POPULARITY
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
In Zeiten des demografischen Wandels erfahren Krankheiten wie die Alzheimer-Demenz, als deren größter Risikofaktor das Alter gilt, einen rasanten Anstieg der Patientenzahl. Die Erforschung der zugrundeliegenden neurodegenerativen Mechanismen und das Einbringen daraus gewonnener Erkenntnisse in die Entwicklung von Therapieansätzen oder gar Präventionsmaßnahmen sind daher von gesamtgesellschaftlicher Bedeutung - nicht zuletzt auch unter ökonomischen Gesichtspunkten, wie den gleichsam wachsenden Kosten für das Gesundheitssystem. In der vorliegenden Arbeit wurden neuropathologische Prozesse in verschiedenen transgenen Tauopathie-Mausmodellen mittels hochauflösender Mikroskopietechniken untersucht. Der Schwerpunkt lag hierbei auf der Analyse synaptischer Veränderungen im lebenden Tier, ermöglicht durch die Zwei-Photonen-Intravitalmikroskopie. Zunächst wurden in Tau P301S-Mäusen die Auswirkungen FTDP-17-mutierten humanen Tau-Proteins auf die strukturelle Plastizität neokortikaler dendritischer Spines analysiert. Dabei wurde eine im Vergleich zu Wildtyp-Mäusen verminderte Spinedichte gemessen, welche auf eine geringere Ausbildung neuer Spines zurückzuführen war. Die verbliebenen Spines zeigten morphologische Veränderungen wie ein vergrößertes Kopfvolumen - möglicher Weise zur Kompensation des Synapsenverlusts. Ergänzend wurde eine Methode zur immunhistochemischen Synapsendichtemessung an Gehirnschnitten etabliert, welche jedoch keine Effekte der Transgenexpression auf die Dichte prä- oder postsynaptischer Spezialisierungen offenbarte. Um die Rolle inflammatorischer Prozesse in Tauopathien zu analysieren, wurde die Mauslinie Tau x CXCR erzeugt. Partielle oder vollständige genetische Fraktalkinrezeptor-Deletion in diesen Mäusen erlaubte eine gezielte Modifizierung der Kommunikation zwischen Neuronen und Mikrogliazellen. Die resultierende Aktivitätserhöhung der Mikrogliazellen hatte wider Erwarten keinen signifikanten Einfluss auf die Dichte Phospho-Tau enthaltender Zellen in den untersuchten kortikalen Gehirnregionen. Zur Modellierung der Alzheimer-Demenz wurden Tau P301S-Mäuse mit der Linie APP PS1 verpaart. Die Nachkommen wiesen Alzheimer-typische histologische Läsionen wie extrazelluläre Aβ-Plaques und intrazelluläre Tau-Ablagerungen auf. Es konnte jedoch im Vergleich zur Ursprungslinie Tau P301S keine Aβ-induzierte Verstärkung der kortikalen Tau-Pathologie gemessen werden, welche die Amyloid-Kaskaden-Hypothese suggeriert. Eine intravitalmikroskopische Analyse dendritischer Spines in Tau P301S- und Tau x APP PS1-Mäusen in unterschiedlichen Krankheitsstadien sowie in Wildtyp-Wurfgeschwistern sollte die Abgrenzung Tau-bedingter von Aβ-bedingten Effekten ermöglichen. Dabei wurden Veränderungen in der strukturellen Plastizität gefunden, beispielsweise in der Spine-Neuausbildung oder in bestimmten morphologischen Fraktionen, nicht aber in der absoluten Spinedichte. Schließlich erfolgte eine elektronenmikroskopische Untersuchung neuritischer Dystrophien in einem weiteren Alzheimer-Mausmodell, der Linie 3xTg-AD. Durch immunhistochemische Markierung konnten sowohl Aβ- als auch Tau-Ansammlungen in den pathologischen Anschwellungen nachgewiesen werden. Die präsentierten Befunde zeigen u. a. die ersten intravitalmikroskopischen Langzeitstudien dendritischer Spines in Mausmodellen mit reiner Tau-Pathologie sowie damit kombinierter Aβ-Pathologie. Sie bieten grundlegende, durch Patientenuntersuchungen nicht zu gewinnende Informationen über krankhafte synaptische Veränderungen, welche als frühe Ereignisse in der Alzheimer-Demenz betrachtet werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Der Transfer von Genen ist eine unverzichtbare Methode für die Erforschung von Genfunktionen in vivo, für die gezielte Expression von Proteinen oder RNA-Molekülen, sowie für die Entwicklung von Gentherapien z.B. gegen Krebserkrankungen oder genetische Defekte. Gerade unter gentherapeutischen Gesichtspunkten sind virale Gentransfervektoren von Interesse, mit deren Hilfe beispielsweise fehlende bzw. eingeschränkte Genfunktionen wiederhergestellt werden können. Ebenso vorstellbar ist der Einsatz viraler Vektoren für Immunisierungen, die z.B. zur Auslösung tumorspezifischer zellulärer Immunantworten führen. Wünschenswert ist in diesem Zusammenhang besonders eine zellspezifische Expression von Transgenen. Im Rahmen der vorliegenden Arbeit wurden deshalb lentivirale Vektoren entwickelt, mit deren Hilfe eine konstitutive Genexpression in B-Zellen ermöglicht wurde. Die Beschränkung der Genexpression auf B-Zellen wurde durch die Wahl eines