POPULARITY
CEO Allen Sabet of Mogotes Metals discusses the company's recent developments in the Vicuña district, including the consolidation of claims, exploration strategies, and the importance of managing investor expectations in a long-term mining project. He emphasizes the need for a tactical approach to drilling and the significance of thorough geological data collection before proceeding with drilling operations.
Isaac Maresky, CEO of Gold Hart Copper, provides an update on the company's drilling activities at the Tolita project in Chile. He discusses the completion of two drill holes, the geological findings, and the processes involved in drilling and analyzing core samples. The conversation also touches on the competitive landscape in the Vicuña district and the company's future plans for further drilling.
Lundin Mining announced Vicuña Corp. completed an initial Mineral Resource estimate for the Filo del Sol sulphide deposit, an update to the Mineral Resource estimate for the Filo del Sol oxide deposit and an update to the Mineral Resource estimate for the Josemaria deposit. New drill results published today from Collective Mining and Galiano Gold. Important corporate updates today from Vizsla Silver, Kingfisher Metals, K2 Gold and Paramount Gold Nevada. This episode of Mining Stock Daily is brought to you by... Vizsla Silver is focused on becoming one of the world's largest single-asset silver producers through the exploration and development of the 100% owned Panuco-Copala silver-gold district in Sinaloa, Mexico. The company consolidated this historic district in 2019 and has now completed over 325,000 meters of drilling. The company has the world's largest, undeveloped high-grade silver resource. Learn more at https://vizslasilvercorp.com/Calibre Mining is a Canadian-listed, Americas focused, growing mid-tier gold producer with a strong pipeline of development and exploration opportunities across Newfoundland & Labrador in Canada, Nevada and Washington in the USA, and Nicaragua. With a strong balance sheet, a proven management team, strong operating cash flow, accretive development projects and district-scale exploration opportunities Calibre will unlock significant value.https://www.calibremining.com/Integra is a growing precious metals producer in the Great Basin of the Western United States. Integra is focused on demonstrating profitability and operational excellence at its principal operating asset, the Florida Canyon Mine, located in Nevada. In addition, Integra is committed to advancing its flagship development-stage heap leach projects: the past producing DeLamar Project located in southwestern Idaho, and the Nevada North Project located in western Nevada. Learn more about the business and their high industry standards over at integraresources.com
Welcome to the thirty-first episode of the Zoology Ramblings Podcast! In this episode, Emma and Robi share news about Czech beavers saving taxpayer time and money, Robi goes on a thought tangent about nature friendly farming in the UK and Emma talks about how vicuña poo can create biodiversity hotspots as glaciers retreat. Emma and Robi's animals of the week range from the very large (Koobi Fora Giant Stork) to the very small (Tardigrades). For their local conservation stories, Robi talks about the First Minister of Scotland, John Swinney, ruling out the legal reintroduction of lynx into the wild in Scotland. Emma talks about an exciting new National Hedgehog Monitoring Programme being rolled out across the UK. And finally onto global conservation stories, where Emma talks about a project looking to bring back the thylacine (Tasmanian tiger) from extinction using futuristic gene editing. Robi ends by talking about the new African Rhinoceros Conservation Framework, which lays out best practice guidelines for effectively conserving rhinos across the continent. About the hosts: Robi Watkinson is a Conservation Biologist and wildlife filmmaker specialising in the spatial and movement ecology of large carnivores, camera trapping survey methods, rewilding, metapopulation dynamics and conservation planning. He has an MSc in Conservation Biology from the FitzPatrick Institute of African Ornithology, and the Institute of Communities and Wildlife in Africa, University of Cape Town. He is based between Cape Town and London, and has strong interests in equitable and inclusive conservation, palaeontology and wildlife taxonomy and evolution!Emma Hodson is a Zoologist and wildlife content creator, currently working in the community and engagement team at Avon Wildlife Trust. Emma's role as a Wildlife Champions Coordinator involves supporting and upskilling people to take action for nature in their local communities. Emma has experience in remote wildlife fieldwork, and has been part of Arctic fox, macaw and cetacean research teams in Iceland, Peru and Wales respectively. She has also been involved in animal care and rehabilitation work in Costa Rica and South Africa. Emma is particularly passionate about the interface between community engagement and wildlife monitoring, and enjoys running workshops and giving talks on topics including camera trapping, beaver ecology and rewilding. Follow up links: You can watch "Rewilding A Nation" for free on WaterBear by following this link: https://www.waterbear.com/watch/rewilding-a-nation You can follow more of our weird and wonderful wildlife adventures on instagram: @zoologyramblingspodcast & @robi_watkinson_wildlife & @emma_hodson_wildlife
Baleine sous Gravillon - Nomen (l'origine des noms du Vivant)
Depuis Tintin au Tibet, le Lama - parent des Dromadaires et des Chameaux - est réputé pour cracher sur ceux qui le contrarient. Ses 3 petits cousins camélidés sudaméricains des Andes sont moins connus et cet épisode veut rattraper ce ghosting injuste.
Interview with Allen Sabet, CEO of Mogotes Metals Inc.Recording date: 1st April 2025Mogotes Metals Inc. is positioning itself as a significant player in copper-gold exploration, with strategic holdings directly adjacent to Filo Mining's Filo del Sol discovery in Argentina's prolific Vicuña District. The Filo del Sol property was recently acquired by BHP-Lundin for C$4.5 billion, highlighting the district's exceptional mineral potential.Led by CEO Allen Sabet, Mogotes has taken a methodical approach to exploration, focusing on comprehensive data collection before drilling. "To mitigate the risk of drilling into nothing, we take a step back and do a full property-wide systematic program," explains Sabet. This approach has allowed the company to identify multiple exploration targets across its Filo Sur Project.The company has invested over $10 million in exploration work, utilizing advanced techniques including MT geophysics, IP surveys, and high-resolution satellite imagery for alteration mapping. These methods have revealed compelling targets with geological signatures similar to neighboring discoveries.Key exploration targets include Meseta, located on the Mogotes-Filo property boundary with rock chip samples showing up to 1.48 g/t gold; Camino, featuring phyllic alteration with copper, molybdenum and arsenic in surface soils; Rincon, a newly identified trend with promising trench results; Cruz del Sur, with magnetic chargeable targets close to surface; and Colorida Zone, showing large conductive anomalies.Mogotes recently optioned additional claims that secure the projection of the Filo del Sol trend, strengthening its strategic position. "We've locked up strategically over the last two years any open ground that was there and now we've closed that with our most recent transaction," Sabet notes.The company plans to begin its first comprehensive drilling program in October 2025, with current work focused on further defining targets through trenching and additional geophysical surveys.With a market capitalization of approximately C$33 million and C$8 million in cash as of February 2025, Mogotes represents a leveraged opportunity for copper exposure. Management and insiders hold 18% of the company's 247.5 million outstanding shares, with institutional investors holding 36%.As global copper demand is projected to double by 2035 while mine supply faces constraints, the Vicuña District offers rare potential for multiple world-class discoveries. Mogotes provides investors access to this promising trend at a fraction of the valuation of its neighbors.View Mogotes Metals' company profile: https://www.cruxinvestor.com/companies/mogotes-metalsSign up for Crux Investor: https://cruxinvestor.com
Rodrigo Guendelman conversó con Magdalena Vicuña, nueva decana de la Facultad de Arquitectura, Diseño y Estudios Urbanos de la Universidad Católica, sobre sus líneas de investigación como arquitecta, el panorama universitario, los desafíos que espera abordar durante su gestión y las nuevas demandas en la formación de profesionales.
Isaac Maresky, co-founder and CEO of Gold Hart Copper, introduces the company and its flagship assets, including Tolita, located in the Vicuña district of Chile. He discusses the company's unique position as the largest independent landowner in the area, the historical significance of their properties, and their plans for drilling and exploration. The conversation also covers the company's equity structure, insider investments, and future prospects as they prepare to go public.
Hernán Migoya, editor del cómic “Coco, Vicuñin y Tacachito”, conversa con Glatzer Tuesta en el Bloque Cultural de No Hay Derecho de Ideeleradio. No Hay Derecho en vivo de lunes a viernes, desde las 7 a. m., por el YouTube y Facebook de Ideeleradio.
Leonora Vicuña es más que fotógrafa, es cineasta, escritora, poeta, una artista en toda su expresión. Nos contó sobre su vida en el campo, su día a día, su tranquilidad y momentos de reflexion. Conversamos cómo el paso del tiempo transforma su mirada y su proceso creativo. Se abrió con nosotras y compartió su historia desde un lugar más íntimo. Hablamos de su infancia, de su espíritu aventurero y de cómo dejó Chile siendo muy joven, no en busca de un camino artístico, sino con la necesidad de vivir experiencias y conocer el mundo. También hablamos de los momentos que han marcado su historia personal atravesada por la dictadura. De su inconsciente registro del Chile de antes, que hoy nos trasladan a esos tiempos. En este episodio descubrimos a la persona detrás de la obra y la sensibilidad que guía su mirada.Support the show
La poeta, que recibió el Premio Nobel de Literatura en 1945, es considerada una de las principales referentes de la literatura chilena e hispanoamericana del siglo XX. Nació el 7 de abril de 1889 en Vicuña, ciudad nortina situada en el Valle del Elqui, en la Región de Coquimbo, Chile. Fue bautizada como Lucila de María Godoy Alcayaga, según consta en los registros parroquiales de su ciudad natal. Su madre fue Petronila Alcayaga Rojas, modista de oficio, y su padre, Juan Jerónimo Godoy Villanueva, profesor. Hacia 1905, inició su carrera docente como ayudante en la Escuela de La Compañía Baja; se desempeñó también como maestra en la localidad de La Cantera hasta 1907 y, en 1910, tras aprobar los exámenes especiales en la Escuela Normal de Preceptoras, regularizó su magisterio. A partir de entonces empezó a trabajar en distintas escuelas en las ciudades de Traiguén, Punta Arenas, Antofagasta y Temuco, ciudad en la que conoció a Pablo Neruda. Los progresos en la profesión docente corrieron paralelos al desarrollo de su producción poética. En 1908 sus trabajos fueron objeto de un primer estudio por parte de Luis Carlos Soto Ayala, quien recopiló en el volumen Literatura coquimbana algunas prosas como "Ensoñaciones", "Junto al Mar" y "Carta íntima". Durante su residencia en Coquimbito, Los Andes, compuso los famosos "Sonetos de la Muerte", conjunto por el que obtuvo en septiembre de 1914 la más alta distinción en los Juegos Florales de ese año. En junio de 1922 viajó a México invitada por el ministro de Educación mexicano, José Vasconcelos, para colaborar en la reforma educacional y la creación de bibliotecas populares en ese país. Ese año fue publicado en Nueva York, Estados Unidos, su primer libro, “Desolación”, lo que le dio reconocimiento y prestigio internacional. Durante 1930, dictó numerosas conferencias y clases tanto en Estados Unidos como en América Central y Europa. Hacia 1938, publicó en Buenos Aires, Argentina, su libro “Tala”, por intermedio de la Editorial Sur, dirigida por la escritora Victoria Ocampo. El 10 de diciembre de 1945 recibió el galardón por el Premio Nobel de Literatura de manos del Rey Gustavo V de Suecia y en 1951 el Premio Nacional de Literatura en Chile. Con posterioridad, en 1954, Mistral publicó Lagar, que corresponde al único libro de toda su producción en vida cuya primera edición vio la luz en Chile antes que en el extranjero. Falleció el 10 de enero de 1957, en el Hospital de Hempstead, en Nueva York, debido a complicaciones derivadas de un cáncer de páncreas. Tras su muerte, aparecieron libros que reunieron prosas, rondas, cantos, oraciones y poemas inéditos, como Motivos de San Francisco (1965), Poema de Chile (1967) y Lagar II (1991), así como un conjunto amplio de estudios sobre su obra realizados por escritores como Gastón von dem Bussche, Roque Esteban Scarpa, Rodolfo Oroz Scheibe, Luis Oyarzún Peña o Jaime Quezada. La recordamos en esta fecha y repasamos algunos aspectos destacados de su trayectoria, a partir de registros sonoros conservados en el Archivo Histórico de Radio Nacional. FICHA TÉCNICA Edición: Fabián Panizzi Música y testimonios Contrastes (Eduardo Carrasco) Quilapayún [1993 del Álbum “Instrumental”] Introducción (Jaime Soto León) Mares González [1996 del Álbum Recados de Gabriela Mistral] Canción de los que buscan olvidar (Gabriela Mistral - E Peralta) Eduardo Peralta [2009 del Álbum “XXI Poetas Chilenos”] 60s Neruda, Pablo (Poeta) Sobre Gabriela Mistral (Ciclo Poetas de Chile) Susurro (Rodolfo Parada) Quilapayún [1993 del Álbum “Instrumental”] 1938-01-27 Mistral, Gabriela (Poeta) Encuentro con Jana de Ibarbourou y Alfonsina Storni (IAVA – Montevideo) 60s Neruda, Pablo (Poeta) Sobre Gabriela Mistral (Ciclo Poetas de Chile) 1938-01-27 Mistral, Gabriela (Poeta) Encuentro con Jana de Ibarbourou y Alfonsina Storni (IAVA – Montevideo) 60s Neruda, Pablo (Poeta) Sobre Gabriela Mistral (Ciclo Poetas de Chile)
Santiago Ramírez conversó con los músicos sobre su proyecto.
Allen Sabet from Magotes Metals discusses the company's operations in the Vicuña District. He highlights the strategic advantages of their location, the historical context of exploration in the region, and the innovative methods they are employing to identify new targets. The discussion also covers recent drilling results, funding strategies, and the competitive landscape of the mining industry, particularly in Argentina. Sabet emphasizes the potential for significant discoveries and the growing interest from major mining companies in the area.
En el segmento Invitados Especiales de El Gran Musical conversamos con Yayo Vicuña, Presentador de radio y TV, sobre su trayectoria y próximos planes.
Cada día un pequeño apunte de Alberto Mayol por YouTube en http://apuntes.cl
Javier García Vicuña y Andoni Agirregomezkorta presentan la vuelta de 'Vaya Semanita' en 'La Ventana de la TV'.
Nedēļas aktualitātes pārrunājam kopā ar Daini Īvānu, Veltu Puriņu un Jāni Šipkēvicu (sen.).
En la edición AM, hablamos con Matías Bernier, gerente de estudios de la Asociación de Bancos, y con Álvaro Muñóz Vicuña, CEO y cofundador de Ready.
En la edición AM, hablamos con Matías Bernier, gerente de estudios de la Asociación de Bancos, y con Álvaro Muñóz Vicuña, CEO y cofundador de Ready.
Between The Covers : Conversations with Writers in Fiction, Nonfiction & Poetry
Today's guest Chilean poet, performance artist, visual artist, activist, and filmmaker Cecilia Vicuña, joins us to discuss her latest work, Deer Book, or Libro Venado. A bilingual collection, with translations by the acclaimed poet and translator Daniel Borzutsky, Deer Book brings together nearly forty years of Vicuña's poetry and drawings surrounding the cosmologies and mythologies […] The post Cecilia Vicuña : Deer Book appeared first on Tin House.
Podcastul “Mai Departe” cu Artur Gurău și Vicu Țurcan, cel mai cunoscut influencer Tech din Moldova. Discuție despre aplicația EVO a Guvernului Republicii Moldova și cum are loc implementarea ei, domeniul tech și lipsa creatorilor de conținut din această nișă în țara noastră, viitorul domeniului online, Instagram și TikTok.
In this episode, Kylie interviews Wojtek Wodzicki, President and CEO of NGEx Minerals, about the latest drill results from hole DPDH018 from the Lunahuasi Project located in the Vicuña District in San Juan Province, Argentina. The hole revealed a vein swam with high-grade copper mineralization and hints at where the company is with respect to the underlying porphyry system. Wodzicki highlights the importance of testing different parts of the system, finding the 'edges' and the potential for further discoveries. He also discusses the geological and geographical context of the project, including the status of other mines in the area.
