Podcasts about erdmantel

  • 12PODCASTS
  • 14EPISODES
  • 32mAVG DURATION
  • 1MONTHLY NEW EPISODE
  • Apr 8, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about erdmantel

Latest podcast episodes about erdmantel

Methodisch inkorrekt
Mi341 – "Erdcrouton"

Methodisch inkorrekt

Play Episode Listen Later Apr 8, 2025 109:47


Folge vom 08.04.2025, diesmal mit einem tropfenden Erdmantel, Sonnen-Geräuschen und chaotischen Menschenmassen. Du möchtest mehr über unsere Werbepartner erfahren? Hier findest du alle Infos & Rabatte: https://linktr.ee/methodischinkorrekt

Zeitfragen-Magazin - Deutschlandfunk Kultur
Versunkene Welten im Erdmantel

Zeitfragen-Magazin - Deutschlandfunk Kultur

Play Episode Listen Later Feb 27, 2025 5:32


Stang, Michael www.deutschlandfunkkultur.de, Zeitfragen

welten stang erdmantel
Wissensnachrichten - Deutschlandfunk Nova
Krokodile, Staus, Erdmantel

Wissensnachrichten - Deutschlandfunk Nova

Play Episode Listen Later Jan 10, 2024 5:15


Die Themen in den Wissensnachrichten: +++ Krokodile sprechen eigene Liebessprache +++ Autofahrende in Hamburg brauchen am längsten +++ China will bis zum Erdmantel bohren +++**********Weiterführende Quellen zu dieser Folge:UniSC researchers collecting ‘the love language' of crocodiles, University of the Sunshine Coast, 2. Januar 2024Tomtom Traffic IndexGeneralization of beneficial exposure effects to untreated stimuli from another fear category, Translational Psychiatry, 19. Dezember 2023Chinas erstes selbst entwickeltes Ultra-Tiefsee-Bohrschiff absolviert Testfahrt, People's Daily Online, 28 Dezember 2023A plant virus manipulates the long-winged morph of insect vectors, PNAS, 8. Januar 2024Alle Quellen findet ihr hier.**********Ihr könnt uns auch auf diesen Kanälen folgen: Tiktok und Instagram.

Dr. Schmidt erklärt die Welt
Wohin treiben die Kontinente?