entsprechenden zellspezifischen Promotors gewährleistet. Lentivirale Vektoren haben sich in jüngster Zeit zu interessanten Werkzeugen für die Gentherapie sowie zu vielversprechenden Vakzinkandidaten entwickelt. Mit Hilfe dieser Gentransfervektoren können zahlreiche verschiedene Zelltypen, darunter auch hämatopoetische Zellen einschließlich der Immunzellen, in vitro und in vivo transduziert werden, wobei die Spezifität der Antigenexpression auf der Wahl eines entsprechenden Promotors beruht. Als Transgene wurden das verbesserte grün-fluoreszierende Protein eGFP (enhanced green fluorescent protein; im Folgenden als „GFP“ bezeichnet) und das Hühnerei-Albumin (im Folgenden als „OVA“ bezeichnet) exprimiert. Anhand umfangreicher Analysen der GFP-Expression in Knochenmarkschimären konnte die B-Zellspezifität der generierten Vektoren überprüft werden. Desweiteren wurden die lentiviralen Vektoren auch systemisch (intravenös) angewandt. Hier konnte gezeigt werden, dass die Spezifität der Genexpression mit dieser Applikationsroute erhalten bleibt, wohingegen die Expressionsstärke im Vergleich zu den Chimären erheblich zurückgeht. Funktionelle Studien mit B-zellspezifischen, OVA-kodierenden lentiviralen Vektoren konnten jedoch belegen, dass die Expressionsstärke nach systemischer Anwendung noch ausreichend war, um eine OVA-spezifische zelluläre Immunität zu stimulieren. Damit erwies sich das System auch hinsichtlich möglicher therapeutischer Anwendungen, z.B. als Vakzine, als funktionell. Eine humorale Antikörperantwort gegen virale Hüllproteine bzw. gegen OVA konnte nicht nachgewiesen werden. Zusammenfassend belegen diese Daten, dass die systemische Anwendung B-zellspezifischer lentiviraler Vektoren möglich ist und einen interessanten Ansatz zur Generierung neuer Vakzine bieten kann. Denkbar wäre beispielsweise eine Anwendung bei der Unterstützung therapeutischer Vakzinierungen. Ein weiterer interessanter Aspekt in diesem Zusammenhang ist die Rolle der B-Zelle als antigenpräsentierende Zelle, die mit Hilfe einer temporären Kontrolle der Genexpression genauer untersucht werden könnte. Aus diesem Grunde wurde im Rahmen der vorliegenden Arbeit auch ein induzierbares gammaretrovirales Genexpressionssystem entwickelt, um ein gezieltes An- und Abschalten der Genexpression in B-Zellen zu erreichen. Die Beschränkung auf B-Zellen wurde hier ebenfalls durch die Wahl eines entsprechenden zellspezifischen Promotors gewährleistet. Detaillierte in vivo-Analysen des Expressionssystems in Knochenmarkschimären zeigten jedoch, dass es einerseits nach Induktion nur zu einer schwachen Transgenexpression kam und es andererseits eine unerwünschte Hintergrundexpression sowohl in B-Zellen als auch in Nicht-B-Zellen gab. Aus diesen Gründen musste von der Anwendung dieses Systems für geplante Studien zur Rolle der Genexpression während verschiedener Stadien der B-Zellentwicklung abgesehen werden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
In der vorliegenden Arbeit wurden A549 Zellen, als Modell für Epithelzellen der Lunge, mittels nicht-viralen Gentransfers mit pDNA bzw. mRNA kodierend für das sekretorische Protein mSEAP transfiziert. Die höchste Transgen-Expression konnte durch den mRNA-vermittelten Gentransfer erreicht werden, unabhängig von dem verwendeten Genvektor. Die Messung der Aktivität von mSEAP im Medium nach mRNA Transfektion mit Liposomen ergab eine Konzentration von maximal 1 ng/50 µl nach 24h, 5 ng/50 µl nach 48h und 7,5 ng/50 µl nach 72h. Für die pDNA Transfektion ergaben sich Konzentrationen für mSEAP von 400 pg/50µl nach 24 h, 700 pg/50 µl nach 48 h und 800pg/50 µl nach 72 h. Es konnte gezeigt werden, dass es bei der Verwendung von mRNA - vor allem nach Transfektion mit dem kationischen Lipid DMRIE-C - zu einer 9-fachen Steigerung der Proteinsekretion in das Medium der kultivierten Zellen kommt. Weiterhin waren ca. 45% der Zellen bei Verwendung von Lipoplexen mit DMRIE-C/mRNA im Gegensatz zu 15% nach Transfektion von pDNA positiv für mSEAP. Nach Transfektion der mRNA mit dem kationische Polymer b-PEI konnten Konzentrationen von mSEAP im Medium von 10pg, 15pg und 50pg in 50µl Medium nach 24h, 48h und 72h gemessen werden. Für die Magnetofektion von mRNA ergeben sich Mengen von ca. 150pg, 250pg und 400pg in 50µl Medium nach 24h, 48h und 72h. Dies entspricht im Vergleich zur Verwendung von pDNA einer 3,3-fachen Steigerung nach Transfektion von mRNA/b-PEI Komplexen, mit der Methode der Magnetofektion einer 4-fachen Steigerung der Proteinexpression. Die erhöhte Proteinexpression kann auf die intrazelluläre Barriere des nukleären Imports von pDNA, welche bei der Verwendung von mRNA