Liquid found in cells
POPULARITY
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.08.01.551134v1?rss=1 Authors: Dabsan, S., Zur, G., Gilad, A., Igbaria, A. Abstract: The Endoplasmic Reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. The ER contains numerous enzymes and chaperones which assist in oxidative protein folding and other posttranslational modifications. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, altering homeostasis, and causing ER stress. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content during stress. In cancer cells, the refluxed proteins gain new pro-survival functions, thereby increasing cancer cell fitness. We termed this phenomenon ER to Cytosol Signaling (or ERCY). In yeast, ERCYS is regulated by HLJ1 (an ER-resident tail-anchored HSP40 cochaperone). Here, we found that in mammalian cells, HLJ1 has five putative orthologs possessing J-domains facing the cytosol. Among those, DNAJB12 and DNAJB14 appear to be the most significant, as they were shown to mediate retrograde trafficking/entry into the cytosol from the ER of nonenveloped viruses in a mechanism similar to ERCYS. Mechanistically, we found that DNAJB12 and DNAJB14 bind the cytosolic HSC70 and its cochaperone SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux to the cytosol. Moreover, we found that DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Thus, we concluded that targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.07.07.548169v1?rss=1 Authors: Wilson, Z. N., West, M., English, A. M., Odorizzi, G., Hughes, A. Abstract: Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.06.27.546668v1?rss=1 Authors: Banik, P., Kamps, J., Chen, Q.-Y., Luesch, H., Winklhofer, K. F., Tatzelt, J. Abstract: Mistargeting of secretory proteins to the cytosol can induce formation of aggregation-prone conformers and subsequent proteostasis decline. We have identified a quality control pathway that redirects non-ER-imported prion protein (PrP) to proteasomal degradation in the nucleus to prevent formation of toxic aggregates in the cytosol. Upon aborted ER import, PrP sequentially interacted with VCP/p97 and importins, which kept PrP soluble and promoted its nuclear import. In the nucleus, RNA buffered aggregation of PrP to facilitate ubiquitin-dependent proteasomal degradation. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import were independent of ubiquitination but required the intrinsically unstructured N-terminal domain of PrP. Transient proteotoxic stress promoted the formation of self-perpetuating PrP aggregates in the cytosol, which disrupted further nuclear targeting of PrP and compromised cellular proteostasis. Our study delineates a VCP/p97-dependent nucleus-based quality control pathway of non-ER-imported secretory proteins and emphasizes the important role of the nuclear milieu for the degradation of aggregation-prone proteins. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
References Dr Guerra Intermediary metabolic lecture notes-graduate biochemistry lecture archives Epigenetics. 2019; 14(12): 1183–1193. Drug Discov Today. 2017 Jan; 22(1): 186–193. --- Send in a voice message: https://podcasters.spotify.com/pod/show/dr-daniel-j-guerra/message
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.03.531038v1?rss=1 Authors: Bao, X., Jia, H., Zhang, X., Zhao, Y., Li, X., Lin, P., Ma, C., Wang, P., Song, C.-P., Zhu, X. Abstract: The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. Using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to map the proximity proteome of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates involved in local protein translation and translocation, membrane contact sites, and organelle quality control. This system also performed admirably for the rapid isolation of intact mitochondria and peroxisomes. Our data support the notion that TOM20-3 is a candidate for both a mitochondrial and a chloroplast receptor, and that PEX11D is a candidate for a peroxisome receptor for the coupling of protein translation and import. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.03.02.530906v1?rss=1 Authors: Wang, H., Tao, Z., Zhao, X., Wang, G., Chen, Y., Zhang, J., Zhang, X., Liu, M., Jiang, G., He, L. Abstract: Advanced intracellular delivery of proteins has profound applications in both scientific investigations and therapies. However, existing strategies relying on various chemical and physical methods, have drawbacks such as the requirement of high concentration in vitro prepared target proteins and difficulty in labeling target proteins. Developing new delivery systems integrating the enveloping and labeling of target proteins would bring great advantages for efficient protein transfections. Here, we enriched a high concentration (62 mg/ml) of several target proteins into outer membrane vesicles (OMVs) of E. coli to employ the native property of OMVs to deliver proteins into the cytosol of eukaryotic cells. The results revealed a high protein transfection efficiency arranging from 90-97% for different cell lines. Moreover, the free penetration of molecules less than 600 Dalton across the membrane of OMVs allows direct labeling of target proteins within OMVs, facilitating the visualization of target proteins. Importantly, the nanobody delivered intracellularly by OMVs retains the biological activity of binding with its target, highlighting the advantages of OMVs as an emerging tool for efficient intracellular delivery of proteins. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