Interview with Michael Wood, Executive Chairman of Sendero Resources Corp.Recording date: 2nd May 2024Sendero Resources (TSXV:SEND) is a junior exploration company advancing the highly prospective Peñas Negras copper-gold-PGE project in the world-class Vicuña mining district of Argentina.The company's maiden drill program intersected a telescoped high-sulfidation epithermal system in a lithocap environment, a geological setting known to host major deposits in the region. This type of system often features bonanza-grade feeder zones that can dramatically enhance the scale and economics of a deposit.Sendero's experienced technical team, led by CEO Hernan Vera, has identified compelling drill targets to explore for these high-grade zones. Two large magnetic anomalies in the middle of the lithocap could represent the mineralized porphyry intrusions that fed the system. The company also plans to test the base of the lithocap, where sizable mineralization suggests a large underlying copper porphyry deposit may be hiding.Importantly, these targets start at just 150 m from surface, enabling cost-effective drilling to potentially deliver a game-changing discovery. With a dominant 211 sq km land position in the heart of the Vicuña district and a strong in-country team, Sendero is well-positioned to unlock the project's value.The company is currently assessing funding options for a larger drill campaign starting in October, including strategic investments or JV partnerships. Argentina's pro-mining political environment, coupled with strong community support, bodes well for advancing the project.For investors, Sendero offers speculative exposure to a potential major copper-gold discovery in a district that has delivered multiple Tier 1 deposits in recent years. If the company can delineate a significant high-grade resource, the stock could offer substantial upside from current levels. Upcoming drill results and financing updates will be key catalysts to watch in the months ahead.View Sendero Resources' company profile: https://www.cruxinvestor.com/companies/sendero-resourcesSign up for Crux Investor: https://cruxinvestor.com
Michael Wood, President and CEO of Sendero Resources (TSX.V:SEND) joins me to recap drill results from the La Ollita Target At The Peñas Negras Project in The Vicuña District, Argentina, released yesterday May 1st. 3 more holes were released with hole 6 being the headline results intersecting 364m of 0.51 g/t Gold Equivalent “AuEq” from a shallow depth of 34m to the bottom of the hole. The upper part of the hole intersected 114m of 0.84 g/t Gold Equivalent “AuEq” including 22m of 1.61 g/t AuEq. I ask Michael what the Company has learned about the Project and more so the La Ollita Target through the 6 holes now released. We discuss what the Company will do to vector into the higher grade feeder zone and if other targets on the Project will be tested in follow up programs. If you have any follow up questions for Michael please email me at Fleck@kereport.com. Click here to read over the full news release reporting the drill results.
Michael Wood, Executive Chairman of Sendero Resources (TSX.V:SEND) joins me to discuss the maiden drill results, released April 3rd, from the Peñas Negras Project in the Vicuña District, Argentina. The focus is on Hole 3 at the La Orllita target where the headline hole, hole 3 intersected 356 meters of 0.53g/t AuEq. A total of 3 holes were released, 3 more have been completed with one more currently underway. I have Michael recap the results from hole 3 and explain where the follow up drilling has been completed. We also discuss how these results relate to other major copper primary assets in the Vicuña District. If you have any follow up questions for Michael please email me at Fleck@kereport.com. Click here to read over the full news release.
Analizamos Cowboy Carter, Carla Jara se separa de Kaminsky y le sugerimos ir a Centro Mente y Bienestar (www.centromenteybienestar.cl), Bapdate: Barbra lo da todo en Yentl, Vasco Moulián pone de su cosecha en la demanda a Cristián Campos, Pampita y Vicuña son exes felices gracias a Falabella, Shakira llega tarde a opinar de Barbie, ICONIC: recordamos lo que era ir a Feria del Disco, SIGNOS: hits noventeros. Encuentra más contenido #iconic en www.patreon.com/elgosip
CanadianTroutBum Podcast #9 – This episode we speak with David, the owner of the England UK based small business Vicuña Dubbing. We discuss the past, present & future with lots of laughs along the way. Please visit @vicunadubbing on Instagram and tell David, that Thomas from the CanadianTroutBum sent you.https://www.vicunadubbing.co.uk/
Interview with Wojtek Wodzicki, President & CEO of NGEx Minerals (TSX-V: NGEX)Our previous interview: https://www.cruxinvestor.com/posts/ngex-minerals-ngex-helados-is-now-low-risk-potro-cliffs-filo2-2675Recording date: 15th March 2024Copper is poised to be a key player in the global shift towards clean energy, and NGEx Minerals (TSX: NGEX) is well-positioned to capitalize on this opportunity. With two high-quality copper projects in the prolific Vicuña district of Chile and Argentina, a strong management team, and a healthy balance sheet, NGEx Minerals offers investors a compelling opportunity to gain exposure to the growing demand for copper.As countries around the world set ambitious targets to reduce greenhouse gas emissions and combat climate change, the demand for copper is expected to soar. Renewable energy technologies such as wind and solar require significantly more copper compared to traditional energy systems. The rapid adoption of electric vehicles (EVs) is also driving copper demand, as EVs use up to four times more copper than conventional internal combustion engine vehicles.Wojtek Wodzicki, CEO of NGEx Minerals, highlights the potential supply gap: "Copper is definitely going to be one of the assets that we need over the next couple of years. Argentina's got some great projects that will be unlocked with some of the changes that he's proposing. We're very optimistic about Argentina."NGEx Minerals' portfolio includes two main projects: Lunahuasi and Los Helados. Lunahuasi is a new high-grade copper discovery still in the early stages, with potential for significant value creation as the resource is defined. Los Helados is a more advanced copper-gold-silver deposit with a large resource, providing additional value to the company.The company's management team has a track record of successful exploration and value creation through spin-outs in the Vicuña district. This experience and expertise position NGEx Minerals to maximize shareholder value as they advance their projects.As of December 31, 2023, NGEx Minerals had approximately $70 million in cash, providing ample resources for exploration and development. This strong financial position allows the company to aggressively pursue its exploration plans and create value for shareholders.Wodzicki emphasizes the value creation potential in copper exploration: "The inflection point in that curve is really right after you make your initial discovery and... a lot of the value, not just for exploration companies, but really if you look at the overall mining industry, that is where a lot of the value is created, is between that initial discovery hole and when you define the resource and start working on your engineering study."NGEx Minerals offers investors a compelling opportunity to gain exposure to the growing demand for copper driven by the green energy transition. With high-quality assets, an experienced management team, and a strong balance sheet, the company is well-positioned to create value for shareholders as they advance their projects.—Learn more: https://cruxinvestor.com/companies/ngex-mineralsSign up for Crux Investor: https://cruxinvestor.com
En los Andes peruanos, comunidades indígenas y campesinas trabajan gratis o mal pagadas para abastecer a la industria de prendas de vicuña, símbolo de lujo. Aunque marcas como Loro Piana venden suéteres de vicuña por USD $9000, estas comunidades apenas reciben una fracción.
Mercados planos tras datos de precios al productor en EE.UU. por encima de lo previsto; Crecen apuestas de alza de tasas en Japón; Milei sufre dura derrota en Congreso; Marcelo Rochabrún, jefe de la oficina de Bloomberg News en Lima, comenta su reportaje sobre como Loro Piana vende sweaters de lana de vicuña por miles de dólares.Producción: Eduardo Thomson (@ethomson1)Haga clic acá para suscribirse al newsletter Cinco Cosas de Bloomberg News en Español.See omnystudio.com/listener for privacy information.
Se refirió al inicio del Censo 2024
El 11 de marzo de 1971 ocurrió el accidente ferroviario de Gualliguaica cerca de Vicuña, en la Provincia de Elqui, cuando un tren que llevaba 350 pasajeros, la mayoría niños, se descarriló por un barranco de 12 metros de altura matando a 12 personas.
Michael Wood, Executive Chairman of Sendero Resources, provides an introduction to the Peñas Negras Project on the Vicuña Belt in La Rioja, Argentina.
In 2023 we did a few Fundamentals episodes covering Benchmarks 101, Datasets 101, FlashAttention, and Transformers Math, and it turns out those were some of your evergreen favorites! So we are experimenting with more educational/survey content in the mix alongside our regular founder and event coverage. Pls request more!We have a new calendar for events; join to be notified of upcoming things in 2024!Today we visit the shoggoth mask factory: how do transformer models go from trawling a deeply learned latent space for next-token prediction to a helpful, honest, harmless chat assistant? Our guest “lecturer” today is ; you might know him from his prolific online writing on and Twitter, or from his previous work leading RLHF at HuggingFace and now at the Allen Institute for AI (AI2) which recently released the open source GPT3.5-class Tulu 2 model which was trained with DPO. He's widely considered one of the most knowledgeable people on RLHF and RLAIF. He recently gave an “RLHF 201” lecture at Stanford, so we invited him on the show to re-record it for everyone to enjoy! You can find the full slides here, which you can use as reference through this episode. Full video with synced slidesFor audio-only listeners, this episode comes with slide presentation along our discussion. You can find it on our YouTube (like, subscribe, tell a friend, et al).Theoretical foundations of RLHFThe foundation and assumptions that go into RLHF go back all the way to Aristotle (and you can find guidance for further research in the slide below) but there are two key concepts that will be helpful in thinking through this topic and LLMs in general:* Von Neumann–Morgenstern utility theorem: you can dive into the math here, but the TLDR is that when humans make decision there's usually a “maximum utility” function that measures what the best decision would be; the fact that this function exists, makes it possible for RLHF to model human preferences and decision making.* Bradley-Terry model: given two items A and B from a population, you can model the probability that A will be preferred to B (or vice-versa). In our world, A and B are usually two outputs from an LLM (or at the lowest level, the next token). It turns out that from this minimal set of assumptions, you can build up the mathematical foundations supporting the modern RLHF paradigm!The RLHF loopOne important point Nathan makes is that "for many tasks we want to solve, evaluation of outcomes is easier than producing the correct behavior". For example, it might be difficult for you to write a poem, but it's really easy to say if you like or dislike a poem someone else wrote. Going back to the Bradley-Terry Model we mentioned, the core idea behind RLHF is that when given two outputs from a model, you will be able to say which of the two you prefer, and we'll then re-encode that preference into the model.An important point that Nathan mentions is that when you use these preferences to change model behavior "it doesn't mean that the model believes these things. It's just trained to prioritize these things". When you have preference for a model to not return instructions on how to write a computer virus for example, you're not erasing the weights that have that knowledge, but you're simply making it hard for that information to surface by prioritizing answers that don't return it. We'll talk more about this in our future Fine Tuning 101 episode as we break down how information is stored in models and how fine-tuning affects it.At a high level, the loop looks something like this:For many RLHF use cases today, we can assume the model we're training is already instruction-tuned for chat or whatever behavior the model is looking to achieve. In the "Reward Model & Other Infrastructure" we have multiple pieces:Reward + Preference ModelThe reward model is trying to signal to the model how much it should change its behavior based on the human preference, subject to a KL constraint. The preference model itself scores the pairwise preferences from the same prompt (worked better than scalar rewards).One way to think about it is that the reward model tells the model how big of a change this new preference should make in the behavior in absolute terms, while the preference model calculates how big of a difference there is between the two outputs in relative terms. A lot of this derives from John Schulman's work on PPO:We recommend watching him talk about it in the video above, and also Nathan's pseudocode distillation of the process:Feedback InterfacesUnlike the "thumbs up/down" buttons in ChatGPT, data annotation from labelers is much more thorough and has many axis of judgement. At a simple level, the LLM generates two outputs, A and B, for a given human conversation. It then asks the labeler to use a Likert scale to score which one it preferred, and by how much:Through the labeling process, there are many other ways to judge a generation:We then use all of this data to train a model from the preference pairs we have. We start from the base instruction-tuned model, and then run training in which the loss of our gradient descent is the difference between the good and the bad prompt.Constitutional AI (RLAIF, model-as-judge)As these models have gotten more sophisticated, people started asking the question of whether or not humans are actually a better judge of harmfulness, bias, etc, especially at the current price of data labeling. Anthropic's work on the "Constitutional AI" paper is using models to judge models. This is part of a broader "RLAIF" space: Reinforcement Learning from AI Feedback.By using a "constitution" that the model has to follow, you are able to generate fine-tuning data for a new model that will be RLHF'd on this constitution principles. The RLHF model will then be able to judge outputs of models to make sure that they follow its principles:Emerging ResearchRLHF is still a nascent field, and there are a lot of different research directions teams are taking; some of the newest and most promising / hyped ones:* Rejection sampling / Best of N Sampling: the core idea here is that rather than just scoring pairwise generations, you are generating a lot more outputs (= more inference cost), score them all with your reward model and then pick the top N results. LLaMA2 used this approach, amongst many others.* Process reward models: in Chain of Thought generation, scoring each step in the chain and treating it like its own state rather than just scoring the full output. This is most effective in fields like math that inherently require step-by-step reasoning.* Direct Preference Optimization (DPO): We covered DPO in our NeurIPS Best Papers recap, and Nathan has a whole blog post on this; DPO isn't technically RLHF as it doesn't have the RL part, but it's the “GPU Poor” version of it. Mistral-Instruct was a DPO model, as do Intel's Neural Chat and StableLM Zephyr. Expect to see a lot more variants in 2024 given how “easy” this was.* Superalignment: OpenAI launched research on weak-to-strong generalization which we briefly discuss at the 1hr mark.Note: Nathan also followed up this post with RLHF resources from his and peers' work:Show Notes* Full RLHF Slides* Interconnects* Retort (podcast)* von Neumann-Morgenstern utility theorem* Bradley-Terry model (pairwise preferences model)* Constitutional AI* Tamer (2008 paper by Bradley Knox and Peter Stone)* Paul Christiano et al. RLHF paper* InstructGPT* Eureka by Jim Fan* ByteDance / OpenAI lawsuit* AlpacaEval* MTBench* TruthfulQA (evaluation tool)* Self-Instruct Paper* Open Assistant* Louis Castricato* Nazneen Rajani* Tulu (DPO model from the Allen Institute)Timestamps* [00:00:00] Introductions and background on the lecture origins* [00:05:17] History of RL and its applications* [00:10:09] Intellectual history of RLHF* [00:13:47] RLHF for decision-making and pre-deep RL vs deep RL* [00:20:19] Initial papers and intuitions around RLHF* [00:27:57] The three phases of RLHF* [00:31:09] Overfitting issues* [00:34:47] How preferences get defined* [00:40:35] Ballpark on LLaMA2 costs* [00:42:50] Synthetic data for training* [00:47:25] Technical deep dive in the RLHF process* [00:54:34] Projection / best event sampling* [00:57:49] Constitutional AI* [01:04:13] DPO* [01:08:54] What's the Allen Institute for AI?