nicht notwendig ist, zurückgeführt werden. Die Unterschiede des endosomalen „Escape“ - und dem daraus resultierenden Verhältnis freier mRNA zu komplexierter mRNA im Zytoplasma - könnte eine Erklärung für die geringere Effizienz von Polyethyleniminen im Vergleich zu kationischen Lipiden bei dem Transfer von mRNA sein. Weiterhin konnte mit diesem Modell gezeigt werden, dass humane alveolare Epithelzellen des Adenokarzinoms (A549) - als Modell für humane Lungenepithelzellen - imstande sind, zellfremde Proteine nach Transfer genetischen Materials zu translatieren und zu sezernieren. Eine pulmonale Applikation von therapeutischen Genen kodierend für sekretorische Proteine mittels Vernebelung könnte als nicht-invasive Methode z.B. für die Therapie von Hämophilie A oder B eine Rolle spielen. Weiterführende in vivo Versuche könnten Aufschluss über Serumkonzentrationen des sekretorischen Proteins nach pulmonaler Applikation bringen. Die Verwendung von mRNA als therapeutischem genetischem Material zeigt hierbei Vorteile gegenüber von pDNA, aufgrund der gesteigerten Transgen -Expression, der verminderten Dosis an Transferreagenz, sowie dem fast gänzlich ausgeschlossenen Risiko der insertionellen Mutagenese.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Bei der Tumorangiogenese ist die Balance zwischen den pro- und antiangiogenen Faktoren zu Gunsten der proangiogenen Faktoren hin verschoben. Therapeutisch lässt sich die Tumorangiogenese durch eine Hemmung proangiogener Faktoren wie VEGF auch im klinischen Setting wirksam beeinflussen. In präklinischen Modellen ließ sich zeigen, dass auch durch Gabe von physiologisch vorkommenden antiangiogenen Faktoren wie Endostatin und Angiostatin das Wachstum experimenteller Tumoren signifikant gehemmt werden konnte. Angiostatin besteht aus den ersten Kringel-Domänen des Plasminogens und wird bei einer Reihe von physiologischen Prozessen im Körper durch proteolytische Spaltung freigesetzt. Es inhibiert primäres und metastatisches Tumorwachstum durch Hemmung der Tumorneoangiogenese. Da diese löslichen Faktoren eine sehr kurze Halbwertszeit aufweisen, ist eine Gabe als Protein wenig erfolgversprechend und erste klinische Daten zur Applikation von Endostatin als Protein in klinischen Studien waren enttäuschend. Ein effizienter alternativer Applikationsweg für diese Faktoren stellt zweifellos eine gentherapeutisch vermittelte systemische Überexpression dar, wie sie beispielsweise bei Gerinnungsfaktoren bereits in ersten klinischen Studien angewendet worden ist. Sowohl die Leber als auch die Muskulatur können dabei als Orte der Überexpression nach Gentransfer genutzt werden. Der Wahl und Optimierung des Vektorsystems kommt bei einer solchen Strategie ein zentraler Stellenwert zu. In der hier vorgelegten Arbeit wurde ein Vektorsystem basierend auf Adeno-assoziierten Viren (AAV) für die antiangiogene Gentherapie entwickelt und optimiert. Konventionelle AAV-Vektoren basieren auf einem einzelsträngigen DNA Genom, welches von infizierten Zellen zuerst in ein doppelsträngiges Genom umgewandelt werden muss, um eine Genexpression zu ermöglichen. Dieser Schritt ist limitierend auf dem Weg zur Transgenexpression. In dieser Arbeit wurde ein sogennanter „self compementary“ AAV-Vektor (scAAV) hergestellt und charakterisiert, der in der Zielzelle primär eine doppelsträngige DNA zur Verfügung stellt. Die Strategie beruhte dabei auf Daten der Arbeitsgruppe von Prof. Dr. J. Samulski, Capel Hill, USA. Es wurde auf dieser Basis ein AAV-Konstrukt zur Expression des Green-Fluorescent Protein (GFP) als Markergen und ein weiteres Konstrukt zur Expression von Angiostatin kloniert und in einem AAV-Serotyp 2 verpackt. Das scAAV-Vektorsystem zeigte in vitro eine um eine log-Stufe stärkere Genexpression (GFP) als konventionelle AAV-Vektoren. Damit wurden die Daten der amerikanischen Arbeitsgruppe bestätigt. In funktionellen in-vitro-Experimenten zeigten sich die scAAV/Angiostatin-Vektoren den konventionellen AAV/Angiostatin-Vektoren signifikant überlegen bei der Hemmung der Proliferation von Endothelzellen. In der Zusammenfassung konnte im Rahmen dieser Arbeit der Grundstein gelegt werden für die Anwendung von scAAV zur Expression von Angiostatin im Rahmen der Gentherapie von Tumoren.