Dr. Schmidt erklärt die Welt

Play Episode Listen Later Nov 17, 2023 15:53


Die sieben Kontinente auf der Erde könnten in ein paar 100 Millionen Jahren zu einem großen Superkontinent werden. Wie passiert das? Die bewegen sich, das kann man durch GPS ziemlich genau messen. Die Kontinentränder bewegen sich derzeit zwischen ein und zehn Zentimetern pro Jahr. Das ist nicht rasend viel, wenn man bedenkt, wie groß die sind. Aber wir reden ja von Millionen Jahren, und Millionen von Zentimetern sind dann schon eine ganz andere Größenordnung. Es gab schon mal einen Superkontinent. Vor mindestens 300 Millionen Jahren gab es schon mal einen Kontinent, bei dem praktisch alle uns heute bekannten Landmassen verbunden waren. Die Idee, dass das so gewesen sein muss, ist schon recht alt. Als im 16. Jahrhundert die ersten halbwegs genauen Weltkarten entstanden sind, hat einer der Kartografen anhand der Küstenlinie von Südamerika und Westafrika geschlussfolgert, dass da wohl mal was zusammengehangen haben muss. Denn wenn man die Kontinente als Puzzlestücke nimmt und diese beiden zusammenlegt, dann sieht man eine ziemliche Passgenauigkeit. Und das gibt es woanders auch: Madagaskar beispielsweise hing ursprünglich am heutigen Afrika. Und als die Paläontologie entstand, also seit man ausgestorbene Pflanzen und Tiere aus alten Gesteinsschichten ausgräbt und datieren kann, hat man außerdem gesehen, dass gleiche Tier- und Pflanzenarten auf heute getrennten Kontinenten vorkamen. Die Evolutionstheorie ließe bei getrennten Lebensräumen größere Unterschiede erwarten. Inzwischen hat man sogar Saurierskelette in der Antarktis gefunden, die für wechselwarme Tiere definitiv ungeeignet wäre. Das heißt, die Antarktis muss als Kontinent früher wesentlich näher am Äquator gewesen sein. Wie und warum bewegen sich die Kontinentalplatten? Alexander von Humboldt glaubte, dass es einen katastrophalen Wasserdurchbruch gegeben haben müsse zwischen Afrika und Südamerika. Schon etwas früher hatte Benjamin Franklin vermutet, dass die Erdoberfläche als Kruste auf einer sehr dichten, zähen Flüssigkeit schwimmen würde. Damit wäre denkbar, dass sich Kontinente bewegen. Das ist relativ nahe an der Theorie des Österreichers Otto Ampferer, der postulierte, dass der flüssige Erdmantel unter der Erdkruste gewissermaßen aufwallt und dass diese Wallungen die Bewegungsenergie für die Kontinentalplatten liefern. Diese Theorie dominiert seit den 1960er Jahren als Erklärung für die von Alfred Wegener festgestellte Kontinentaldrift. Lässt sich vorhersagen, wohin sich die Platten bewegen? Das ist ein Schwachpunkt. Es gab vor einiger Zeit eine Untersuchung, in der geschaut wurde, warum Afrika und Südamerika nicht an einer anderen Stelle auseinandergezogen wurden. Denn es gibt auch eine alte Bruchzone von Libyen bis nach Nigeria. Und den neueren ostafrikanischen Grabenbruch vom Roten Meer bis zum Malawisee. Aktuelle Modelle sagen, dass sich dort die Erde weiter auseinanderschiebt, sodass irgendwann das Meer quer durch Afrika durchbrechen wird. Aber das dauert noch ein paar Millionen Jahre. Die Frage ist eh, ob es dann überhaupt noch Menschen gibt, die davon bedroht werden könnten. Könnten Menschen denn auf einem Superkontinent gut leben? Dessen Entstehung wäre auf jeden Fall mit erheblichen Veränderungen verbunden, die nach menschlichen Maßstäben katastrophal wären. Man muss zum Beispiel mit großräumigem Vulkanismus rechnen, der massive Erhöhungen der CO2-Konzentration der Erdatmosphäre zur Folge hätte, weit über dem, was wir bislang als menschliche Zivilisation verbrochen haben. Die mittlere Temperatur auf dieser entstehenden Superkontinentalplatte dürfte dann um die 40 Grad liegen. Das ist wahrscheinlich nur noch was für Echsen und Insekten.

AstroGeo Podcast (AstroGeo Podcast (MP3))
Subduktion: Das tiefe Geheimnis des Blauen Planeten

AstroGeo Podcast (AstroGeo Podcast (MP3))

Play Episode Listen Later Sep 6, 2023 71:25 Transcription Available


Am 27. März 1964 bebt im südlichen Alaska die Erde – mit verheerenden Folgen. Straßen, Brücken und Häuser werden schwer beschädigt, 131 Menschen verlieren ihr Leben. Ein ganzer Landstrich entlang der Küste wird bis zu acht Meter angehoben und weiter landeinwärts massiv abgesenkt. Mit einer Stärke von 9,2 gilt das Erdbeben von Alaska auch heute noch als die zweitstärkste Erderschütterung seit Messbeginn. Für Geologinnen und Geologen der Zeit ist das Beben ein Rätsel: Welcher Mechanismus mag sich hinter einem solch gewaltigen Ereignis verbergen? Karl beginnt diese Podcastfolge mit der Entdeckung eines der wichtigsten Prozesse auf der Erde: Es sind Subduktionszonen, in denen feste Platten der Erdkruste ruckartig tief in den Erdmantel einsinken – so auch unter dem südlichen Alaska. Das Erdbeben von 1964 half dabei, diesen Prozess zu verstehen und schloss gleichzeitig eine wichtige Lücke im Verständnis der Plattentektonik, bei der feste Kruste nicht nur ständig neu entsteht, sondern andernorts auch wieder verschwindet. Heute ist klar: Subduktionszonen sind der wahre Motor der Plattentektonik – und nicht nur das. Über lange Zeiträume helfen sie dabei, das Klima der Erde einigermaßen stabil zu halten. Deswegen stellt sich nicht nur die Frage, warum sich auf der Erde feste Gesteinsplatten bewegen können, sondern auch, warum die Kruste von Venus und Mars nie in Platten zerbrach. Möglicherweise blieben sie gerade deshalb tote, trockene Wüsten.