01/06/21 - Host Doug Stephan and Dr. Jack Stockwell, www.forbiddendoctor.com Phone: 866-867-5070 begin with advice on recovering after you have the flu. Winter is here, so you'd better wear a hat. Next, the supplement of the week Thymex. https://www.standardprocess.com/products/thymex It supports the thymus gland with bovine thymus Cytosol extract to support a healthy thymus gland, the master gland of the immune system. Doug asks Dr. Jack about how survivors of COVID should go about recovering. Then, Doc recommends another supplement, Cataplex B. https://www.standardprocess.com/products/cataplex-b. It supports physical and nervous system health, supports a healthy heart, stimulatory to the metabolic, cardiovascular, and central/peripheral nervous systems. Plus, lots more great tips and ideas to help you maintain your Good Health.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Vor Beginn dieser Arbeit war ein A. fumigatus-Protein (Chp: CipC homologes Protein) mit unbekannter Funktion und hoher Homologie zum CipC-Protein aus A. nidulans als prominentes hyphenspezifisches Protein identifiziert worden (Schwienbacher, 2005). Weiterhin gab es zu diesem Zeitpunkt Hinweise, dass ein zu CipC homologes Protein in C. neoformans eine wichtige Rolle während der Virulenz spielt (Steen et al., 2003). In dieser Arbeit sollte die biologische Funktion des pilzspezifischen Proteins genauer untersucht werden. Zu diesem Zweck wurden monoklonale Antikörper gegen Chp, mehrere Reporterstämme sowie eine Deletionsmutante hergestellt. Die erhobenen Daten zeigen, dass Chp als Monomer im Cytosol der Hyphen vorliegt. Dabei zeigte sich eine gleichmäßige Verteilung eines GFP-Fusionsproteins innerhalb der Hyphen; nur die Vakuolen schienen ausgespart. Die Identifikation des Proteins auf der Sporenoberfläche von A. fumigatus (Asif et al., 2006) wurde wiederlegt und die differentielle Expression des Proteins bestätigt. Anders als in A. nidulans (Melin et al., 2002) wirkt das Antibiotikum Concanamycin A auf die Bildung von Chp in A. fumigatus nicht induzierend. Da diese Tatsache sowohl für die Na-mensgebung von CipC, als auch für die Namensgebung von Chp verantwortlich war, sollte das A. fumigatus-Protein umbenannt werden. Die Wahl des Namens fiel auf NrpA (Nitrogen regulated protein A), da die Bildung des Proteins von der N-Quelle abhängig ist. Die N-abhängige Regulation war für ein homologes F. fujikuroi Gen auf RNA-Ebene bereits bekannt (Teichert et al., 2004). In der vorliegenden Arbeit konnte sie in A. fumigatus und erstmals auf Proteinebene bestätigt werden. Desweiteren wurden auch neue N-Quellen untersucht. Dabei zeigte sich, dass NrpA in Anwesenheit der N-Quellen Glutamat, Nitrat oder Harnstoff nicht gebildet wird, wohin-gegen Komplexmedien sowie die N-Quellen Ammonium, Glutamin, Asparaginsäure, Asparagin, Valin und Tryptophan zur Bildung des Proteins führen. In Kombination einer induzierenden und einer unterdrückenden N-Quelle dominiert stets die induzierende. In Reporterstämmen (gfp; lacZ) fand diese negative Regulation der Bildung von NrpA nicht statt. Das Protein wurde sowohl in Anwesenheit einer normalerweise unterdrückenden N-Quelle, als auch in den Sporen gebildet. Weiterhin nimmt die gebildete Menge von NrpA sowohl bei längeren Inkubationszeiten, als auch bei Verwendung höherer Animpfdichten zu. Wird der Pilz zunächst mit einer die NrpA-Bildung unterdrückenden N-Quelle angezogen und dann in Medium mit einer induzierenden N-Quelle umgesetzt, dauert es 6 h bis eine Bildung von NrpA verzeichnet werden kann. Diese Zeitspanne blieb auch in einem inversen Experiment gleich. Als nächstes wurde untersucht, ob NrpA in A. fumigatus unter Stressbedingungen von Bedeutung ist. Dabei konnte gezeigt werden, dass sowohl osmotischer Stress, als auch oxidativer Stress, der durch Menadion verursacht wird, kei-ne Auswirkung auf die gebildete NrpA-Menge hat. Dagegen führt durch H2O2 verursachter Stress zu einem veränderten Laufverhalten von NrpA in SDS-Gelen. Das Protein scheint unter diesen Umständen ein höheres Molekulargewicht zu haben. Mithilfe eines A. fumigatus-Reporterstammes, der ein NrpA-GFP-Fusionsprotein bildet, konnte gezeigt werden, dass H2O2 auch zu einer veränderten Lokalisation von NrpA führt. Das sonst gleichmäßig in den Hyphen verteilte Protein formierte sich in punktförmigen Strukturen. Auch unter Mangelbedingungen spielt NrpA keine wichtige Rolle, denn weder ein C- noch ein N-Mangel verändert die gebildete Menge des Proteins. Dient die normalerweise die NrpA-Bildung induzierende N-Quelle Glutamin als C- und N-Quelle wird NrpA nicht gebildet. Ebenso wie in F. fujikuroi (Teichert et al., 2002) wird die Bildung des NrpA-Proteins durch MSX, einem Inhibitor der Glutaminsynthetase, fast vollständig inhibiert. Anders als in F. fujikuroi (Teichert et al., 2006) verursachte die Inhibierung der TOR-Kinase durch Rapamycin keinen Effekt auf die Bildung von NrpA. Auch durch eine her-gestellte Deletionsmutante konnte die biologische Funktion von NrpA nicht geklärt werden. In zahlreichen vergleichenden Untersuchungen verhielt sich die Mutante ebenso wie der Wildtyp. Der einzige dokumentierte Unterschied zwischen Mutante und Wildtyp ist eine verstärkte Bil-dung der Katalase 1 in der Deletionsmutante. Anders als angenommen spielt NrpA während der Virulenz von A. fumigatus keine Rolle. In einem Virulenzmodell in embryonierten Hühnereiern verhielten sich Deletionsmutante und Wildtyp gleich. Auch in murinen Makrophagen führten die Deletionsmutante und der Wildtyp etwa zu vergleichbaren Mengen an ausgeschüttetem IL-10 und TNFα. Ein potentieller Nutzen von NrpA bei der Diagnose der allergischen bronchoalveolaren Aspergillose (ABPA) konnte ebenso ausgeschlossen werden. Neben NrpA waren im Vergleich der Proteinmuster der verschiedenen A. fumigatus-Morphotypen auch weitere differentiell exprimierte Proteine aufgefallen. Eines davon war