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Hintergrund Humane mesenchymale Stammzellen sind ein viel versprechendes Ziel für die ex vivo Gentherapie, und Lentiviren sind exzellente Vehikel für den Gentransfer in hMSCs, da sie hohe Transduktionsfrequenzen mit langfristiger Genexpression erreichen. Dennoch könnte die Seneszenz von hMSCs die therapeutische Anwendung, infolge von zeitaufwendiger Zellselektion und Virus Titration, limitieren. Diese Arbeit beschreibt optimierte Protokolle für hoch effizienten ex vivo lentiviralen Gentransfer in hMSCs und eine schnelle und verlässliche Methode, um den funktionellen lentiviralen Titer mittels quantitativer Polymerase-Kettenreaktion (qPCR) zu bestimmen. Methoden EGFP wurde als Markergen/-protein verwendet, um verschiedene lentivirale Expressionsvektoren herzustellen. Die Produktion von Lentiviren wurde mit verschiedenen Verpackungssystemen getestet. Der Prozentsatz transduzierter Zellen wurde durch Polybrene und Blasticidinselektion erhöht. hMSCs von verschiedenen Spendern wurden mittels PCR und Western Blot analysiert. Regulierte Genexpression wurde durch Herstellung eines Tet-On selbstregulierten Expressionsvektors erreicht. Mit einem p24 ELISA-Test wurden übrig gebliebene virale Partikel im Zellkulturüberstand detektiert. Die Effizienz des lentiviralen Gentransfers wurde mittels Fluoreszenz-Mikroskopie beobachtet und mittels qRT-PCR und FACS-Analyse quantifiziert. Die lentiviralen Titer wurden mit qRT-PCR der exprimierten Transgene bestimmt. Die hMSC Differenzierung wurde histologisch untersucht. Ergebnisse Selbstinaktivierende lentivirale Vektoren der dritten Generation zeigten hoch effizienten Gentransfer in hMSCs bei der Verwendung von Polybrene. Die Blasticidinselektion hat den Prozentsatz der transgenen Zellen weiter erhöht unter Selektion von Zellen die mehrere Transgenkopien tragen. Die positiven Effekte von Polybrene und der Blasticidinselektion sind nicht von hMSCs eines speziellen Spenders abhängig. Präzise Regulation der Genexpression wurde durch Herstellung eines selbstregulierten Tet-On-Expressionssystems erreicht. Keine viralen Antigene wurden im Zellkulturüberstand nach aufeinander folgenden Medienwechseln detektiert, was auf die Abwesenheit von infektiösen Partikeln nach einigen Tagen hindeutet. In dieser Arbeit wurde ein starker linearer Zusammenhang zwischen der Virusverdünnung und der Stärke der Transgenexpression mittels qPCR Analysen beobachtet, wodurch die Virustitration durch Quantifizierung der Transgenexpression ermöglicht wird. Abschließend wurde durch Differenzierung in die adipogene, osteogene und chondrogene Richtung gezeigt, dass transduzierte hMSCs ihren Stammzellcharakter beibehalten haben und dass die Transgenexpression durch die Differenzierung nicht beeinflusst wurde. Schlussfolgerungen Die Quantifizierung der Transgen-Kopienanzahl durch qRT-PCR ist eine schnelle und verlässliche Methode, um den funktionellen lentiviralen Titer nach dem ex vivo Gentransfer in hMSCs zu bestimmen. Die in dieser Arbeit optimierte und charakterisierte Methode für die effiziente lentivirale Transduktion von humanen mesenchymalen Stammzellen, in Verbindung mit regulierbarer Transgenexpression, ist ein sicheres, verlässliches und leistungsstarkes Verfahren und bildet eine aussichtsreiche Grundlage für zukünftige Gentherapie und Tissue Engineering Anwendungen in hMSCs.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Tumorerkrankungen stellen die zweithäufigste Todesursache in den Industrieländern nach den kardiovaskulären Erkrankungen dar. Trotz moderner Therapien verlaufen diese Erkrankungen vor allem im fortgeschrittenen Stadium immer noch häufig letal. Es besteht also Bedarf neue, innovative Therapieansätze zu verfolgen und zu optimieren. Die Gentherapie ermöglicht die Umsetzung attraktiver Strategien zur Behandlung von Tumorerkrankungen. Solche Strategien basieren entweder auf einem Gentransfer in Tumorzellen mit dem Ziel diese so zu modifizieren, dass sich daraus ein anti-Tumor Effekt ergibt (Überexpression immunmodulatorischer Faktoren, Suizidgene), oder auf der systemischen Überexpression solubler Faktoren, die zu einer Hemmung des Tumorwachstums führen (z. B. antiangiogene Faktoren). Solche Ansätze konnten in jüngster Zeit erfolgreich in Tiermodellen umgesetzt werden. Ergebnisse aus klinischen Studien sind demgegenüber bislang enttäuschend ausgefallen. Limitationen der verwendeten Vektorsysteme werden dafür verantwortlich gemacht. Daher ist die weitere Optimierung der Vektorsysteme von entscheidender Bedeutung. Die vorliegende Arbeit beschäftigt sich mit der Optimierung des Tumor-Gentransfers in soliden Tumoren basierend auf dem Adeno-assoziierten Virus (AAV). AAV ist ein einzelsträngiges DNS-Virus. Auf dem Weg zur Transgen-Expression stellt die Doppelstrangsynthese einen wesentlichen limitierenden Schritt dar. In dieser Arbeit wurden modifizierte AAV-Vektoren, die primär eine doppelsträngige DNS zur Verfügung stellen, im Hinblick auf die Effizienz des Tumor-Gentransfers