Welt der Physik - heute schon geforscht?
Folge 342 – Geothermie

Welt der Physik - heute schon geforscht?

Play Episode Listen Later Feb 2, 2023 15:21


Woher die Wärme im Erdinneren kommt und mit welchen Verfahren sie sich technisch nutzen lässt, erklärt Inga Moeck von der Universität Göttingen und dem Leibniz-Institut für Angewandte Geophysik in Hannover in dieser Folge.

Entropy - Das Universum als Podcast
Urknall-Stoff: Helium 3, fließt aus der Erde raus?

Entropy - Das Universum als Podcast

Play Episode Listen Later May 9, 2022 4:10


Uraltes Helium, das im Zuge des Urknalls geschmiedet wurde, entweicht aus dem Erdkern, Das berichten Wissenschaftler in einer neuen Studie. Aber keine Sorge, es gibt keinen Grund zur Beunruhigung. Die Erde bläht sich nicht auf wie ein trauriger Luftballon. Es bedeutet jedoch, dass sich die Erde in einem solaren Nebel gebildet hat - der Molekülwolke, aus der die Sonne hervorging - ein Detail über die Entstehung unseres Planeten, das lange Zeit ungeklärt war. Es deutet auch darauf hin, dass andere ursprüngliche Gase aus dem Erdkern in den Erdmantel entweichen könnten, was wiederum Informationen über die Zusammensetzung des solaren Nebels liefern könnte. Helium kommt auf der Erde in zwei stabilen Isotopen vor. Das bei weitem häufigste ist Helium-4 mit einem Kern, der zwei Protonen und zwei Neutronen enthält. Helium-4 macht rund 99,99986 Prozent des gesamten Heliums auf unserem Planeten aus. Quelle: https://news.agu.org/press-release/ancient-helium-leaking-from-core-offers-clues-of-earths-formation Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/

Welt der Physik - heute schon geforscht?
Folge 247 – Seismologie

Welt der Physik - heute schon geforscht?

Play Episode Listen Later Oct 19, 2017 14:02


Schwerpunkt: Christine Thomas von der Universität Münster erklärt, wie sich mit seismischen Wellen der innere Aufbau der Erde erforschen lässt || Nachrichten: Gravitationswellen von verschmelzenden Neutronensternen empfangen | Origami gegen Verkehrslärm | Hummeln fliegen auf blaues Streulicht

planet universit erde aufbau wellen origami erdbeben hummeln verkehrsl erdkern tektonik erdkruste seismometer seismologie erdmantel
hr-iNFO Wissenswert
Geoneutrinos: Spione aus der Erde

hr-iNFO Wissenswert

Play Episode Listen Later Aug 13, 2016 24:27


Geoneutrinos entstehen beim Zerfall radioaktiver Stoffe im Erdmantel. Sie verraten, wie viel Hitze in unserem Planeten entsteht - eine wichtige Grundlage ist das für das Verständnis von Kontinentalverschiebungen, Vulkanismus und Erdbeben.

IQ - Wissenschaft und Forschung
#01 Salz, Geophysik, Überschallflugzeug, Stadtgeräusch

IQ - Wissenschaft und Forschung

Play Episode Listen Later Mar 2, 2016 24:44


Weniger Salz - Ernährungsexperten fordern Grenzwert in Nahrungsmitteln / Preiswürdige Geophysik - Für seine Forschung über den Erdmantel erhält der Bayreuther Daniel Frost den Leibniz-Preis / Überschall - Kommt ein Nachfolger für die Concorde? / Stadtlärm - Berliner Wissenschaftler entwickeln eine akustische Karte der Metropolen.