eine MnSOD (Aspf6), die bis dahin auch als mitochondriale MnSOD bezeichnet wurde (Rementeria et al., 2007). Da im Genom von A. fumigatus aber eine weitere MnSOD kodiert ist, die über eine putative Mitochondriensignalsequenz verfügt, sollte in einem zweiten Teil der Arbeit die tat-sächliche Lokalisation dieses Proteins gezeigt werden. Dafür wurden zunächst monoklonale Antikörper gegen das Protein hergestellt. Eine mitochondriale Lokalisation der MnSOD mit puta-tiver Signalsequenz konnte gezeigt werden. Dabei wurden sowohl Western-Blots als auch ein A. fumigatus-GFP-Reporterstamm verwendet. Weiterhin konnte das Protein genauer charakteri-siert werden. Im Gegensatz zu Aspf6, das nur in den Hyphen des Pilzes zu finden ist, wurde die mitochondriale MnSOD sowohl in den Sporen, als auch in den Hyphen nachgewiesen. Die gebil-dete Menge des Proteins verändert sich im Zeitverlauf nicht. Lediglich zu sehr späten Wachs-tumszeitpunkten in der späten stationären Phase war ein leichter Anstieg zu beobachten. Die gebildete Menge des Proteins hing auch nicht von der Animpfdichte der Kultur ab. Anders als Aspf6, das bekannterweise ein Homotetramer bildet (Flückiger et al., 2002), scheint die mitochondriale MnSOD als Dimer vorzuliegen. Auch in Antwort auf oxidativen Stress verhielten sich die beiden MnSODs unterschiedlich. Menadion, das innerhalb der Zelle die Bildung von Su-peroxidanionen bewirkt, führte zu einem leichten Anstieg der Proteinmenge der mitochondrialen MnSOD, während Aspf6 unverändert blieb. Als Folge von oxidativem Stress, der durch H2O2 verursacht wird, zeigte Aspf6 eine leichte Verringerung, während die mitochondriale MnSOD schnell abgebaut wird. In einem dritten Teil dieser Arbeit wurde die Rolle der Atmung während der Auskeimung von A. fumigatus genauer untersucht. Dabei konnte gezeigt werden, dass die Proteinbiosynthese für den Auskeimungsprozess unbedingt notwendig ist. Desweiteren wurde mit Hilfe unterschiedli-cher Methoden eine sehr frühe Aktivierung der Atmungskette während des Auskeimungspro-zesses nachgewiesen. Ebenso konnte gezeigt werden, dass die Anwesenheit von Sauerstoff für das Wachstum von A. fumigatus unbedingt erforderlich ist. Im anaeroben Milieu konnten die Konidien weder anschwellen noch auskeimen. Auch bereits vorhandene Hyphen konnten unter Abwesenheit von Sauerstoff nicht weiterwachsen. Weitere Untersuchungen zeigten, dass A. fu-migatus anders als A. nidulans (Takasaki et al., 2004) nicht über die Fähigkeit verfügt, im Anae-roben durch eine Fermentation von Ammonium zu überleben. In dieser Arbeit wurde ebenso wie in anderen aktuellen Arbeiten (Williger et al., 2008) die Fähigkeit von A. fumigatus, in hypoxischen Umgebungen zu wachsen, nachgewiesen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Eine große Gruppe genetisch vererbter Erblindungskrankheiten steht im Zusammenhang mit Mutation in Genen, die in Photorezeptoren exprimiert sind. Diese Mutationen führen nicht nur zu einer Beeinträchtigung des mutierten Proteins selbst, sondern auch zu einer Störung von funktionell nachgeschalteten Proteinnetzwerken. In der Folge ändern sich die Zusammensetzung von Multiproteinkomplexen sowie die Proteinlokalisation, was schwerwiegende physiologische Konsequenzen nach sich zieht. Alleine im lichtwahrnehmenden Molekül Rhodopsin sind mehr als hundert unterschiedliche Mutationen beschrieben worden, die vermutlich im Zusammenhang mit Retinitis pigmentosa, einer degenerativen Erkrankung der Retina, stehen (http://www.sph.uth.tmc.edu/RetNet/). In Saccharose-Dichte Gadienten Experimenten von Dr. Magdalena Swiatek-deLange, die dieser Studie vorangegangen sind, wurde Rhodopsin als Teil eines potentiellen Rhodopsin/Ras Homolog Gene Family, Member A (RhoA)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/RhoKinase II (Rock II)/ Collapsin response mediator protein 2 (CRMP2) Signal-Multiproteinkomplexes in Außensegmenten von Stäbchen Photorezeptoren (ROS) identifiziert, welcher im Zuge dieser Studie bestätigt und eingehender untersucht wurde. Ein Zusammenhang zwischen einer Rhodopsin-vermittelten Degeneration von Photorezeptoren und der Regulation des Cytoskeletts durch die kleine GTPase Rac1, wurde von Chang und Kollegen (Chang and Ready, 2000) hergestellt. Sie haben gezeigt, dass die Expression von dominant-aktivem Rac1 in Rhodopsin-Null Mutanten von Drosophila die Rhabdomer Morphogenese erhalten kann. In Zellen fungiert Rac1 durch den Wechsel zwischen einem inaktiven, vorwiegend cytosolischen und einem aktiven, überwiegend membranassoziierten Zustand, als molekularer Schalter in der Signaltransduktion und vermittelt Signale von Membranrezeptoren an das Cytoskelett. Obwohl die Rolle von Rac1 bereits in einer großen Zahl unteerschiedlicher Zellen untersucht worden ist, ist seine Funktion in Photorezeptoren noch immer weitgehend ungeklärt. Die wenigen vorhanden Studien, in denen beispielsweise gezeigt wurde, dass Rac1 an der Fusion von Rhodpsintransportcarriern in Rana barlandieri (Deretic et al., 2004) oder auch an der lichtinduzierten Degeneration von murinen Photorezeptoren beteiligt ist (Belmonte et al., 2006), machen aber deutlich, dass Rac1 ein für die Funktion und Regulation von Photorezeptoren wichtiges Molekül ist. In dieser Studie wurde daher die Rolle von Rac1 in Photorezeptoren eingehender untersucht und ein Rac1-Interaktom in ROS, bestehend aus 22 Interaktoren, identifiziert. Von diesen 22 identifizierten Interaktoren sind fünf bereits als Interaktoren von Rac1 beschrieben worden, darunter CRMP2, einer der Hauptregulatoren von Polarität in neuronalen Zellen, sowie die cytoskelettalen Proteine Aktin ( and und Tubulin ( and Unter den 17 neuen potentiellen Rac1 Interaktoren befindet sich das Aryl