say that based on the biology that I've seen, there's at least as much potential in trying to find ways to slow the decline in a way that specific to say as we discussed the immune system or correcting protein, misfolding dysfunction or things like that. And I'm not dismissing there is a single magic switch, but let's just say I think we should be exploring multiple alternatives.Eric Topol (29:58):Yeah, no, I like your reasoning. I think it's actually like everything else you said here. It makes a lot of sense. The logic is hard to argue with. Well, I think what you're doing there at insitro is remarkable and it seems to be quite distinct from other strategies, and that's not at all surprising knowing your background and your aspiration.Daphne Koller (30:27):Never like to follow the crowd. It's boring.Eric Topol (30:30):Right, and I do know you left an aging directed company effort at Calico to do what you're doing. So that must have been an opening for you that you saw was much more diverse perhaps, or maybe I'm mistaken that Calico is not really age specific in its goals.Daphne Koller (30:49):So what inspired me to go found insitro was the realization that we are making medicines today in a way that is not that different from the way in which we were making medicines 20 or 30 years ago in terms of the process by which we go from a, here's what I want to work on to here's a drug is a very much an artisanal one-off each one of them is a snowflake. There is very little commonality and sharing of insights and infrastructure across those efforts except in relatively limited tool-based ways. And I wanted to change that. I wanted to take the tools of engineering and data and machine learning and build a very different approach of going from a problem definition to a therapeutic intervention. And it didn't make sense to build that within a company that's focused on any single biology, not just aging because it is such a broad-based foundation.Daphne Koller (31:58):And I will tell you that I think we are on the path to building the thing that I set out to build. And as one example of that, I will use the work that we've recently done in metabolic disease where based on the foundations that we've built using both the clinical machine learning work and the cellular machine learning work, we were able to go from a problem articulation of this is the indication that we want to work on to a proof of concept in a translatable animal model in one year. That is pretty unusual. Admittedly, this is with an SiRNA tool compound. Nice thing about things that are liver directed is that it's not that difficult of a path to go from an SiRNA tool compound to an actual SiRNA drug. And so hopefully that's a fairly linear journey from there even, which is great.Daphne Koller (32:51):But the fact that we were able to go from problem articulation to a proof of concept in a translatable animal model in one year, that is unusual. And we're starting to see that now across our other therapeutic areas. It takes a long time to build a platform because you're basically building a foundation. It's like, okay, where's the fruit of all of that? I mean, you're building and building and building and nothing comes out for a while because you're building so much of the infrastructure. But once you've built it, you turn the crank and stuff starts to come out, you turn the crank again, and it works faster and better than the previous time. And so the essence of what we've built and what has turned into the tagline for the company is what we call pipeline through platform, which is we're building a pipeline of therapeutic interventions that comes off of a platform. And that's rare in biopharma, the only platform companies that really have emerged by and larger therapeutic modality platforms, things like Moderna and Alnylam, which have gotten really good at a particular modality and that's awesome. We're building a discovery platform and that is a fairly unusual thing.Eric Topol (34:02):Right. Well, I have no doubt you'll be discovering a lot of important things. That one sounds like it could be a big impact on NASH.Daphne Koller (34:14):Yeah, we hope so.Eric Topol (34:14):A big unmet need that's not going to be fixed by what we have today. So Daphne, it's really a joy to talk with you and palpable enthusiasm for where the field is going as one of its real leaders and we'll be cheering for you. I hope we'll reconnect in the times ahead to get another progress report because you're definitely rocking it there and you've got a lot of great ideas for how to change the life science medical world of the future.Daphne Koller (34:48):Thank you so much. It's a pleasure to meet you, and it's a long and difficult journey, but I think we're on the right path, so looking forward to seeing that all that pan out.Eric Topol (34:58):You made a compelling case in a short visit, so thank you.Daphne Koller (35:02):Thank you so much.Thanks for your subscription and listening/reading these posts.All content on Ground Truths—newsletter analyses and podcasts—is free.Voluntary paid subscriptions all go to support Scripps Research. Get full access to Ground Truths at erictopol.substack.com/subscribe
[0:59] Why life sciences?[3:42] AI in the life sciences[7:20] LLM for cells[11:55] Engineering disease and drug discovery[13:51] Bits vs. atoms[17:55] The opportunity aheadThis conversation is part of our AI Revolution series, recorded August 2023 at a live event in San Francisco. The series features some of the most impactful builders in the field of AI discussing and debating where we are, where we're going, and the big open questions in AI. Find more content from our AI Revolution series on www.a16z.com/AIRevolution.
