POPULARITY
Am 27. Mai 2021 veröffentlichte die Dark Energy Survey-Kollaboration eine Reihe von Artikeln – insgesamt 26. Insgesamt vermessen sie 5.000 Quadratgrad Fläche oder das Äquivalent von etwa ⅛ des gesamten Himmels. Sie erhielten Daten von etwa 226 Millionen Galaxien, von denen etwa 100 Millionen für das Verständnis der kosmischen Scherung (der Formverzerrung von Galaxien) nützlich waren. Seit dem Menschen angefangen haben das Universum zu erforschen, haben wir uns danach gesehnt, die Antworten auf die aller größten Fragen um den Kosmos zu finden. Was genau ist da draußen in den Abgründen des Weltraums? Woher kam das alles? Woraus besteht es und wie ist es dazu gekommen? Und was wird sein endgültiges Schicksal sein? Ab den 1920er Jahren brach das große Zeitalter der Astrophysik an, wir enthüllten den Schleier den die Quantenphysik über die Realität legte, wir entdeckten Galaxien jenseits unserer eigenen Milchstraße, wir lernten Sie zu identifizieren, ihre Entfernungen und Rotverschiebungen zu messen und stellten Fest , dass sich das Universum ausdehnt. Quelle: https://www.darkenergysurvey.org/ Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Die Forschungsergebnisse der letzten Jahre haben gezeigt, dass das Universum bei weitem nicht nur aus baryonischer Materie besteht. Tatsächlich scheinen 72% aus sogenannter Dunkler Energie zu bestehen, während selbst vom verbleibenden Teil nur etwa ein Fünftel baryonischer Materie zugeordnet werden kann. Der Rest besteht aus Dunkler Materie, deren Beschaffenheit bis heute nicht mit Sicherheit geklärt ist. Ursprünglich in den Rotationskurven von Spiralgalaxien beobachtet, wurde die Notwendigkeit ihrer Existenz inzwischen auch in elliptischen Galaxien und Galaxienhaufen nachgewiesen. Tatsächlich scheint Dunkle Materie eine entscheidende Rolle in der Strukturbildung im Universum gespielt zu haben. In der Frühzeit des Universums, als die Materieverteilung im Weltraum noch äußerst gleichmäßig war und nur sehr geringe Inhomogenitäten aufwies, bildeten sie die Kondensationskeime für den gravitativen Kollaps der Materie. Numerische Simulationen haben gezeigt, dass der heute beobachtbare Entwicklungszustand des Universums erst durch die zusätzliche Masse Dunkler Materie ermöglicht wurde, die den strukturellen Kollaps erheblich beschleunigte und nur dadurch zur heute beobachtbaren Komplexität der Strukturen führen konnte. Da Dunkle Materie nicht elektromagnetisch wechselwirkt, sondern sich nur durch ihre Schwerkraft bemerkbar macht, stellt der Gravitationslinseneffekt eine ausgezeichnete Methode dar, die Existenz und Menge an Dunkler Materie nachzuweisen. Der schwache Gravitationslinseneffekt macht sich zu Nutzen, dass die intrinsischen Orientierungen der Galaxien im Weltraum keine Vorzugsrichtung haben, gleichbedeutend mit ihrer statistischen Gleichverteilung. Die gravitationsbedingte kohärente Verzerrung der Hintergrundobjekte führt zu einer Abweichung von dieser Gleichverteilung, die von den Eigenschaften der Gravitationslinsen abhängt und daher zu deren Analyse genutzt werden kann. Diese Dissertation beschreibt die Galaxy-Galaxy-Lensing-Analyse von insgesamt 89 deg^2 optischer Daten, die im Rahmen des CFHTLS-WIDE-Surveys beobachtet wurden und aus denen im Rahmen dieser Arbeit photometrische Rotverschiebungs- und Elliptizitätskataloge erzeugt wurden. Das Galaxiensample besteht aus insgesamt 5×10^6 Linsen mit Rotverschiebungen von 0.05 < z_phot ≤ 1 und einem zugehörigen Hintergrund von insgesamt 1.7×10^6 Quellen mit erfolgreich gemessenen Elliptizitäten in einem Rotverschiebungsintervall von 0.05 < z_phot ≤ 2. Unter Annahme analytischer Galaxienhaloprofile wurden für die Galaxien die Masse, das Masse-zu-Leuchtkraft-Verhältnis und die entsprechenden Halomodellprofilparameter sowie ihre Skalenrelationen bezüglich der absoluten Leuchtkraft untersucht. Dies geschah sowohl für das gesamte Linsensample als auch für Linsensamples in Abhängigkeit des SED-Typs und der Umgebungsdichte. Die ermittelten Skalenrelationen wurden genutzt, um die durchschnittlichen Werte für die Galaxienhaloparameter und eine mittlere Masse für die Galaxien in Abhängigkeit ihres SED-Typs zu bestimmen. Es ergibt sich eine Gesamtmasse von M_total = 23.2+2.8−2.5×10^11 h^{−1} M_⊙ für eine durchschnittliche Galaxie mit einer Referenzleuchtkraft von L∗ = 1.6×10^10 h^{−2} L_⊙. Die Gesamtmasse roter Galaxien bei gleicher Leuchtkraft überschreitet diejenige des entsprechenden gemischten Samples um ca. 130%, während die mittlere Masse einer blauen Galaxie ca. 65% unterhalb des Durchschnitts liegt. Die Gesamtmasse der Galaxien steigt stark mit der Umgebungsdichte an, betrachtet man die Geschwindigkeitsdispersion ist dies jedoch nicht der