Lipid-lowering medication
POPULARITY
Real Life Pharmacology - Pharmacology Education for Health Care Professionals
On this episode of the Real Life Pharmacology Podcast, I start my journey on summarizing the most highly testable pearls with the top 200 medications. I'm going through the top 200 medications, 5 drugs at a time, and sharing my experience and clinically relevant information about these medications. Escitalopram is an SSRI that can cause serotonin syndrome, sexual dysfunction, and SIADH. Simvastatin is a cholesterol medication that can cause myopathy and rhabdomyolysis. Levothyroxine is a thyroid hormone replacement medication that has numerous binding drug interactions. Vicodin is a brand name combination of hydrocodone and acetaminophen. It is an opioid combined with and OTC analgesic. Lisinopril is an ACE inhibitor used for hypertension that can cause a chronic dry cough and hyperkalemia.
Episode kali ini membahas pertanyaan netizen tentang penggunaan Simvastatin dan Obat Kutu Rambut
Episode 24! Three trials about COVID were published with ESICM which we talk about all three here. COVID has been decreasing in prevalence in our ICU at least so we anchor our discussion around what we can learn from these trials about ARDS in general or what we can carry forward to future pandemics compared to our typical "Are we using this in our practice".Simvastatin: https://pubmed.ncbi.nlm.nih.gov/37888913/Vitamin C: https://pubmed.ncbi.nlm.nih.gov/37877585/Convalescent Plasma: https://pubmed.ncbi.nlm.nih.gov/37889107/Be sure to follow us on the social @icucast for the associated figures, comments, and other content not available in the audio format! Email us at icuedandtoddcast@gmail.com with any questions or suggestions! Thank you Mike Gannon for the intro and exit music!
Scott Berry (Austin) and Danny McAuley (Belfast) join Rob Mac Sweeney to discuss the results of the statin domain of the REMAP-CAP trial, investigating 80mg once daily of simvastatin in critically ill patients with COVID-19.
Real Life Pharmacology - Pharmacology Education for Health Care Professionals
Bempedoic acid, also known as Nexletol, is a once-daily medication used in lipid management. I discuss its pharmacology, side effects, and much more on this podcast episode. Bempedoic is a once-daily medication that doesn't need to be titrated. Standard dosing is 180mg once daily which can be taken with or without food. What are the most common side effects of bempedoic acid? One of the most notable adverse effects is hyperuricemia. This is usually seen within the first 4 weeks of being on the medication but could happen throughout the treatment. Tendon problems can happen as well, especially in patients who are greater than 60 years old, on fluoroquinolones, have renal failure, or are taking corticosteroids. If Bempedoic acid is taken along with Simvastatin, it is recommended to avoid doses greater than 20mg. This is partly because Bempedoic Acid 180mg along with 40mg of Simvastatin was found to increase Simvastatin AUC by 2-fold. The mechanism of this interaction has yet to be reported. Pravastatin doses greater than 40mg are to be avoided as well due to an increased risk of myopathy. Atorvastatin and Rosuvastatin didn't have any maximum dose considerations.
Interview with Camille Carroll, MD, PhD, author of Evaluation of Simvastatin as a Disease-Modifying Treatment for Patients With Parkinson Disease: A Randomized Clinical Trial. Hosted by Cynthia E. Armand, MD. Related Content: Evaluation of Simvastatin as a Disease-Modifying Treatment for Patients With Parkinson Disease
Interview with Camille Carroll, MD, PhD, author of Evaluation of Simvastatin as a Disease-Modifying Treatment for Patients With Parkinson Disease: A Randomized Clinical Trial. Hosted by Cynthia E. Armand, MD. Related Content: Evaluation of Simvastatin as a Disease-Modifying Treatment for Patients With Parkinson Disease
Episode 112: Statins in Primary CareDr. Tiwana explains the use of statins for the primary prevention of cardiovascular disease.Written by Ripandeep Tiwana, MD (Post-Doctoral Research Fellow at Cedar Sinai Medical Center – Heart Institute). Edition of text and comments by Hector Arreaza, MD.____________________________________________You are listening to Rio Bravo qWeek Podcast, your weekly dose of knowledge brought to you by the Rio Bravo Family Medicine Residency Program from Bakersfield, California, a UCLA-affiliated program sponsored by Clinica Sierra Vista, Let Us Be Your Healthcare Home. This podcast was created for educational purposes only. Visit your primary care provider for additional medical advice.Definition.Statins commonly referred to as lipid-lowering medications, are important in primary care as they serve multiple long-term benefits than just lipid lowering alone. They are HMG-CoA reductase inhibitors. As a refresher, this is the rate-controlling enzyme of the metabolic pathway that produces cholesterol. This enzyme is more active at night, so statins are recommended to be taken at bedtime instead of during the day. Statins are most effective at lowering LDL cholesterol. However, they also help lower triglycerides and raise HDL cholesterol.Statins are not limited to just patients with hyperlipidemia. They reduce illness and mortality in those who have diabetes, have a history of cardiovascular disease (including heart attack, stroke, peripheral arterial disease), or are simply at high risk for cardiovascular disease. Statins are used for primary and secondary prevention.Types of statins.How do we determine which statin our patients need?First, we need to know that not all statins are created equal. They vary by intensity and potency thus, and they are categorized as either low, moderate, or high intensity.Several statins are available for use in the United States. They include Atorvastatin (Lipitor), Fluvastatin (Lescol XL), Lovastatin (Altoprev), Pitavastatin (Livalo, Zypitamag), Pravastatin (Pravachol), Rosuvastatin (Crestor, Ezallor), Simvastatin (Zocor)Commonly used in clinics: Simvastatin, Atorvastatin, and Rosuvastatin.Statin Dosing and ACC/AHA Classification of Intensity Low-intensity Moderate-intensity High-intensityAtorvastatin NA 1 10 to 20 mg 40 to 80 mgFluvastatin 20 to 40 mg 40 mg 2×/day; XL 80 mg NALovastatin 20 mg 40 mg NAPitavastatin 1 mg 2 to 4 mg NARosuvastatin NA 5 to 10 mg 20 to 40 mgSimvastatin 10 mg 20 to 40 mg NAOf note, atorvastatin and rosuvastatin are only for moderate or high-intensity use, and do not use simvastatin 80 mg.Identifying patients at risk.How do we determine who needs statin therapy?Once we become familiar with the different statins, we must figure out which intensity is advised for our patient. Recommendations for statin therapy are based on guidelines from The U.S. Preventive Services Task Force (USPSTF), American Diabetes Association (ADA), and the American College of Cardiology/American Heart Association (ACC/AHA) which recommend utilizing the ASCVD risk calculator in those patients who do not already have established cardiovascular disease.ASCVD stands for