unter in vitro- Bedingungen systematisch untersucht. Es wurden dazu AAV-Vektoren hergestellt, die primär eine doppelsträngige DNS zur Verfügung stellen. Es konnte gezeigt werden, dass bei Verwendung von doppelsträngigem AAV (dsAAV), bei dem etwa 10 % der Vektoren einer Präparation doppelsträngige DNS aufweisen, die Transduktionsrate in soliden Tumorzelllinien bis auf das 4-fache erhöht werden kann. Durch die Verwendung eines self-complementary AAV (scAAV) Vektors, bei den in über 90 % Viren generiert werden, die eine doppelsträngige DNS aufweisen, konnte die Transduktionsrate weiter bis auf das bis zu 17-fache gegenüber konventionellen einzelsträngigen AAV gesteigert werden. Der Abbau von AAV über Proteasomen wurde in Epithelien der Atemwege als ein Faktor charakterisiert, der für eine Verminderung der Gentransfer-Effizienz verantwortlich ist. In dieser Arbeit konnte durch Einsatz eines Proteasomen-Inhibitors (MG132) gezeigt werden, dass dieser Mechanismus auch für den Gentransfer in Tumorzellen eine wichtige Rolle spielt. Dies trifft vor allem für die Tumorzelllinien zu, die durch MG132 nicht in die Apoptose getrieben werden. In vitro konnte somit durch kombinierte Verwendung von scAAV sowie MG132 der Tumor-Gentransfer in bestimmten Zelllinien -wie zum Beispiel in der Kolonkarzinom-Zelllinie HT29 um den Faktor 20- verbessert werden. Bei der Anwendung der modifizierten AAV-Vektoren in einem HeLa-SCID-Mausmodell zeigte sich aber eine deutliche Abnahme der Gentransfer-Effizienz unter in vivo-Bedingungen. In vergleichenden Experimente an Tumor-Spheroiden von HeLa-Zellen und einer humanen Neuroblastom-Zelllinie wurde herausgearbeitet, dass die extrazelluläre Matrix (ECM) eine hemmende Rolle beim AAV-vermittelten Gentransfers in HeLa-Spheroide ausübt, während sie beim Gentransfer in Tumoren neuronalen Ursprungs (Neuroblastom) signifikant geringer ausfällt. Um AAV als Vektor für den in vivo Tumor-Gentransfer einsetzen zu können, müssen Strategien gefunden werden, um die Barriere, die durch die extrazelluläre Matrix gegeben ist, zu überwinden. Ein Targeting der Vektoren, das heißt, eine gezielte Veränderung des natürlichen Tropismus der Viren, stellt dazu einen attraktiven Lösungsansatz dar.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die ersten transgenen Tiere wurden durch viralen Gentransfer erzeugt. Für die initialen Versuche wurden prototypische Retroviren, wie der murine Leukämievirus (MuLV), verwendet. Es stellte sich jedoch heraus, daß die proviralen Gene in diesen Mäusen stark methyliert waren und nicht oder nur in geringen Mengen exprimiert wurden ("gene silencing"). Ein Durchbruch für die virale Transgenese kam erst mit der Verwendung lentiviraler Vektoren. Lentiviren sind in der Lage eine Vielzahl verschiedener Zelllinien (auch terminal differenzierte Zellen) effizient zu transduzieren und ihre virale DNA stabil in das Wirts-Chromosom zu integrieren. Obwohl bereits transgene Nagetiere durch lentivirale Vektoren erzeugt werden konnten, waren initiale Versuche in höheren Säugetieren (Affen) nicht erfolgreich. Dies warf die Frage auf, ob lentiviraler Gentransfer in höheren Säugetieren anwendbar ist. Transgene Schweine und Rinder wären von großer biomedizinischer Bedeutung. Ihre potentiellen Anwendungsmöglichkeiten reichen von der Produktion pharmazeutisch relevanter Proteine über klinische Modelle zur Untersuchung humaner Erkrankungen bis hin zur Xenotransplantation. Obwohl mit der klassischen DNA-Mikroinjektion transgene Schweine und Rinder erzeugt werden können, ist das Verfahren in diesen Spezies jedoch sehr ineffizient und dementsprechend kostenintensiv. Da hohe Produktionskosten den möglichen Anwendungen entgegenstehen, wurde versucht ein effizientes Verfahren, daß auf lentiviralem Gentransfer beruht, zu entwickeln. Für die Entwicklung der lentiviralen Transgenese in Schweinen wurden Zygoten mit Lentiviren infiziert und in Empfänger transferiert. Die verwendeten Vektoren trugen einen eGFP-Reporter, um die Effizienz der Transduktion schnell und einfach beurteilen zu können. Von den 46 geborenen Ferkeln waren 32 transgen und 30 zeigten Transgen-Expression (65%). Die hohe Transgenese-Rate, die mit dem lentiviralen Gentransfer erreicht werden konnte, stellt eine 27fache Steigerung der Effizienz im Vergleich zur klassischen DNA-Mikroinjektion dar. Die Untersuchung der transgenen Ferkel zeigte Transgen-Expression in allen Organe und keinen sichtbaren Mosaicismus der F0-Tiere. Des weiteren konnte eine nahezu lineare Korrelation zwischen der Anzahl der integrierten Proviren und der Höhe der Transgen-Expression gezeigt werden. Die Expression der lentiviralen