Hydrocarbon Receptor-Interacting Protein Like 1 (AIPL1), das im Zusammenhang mit Leberscher kongenitaler Amaurose (LCA) sowie mit retinalem Proteintransport steht (Sohocki et al., 2000), sowie eine Reihe von Proteinen, die Teil der Phototransduktionskaskade sind, wie die Untereinheit der 3´, 5´-cyclic-GMP Phosphodiesterase 6, Recoverin, Arrestin sowie die , und Untereinheiten von Transducin. Rac1 verbindet damit die Lichtwahrnehmung durch Rhodopsin mit einer Regulation des Cytoskeletts und legt damit eine Interdependenz von Lichtwahrnehmung mit einer korrekten zellulären und funktionalen Struktur von Photorezeptoren nahe. In dieser Studie wurde nicht nur die Existenz des potentiellen Rhodopsin/RhoA/Rac1/Rock II/CRMP2 Multiproteinkomplexes in ROS bestätigt, sonder auch eine lichtabhängige Dynamik und Interaktion der einzelnen Komplexbestandteile beschrieben. In Übereinstimmung mit Daten aus verschiedenen Organismen ((Wieland et al., 1990), (Petrov et al., 1994), (Balasubramanian and Slepak, 2003)) konnte eine lichtabhängige Aktivierung von Rac1 in ROS von Schweinen nachgewiesen werden. Während lichtaktiviertes, GTP-gebundenes Rac1 überwiegend membranassoziiert vorliegt, konnte in dunkeladaptierten ROS insgesamt nur eine sehr geringe Menge an aktivem Rac1 detektiert werden. Des Weiteren wurden in dieser Studie auch deutliche Hinweise geliefert, die auf eine CRMP2 vermittelte Verbindung von Rac1 und RhoA assoziierten Signalwegen hinweisen, wohingegen die Kinase Rock II nur Teil des RhoA assoziierten Signalkomplexes zu sein scheint. Als Funktion von CRMP2 liegt daher eine Rolle als physiologischer Schalter nahe, der die Balance zwischen Rac1 und RhoA vermittelter Signaltransduktion koordiniert. Eine solche Funktion für CRMP2 wurde von Ariumura und Kollegen bereits für die Signaltransduktion in Neuronen vorgeschlagen (Arimura et al., 2000). Um die Signaltransduktion von CRMP2 in ROS eingehender untersuchen zu können, sind CRMP2 Antikörper unabdingbar, welche aber zu Beginn dieser Arbeit kommerziell nicht erhältlich waren. Daher war die Produktion und Charakterisierung von monoklonlalen CRMP2 spezifischen Antikörpern ein wichtiger Teil dieser Studie. Von den vier erhaltenen stabilen Linien monoklonaler, CRMP2 spezifischer Antikörper waren alle für den Einsatz im Western Blot sowie in der Immunohistochemie geeignet, aber nur ein Antikörper erwies sich auch als geeignet für die Immunopräzipitation von nativem CRMP2 aus primärem retinalen Gewebe. Dieser Antikörper stellt damit ein exzellentes Werkzeug für die weitere Charakterisierung der Funktion von CRMP2 in ROS dar. Drei Klassen von Proteinen regulieren die Aktivität von Rac1. Sie alle haben einen Einfluss auf den GTP/GDP-Austausch. Einer dieser Regulatoren ist der Rho GDP Dissociation Inhibitor (RhoGDI). Er kontrolliert die Interaktion von Rac1 mit weiteren regulatorischen Proteinen und Effektoren, sowie durch Interaktion mit dem Prenylrest von Rac1 das Pendeln zwischen Cytosol und Membran. Da aber der RhoGDI nicht in ROS nachgewiesen werden konnte (Balasubramanian and Slepak, 2003), legt dies den Schluss nahe, dass ein anderes Protein diese Funktion in ROS übernimmt. Das 17-kDa große Protein PDEdas lange Zeit als Untereinheit der retinalen cGMP Phosphodiesterase 6 aus Stäbchen galt, weist starke strukturelle Homologien zu RhoGDI auf. Es interagiert mit einer ganzen Reihe von prenylierten und unprenylierten Proteinen. Seine Fähigkeit, prenylierte Proteine von Zellmembranen zu lösen, erinnert stark an die Funktion, welche RhoGDI auf GTPasen der Rho Familie hat. Es wurde daher im Zuge dieser Studie untersucht, ob PDE in ROS GDI Funktion auf Rac1 ausübt. In dieser Arbeit konnte eine lichtabhängige Interaktion von Rac1 mit PDE in ROS von Schweinen nachgewiesen werden. Des Weiteren wurde gezeigt, dass aufgereinigtes PDE Rac1 von isolierten ROS Membranen lösen kann, eine Eigenschaft, die deutlich auf eine GDI-Funktion von PDE für Rac1 hinweist. Zudem wurde gezeigt, dass die Interaktion von Rac1 mit PDE mit einer lichtabhängigen Carboxylmethylierung von Rac1 in ROS korreliert, was ein Hinweis darauf sein kann, dass die die GDI Funktion von PDE durch die Methylierung von Rac1 reguliert wird. Alles in Allem zeigen diese Daten, das PDE für Rac1 in ROS die Funktion eines GDIs ausübt. In dieser Studie geben die identifizierten und mit Rac1 assoziierten Multiproteinkomplexe sowie deren lichtregulierte Dynamik einen deutlichen Hinweis darauf, dass Rac1 die Lichtwahrnehmung durch Rhodopsin mit Signalnetzwerken verbindet, die eine Rolle bei der strukturellen Integrität und Polarität von Photorezeptoren spielen. Dies deutet auf eine Abhängigkeit von Lichtwahrnehmung und funktioneller zellulärer Struktur hin. Mit der Bereitstellung von qualitativ sehr hochwertigen CRMP2 spezifischen Antikörpern liefert diese Studie zudem eine gute Basis für weiterführende Studien in diesem Forschungsfeld. Neben Rhodopsin assoziierten Komplexen stehen auch eine ganze Reihe von ciliären Komplexen in Zusammenhang mit degenerativen Erkrankungen der Retina. Im kürzlich entdeckten ciliären Protein Lebercilin (den Hollander et al., 2007) wurden Mutationen mit Leberscher kongenitaler Amaurose (LCA) in Verbindung gebracht, einer sehr schweren Form einer erblichen retinalen Dystrophie ((Kaplan et al., 1990), (Perrault et al., 1999)). Mit Hilfe von SF-TAP und LC/MS/MS Analysen konnten 24 Lebercilin Interaktoren in HEK Zellen identifiziert werden (den Hollander et al., 2007). Hier in dieser Studie wurden schließlich diese potentiellen Lebercilin Interaktoren auch in Photorezeptoren von Schweinen bestätigt (veröffentlicht in (den Hollander et al., 2007). Die identifizierten Interaktoren stellen mögliche Kandidaten für Gene