Fall. Dies bedeutet, dass die zentrale Galaxienmateriedichte kaum von der Umgebung sondern fast nur von der Leuchtkraft abhängt. Die Belastbarkeit der Ergebnisse wurde von zu diesem Zweck erzeugten Simulationen bestätigt. Es hat sich dabei gezeigt, dass der Effekt mehrfacher gravitativer Ablenkung an verschiedenen Galaxien angemessen berücksichtigt werden muss, um systematische Abweichungen zu vermeiden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Die Entwicklung des ersten präzisen kosmologischen Modells, des LCDM Modells, ist eine bedeutende Errungenschaft der modernen, beobachtenden Kosmologie. Trotzdem bleiben eine Reihe von wichtigen Fragen über Zusammensetzung und Entwicklungsgeschichte des Universums unbeantwortet: Abgesehen von der Natur der Dunklen Materie ist der physikalische Ursprung der Dunklen Energie eine der ganz großen Fragen der theoretischen Physik. Ebenso bedürfen die statistischen Eigenschaften der anfänglichen Dichtefluktuationen im frühen Universum einer genauen überprüfung. Kleinste Abweichungen von den Gauß'schen Fluktuationen des Standardmodells würden, sofern sie nachgewiesen werden, eine Vielzahl von Informationen über die Physik des frühen Universums enthalten. In dieser Arbeit benutze ich numerische Verfahren, um neue, hochpräzise Vorhersagen zur kosmischen Strukturbildung in generalisierten Dunkle Energie Kosmologien zu treffen. Außerdem berücksichtige ich Modelle mit nicht-Gauß'schen Anfangbedingungen. Im ersten Abschnitt untersuche ich die nicht-lineare Strukturentstehung in sogenannten `Early Dark Energy' (EDE) Modellen und vergleiche sie mit dem LCDM Standardmodell. Interessanterweise zeigen meine Ergebnisse, dass der Sheth and Tormen (1999) Formalismus, mit dem üblicherweise die Anzahldichte von Halos aus Dunkler Materie geschätzt wird, in EDE Kosmologien weiterhin anwendbar ist, im Widerspruch zu analytischen Berechnungen. In diesem Zusammenhang untersuche ich auch das Verhältnis zwischen Masse und Geschwindigkeitsdispersion der Dunklen Materie in Halos. Dabei stelle ich eine gute übereinstimmung mit der Normalisierung der LCDM Kosmologien fest, wie sie in Evrard et al. (2008) beschrieben ist. Allerdings führt das frühere Anwachsen der Dichtestrukturen in EDE Modellen zu großen Unterschieden in der Massenfunktion der Halos bei hohen Rotverschiebungen. Dies könnte direkt in Beobachtungen gemessen werden, indem man die Anzahl der Gruppen als Funktion der Geschwindigkeitsdispersion der enthaltenen Galaxien entlang der Sichtlinie bestimmt. Insbesondere würde dadurch das Problem der mehrdeutigen Massebestimmung von Halos umgangen. Schließlich ermittele ich die Beziehung zwischen dem Konzentrationsparameter von Halos und der Halomasse in den EDE Kosmologien. Im zweiten Teil meiner Arbeit verwende ich ein Set an hochaufgelöste hydrodynamische Simulationen um die globalen Eigenschaften der thermischen und kinetischen Sunyaev Zeldovich (SZ) Effekte zu untersuchen. Dabei stellen wir fest, dass in den SZ-Beobachtungskarten der EDE Modelle der Compton-y-Parameter systematisch größer ist als im LCDM Modell. Erwartungsgemäß finde ich daher auch, dass das Leistungsspektrum der thermischen und kinetischen SZ Fluktuationen in EDE Kosmologien größer ist als im Standardmodell. Allerdings reicht diese Steigerung für realistische EDE Modelle nicht aus, um die theoretischen Voraussagen in übereinstimmung mit aktuellen Messungen der Mikrowellenhintergrundanisotropie bei großen Multipolwerten zu bringen. Eine Zählung der durch den SZ Effekt detektierbaren Halos in den simulierten Karten zeigt nur einen leichten Anstieg in den massereichsten Haufen für EDE Kosmologien. Ebenso sind Voraussagen für zukünftige Zählungen von SZ-detektierten Haufen durch das South Pole Telescope (SPT Ruhl, 2004) stark durch Unsicherheiten in der Kosmologie beeinträchtigt. Schließlich finde ich, dass die Normalisierung und die Steigung der Relation zwischen thermischem SZ-Effekt und Halomasse in vielen EDE Kosmologien unverändert bleibt, was die Interpretation von Beobachtungen des SZ Effekts in Galaxienhaufen vereinfacht. In weiteren Untersuchungen berechne ich eine Reihe von hochaufgelösten Vielteilchensimulationen für physikalisch motivierte nicht-Gauß'sche Kosmologien. In umfangreichen Studien untersuche ich die Massenverteilungsfunktion der Halos und deren Entwicklung in nicht-Gauß'schen Modellen. Zudem vergleiche ich meine numerischen Experimente mit analytischen Vorhersagen von Matarrese et al. (2000) und LoVerde et al. (2008). Dabei finde ich eine sehr gute übereinstimmung zwischen Simulation und analytischer Vorhersage, vorausgesetzt bestimmte Korrekturen für die Dynamik des nicht-sphärischen Kollapses werden berücksichtigt. Dazu werden