atherosclerotic cardiovascular disease, defined as coronary heart disease, cerebrovascular disease, or peripheral arterial disease presumed to be of atherosclerotic origin. ASCVD remains a leading cause of morbidity and mortality in the United States, especially in individuals with diabetes.The ASCVD risk score determines a patient's 10-year risk of cardiovascular complications, such as a myocardial infarction or stroke. This risk estimate considers age, sex, race, cholesterol levels, use of blood pressure medication, diabetic status, and smoking status. Regarding age, this calculator only applies to the age range of 40-79 as there is insufficient data to predict risk outside this age group.There are several online and mobile applications available to calculate this score. Once calculated it gives a recommendation for which intensity statin to use. However, as this is a recommendation, it is essential to use your own clinical judgment to decide what is best for your individual patient. Please refer to the above table as a reference for which statin and dose you may consider using.Keeping the above calculator in mind, additional statin guidelines are recommended by the ACC:Patients ages 20-75 years and LDL-C ≥190 mg/dl use high-intensity statin without risk assessment. (You do not need the calculator.)People with type 2 diabetes and aged 40-75 years use moderate-intensity statins, and risk estimate to consider high-intensity statins. (It means moderate for all diabetics older than 40, high for some.)Age >75 years, clinical assessment, and risk discussion. Age 40-75 years and LDL-C ≥70 mg/dl and 10%. Grade B recommendation: prescribe a statin for the primary prevention of CVD.Grade C – 40-75 years with >= 1 cardiovascular risk factor AND estimated 10-year ASCVD risk 7.5-10%. Grade C recommendation: selectively offer a statin for the primary prevention of CVD. The likelihood of benefit is smaller in this group than in persons with a 10-year risk of 10% or greater.Grade I - The USPSTF found insufficient evidence to recommend for or against initiating a statin for the primary prevention of CVD events and mortality in adults 76 years or older.The USPSTF is also very clear regarding the intensity of statin therapy. They explained that there is limited data directly comparing the effects of different statin intensities on health outcomes. Most of the trials they reviewed used moderate-intensity statin therapy. They conclude that moderate-intensity statin therapy seems reasonable for most persons' primary prevention of CVD.The USPSTF has a broader recommendation, whereas the ACC guidelines are more detailed and individualized and provide guidance on the recommended intensity of statin therapy.Labs needed.Establish baseline labs for serum creatinine, LFTs, and CK only if there is a myopathy risk. Routine monitoring of LFTs, serum creatinine, and CK is unnecessary; only check if clinically indicated.A lipid panel should be checked in 6-8 weeks, and the patient should monitor themselves for any side effects, including myalgias. If LDL-C reduction is adequate (≥30% reduction with intermediate statins and 50% with high-intensity statins), regular interval monitoring of risk factors and compliance with statin therapy is necessary to sustain long-term benefit.Side effects and contraindications.Some common side effects include URI-like symptoms, headache, UTI, and diarrhea. Some patients are very hesitant to take any medications. Warning about side effects may decrease compliance. Major contraindications for statin therapy include active liver disease, muscle disorders, pregnancy, and breastfeeding.Special considerations.Chronic kidney disease: The preferred statins for CKD with severe renal impairment are atorvastatin and fluvastatin because they do not require dose adjustment. Pravastatin would be a second choice.Chronic liver disease: Statins are contraindicated in patients with decompensated cirrhosis or acute liver failure. Abstinence from alcohol is critical in patients with chronic liver disease who are taking statins. Pravastatin and rosuvastatin are the preferred agents. Check lipid levels to determine if LDL-C reduction is accomplished with no changes in aminotransferases. You may consider stopping, increasing dose, or changing statin as you discuss the risks vs. benefits with your patient.Conclusion: Simply put, if a patient has an LDL of greater than 190, is a diabetic, has an established history of cardiovascular disease, or is at risk for it, then the patient should ideally be taking a statin unless there is a contraindication, allergy, or other special circumstance that limits him/her from doing so. If you have patients that apply to any of the above scenarios and are not already on a statin, determine their risk, and consider starting them on a statin “stat” to reduce morbidity and mortality. On the other hand, be mindful of overprescribing. Do not prescribe statins to patients who do not meet the above criteria.________________________________________Now we conclude our episode number 113, “Statins in Primary Care.” Statins are powerful medications for the prevention of cardiovascular disease. Do not forget to recommend non-pharmacologic measures such as healthy eating and physical activity, but let's also consider adding a statin to patients who are at moderate to high risk for cardiovascular disease.This week we thank Hector Arreaza and Ripandeep Tiwana. Audio by Adrianne Silva.Even without trying, every night, you go to bed a little wiser. Thanks for listening to Rio Bravo qWeek Podcast. We want to hear from you; send us an email at RioBravoqWeek@clinicasierravista.org, or visit our website riobravofmrp.org/qweek. See you next week!______________________________________References:1. Statins, U.S. Food & Drug Administration, 2014, December 16, fda.gov, https://www.fda.gov/drugs/information-drug-class/statins, accessed September 14, 2022.2. Chou R, Cantor A, Dana T, et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: A Systematic Review for the U.S. Preventive Services Task Force [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2022 Aug. (Evidence Synthesis, No. 219.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK583661/3. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019; March 17. https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2019/03/07/16/00/2019-acc-aha-guideline-on-primary-prevention-gl-prevention. 4. ASCVD Risk Estimator Plus, published by the American College of Cardiology, https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/, accessed September 14, 2022.5. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: Preventive Medication, U.S. Preventive Services Task Force, Final Recommendation Statement, 2022, August 23. https://uspreventiveservicestaskforce.org/uspstf/recommendation/statin-use-in-adults-preventive-medication6. Videvo. “Distinction.” Https://Www.videvo.net/Royalty-Free-Music-Track/Distinction/227882/, Https://Www.videvo.net/, https://www.videvo.net/royalty-free-music-track/distinction/227882/. Accessed 26 Sept. 2022.