Raumzeit
RZ040 GOCE

Raumzeit

Play Episode Listen Later Jun 22, 2012 86:55


Die Vermessung der Welt ist keine leichte Aufgabe, da es sich bei der Erde um ein Objekt permanenter Bewegung handelt. Flüssiges Magma im Inneren und schwimmende Kontinente auf dem Erdmantel formen die Gestalt der Erde und bestimmen das Erdschwerefeld, das sich unregelmäßig über den Planeten verteilt. Dieses Gravitationsfeld allgemeingültig und mit einer bisher unerreichten Präzision zu vermessen ist die Aufgabe der Mission GOCE. Für den Satelliten wurde ein neuartiges Gravitations-Gradiometer zur Messung des Schwerefelds entwickelt und durch den Einsatz eines Ionenantriebs eine bisher unerreichte Bahnstabilität erreicht. Die Ergebnisse der Mission sind die Grundlage eines neuen geodätischen Referenzmodells auf dessen Basis andere Erdbeobachtungskonzepte miteinander kombiniert werden können. Im Gespräch mit Tim Pritlove erläutert Prof. Reiner Rummel von der Technischen Universität München einerseits die Geschichte der Geodäsie, die Technik des Satelliten und die Aufgabenstellung der Mission und andererseits die Bedeutung der Messergebnisse für die Wissenschaft und die Gesellschaft. Dabei geht es auch um mögliche Auswirkungen von GOCE auf künftige Fernerkundungsmissionen zu Planeten und anderen Himmelskörpern.

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Methods for Seismic Wave Propagation on Local and Global Scales with Finite Differences

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Play Episode Listen Later Mar 19, 2009