für LCA und andere Ciliopathien dar und weisen Lebercilin als ein ciliär und mikrotubulär assoziiertes Protein in der Retina aus. Dies betont den Stellenwert, welche gestörte ciliäre Prozesse in der molekularen Pathogenese von LCA besitzen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Für die Assemblierung des bakteriellen Flagellums müssen die externen Untereinheiten an ihren Bestimmungsort transportiert werden. Dies geschieht wie bei allen Gram-negativen Bakterien auch in Escherichia coli mit Hilfe des flagellären Typ III-Sekretionssystems (fTTSS). Dabei ist der flagelläre Exportapparat mit seinen cytoplasmatischen Komponenten FliH, FliI und FliJ von Bedeutung. Der Exportapparat ist im Basalkörper des Flagellums lokalisiert und liefert die Energie für den Export der Substrate, wie z. B. das Hakenkappenprotein FlgD und das Hakenprotein FlgE. Die Substrate benötigen ihrerseits ein Signal für die Erkennung durch den Exportapparat. Im Rahmen dieser Arbeit konnten Interaktionen zwischen den löslichen Komponenten FliH, FliI und FliJ des flagellären Typ III-Sekretionssystems von E. coli K12 festgestellt werden. Zudem wurden begonnene Arbeiten zur Lokalisation und Beschaffenheit einer Erkennungssequenz für den Exportapparat beim Substrat FlgD weitergeführt und auch das Substrat FlgE näher untersucht. Mit Hilfe der Affinitätschromatographie konnte ein Komplex, bestehend aus FliH, FliI und FliJ, aus dem Cytosol von E. coli BL21 (DE3) präpariert werden. Dafür wurden zuvor die Gene fliH, fliI und fliJ zusammen in den Vektor pASK-IBA 45 kloniert und dann exprimiert. Parameter für Interaktionen und Affinitäten zwischen zuvor einzeln präpariertem FliH, FliI und FliJ konnten mit Hilfe von isothermaler Titrationskalorimetrie (ITC) und Surface Plasmon Resonance (SPR) ermittelt werden. Unter Verwendung eines bereits etablierten Testsystems für das fTTSS in E. coli CC181-Mutanten konnte der Export der Hybridproteine FlgDPhoA bzw. FlgEPhoA untersucht werden. Dabei wurden von FlgD auch N- oder C-terminale Verkürzungen sowie auf Nukleotid- oder Aminosäureebene veränderte Sequenzen eingesetzt. Die Untersuchungen ergaben ein Signal für den Export des Hakenkappenproteins FlgD auf Proteinebene und nicht auf der Ebene der mRNA. Zudem konnte das Exportsignal auf die N terminalen 71 Aminosäuren von FlgD eingegrenzt und eine Bedeutung des möglichen zweiten Startcodons an Position 52 in flgD für den Export ausgeschlossen werden. FlgE wurde in seiner gesamten Länge vom fTTSS transportiert. Im Gegensatz zu FlgD führten jedoch alle C-terminalen Verkürzungen von FlgE zum Transportverlust.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Jasmonate sind Phytohormone mit vielfältiger Wirkung in Entwicklung und Stressmanagement der Pflanzen. Über die Perzeption und Transduktion der Jasmonatsignale ist bisher kaum etwas bekannt. Unter Verwendung des synthetischen Jasmonat-Analogons 6-Azido-1-oxoindanoyl(14C)isoleucinmethylester (IndAz(14C)IleMe) als Radioligand wurde eine spezifische Bindestelle in Sojabohne (Glycine max) biochemisch charakterisiert, in der Erwartung, eine Bindestelle für Jasmonate zu beschreiben. Die IndAz(14C)IleMe-Bindung erwies sich als spezifisch, saturierbar und reversibel. Da es sich aber um eine niedrigaffine Bindestelle handelt und die Affinität verschiedener Jasmonate und synthetischer Indanoyl-Isoleucin-Konjugate nicht mit deren biologischer Aktivität in Sojabohne korreliert, dürfte es sich bei der IndAz(14C)IleMe-Bindestelle nicht um einen Jasmonatrezeptor handeln. Sowohl bei Jasmonaten als auch bei Indanoyl-Isoleucin-Konjugaten wurden Methylester gegenüber den entsprechenden freien Säuren bevorzugt gebunden. Ein Enzym, das den Liganden umsetzt, scheint nicht vorzuliegen, da die IndAz(14C)IleMe-Bindung kein pH-Optimum aufwies und keine Umsetzung des Liganden beobachtet wurde. Mit fortschreitendem Alter der Pflanze nahm die Bindungsaktivität zu. Die IndAz(14C)IleMe-Bindestelle kommt in verschiedenen höheren Pflanzenarten vor, war hauptsächlich in der Wurzel nachweisbar und wurde in der Zellwand lokalisiert. Da die Bindestelle weder mit Salzen noch mit Detergenzien extrahiert werden konnte, gegenüber Proteinase K, DTT, Periodat, Lipase, Cellulase, Hemicellulase, Pectinase und Pectolyase resistent und zu 50 % hitzestabil war, wird vermutet, dass ein in der Zellwand fest verankertes Protein vorliegt. Zu den intrazellulären Signalvermittlern von Pflanzen gehört Calcium, nicht nur im Cytosol, sondern auch im Zellkern. In transgenen Nicotiana tabacum BY-2-Zellen wurden mit Hilfe des Photoproteins Aequorin erstmals jasmonatinduzierte Änderungen der Calciumkonzentration in beiden Kompartimenten gezeigt. Auch ein Vertreter aus der Gruppe der Phytoprostane, Phytoprostan B1 Typ II, löste Calciumantworten in Cytosol und Zellkern aus. JA und OPDA induzierten unterschiedliche Calciumsignaturen, die sich jeweils aus einer cytosolischen Calciumantwort gefolgt von einem Calciumsignal im Zellkern zusammensetzten. Die Unterschiede in Form, Höhe und Kinetik der einzelnen Antworten lassen auf zwei verschiedene Signaltransduktionswege bei JA und OPDA schließen. MeJA war in beiden Kompartimenten inaktiv und demonstriert dadurch, dass MeJA nicht immer, wie häufig angenommen wird, wie JA wirkt. Durch das Isoleucin-Konjugat der JA (JA-Ile) wurde eine dritte Calciumsignatur ausgelöst, die sich von der JA-induzierten Calciumsignatur durch das Fehlen der JA-ähnlichen cytosolischen Calciumantwort unterscheidet. Dieser Befund lässt vermuten, dass die Unterscheidung von JA- und JA-Ile-Signalen möglicherweise auf Ebene des Calciums stattfindet. Eine Struktur-Aktivitätsanalyse mit Indanoyl-Isoleucin-Konjugaten bestätigte, dass die Konjugation mit Isoleucin zur Veränderung der Calciumsignatur führt. Die unkonjugierte 1-Oxoindan-4-carbonsäure (Ind) verhielt sich wie JA, das Konjugat Ind-Ile wie JA-Ile. Ferner wurde gezeigt, dass für die Induktion der Calciumantworten eine freie, negativ geladene Carboxylgruppe unerlässlich ist. Neben MeJA erwiesen sich JA-IleMe, Ind-IleMe und 3-(Nitro-methyl)-2-((Z)-pent-2-enyl)cyclopentanon als inaktiv. 