The following question refers to Section 3.4 of the 2021 ESC CV Prevention Guidelines. The question is asked by student Dr. Adriana Mares, answered first by early career preventive cardiologist Dr. Dipika Gopal, and then by expert faculty Dr. Michael Wesley Milks. Dr. Milks is a staff cardiologist and assistant professor of clinical medicine at the Ohio State University Wexner Medical Center where he serves as the Director of Cardiac Rehabilitation and an associate program director of the cardiovascular fellowship. He specializes in preventive cardiology and is a member of the American College of Cardiology's Cardiovascular Disease Prevention Leadership Council. The CardioNerds Decipher The Guidelines Series for the 2021 ESC CV Prevention Guidelines represents a collaboration with the ACC Prevention of CVD Section, the National Lipid Association, and Preventive Cardiovascular Nurses Association. Question #7 While you are on holiday break visiting your family, your aunt pulls you aside during the family gathering to ask a few questions about your 70-year-old uncle. He has hypertension, hyperlipidemia, type 2 diabetes mellitus, and moderate chronic obstructive pulmonary disease. His medications include Fluticasone/Salmeterol, Tiotropium, Albuterol, Lisinopril, Simvastatin, and Metformin. She is very concerned about his risk for heart disease as he has never had his “heart checked out.” She asks if the presence of COPD increases his chance of having heart disease. Which of the following statements would best answer her question? A. Systemic inflammation and oxidative stress caused by COPD promote vascular remodeling and a paradoxical ‘anticoagulant' state affecting all vasculature types. B. Although chronic COPD is associated with increased cardiovascular events, individual exacerbations have no impact on risk of cardiovascular events. C. Patients with mild-moderate COPD are 8-10x more likely to die from atherosclerotic cardiovascular disease than respiratory failure. D. Cardiovascular mortality increases proportionally with an increase in forced expiratory volume in 1 second (FEV1) Answer #7 The correct answer is C. Patients with mild-moderate COPD are 8-10x more likely to die from atherosclerotic cardiovascular disease than respiratory failure. Patients with COPD have a 2-3-fold increased risk of CV events compared to age-matched controls even when adjusted for tobacco smoking, a shared risk factor. This can be partly explained by other common risk factors including aging, hypertension, hyperlipidemia, and low physical activity. Interestingly, CVD mortality increases proportionally with a decrease (rather than increase) in FEV1, making answer choice D wrong (28% increase CVD mortality for every 10% decrease in FEV1). Additionally, COPD exacerbations and related infections are associated with a 4x increase in CVD events, making answer choice B incorrect. COPD has several effects on the vasculature which creates a ‘procoagulant' not ‘anticoagulant' effect on all vascular beds. This is associated with increased risk of cognitive impairment due to cerebral microvascular damage as well as increased risk of ischemic and hemorrhagic stroke. Main Takeaway The presence of COPD (even mild to moderate) has a significant impact on the incidence of non-fatal coronary events, stroke, and cardiovascular mortality mediated by inherent disease process and progression, risk factors (smoking, aging, hypertension, and hyperlipidemia), and systemic inflammation altering vasculature creating a ‘procoagulant' effect. The ESC gives a Class I indication (LOE C) to investigate for ASCVD and ASCVD risk factors in patients with COPD. Guideline Location 3.4.5, Page 3264. CardioNerds Decipher the Guidelines - 2021 ESC Prevention Series CardioNerds Episode Page CardioNerds Academy Cardionerds Healy Honor Roll CardioNerds Journal Club Subscribe to The Heartbeat Newsletter! Check out CardioNerds SWAG! Become a CardioNerds Patron!
Simvastatin is used to slow the progress of heart disease as well as lowering cholesterol in patients. It is also known by the brand name of Zocor. Simvastatin works by affecting the rate-limiting step in cholesterol synthesis. It is a competitive inhibitor of the HMG-CoA reductase enzyme. There are also other benefits such as reducing inflammation and coronary plaque sites, inhibiting platelet aggregation, as well as having an anticoagulant effect. Simvastatin is contraindicated in pregnancy and should be stopped immediately if pregnancy is suspected. Some serious side effects to be aware of are rhabdomyolysis; muscle pain, tenderness, and weakness, and dark urine. Common monitoring parameters for patients on simvastatin are lipid panels, pregnancy, hepatic transaminase levels, and CPK. In order to get the best benefit from simvastatin it is recommended to be taken in the evening. Go to DrugCardsDaily.com for my episode show notes which will contain a drug summary, quiz, and a link to FREE drug card sheets. SUBSCRIBE on Spotify or Apple Podcasts or search for us on your favorite place to listen to podcasts. I will go over the Top 100-200 Drugs as well as throwing in some recently released drugs that peak my interest. Also, if you'd like to say hello, suggest a drug, or leave any constructive feedback on the show I'd really appreciate it! Leave a voice message at anchor.fm/drugcardsdaily or message us through twitter @drugcardsdaily --- Send in a voice message: https://anchor.fm/drugcardsdaily/message
Ohne Efluelda keine Grippeimpfung für Senioren? Wie läuft das jetzt mit den Gratis-Tests? Gibt es FFP2-Masken für Kinder und vertragen sich Simvastatin und Clarithromycin? In der aktuellen Podcast-Folge fasst Benedikt Richter wieder spannende Themen der vergangenen Woche für Sie zusammen.
Are you familiar with the details of the FDA’s Emergency Use Authorization for the first COVID-19 vaccine? Find out about this and more in today’s PV Roundup podcast.
Real Life Pharmacology - Pharmacology Education for Health Care Professionals
Simvastatin use has declined over time due to more potent statins being available and due to numerous drug interactions. Grapefruit juice can inhibit CYP3A4 which will increase the concentrations of simvastatin. Genetic variations in SLCO1B1 can lead to patients being more susceptible to simvastatin toxicity. Simvastatin is a lipophilic statin. I discuss why this is important and how it might impact clinical decisions.
In unserer neuen Reihe „Beratungs-Check“ hat unsere Autorin Franziska Rakus für Sie an exemplarischen Gesprächsabläufen verdeutlicht, wie eine Beratungssituation aussehen kann. Die Beispiele dienen als mögliche Szenarien und sind als Übungs- und Umsetzungshilfen für die Apotheke gedacht. In dieser Folge geht es um folgende Situation: Eine Frau (58) kommt mit einem Einkaufskorb, in dem eine Grapefruit liegt, in die Apotheke und legt ein Rezept über Simvastatin vor.