Die vorliegende Arbeit behandelt zwei unterschiedliche Anwendungen aus dem Bereich der numerischen Seismologie: Das erste Thema umfasst die Entwicklung und Anwendung eines Programms zur Berechnung der lokalen Wellenausbreitung in seismischen Störungszonen (Fault Zones) mit spezieller Fokussierung auf geführte Wellen (Trapped Waves). Dieser Wellentyp wird an vielen Störungszonen beobachtet und aus seinen Eigenschaften können Informationen über die jeweilige Tiefenstruktur abgeleitet werden. Das zweite Thema dieser Arbeit behandelt die Entwicklung und Anwendung zweier Verfahren zur Berechnung der globalen Wellenausbreitung, also der Ausbreitung seismischer Wellen durch die gesamte Erde einschließlich des äußeren und inneren Erdkerns. Die verwendeten Methoden ermöglichen es, kleinräumige Strukturen in großen Tiefen wie zum Beispiel die Streueigenschaften des Erdmantels oder die kleinskalige Geschwindigkeitsstruktur an der Kern-Mantelgrenze in knapp 2900 km Tiefe zu untersuchen. Wellenausbreitung in seismischen Störungszonen: Seismische Störungszonen, wie zum Beispiel der San Andreas Fault in Kalifornien, zeigen auf beeindruckende Weise, wie die Gestalt der Erdoberfläche durch seismische Aktivität als Folge tektonischer Prozesse geprägt wird. Die genaue Kenntnis der Tiefenstruktur einer Störungszone hingegen bietet zusätzlich einen Einblick in die vergangene Seismizität, die die Struktur der jeweiligen Störung geprägt hat. Neben den tektonischen Eigenschaften einer Region lassen sich aus der Tiefenstruktur auch Voraussagen über Häufigkeit und zu erwartende Stärke zukünftiger Erdbeben ableiten. Da Erdbeben vorzugsweise in solchen Störungszonen auftreten, ist eine möglichst genaue Kenntnis der Geometrie einer Schwächezone wichtig, um Regionen mit erhöhtem Gefährdungspotenzial zu erkennen. Für die Untersuchung der Tiefenstruktur einer Störungszone stehen in vielen Fällen ausschließlich Messungen von der Erdoberfläche zur Verfügung, etwa von seismischen Netzen, die in unmittelbarer Umgebung oder direkt auf einer Störung platziert wurden. Ereignet sich nun ein Erdbeben in einigen Kilometern Tiefe innerhalb der Störungszone, breitet sich ein Teil der angeregten seismischen Wellen durch die gesamte Störungszone bis zur Erdoberfläche aus, wo sie registriert werden. Die aufgezeichneten Signale werden somit entlang ihres gesamten Laufweges durch die Struktur der Störungszone beeinflusst, was die Ableitung der tiefenabhängigen Struktur aus den Messdaten erschwert. Um trotzdem ein genaues seismisches Abbild einer Störungszone zu bekommen, analysiert man unterschiedliche Wellentypen im Seismogramm, wodurch ein Maximum an Strukturinformation abgeleitet werden kann. Einer dieser Wellentypen, der sich durch besondere Eigenschaften auszeichnet, ist die geführte Welle (Trapped Wave). Diese entsteht, wenn eine Störungszone einen ausgeprägten vertikal ausgedehnten Bereich drastisch reduzierter seismischer Ausbreitungsgeschwindigkeit (Low Velocity Layer) und nicht zu komplexer Geometrie besitzt, der als seismischer Wellenleiter wirkt. In einem solchen Wellenleiter kann sich eine geführte Welle ausbreiten, die als mit Abstand stärkstes Signal an der Erdoberfläche registriert wird, also deutlich stärkere Bodenbewegungen hervorruft als etwa die direkte Welle. Dieser Verstärkungseffekt hat unter anderem Konsequenzen für die Abschätzung der seismischen Gefährdung in der Nähe einer Störungszone, zum Beispiel wenn die Störungszone durch dicht besiedeltes Gebiet verläuft. Geführte Wellen beinhalten aufgrund ihrer hohen Sensitivität bezüglich der Eigenschaften von Niedergeschwindigkeitszonen Strukturinformationen, die aus anderen Wellentypen nicht abgeleitet werden können. Daher leistet das Verständnis dieses Wellentyps einen wichtigen Beitrag für die Ableitung möglichst vollständiger Modelle von Störungszonen. Ausbreitung von SH- und P-SV Wellen in Erdmantel und der ganzen Erde: Das allgemeine Verständnis der Struktur und Dynamik des tiefen Erdinneren basiert zu einem großen Teil auf den Ergebnissen der globalen Seismologie. Im Gegensatz zum ersten Teil dieser Arbeit haben diese Erkenntnisse keine unmittelbare Auswirkung auf unser tägliches Leben. Jedoch liefert die Kenntnis des inneren Aufbaus der Erde wichtige Erkenntnisse für die geophysikalische Grundlagenforschung bis hin zum Verständnis der Entstehungsgeschichte der Erde und unseres Planetensystems. Die Modellierung der globalen seismischen Wellenausbreitung unterscheidet sich von der lokalen Modellierungen in zwei wesentlichen Punkten: (1) die wesentlich größere Ausdehnung globaler Modelle, welche die gesamte Erde oder zumindest große Teile des Erdinnern beinhalten, und (2) der Eigenschaft seismischer Wellen, sich im globalen Maßstab