6-substituierte Indanoyl-Isoleucin-Konjugate zeichnen sich durch verstärkte biologische Aktivität aus. Tatsächlich verlieh der Ethyl-Substituent dem IndEt-IleMe calciuminduzierende Aktivität im Zellkern. Bei den freien Säuren Ind-Ile und IndEt-Ile wurde aber keine Aktivitätssteigerung durch Substitution festgestellt. Die Untersuchung der Expression einiger JA-responsiver Gene zeigte, dass unter den Versuchsbedingungen, die die Induktion von Calciumantworten ermöglichten, keine jasmonatinduzierte Genexpression erfolgte. Sollten die beschriebenen Calciumsignale die Expression bestimmter Gene vermitteln, ist eine ausgewählte Gruppe von Genen zu erwarten, deren Expression eventuell einen besonderen physiologischen Zustand der Zellen erfordert.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Biogenese von Mitochondrien erfordert den Import von Präproteinen aus dem Cytosol in die mitochondrialen Subkompartimente. Der TIM23-Komplex der mitochondrialen Innenmembran ist für die Translokation von Präproteinen über die Innenmembran verantwortlich und vermittelt darüber hinaus die Insertion von Proteinen in die Innenmembran. Tim23 weist zwei funktionell unterscheidbare Domänen auf: Eine N-terminale hydrophile Rezeptordomäne im Intermembranraum und einen hydrophoben C-terminalen Bereich. Das phylogenetisch verwandte Tim17 ist ein sehr hydrophobes Protein, welches vier Transmembrandomänen ausbildet, die von zwei kurzen Enden im Intermembranraum flankiert werden. Die hydrophoben Bereiche von Tim17 und Tim23 bilden vermutlich den kanalbildenden Teil der Translokase. In der vorliegenden Arbeit wurde die Funktion von Tim17 bei der Translokation von Präproteinen über die Innenmembran untersucht. Es konnte eine kurze N-terminale Sequenz von 11 Aminosäureresten identifiziert werden, welche für die Funktionalität der TIM23-Translokase essentiell ist. Die Deletion dieser Sequenz beeinflusst die Integrität der bekannten Untereinheiten der TIM23-Translokase nicht, führt jedoch zu einer starken Beeinträchtigung der Translokation von Präproteinen über die mitochondriale Innenmembran. Durch gezielte Alanin-Punktmutagenese konnten zwei konservierte Aspartatreste in der Tim17-Sequenz identifiziert werden, welche für den Translokationsdefekt verantwortlich sind. Die Analyse weiterer Mutanten in Tim17 mit einzelnen oder wechselseitig ausgetauschten geladenen Aminosäureresten im Intermembranraum legen nahe, dass die konservierten negativen Ladungen in Tim17 mit den positiv geladenen Präsequenzen interagieren und dadurch die Translokation von Präproteinen durch den TIM23-Komplex regulieren. Diese Ergebnisse geben einen Einblick in eine Präprotein-abhängige Regulation der TIM23-Translokase über ein mögliches "Öffnen" und "Schließen" des Translokationskanals via Tim17. Die meisten Proteine der mitochondrialen Innenmembran, die als Präproteine mit mitochondrialen Präsequenzen im Cytosol synthetisiert werden, erreichen die Innenmembran auf einem von zwei alternativen Sortierungswegen: Dem "Stop-Transfer-Weg", auf dem Präproteine während der Translokation durch den TIM23-Komplex arretiert und lateral in die Innenmembran inseriert werden und dem Weg der "Konservativen Sortierung", auf dem die Proteine über Intermediate in der mitochondrialen Matrix in die Innenmembran inseriert werden. Folglich müssen diese Proteine entsprechende Sortierungssignale aufweisen, die entweder die laterale Membraninsertion (Stop-Transfer-Proteine) oder die die Translokation in die Matrix (konservativ sortierte Proteine) durch die TIM23-Translokase vermitteln. Das Sortierungsverhalten von mitochondrialen Innenmembranproteinen mit N-terminalen Präsequenzen, die zunächst für die initiale Translokation des N-Terminus der Proteine sorgen, wird von den Transmembrandomänen bestimmt. Um den Einfluss der Transmembrandomänen auf den Sortierungsweg zu untersuchen, wurden die entsprechenden Domänen von Stop-Transfer sortierten Proteinen und konservativ sortierten Proteinen wechselseitig ausgetauscht. In den chimären Proteinen bestimmten jeweils die eingeführten Transmembrandomänen das Sortierungsverhalten. Eine Untersuchung dieser Transmembrandomänen zeigte zwei systematische Unterschiede: Transmembrandomänen, die die konservative Sortierung vermitteln, weisen eine zumeist moderate Hydrophobizität auf und enthalten zumeist Prolinreste. Dagegen sind Stop-Transfer vermittelnde Transmembrandomänen typischerweise stärker hydrophob und frei von Prolinresten. Die Einführung von Prolinresten in die Transmembrandomänen von ursprünglich Stop-Transfer sortierten Proteinen führte zu deren Translokation in die Matrix. Umgekehrt führte die Mutagenese von Prolinresten in Transmembrandomänen ursprünglich konservativ sortierter Proteine zu deren Arretierung in der Innenmembran. Die Anwesenheit von Prolinresten in den Transmembrandomänen bestimmt demnach den Sortierungsweg dieser Innenmembranproteine. Zukünftige Studien werden zeigen, wie diese Sortierungssignale, welche eventuell eine von Prolinresten gebrochene hydrophobe Helix darstellen, von der TIM23-Translokase erkannt und entsprechend umgesetzt werden. Die Bedeutung von Prolinresten in Transmembrandomänen von konservativ sortierten Proteinen konnte durch Mutagenese sowohl in vitro als auch in vivo gezeigt werden. Diese Erkenntnis sollte sowohl in Vorhersagen von