Interview with Richard G. Bach, MD, author of Effect of Simvastatin-Ezetimibe Compared With Simvastatin Monotherapy After Acute Coronary Syndrome Among Patients 75 Years or Older: A Secondary Analysis of a Randomized Clinical Trial, and Antonio M. Gotto, MD DPhil, author of Intensive Lipid Lowering in Elderly Patients
Interview with Richard G. Bach, MD, author of Effect of Simvastatin-Ezetimibe Compared With Simvastatin Monotherapy After Acute Coronary Syndrome Among Patients 75 Years or Older: A Secondary Analysis of a Randomized Clinical Trial, and Antonio M. Gotto, MD DPhil, author of Intensive Lipid Lowering in Elderly Patients
MS research scientist Dr. Jeffrey Huang is this year's recipient of the Harry Weaver Neuroscience Scholar Award from the National MS Society. On this week's podcast, we're talking with Dr. Huang about his potentially groundbreaking research, and we'll even ask him how one becomes an MS research scientist. We're also talking about the lectures, presentations, and education sessions that took place last week at the Consortium of Multiple Sclerosis Centers Annual Meeting. We'll explain why we don't think that MS caregivers need more support resources -- and we'll tell you what we think they do need. We'll tell you about a possible connection between stress, gut bacteria, and MS. We'll explain how a research team determined that simvastatin (Zocor) may help people living with MS differently than it helps people lower their cholesterol. And you'll hear about a new collaboration that may lead to better clinical trials. Our contest ended this past Friday, and this week, we're announcing who will be joining me as my special guest on the 100th episode of RealTalk MS! We have a lot to talk about. Are you ready for RealTalk MS??! ___________ Consortium of MS Centers Annual Meeting Review :38 Do MS Caregivers Need More Support Resources...Or Is It Something Else? 3:29 Can Stress Affect Our Gut Bacteria And Cause an Autoimmune Reaction? 8:00 Simvastatin Affects People with MS Differently Than It Lowers Cholesterol 9:18 AbbVie & MC10 Announce MS Clinical Trials Using FDA-Approved Wearable Device 11:47 My Interview with Dr. Jeffrey Huang 14:30 I Reveal Our Contest Winner! Who Will Join Me for Episode 100? 28:18 ___________ ADD YOUR VOICE TO THE CONVERSATION I've always thought about the RealTalk MS podcast as a conversation. And this is your opportunity to join the conversation by sharing your feedback, questions, and suggestions for topics that we can discuss in future podcast episodes. Please shoot me an email or call the RealTalk MS Listener Hotline and share your thoughts! Email: jon@realtalkms.comPhone: (310) 526-2283 ___________ LINKS If your podcast app doesn't allow you to click on these links, you'll find them in the show notes in the RealTalk MS app or at www.RealTalkMS.com CMSC Annual Meeting Day 1 CMSC Annual Meeting Day 2 CMSC Annual Meeting Day 3 STUDY: Preferences, Needs, & Opportunity Areas for US Multiple Sclerosis Caregivers STUDY: Social-Stress-Responsive Microbiota Induces Stimulation of Self-Reactive Effector T Helper Cells STUDY: Applying Causal Models to Explore the Mechanism of Action of Simvastatin in Progressive Multiple Sclerosis Download the RealTalk MS App for iOS Download the RealTalk MS App for Android Give RealTalk MS a Rating & Review MC10's BioStamp nPoint System ___________ Follow RealTalk MS on Twitter, @RealTalkMS_jon, and subscribe to our newsletter at our website, RealTalkMS.com. RealTalk MS Episode 92 Hosted By: Jon Strum Guest: Dr. Jeffrey Huang Tags: MS, MultipleSclerosis, MSResearch, CMSC2019, Caregiving, Simvastatin, AbbVieUS, mc10inc, RealTalkMS
This episode was originally supposed to be a simple topic discussion between my student and me. We ended up recording it as a podcast episode that will hopefully serve as a quick review of material that has been covered in other episodes. The patient case that we discussed during the episode: 63 y/o female with diabetes, HFrEF, hypertension. Medications: A1c = 8.9% HFrEF – EF = 30% BP = 154/84 mmHg Glargine-Lantus insulin 36 U QAM Pioglitazone 45 mg Lisinopril 10 mg HCTZ 25 mg QAM Metoprolol tartrate 50 mg BID Carvedilol 25mg BID Doxazosin 4 mg daily èSTOP Simvastatin 20 mg She presents for pharmacotherapy management If you have any questions, reach out to us on any of the following: Mike - mcorvino@corconsultrx.com Cole - cswanson@corconsultrx.com Instagram and other social media platforms - @corconsultrx This podcast reviews current evidence-based medicine and pharmacy treatment options. This podcast is intended to be used for educational purposes only and is intended for healthcare professionals and students. This podcast is not for patients and not intended as advice or treatment.
Jane Ferguson: Hi everyone. Welcome to episode 20 of Getting Personal Omics of the Heart, the podcast brought to you by the Circulation: Genomic and Precision Medicine Journal and the American Heart Association Council on Genomic and Precision Medicine. I'm Jane Ferguson from Vanderbilt University. It's September 2018 and let's dive straight into the papers from this month's issue of Circulation: Genomic and Precision Medicine. We're starting off with some pharmacogenomics. Bruce Peyser, Deepak Voora and colleagues from Duke University published an article entitled, "Effects of Delivering SLCO1B1 Pharmacogenetic Information in Randomized Trial and Observational Settings." Although statins are generally well tolerated, 5-15% of patients taking statins for LDL lowering and cardiovascular protection end up developing statin associated muscular symptoms. Because onset of muscular symptoms associated with discontinuing statin use, as well as increased cardiovascular morbidity, there is a clear need to identify ways to prevent or reduce symptoms in these people. Variants affecting statin related myopathy have previously been discovered through GWAS, including a variant in the SLCO1B1 gene, which also has been shown to relate to statin myalgia and discontinuation of statin use. The risks appear to be greatest with simvastatin, indicating the people at risk of muscle complications may do better on either low-dose Simvastatin or another statin. However, there's still some uncertainty surrounding the risks and benefits of various statins as they pertain to risk of muscular symptoms. The authors have previously shown that pharmacogenetics testing led to increased number of people reporting statin use, but effects of pharmacogenetic testing on adherence, prescribing, and LDL cholesterol had never been tested in a randomized control trial. In this study, they randomized 159 participants to either genotype informed statin therapy or usual care, and then followed them for months to eight months. 25% of participants were carriers of the SLCO1B1 star five genotype. The authors found that statin adherence was similar in both groups, but gene type guided therapy resulted in more new statin prescriptions and significantly lower LDL cholesterol at three months, and levels that were lower but no longer significantly different at eight months. In individual's randomized to usual care who then crossed over to genotype informed therapy after the trial period ended, there was an additional decrease in LDL cholesterol. Overall, genotype informed statin therapy led to an increase in re-initiation of statins and decreases in LDL cholesterol, but did not appear to affect adherence. The authors also examined the effects of commercial genetic testing for SLCO1B1 variants in an observational setting by looking at over 92000 individuals with data available in the EHR. They found the people who receive genetic testing results had a larger drop in LDL cholesterol compared to untested controls. Overall, the study indicates that carriers of the SLCO1B1 risk variant may benefit from genotype informed statin therapy, while for non-carriers receiving their results may has limited effects. If you want to read more on this, Sony Tuteja and Dan Rader from UPenn wrote an editorial to accompany this article, which was published in the same issue. We're staying on the topic of statins and LDL for our next paper. This article comes from Akinyemi Oni-Orisan, and Neil Risch and colleagues from the University of California and is entitled, "Characterization of Statin Low-Density Lipoprotein Cholesterol Dose-Response Utilizing Electronic Health Records in a Large Population-Based Cohort." They were interested in understanding what determines variation in statin induced LDL reduction, particularly the genetic component, and they used a large EHR derived data set, the