hauptsächlich in der Ebene auszubreiten, die durch den Großkreis zwischen Quelle und Empfänger aufgespannt wird. Beide Punkte legen nahe, zur Verringerung des Rechenaufwands eine Symmetriebedingung einzuführen. In dieser Arbeit wird durch die Formulierung von Wellengleichung und Modell in einem sphärisch-achsensymmetrischen Koordinatensystem der – im globalen Maßstab im Allgemeinen geringe – Anteil von Variationen der seismischen Parameter und von Wellenfeldanteilen orthogonal zur Großkreisebene vernachlässigt. Diese Beschränkung führt zu einer enormen Einsparung an Rechenressourcen, da das zu berechnende seismische Wellenfeld nur noch zwei Dimensionen aufspannt. Eine Folge der Achsensymmetrie ist die Aufspaltung des seismischen Wellenfeldes in einen SH- und einen P-SV Anteil. Beide Wellenfeldanteile sind voneinander entkoppelt und breiten sich in unterschiedlichen Regionen des Erdinneren aus. Zur Berechnung des SH- und des P-SV Wellenfeldes wurden daher in dieser Arbeit zwei separate Programme SHaxi und PSVaxi entwickelt. Kapitel 3 behandelt die Berechnung des globalen SH Wellenfeldes für Achsensymmetrische Geometrien mit dem im Rahmen dieser Arbeit entwickelten Programm SHaxi. Das SH Wellenfeld besteht aus horizontal polarisierten Scherwellen, die sich in guter Näherung ausschließlich im Erdmantel, also zwischen Erdoberfläche und Kern-Mantelgrenze ausbreiten. Somit muss nur der Erdmantel als Modellraum abgebildet werden, was die Diskretisierung des Modells und die Implementierung der Wellengleichung deutlich vereinfacht. Um eine Anwendung auf modernen Parallelcomputern mit verteilter Speicherarchitektur zu ermöglichen, wurde der Modellraum durch vertikale Schnitte in gleichgroße Segmente geteilt, die von den einzelnen Elementen (Knoten) eines Parallelrechners getrennt bearbeitet werden können. Das Wellenfeld in den Randbereichen dieser Segmente muss dabei nach jedem Zeitschritt explizit zwischen benachbarten Knoten ausgetauscht werden, um die Ausbreitung durch das gesamte Modell zu ermöglichen. Ein wesentlicher Aspekt des Kapitels ist die Verifikation des Verfahrens unter besonderer Berücksichtigung der implementierten Ringquelle. Durch einen Vergleich mit analytisch berechneten Seismogrammen werden die Eigenschaften der implementierten achsensymmetrischen Ringquelle diskutiert und es wird gezeigt, dass das Programm korrekte Seismogramme berechnet, die mit einer realistischen Double-Couple Quelle vergleichbar sind. Abschließend werden bisherige Anwendungen des Programms gezeigt: (1) die Modellierung von Streuung im gesamten Erdmantel und (2) die Untersuchung von kleinskaliger Topographie der D“ Schicht im untersten Erdmantel. Kapitel 4 behandelt das Gegenstück des im vorherigen Kapitel behandelten Verfahrens: Das Programm PSVaxi zur Berechnung des globalen P-SV Wellenfeldes für achsensymmetrische Geometrien. Im Gegensatz zum SH Wellenfeld breitet sich das P-SV Wellenfeld nicht nur im Erdmantel sondern auch im äußeren und inneren Erdkern aus. Dies erforderte eine Erweiterung des Modellraums bis praktisch zum Erdmittelpunkt, die sich mit dem im SH Fall verwendeten gleichförmigen Gitter aufgrund von Grundsätzlichen Stabilitätsproblemen des verwendeten Finite Differenzen Verfahrens nicht durchführen lässt. Um diesen zusätzlichen Modellraum zu erschließen wurde eine Mehrgebietsmethode (Multi-Domain Method) implementiert. Diese füllt zusätzliche Tiefenbereiche mit neuen, jeweils gleichförmigen Gittern (Domains) aus, deren Gitterabstände an den jeweiligen Tiefenbereich angepasst sind, was für die notwendige Stabilität des Verfahrens sorgt. Zusätzlich zur tiefenabhängigen Aufteilung des Modellraumes in gleichförmige Gitter wurde eine Parallelisierung vorgenommen, um das Programm auf Parallelcomputern nutzen zu können. Dazu wurde der Modellraum durch horizontale Schnitte in einzelne Segmente zerlegt, die – analog zu den vertikalen Schnitten bei der SHaxi Parallelisierung – von den einzelnen Knoten eines Parallelrechners bearbeitet werden können. Die Kombination von Mehrgebietsmethode und Segmentierung führt zu einem recht aufwendigen Algorithmus, erlaubt jedoch die Berechnung des hochfrequenten globalen Wellenfeldes durch die ganze Erde auf Parallelrechnern mit vergleichsweise geringem Rechenaufwand. Erste Anwendungen des PSVaxi Programms werden am Ende des Kapitels diskutiert: (1) eine exemplarische Modellierung der Wellenausbreitung in einer angenommenen D“ Schicht mit Topographie (2) eine Studie des Einflusses von Niedergeschwindigkeitszonen mit Topographie auf seismische Phasen, die durch den untersten Mantel und den äußeren Kern verlaufen und (3) eine Arbeit, die die Streueigenschaften des Mantels aus an der Kern-Mantelgrenze diffraktieren Wellen ableitet.