Welcome to Episode 8 of the BioHackers Podcast!In this episode, David and Alex welcome inspirational bioinformatics professor Tyesha Farmer from Alabama A&M University. Together, they discuss the importance of academic mentorship, the global impact of agriscience, and the power of enabling everyone with the opportunities of a science-based education. Watch the Podcast on YouTube: https://youtu.be/bPrLkt07cPo Here is a list of topics: Welcome to Episode 8 (00:00)The Open-Source Movement (1:28)Connecting Marginalized Students to the Right Tools (4:31)Welcome Tyesha to the Show (7:33)How Dr. Farmer Expanded Research Opportunities (9:45)The Story of Dr. Farmer's Journey to a Science Career (10:57)Dr. Farmer Finding Her Identity in STEM (22:27)Providing Access to STEM Opportunities Through Virtual Research (29:51)Scaling Mentorship Opportunities (31:27)Building an International Community of Researchers (34:40)Digital Credentials (37:40)Educating after a PhD (44:00) The Importance of Agriscience Education (46:00)How Alex Started His Science Career in Agriscience (51:24) What is a BioHacker to You? (58:40) Closing Thoughts (59:59) Enjoy the Show!
What is being engineered through the concept of biodigital convergence? Did they "flip the switch" again? "Come With Me" - Original music written and performed by Jason Lindgren with accompaniment by Brett Dietz - Copyright © 2021 - Jason Lindgren and Wayne McRoy www.rokfin.com/waynemcroy https://www.youtube.com/channel/UCSdS1CiIycQRaSy2UupPrzg https://www.amazon.com/Books-Wayne-McRoy/s?rh=n%3A283155%2Cp_27%3AWayne+McRoy https://m.facebook.com/Files-From-The-Conspiratorium-1542730889274114/ thealchemicalbeacon@substack.com If you would like to make a one time donation, you can send it through PayPal to: dmcroy98@epix.net --- Support this podcast: https://anchor.fm/wayne-mcroy/support
Tiffany is an Educator, Writer, Researcher, Scientist and Entrepreneur based out of Silicon Valley. She is currently Faculty and Vice-Chair of Medicine and Digital Biology at Singularity University and Co-Author of the newly released book, Ethics@Work: Dilemmas Of The Near Future And How Your Organization Can Solve Them.
Meet Daphne Koller, Ph.D.:Daphne Koller, Ph.D. is the founder and CEO of insitro, a company that aims to improve drug discovery and development through machine learning. She is also a co-founder and board member for Engageli. Previously, Dr. Koller co-founded Coursera and served as the co-CEO, President, and eventually co-Chairman. She was also the Chief Computing Officer for CalicoLabs. Dr. Koller earned her Ph.D. in Computer Science at Stanford University and taught there as a professor for 18 years. Key Insights:Dr. Koller is “bilingual” in the worlds of biomedicine and machine learning. She has had a diverse career in academia, industry, and entrepreneurism.Two Worlds. At insitro, Dr. Koller brings together the two worlds of machine learning and biomedicine. Machine learning understands the capabilities of what data can provide, and biomedicine understands the insights that can be extracted. Working together can not only solve problems, but reveal new questions. (7:27)Science as a Team Sport. Dr. Koller contrasts academia's focus on the individual researcher with industry's focus on organizational growth and teamwork. She emphasizes the importance of releasing one's ego and creating a whole that is larger than the sum of the parts. (22:16)The Right Team. It is important for founders to build the right team around them. The executive leadership needs to have the ability to strategize and shape the vision, as well as be equipped with industry expertise. From day one, be deliberate about culture and creating alignment. (25:03)This episode is hosted by Suchi Saria, Ph.D. She is a member of the Advisory Council for Day Zero and is the founder and CEO of Bayesian Health. She is also an Associate Professor of computer science, statistics, and health policy, and the Director of the Machine Learning and Healthcare Lab at Johns Hopkins University.Relevant Links:Learn more about insitroTake one of Dr. Koller's courses on CourseraFollow Dr. Koller on Twitter
This is the last episode of Season 1. Join us in the Fall for Season 2, and in the meantime, please take our brief survey! http://bit.ly/theaihealthpodcastDr. Daphne Koller is CEO and Founder of insitro, a machine-learning enabled drug discovery company. She has been a Stanford CS Professor, co-founder of Coursera and Engageli, one of TIME Magazine's 100 influential people, and a MacArthur Fellow. She speaks with us about how insitro uses AI and induced pluripotent stem cells to make drug discovery more efficient and successful.Pranav and Adriel first give an overview on pluripotent stem cells. The interview with Dr. Koller starts at 5:41. If you like what you hear, let a friend know, subscribe wherever you get your podcasts, and connect with us on Twitter @AIHealthPodcast.