Kaiser Permanente Genetic Epidemiology research on adult health and aging cohort to address this important question. An EHR dataset does have intrinsic limitations, but also has some clear strengths, not only as a readily available and cost-effective data source for large sample sizes, but also because it reflects real world clinical care in diverse individuals, which is not always well represented within the selective constraints of a randomized trial. There were over 33000 individuals who met their inclusion criteria. To account for differences in potency between different statins and doses, the authors generated a defined daily dose value, with one defined daily dose equal to 40 milligrams per day of Lovastatin. The slope of the dose response was similar across statin types and across different sex and race or ethnicity groups. But there were differences by statin type in the response independent of dose, as well as differences in absolute responses by sex, age, race, smoking, and diabetes. Based on these differences, the authors revised the defined daily doses and they highlight how previously defined equivalencies between different statins may not be accurate. They found that individuals with East Asian ancestry had an enhanced response to therapy compared with individuals of European ancestry. The authors identified related individuals within the data set and the estimated heritability of statin response using parent-offspring and sibling pairs. They found only modest heritability, indicating that non-genetic factors may be more important in determining variability in statin response. Overall, this large single cohort study adds to our knowledge on determinants of statin response and raises further questions on the relative effects of different statins and doses within patient subgroups. Okay, so now let's talk about GWAS and Athero. Sander van der Lann, Paul de Bakker, Gerard Pasterkamp and coauthors from University Medical Center Utrecht published a paper entitled, "Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques." Over the past decade, genome-wide association studies in large cohorts have been very successful in identifying cardiovascular risk loci. However, relating these to subclinical disease or two mechanisms has been more challenging. The authors were interested in understanding whether established GWAS loci for stroke and coronary disease are associated with characteristics of atherosclerotic plaque, the idea being that some of the risk loci may alter disease risk by determining the development and stability of plaque. They identified seven plaque characteristics to study and histological samples, including intraplaque fat, collagen content, smooth muscle cell percentage, macrophage percentage, calcification, intraplaque hemorrhage, and intraplaque vessel density. They selected 61 known loci and examined association of those SNiPA with black phenotypes in over 1400 specimens from the athero express biobank study. Out of the 61 loci, 21 were associated with some black phenotype compared with zero of five negative control loci, which were chosen as established GWAS loci for bipolar disorder, which, presumably, should share limited mechanistic etiology with plaque. They used the software package VEGAS to run gene-based analyses. They also assessed SNiPA relationships with gene expression and methylation in multiple tissues derived from two independence Swedish biobanks, which included atherosclerotic arterial wall, internal mammary artery, liver, subcutaneous fat, skeletal muscle, visceral fat, and fasting whole blood. One CAD locus on chromosome 7q22 that survived correction for multiple testing was associated with intraplaque fat, and was also an EQTL for expression of several genes across multiple tissues. In addition, it was also a methylation QTL. The authors focused on this locus and looked at correlation of expression within the LDL receptor and noted associations with HDL and LDL cholesterol in the global lipids genetics contortion data, which suggests that this locus may have a role in the metabolism. At this locus, the HBP1 gene expressed foam cells may be an interesting candidate as a causal gene in determining plaque-lipid accumulation and cardiovascular risk. So next up, we have a paper that is also about athero and is coauthored by many of the same group as did that previous study. So yeah, this group's productivity is kind of making the rest of us look bad this month. So Martin Siemelink, Sander van de Lann, and Gerard Pasterkamp and their colleagues published, "Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions." Okay. So I think one of the few things we can all definitely agree on is that smoking is bad. But, does smoking exert any of its cardiovascular damage by altering within atherosclerotic plaques? That's the question this group set out to answer. They carried out a two-stage epigenome-wide association study, or EWAS, with discovery and replication of differentially methylated loci with tobacco smoking within carotid arteriosclerotic plaques of a total of 664 patients undergoing carotid endarterectomy and enrolled in the arthero-expressed biobanks study. In discovery, they found 10 CpG loci within six genes that associated with smoking. Four of the CpG loci replicated. These four loci mapping within six genes showed reduced methylation in current smokers compared with former or never smokers. However, there was no difference in specific plaque characteristics based on methylation at any of the four loci. There was also no significant difference in plaque gene expression at these loci based on smoking status. However, a SNiPA at a nearby locus located in the 3' UTR of the PLEKHGB4 Gene was associated with methylation at AHRR, and was a [inaudible 00:09:58] QTL for PLEKHGB4 of expression but not a AHRR expression. The authors speculate that PLEKHGB4 may co-regulate AHRR expression. The authors also examined blood methylation in a subset of the same subjects, and they were able to replicate previously identified CPG sites associated with smoking. This is a really complex area, and it's hard to identify mechanisms and causality from these multiple layers of data, but the authors demonstrate the importance of using disease relevant tissues to start to understand how environmental factors interact with genetics and other underlying physiology to modify methylation and function within the vasculature. Our final full-length research paper this issue from Brian Byrd and colleagues Michigan, is actually the subject of our interview today. So I won't go into too much detail on it right now, but keep listening for an interview with Brian about their paper, "Human Urinary mRNA as a Biomarker of Cardiovascular Disease: A Proof-of-Principle Study of Sodium-Loading in Prehypertension." Our review article this month is about the "Dawn of Epitranscriptomic Medicine" from Konstantinos Stellos from Newcastle University and Aikaterini Gatsiou from Goethe-Universität Frankfurt. In this paper, they're taking us to the next level beyond just RNA, but towards RNA epigenetics. Given the large number of possible modifications that can and are made to RNA during RNA name metabolism, there's huge potential to gain a new biological and mechanistic understanding by studying the RNA epitranscriptome. I think we'll ignore this at our peril. So if you need to catch up on this new field, this comprehensive review will get you right up to speed. Moving on, our research letters are short format papers that allow authors to present focused results. These are also a great avenue to submit findings from replication studies that might not necessitate a full-length paper. So if you have some data from a replication study that you've been procrastinating writing up, a short research letter is a great format to consider. This month, Bertrand Favre, Luca Borradori and coauthors from Bern University Hospital published a letter entitled, "Desmoplakin Gene Variants and Risk for Arrhythmogenic Cardiomyopathy: Usefulness of a Functional Biochemical Assay." The desmoplakin is essential for the cell-cell adhesion complex's desmosomes. Mutations in this gene have been associated with a wide range of phenotypes, including some in skin and hair, but also in heart, which can manifest arrhythmogenic or dilated cardiomyopathy. This protein anchors intermediate filaments, so mutations that alter binding to intermediate filaments may pathogenicity. The author selected seven reported amino acid altering mutations in desmoplakin, and they screened for effects on binding using a novel fluorescence