Proteinsortierungswegen als auch bei der zukünftigen Entwicklung mitochondrialer Proteine für gentherapeutische Ansätze zur Behandlung mitochondrialer Erkrankungen berücksichtigt werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Fusion von Mitochondrien und deren Membranen ist ein Prozess, der für die Aufrechterhaltung der Mitochondrienmorphologie essentiell ist. Da Mitochondrien von zwei verschiedenen Membranen begrenzt werden, müssen dabei insgesamt vier Membranen auf koordinierte Weise miteinander verschmelzen. Fzo1 ist eine zentrale Komponente der mitochondrialen Fusionsmaschinerie in der Außenmembran. Im Rahmen der vorliegenden Arbeit sollte untersucht werden, ob Fzo1 die Fusion der Außenmembranen mit der Fusion der Innenmembranen koordiniert. Darüber hinaus sollten neue Komponenten identifiziert werden, die für die Fusion von Mitochondrien wichtig sind. Fzo1 besitzt zwei Transmembrandomänen, welche die Außenmembran durchqueren. Es exponiert sowohl den Amino- als auch den Carboxyterminus ins Cytosol. Ein kurzes Segment im Intermembranraum ist für die Lokalisation von Fzo1 in Kontaktstellen zwischen Außen- und Innenmembran verantwortlich. Mutationen in diesem Segment führen zum Verlust der Assoziation von Fzo1 mit der Innenmembran und zum Verlust der Funktion des Proteins. Diese Beobachtungen bilden die Grundlage für ein Modell, in dem die Fusionsmaschinerie Kontakte zwischen den beiden Membranen ausbildet und so die koordinierte Fusion der vier mitochondrialen Membranen vermittelt. Mdm30 ist eine neue Komponente, die für die Fusion von Mitochondrien benötigt wird. Mdm30 besitzt ein F-Box-Motiv. Dieses Motiv findet sich in Untereinheiten von SCF-Komplexen, einer vielseitigen Klasse von Ubiquitin-Ligasen. Δmdm30-Mutanten haben fragmentierte und aggregierte Mitochondrien. Die Mitochondrien der Δmdm30-Zellen können nur fusionieren, wenn gleichzeitig die Teilung von Mitochondrien blockiert wird. Durch die Deletion des MDM30-Gens kommt es bei erhöhten Temperaturen zum Verlust der mitochondrialen DNA. Mdm30 bestimmt die Struktur der Mitochondrien, indem es die Fzo1-Proteinmenge reguliert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Ribonukleoproteinpartikel (RNPs) sind Komplexe aus RNA und Proteinen, die entscheidende Funktionen bei Prozessen wie Translation, Telomer-Synthese, Protein-Import in das endoplasmatische Retikulum oder RNA-Prozessierung übernehmen. Obwohl stets neue Beispiele die Bedeutung von RNPs untermauern, sind grundlegende Aspekte ihrer Funktion noch unklar. So stellte sich zu Beginn dieser Arbeit die Frage, wie sich die Komponenten von RNPs zu funktionellen Gebilden zusammenlagern. In frühen in-vitro-Studien war beobachtet worden, dass sich RNPs spontan ausbilden und dieser Vorgang keine weiteren Faktoren benötigt. Daraus war die Hypothese abgeleitet worden, dass dies möglicherweise auch der in vivo Situation entsprechen könnte. Unerwartete Einblicke in die Biogenese von RNPs lieferten schliesslich Studien zum "survival motor neurons"-Protein (SMN), dem Krankheitsgenprodukt der spinalen Muskelatrophie. Antikörper gegen SMN und seinem Bindungspartner Gemin2 inhibierten in Xenopus laevis Oocyten die Ausformung von RNP-Untereinheiten des Spleißosoms - den U snRNPs und nährten den Verdacht, dass diese Proteine Hilfsfaktoren der U snRNP-Biogenese sein könnten. Das Ziel der vorliegenden Arbeit war daher, mechanistische Details über die Zusammenlagerung von U snRNPs in vivo zu ermitteln und die Rolle von SMN und Gemin2 zu untersuchen. Die wesentlichen Schritte der Biogenese von U snRNPs können experimentell in X. laevis Oocyten verfolgt werden. Nach dem Export der U snRNAs U1, U2, U4 und U5 in das Cytosol lagern sich dort jeweils sieben sogenannte Sm-Protein an ein gemeinsames Motiv der U snRNAs an und formen so die Grundstruktur jedes U snRNPs, die Sm-Core-Domäne. Hierauf folgen die Hypermethylierung der U snRNA-Kappe und der Import der Sm-Core-Domäne in den Zellkern, wo sich U snRNP-spezifische Proteine anlagern, ehe die reifen snRNPs am Spleißprozess teilnehmen. In der vorliegenden Arbeit wurde zunächst ein zellfreies System entwickelt, durch das die Zusammenlagerung von U snRNPs in der Komplexität des Cytosols untersucht werden konnte. Unter Verwendung von Extrakten aus Xenopus laevis-Eiern oder HeLa-Zellen konnte gezeigt werden, dass die Ausbildung der Sm-Core-Domäne, entgegen bisheriger Vermutungen, nicht spontan erfolgt, sondern Energie in Form von ATP benötigt. Aus Depletionsversuchen wurde deutlich, dass SMN unter diesen zellähnlichen Bedingungen für die snRNP-Biogenese unbedingt erforderlich ist. SMN, dies zeigten immunbiochemische Reinigungen, ist in der Zelle mit 17 verschiedenen Proteinen assoziiert, die hier erstmals vollständig identifiziert wurden. Dieser SMN-Komplex enthält bereits alle Sm-Proteine, jedoch keine U snRNAs. Anhand direkten Sm-Protein-Transferstudien wurde klar, dass der SMN-Komplex allein nicht nur notwendig sondern auch hinreichend für die Ausbildung der Sm-Core-Domäne, ist. Dennoch konnte mit dem pICln-Komplex ein Proteinkomplex entdeckt werden, der mit dem SMN-Komplex interagiert und dessen Aktivität erheblich steigert. Der pICln-Komplex enthält eine neuartige Methyltransferase, die Arginylreste in den Sm-Proteinen B/B’, D1 und D3 zu symmetrischen Dimethylargininen modifiziert. Es ist bekannt, dass hierdurch die Bindung von Sm-Proteinen an SMN verstärkt wird. Die vorliegenden Daten weisen darauf hin, dass SMN- und pICln-Komplexe eine funktionelle Einheit bilden, in der Modifikation und Transfer der Sm-Proteine koordiniert ablaufen. Erste Erkenntnisse aus Versuchen mit HeLa-Zellen und Patientenzelllinien deuten an, dass reduzierte Menge des SMN-Komplexes mit einer reduzierten U snRNP-Zusammenlagerungsaktivität einhergehen, und dass dies einen biochemischen Defekt in Spinaler Muskelatrophie darstellen könnte. In einem weiteren Projekt wurde mit Hilfe von Datenbankanalysen und biochemischen Strategien das SMN-homologe Protein SMNrp identifiziert und charakterisiert. Biochemische Studien zeigten, dass SMNrp eine Komponente des U2 snRNPs ist und eine essentielle Rolle beim Spleißen ausführt. Kernextrakte die kein SMNrp enthalten wiesen einen Defekt der Spleißosomen-Zusammenlagerung auf der Stufe des „prä-Spleißosoms“ auf. SMNrp ist demnach ein Zusammenlagerungsfaktor des Spleißosoms und bezüglich dieser Funktion dem U snRNP-Zusammenlagerungsfaktor SMN ähnlich.