* [01:13:43] Benchmarks and models comparisonsTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO in Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:15]: Hey, and today we have Dr. Nathan Lambert in the house. Welcome.Nathan [00:00:18]: Thanks guys.Swyx [00:00:19]: You didn't have to come too far. You got your PhD in Berkeley, and it seems like you've lived there most of the time in recent years. You worked on robotics and model-based reinforcement learning on your PhD, and you also interned at FAIR and DeepMind. You bootstrapped the RLHF team at Hugging Face, and you recently joined the Allen Institute as a research scientist. So that's your quick bio. What should people know about you that maybe is not super obvious about you on New LinkedIn?Nathan [00:00:43]: I stay sane in various insane sport and ultra-endurance sport activities that I do.Swyx [00:00:50]: What's an ultra-endurance sport activity?Nathan [00:00:52]: Long-distance trail running or gravel biking. Try to unplug sometimes, although it's harder these days. Yeah.Swyx [00:00:59]: Well, you know, just the Bay Area is just really good for that stuff, right?Nathan [00:01:02]: Oh, yeah. You can't beat it. I have a trailhead like 1.2 miles from my house, which is pretty unmatchable in any other urban area.Swyx [00:01:11]: Pretty excellent. You also have an incredible blog, Interconnects, which I'm a fan of. And I also just recently discovered that you have a new podcast, Retort.Nathan [00:01:20]: Yeah, we do. I've been writing for a while, and I feel like I've finally started to write things that are understandable and fun. After a few years lost in the wilderness, if you ask some of my friends that I made read the earlier blogs, they're like, oh, this is yikes, but it's coming along. And the podcast is with my friend Tom, and we just kind of like riff on what's actually happening on AI and not really do news recaps, but just what it all means and have a more critical perspective on the things that really are kind of funny, but still very serious happening in the world of machine learning.Swyx [00:01:52]: Yeah. Awesome. So let's talk about your work. What would you highlight as your greatest hits so far on Interconnects, at least?Nathan [00:01:59]: So the ones that are most popular are timely and or opinion pieces. So the first real breakout piece was when April and I also just wrote down the thing that everyone in AI was feeling, which is we're all feeling stressed, that we're going to get scooped, and that we're overworked, which is behind the curtain, what it feels to work in AI. And then a similar one, which we might touch on later in this, was about my recent job search, which wasn't the first time I wrote a job search post. People always love that stuff. It's so open. I mean, it's easy for me to do in a way that it's very on-brand, and it's very helpful. I understand that until you've done it, it's hard to share this information. And then the other popular ones are various model training techniques or fine tuning. There's an early one on RLHF, which is, this stuff is all just like when I figure it out in my brain. So I wrote an article that's like how RLHF actually works, which is just the intuitions that I had put together in the summer about RLHF, and that was pretty well. And then I opportunistically wrote about QSTAR, which I hate that you have to do it, but it is pretty funny. From a literature perspective, I'm like, open AI publishes on work that is very related to mathematical reasoning. So it's like, oh, you just poke a little around what they've already published, and it seems pretty reasonable. But we don't know. They probably just got like a moderate bump on one of their benchmarks, and then everyone lost their minds. It doesn't really matter.Swyx [00:03:15]: You're like, this is why Sam Altman was fired. I don't know. Anyway, we're here to talk about RLHF 101. You did a presentation, and I think you expressed some desire to rerecord it. And that's why I reached out on Twitter saying, like, why not rerecord it with us, and then we can ask questions and talk about it. Yeah, sounds good.Nathan [00:03:30]: I try to do it every six or 12 months is my estimated cadence, just to refine the ways that I say things. And people will see that we don't know that much more, but we have a bit of better way of saying what we don't know.Swyx [00:03:43]: Awesome. We can dive right in. I don't know if there's any other topics that we want to lay out as groundwork.Alessio [00:03:48]: No, you have some awesome slides. So for people listening on podcast only, we're going to have the slides on our show notes, and then we're going to have a YouTube version where we run through everything together.Nathan [00:03:59]: Sounds good. Yeah. I think to start skipping a lot of the, like, what is a language model stuff, everyone knows that at this point. I think the quote from the Llama 2 paper is a great kind of tidbit on RLHF becoming like a real deal. There was some uncertainty earlier in the year about whether or not RLHF was really going to be important. I think it was not that surprising that it is. I mean, with recent models still using it, the signs were there, but the Llama 2 paper essentially reads like a bunch of NLP researchers that were skeptical and surprised. So the quote from the paper was, meanwhile, reinforcement learning known for its instability seemed a somewhat shadowy field for those in the NLP research community. However, reinforcement learning proved highly effective, particularly given its cost and time effectiveness. So you don't really know exactly what the costs and time that Meta is looking at, because they have a huge team and a pretty good amount of money here to release these Llama models. This is just the kind of thing that we're seeing now. I think any major company that wasn't doing RLHF is now realizing they have to have a team around this. At the same time, we don't have a lot of that in the open and research communities at the same scale. I think seeing that converge would be great, but it's still very early days. And the other thing on the slide is some of Anthropic's work, but everyone knows Anthropic is kind of the masters of this, and they have some of their own techniques that we're going to talk about later on, but that's kind of where we start.Alessio [00:05:17]: Can we do just a one-second RL version? So you come from a robotics background, which RL used to be, or maybe still is, state-of-the-art. And then now you're seeing a lot of LLM plus RL, so you have the gym fans, Eureka, you have MPU, which we had on the podcast when they started with RL. Now they're doing RL plus LLMs. Yeah. Any thoughts there on how we got here? Maybe how the pendulum will keep swinging?Nathan [00:05:46]: I really think RL is about a framing of viewing the world through trial and error learning and feedback, and really just one that's focused on thinking about decision-making and inputs in the world and how inputs have reactions. And in that, a lot of people come from a lot of different backgrounds, whether it's physics, electrical engineering, mechanical engineering. There are obviously computer scientists, but compared to other fields of CS, I do think it's a much more diverse background of people. My background was in electrical engineering and doing robotics and things like that. It really just changes the worldview. I think that reinforcement learning as it was back then, so to say, is really different. You're looking at these toy problems and the numbers are totally different, and everyone went kind of zero to one at scaling these things up, but people like Jim Phan and other people that were... You saw this transition in the decision transformer and papers and when people are trying to use transformers to do decision-making for things like offline RL, and I think that was kind of like the early days. But then once language models were so proven, it's like everyone is using this tool for their research. I think in the long run, it will still settle out, or RL will still be a field that people work on just because of these kind of fundamental things that I talked about. It's just viewing the whole problem formulation different than predicting text, and so there needs to be that separation. And the view of RL in language models is pretty contrived already, so it's not like we're doing real RL. I think the last slide that I have here is a way to make RLHF more like what people would think of with RL, so actually running things over time, but a weird lineage of tools that happen to get us to where we are, so that's why the name takes up so much space, but it could have gone a lot of different ways. Cool.Alessio [00:07:29]: We made it one slide before going on a tangent.Nathan [00:07:31]: Yeah, I mean, it's kind of related. This is a...Swyx [00:07:35]: Yeah, so we have a history of RL.Nathan [00:07:37]: Yeah, so to give the context, this paper really started because I have this more diverse background than some computer scientists, such as trying to understand what the difference of a cost function or a reward function and a preference function would be without going into all of the details. Costs are normally things that control theorists would work with in these kind of closed domains, and then reinforcement learning has always worked with rewards that's central to the formulation that we'll see, and then the idea was like, okay, we now are at preferences, and each step along the way there's kind of different assumptions that you're making. We'll get into these, and those assumptions are built on other fields of work. So that's what this slide is going to say, it's like RLHF, while directly building on tools from RL and language models, is really implicitly impacted and built on theories and philosophies spanning tons of human history. I think we cite Aristotle in this paper, which is fun. It's like going pre-BC, it's like 2,300 years old or something like that. So that's the reason to do this, I think. We kind of list some things in the paper about summarizing what different presumptions of RLHF could be. I think going through these is actually kind of funny. It's fun to talk about these, because they're kind of grab bags of things that you'll see return throughout this podcast that we're talking about it. The core thing of RLHF that, in order to be a believer in this, is that RL actually works. It's like, if you have a reward function, you can optimize it in some way and get a different performance out of it, and you could do this at scale, and you could do this in really complex environments, which is, I don't know how to do that in all the domains. I don't know how to exactly make chat GPT. So it's kind of, we'll overshadow everything. And then there's, go from something kind of obvious like that, and then you read the von Neumann-Morgenstern utility theorem, which is essentially an economic theory that says you can weight different probabilities of different people, which is a theoretical piece of work that is the foundation of utilitarianism, and trying to quantify preferences is crucial to doing any sort of RLHF. And if you look into this, all of these things, there's way more you could go into if you're interested in any of these. So this is kind of like grabbing a few random things, and then kind of similar to that is the Bradley-Terry model, which is the fancy name for the pairwise preferences that everyone is doing. And then all the things that are like, that Anthropic and OpenAI figured out that you can do, which is that you can aggregate preferences from a bunch of different people and different sources. And then when you actually do RLHF, you extract things from that data, and then you train a model that works somehow. And we don't know, there's a lot of complex links there, but if you want to be a believer in doing this at scale, these are the sorts of things that you have to accept as preconditions for doing RLHF. Yeah.Swyx [00:10:09]: You have a nice chart of like the sort of intellectual history of RLHF that we'll send people to refer to either in your paper or in the YouTube video for this podcast. But I like the other slide that you have on like the presumptions that you need to have for RLHF to work. You already mentioned some of those. Which one's underappreciated? Like, this is the first time I've come across the VNM Utility Theorem.Nathan [00:10:29]: Yeah, I know. This is what you get from working with people like to my co-host on the podcast, the rhetoric is that sociologist by training. So he knows all these things and like who the philosophers are that found these different things like utilitarianism. But there's a lot that goes into this. Like essentially there's even economic theories that like there's debate whether or not preferences exist at all. And there's like different types of math you can use with whether or not you actually can model preferences at all. So it's pretty obvious that RLHF is built on the math that thinks that you can actually model any human preference. But this is the sort of thing that's been debated for a long time. So all the work that's here is like, and people hear about in their AI classes. So like Jeremy Bentham, like hedonic calculus and all these things like these are the side of work where people assume that preferences can be measured. And this is like, I don't really know, like, this is what I kind of go on a rant and I say that in RLHF calling things a preference model is a little annoying because there's no inductive bias of what a preference is. It's like if you were to learn a robotic system and you learned a dynamics model, like hopefully that actually mirrors the world in some way of the dynamics. But with a preference model, it's like, Oh my God, I don't know what this model, like I don't know what chat GPT encodes as any sort of preference or what I would want it to be in a fair way. Anthropic has done more work on trying to write these things down. But even like if you look at Claude's constitution, like that doesn't mean the model believes these things. It's just trained to prioritize these things. And that's kind of what the later points I'm looking at, like what RLHF is doing and if it's actually like a repeatable process in the data and in the training, that's just unknown. And we have a long way to go before we understand what this is and the link between preference data and any notion of like writing down a specific value.Alessio [00:12:05]: The disconnect between more sociology work versus computer work already exists, or is it like a recent cross contamination? Because when we had Tri Dao on the podcast, he said FlashAttention came to be because at Hazy they have so much overlap between systems engineer and like deep learning engineers. Is it the same in this field?Nathan [00:12:26]: So I've gone to a couple of workshops for the populations of people who you'd want to include this like R. I think the reason why it's not really talked about is just because the RLHF techniques that people use were built in labs like OpenAI and DeepMind where there are some of these people. These places do a pretty good job of trying to get these people in the door when you compare them to like normal startups. But like they're not bringing in academics from economics, like social choice theory. There's just too much. Like the criticism of this paper that this is based on is like, oh, you're missing these things in RL or at least this decade of RL and it's like it would be literally be bigger than the Sutton and Barto book if you were to include everyone. So it's really hard to include everyone in a principled manner when you're designing this. It's just a good way to understand and improve the communication of what RLHF is and like what is a good reward model for society. It really probably comes down to what an individual wants and it'll probably motivate models to move more in that direction and just be a little bit better about the communication, which is a recurring theme and kind of my work is like I just get frustrated when people say things that don't really make sense, especially when it's going to manipulate individual's values or manipulate the general view of AI or anything like this. So that's kind of why RLHF is so interesting. It's very vague in what it's actually doing while the problem specification is very general.Swyx [00:13:42]: Shall we go to the, I guess, the diagram here on the reinforcement learning basics? Yeah.Nathan [00:13:47]: So reinforcement learning, I kind of mentioned this, it's a trial and error type of system. The diagram and the slides is really this classic thing where you have an agent interacting with an environment. So it's kind of this agent has some input to the environment, which is called the action. The environment returns a state and a reward and that repeats over time and the agent learns based on these states and these rewards that it's seeing and it should learn a policy that makes the rewards go up. That seems pretty simple than if you try to mentally map what this looks like in language, which is that like the language models don't make this easy. I think with the language model, it's very hard to define what an environment is. So if the language model is the policy and it's generating, it's like the environment should be a human, but setting up the infrastructure to take tens of thousands of prompts and generate them and then show them to a human and collect the human responses and then shove that into your training architecture is very far away from working. So we don't really have an environment. We just have a reward model that returns a reward and the state doesn't really exist when you look at it like an RL problem. What happens is the state is a prompt and then you do a completion and then you throw it away and you grab a new prompt. We're really in as an RL researcher, you would think of this as being like you take a state, you get some completion from it and then you look at what that is and you keep kind of iterating on it and all of that isn't here, which is why you'll hear RLHF referred to as bandits problem, which is kind of like you choose one action and then you watch the dynamics play out. There's many more debates that you can have in this. If you get the right RL people in the room, then kind of like this is an RL even when you zoom into what RLHF is doing.Alessio [00:15:22]: Does this change as you think about a chain of thought reasoning and things like that? Like does the state become part of the chain that you're going through?Nathan [00:15:29]: There's work that I've mentioned on one slide called process reward models that essentially rewards each step in the chain of thought reasoning. It doesn't really give the part of interaction, but it does make it a little bit more fine grained where you can think about like calling it at least you have many states from your initial state. That formulation I don't think people have fully settled on. I think there's a bunch of great work out there, like even OpenAI is releasing a lot of this and let's verify step by step is there pretty great paper on the matter. I think in the next year that'll probably get made more concrete by the community on like if you can easily draw out like if chain of thought reasoning is more like RL, we can talk about that more later. That's a kind of a more advanced topic than we probably should spend all the time on.Swyx [00:16:13]: RLHF for decision making. You have a slide here that compares pre-deep RL versus deep RL.Nathan [00:16:19]: This is getting into the history of things, which is showing that the work that people are using now really came from well outside of NLP and it came before deep learning was big. Next up from this paper, Tamer, which is from 2008. Some names that are still really relevant in kind of human centric RL, Bradley Knox and Peter Stone. If you have an agent take an action, you would just have a human give a score from zero to one as a reward rather than having a reward function. And then with that classifier, you can do something with a policy that learns to take actions to maximize that reward. It's a pretty simple setup. It works in simple domains. And then the reason why this is interesting is you compare it to the paper that everyone knows, which is this Paul Christiano et al. Deep Reinforced Learning from Human Preferences paper, which is where they showed that learning from human preferences, you can solve like the basic RL tasks at the time. So various control problems and simulation and this kind of like human preferences approach had higher rewards in some environments than if you just threw RL at the environment that returned a reward. So the preferences thing was you took two trajectories. So in this case, it was like complete trajectories of the agent and the human was labeling which one is better. You can see how this kind of comes to be like the pairwise preferences that are used today that we'll talk about. And there's also a really kind of interesting nugget that is the trajectory that the humans were labeling over has a lot more information than the RL algorithm would see if you just had one state, which is kind of why people think that it's why the performance in this paper was so strong. But I still think that it's surprising that there isn't more RL work of this style happening now. This paper is in 2017. So it's like six years later and I haven't seen things that are exactly similar, but it's a great paper to understand where stuff that's happening now kind of came from.Swyx [00:17:58]: Just on the Christiano paper, you mentioned the performance being strong. I don't remember what results should I have in mind when I think about that paper?Nathan [00:18:04]: It's mostly like if