binding assay. They found that three of the seven mutations had a clear impact on binding. This assay is a novel way to assess functional impact of desmoplakin variants, and may be useful to inform the severity of future phenotypes in individuals carrying a desmoplakin mutation. Finally, if you want to stay up-to-date on the genetics of aortic disease and Marfan syndrome, you can find a letter from Christian Groth and colleagues and an author response from Norifumi Takeda and colleagues regarding their previously published paper on impact of pathogenic FBN1 variant types on the progression of aortic disease in patients with Marfan syndrome. I am joined today by Dr. Brian Byrd from the University of Michigan, who is the senior author on a Manuscript published in this month's issue, entitled, "Human Urinary mRNA as a Biomarker of Cardiovascular Disease: A Proof-of-Principle Study of Sodium-Loading in Prehypertension." So welcome Brian. Thanks so much for coming on the podcast. Brian Byrd: Thank you for having me. Jane Ferguson: So before we get started, could you give a brief introduction of yourself to the listeners and maybe tell us a little bit about how you got into the field? Brian Byrd: Absolutely. So I am a cardiologist and a physician scientist. I'm an assistant professor at the University of Michigan, where I have a laboratory engaged in clinical investigation. My background is that I did my Internal Medicine Residency at Vanderbilt University. And after I finished residency, I entered Nancy Brown's lab. She's the Chair of Medicine at Vanderbilt, as I know you're aware. And she had a laboratory focused, and still does have a laboratory focused, on the investigation of high blood pressure, with a lot of focus on understanding high blood pressure as it occurs in humans. And I got a Master of Science degree in clinical investigation while I was in her lab, and we did some work on a number of topics related to the renin-angiotensin-aldosterone system, which has been a long-standing interest of mine ever since then. So, at the same time, I was learning how to take care of patients with very complex blood pressure problems, who required three, or four, or five, or six blood pressure medications, in some cases, to control. And it's with that background that I became very interested in the science that underlies treatment-resistant high blood pressure in people and what we might be able to do about that. Jane Ferguson: Wow. Nice. Yeah and I think that background of sort of the combination of clinical and experimental is really nice and really important. I think your paper actually exemplifies that really nicely, so using humans but also some basic science techniques and combining them to really have a very patient focused instead of mechanistic interrogation. So as I mentioned, you just published this really nice manuscript using urine as a source of mRNA biomarkers, which has relevance to hypertension and potentially also to other diseases. But before we get sort of too much into the weeds on the specific details, for any of our listeners who didn't get a chance to read your paper yet, maybe you could briefly summarize what you did? Brian Byrd: Okay, so the general overview of what we were interested in was that the patients who have treatment resistant high blood pressure tend to have a lot of activation of a receptor in the kidney called the mineralocorticoid receptor. And this receptor helps control salt in bladder in the body. Obviously the amount of salt in the blood stays very, very homeostatic, but we if eat more salt one day then the next and there needs to be a system to help regulate the homeostasis. And so, you waste more or less salt in the urine depending upon how much sodium you're taking in. And one of the functions of the mineralocorticoid receptor is to control this salt and bladder regulation or to fine tune it anyway. And the reason we know that that's an important receptor in patients with treatment-resistant high blood pressure is because of a series of studies done by David Calhoun and Brian Williams and others, showing that mineralocorticoid receptor blockers, or antagonists, are very effective in the treatment of tough to control high blood pressure. And so, we had some insight that there would be something interesting to study there, and one of the things that we knew was that the mineralocorticoid receptor is a ligand activated transcription factor. So when it gets activated by it's ligan which canonically is a steroid hormone from the adrenal gland aldosterone, the receptor, which is in the cytoplasm, ordinarily dimerizes and translocates to the nucleus, where it controls the regulation of a number of genes. We also were aware that cells secrete RNA, and others had the idea that it might be inside vesicles because there's a lot of ribonuclease and biofluids. And you would think it might be difficult to pass the RNA if it were sort of naked as it were. And it turns out that that's right. If you, for example, introduced synthetic RNAs into biofluids, the RNAs will be gone very quickly in a matter of seconds. So, we had this idea that we might be able to look at RNA that was being secreted by cells probably in vesicles, and assay the activity of the receptor potentially. We weren't sure if that was going to be possible or not. One of the things we did was we used part of the available data to look at the transcriptome of vesicles in the urine that had been isolated from 3300 milliliters of urine by ultracentrifugation [inaudible 00:18:57]. Jane Ferguson: So it's a big centrifusion. Brian Byrd: Exactly. Jane Ferguson: Like you [inaudible 00:19:00] Brian Byrd: It must have been some project. So that was the work of Kevin Miranda and colleagues, and we were able to compare that transcriptome to the transcriptome of human kidney cortex samples from the GTEx project, which a large consortium focused on human transcriptomics. And that was sort of the first part of what we presented in this paper, and the second thing that we did was we looked within a crossover study in a collaboration with Scott Hummel, one of my close collaborators here at the University of Michigan. We looked at individuals who had been put on a low salt diet activating renin-angiotensin-aldosterone system and causing more activation of the mineralocorticoid receptor. And then, those same individuals underwent saline infusion, so salt loading, and we knew that that would suppress the renin-angiotensin-aldosterone system. And we measured the [inaudible 00:20:02] measures of the renin-angiotensin-aldosterone system, but we also took the urine samples that had been recently banked from that experiment and we centrifuged them to try to palette the cells. We took the supernatant and we extracted RNA after trying to enrich for extracellular vesicles. And with that approach, we measure targets that we thought would be regulated my the mineralocorticoid receptor, as well as some things that we did not think would be regulated by mineralocorticoid receptor. So that's the general overview of what we undertook. Jane Ferguson: Great. Right. So it's very cool. I guess we can break it down into sort of the two different parts, because I think it was a really nice examples of using public data to sort of start addressing your question and then actually doing a human experiment. But so for the GTEx data and the urinary data, you looked at few different tissues, right? And was kidney the one that you were thinking upfront would sort of most likely to correlate, or were you also looking at bladder and other sort of tissues that could potentially be of relevance to urine? But what sort of the ... I guess sort of tell me more about those different tissues that you looked at and what you found and what surprised you or not. Brian Byrd: Great question. So, the kidney was on our minds from the outset. We knew that Mark Knepper at the National Institute of Health had published in the [inaudible 00:21:25] National Academy of Sciences back in 2004 that there are urinary extracellular vesicles. And he had found proteins that are very characteristic of the aldosterone sensitive distal nephron, that part of the kidney that we're interested in, embedded in the vesicles. So we became quite interested in the idea that it seemed that there was likely a population of vesicles in the urine that is of kidney origin. And that's not to say that there weren't also plenty of vesicles from other origins as well, and there could very well be RNA that is not vesicle enclosed, but is rather ribonucleic protein bound or even bound to other carriers