From teaching at Stanford to co-founding Coursera, insitro, and Engageli, Daphne Koller reflects on the importance of education, giving back, and cross-functional research. Daphne Koller is the founder and CEO of insitro, a company using machine learning to rethink drug discovery and development. She is a MacArthur Fellowship recipient, member of the National Academy of Engineering, member of the American Academy of Arts and Science, and has been a Professor in the Department of Computer Science at Stanford University. In 2012, Daphne co-founded Coursera, one of the world's largest online education platforms. She is also a co-founder of Engageli, a digital platform designed to optimize student success. https://www.insitro.com/ https://www.insitro.com/jobs https://www.engageli.com/ https://www.coursera.org/ Follow Daphne on Twitter: https://twitter.com/DaphneKoller https://www.linkedin.com/in/daphne-koller-4053a820/ Topics covered: 0:00 Giving back and intro 2:10 insitro's mission statement and Eroom's Law 3:21 The drug discovery process and how ML helps 10:05 Protein folding 15:48 From 2004 to now, what's changed? 22:09 On the availability of biology and vision datasets 26:17 Cross-functional collaboration at insitro 28:18 On teaching and founding Coursera 31:56 The origins of Engageli 36:38 Probabilistic graphic models 39:33 Most underrated topic in ML 43:43 Biggest day-to-day challenges Get our podcast on these other platforms: Apple Podcasts: http://wandb.me/apple-podcasts Spotify: http://wandb.me/spotify Google: http://wandb.me/google-podcasts YouTube: http://wandb.me/youtube Soundcloud: http://wandb.me/soundcloud Tune in to our bi-weekly virtual salon and listen to industry leaders and researchers in machine learning share their research: http://wandb.me/salon Join our community of ML practitioners where we host AMA's, share interesting projects and meet other people working in Deep Learning: http://wandb.me/slack Our gallery features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, and industry leaders sharing best practices: https://wandb.ai/gallery
Do you want to live forever? Should we focus on the number of years in our life - or the life in our years? Join Faith and Adam to review these questions and more, plus dive into the topic of genetics and super-aging. Guest Raymond McCauley, Founding faculty and chair of Digital Biology at Singularity University, joins the team as they explore new (and not-so new) methods of extending life expectancy.
Shiva Amiri, Director of Data and Research Infrastructure at 23andMeHost Catherine Tao speaks with Shiva Amiri, Director of Data and Research Infrastructure at 23andMe. Shiva speaks about Digital Biology and how data has been used to help the biotech industry. Listen to learn more about her take on innovative technologies.Shiva LinkedIn: https://www.linkedin.com/in/shivaamiri/Catherine LinkedIn: https://www.linkedin.com/in/catherine-tao/For more information about The Data Standard visit https://datastandard.io/The Data Standard LinkedIn: https://www.linkedin.com/company/the-data-standard/
I often wonder how our previous guests are doing and so today we revisit three of them. Pascal Finette talks to us about how his company Be Radical is doing during the COVID-19 crisis and then shares some of his current thinking. Next Dr Tiffany Vora tells us how she is doing during lockdown, gives a COVID-19 update and what’s next and then how the development of the vaccine is going. Last, but not least, I talk to Rens ter Weijde about his company KIMO and also his involvement with the G20. Pascal Finette - Co-Founder @ be radical. Singularity University‘s Chair for Entrepreneurship & Open Innovation. Venture Partner @ BOLD. You can fine Pascal on Linkedin here ==> https://www.linkedin.com/in/pfinette/ or visit his website - https://beradicalgroup.com/. Dr Tiffany Vora - Singularity University - Faculty & Vice Chair, Digital Biology & Medicine and Managing Director of Bayana Science. During the segment Tiffany mentions an article she has written for SU. It can be found here ==> https://singularityhub.com/2020/05/01/how-to-better-tune-your-expectations-in-a-coronavirus-world/. You can contact her on Linkedin here ==> https://www.linkedin.com/in/tiffanyvora/ or visit her website https://www.tiffanyvora.com/. Rens ter Weijde - CEO KIMO and Strategic Advisor PwC. He is found on Linkedin here ==> https://www.linkedin.com/in/rensterweijde/ and Kimo's website is https://www.kimo.ai. Your host Lance Peppler can be contacted at lance@ideastorm.co.za or visit www.ideastorm.co.za. Thank you for listening and I hope you find value from the podcast. It would really help if you could subscribe to the podcast and leave a 5 star rating.