you think about an RL learning curve, which is like on the X axis, you have environment interactions on the Y axis, you have performance. You can think about different like ablation studies of between algorithms. So I think they use like A2C, which I don't even remember what that stands for as their baseline. But if you do the human preference version on a bunch of environments, like the human preference labels, the agent was able to learn faster than if it just learned from the signal from the environment, which means like it's happening because the reward model has more information than the agent would. But like the fact that it can do better, I was like, that's pretty surprising to me because RL algorithms are pretty sensitive. So I was like, okay.Swyx [00:18:41]: It's just one thing I do want to establish as a baseline for our listeners. We are updating all the weights. In some sense, the next token prediction task of training a language model is a form of reinforcement learning. Except that it's not from human feedback. It's just self-supervised learning from a general corpus. There's one distinction which I love, which is that you can actually give negative feedback. Whereas in a general sort of pre-training situation, you cannot. And maybe like the order of magnitude of feedback, like the Likert scale that you're going to talk about, that actually just gives more signal than a typical training process would do in a language model setting. Yeah.Nathan [00:19:15]: I don't think I'm the right person to comment exactly, but like you can make analogies that reinforcement learning is self-supervised learning as well. Like there are a lot of things that will point to that. I don't know whether or not it's a richer signal. I think that could be seen in the results. It's a good thing for people to look into more. As reinforcement learning is so much less compute, like it is a richer signal in terms of its impact. Because if they could do what RLHF is doing at pre-training, they would, but they don't know how to have that effect in like a stable manner. Otherwise everyone would do it.Swyx [00:19:45]: On a practical basis, as someone fine-tuning models, I have often wished for negative fine-tuning, which pretty much doesn't exist in OpenAI land. And it's not the default setup in open-source land.Nathan [00:19:57]: How does this work in like diffusion models and stuff? Because you can give negative prompts to something to like stable diffusion or whatever. It's for guidance.Swyx [00:20:04]: That's for clip guidance.Nathan [00:20:05]: Is that just from like how they prompt it then? I'm just wondering if we could do something similar. It's another tangent.Swyx [00:20:10]: I do want to sort of spell that out for people in case they haven't made the connection between RLHF and the rest of the training process. They might have some familiarity with it.Nathan [00:20:19]: Yeah. The upcoming slides can really dig into this, which is like this in 2018 paper, there was a position paper from a bunch of the same authors from the Christiano paper and from the OpenAI work that everyone knows, which is like, they write a position paper on what a preference reward model could do to solve alignment for agents. That's kind of based on two assumptions. The first assumption is that we can learn user intentions to a sufficiently high accuracy. That doesn't last with me because I don't know what that means. But the second one is pretty telling in the context of RLHF, which is for many tasks we want to solve, evaluation of outcomes is easier than producing the correct behavior. And this is the whole thing. It's like we can compare two poems that the model generates and it can be viewed as liking a positive example, or it could be viewed as really disliking a negative example. And that's what I think a lot of people are doing in like the harm space is like a harmful response to a language model, whether or not you agree with the company's definition of harms is that it's a really bad negative example and they downweight them by preferring something more benign in the RLHF process, among other ways of dealing with safety. So that's a good way of saying it's like this is core, this kind of like comparison and positive or negative example is core to all of the RLHF work that has continued.Swyx [00:21:29]: People often say, I don't know what I want, but I'll know when I see it. This is that expressed in reinforcement learning tools.Nathan [00:21:35]: Yeah, it is. Yeah, it is. That's what everyone's doing in the preference modeling stage that we'll get to. Yeah. Yeah. And you can see there are more papers. This is really just to have all the links for people that go deeper. There's a Ziegler et al. paper in 2019, which shows that you can do this RLHF process on language models. This familiar diagram starts to emerge in 2019, and it's just to show that this goes really far back. I think we can kind of breeze through some of these. And then 2020 is the first open AI experiment that I think caught people's eyes, which is this learning to summarize experiment. It has this three-step process that we'll go to into more when I kind of go into the main concepts. But this is like the first time you see this diagram that they reuse with InstructGPT, they reuse with ChatGPT. And the types of examples that they would have, I don't think I need to read these exactly, but one that I have read a whole bunch of times is like, they took these prompts from Reddit that was like, explain like I'm five or get career advice, and people really pour their heart and soul into these. So these are like multi-paragraph pieces of writing. And then they essentially do comparisons between a vanilla language model, like I think it was either GPT-2 or GPT-3, I don't always get the exact years.Swyx [00:22:42]: 3 was early 2020. So that's about right.Nathan [00:22:45]: Yeah. So this is probably done with GPT-2. It doesn't really matter. But the language model does normal things when you do few shot, which is like it repeats itself. It doesn't have nice text. And what they did is that this was the first time where the language model would generate like pretty nice text from an output. It was restricted to the summarization domain. But I think that I guess this is where I wish I was paying attention more because I would see the paper, but I didn't know to read the language model outputs and kind of understand this qualitative sense of the models very well then. Because you look at the plots in the papers, these Learning to Summarize and Destruct GPT have incredibly pretty plots, just like nicely separated lines with error bars and they're like superfine tuning works, the RL step works. But if you were early to see like how different the language that was written by these models was, I think you could have been early to like things like ChatGPT and knowing RLHF would matter. And now I think the good people know to chat with language models, but not even everyone does this. Like people are still looking at numbers. And I think OpenAI probably figured it out when they were doing this, how important that could be. And then they had years to kind of chisel away at that and that's why they're doing so well now. Yeah.Swyx [00:23:56]: I mean, arguably, you know, it's well known that ChatGPT was kind of an accident that they didn't think it would be that big of a deal. Yeah.Nathan [00:24:02]: So maybe they didn't. Maybe they didn't, but they were getting the proxy that they needed.Swyx [00:24:06]: I've heard off the record from other labs that it was in the air. If OpenAI didn't do it, someone else would have done it. So you've mentioned a couple of other papers that are very seminal to this period. And I love how you say way back when in referring to 2019.Nathan [00:24:19]: It feels like it in my life.Swyx [00:24:21]: So how much should people understand the relationship between RLHF, instruction tuning, PPO, KL divergence, anything like that? Like how would you construct the level of knowledge that people should dive into? What should people know at the high level? And then if people want to dive in deeper, where do they go? Is instruct tuning important here or is that part of the overall process towards modern RLHF?Nathan [00:24:44]: I think for most people, instruction tuning is probably still more important in their day to day life. I think instruction tuning works very well. You can write samples by hand that make sense. You can get the model to learn from them. You could do this with very low compute. It's easy to do almost in like no code solutions at this point. And the loss function is really straightforward. And then if you're interested in RLHF, you can kind of learn from it from a different perspective, which is like how the instruction tuning distribution makes it easier for your RLHF model to learn. There's a lot of details depending on your preference data, if it's close to your instruction model or not, if that matters. But that's really at the RLHF stage. So I think it's nice to segment and just kind of understand what your level of investment and goals are. I think instruction tuning still can do most of what you want to do. And it's like, if you want to think about RLHF, at least before DPO really had taken off at all, it would be like, do you want to have a team of at least like five people if you're really thinking about doing RLHF? I think DPO makes it a little bit easier, but that's still really limited to kind of one data set that everyone's using at this point. Like everyone's using this ultra feedback data set and it boosts AlpacaVal, MTBench, TruthfulQA and like the qualitative model a bit. We don't really know why. It's like, it might just be a data set combined with the method, but you've got to be ready for a bumpy ride if you're wanting to try to do RLHF. I don't really recommend most startups to do it unless it's like going to provide them a clear competitive advantage in their kind of niche, because you're not going to make your model chat GPT like better than OpenAI or anything like that. You've got to accept that there's some exploration there and you might get a vein of benefit in your specific domain, but I'm still like, oh, be careful going into the RLHF can of worms. You probably don't need to.Swyx [00:26:27]: Okay. So there's a bit of a time skip in what you mentioned. DPO is like a couple months old, so we'll leave that towards the end. I think the main result that I think most people talk about at this stage, we're talking about September 2020 and then going into, I guess maybe last year was Vicuña as one of the more interesting applications of instruction tuning that pushed LLAMA1 from, let's say a GPT 3-ish model to a GPT 3.5 model in pure open source with not a lot of resources. I think, I mean, they said something like, you know, they use like under $100 to makeNathan [00:26:58]: this. Yeah. Like instruction tuning can really go a long way. I think the claims of chat GPT level are long overblown in most of the things in open source. I think it's not to say, like Vicuña was a huge step and it's just kind of showing that instruction tuning with the right data will completely change what it feels like to talk with your model. Yeah.Swyx [00:27:19]: From text completion to actually chatting back and forth. Yeah. Yeah.Nathan [00:27:23]: Instruction tuning can be multi-turn. Just having a little bit of data that's like a couple of turns can go a really long way. That was like the story of the whole first part of the year is like people would be surprised by how far you can take instruction tuning on a small model. I think the things that people see now is like the small models don't really handle nuance as well and they could be more repetitive even if they have really good instruction tuning. But if you take that kind of 7 to 70 billion parameter jump, like the instruction tuning at the bigger model is like robustness, little things make more sense. So that's still just with instruction tuning and scale more than anything else.Swyx [00:27:56]: Excellent. Shall we go to technical overview?Nathan [00:27:58]: Yeah. This is kind of where we go through my own version of this like three phase process. You can talk about instruction tuning, which we've talked about a lot. It's funny because all these things, instruction tuning has the fewest slides, even though it's the most practical thing for most people. We could save the debate for like if the big labs still do instruction tuning for later, but that's a coming wave for people. And then like preference data and training and then kind of like what does reinforce learning optimization actually mean? We talk about these sequentially because you really have to be able to do each of them to be able to do the next one. You need to be able to have a model that's chatty or helpful instruction following. Every company has their own word that they like to assign to what instructions mean. And then once you have that, you can collect preference data and do some sort of optimization.Swyx [00:28:39]: When you say word, you mean like angle bracket inst or do you mean something else?Nathan [00:28:42]: Oh, I don't even know what inst means, but just saying like they use their adjective that they like. I think Entropic also like steerable is another one.Swyx [00:28:51]: Just the way they describe it. Yeah.Nathan [00:28:53]: So like instruction tuning, we've covered most of this is really about like you should try to adapt your models to specific needs. It makes models that were only okay, extremely comprehensible. A lot of the times it's where you start to get things like chat templates. So if you want to do system prompts, if you want to ask your model, like act like a pirate, that's one of the ones I always do, which is always funny, but like whatever you like act like a chef, like anything, this is where those types of things that people really know in language models start to get applied. So it's good as a kind of starting point because this chat template is used in our early childhood and all of these things down the line, but it was a basic pointer. It's like, once you see this with instruction tuning, you really know it, which is like you take things like stack overflow where you have a question and an answer. You format that data really nicely. There's much more tricky things that people do, but I still think the vast majority of it is question answer. Please explain this topic to me, generate this thing for me. That hasn't changed that much this year. I think people have just gotten better at scaling up the data that they need. Yeah, this is where this talk will kind of take a whole left turn into more technical detail land. I put a slide with the RLHF objective, which I think is good for people to know. I've started going back to this more, just kind of understand what is trying to happen here and what type of math people could do. I think because of this algorithm, we've mentioned this, it's in the air, direct preference optimization, but everything kind of comes from an equation of trying to learn a policy that maximizes the reward. The reward is some learned metric. A lot can be said about what the reward should be subject to some constraint. The most popular constraint is the KL distraint, which is just a distributional distance. Essentially in language models, that means if you have a completion from your instruction or RLHF model, you can compare that completion to a base model. And looking at the log probs from the model, which are essentially how likely each token is, you can see a rough calculation of the distance between these two models, just as a scalar number. I think what that actually looks like in code, you can look at it. It'd be like a sum of log probs that you get right from the model. It'll look much more simpler than it sounds, but it is just to make the optimization kind of stay on tracks.Make sure it doesn't overfit to the RLHF data. Because we have so little data in RLHF, overfitting is really something that could happen. I think it'll fit to specific features that labelers like to see, that the model likes to generate, punctuation, weird tokens like calculator tokens. It could overfit to anything if it's in the data a lot and it happens to be in a specific format. And the KL constraint prevents that. There's not that much documented work on that, but there's a lot of people that know if you take that away, it just doesn't work at all. I think it's something that people don't focus on too much. But the objective, as I said, it's just kind of, you optimize the reward. The reward is where the human part of this comes in. We'll talk about that next. And then subject to a constraint, don't change the model too much. The real questions are, how do you implement the reward? And then how do you make the reward go up in a meaningful way? So like a preference model, the task is kind of to design a human reward. I think the equation that most of the stuff is based on right now is something called a Bradley-Terry model, which is like a pairwise preference model where you compare two completions and you say which one you like better. I'll show an interface that Anthropic uses here. And the Bradley-Terry model is really a fancy probability between two selections. And what's happening in the math is that you're looking at the probability that the chosen completion, the one you like better, is actually the better completion over the rejected completion. And what these preference models do is they assume this probability is correlated to reward. So if you just sample from this probability, it'll give you a scalar. And then you use that reward later on to signify what piece of text is better. I'm kind of inclined to breeze through the math stuff because otherwise, it's going to be not as good to listen to.Alessio [00:32:49]: I think people want to hear it. I think there's a lot of higher level explanations out there. Yeah.Nathan [00:32:55]: So the real thing is you need to assign a scalar reward of how good a response is. And that's not necessarily that easy to understand. Because if we take back to one of the first works, I mentioned this tamer thing for decision making. People tried that with language models, which is if you have a prompt in a completion and you just have someone rate it from 0 to 10, could you then train a reward model on all of these completions in 0 to 10 ratings and see if you can get chat2BT with that? And the answer is really kind of no. Like a lot of people tried that. It didn't really work. And then that's why they tried this pairwise preference thing. And it happened to work. And this Bradley Terry model comes from the 50s. It's from these fields that I was mentioning earlier. And it's wild how much this happens. I mean, this screenshot I have in the slides is from the DPO paper. I think it might be the appendix. But it's still really around in the literature of what people are doing for RLHF.Alessio [00:33:45]: Yeah.Nathan [00:33:45]: So it's a fun one to know.Swyx [00:33:46]: I'll point out one presumption that this heavily relies on. You mentioned this as part of your six presumptions that we covered earlier, which is that you can aggregate these preferences. This is not exactly true among all humans, right? I have a preference for one thing. You have a preference for a different thing. And actually coming from economics, you mentioned economics earlier. There's a theorem or a name for this called error impossibility, which I'm sure