die Vorhersagen dahingehend modifiziert, dass sie im Grenzfall sehr seltener Ereignisse einem geeignet veränderten Grenzwert der kritischen Dichte entsprechen. Desweiteren bestätige ich jüngste Ergebnisse, nach denen primordiale nicht-Gauß'sche Dichtefluktuationen eine starke skalenabhänginge Verzerrung auf großen Skalen verursachen, und ich lege einen physikalisch motivierten mathematischen Ausdruck vor, der es erlaubt, die Verzerrung zu messen und der eine gute Näherung für die Simulationsergebnisse darstellt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Das Massenspektrum neu entstandener Sterne (IMF) ist von universeller Gueltigkeit. So jedenfalls scheint es in verschiedenen Sternentstehungsregionen in der Milchstrasse, die alle derselben Verteilung aufweisen. Hierbei ist die relative Haeufigkeit von Sternen mit einer Masse von 1M⊙ oder weniger, welche als massearm bezeichnet werden, besonders hoch. Die IMF ist von grundlegender Bedeutung fuer viele Bereiche der Astronomie. Unter Anderem bildet sie die Grundlage fuer die optische Erforschung ferner Galaxien und die Statistik entstehender chemischer Elemente. Dennoch ist ihre Universalitaet bezueglich fremder Galaxien oder bei hohen Rotverschiebungen bislang nicht eindeutig wissenschaftlich belegt, da eine vollstaendige Theorie der Sternentstehung immer noch aussteht. Sternentstehung basiert auf einem aeusserst komplexen, nichtlinearen Wechelspiel von Eigengravitation, Hydrodynamik und Druck, sowie von Turbulenz, Strahlung, Magnetfeldern und der Chemie von Staub und Gas. Erschwerend kommt hinzu, dass junge Sterne in die Molekuelwolke, aus welcher sie entstehen, eingebettet sind. Daher sind sie nur mittels Molekuelspektren im Radio-Wellenlaengenbereich zu beobachten. Eine vielversprechende Moeglichkeit umden Sternentstehungsprozess letztendlich zu durchschauen ergibt sich mittels Computersimulationen. Abgesehen von den vielen physikalischen Prozessen liegt die numerische Herausforderung in der grossen Aenderung der Laengenskala (um mehr als sieben Groessenordnungen), sowie der Dichte (um mehr als 20 Groessenordnungen) waehrend des Kollapses eines dunklen Wolkenkerns. Aus diesem Grund wurden im Rahmen dieser Doktorarbeit nur Eigengravitation, Hydrodynamik, und Turbulenz in Betracht gezogen. Eine geeignete Methode zur Berechnung des Kollapses prestellarer Kerne ist die sogenannte Smoothed Particle Hydrodynamics Methode, ein Teilchen-basiertes Schema, welches die hydrodynamischen Gleichungen in ihrer Lagrangeschen Form loest. Die Simulationen sind vollstaendig dreidimensional. Da eine direkte Berechnung des Strahlungstransports derzeit immer noch zu zeitintensiv, jedoch die Beschreibung des Gases durch eine einfache Zustandsgleichung relativ unrealistisch ist, wurde im Rahmen dieser Doktorarbeit eine vereinfachte Beschreibung der Gaskuehlung mittels tabellierter, optisch duenner Molekuellinien integriert. Eine vollstaendige Theorie der Sternentstehung sollte die Entwicklung einzelner Molekuelwolkenkerne (MWK) eindeutig vorhersagen koennen. Dies beinhaltet den Einfluss der Verteilung des Gesamtdrehimpulses des MWKs auf die Multiplizitaet und die akkretierte Masse der entstehenden Sterne. Das Ziel dieser Doktorarbeit ist daher, die dynamische Entwicklung des kollabierenden Kerns sowie die Entstehung protostellarer Scheiben unter verschiedenen Voraussetzungen zu untersuchen, um gegebenenfalls vorhandene Abhaengigkeiten von Scheibenstruktur und physikalischen Anfangsbedingungen in der Gaswolke zu identifizieren. Im Fall starr rotierender MWKs ist dies moeglich. Die durchgefuehrten Simulationen ergeben, dass sich als Funktion des Anfangsdrehimpulses eindeutig bestimmen laesst, wie groß, konzentriert und warm eine protostellare Scheibe sein wird. Je groesser der Drehimpuls j, desto groesser und kuehler auch die Scheibe. Ab einem bestimmten j bilden sich ausgepraegte Spiralarme und die Scheibe fragmentiert. Bei kleinerem j ist die Scheibe sehr konzentriert und heizt sich daher auf. Der zusaetzliche thermischen Druck wirkt stabilisierend, weswegen die Fragmentation unterdrueckt wird. In Abhaengigkeit von Radius, j und Masse des MWKs ist es moeglich mittels einer einfachen analytischen Abschaetzung eine mittlere Scheibendichte zu berechnen und diese durch eine detaillierte Analyse mehrerer Simulationen grundsaetzlicher gleicher Kerne mit unterschiedlichem j zu ’eichen’. Untersucht wurde die mittlere Scheibendichte fuer die Fragmentation eintritt bzw. unterdrueckt wird. Im Vergleich mit Beobachtungen von dunklen MWKs fuehrt die berechnete kritische mittlere Scheibendichte zu einem sehr geringen Anteil an Kernen fuer welche eine spaetere Scheibenfragmentation vorhergesagt wird: nur 