Dr. Tiffany Vora is a speaker and thought leader who uses a bio- and tech-focused mindset to stimulate leaders, companies, and industries to design for the best possible future. She works with Singularity University and is the Faculty & Vice Chair, Digital Biology & Medicine. We talk to Dr Vora about the Coronavirus followed by DNA sequencing and health care. Dr Vora can contacted through her website https://www.tiffanyvora.com or on linkedin at https://www.linkedin.com/in/tiffanyvora. This podcast is sponsored by Idea Storm - a leading exponential growth consultancy. You can contact Idea Storm by emailing lance@ideastorm.co.za or visit www.ideastorm.co.za.
Flere har sammenlignet coronakrisen med en krig, men hvilke våben har vi til rådighed, og kan vi overhovedet vinde dette første slag i krigen mod pandemier?Techtopia har talt med den amerikanske biotech-pioner Raymond McCauley, som med udgangspunkt i såkaldt digital biologi forklarer corona virus fra bunden. Hvor kom den fra, og hvordan kunne vi kortlægge dens arvemasse og lægge informationen på nettet, så forskere over hele verden kan arbejde på en vaccine? Hvilke typer vaccine arbejdes der på, og hvornår kommer de på markedet? Vi hører hele tiden om tests, som ikke bliver foretaget og om manglen på udstyr og test kits. Men hvad er det for noget udstyr, hvad er et testkit, hvem laver dem, og hvorfor er de en mangelvare? Alt dette - og lidt mere - kan du høre om i Techtopia. Medvirkende: Raymond McCauley, Chair of Digital Biology, Singularity University Links: Raymond McCauley http://www.raymondmccauley.net RAymond McCauley's videoforedrag https://youtu.be/qUVHDf8IKWg Nextstrain https://nextstrain.org
Watch an all new episode of the Exponential Africa Show with Mic Mann in a fascinating discussion with SingularityU Vice chair of digital biology and medicine, Tiffany J Vora.Tiffany's passion lies in looking into the latest and greatest trends in her field trough analysis and conversation with Vc’s, startups and mentorship programmes. Bringing in all the information together in ways that really maximise the impact of these technologies that are currently changing biology, agriculture and healthcare, all of which are tied together with life!Biotechnology simply put is a group of technologies used to either investigate or how we use living things to do things that we want as humans.Digital Biology is a way of thinking about living systems the same way we think of computer coding, Tiffany explains that anything you can do with a living system can be done with computer coding. DNA can be seen as an operating system, as all life on earth runs on the same open source operating system which is DNA!Watch the full episode to hear more on this topic and the incredible advancements that are currently happening in the field!#futureproofAfrica
Beyond Disruption 26: Is it Ethical to Edit an Entire Species? June 24, 2019 In this episode of the Beyond Disruption podcast, we’re at the SingularityU Canada Summit 2019 with Dr. Tiffany Vora, Faculty Director and Vice Chair, Digital Biology and Medicine at Singularity University. You’ll discover: How data, transparency, and privacy relates to money. The post Beyond Disruption 26: Is it Ethical to Edit an Entire Species? appeared first on Magazine Canada.
In this episode, we talk with Dr. Tiffany Vora, Head of Faculty at Singularity University, about Digital Biology and treating DNA like computer code. 5:00 The global SU faculty 11:00 Digital Biology 17:00 Building DNA like Legos 24:00 Radical transparency and programming the future of life 30:00 Bio Brokers... who owns your body's data? 35:00 Moving from sick-care to healthcare 54:00 Developing your Spidey Sense Tiffany's mission is to boil down the education from the past 1000 years and only keep the good stuff. "And, to burn down the rest! That's the moon shot, the meta-vision." Listen in for news about the science-fiction realities now happening in biology and tech, and see how you can use uncanny partnerships (makeup and yogurt?) to stay at the cutting edge.
Please, can I order some DNA? It may sound like science fiction, but Dr. Tiffany Vora is looking at a future where anyone can go online, pick the DNA sequence they want and have it delivered. She talks about how we can use the various DNA to create cells that eat plastic or petroleum or convert sunlight into energy. We already have bacteria that are programmed to eat oil, it’s really a matter of creating something even more efficient. As a research scientist, Faculty director and Vice Chair of Medicine and Digital Biology at Singularity University, Tiffany Vora deals with the future of life science and technology. She gives us a glimpse into her fascinating world.