you've come across..Nathan [00:34:07]: It's one of the many kind of things we throw around in the paper.Swyx [00:34:10]: Right. Do we just ignore it?Nathan [00:34:14]: We just, yeah, just aggregate. Yeah. I think the reason this really is done on a deep level is that you're not actually trying to model any contestable preference in this. You're not trying to go into things that are controversial or anything. It's really the notion of preference is trying to stay around correctness and style rather than any meaningful notion of preference. Because otherwise these companies, they don't want to do this at all. I think that's just how it is. And it's like, if you look at what people actually do. So I have a bunch of slides on the feedback interface. And they all publish this.Swyx [00:34:43]: It's always at the appendices of every paper.Nathan [00:34:47]: There's something later on in this talk, which is like, but it's good to mention. And this is when you're doing this preference collection, you write out a very long document of instructions to people that are collecting this data. And it's like, this is the hierarchy of what we want to prioritize. Something amount like factuality, helpfulness, honestness, harmlessness. These are all different things. Every company will rank these in different ways, provide extensive examples. It's like, if you see these two answers, you should select this one and why. And all of this stuff. And then my kind of like head scratching is like, why don't we check if the models actually do these things that we tell the data annotators to collect? But I think it's because it's hard to make that attribution. And it's hard to test if a model is honest and stuff. It would just be nice to understand the kind of causal mechanisms as a researcher or like if our goals are met. But at a simple level, what it boils down to, I have a lot more images than I need. It's like you're having a conversation with an AI, something like type GPT. You get shown two responses or more in some papers, and then you have to choose which one is better. I think something you'll hear a lot in this space is something called a Likert scale. Likert is a name. It's a name for probably some research in economics, decision theory, something. But essentially, it's a type of scale where if you have integers from like one to eight, the middle numbers will represent something close to a tie. And the smallest numbers will represent one model being way better than the other. And the biggest numbers will be like the other models better. So in the case of one to eight, if you're comparing models A to B, if you return a one, if you really liked option A, you return eight if you really like B, and then like a four or five if they were close. There's other ways to collect this data. This one's become really popular. We played with it a bit at Hugging Face. It's hard to use. Filling out this preference data is really hard. You have to read like multiple paragraphs. It's not for me. Some people really like it. I hear I'm like, I can't imagine sitting there and reading AI-generated text and like having to do that for my job. But a lot of these early papers in RLHF have good examples of what was done. The one I have here is from Anthropic's collection demo because it was from slides that I did with Anthropic. But you can look up these in the various papers. It looks like Chat2BT with two responses, and then you have an option to say which one is better. It's nothing crazy. The infrastructure is almost exactly the same, but they just log which one you think is better. I think places like Scale are also really big in this where a lot of the labeler companies will help control like who's doing how many samples. You have multiple people go over the same sample once and like what happens if there's disagreement. I don't really think this disagreement data is used for anything, but it's good to know like what the distribution of prompts is, who's doing it, how many samples you have, controlling the workforce. All of this is very hard. A last thing to add is that a lot of these companies do collect optional metadata. I think the Anthropic example shows a rating of like how good was the prompt or the conversation from good to bad because things matter. Like there's kind of a quadrant of preference data in my mind, which is you're comparing a good answer to a good answer, which is like really interesting signal. And then there's kind of the option of you're comparing a bad answer to a bad answer, which is like you don't want to train your model on two different issues. This is like, we did this at Hugging Base and it was like, our data was like, we don't know if we can use this because a lot of it was just bad answer to bad answer because you're like rushing to try to do this real contract. And then there's also good answer to bad answer, which I think is probably pretty reasonable to include. You just prefer the good one and move on with your life. But those are very different scenarios. I think open AIs of the world are all in good answer, good answer, and have learned to eliminate everything else. But when people try to do this in open source, it's probably like what Open Assistance saw is like, there's just a lot of bad answers in your preference data. And you're like, what do I do with this? Metadata flags can help. I threw in the instruct GPT metadata. You can see how much they collect here. And like everything from the model fails to actually complete the task, hallucinations, different types of offensive or dangerous content, moral judgment, expresses opinion. Like, I don't know exactly if they're doing this now, but you can kind of see why doing RLHF at scale and prioritizing a lot of different endpoints would be hard because these are all things I'd be interested in if I was scaling up a big team to do RLHF and like what is going into the preference data. You do an experiment and you're like, okay, we're going to remove all the data where they said the model hallucinates like just that and then retrain everything. Like, what does that do?Swyx [00:38:59]: Yeah, so hallucination is big, but some of these other metadata categories, and I've seen this in a lot of papers, it's like, does it contain sexual content? Does it express a moral judgment? Does it denigrate a protected class? That kind of stuff, very binary. Should people try to adjust for this at the RLHF layer or should they put it as a pipeline where they have a classifier as a separate model that grades the model output?Nathan [00:39:20]: Do you mean for training or like a deployment? Deployment. I do think that people are doing it at deployment. I think we've seen safety and other things in the RLHF pipeline. Like Lama 2 is famous for kind of having this like helpfulness and safety reward models. Deep in the Gemini report is something that Gemini has like four things, which is like helpfulness, factuality, maybe safety, maybe something else. But places like Anthropic and Chattopadhyay and Bard almost surely have a classifier after, which is like, is this text good? Is this text bad? That's not that surprising, I think, because you could use like a hundred times smaller language model and do much better at filtering than RLHF. But I do think it's still so deeply intertwined with the motivation of RLHF to be for safety that some of these categories still persist. I think that's something I'll kind of settle out, I think.Swyx [00:40:11]: I'm just wondering if it's worth collecting this data for the RLHF purpose, if you're not going to use it in any way, separate model to-Nathan [00:40:18]: Yeah, I don't think OpenAI will collect all of this anymore, but I think for research perspectives, it's very insightful to know, but it's also expensive. So essentially your preference data scales with how many minutes it takes for you to do each task and every button is like, it scales pretty linearly. So it's not cheap stuff.Swyx [00:40:35]: Can we, since you mentioned expensiveness, I think you may have joined one of our spaces back in Lama 2 was released. We had an estimate from you that was something on the order of Lama 2 costs $3 to $6 million to train GPU-wise, and then it was something like $20 to $30 million in preference data. Is that something that's still in the ballpark? I don't need precise numbers.Nathan [00:40:56]: I think it's still a ballpark. I know that the 20 million was off by a factor of four because I was converting from a prompt number to a total data point. So essentially when you do this, if you have multi-turn setting, each turn will be one data point and the Lama 2 paper reports like 1.5 million data points, which could be like 400,000 prompts. So I would say it's still say like 6 to 8 million is safe to say that they're spending, if not more, they're probably also buying other types of data and or throwing out data that they don't like, but it's very comparable to compute costs. But the compute costs listed in the paper always are way lower because all they have to say is like, what does one run cost? But they're running tens or hundreds of runs. So it's like, okay, like... Yeah, it's just kind of a meaningless number. Yeah, the data number would be more interesting.Alessio [00:41:42]: What's the depreciation of this data?Nathan [00:41:46]: It depends on the method. Like some methods, people think that it's more sensitive to the, this is what I was saying. It was like, does the type of instruction tuning you do matter for RLHF? So like, depending on the method, some people are trying to figure out if you need to have like what is called like, this is very confusing. It's called like on policy data, which is like your RLHF data is from your instruction model. I really think people in open source and academics are going to figure out how to use any preference data on any model just because they're scrappy. But there's been an intuition that to do like PPO well and keep improving the model over time and do like what Meta did and what people think that OpenAI does is that you need to collect new preference data to kind of edge the distribution of capabilities forward. So there's a depreciation where like the first batch of data you collect isn't really useful for training the model when you have the fifth batch. We don't really know, but it's a good question. And I do think that if we had all the LLAMA data, we wouldn't know what to do with all of it. Like probably like 20 to 40% would be pretty useful for people, but not the whole data set. Like a lot of it's probably kind of gibberish because they had a lot of data in there.Alessio [00:42:51]: So do you think like the open source community should spend more time figuring out how to reuse the data that we have or like generate more data? I think that's one of the-Nathan [00:43:02]: I think if the people are kind of locked into using synthetic data, people also think that synthetic data is like GPT-4 is more accurate than humans at labeling preferences. So if you look at these diagrams, like humans are about 60 to 70% agreement. And we're like, that's what the models get to. And if humans are about 70% agreement or accuracy, like GPT-4 is like 80%. So it is a bit better, which is like in one way of saying it.Swyx [00:43:24]: Humans don't even agree with humans 50% of the time.Nathan [00:43:27]: Yeah, so like that's the thing. It's like the human disagreement or the lack of accuracy should be like a signal, but how do you incorporate that? It's really tricky to actually do that. I think that people just keep using GPT-4 because it's really cheap. It's one of my like go-to, like I just say this over and over again is like GPT-4 for data generation, all terms and conditions aside because we know OpenAI has this stuff is like very cheap for getting pretty good data compared to compute or salary of any engineer or anything. So it's like tell people to go crazy generating GPT-4 data if you're willing to take the organizational like cloud of should we be doing this? But I think most people have accepted that you kind of do this, especially at individuals. Like they're not gonna come after individuals. I do think more companies should think twice before doing tons of OpenAI outputs. Also just because the data contamination and what it does to your workflow is probably hard to control at scale.Swyx [00:44:21]: And we should just mention at the time of recording, we've seen the first example of OpenAI enforcing their terms of service. ByteDance was caught, reported to be training on GPT-4 data and they got their access to OpenAI revoked. So that was one example.Nathan [00:44:36]: Yeah, I don't expect OpenAI to go too crazy on this cause they're just gonna, there's gonna be so much backlash against them. And like, everyone's gonna do it anyways.Swyx [00:44:46]: And what's at stake here to spell it out is like, okay, that's like cost $10 to collect one data point from a human. It's gonna cost you like a 10th of a cent with OpenAI, right? So like it's just orders of magnitude cheaper. And therefore people-Nathan [00:44:58]: Yeah, and it's like the signal you get from humans is from preferences isn't that high. The signal that you get from humans for instructions is pretty high, but it is also very expensive. So like the human instructions are definitely like by far and away the best ones out there compared to the synthetic data. But I think like the synthetic preferences are just so much easier to get some sort of signal running with and you can work in other, I think people will start working in other goals there between safety and whatever. That's something that's taking off and we'll kind of see that. I think in 2024, at some point, people will start doing things like constitutional AI for preferences, which will be pretty interesting. I think we saw how long it took RLHF to get started in open source. Instruction tuning was like the only thing that was really happening until maybe like August, really. I think Zephyr was the first model that showed success with RLHF in the public, but that's a long time from everyone knowing that it was something that people are interested in to having any like check mark. So I accept that and think the same will happen with constitutional AI. But once people show that you can do it once, they continue to explore.Alessio [00:46:01]: Excellent.Swyx [00:46:01]: Just in the domain of human preference data suppliers, Scale.ai very happily will tell you that they supplied all that data for Lama 2. The other one is probably interesting, LMSYS from Berkeley. What they're running with Chaterina is perhaps a good store of human preference data.Nathan [00:46:17]: Yeah, they released some toxicity data. They, I think, are generally worried about releasing data because they have to process it and make sure everything is safe and they're really lightweight work. I think they're trying to release the preference data. I have, if we make it to evaluation, I'd pretty much say that Chaterina is the best limited evaluation that people have to learn how to use language models. And like, it's very valuable data. They also may share some data with people that they host models from. So like if your model is hosted there and you pay for the hosting, you can get the prompts because you're pointing the endpoint at it and that gets pinged to you and you're any real LLM inference stack saves the prompts tha
Pourtant, que la montagne est belle ! En 2003, l'ONU a déclaré le 11 décembre Journée internationale de la montagne. Les montagnes ne sont pas qu'un terrain de jeu ou une jolie carte postale. Elles sont les sources d'alimentation en eau douce de la moitié de la population mondiale. Elles jouent un rôle essentiel dans les équilibres écologiques de la planète. Si les montagnes semblent indestructibles, elles sont vulnérables. Le réchauffement provoque la fonte des glaciers, et cause des dommages à bien des espèces qui avaient un dernier refuge en montagne, loin de l'expansion humaine. L'hypertourisme et l'exploitation abusive des ressources naturelles et beaucoup d'autres activités humaines nuisent plus ou moins directement aux montagnes. Pour célébrer la journée mondiale des montagnes, Marc Mortelmans nous parle de celles qu'il connaît le mieux, les Andes, où il a travaillé comme guide d'expéditions pendant 6 ans. Dans cette première partie, Nous allons parler du condor, qui a déjà eu droit à son hors-série planant, et aussi des camélidés d'Amérique du Sud. Ces cousins des Chameaux et des Dromadaires comptent deux espèces domestiques, Llama et Alpaca, et deux espèces sauvages : Vicuña et Guanaco. ______ On aime ce qui nous a émerveillé … et on protège ce qu'on aime. ______ Découvrir tout l'univers Baleine sous Gravillon, et Mécaniques du Vivant sur France Culture : https://baleinesousgravillon.com/liens-2 Soutenir notre travail, bénévole et sans pub : https://bit.ly/helloasso_donsUR_BSG http://bit.ly/Tipeee_BSG https://bit.ly/lien_magq_lilo_BSG Nous contacter pour une conférence, un partenariat ou d'autres prestations ou synergies : contact@baleinesousgravillon.com
Paul and Erika watched Sunset Boulevard and, to quote Erika, they will not be brief. Come for the Norma Desmond and stay for the Norma Desmond!You can follow That Aged Well on Twitter (@ThatAgedWellPod), Instagram (@ThatAgedWell), Threads (@ThatAgedWell), and Spoutible (@ThatAgedWell)!SUPPORT US ON PATREON FOR BONUS CONTENT!THAT AGED WELL MERCH!Hosts: Paul Caiola & Erika VillalbaProducer & Editor: Paul CaiolaOur show is hosted by Spreaker Prime!This show is part of the Spreaker Prime Network, if you are interested in advertising on this podcast, contact us at https://www.spreaker.com/show/5996175/advertisement
Interview with Michael Wood, Executive Chairman of Sendero Resources Corp.Recording date: 23rd October 2023Sendero Resources is a newly listed copper-gold exploration company in the Vicuña District of Argentina that started trading in October 2023. The company is led by Executive Chairman Michael Wood, CEO Hernan Vera who has built three major mines in Argentina, and renowned geologist David Royale on its technical team. The company recently raised nearly CAD$6 million and obtained drill permits, with plans to start drilling in January 2024.Sendero's 12 sq km land package sits on the Vicuña Belt, a unique geological formation with rapid uplift and erosion that has pushed porphyry bodies closer to surface. Sendero will be drilling initially to depths of 350-500m on outcropping mineralization targets and another area just 80-100m below surface with potential clustering porphyries. The goal is to hit copper-gold mineralization starting near surface and deliver over 100+ meter intercepts of 1%+ copper equivalent which would validate that Sendero's land package hosts a cluster of porphyry deposits like others in the region.With permits granted, contracts signed, and targets delineated, Sendero is fully ready to start drilling in early 2024. The company aims to advance quickly with supportive investors and capital markets, as it explores a proven but underexplored part of a copper-gold district seeing intense interest globally. Initial results will dictate the next steps, but the long-term goal is a 10,000-15,000 meter drill program to delineate an initial mineral resource estimate within 12 months.-View Portofino Resources' Company Profile: https://cruxinvestor.com/companies/sendero-resourcesSign up for Crux Investor: https://cruxinvestor.com
Due Diligence by Doc Jones, Resource Investor, Hunting for Exceptional returns.