potentially. That could be there as well, and it's possible that the origin of those things could be any number of tissues. I don't really think that we know yet where the possible tissue origins are. But we were curious to know ... I guess the direct answer to your question is we thought from the outset that we probably would find some sort of signal related to the kidney. But we wanted to also consider the possibility that our findings were not very specific to the kidney. And so we thought that the brain would be an interesting negative control. If we say very high correlation with the brain, it would suggest that maybe what we're looking for is a signal that's not really coming from the kidney. And we also wanted to look at the bladder just to try to understand whether or not the signals that we're detecting could be coming from the bladder. It's certainly true that some aspects of the system that we're interested in are present in the bladder, so I wondered whether that might even serve as a signal amplifier for what we were looking for since there's, presumably, quite a bit of bladder tissue right around the urine. It might be contributing vesicles. So that's sort of the rationale for why we looked at those things. Jane Ferguson: And you found mostly enrichment for kidneys. So sort of I guess what you were hoping to find came true? That actually there was sort of evidence that even though there may be contribution from other tissues, that really kidney seem to be the predominant contributor to the expression of the genes in the urine. Brian Byrd: I think there's a lot of truth to that. One of the things I would say is we found high correlation looking across all genes. But it occurred to us ... As soon as we thought that, we realized, wait a second, that could be driven by ubiquitously expressed genes. Housekeeping genes. So we really wanted to stratify our analysis by things we thought would be expressed in the kidney as well as things that we thought would be ubiquitously expressed to make sure that we could see signals that correlate ... That the transcriptome of the kidney, per se, had a good correlation with those same in terms of the abundance of the gene counts or recounts. They said it was similar to what was in the vesicles. And so, we looked in the literature, and we found that a group had already established a number, 55 genes actually, that were highly kidney enriched as well as over 8000 genes that were ubiquitously expressed. And so we started the analysis from this perspective of the stratification. We thought that was a very important aspect of the analysis. And it's definitely true that if you look at our findings with respect to the kidney enriched genes, as you might expect, they correlate quite well with what is in the urinary extracellular vesicles compared to the kidney cortex. You look at the brain as you might expect the expression of those kidney enriched genes is not well correlated with what's happening in the urine. And then, with respect to the bladder, it's sort of somewhere in between. Jane Ferguson: Okay. Interesting. So I know that some people look at small non-coding RNAs in urine, but you were mostly focused on mRNAs. Is that right? Brian Byrd: That's right. I thought of this as sort of frontier, something that I knew from some early publications was probably measurable. But I didn't know what it would signify, if anything, with respect to physiology. And I knew that there were quite a few papers about micro RNAs and I wanted to do something a little bit innovated, partly. But the main reason that I was interested in the RNAs was because I could relatively easily tie those to the existing literature from animal models. Preclinical animal models and cell culture studies showing what happens when the mineralocorticoid receptor's activated. That was really the driving reason that I was interested in the RNA. Because if you think about what is the approximate event that might be a readout for activation of a new growth hormone receptor like the mineralocorticoid receptor, it's really the transcriptional events that happen when the receptors translocates to the nucleus and serves its ligan activated transcription factor role. Jane Ferguson: Right. So, [inaudible 00:26:43] sort of the first part of analysis, you saw these really nice correlations between expression and kidney and in urine. And then, a lot of the times when you tried to publish that kind of thing, people are like, "Okay, so what? So you didn't do any intervention. We don't really know what that means." But I like that you took it to the next step and you did sort of a human intervention experimental model. So tell me more about that model and how that worked. Brian Byrd: Right. Well, I'll just mention also that the work that was done in terms of RNA [inaudible 00:27:14] was done in collaboration with Mark Bertini in Italy as well as Dr. [inaudible 00:27:19]. They were fundamental to getting that work done. With respect to the collaboration with Scott Hummel, one of my colleagues here at the University of Michigan, what we did in that setting was to look at whether or not we could identify within these urinary mRNA signals that are in the supernatant in the urine, whether we could identify changes in physiology. That was the question that was of greatest interest scientifically. And for a very practical or blind perspective, the question was could we detect the activation of the receptor that might determine whether or not people should get a certain medication. Of course, we're not saying that that's an established fact yet, but this is sort of concept, that there's something here to explore further. And so, what we found was that a number of genes that are regulated by the mineralocorticoid receptor, including genes encoding the subunits of the amiloride-sensitive epithelial sodium channel that regulates the salt that I was talking about earlier. We found that those genes changed with sodium loading in terms of their abundance in the expected direction. We also found that several of the assays that we made changed ... I'm sorry. That they correlated with the serum aldosterone concentration. So the concentration of the ligan for the receptor whose readout we were looking for. And we also noticed an inverse correlation with urinary sodium excretion, which is what we would expect if we really identified a readout of the mineralocorticoid receptor's activity. So this study supported the idea that we have identified a way to measure this nuclear hormone receptors activity in living humans. Jane Ferguson: Right. Which is really nice. So there's probably a huge amount of extra things you could do with this, some sort of different ways you could look at it. So how did you pick the time point? So, I suppose when you think about it, I mean the genes, they're transcribed and then that takes a little bit of time, and then it takes a little bit of time for that to sort of make its way into the urine and to be excreted. So how did you decide on sort of what time points to use, and do you think you would see the same things or different things [inaudible 00:29:39] if you did repeated sampling or if you looked at different time points? Brian Byrd: That's a fantastic question. So this was a study that had already been completed, and I had mentioned to Scott what we were working on. And he said, "You know, we have these samples from this study and it might be possible for us to collaborate." So, we didn't get to pick the timeframes. Jane Ferguson: Right. Brian Byrd: So, that's a great point. And what I would say is that, as you can imagine, we're very focused on exactly the questions you're asking now. What about sort of signal refinement? What about the chrono-biology of these signals, and how do we understand when we see what in the urine? So, I'm actively pursuing those questions. Jane Ferguson: Right. So, I know as well, there was quite a lot of sort of technical challenges I think to doing this work. Sort of getting to be even able to amplify and get a signal from these RNAs that are really present, sort of pretty low abundance in urine compared to tissues or biofluids that we're used to working with. So tell me maybe a little bit about that process and sort of how much optimization was required to get these essays to work? Brian Byrd: Great question. So, I had known [inaudible 00:30:58] since 2014 when I took a course on isolation of extracellular vesicles in Heidelberg, Germany. And I had talked to him at a meeting in Washington DC, and I had mentioned what we were trying to do. And he said, "You