Just because it can be done, does it mean we should. Raymond McCauley, scientist, engineer, investor, Chair, Digital Biology at Singularity University, and co-founder bioCurious. With too many titles to fit on a business card, when Penny asked who Raymond is as a human being, his number one response was a Father, and his most important role, that of being a curator of experience for his 12-year-old twin boys.This week, Raymond shares with Penny his insights into the world of biotechnology and DNA sequencing, discussing his wish for us to know what the basic technologies are, understand what they do, what we should integrate into our lives, and what we need to put at a distance.This Week We ExploreDo we need to restrict the tools or restrict the actions that people take with the tools?Genetic engineering tools, and where they’re being appliedThe 2-headed dragon that exists in the use of synthetic biologyKnowledge is good for knowledge sakeWhere To Find RaymondLinkedInSingularity UniversitybioCuriousWhere To Find PennyEmailInstagramLinkedIn
What is the global mind? Dot Connector, Brian Lim - IT Manager/Consultant at Fishburners and HyperCubes Co-Founder joins Penny in a frank discussion around using technology to serve humanity to remain relevant, through empathy.This Week We Explore:The use of satellite technology to gain insight for agricultural and mining resourcesBrian’s excitement in the realm of space travel, it’s on our doorstepWhy digital biology and blockchain are Brian’s biggest technological fearIt’s not what the technology is, it’s what you do with itWhere To Find BrianBrian Lim | LinkedInSolving Problems For A Billion PeopleFishburnersHyperCubes
How does applying technology to biology, genetics, medicine and agriculture effect every one of us? Adam speaks to Raymond McCauley, a thinker & do-er, bioninformaticist, computer scientist, engineer and entrepreneur working at the forefront of biotechnology. Raymond is co-founder and Chief Architect for BioCurious, the hackerspace for biotech, where professional scientists, DIYbio hobbyists and entrepreneurs come together to design the next big thing to come out of a Silicon Valley garage. Raymond is one interesting cat ... Connect with Adam Spencer at: https://twitter.com/adambspencer Find LiSTNR on Facebook: https://www.facebook.com/LiSTNRau/ Follow LiSTNR on Instagram: https://www.instagram.com/listnrau/ Follow LiSTNR Australia on Twitter: https://twitter.com/listnrau Download the LiSTNR app from the Apple and Google Play app stores. Or go to listnr.com See omnystudio.com/listener for privacy information.
This is one of the most fascinating Episodes of the Podcast. Some of the numbers and facts you are going to hear from Raymond will "blow your mind". Imagine a reduction of cost from $100,000 in 2000 to under $10 in 2018. Hu? Is that possible? That's Moore's Law exponential and more. And it's happening in Digital Biology. And a leader in this field is Raymond McCauley. Enjoy this Episode - 60 minutes well invested. More about Raymond McCauley Raymond McCauley is a scientist, engineer, and entrepreneur working at the forefront of biotechnology. Raymond explores how applying technology to life -- biology, genetics, medicine, agriculture -- is affecting every one of us. He uses storytelling and down-to-earth examples to show how quickly these changes are happening, right now, and where it may head tomorrow. His work and profile have been featured in Wired, Forbes, Time, CNBC, Science, and Nature. How to get in touch with Raymond The best way is via LinkedIn: https://www.linkedin.com/in/raymondmccauley/ Website: www.raymondmccauley.net The Resource Page for DIY: https://diybio.org/ (well worth looking at) Twitter: http://twitter.com/raymondmccauley And when you want to help with the Podcast name, reach out to me at ma@michaelalf.com Thank you!
The post Digital Biology Revolution With Elsa Sotiriadis (Biohacker’s LIVE Show) appeared first on Biohacker Summit.
Tiffany Vora an Educator, Writer, Research Scientist, and Entrepreneur who is excited to bring her diversity of experience to Singularity University as Principal Faculty in Medicine and Digital Biology. Tiffany explains what Digital Biology is and how living things can be “programmed” to do things they could never do previously. Tiffany discusses Gene Editing & CRISPR/Cas9, a technology that allows for fast, precise & permanent changes to DNA. Through this cutting edge technology it may be possible to make people immune to HIV/Aids and also treat tumors at a very early stage (earlier than certain cancers have ever been discovered before, allowing for more and better treatment(s)). Listen to this exciting interview where we discuss cutting edge technology that's going to change how we live. Subscribe and perhaps donate bitcoin to keep us interviewing!