SEND.V is a new listing that quietly IPO'd last week, see investor deck for capital structure. Real simple, great team, tier one property in Vicuna District, cashed up and very tight shares low an ultra-low MC 50% of which in cash. Sendero Resources is a dynamic exploration company focused on unlocking the vast mineral potential of the Vicuña district in Argentina. Through our wholly owned subsidiary, Barton SAS, we hold a 100% interest in the Peñas Negras Project, encompassing a sprawling 120 km2 of prime exploration territory. Situated in the Vicuña District, renowned for significant copper discoveries, the Peñas Negras Project is strategically surrounded by world-class super giant discoveries owned by Filo Mining, Lundin Mining, and NGEx Minerals. The Peñas Negras Project exhibits close geological similarities to neighboring deposits, including the prestigious Josemaria copper-gold porphyry system and the gold-rich Maricunga porphyries. With a cluster of identified porphyry and epithermal targets, we are leveraging our experience and operational knowledge to advance exploration. https://senderoresources.com/presentations/Sendero-Resources-Corporate-Presentation.pdf About me: I am shareholder of SEND so consider me biased. I'm a PRIVATE INVESTOR, enjoying early retirement after a successful and fulfilling career managing investment portfolios with a focus on the resource sector (including oil and gas). I am completely independent. My only client is me. No one pays me, I don't sell subscriptions or offer sponsorship deals or special access to my trading info. Anything I write is done free. My money where my due diligence is and I explain why.I employ common sense, Fundamental, bottom-up analysis that incorporates but not limited to: currency exchange rates, cost of labor, raw materials cost, geology, Metallurgy, cost of capital, infrastructure, macro influencing factors, capital discipline by management, etc. If the data changes (company, sector or macroeconomic environment) then I do, no emotion about it, let the data guide your investments. All materials are for educational purposes, not investment advice. I don't work for anyone or get paid for the research I do. I give my research away for free to help educate the next generation about the wealth creation this sector can provide. It's not investment advice. If you want to invest along side me, it's your money, your responsibility, buy and sell for your own reasons not mine. It's your money.The best investment you can make is in your own education.I am driven by the hunt for value and truth. This is my passion in life. I'm a big research nerd. Always double-check and only trust the numbers that you have vetted. Commit to memory: “NOT all ozs, pounds & barrels in the ground are created equal” understanding this basic principle will increase your wealth and your ability to sleep at night...Best,Doc Jones --- Send in a voice message: https://podcasters.spotify.com/pod/show/docjonesresourceinvestor/message
La charla de Luis Novaresio con Benjamín Vicuña salió al aire por LN+ en +Entrevistas el 4 de septiembre de 2023
LLM Vicuña, Chatbot Arena, and the race to increase LLM context windows: This episode's guest Joey Gonzalez talks to Jon Krohn about developing models and platforms that leverage and improve LLMs, as well as the future of AI development and access. This episode is brought to you by the AWS Insiders Podcast (https://pod.link/1608453414), by Modelbit (https://modelbit.com), for deploying models in seconds, and by Grafbase (https://grafbase.com), the unified data layer. Interested in sponsoring a SuperDataScience Podcast episode? Visit JonKrohn.com/podcast for sponsorship information. In this episode you will learn: • Vicuña: How the revolutionary LLM came to be [03:35] • Chatbot Arena: The leading LLM leaderboard [09:47] • Trusting LLM results [17:54] • Gorilla: The open-source ChatGPT plugin alternative [32:13] • About LMSYS and long context windows [47:48] • Open- vs closed-source LLMs: Which is better? [1:01:39] • Aqueduct [1:16:49] • Founding GraphLab [1:27:02] • How AI will positively impact society in the coming decades [1:33:23] Additional materials: www.superdatascience.com/707
We have just announced our first set of speakers at AI Engineer Summit! Sign up for the livestream or email sponsors@ai.engineer if you'd like to support.We are facing a massive GPU crunch. As both startups and VC's hoard Nvidia GPUs like countries count nuclear stockpiles, tweets about GPU shortages have become increasingly common. But what if we could run LLMs with AMD cards, or without a GPU at all? There's just one weird trick: compilation. And there's one person uniquely qualified to do it.We had the pleasure to sit down with Tianqi Chen, who's an Assistant Professor at CMU, where he both teaches the MLC course and runs the MLC group. You might also know him as the creator of XGBoost, Apache TVM, and MXNet, as well as the co-founder of OctoML. The MLC (short for Machine Learning Compilation) group has released a lot of interesting projects:* MLC Chat: an iPhone app that lets you run models like RedPajama-3B and Vicuna-7B on-device. It gets up to 30 tok/s!* Web LLM: Run models like LLaMA-70B in your browser (!!) to offer local inference in your product.* MLC LLM: a framework that allows any language models to be deployed natively on different hardware and software stacks.The MLC group has just announced new support for AMD cards; we previously talked about the shortcomings of ROCm, but using MLC you can get performance very close to the NVIDIA's counterparts. This is great news for founders and builders, as AMD cards are more readily available. Here are their latest results on AMD's 7900s vs some of top NVIDIA consumer cards.If you just can't get a GPU at all, MLC LLM also supports ARM and x86 CPU architectures as targets by leveraging LLVM. While speed performance isn't comparable, it allows for non-time-sensitive inference to be run on commodity hardware.We also enjoyed getting a peek into TQ's process, which involves a lot of sketching:With all the other work going on in this space with projects like ggml and Ollama, we're excited to see GPUs becoming less and less of an issue to get models in the hands of more people, and innovative software solutions to hardware problems!Show Notes* TQ's Projects:* XGBoost* Apache TVM* MXNet* MLC* OctoML* CMU Catalyst* ONNX* GGML* Mojo* WebLLM* RWKV* HiPPO* Tri Dao's Episode* George Hotz EpisodePeople:* Carlos Guestrin* Albert GuTimestamps* [00:00:00] Intros* [00:03:41] The creation of XGBoost and its surprising popularity* [00:06:01] Comparing tree-based models vs deep learning* [00:10:33] Overview of TVM and how it works with ONNX* [00:17:18] MLC deep dive* [00:28:10] Using int4 quantization for inference of language models* [00:30:32] Comparison of MLC to other model optimization projects* [00:35:02] Running large language models in the browser with WebLLM* [00:37:47] Integrating browser models into applications* [00:41:15] OctoAI and self-optimizing compute* [00:45:45] Lightning RoundTranscriptAlessio: Hey everyone, welcome to the Latent Space podcast. This is Alessio, Partner and CTO in Residence at Decibel Partners, and I'm joined by my co-host Swyx, writer and editor of Latent Space. [00:00:20]Swyx: Okay, and we are here with Tianqi Chen, or TQ as people call him, who is assistant professor in ML computer science at CMU, Carnegie Mellon University, also helping to run Catalyst Group, also chief technologist of OctoML. You wear many hats. Are those, you know, your primary identities these days? Of course, of course. [00:00:42]Tianqi: I'm also, you know, very enthusiastic open source. So I'm also a VP and PRC member of the Apache TVM project and so on. But yeah, these are the things I've been up to so far. [00:00:53]Swyx: Yeah. So you did Apache TVM, XGBoost, and MXNet, and we can cover any of those in any amount of detail. But maybe what's one thing about you that people might not learn from your official bio or LinkedIn, you know, on the personal side? [00:01:08]Tianqi: Let me say, yeah, so normally when I do, I really love coding, even though like I'm trying to run all those things. So one thing that I keep a habit on is I try to do sketchbooks. I have a book, like real sketchbooks to draw down the design diagrams and the sketchbooks I keep sketching over the years, and now I have like three or four of them. And it's kind of a usually a fun experience of thinking the design through and also seeing how open source project evolves and also looking back at the sketches that we had in the past to say, you know, all these ideas really turn into code nowadays. [00:01:43]Alessio: How many sketchbooks did you get through to build all this stuff? I mean, if one person alone built one of those projects, he'll be a very accomplished engineer. Like you built like three of these. What's that process like for you? Like it's the sketchbook, like the start, and then you think about the code or like. [00:01:59]Swyx: Yeah. [00:02:00]Tianqi: So, so usually I start sketching on high level architectures and also in a project that works for over years, we also start to think about, you know, new directions, like of course generative AI language model comes in, how it's going to evolve. So normally I would say it takes like one book a year, roughly at that rate. It's usually fun to, I find it's much easier to sketch things out and then gives a more like a high level architectural guide for some of the future items. Yeah. [00:02:28]Swyx: Have you ever published this sketchbooks? Cause I think people would be very interested on, at least on a historical basis. Like this is the time where XGBoost was born, you know? Yeah, not really. [00:02:37]Tianqi: I started sketching like after XGBoost. So that's a kind of missing piece, but a lot of design details in TVM are actually part of the books that I try to keep a record of. [00:02:48]Swyx: Yeah, we'll try to publish them and publish something in the journals. Maybe you can grab a little snapshot for visual aid. Sounds good. [00:02:57]Alessio: Yeah. And yeah, talking about XGBoost, so a lot of people in the audience might know it's a gradient boosting library, probably the most popular out there. And it became super popular because many people started using them in like a machine learning competitions. And I think there's like a whole Wikipedia page of like all state-of-the-art models. They use XGBoost and like, it's a really long list. When you were working on it, so we just had Tri Dao, who's the creator of FlashAttention on the podcast. And I asked him this question, it's like, when you were building FlashAttention, did you know that like almost any transform race model will use it? And so I asked the same question to you when you were coming up with XGBoost, like, could you predict it would be so popular or like, what was the creation process? And when you published it, what did you expect? We have no idea. [00:03:41]Tianqi: Like, actually, the original reason that we built that library is that at that time, deep learning just came out. Like that was the time where AlexNet just came out. And one of the ambitious mission that myself and my advisor, Carlos Guestrin, then is we want to think about, you know, try to test the hypothesis. Can we find alternatives to deep learning models? Because then, you know, there are other alternatives like, you know, support vector machines, linear models, and of course, tree-based models. And our question was, if you build those models and feed them with big enough data, because usually like one of the key characteristics of deep learning is that it's taking a lot [00:04:22]Swyx: of data, right? [00:04:23]Tianqi: So we will be able to get the same amount of performance. That's a hypothesis we're setting out to test. Of course, if you look at now, right, that's a wrong hypothesis, but as a byproduct, what we find out is that, you know, most of the gradient boosting library out there is not efficient enough for us to test that hypothesis. So I happen to have quite a bit of experience in the past of building gradient boosting trees and their variants. So Effective Action Boost was kind of like a byproduct of that hypothesis testing. At that time, I'm also competing a bit in data science challenges, like I worked on KDDCup and then Kaggle kind of become bigger, right? So I kind of think maybe it's becoming useful to others. One of my friends convinced me to try to do a Python binding of it. That tends to be like a very good decision, right, to be effective. Usually when I build it, we feel like maybe a command line interface is okay. And now we have a Python binding, we have R bindings. And then it realized, you know, it started getting interesting. People started contributing different perspectives, like visualization and so on. So we started to push a bit more on to building distributive support to make sure it works on any platform and so on. And even at that time point, when I talked to Carlos, my advisor, later, he said he never anticipated that we'll get to that level of success. And actually, why I pushed for gradient boosting trees, interestingly, at that time, he also disagreed. He thinks that maybe we should go for kernel machines then. And it turns out, you know, actually, we are both wrong in some sense, and Deep Neural Network was the king in the hill. But at least the gradient boosting direction got into something fruitful. [00:06:01]Swyx: Interesting. [00:06:02]Alessio: I'm always curious when it comes to these improvements, like, what's the design process in terms of like coming up with it? And how much of it is a collaborative with like other people that you're working with versus like trying to be, you know, obviously, in academia, it's like very paper-driven kind of research driven. [00:06:19]Tianqi: I would say the extra boost improvement at that time point was more on like, you know, I'm trying to figure out, right. But it's combining lessons. Before that, I did work on some of the other libraries on matrix factorization. That was like my first open source experience. Nobody knew about it, because you'll find, likely, if you go and try to search for the package SVD feature, you'll find some SVN repo somewhere. But it's actually being used for some of the recommender system packages. So I'm trying to apply some of the previous lessons there and trying to combine them. The later projects like MXNet and then TVM is much, much more collaborative in a sense that... But, of course, extra boost has become bigger, right? So when we started that project myself, and then we have, it's really amazing to see people come in. Michael, who was a lawyer, and now he works on the AI space as well, on contributing visualizations. Now we have people from our community contributing different things. So extra boost even today, right, it's a community of committers driving the project. So it's definitely something collaborative and moving forward on getting some of the things continuously improved for our community. [00:07:37]Alessio: Let's talk a bit about TVM too, because we got a lot of things to run through in this episode. [00:07:42]Swyx: I would say that at some point, I'd love to talk about this comparison between extra boost or tree-based type AI or machine learning compared to deep learning, because I think there is a lot of interest around, I guess, merging the two disciplines, right? And we can talk more about that. I don't know where to insert that, by the way, so we can come back to it later. Yeah. [00:08:04]Tianqi: Actually, what I said, when we test the hypothesis, the hypothesis is kind of, I would say it's partially wrong, because the hypothesis we want to test now is, can you run tree-based models on image classification tasks, where deep learning is certainly a no-brainer right [00:08:17]Swyx: now today, right? [00:08:18]Tianqi: But if you try to run it on tabular data, still, you'll find that most people opt for tree-based models. And there's a reason for that, in the sense that when you are looking at tree-based models, the decision boundaries are naturally rules that you're looking at, right? And they also have nice properties, like being able to be agnostic to scale of input and be able to automatically compose features together. And I know there are attempts on building neural network models that work for tabular data, and I also sometimes follow them. I do feel like it's good to have a bit of diversity in the modeling space. Actually, when we're building TVM, we build cost models for the programs, and actually we are using XGBoost for that as well. I still think tree-based models are going to be quite relevant, because first of all, it's really to get it to work out of the box. And also, you will be able to get a bit of interoperability and control monotonicity [00:09:18]Swyx: and so on. [00:09:19]Tianqi: So yes, it's still going to be relevant. I also sometimes keep coming back to think about, are there possible improvements that we can build on top of these models? And definitely, I feel like it's a space that can have some potential in the future. [00:09:34]Swyx: Are there any current projects that you would call out as promising in terms of merging the two directions? [00:09:41]Tianqi: I think there are projects that try to bring a transformer-type model for tabular data. I don't remember specifics of them, but I think even nowadays, if you look at what people are using, tree-based models are still one of their toolkits. So I think maybe eventually it's not even a replacement, it will be just an ensemble of models that you can call. Perfect. [00:10:07]Alessio: Next up, about three years after XGBoost, you built this thing called TVM, which is now a very popular compiler framework for models. Let's talk about, so this came out about at the same time as ONNX. So I think it would be great if you could maybe give a little bit of an overview of how the two things work together. Because it's kind of like the model, then goes to ONNX, then goes to the TVM. But I think a lot of people don't understand the nuances. I can get a bit of a backstory on that. [00:10:33]Tianqi: So actually, that's kind of an ancient history. Before XGBoost, I worked on deep learning for two years or three years. I got a master's before I started my PhD. And during my master's, my thesis focused on applying convolutional restricted Boltzmann machine for ImageNet classification. That is the thing I'm working on. And that was before AlexNet moment. So effectively, I had to handcraft NVIDIA CUDA kernels on, I think, a GTX 2070 card. I have a 22070 card. It took me about six months to get one model working. And eventually, that model is not so good, and we should have picked a better model. But that was like an ancient history that really got me into this deep learning field. And of course, eventually, we find it didn't work out. So in my master's, I ended up working on recommender system, which got me a paper, and I applied and got a PhD. But I always want to come back to work on the deep learning field. So after XGBoost, I think I started to work with some folks on this particular MXNet. At that time, it was like the frameworks of CAFE, Ciano, PyTorch haven't yet come out. And we're really working hard to optimize for performance on GPUs. At that time, I found it's really hard, even for NVIDIA GPU. It took me six months. And then it's amazing to see on different hardwares how hard it is to go and optimize code for the platforms that are interesting. So that gets me thinking, can we build something more generic and automatic? So that I don't need an entire team of so many people to go and build those frameworks. So that's the motivation of starting working on TVM. There is really too little about machine learning engineering needed to support deep learning models on the platforms that we're interested in. I think it started a bit earlier than ONNX, but once it got announced, I think it's in a similar time period at that time. So overall, how it works is that TVM, you will be able to take a subset of machine learning programs that are represented in what we call a computational graph. Nowadays, we can also represent a loop-level program ingest from your machine learning models. Usually, you have model formats ONNX, or in PyTorch, they have FX Tracer that allows you to trace the FX graph. And then it goes through TVM. We also realized that, well, yes, it needs to be more customizable, so it will be able to perform some of the compilation optimizations like fusion operator together, doing smart memory planning, and more importantly, generate low-level code. So that works for NVIDIA and also is portable to other GPU backends, even non-GPU backends [00:13:36]Swyx: out there. [00:13:37]Tianqi: So that's a project that actually has been my primary focus over the past few years. And it's great to see how it started from where I think we are the very early initiator of machine learning compilation. I remember there was a visit one day, one of the students asked me, are you still working on deep learning frameworks? I tell them that I'm working on ML compilation. And they said, okay, compilation, that sounds very ancient. It sounds like a very old field. And why are you working on this? And now it's starting to get more traction, like if you say Torch Compile and other things. I'm really glad to see this field starting to pick up. And also we have to continue innovating here. [00:14:17]Alessio: I think the other thing that I noticed is, it's kind of like a