13%. Verglichen mit der beobachteten Multiplizitaetsrate junger, massearmer Sterne (30% - 50% in Abstaenden von 14AU-1400AU) ist dieser Wert viel zu klein. Unter der Annahme effizienterer Gaskuehlung waere die kritische mittlere Scheibendichte fast um drei Groeßenordnungen hoeher, was die Fragmentation maßgeblich beguenstigen wuerde. Das Fragmentationsverhalten protostellarer Scheiben scheint also von den lokalen thermodynamischen Eigenschaften des Gases bestimmt zu sein. Mit turbulenten Anfangsbedingungen gestaltet sich die Scheibenentstehung und Entwicklung vollkommen anders. In diesem Fall ergibt sich keine Korrelation von Groeße, Konzentration oder Durchschnittstemperatur der Scheibe mit dem Anfangs-Drehimpuls der Gaswolke. Unter dem Einfluss von Turbulenz wird das aufgesetzte hydrostatische Gleichgewicht der Wolke von Anfang an maßgeblich gestoert. Im Wechselspiel mit der Eigengravitation des Gases bildet sich in jeder Simulation ein langgezogenes Filament, welches lokal sehr dicht wird. In dichten Filamentgebieten kann die lokale Jeans Masse waehrend des weiteren Kollapses ueberschritten werden und dort entstehen protostellare Objekte. Vergleichbar mit dem Kollaps duenner, sehr flacher Ellipsoide findet sich der Protostern oftmals in einer Ecke des Filaments. Im Vergleich zur umgebenden Scheibe wachsen die Protosterne im Mittel viel schneller als im starr rotierenden Fall. Die entstehenden protostellaren Scheiben sind viel kleiner, obgleich kuehl. Trotzdem sind sie nicht gravitativ instabil. Durch den turbulenten, aber kontinuierlichen Gaseinfall wird die Scheibe in vertikaler Richtung gestoert und erscheint daher dicker als im Fall des starr rotierenden Kollapses. Interessanterweise fragmentieren auch in diesem Fall nur 16% aller MWKs. Obwohl Turbulenz den Kollaps maßgeblich beeinflußt aehnelt dieser Wert dem vorhergesagten Wert fuer Kerne im starr rotierenden Fall. Diese Uebereinstimmung kann wiederum als Hinweis darauf gewertet werden, dass die lokalen thermodynamischen Eigenschaften des Gases die tatsaechliche Fragmentation ermoeglichen. Die im Rahmen dieser Doktorarbeit gewonnene Erkenntnisse geben tiefe Einblicke in die Dynamik der Entstehung und fruehen Entwicklung von protostellaren Scheiben. Sie zeigen numerische Schwaechen, ebenso wie physikalische Kritikpunkte in modernsten Simulationen des Sternentstehungsprozesses auf. Daher bilden sie die Basis fuer kompliziertere Rechnungen und sind ein weiterer Schritt in Richtung einer vollstaendigen Theorie der Sternentstehung.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Seit Winter 1998/1999 führen Gruppen am Max-Planck-Institut für Radioastronomie (MPIfR), Max-Planck-Institut für extraterrestrische Physik (MPE) und dem National Radio Astronomy Observatory (NRAO) bei 1.2 mm eine tiefe, große Gebiete abdeckende Himmelsdurchmusterung mit dem Max-Planck-Millimeter Bolometer Array ("MAMBO") am IRAM 30-m Millimeterteleskop durch, um eine signifikante Anzahl von hellen mm-Quellen zu detektieren. Diese Quellen sind höchstwahrscheinlich staubreiche Galaxien bei hoher Rotverschiebung mit Sternentstehungsraten von bis zu einigen Tausend Sonnenmassen pro Jahr. Kosmologisch gesehen sind sie hochinteressant, da sie signifikant zum extragalaktischen kosmischen Hintergrund, d.h. zur Stern- und Galaxienentwicklungsgeschichte des Universums, beitragen. Zum Verständnis ihrer Natur sind Identifikationen mit Hilfe tiefer optischer und Nahinfrarotaufnahmen essentiell. Aufgrund der geringen Winkelauflösung des IRAM 30-m Millimeterteleskopes (10.7") ist eine eindeutige Identifikation der mm-Quellen, die nur auf Bolometerdaten basiert, unmöglich. Deshalb ist die mm- und cm-Interferometrie ein Schlüsselelement in der Nachbeobachtung dieser staubhaltigen, hochrotverschobenen Quellen. Unsere Identifikationsstrategie basiert auf der Kombination von radio- (VLA) und millimeter- (PdBI) interferometrischen Beobachtungen, um die genauen Positionen der mm-Quellen zu bestimmen, und optischen/Nahinfrarotaufnahmen zur eigentlichen Identifikation. Ziel dieser Arbeit ist die Identifizierung und Charakterisierung der Quellen der mm-Strahlung, fokussierend auf das auf der südlichen Himmelskugel gelegene NTT Deep Field und seine Umgebung. Im Winter 2000/2001 wurden mit dem mm-Interferometer PdBI Beobachtungen durchgeführt, um exakte Flüsse und Positionen von einigen der hellsten MAMBO-Quellen bestimmen zu können. Vier wurden erfolgreich auf einem 5sigma-Niveau mit dem PdBI detektiert. Für alle PdBI-Detektionen konnten auch schwache Radiogegenstücke detektiert werden. Interessanterweise offenbarten die Positionen, die durch die interferometrischen Beobachtungen exakt bestimmt werden konnten, dass keine dieser MAMBO-Quellen