radioWissen
Unterwegs in aller Welt - Die große Erschütterung: Das Erdbeben

radioWissen

Play Episode Listen Later Aug 17, 2007 16:29


Die Erde ist immer unruhig, der Boden dauernd in Bewegung, auch wenn wir es nicht bemerken, sondern nur an Seismographen ablesen können. Erst ein Beben zeigt die riesigen Kräfte, die im Erdmantel tätig sind. Autorin: Carola Zinner

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Diese Arbeit behandelt den Effekt von Plumes im Erdmantel auf teleseismische Wellenfelder, also auf Wellen, die in größerer Entfernung von Erdbeben zu beobachten sind. Mantel-Plumes sind der geläufigen Vorstellung nach säulen- bzw. pilzförmige Gebilde in denen heißeres Mantelmaterial wegen des Dichteunterschieds zum umgebenden Mantel aufsteigt und nahe der Erdoberfläche Intraplattenvulkanismus erzeugt, mit Hawaii als klassischem Beispiel. Solche Plumes wurden vor langer Zeit postuliert und sind weithin in den Geowissenschaften akzeptiert. Dennoch tat sich die Seismologie, als die Disziplin, die die hochauflösendsten Bilder des Erdinnern liefert, schwer, eindeutige Abbildungen von Plumes zu liefern, welche die Existenz der in den letzten Jahren vermehrt kontrovers diskutierten Plumes beweisen könnten. Dies liegt in erster Linie am geringen Durchmesser der Plumes bzw. dessen Verhältnis zu den Wellenlängen, die typischerweise in der globalen Seismologie betrachtet werden. Da nämlich die erwartete Größe der Plumes in der Größenordnung der Wellenlängen liegt, versagt die weithin verwendete Strahlentheorie. Deshalb wurden in der jüngsten Vergangenheit tomographische Methoden entwickelt, die der Wellennatur der Erdbebenwellen gerecht wird. Mit einer solchen tomographischen Studie konnten die Strukturen im Erdinnern unter Bereichen, wo man Plumes erwartet, bereits deutlicher und schärfer abgebildet werden, und eine Interpretation der Bilder im Sinne von Plumes wurde plausibler. Dennoch herrschen bei Seismologen - insbesondere bei der Planung von Experimenten zur Untersuchung von Plumes - immer noch strahlentheoretische Vorstellungen vor. Systematische Untersuchungen des Wellenfeldeffektes von Plumes gab es bislang nicht. Diese Arbeit macht sich daran, diese Lücke zu schließen. In ihr werden 3D-Computermodellierungen von globaler Wellenausbreitung durch einfache Modelle von Plumes, die sich in größeren Entfernungen des Erdbebenherdes befinden, durchgeführt. Die Ergebnisse werden dargestellt in Form von Karten, die die Laufzeitunterschiede zwischen den Ankunftszeiten von Wellen die durch ein "ungestörtes" 1D-Erdmodell und denen, die durch Modelle mit Plume-Strukturen liefen, zeigen. Genau diese Laufzeitinformation wird von üblichen Tomographiestudien verwertet. Die so gewonnen "Laufzeitschatten" der Plumes unterscheiden sich - abhängig von dem Frequenzbereich der betrachteten Wellen - z.T. deutlich von den Laufzeiten, die die Strahlentheorie vorhersagt. So kommt es zum Beispiel durch Plumes, die Niedriggeschwindigkeitskörper darstellen, zu verfrühten Ankunftszeiten. Diese völlig unintuitive Beobachtung ist aber konsistent mit der Wellentheorie. Auch die Lage der Bereiche, in denen die Laufzeiteffekte auftreten, sowie die Stärke der Effekte unterscheiden sich deutlich von strahlentheoretischen Erwartungen. Diese Information kann in Zukunft dazu genutzt werden, Experimente zur Untersuchung von Plumes zu optimieren, was wünschenswert ist, da diese in der Regel sehr aufwändig sind. In der Arbeit werden auch Amplitudeneffekte der modellierten Plumes auf die Wellenfelder frequenzabhängig untersucht, allerdings ist hier eine unmittelbare Ausnutzung für Beobachtungen nicht gegeben, da die Effekte klein sind und Amplituden in der globalen Seismologie schlechter bestimmt bzw. mit solchen aus Referenzmodellen verglichen werden können. Signifikante Wellenformeffekte waren bei den verwendeten isotropen Plume-Modellen nicht zu beobachten. Die Untersuchungen sind eingebettet in eine umfassende Betrachtung des Problems der seismischen Abbildung von Plumes. Die Ergebnisse - obwohl durch die Verwendung eines nur von der Tiefe abhängigen Erdmodelle nicht plume-spezifisch – werden anhand des Island-Plumes dargestellt und in Zusammenhang mit den für diesen Plume offenen Fragestellungen diskutiert.