Transgene war stabil und wurde nicht nach der Geburt der Tiere abgeschaltet. Durch die Wahl geeigneter Promotoren war es möglich sowohl ubiquitäre, als auch Gewebe-spezifische Expression (in der Haut) zu erreichen. Die integrierten Proviren wurden über die Keimbahn an die nächste Generation weitergegeben und in der F1-Generation unverändert stark exprimiert. Die Weitergabe der integrierten Proviren an die nächste Generation ist die Basis für Erzeugung transgener Linien. Zur Erzeugung transgener Rinder wurden initial ebenfalls Zygoten infiziert. Diese wurden in vitro bis zum Blastozysten-Stadium (Tag 7) kultiviert. Überraschenderweise zeigten die Blastozysten nur sehr geringe Transgen-Expression. Nachdem durch Transfer solcher Blastozysten keine transgenen Nachkommen erzeugt werden konnten, wurde zur Infektion von Oozyten (vor der Befruchtung) gewechselt. In den aus Oozyten-Infektion stammenden Blastozysten war die Gentransfer-Rate wesentlich höher (insgesamt 83% eGFP+ Blastozysten) und die eGFP-Fluoreszenz um ein Vielfaches intensiver. Acht eGFP-positive Blastozysten wurden in vier Empfänger transferiert, was zur Geburt von vier transgenen Rindern führte. Alle erzeugten transgenen Rinder zeigten stabile Expression des Transgens in allen untersuchten Organen. Als eine weitere Methode zur Erzeugung lentiviral transgener Rinder wurde der Kerntransfer (NT) untersucht. Hierzu wurden Haut-Fibroblasten vom Rind lentiviral transduziert und als Donor-Zellen verwendet. Dieser Ansatz war zwar wesentlich ineffizienter als die direkte Infektion von Oozyten, trotzdem konnte ein transgenes Rind erzeugt werden, das starke Transgen-Expression zeigte. Da die Expression lentiviraler Integranten offenbar durch das klassische Klonen nicht abgeschaltet wird, eröffnet diese Methode viele Möglichkeiten für die Produktion transgener Tiere. Im letzten Teil dieser Arbeit wurde die epigenetische Regulation lentiviraler Vektoren untersucht. Dazu wurden transgene Founder-Schweine verpaart, um Tiere mit einzelnen lentiviralen Integranten (F1-Generation) zu erzeugen. Die Expressions-Analyse dieser Schweine zeigte, daß etwa 1/3 der Proviren nur schwach bzw. gar nicht exprimierten. Durch Southern Blot Analysen mit Methylierungs-sensitiven Restriktions-Enzymen wurde der Grad der proviralen Methylierung bestimmt. Dieser korrelierte negativ mit der Transgen-Expression. Zur genaueren Analyse der Methylierungs-Dichte wurden die verschiedenen Proviren mittels Bisulfit-Sequenzierung untersucht. Es stellte sich heraus, daß in den schwach bzw. nicht-exprimierenden Integranten nahezu alle CpG-Dinukleotide innerhalb der untersuchten Sequenzen methyliert waren. Um den Einfluß der Methylierung auf die Expression zu untersuchen, wurde von einem nicht-exprimierenden Schwein Haut-Fibroblasten isoliert und mit dem Methylase-Inhibitor 5-AzaC inkubiert. Dadurch konnte die abgeschaltete eGFP-Expression wieder reaktiviert werden. Dagegen hatte der Histon-Deacetylase Inhibitor TSA keinen starken Einfluß auf die Transgen-Expression. Chromatin-Modifikationen durch TSA-abhängige HDACs scheinen also bei der epigenetischen Regulation lentiviraler Vektoren in Schweinen keine entscheidende Rolle zu spielen. Abschließend konnte durch einen Methylierungs-sensitiven Southern Blot gezeigt werden, daß der Grad der DNA-Methylierung durch Hemmung zellulärer Methylasen (mit 5-AzaC) signifikant reduziert wurde. Lentiviraler Gentransfer stellte sich als eine sehr effiziente Methode zur Erzeugung transgener Schweine und Rinder heraus. Das Verfahren zeichnet sich insbesondere durch hohe Transgenese-Raten und hohe Transgen-Expression aus. Außerdem werden die lentiviralen Integranten über die Keimbahn an die nächste Generation weitergegeben. Obwohl die Transkription einiger Proviren epigenetisch reguliert wurde, ist die Häufigkeit des aufgetretenen Silencings deutlich geringer als bei prototypischen Retroviren.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07