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Programmierter Zelltod oder Apoptose ist essentiell für die Entwicklung und Homöostase mehrzelliger Organismen. Störungen in der Regulierung dieser Prozesse können zu zahlreichen Erkrankungen führen, unter anderem zu Autoimmunerkrankungen und Krebs. In den letzten Jahren konnte in zahlreichen Arbeiten gezeigt werden, daß Mitochondrien eine wichtige Rolle bei der Steuerung der Apoptoseprozesse spielen. So wird Cytochrom c, ein Protein aus dem mitochondrialen Intermembranraum, durch einen pro-apoptotischen Stimulus als ein Caspase-Aktivierungsfaktor ins Cytosol freigesetzt. In der vorliegenden Arbeit wird die initiale Charakterisierung eines neuen murinen Proteins (mDAP-3) beschrieben. mDAP-3 wurde identifiziert bei dem Versuch molekulare Marker der Nierenentwicklung mit Hilfe einer modifizierten „differential display“ Polymerase Kettenreaktion zu finden. Die 1,7 kb große mDAP-3 mRNA kodiert für ein ca. 45 kDa großes Protein, das als funktionelles Motiv eine ATP/GTP-Bindungsstelle (P-Loop) besitzt. Die Analyse der Aminosäurensequenz von mDAP-3 ergab eine 81 %ige Identität zu dem humanen DAP-3 (Death Associated Protein 3), einem positiven Apoptose Mediator. Northern-Blot-Analyse von 20 µg Gesamt-RNA aus 11 Organen adulter Mäuse zeigte eine abundante mDAP-3 Expression in Niere, Herz, Leber, Thymus, Muskel, Milz, Darm und Bauch, mit einem Expressionsmaximum in Testis. Eine geringe bis fast fehlende Expression konnte in der Lunge und im Ovar gezeigt werden. Die Überexpression eines mDAP-3/EGFP Fusionproteins in murinen Mesangialzellen (MMC) führte zu einer Apoptoseinduktion bei 27,6% ± 2,6% (n=3) der Zellen gegenüber einer Apoptose Inzidenz von 11,9% ± 2,8% bei MMCs die mit einem Kontrollvektor transfiziert wurden. Die pro-apoptotische Funktion von mDAP-3 ist dabei abhängig von der Funktionalität des P-Loops. Die Überexpression eines P-Loop mutierten mDAP-3/EGFP Fusionproteins führte zu keiner Apoptoseinduktion. Sowohl das murine als auch das humane DAP-3 bleiben während der Apoptose intra-mitochondrial und werden nicht in das Cytosol freigesetzt. Für die Untersuchung der intrazellulären Lokalisation von mDAP-3 wurde ebenfalls das mDAP-3/EGFP-Fusionsprotein verwendet. Murine-Tubuluszellen (MTC) zeigten nach Transfektion mit dem Fusionsprotein ein punktiertes Signal im Fluoreszenz-Mikroskop. Im Gegensatz dazu zeigten Zellen nach Transfektion mit dem EGFP-Expressionsvektor alleine das für EGFP typische diffuse, zytosolische Fluoreszenzsignal. Sowohl im Fluoreszenz-Mikroskop als auch im konfokalen Laser-Scann-Mikroskop lokalisierte mDAP-3/EGFP zusammen mit einem mitochondrialen Farbstoff, jedoch nicht mit einem lysosomalen. Diese Ergebnisse weisen auf eine mitochondriale Lokalisation von mDAP-3 hin. Zellfraktionierungen bestätigten die mitochondriale Lokalisation von mDAP-3. Das endogene mDAP-3 Protein konnte nur in der mitochondrialen Fraktion, nicht jedoch in der endoplasmatischen Reticulum- oder der zytosolischen-Fraktion, nachgewiesen werden. Proteinase-K-Behandlung isolierter Mitochondrien führte zu keiner Reduktion der mDAP-3 Proteinmenge im Western-Blot. Dies ließ auf eine intra-mitochondriale Lokalisation von mDAP-3 schließen. Digitonin-Behandlung isolierter Mitochondrien zeigte eine Freisetzung von mDAP-3 aus den Mitochondrien bei relativ hohen Digitonin Konzentrationen (0,3%). Ganz im Gegensatz dazu wurde Cytochrom c bereits bei 0,075% Digitonin freigesetzt. Diese Daten weisen auf eine mDAP-3 Lokalisation in der mitochondrialen Matrix hin. Da die DAP-3 Proteinfamilie in Eukaryonten sehr konserviert ist und auch in nichtapoptotischen Organismen wie S. cerevisiae vertreten ist, muß DAP-3 eine weitere Funktion neben der pro-apoptotischen besitzen. Um die Rolle von DAP-3 näher zu definieren wurde eine Disruption des mDAP-3 Hefe-Orthologs YGL129c (yDAP-3) durchgeführt. Die yDAP-3 Nullmutanten zeigten keinen Wachstumsverlust auf nicht fermentierbaren Kohlenstoffquellen wie Glycerol oder Lactat. Dies deutet darauf hin, daß yDAP-3 für die mitochondriale Atmung nicht zwingend notwendig ist. Allerdings zeigten Hefen bei einer yDAP-3 Disruption einen signifikanten und progressiven Verlust ihrer mitochondrialen DNA (mtDNA) (46% in ∆yDAP-3 vs. 3% im Wildtyp). Dieser Verlust der mtDNA, der auf eine Funktion von yDAP- 3 für die mitochondriale Biogenese hinweist, ließ sich durch eine Transfektion der ∆yDAP-3 Hefen mit dem murinen DAP-3 teilweise verhindern. Damit konnte bewiesen werden, daß die Funktion, die DAP-3 für die Biogenese der Mitochondrien ausübt, unter Eukaryonten konserviert ist. Diese Daten identifizieren mDAP-3 als einen der ersten pro-apoptotischen Faktoren der mitochondrialen Matrix. Weiterhin kann eine duale Funktion für die Mitglieder der DAP-3 Proteinfamilie postuliert werden. Zum Einen spielen sie eine wichtige, evolutionär konservierte Rolle für die Biogenese von Mitochondrien, zum Anderen besitzen sie in mehrzelligen Organismen eine zusätzliche pro-apoptotische Funktion.