ein Gegenstück im Nahinfraroten bis zu sehr schwachen Magnituden besitzt (K~22.0 mag). Diese tiefen K-Band Grenzen der helleren 1.2 mm MAMBO-Quellen setzen strikte Beschränkungen hinsichtlich der Natur und Rotverschiebung dieser Objekte: Falls die spektrale Energieverteilung der mm-Quellen denen der ultraleuchtkräftigen Infrarotgalaxien (ULIRGs) ähnelt, dann müssten sie bei Rotverschiebungen größer als 4 liegen, was einem Zeitpunkt von etwa 1.5 Mrd Jahren nach dem Urknall entspricht. Andernfalls könnten sie bei niedrigeren Rotverschiebungen sein, müssten jedoch UV-optische Farben besitzen, die röter sind als selbst die der extremsten ULIRGs, wie zum Beispiel Arp 220. Unsere Analyse basierend auf nahinfrarot/radio/(sub)mm Daten zeigt, dass es einen Trend zwischen den Flussverhältnissen nahinfrarot-zu-submm und radio-zu-submm gibt. Dieses Ergebnis deutet daraufhin, dass die geringe Helligkeit im K-band von unseren PdBI-Detektionen in erster Linie auf die hohe Rotverschiebung dieser Objekte zurückzuführen ist. Durch eine Korrelation zwischen Radioquellen, die sich nahe der nominalen mm-Position befinden und unseren tiefen optischen/Nahinfrarotaufnahmen konnte die Anzahl von sicher identifizierten MAMBO mm-Quellen auf 18 signifikant erhöht werden. Für 13 1.2 mm-Quellen wurden optische/ NIR Gegenstücke gefunden, deren K-band Magnituden zwischen 19 und 22.5 liegen. Fünf MAMBO-Quellen sind "Blank Fields" und sind schwächer als K > 22 mag. Basierend auf dem radio/mm Spektralindex, wurde der Median der Rotverschiebung der radio-identifizierten mm-Quellen berechnet: z~2.6. Der Median der optischen/NIR photometrischen Rotverschiebung für mm-Quellen mit einem Gegenstück ist ~2.1. Dies weist daraufhin, dass die radio-identifizierten mm-Quellen ohne einem optischen/NIR Gegenstück dazu tendieren, bei höheren Rotverschiebungen als die mit optischen/NIR Gegenstücken zu liegen. Ein Vergleich mit publizierten Identifikationen von Objekten aus 850 micrometer-Durchmusterungen (SCUBA) von vergleichbarer Tiefe zeigt, dass die K- und I-Magnituden unserer Gegenstücke etwa 2 mag schwächer sind und die Dispersion der I-K Farbe geringer ist. Tatsächliche Unterschiede im Median der Rotverschiebungen, verbleibende falsche Identifikationen mit hellen Quellen, kosmische Variationen und statistisch kleine Proben tragen höchstwahrscheinlich zu dem signifikanten Unterschied bei, welcher auch die Strategie zur Messung von Rotverschiebungen beeinflusst. In dieser Arbeit werden die Eigenschaften von NIR/(sub)mm/radio spektraler Energieverteilungen unserer Galaxien und von interferometrisch identifizierten submm- Quellen aus der Literatur diskutiert. Basierend auf einem Vergleich mit submm-Quellen mit durch CO-Messungen bestätigten spektroskopischen Rotverschiebungen argumentieren wir, dass etwa zwei Drittel der (sub)mm Galaxien bei einer Rotverschiebung höher als 2.5 liegen. Wahrscheinlich ist dieser Anteil höher, wenn Quellen ohne radio-Detektion hinzugenommen werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In dieser Dissertation wird die Entwicklung von Galaxien innerhalb eines sehr großen Zeitraums (90% des Alters des Universums) anhand sehr tief belichteter Aufnahmen des sogenannten FORS Deep Field (FDF) untersucht. Homogenität und Größe des Datensatzes erlauben eine gründliche Analyse der Galaxienentwicklung, ohne großen systematischen Effekten zu unterliegen. Nachdem in Kapitel 1 ein Überblick der Kosmologie sowie der Strukturbildung und der bis dato beobachteten Entwicklungen von Galaxien gegeben wurde, werden in Kapitel 2 die Eigenschaften des FDFs diskutiert. Dabei wird der Objekt-Katalog, der über 8000 Galaxien und photometrische Informationen in 9 Filtern enthält, vorgestellt. In Kapitel 3 werden mögliche Auswahleffekte aufgrund des im I-Band (8000 Angström) selektierten Kataloges diskutiert und die Güte der Entfernungsbestimmung, welche auf photometrischen Rotverschiebungen basiert, beschrieben. Basierend auf diesen photometrischen Rotverschiebungen wird in Kapitel 3 und Kapitel 4 die Entwicklung der Anzahldichte von Galaxien pro Magnitude und Volumen, also der Leuchtkraftfunktion (LF), in Abhängigkeit der Rotverschiebung analysiert. Die LF der Galaxien entwickelt sich im UV viel stärker als im sichtbaren bzw. nah-infraroten Licht. Ein Vergleich mit der lokalen LF ergibt, daß die Galaxienpopulation im frühen Universum im Mittel im UV viel heller (Faktor 10), die Gesamtanzahl dagegen wesentlich niedriger (Faktor 10) gewesen ist. Im optischen bleibt dieser Trend nachweisbar. Ein Vergleich mit LF-Ergebnissen von anderen Himmelsdurchmusterungen zeigt eine sehr gute Übereinstimmung mit deren Ergebnissen. Aufgrund der tiefen Belichtung des FDFs ist es zudem