Die Generierung genetisch modifizierter Organspendertiere stellt eine Möglichkeit dar, die Überlebenszeit eines porcinen Xenotransplantats in einem humanen Empfänger zu verlängern. So könnte durch Transgenexpression von TGF-b1 oder TRAIL auf dem Xenotransplantat möglicherweise die zelluläre Abstoßungsreaktion inhibiert werden. Grundlagen zur Untersuchung dieser Strategien in-vivo wurden durch die hier analysierten Tiermodelle in Maus und Schwein geschaffen. In Mäusen wurde ein Modell eines Mifepristone-induzierbaren Genregulatorsystems etabliert, das die gewebespezifische und zeitlich kontrollierte Expression von konstitutiv aktivem TGF-b1 ermöglichen sollte. In diesem System sollte der chimäre Transaktivator GLVPc nur im Herzen exprimiert werden, und dieser sollte in doppelt-transgenen (dtg) Mäusen erst nach Verabreichung des Induktors Mifepristone eine auf das Herz beschränkte, zeitlich kontrollierbare Expression von konstitutiv aktivem TGF-b1 induzieren. Eine herzspezifische Expression sollte durch den murinen alpha myosin heavy chain (aMyHC)-Promotor erreicht werden. Schon die Analyse der einfach-transgenen Mauslinien ergab jedoch eine ubiquitäre Expression von mRNA des Transaktivators bzw. des konstitutiv aktiven TGF-b1 in allen untersuchten Organen. Außerdem wurde im Herzen von dtg Mäusen eine von der Mifepristone-Gabe unabhängige hohe Transgenexpression von TGF-b1 nachgewiesen und eine Expressionssteigerung von TGF-b1 nach Mifepristone-Gabe war nicht reproduzierbar. Auffällig war überdies die hohe Letalität dtg Mäuse innerhalb der ersten vier Lebenswochen. Somit wurde durch das verwendete Genregulationssystem keine auf das Herz beschränkte, zeitlich kontrollierbare Transgenexpression von TGF-b1 erreicht. Da jedoch konstitutiv aktives TGF-b1 im Myokard dtg Mäuse synthetisiert wurde, könnten diese Herzen dennoch für Transplantationsversuche verwendet werden. Dadurch wäre zumindest die Untersuchung der Wirkung von TGF-b1 auf das Transplantatüberleben möglich. Sollten transgene Schweine für die Expression von konstitutiv aktivem TGF-b1 erstellt werden, so wäre allerdings ein anderes bzw. modifiziertes Genregulationssystem zu verwenden, welches eine sichere zeitliche und gewebespezifische Kontrolle der TGF-b1-Expression gewährleistet. Des Weiteren dürfte der bei den Mäusen verwendete aMyHC-Promotor für eine hohe Transgenexpression im Schweineherzen nicht geeignet sein. Das untersuchte porcine Tiermodell umfasste verschiedene transgene Schweinelinien, die ein Expressionskonstrukt für humanen TRAIL unter der Kontrolle des murinen H-2Kb-Promotors integriert haben. Transgenexpression wurde in zahlreichen Organen mit höchsten Expressionsniveaus in Milz und Lunge detektiert, was auf eine gewebespezifische Expression des Transgens durch den murinen Promotor hinwies. Des Weiteren wurde humanes TRAIL-Protein nur in der Zellmembranfraktion von Gewebelysaten detektiert und sollte daher für eine Interaktion mit Rezeptoren zugänglich sein. Überdies war eine Regulation der humanen TRAIL-Expression durch den murinen Promotor in aktivierten transgenen Lymphozyten zu beobachten, welche erhöhte Expressionsniveaus gegenüber nicht stimulierten Lymphozyten aufwiesen. Daher kann vermutet werden, dass die humane TRAIL-Expression bei Auftreten von Entzündungsreaktionen erhöht sein dürfte. Die biologische Wirksamkeit des Transgens wurde durch einen TRAIL-spezifischen Apoptose-induzierenden Effekt von transgenen Lymphoblasten auf Jurkat-Zellen gezeigt. All dies sind Voraussetzungen für einen möglichen protektiven Effekt von humanem TRAIL zur Verhinderung einer Zell-vermittelten Xenotransplantatabstoßung. Die Selektion von bisher nicht oder wenig untersuchten Linien erfolgte durch Analyse der Transgenexpression auf peripheren Blutlymphozyten. Dies stellte einen Kompromiss dar, um kosten- und zeitsparend gut exprimierende transgene Schweine für die Zucht von homozygoten und/oder multitransgenen Tieren zu selektionieren. Nicht nur das Expressionsmuster von humanem TRAIL und die Regulation durch den H-2Kb-Promotor in transgenen Schweinen, sondern auch die Analyse der Sequenz und der Expression des endogenen porcinen TRAIL sind in Bezug auf ihren möglichen Einfluss auf des Überleben des Xenotransplantats von Interesse. Die Aminosäuresequenz von porcinem TRAIL hat 86 % Ähnlichkeit mit der von humanem TRAIL. Eine mögliche Interaktion von porcinem TRAIL mit humanen Rezeptoren ist anzunehmen. Außerdem wurde eine gewebespezifische und entwicklungsabhängige Expression von porcinem TRAIL in zahlreichen Organen nachgewiesen. Dies dürfte mit den verschiedenen Funktionen von porcinem TRAIL in Zusammenhang stehen.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 02/07