big jump in terms of area of focus to go from XGBoost to TVM, it's kind of like a different part of the stack. Why did you decide to do that? And I think the other thing about compiling to different GPUs and eventually CPUs too, did you already see some of the strain that models could have just being focused on one runtime, only being on CUDA and that, and how much of that went into it? [00:14:50]Tianqi: I think it's less about trying to get impact, more about wanting to have fun. I like to hack code, I had great fun hacking CUDA code. Of course, being able to generate CUDA code is cool, right? But now, after being able to generate CUDA code, okay, by the way, you can do it on other platforms, isn't that amazing? So it's more of that attitude to get me started on this. And also, I think when we look at different researchers, myself is more like a problem solver type. So I like to look at a problem and say, okay, what kind of tools we need to solve that problem? So regardless, it could be building better models. For example, while we build extra boots, we build certain regularizations into it so that it's more robust. It also means building system optimizations, writing low-level code, maybe trying to write assembly and build compilers and so on. So as long as they solve the problem, definitely go and try to do them together. And I also see it's a common trend right now. Like if you want to be able to solve machine learning problems, it's no longer at Aggressor layer, right? You kind of need to solve it from both Aggressor data and systems angle. And this entire field of machine learning system, I think it's kind of emerging. And there's now a conference around it. And it's really good to see a lot more people are starting to look into this. [00:16:10]Swyx: Yeah. Are you talking about ICML or something else? [00:16:13]Tianqi: So machine learning and systems, right? So not only machine learning, but machine learning and system. So there's a conference called MLsys. It's definitely a smaller community than ICML, but I think it's also an emerging and growing community where people are talking about what are the implications of building systems for machine learning, right? And how do you go and optimize things around that and co-design models and systems together? [00:16:37]Swyx: Yeah. And you were area chair for ICML and NeurIPS as well. So you've just had a lot of conference and community organization experience. Is that also an important part of your work? Well, it's kind of expected for academic. [00:16:48]Tianqi: If I hold an academic job, I need to do services for the community. Okay, great. [00:16:53]Swyx: Your most recent venture in MLsys is going to the phone with MLCLLM. You announced this in April. I have it on my phone. It's great. I'm running Lama 2, Vicuña. I don't know what other models that you offer. But maybe just kind of describe your journey into MLC. And I don't know how this coincides with your work at CMU. Is that some kind of outgrowth? [00:17:18]Tianqi: I think it's more like a focused effort that we want in the area of machine learning compilation. So it's kind of related to what we built in TVM. So when we built TVM was five years ago, right? And a lot of things happened. We built the end-to-end machine learning compiler that works, the first one that works. But then we captured a lot of lessons there. So then we are building a second iteration called TVM Unity. That allows us to be able to allow ML engineers to be able to quickly capture the new model and how we demand building optimizations for them. And MLCLLM is kind of like an MLC. It's more like a vertical driven organization that we go and build tutorials and go and build projects like LLM to solutions. So that to really show like, okay, you can take machine learning compilation technology and apply it and bring something fun forward. Yeah. So yes, it runs on phones, which is really cool. But the goal here is not only making it run on phones, right? The goal is making it deploy universally. So we do run on Apple M2 Macs, the 17 billion models. Actually, on a single batch inference, more recently on CUDA, we get, I think, the most best performance you can get out there already on the 4-bit inference. Actually, as I alluded earlier before the podcast, we just had a result on AMD. And on a single batch, actually, we can get the latest AMD GPU. This is a consumer card. It can get to about 80% of the 4019, so NVIDIA's best consumer card out there. So it's not yet on par, but thinking about how diversity and what you can enable and the previous things you can get on that card, it's really amazing that what you can do with this kind of technology. [00:19:10]Swyx: So one thing I'm a little bit confused by is that most of these models are in PyTorch, but you're running this inside a TVM. I don't know. Was there any fundamental change that you needed to do, or was this basically the fundamental design of TVM? [00:19:25]Tianqi: So the idea is that, of course, it comes back to program representation, right? So effectively, TVM has this program representation called TVM script that contains more like computational graph and operational representation. So yes, initially, we do need to take a bit of effort of bringing those models onto the program representation that TVM supports. Usually, there are a mix of ways, depending on the kind of model you're looking at. For example, for vision models and stable diffusion models, usually we can just do tracing that takes PyTorch model onto TVM. That part is still being robustified so that we can bring more models in. On language model tasks, actually what we do is we directly build some of the model constructors and try to directly map from Hugging Face models. The goal is if you have a Hugging Face configuration, we will be able to bring that in and apply optimization on them. So one fun thing about model compilation is that your optimization doesn't happen only as a soft language, right? For example, if you're writing PyTorch code, you just go and try to use a better fused operator at a source code level. Torch compile might help you do a bit of things in there. In most of the model compilations, it not only happens at the beginning stage, but we also apply generic transformations in between, also through a Python API. So you can tweak some of that. So that part of optimization helps a lot of uplifting in getting both performance and also portability on the environment. And another thing that we do have is what we call universal deployment. So if you get the ML program into this TVM script format, where there are functions that takes in tensor and output tensor, we will be able to have a way to compile it. So they will be able to load the function in any of the language runtime that TVM supports. So if you could load it in JavaScript, and that's a JavaScript function that you can take in tensors and output tensors. If you're loading Python, of course, and C++ and Java. So the goal there is really bring the ML model to the language that people care about and be able to run it on a platform they like. [00:21:37]Swyx: It strikes me that I've talked to a lot of compiler people, but you don't have a traditional compiler background. You're inventing your own discipline called machine learning compilation, or MLC. Do you think that this will be a bigger field going forward? [00:21:52]Tianqi: First of all, I do work with people working on compilation as well. So we're also taking inspirations from a lot of early innovations in the field. Like for example, TVM initially, we take a lot of inspirations from Halide, which is just an image processing compiler. And of course, since then, we have evolved quite a bit to focus on the machine learning related compilations. If you look at some of our conference publications, you'll find that machine learning compilation is already kind of a subfield. So if you look at papers in both machine learning venues, the MLC conferences, of course, and also system venues, every year there will be papers around machine learning compilation. And in the compiler conference called CGO, there's a C4ML workshop that also kind of trying to focus on this area. So definitely it's already starting to gain traction and becoming a field. I wouldn't claim that I invented this field, but definitely I helped to work with a lot of folks there. And I try to bring a perspective, of course, trying to learn a lot from the compiler optimizations as well as trying to bring in knowledges in machine learning and systems together. [00:23:07]Alessio: So we had George Hotz on the podcast a few episodes ago, and he had a lot to say about AMD and their software. So when you think about TVM, are you still restricted in a way by the performance of the underlying kernel, so to speak? So if your target is like a CUDA runtime, you still get better performance, no matter like TVM kind of helps you get there, but then that level you don't take care of, right? [00:23:34]Swyx: There are two parts in here, right? [00:23:35]Tianqi: So first of all, there is the lower level runtime, like CUDA runtime. And then actually for NVIDIA, a lot of the mood came from their libraries, like Cutlass, CUDN, right? Those library optimizations. And also for specialized workloads, actually you can specialize them. Because a lot of cases you'll find that if you go and do benchmarks, it's very interesting. Like two years ago, if you try to benchmark ResNet, for example, usually the NVIDIA library [00:24:04]Swyx: gives you the best performance. [00:24:06]Tianqi: It's really hard to beat them. But as soon as you start to change the model to something, maybe a bit of a variation of ResNet, not for the traditional ImageNet detections, but for latent detection and so on, there will be some room for optimization because people sometimes overfit to benchmarks. These are people who go and optimize things, right? So people overfit the benchmarks. So that's the largest barrier, like being able to get a low level kernel libraries, right? In that sense, the goal of TVM is actually we try to have a generic layer to both, of course, leverage libraries when available, but also be able to automatically generate [00:24:45]Swyx: libraries when possible. [00:24:46]Tianqi: So in that sense, we are not restricted by the libraries that they have to offer. That's why we will be able to run Apple M2 or WebGPU where there's no library available because we are kind of like automatically generating libraries. That makes it easier to support less well-supported hardware, right? For example, WebGPU is one example. From a runtime perspective, AMD, I think before their Vulkan driver was not very well supported. Recently, they are getting good. But even before that, we'll be able to support AMD through this GPU graphics backend called Vulkan, which is not as performant, but it gives you a decent portability across those [00:25:29]Swyx: hardware. [00:25:29]Alessio: And I know we got other MLC stuff to talk about, like WebLLM, but I want to wrap up on the optimization that you're doing. So there's kind of four core things, right? Kernel fusion, which we talked a bit about in the flash attention episode and the tiny grab one memory planning and loop optimization. I think those are like pretty, you know, self-explanatory. I think the one that people have the most questions, can you can you quickly explain [00:25:53]Swyx: those? [00:25:54]Tianqi: So there are kind of a different things, right? Kernel fusion means that, you know, if you have an operator like Convolutions or in the case of a transformer like MOP, you have other operators that follow that, right? You don't want to launch two GPU kernels. You want to be able to put them together in a smart way, right? And as a memory planning, it's more about, you know, hey, if you run like Python code, every time when you generate a new array, you are effectively allocating a new piece of memory, right? Of course, PyTorch and other frameworks try to optimize for you. So there is a smart memory allocator behind the scene. But actually, in a lot of cases, it's much better to statically allocate and plan everything ahead of time. And that's where like a compiler can come in. We need to, first of all, actually for language model, it's much harder because dynamic shape. So you need to be able to what we call symbolic shape tracing. So we have like a symbolic variable that tells you like the shape of the first tensor is n by 12. And the shape of the third tensor is also n by 12. Or maybe it's n times 2 by 12. Although you don't know what n is, right? But you will be able to know that relation and be able to use that to reason about like fusion and other decisions. So besides this, I think loop transformation is quite important. And it's actually non-traditional. Originally, if you simply write a code and you want to get a performance, it's very hard. For example, you know, if you write a matrix multiplier, the simplest thing you can do is you do for i, j, k, c, i, j, plus, equal, you know, a, i, k, times b, i, k. But that code is 100 times slower than the best available code that you can get. So we do a lot of transformation, like being able to take the original code, trying to put things into shared memory, and making use of tensor calls, making use of memory copies, and all this. Actually, all these things, we also realize that, you know, we cannot do all of them. So we also make the ML compilation framework as a Python package, so that people will be able to continuously improve that part of engineering in a more transparent way. So we find that's very useful, actually, for us to be able to get good performance very quickly on some of the new models. Like when Lamato came out, we'll be able to go and look at the whole, here's the bottleneck, and we can go and optimize those. [00:28:10]Alessio: And then the fourth one being weight quantization. So everybody wants to know about that. And just to give people an idea of the memory saving, if you're doing FB32, it's like four bytes per parameter. Int8 is like one byte per parameter. So you can really shrink down the memory footprint. What are some of the trade-offs there? How do you figure out what the right target is? And what are the precision trade-offs, too? [00:28:37]Tianqi: Right now, a lot of people also mostly use int4 now for language models. So that really shrinks things down a lot. And more recently, actually, we started to think that, at least in MOC, we don't want to have a strong opinion on what kind of quantization we want to bring, because there are so many researchers in the field. So what we can do is we can allow developers to customize the quantization they want, but we still bring the optimum code for them. So we are working on this item called bring your own quantization. In fact, hopefully MOC will be able to support more quantization formats. And definitely, I think there's an open field that's being explored. Can you bring more sparsities? Can you quantize activations as much as possible, and so on? And it's going to be something that's going to be relevant for quite a while. [00:29:27]Swyx: You mentioned something I wanted to double back on, which is most people use int4 for language models. This is actually not obvious to me. Are you talking about the GGML type people, or even the researchers who are training the models also using int4? [00:29:40]Tianqi: Sorry, so I'm mainly talking about inference, not training, right? So when you're doing training, of course, int4 is harder, right? Maybe you could do some form of mixed type precision for inference. I think int4 is kind of like, in a lot of cases, you will be able to get away with int4. And actually, that does bring a lot of savings in terms of the memory overhead, and so on. [00:30:09]Alessio: Yeah, that's great. Let's talk a bit about maybe the GGML, then there's Mojo. How should people think about MLC? How do all these things play together? I think GGML is focused on model level re-implementation and improvements. Mojo is a language, super sad. You're more at the compiler level. Do you all work together? Do people choose between them? [00:30:32]Tianqi: So I think in this case, I think it's great to say the ecosystem becomes so rich with so many different ways. So in our case, GGML is more like you're implementing something from scratch in C, right? So that gives you the ability to go and customize each of a particular hardware backend. But then you will need to write from CUDA kernels, and you write optimally from AMD, and so on. So the kind of engineering effort is a bit more broadened in that sense. Mojo, I have not looked at specific details yet. I think it's good to start to say, it's a language, right? I believe there will also be machine learning compilation technologies behind it. So it's good to say, interesting place in there. In the case of MLC, our case is that we do not want to have an opinion on how, where, which language people want to develop, deploy, and so on. And we also realize that actually there are two phases. We want to be able to develop and optimize your model. By optimization, I mean, really bring in the best CUDA kernels and do some of the machine learning engineering in there. And then there's a phase where you want to deploy it as a part of the app. So if you look at the space, you'll find that GGML is more like, I'm going to develop and optimize in the C language, right? And then most of the low-level languages they have. And Mojo is that you want to develop and optimize in Mojo, right? And you deploy in Mojo. In fact, that's the philosophy they want to push for. In the ML case, we find that actually if you want to develop models, the machine learning community likes Python. Python is a language that you should focus on. So in the case of MLC, we really want to be able to enable, not only be able to just define your model in Python, that's very common, right? But also do ML optimization, like engineering optimization, CUDA kernel optimization, memory planning, all those things in Python that makes you customizable and so on. But when you do deployment, we realize that people want a bit of a universal flavor. If you are a web developer, you want JavaScript, right? If you're maybe an embedded system person, maybe you would prefer C++ or C or Rust. And people sometimes do like Python in a lot of cases. So in the case of MLC, we really want to have this vision of, you optimize, build a generic optimization in Python, then you deploy that universally onto the environments that people like. [00:32:54]Swyx: That's a great perspective and comparison, I guess. One thing I wanted to make sure that we cover is that I think you are one of these emerging set of academics that also very much focus on your artifacts of delivery. Of course. Something we talked about for three years, that he was very focused on his GitHub. And obviously you treated XGBoost like a product, you know? And then now you're publishing an iPhone app. Okay. Yeah. Yeah. What is his thinking about academics getting involved in shipping products? [00:33:24]Tianqi: I think there are different ways of making impact, right? Definitely, you know, there are academics that are writing papers and building insights for people so that people can build product on top of them. In my case, I think the particular field I'm working on, machine learning systems, I feel like really we need to be able to get it to the hand of people so that really we see the problem, right? And we show that we can solve a problem. And it's a different way of making impact. And there are academics that are doing similar things. Like, you know, if you look at some of the people from Berkeley, right? A few years, they will come up with big open source projects. Certainly, I think it's just a healthy ecosystem to have different ways of making impacts. And I feel like really be able to do open source and work with open source community is really rewarding because we have a real problem to work on when we build our research. Actually, those research bring together and people will be able to make use of them. And we also start to see interesting research challenges that we wouldn't otherwise say, right, if you're just trying to do a prototype and so on. So I feel like it's something that is one interesting way of making impact, making contributions. [00:34:40]Swyx: Yeah, you definitely have a lot of impact there. And having experience publishing Mac stuff before, the Apple App Store is no joke. It is the hardest compilation, human compilation effort. So one thing that we definitely wanted to cover is running in the browser. You have a 70 billion parameter model running in the browser. That's right. Can you just talk about how? Yeah, of course. [00:35:02]Tianqi: So I think that there are a few elements that need to come in, right? First of all, you know, we do need a MacBook, the latest one, like M2 Max, because you need the memory to be big enough to cover that. So for a 70 million model, it takes you about, I think, 50 gigahertz of RAM. So the M2 Max, the upper version, will be able to run it, right? And it also leverages machine learning compilation. Again, what we are doing is the same, whether it's running on iPhone, on server cloud GPUs, on AMDs, or on MacBook, we all go through that same MOC pipeline. Of course, in certain cases, maybe we'll do a bit of customization iteration for either ones. And then it runs on the browser runtime, this package of WebLM. So that will effectively... So what we do is we will take that original