möglich, auch noch sehr schwache Galaxien in die Analyse mit einzubeziehen und dadurch die Steigung der Leuchtkraftfunktion, d.h. das Verhältnis von schwachen zu hellen Galaxien, deutlich besser zu bestimmen. Ein Vergleich mit Vorhersagen theoretischer Galaxienentwicklungs-Modelle zeigt eine gute Übereinstimmung bei kleiner Rotverschiebung. Mit zunehmender Entfernung nehmen jedoch die Unterschiede zu. Um die Beiträge von einzelnen Galaxienpopulationen zur LF zu untersuchen, wird der Objekt-Katalog in Kapitel 5 in vier typische Populationen aufgeteilt: von frühen Typen mit praktisch keiner Sternentstehung bis hin zu Typen mit extremer Sternbildung. Die jeweilige LF wird in den verschiedenen Rotverschiebungsbereichen mit der Gesamt-LF verglichen. Der unterschiedliche Beitrag dieser Subpopulationen zur Gesamt-LF in den verschiedenen Filtern und bei verschiedenen Rotverschiebungen erklärt auf natürliche Weise die Änderung der Steigung der LF als Funktion der Wellenlänge. In Kapitel 6 wird die Entwicklung der Sternentstehungsrate, d.h. wieviel stellare Masse pro Jahr und Volumen bei welcher Rotverschiebung gebildet wird, untersucht. Dazu wird jeweils ein FDF B, I, (I+B) und GOODS (Great Observatories Origins Deep Survey) K selektierter Galaxien-Katalog analysiert. Es wird gezeigt, daß die Sternentstehungsrate bis ca. z=1.5 ansteigt, um dann bis ca. z=4 konstant zu bleiben. Bei noch höherer Rotverschiebung scheint sie wieder abzunehmen. Dieser Trend ist weitgehend unabhängig vom Selektionsband. Aus der Sternentstehungsrate wird in Kapitel 7 die Entwicklung der stellaren Massendichte als Funktion der Rotverschiebung berechnet. Unter der Annahme, daß die mittlere Staubkorrektur im UV weitgehend unabhängig von der Rotverschiebung ist, steigt die stellare Masse zw. z=4 und z=0.5 um einen Faktor 10 an. Ein Vergleich mit der Massendichte in der Literatur ermöglicht es uns außerdem eine mittlere Staubkorrektur von 2.5 plusminus 0.2 für den UV-Fluß abzuleiten. In Kapitel 8 werden die Ergebnisse nochmals zusammengefasst. Ein Vergleich mit Vorhersagen theoretischer Galaxienentwicklungs-Modelle basierend auf monolithischen Kollaps und hierarchischer Struckturbildung zeigt zudem, daß letztere meist besser mit integralen Beobachtungsgrößen wie der Leuchtkraftdichte übereinstimmen. Es gibt jedoch bei allen Modellen Probleme bei manchen detaillierten Vorhersagen wie zum Beispiel bei der Entwicklung der LF.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In dieser Doktorarbeit studiere ich die Entstehung und Entwicklung von Galaxien in Galaxienhaufen sowohl theoretisch als auch unter Einbeziehung von Beobachtungsdaten. Diese Doktorarbeit gliedert sich in zwei Teile: Einem theoretischen Teil schliesst sich eine Datenanalyse an. Im ersten Kapitel beschreibe ich warum Galaxienhaufen wichtig sind, erklaere die Motivation und Zielsetzung der in dieser Arbeit verwendeten Analyse und erlaeutere den dafuer noetigen theoretischen Hintergrund als auch den Hintergrund fuer die Beobachtungen. Zuerst untersuche ich die Vorhersagen des hierarchischen `Modells der kalten dunklen Materie' fuer die beobachteten Eigenschaften der Population von Galaxien in Galaxienhaufen und fuer ihre Entwicklung als Funktion der kosmischen Rotverschiebung. Ich verwende eine grosse Anzahl von hochaufgeloesten numerischen Simulationen von Galaxienhaufen zusammen mit einer hochaufgeloesten Simulation einer `typischen' Region des Universums. Die grosse Aufloesung der verwendeten Simulationen ermoeglicht es mir, die Entwicklung der Zentren der dunklen Materiehalos zu verfolgen, welche mit groesseren Strukturen zusammenwachsen. Dies erlaubt eine eindeutige Identifizierung leuchtender Galaxien in den Haufen und Substrukturen der dunklen Materie. Diese Analyse ist Bestandteil des zweiten Kapitels. Um eine enge Verbindung zwischen den theoretische Vorhersagen und den Beobachtungen zu ziehen, entwickle ich ein semi-analytisches Programm, welches selbstkonsistent die photometrische und chemische Entwicklung der Galaxien in den Haufen, als auch die chemische Geschichte des Gases innerhalb der Haufen und innerhalb der Galaxien verfolgt. Dabei modelliere ich den Transport von Masse und Metallen zwischen den Sternen, das kalte Gas in Galaxien, das heisse Gas in dunklen Materiehalos, und das intergalaktische Gas ausserhalb der virialisierten Halos. Ausserdem modelliere ich die Effekte von Staub auf die emittierte Strahlung von Galaxien. Das dritte Kapitel beschreibt das semi-analytische Modell im Detail und zeigt einen Vergleich mit einer Anzahl von Beobachtungsergebnissen fuer Galaxien aus nahen Haufen. Im folgenden verwende ich dieses Modell, um die Anreicherung des intergalaktischen Mediums und des