Die vorliegende Studie war zunächst als eine klinische Studie der Phase II geplant, in der mit einer Dosis von 5x108 IU AdV-hIL-2 und AdV-feIFNg eine intratumorale immunstimulierende Therapie bei Katzen mit Fibrosarkom durchgeführt werden sollte. Als Ausgangsdosis orientierte man sich dabei an der von WIELAND (2002) erprobten Dosis von je 5x108 IU rekombinanten viralen Vektoren (AdV-hIL-2 bzw. AdV-feIFNg). Durch das Auftreten starker Toxizitäten musste die Studie abgebrochen werden. Daher wurde eine klinische Studie der Phase I durchgeführt, bei der sowohl der Zeitpunkt als auch die Dosierung der Therapie verändert wurden. Ziel der Studie war es, anhand einer Dosisfindung die maximal tolerierbare Dosis der präoperativen intratumoralen immunstimulierenden Therapie mit AdV-hIL-2 und AdV-feIFNg herauszufinden. Dazu wurde insgesamt 20 Tiere zusätzlich zur chirurgischen Entfernung des Tumors mit einer Dosis von je 1x107 IU bis 5x108 IU Virus behandelt, wovon jeweils drei Patienten die Dosis 1x107 IU, 5x107 IU und 1x108 IU und 11 Patienten die Dosis von 5x108 IU erhielten. Acht Katzen wurden als Kontrolltiere ausschließlich einer chirurgischen Therapie unterzogen. Alle Katzen wurden im Verlauf der Studie regelmäßig tierärztlich untersucht und alle dabei erfassten klinischen, hämatologischen und klinisch-chemischen Parameter in einer CTC-Tabelle erfasst und hinsichtlich ihrer Toxizität bewertet. Zusätzlich wurden von allen Katzen der höchsten (5x108 IU AdV-hIL-2 und AdV-feIFNg) und zweithöchsten (1x108 IU AdV-hIL-2 und AdV-feIFNg) sowie von einer Katze der 5x107 IU AdV-hIL-2 und AdV-feIFNg-Dosierungsgruppe die Serum-hIL-2-Spiegel bestimmt. Erst bei der höchsten und klinisch schlecht tolerierten Dosis von 5x108 konnte die Transgenexpression mit Abschwemmung von IL-2 in den Blutkreislauf durch messbare Serum-Interleukin-2-Spiegel nachgewiesen werden. Als auftretende Toxizitäten konnten Erhöhung der Körpertemperatur, Gewichtsreduktion, Beeinträchtigung des Allgemeinbefindens, Abnahme des Hämatokrits, Thrombozytopenie und Leukozytopenie beobachtet werden. Anhand dieser Ergebnisse hat sich eine Dosis von je 1x108 IU AdV-hIL-2 und AdV-feIFNg als von den Patienten gut tolerierte Dosis herausgestellt. Diese Dosis wurde im Anschluss in einer klinischen Studie der Phase II auf ihre Wirksamkeit geprüft.
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 01/07
Knorpeldefekte lassen sich nicht zufriedenstellend therapieren, da bis heute ein kontrollierter regenerativer Gewebeaufbau unmöglich war. Eine neue Strategie wäre eine Kombination von Chondrozytentransplantation mit gentherapeutischen Methoden, z. B. die stabile Ex-vivo-Transduktion von primären Chondrozyten mit retroviralen Vektoren, die gewebeaufbauende Zytokine exprimieren. Ziel der vorliegenden Arbeit war deshalb Etablierung und Optimierung des retoviralen Gentransfers in primäre Kaninchenchondrozyten und die Beobachtung von Verbleib, Vitalität und Genexpression der Zelltransplantate in vivo. Transduzierte Zellen sollten ohne weitere Selektionsverfahren für eine spätere Transplantation verwendet werden können. Da regulierbare Genexpression in einem solchen Modell von Vorteil ist, war ein weiteres Ziel die Entwicklung retroviraler Tet-On-Vektoren. Es wurden konstitutiv exprimierende retrovirale Vektoren und Tet-On-Vektoren kloniert und Retroviren mit unterschiedlichen Infektionsspektren generiert. Effizienz und Stabilität des Gentransfers wurden ohne weitere Selektionsverfahren mit Hilfe konstitutiv nlslacZ-exprimierender retroviraler Vektoren in vitro und in vivo beurteilt. Zusätzlich wurde stellvertretend für ein therapeutisches Gen der Wachstumsfaktor hbmp-2 transferiert. Retrovirale Ein-Vektor-Systeme, die den reversen Transaktivator rtTA2s-M2 und den Tet-responsive Promotor enthielten, wurden in vitro durch die Expression der Reportergene nlslacZ oder egfp in verschiedenen Zelllinien getestet. Mit VSV.G-pseudotypisierten Retroviren konnte eine Transduktionseffizienz von bis zu 99 % erzielt werden, amphotrope Viren waren deutlich weniger effizient. Transduzierte Chondrozyten zeigten in vitro über mindestens 12 Wochen eine stabile Transgenexpression, die auch in 3D-Kultur auf Kollagenschwämmen fortbestand. In vivo war für mindestens drei Wochen Transgenexpression nachweisbar. hbmp-2 transduzierte Zellen exprimierten zudem dieses Transgen in vitro. Die neu entwickelten Tetrazyklin-induzierbaren Retroviren zeigten eine starke Basalexpression bei nur geringer Steigerung nach Induktion mit Doxyzyklin. Die Transduktionseffizienz dieser Retroviren war wesentlich geringer als bei der Verwendung konstitutiv exprimierender Vektoren. VSV.G-pseudotypisierte Retroviren sind eine optimale Methode für den retroviralen Gentransfer in primäre Kaninchenchondrozyten ohne weitere Selektionsverfahren. Neben dem Transfer von Markergenen ist dies die Grundlage für den Transfer von therapeutischen Genen, um deren Effekt in vitro und in vivo zu untersuchen. Zudem wurde ein neuartiger universal einsetzbarer Vektor entwickelt, der die Klonierung in die retroviralen U3 Region und somit die Konstruktion retroviraler Double-copy-Vektoren erlaubt. Die Entwicklung zuverlässiger retroviraler Tet-On-Vektoren bleibt weiterhin eine Herausforderung für die Zukunft.