model and compile to what we call WebGPU. And then the WebLM will be to pick it up. And the WebGPU is this latest GPU technology that major browsers are shipping right now. So you can get it in Chrome for them already. It allows you to be able to access your native GPUs from a browser. And then effectively, that language model is just invoking the WebGPU kernels through there. So actually, when the LATMAR2 came out, initially, we asked the question about, can you run 17 billion on a MacBook? That was the question we're asking. So first, we actually... Jin Lu, who is the engineer pushing this, he got 17 billion on a MacBook. We had a CLI version. So in MLC, you will be able to... That runs through a metal accelerator. So effectively, you use the metal programming language to get the GPU acceleration. So we find, okay, it works for the MacBook. Then we asked, we had a WebGPU backend. Why not try it there? So we just tried it out. And it's really amazing to see everything up and running. And actually, it runs smoothly in that case. So I do think there are some kind of interesting use cases already in this, because everybody has a browser. You don't need to install anything. I think it doesn't make sense yet to really run a 17 billion model on a browser, because you kind of need to be able to download the weight and so on. But I think we're getting there. Effectively, the most powerful models you will be able to run on a consumer device. It's kind of really amazing. And also, in a lot of cases, there might be use cases. For example, if I'm going to build a chatbot that I talk to it and answer questions, maybe some of the components, like the voice to text, could run on the client side. And so there are a lot of possibilities of being able to have something hybrid that contains the edge component or something that runs on a server. [00:37:47]Alessio: Do these browser models have a way for applications to hook into them? So if I'm using, say, you can use OpenAI or you can use the local model. Of course. [00:37:56]Tianqi: Right now, actually, we are building... So there's an NPM package called WebILM, right? So that you will be able to, if you want to embed it onto your web app, you will be able to directly depend on WebILM and you will be able to use it. We are also having a REST API that's OpenAI compatible. So that REST API, I think, right now, it's actually running on native backend. So that if a CUDA server is faster to run on native backend. But also we have a WebGPU version of it that you can go and run. So yeah, we do want to be able to have easier integrations with existing applications. And OpenAI API is certainly one way to do that. Yeah, this is great. [00:38:37]Swyx: I actually did not know there's an NPM package that makes it very, very easy to try out and use. I want to actually... One thing I'm unclear about is the chronology. Because as far as I know, Chrome shipped WebGPU the same time that you shipped WebILM. Okay, yeah. So did you have some kind of secret chat with Chrome? [00:38:57]Tianqi: The good news is that Chrome is doing a very good job of trying to have early release. So although the official shipment of the Chrome WebGPU is the same time as WebILM, actually, you will be able to try out WebGPU technology in Chrome. There is an unstable version called Canary. I think as early as two years ago, there was a WebGPU version. Of course, it's getting better. So we had a TVM-based WebGPU backhand two years ago. Of course, at that time, there were no language models. It was running on less interesting, well, still quite interesting models. And then this year, we really started to see it getting matured and performance keeping up. So we have a more serious push of bringing the language model compatible runtime onto the WebGPU. [00:39:45]Swyx: I think you agree that the hardest part is the model download. Has there been conversations about a one-time model download and sharing between all the apps that might use this API? That is a great point. [00:39:58]Tianqi: I think it's already supported in some sense. When we download the model, WebILM will cache it onto a special Chrome cache. So if a different web app uses the same WebILM JavaScript package, you don't need to redownload the model again. So there is already something there. But of course, you have to download the model once at least to be able to use it. [00:40:19]Swyx: Okay. One more thing just in general before we're about to zoom out to OctoAI. Just the last question is, you're not the only project working on, I guess, local models. That's right. Alternative models. There's gpt4all, there's olama that just recently came out, and there's a bunch of these. What would be your advice to them on what's a valuable problem to work on? And what is just thin wrappers around ggml? Like, what are the interesting problems in this space, basically? [00:40:45]Tianqi: I think making API better is certainly something useful, right? In general, one thing that we do try to push very hard on is this idea of easier universal deployment. So we are also looking forward to actually have more integration with MOC. That's why we're trying to build API like WebILM and other things. So we're also looking forward to collaborate with all those ecosystems and working support to bring in models more universally and be able to also keep up the best performance when possible in a more push-button way. [00:41:15]Alessio: So as we mentioned in the beginning, you're also the co-founder of Octomel. Recently, Octomel released OctoAI, which is a compute service, basically focuses on optimizing model runtimes and acceleration and compilation. What has been the evolution there? So Octo started as kind of like a traditional MLOps tool, where people were building their own models and you help them on that side. And then it seems like now most of the market is shifting to starting from pre-trained generative models. Yeah, what has been that experience for you and what you've seen the market evolve? And how did you decide to release OctoAI? [00:41:52]Tianqi: One thing that we found out is that on one hand, it's really easy to go and get something up and running, right? So if you start to consider there's so many possible availabilities and scalability issues and even integration issues since becoming kind of interesting and complicated. So we really want to make sure to help people to get that part easy, right? And now a lot of things, if we look at the customers we talk to and the market, certainly generative AI is something that is very interesting. So that is something that we really hope to help elevate. And also building on top of technology we build to enable things like portability across hardwares. And you will be able to not worry about the specific details, right? Just focus on getting the model out. We'll try to work on infrastructure and other things that helps on the other end. [00:42:45]Alessio: And when it comes to getting optimization on the runtime, I see when we run an early adopters community and most enterprises issue is how to actually run these models. Do you see that as one of the big bottlenecks now? I think a few years ago it was like, well, we don't have a lot of machine learning talent. We cannot develop our own models. Versus now it's like, there's these great models you can use, but I don't know how to run them efficiently. [00:43:12]Tianqi: That depends on how you define by running, right? On one hand, it's easy to download your MLC, like you download it, you run on a laptop, but then there's also different decisions, right? What if you are trying to serve a larger user request? What if that request changes? What if the availability of hardware changes? Right now it's really hard to get the latest hardware on media, unfortunately, because everybody's trying to work on the things using the hardware that's out there. So I think when the definition of run changes, there are a lot more questions around things. And also in a lot of cases, it's not only about running models, it's also about being able to solve problems around them. How do you manage your model locations and how do you make sure that you get your model close to your execution environment more efficiently? So definitely a lot of engineering challenges out there. That we hope to elevate, yeah. And also, if you think about our future, definitely I feel like right now the technology, given the technology and the kind of hardware availability we have today, we will need to make use of all the possible hardware available out there. That will include a mechanism for cutting down costs, bringing something to the edge and cloud in a more natural way. So I feel like still this is a very early stage of where we are, but it's already good to see a lot of interesting progress. [00:44:35]Alessio: Yeah, that's awesome. I would love, I don't know how much we're going to go in depth into it, but what does it take to actually abstract all of this from the end user? You know, like they don't need to know what GPUs you run, what cloud you're running them on. You take all of that away. What was that like as an engineering challenge? [00:44:51]Tianqi: So I think that there are engineering challenges on. In fact, first of all, you will need to be able to support all the kind of hardware backhand you have, right? On one hand, if you look at the media library, you'll find very surprisingly, not too surprisingly, most of the latest libraries works well on the latest GPU. But there are other GPUs out there in the cloud as well. So certainly being able to have know-hows and being able to do model optimization is one thing, right? Also infrastructures on being able to scale things up, locate models. And in a lot of cases, we do find that on typical models, it also requires kind of vertical iterations. So it's not about, you know, build a silver bullet and that silver bullet is going to solve all the problems. It's more about, you know, we're building a product, we'll work with the users and we find out there are interesting opportunities in a certain point. And when our engineer will go and solve that, and it will automatically reflect it in a service. [00:45:45]Swyx: Awesome. [00:45:46]Alessio: We can jump into the lightning round until, I don't know, Sean, if you have more questions or TQ, if you have more stuff you wanted to talk about that we didn't get a chance to [00:45:54]Swyx: touch on. [00:45:54]Alessio: Yeah, we have talked a lot. [00:45:55]Swyx: So, yeah. We always would like to ask, you know, do you have a commentary on other parts of AI and ML that is interesting to you? [00:46:03]Tianqi: So right now, I think one thing that we are really pushing hard for is this question about how far can we bring open source, right? I'm kind of like a hacker and I really like to put things together. So I think it's unclear in the future of what the future of AI looks like. On one hand, it could be possible that, you know, you just have a few big players, you just try to talk to those bigger language models and that can do everything, right? On the other hand, one of the things that Wailing Academic is really excited and pushing for, that's one reason why I'm pushing for MLC, is that can we build something where you have different models? You have personal models that know the best movie you like, but you also have bigger models that maybe know more, and you get those models to interact with each other, right? And be able to have a wide ecosystem of AI agents that helps each person while still being able to do things like personalization. Some of them can run locally, some of them, of course, running on a cloud, and how do they interact with each other? So I think that is a very exciting time where the future is yet undecided, but I feel like there is something we can do to shape that future as well. [00:47:18]Swyx: One more thing, which is something I'm also pursuing, which is, and this kind of goes back into predictions, but also back in your history, do you have any idea, or are you looking out for anything post-transformers as far as architecture is concerned? [00:47:32]Tianqi: I think, you know, in a lot of these cases, you can find there are already promising models for long contexts, right? There are space-based models, where like, you know, a lot of some of our colleagues from Albert, who he worked on this HIPPO models, right? And then there is an open source version called RWKV. It's like a recurrent models that allows you to summarize things. Actually, we are bringing RWKV to MOC as well, so maybe you will be able to see one of the models. [00:48:00]Swyx: We actually recorded an episode with one of the RWKV core members. It's unclear because there's no academic backing. It's just open source people. Oh, I see. So you like the merging of recurrent networks and transformers? [00:48:13]Tianqi: I do love to see this model space continue growing, right? And I feel like in a lot of cases, it's just that attention mechanism is getting changed in some sense. So I feel like definitely there are still a lot of things to be explored here. And that is also one reason why we want to keep pushing machine learning compilation, because one of the things we are trying to push in was productivity. So that for machine learning engineering, so that as soon as some of the models came out, we will be able to, you know, empower them onto those environments that's out there. [00:48:43]Swyx: Yeah, it's a really good mission. Okay. Very excited to see that RWKV and state space model stuff. I'm hearing increasing chatter about that stuff. Okay. Lightning round, as always fun. I'll take the first one. Acceleration. What has already happened in AI that you thought would take much longer? [00:48:59]Tianqi: Emergence of more like a conversation chatbot ability is something that kind of surprised me before it came out. This is like one piece that I feel originally I thought would take much longer, but yeah, [00:49:11]Swyx: it happens. And it's funny because like the original, like Eliza chatbot was something that goes all the way back in time. Right. And then we just suddenly came back again. Yeah. [00:49:21]Tianqi: It's always too interesting to think about, but with a kind of a different technology [00:49:25]Swyx: in some sense. [00:49:25]Alessio: What about the most interesting unsolved question in AI? [00:49:31]Swyx: That's a hard one, right? [00:49:32]Tianqi: So I can tell you like what kind of I'm excited about. So, so I think that I have always been excited about this idea of continuous learning and lifelong learning in some sense. So how AI continues to evolve with the knowledges that have been there. It seems that we're getting much closer with all those recent technologies. So being able to develop systems, support, and be able to think about how AI continues to evolve is something that I'm really excited about. [00:50:01]Swyx: So specifically, just to double click on this, are you talking about continuous training? That's like a training. [00:50:06]Tianqi: I feel like, you know, training adaptation and it's all similar things, right? You want to think about entire life cycle, right? The life cycle of collecting data, training, fine tuning, and maybe have your local context that getting continuously curated and feed onto models. So I think all these things are interesting and relevant in here. [00:50:29]Swyx: Yeah. I think this is something that people are really asking, you know, right now we have moved a lot into the sort of pre-training phase and off the shelf, you know, the model downloads and stuff like that, which seems very counterintuitive compared to the continuous training paradigm that people want. So I guess the last question would be for takeaways. What's basically one message that you want every listener, every person to remember today? [00:50:54]Tianqi: I think it's getting more obvious now, but I think one of the things that I always want to mention in my talks is that, you know, when you're thinking about AI applications, originally people think about algorithms a lot more, right? Our algorithm models, they are still very important. But usually when you build AI applications, it takes, you know, both algorithm side, the system optimizations, and the data curations, right? So it takes a connection of so many facades to be able to bring together an AI system and be able to look at it from that holistic perspective is really useful when we start to build modern applications. I think it's going to continue going to be more important in the future. [00:51:35]Swyx: Yeah. Thank you for showing the way on this. And honestly, just making things possible that I thought would take a lot longer. So thanks for everything you've done. [00:51:46]Tianqi: Thank you for having me. [00:51:47]Swyx: Yeah. [00:51:47]Alessio: Thanks for coming on TQ. [00:51:49]Swyx: Have a good one. [00:51:49] Get full access to Latent Space at www.latent.space/subscribe
Le faltaba poco para cumplir ochenta y dos años cuando La Prensa de Buenos Aires le pidió que escribiera un artículo que se publicaría en su edición del primero de enero de 1915. Hacía ya seis años que su médico le había prohibido escribir, y tres años que sus dolencias físicas le habían impedido emprender toda labor literaria. Pero como se trataba del diario argentino para el que había trabajado como corresponsal a principios de los años 1880, cuando las tropas chilenas ocuparon Lima y quemaron su casa en Miraflores, incluso su valiosa biblioteca, Ricardo Palma salió de su retiro forzado y volvió a entintar la pluma [aquí] en su gabinete de trabajo, en la última casa en que vivió, también en el distrito de Miraflores en Lima, para escribir la última de sus inmortales Tradiciones peruanas. Para comenzar, don Ricardo cuenta que en sus ochenta y tantos años de vida ha tenido la oportunidad de conocer y tratar a un sinnúmero de personajes ilustres de Europa y de las Américas. Entre estos figuran Garibaldi, Lamartine, Alejandro Dumas (padre), Longfellow, Zorrilla, Campoamor, Cánovas del Castillo, Canalejas, Emilio Castelar, Núñez de Arce, Valera, Menéndez Pelayo, Sarmiento, Mitre, Juan María Gutiérrez, Mármol, Ascasubi, Julio Arboleda, Andrés Bello, Páez el Legendario, Porfirio Díaz, García Moreno, Manuel Montt, Vicuña, Mackenna, Balmaceda y Sáenz Peña. Por si eso fuera poco, a continuación don Ricardo destaca que ha sido testigo de casi toda la vida republicana de su patria, pues nació nueve años después de la Batalla de Ayacucho. En ese contexto peruano, «no ha habido personalidad a la cual no [lo] haya ligado vínculo estrecho o relación superficial», afirma el célebre escritor criollo. Desde 1852, año en que comenzó su vida política siendo presidente el general Echenique, ha visto a todos los mandatarios del Perú, y a algunos de ellos muy de cerca. Luego, remontándose a los días de su niñez, evoca recuerdos de don Manuel Menéndez (el Chancaquero), de don Justo Figuerola, y de los generales Gamarra, Vivanco, Vidal, Torrico y Santa Cruz.1 Esta impresionante lista de personajes que menciona Ricardo Palma nos hace reflexionar sobre el hecho de que no vale tanto ¿qué conocemos?, sino ¿a quién conocemos? ¿Acaso no hemos necesitado todos, alguna vez, a una persona importante que nos saque de un apuro? Lamentablemente hay muchos que no reconocen que la persona indispensable en nuestra existencia humana es Jesucristo, el Hijo de Dios, que dio su vida por nosotros como prueba de su amor y amistad.2 De Cristo dijo su precursor, Juan el Bautista: «... entre ustedes hay alguien a quien no conocen... al cual yo no soy digno ni siquiera de desatarle la correa de las sandalias.»3 Para muchos, esa sigue siendo una triste realidad. Más vale que procuremos conocer a este Personaje divino muy de cerca. Gracias a Dios, hoy mismo todos, cualesquiera que sean nuestras credenciales, podemos disfrutar de una relación estrecha con Cristo. Carlos ReyUn Mensaje a la Concienciawww.conciencia.net 1 Ricardo Palma, Tradiciones peruanas, Tomo II, «Una visita al mariscal Santa Cruz (1864): Reminiscencias históricas», pp. 272‑73. 2 Jn 15:13 3 Jn 1:26,27
Models like Alpaca, Vicuña, GPT4All-J and Dolly 2.0 have relatively small model architectures, but they're prohibitively expensive to train even on a small amount of your own data. The standard model-training protocol can also lead to catastrophic forgetting. In this week's episode, Jon explores a solution to these problems, introducing listeners to Parameter-Efficient Fine-Tuning (PEFT) and the leading approach: Low-Rank Adaptation (LoRA). Additional materials: www.superdatascience.com/674 Interested in sponsoring a SuperDataScience Podcast episode? Visit JonKrohn.com/podcast for sponsorship information.
Get started with language models: Learn about the commercial-use options available for your business in this week's Five-Minute Friday, where host Jon Krohn discusses four models that have many of the capabilities of ChatGPT and can run at a fraction of the cost. Additional materials: www.superdatascience.com/672 Interested in sponsoring a SuperDataScience Podcast episode? Visit JonKrohn.com/podcast for sponsorship information.
Ellen luxuriates in the vicuña & Christian takes a bite out of crime with the cookie cutter shark. We discuss adaptations to life in the Andes, vicuña wool as political bribery, suctorial lips, and how to play an Uno Reverse card on some of the ocean's top predators.Follow Just the Zoo of Us on Facebook, Twitter, Instagram & Discord!Follow Ellen on TikTok!Cover photos: Tadas Jucys via Getty images & Paulo Oliveira via The Guardian