Gases innerhalb der Galaxienhaufen mit den chemischen Elementen als Funktion der Zeit zu studieren. Dabei untersuche ich, zu welchem Zeitpunkt der Grossteil der Anreicherung stattfand und welche Galaxien den groessten Beitrag lieferten. Im weiteren Verlauf analysiere ich die beobachtbaren Merkmale verschiedener Modelle von Rueckkopplungsmechanismen. Dabei zeige ich, dass die beobachtete Abnahme des baryonischen Massenanteils von Galaxienhaufen zu Gruppen nur in einem `extremen' Modell reproduziert werden kann, in welchem das wiederausgestossene Material auf einer Zeitskala wiederaufgenommen wird, die vergleichbar mit der Hubblezeit ist. Die Resultate dieser Untersuchungen werden in Kapitel 4 praesentiert. Der zweite Teil meiner Doktorarbeit handelt von der Interpretation von Daten des `ESO Distant Cluster Surveys' (EDisCS). Dieses `ESO Large Program' hat das Ziel, die Entwicklung der Galaxien in Galaxienhaufen ueber mehr als 50 Prozent der kosmischen Zeit zu studieren. Es verbindet die photometrische und spektroskopische Information einer grossen Auswahl von Galaxienhaufen bei Rotverschiebungen um 0.5 und 0.8. Ich fuehre eine detaillierte dynamische und strukturelle Analyse einer Untermenge der EDisCS Galaxienhaufen durch, fuer welche vollstaendige photometrische und spektroskopische Daten vorhanden sind. Im besonderen entwickle ich eine Methode, um Substruktur zu quantifizieren, welche der projizierten raeumlichen Verteilung als auch der Geschwindigkeitsverteilung Rechnung traegt. Die Ergebnisse werden dann detailiert mit Resultaten der numerischen Simulation verglichen. Im Kapitel 5 diskutiere ich, wie die Erweiterung der Methode auf den gesamten EDisCS Datensatz wichtige Einschraenkungen auf die relative Bedeutung der verschiedenen physikalischen Prozesse liefern wird, die Galaxienentwicklung in dichten Umgebungen beeinflussen. Zum Schluss analysiere ich die Farb-Helligkeits-Beziehung einer Untermenge der EDisCS Galaxienhaufen bei grossen Rotverschiebungen. Dabei vergleiche ich die erhaltenen Resultate der hochrotverschobenen Galaxienhaufen mit denjenigen des nahen Coma Galaxienhaufens und zeige, dass die hochrotverschobenen Galaxienhaufen ein Defizit an leuchtschwachen Galaxien der roten Sequenz im Vergleich zu denjenigen bei kleiner Rotverschiebung aufweisen. Dies deutet an, dass ein grosser Bruchteil der leuchtschwachen passiven Galaxien in Galaxienhaufen zum gegenwaertigen Zeitpunkt bei grossen Rotverschiebungen aktive Sternentstehung aufgewiesen haben koennten. Diese Aussage stimmt qualitativ mit den Vorhersagen des hierarchischen Modells ueberein. Diese Analyse wird in Kapitel 6 praesentiert.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Gemäß den aktuellen kosmologischen Modellen besteht der Großteil der Masse im Universum aus dunkler Materie. Aus früheren Studien ist es bekannt, daß Galaxien verschiedener Typen auf verschiedene Weise verteilt sind. Die räumliche Verteilung von Galaxien folgt nicht der Verteilung der Masse. Die Relation zwischen der Galaxienverteilung und der Massenverteilung wird »»Bias der Galaxienverteilung¶¶ genannt. Laut den derzeitigen Modellen für die Bildung von Galaxien entstehen die Galaxien durch das Abkühlen und die Kondensation des baryonischen Gases innerhalb der Potentialtöpfe von virialisierten Klumpen aus dunkler Materie (dunkle Halos). Obwohl die hydrodynamischen Prozesse, die an der Entstehung von Galaxien beteiligt sind, noch wenig verstanden sind, wird angenommen, daß diese Prozesse für die Entstehung einzelner Objekte relevant sind und daß sie möglicherweiser keine bedeutende Rolle bei der gesamten räumlichen Verteilung der Galaxien spielen. Das bedeutet, daß das Problem der Verteilung der Galaxien und des sogenannten Bias der Galaxienverteilung gut untersucht werden kann, indem man die Verteilung von dunklen Halos betrachtet. Diese Annäherung ist sehr praktisch, weil bei der Haloentstehung und der Verteilung die Gravitation der einzige beteiligte physikalische Prozess ist. In dieser Arbeit beschäftige ich mich mit den Eigenschaften der räumlichen Verteilung von dunklen Halos auf kosmischen Dichtefeldern. Die Analyse wird in zwei Hauptteilen durchgeführt. Im ersten Schwerpunkt studiere ich deterministische Bias- Modelle, die auf einem sphärischen Kollapsmodell, sowie auf einem ellipsoidförmigen Kollapsmodell beruhen. Im zweiten Teil meiner Arbeit konzentriere ich mich auf die stochastische Beschaffenheit des Bias der Halo- und Galaxien-Verteilung unter Verwendung der bedingten Wahrscheinlichkeitsfunktion. Ich studiere den deterministischen Bias der Haloverteilung mit Hilfe von verschiedenen Modellen für die Bias Relation zwischen dunklen Halos und der darunterliegenden Materie. Mit der Benutzung von N-Körper Simulationen mit hoher Auflösung prüfe ich einige theoretische Modelle für die Streuung und für höherwertige Momente der Halo Verteilung in Modellen mit kalter dunkler Materie (CDM, englisch cold dark matter). Ich habe herausgefunden, daß die theoretischen Modelle des Bias, die auf einem sphärischen Kollapsmodell beruhen, die simulierten counts-in-cells Momente für Halos mit Massen grösser als M* ziemlich genau beschreiben. M* wird als die Massenskala, auf der die Fluktuation des Dichtefeldes ein rms von ungefähr 1 hat, definiert. Eine bedeutende Verbesserung der theoretischen Beschreibung der simulierten counts-in-cells Momente für unter-M* Halos wird erzielt, wenn ein ellipsoidförmiges Kollapsmodell anstelle eines sphärischen für die Definition von dunklen Halos benutzt wird. Beide Versionen der Modelle sind besonders genau in der Beschreibung der counts-in-cells Momente der Nachkommen von Halos, die bei hohen Rotverschiebungen ausgewählt worden sind. Deswegen sind diese Bias-Modelle ziemlich nützlich für die Interpretierung der Momente der Galaxienverteilung. Als eine Anwendung der Bias-Modelle berechne ich die Voraussage der Modelle für die höherwertigen Momente der Verteilung der Lyman break Galaxien und deren Nachkommen. Es wird angenommen, daß die Lyman break Galaxien im Zentrum der massivsten Halos bei der Rotverschiebung z » 3 entstehen. Ich habe festgestellt, daß, obwohl der lineare Bias-Parameter b stark von der angenommenen Kosmologie abhängt, die Werte der höherwertigen Momente praktisch dieselben in beiden LamdaCDM und TafCDM Modelle sind. Folglich können die höherwertigen Momente der räumlichen Verteilung dieser Objekte die kosmologische Parameter nicht eingrenzen. Au¼erdem betrachte ich die stochastische Natur der Bias Relation vom Gesichtspunkt der bedingten Wahrscheinlichkeitsfunktion aus. Die stochastische Natur der Verteilung von dunklen Halos in einem kosmischen Dichtefeld zeigt sich in der Verteilungsfunktion PV (N j ±m), die die Wahrscheinlichkeit angibt, N Halos in einem Volumen V mit Massendichtekonstrast deltam zu finden. Diese bedingte Wahrscheinlichkeitsfunktion spezifiziert vollständig die Bias-Relation in einem statistischen Sinn. Die Annahme, daß die Population von Galaxien und dunklen Halos durch einen Poisson-prozeß (d.h. die bedingte Wahrscheinlichkeit Funktion hat die Form einer Poissonverteilung) erzeugt wurde, hat keine physikalische Unterstützung. Deshalb ist es wichtig zu prüfen, ob andere Verteilungsfunktionen die bedingte Wahrscheinlichkeit besser beschreiben können. Ich benutze drei Funktionen, zusammen mit der Poissonfunktion, um es nachzuprüfen, wie sie die bedingte Wahrscheinlichkeit aus N-Körper Simulationen hoher Auflösung reproduzieren. Diese drei Funktionen sind die Gauss, die Lognormal und die Thermodynamische Verteilung. Die Thermodynamische Verteilung wurde in den achtziger Jahren aus thermodynamischen Argumenten entwickelt. Ich fand, daß die bedingten Wahrscheinlichkeitsfunktionen für Halo Massen von einer Gaussfunktion besser beschrieben werden, und daß PV (N /deltam) significant nicht-Poisson ist. Das Verhältnis zwischen der Streuung und dem Erwartungswert geht von » 1 (Poisson) bei 1 + ±m ¿ 1 bis < 1 (unter-Poisson) bei 1 + ±m » 1 bis > 1 (über-Poisson) für 1 + ±m À 1. Es stellte sich heraus, daß der Mittelwert der Biasrelation durch Halo Bias Modelle, die auf dem Press-Schechter Formalismus beruhen, gut beschrieben wird. Die unter-Poisson Streuung kann als eine Folge von Halo-Ausschließung begründet werden, während die Ä uber-Poisson Streuung bei hohen deltam Werte durch Halo-Bündelung begründet werden kann. Ein einfaches phänomenologisches Modell für die Streuung der Bias-Relation, als Funktion von deltam, wird vorgeschlagen. Galaxienkataloge, die mit Hilfe semi-analytischer Modelle aus der N-Körper Simulationen erzeugt worden sind, wurden benutzt, um das Verhalten des Bias der Galaxienverteilung zu untersuchen. Der Bias der Galaxienverteilung, die aus semi-analytischen Modellen der Galaxienentstehung abgeleitet wird, zeigt ein ähnliches stochastisches Verhalten wie der von dunklen Halos. Die bedingte Wahrscheinlichkeit für Galaxien wird durch eine Gaussfunktion gut beschrieben. Diese Resultate haben wichtige Implikationen bei den Deutungen der Verteilung von Galaxien in Bezug auf das zugrundeliegenden Dichtefeld. Um die Eigenschaften der Massenverteilung im Universum aus statistischen Maßen der Galaxienverteilung abzuleiten, ist es notwendig, zuerst die stochastische Natur des Bias der Galaxienverteilung zu verstehen. Die Hauptteile dieser Arbeit befinden sich in den Artikeln Casas-Miranda et al. (2002) und Casas-Miranda et al. (2002 in Vorbereitung).