know, if you were trying to do that, you might want to consider preamplification." You know, using something like 15 cycles of preamplification. And he was willing to share that protocol that he had with me, because they were interested in similar issues. So, I was able to use that protocol to evaluate these gene targets in the urine. And so that was immensely helpful. And the other thing that we did was we used locked nucleic acid probes to try to increase the sensitivity and specificity of our assays. Finally, we just tried to use good logic in the design of the assays. So we were concerned that the RNA might be fragmented, so where it was possible to do so within the design constraints that I'll mention in a second, we made multiple assays per gene target just in case this was fragmented. Which makes the analysis a little more complicated, but I think it was probably the right thing to do, given the state of knowledge that we had then. And one of the other things we did was we made sure that the primers either ... Within a primer, there was an intron or between the primers there was an intron, so that if we actually did try to amplify DNA, abundant amounts of DNA, with those primers just to make sure that our theorizing about the inability to amplify things was actually factual. And that turned out that we couldn't amplify anything at 40 cycles with those. So, we spent a lot of time thinking about how not to get fooled, but also to have adequate signal detection. And have included in the supplement quite a bit of information about the technical merits of the assays and showing how close the technical replicates were. They tended to be very, very similar to one another. We didn't see a signal in every urine sample for every participant at both time points, and I think that was interesting to me about that there tended to be a very binary result, so that you'd either see three technical replicants for the QPCR assays, our QPCR assays that were extremely similar to each other, or you would see no CT value detected. [inaudible 00:33:47] That these were valid assessments of very low copy numbers. Jane Ferguson: Right. And that's probably related to up front of what happens to urine right after it's collected and stored, or during that RNA extraction. But it seems like once you've got RNA, then downstream assays were sort of ... They held through, but I guess ... I mean, and you obviously didn't have necessarily a huge amount of control over how these urine samples were collected. So it's kind of nice that you were able to see something even though these were collected possibly in a way that was not optimized for preserving RNAs. But do you think those ... Are there ways that you could make this even sort of more streamlined and better as far from the get go of how you collect the urine, whether you could be extracting stuff right away? Is that anything you sort of looked into of how this could be improved? Brian Byrd: That's really been the focus of the labs work since we completed that project, is sort of understanding how would we do this in a prospective study in the best possible way so that the results are highly repeatable, that we get a CT value in everybody so that we're really ... I mean, as you can imagine, that actually has something to do with the input volume of urine that you use. So if you have too little input volume, then you won't be able to detect the targets that you might be interested in every person. However, if you have more, then you can do more with that. But then you have to think about how you're going to deal with the larger volumes of urine. There are lots of questions that we've been interested in related to extract the RNA and the stability of the RNA. And so we have done some experiments of that type, and we continue to work in that area. And I do think that those questions you're asking are the right questions with respect to next steps. Jane Ferguson: All right. So you looked at sort of specific targets, which I think made a lot of sense. Sort of this proof of principle. But do you think this would work on a transcriptome wide level? I mean, could you look at all the genes, or do you think that's just sort beyond the possibility right now given sort of the RNA fragmentation and how you have to sort of amplify it before being able to detect anything? Brian Byrd: I think it's possible. So the group that had preceded our work with 3300 mils of urine, isolating the vesicles from there, eight have showed that that's something that can be done. The question that's of interest to me is does it actually require such large volumes of urine? And I think the answer to that question is going to be no from what we're overseeing so far. And so, we're thinking along exactly the lines that you are. And certainly some of the feedback we've gotten as we've discussed this project with people is, "Hey, could you look at everything rather than picking targets at [inaudible 00:36:41]." I think there's advantages and disadvantages. I think we chose based on prior knowledge in a way that was rational. But at the same time, it may turn out that there are many things about activation of the mineralocorticoid receptor in humans, especially in the living in-tact human, that don't exactly mirror what's found in rabbits, rats, mice or cells, which are really the systems that have been evaluated the most thoroughly in the past. So I'm very interested in exactly what you're proposing. Jane Ferguson: Yeah. I mean, I think it's exciting because it's obviously relevant for hypertension, but potentially a lot of other conditions, to be able to look at that sort of dynamic change. So I think it's really exciting. It's very cool. Brian Byrd: And I appreciate your asking about this study. We were excited to do this work and very, very excited to see where we can in the future with this. And I agree with the point you were making, that here we've gone from a rather specific application driven question and we've, I think, made some insights that are probably useful outside the application that we had in mind. And it may turn out that the application where this is the most important is not even the one that we considered in the first place at all. And so I'm pleased by that. I'm pleased by the fact that I think in a sense we're working in what Donald Stokes described as pasture's quadrant, which is a sense that the work is driven both by curiosity and by an intent to use the results. Jane Ferguson: Right. Brian Byrd: And so that's really what gets me out of bed in the morning, is working that exact space. So that's what we were glad to have done and continue to do. Jane Ferguson: Yeah. No, I think it's grea.t and I feel like a lot of people will read this paper and be like, "Hey, I have urine stored in the freezer. What can I do with this now?" Brian Byrd: Contact me. Let's talk. We'll see what we can do. But we certainly tried to describe the methods in such a way that people could easily follow in our footsteps if they want to apply these methods. Jane Ferguson: Yeah. Now having read through them, I think that ... Really thorough. I really liked the sort of attention to detail. It was definitely one of those ones where I was like, "Oh yeah. I can see exactly how I could do this if I wanted to. So I think that was great. Brian Byrd: Thank you. Jane Ferguson: So yeah. Congratulations on the paper. Really nice work and thanks so much for talking to me. Brian Byrd: Thank you. It was a delight. Jane Ferguson: That's it from me for September. If you haven't had enough yet, you can access all the papers online and you can choose to digest the papers in video format. Available on our website or the Circulation YouTube channel. Thank you for listening and subscribing. I look forward to bringing you more next month.
Dr. Carolyn Lam: Welcome to Circulation On The Run, your weekly podcast summary and backstage pass to the journal and its editors. I am Dr. Caroline Lam, Associate Editor from the National Heart Center and Duke National University of Singapore. Can we reverse the cardiac effects of sedentary aging? Well if you're curious, you have to read the feature paper in this week's journal, as well as listen to the upcoming discussion of a trial that addresses this issue. All coming right up, after these summaries. Desmond mutations are known to cause skeletal and cardiac muscle disease, and also recently has been described in patients with inherited arrhythmogenic right ventricular cardiomyopathy or dysplasia. In today's first original paper, however, authors identified a novel Desmond mutation in a large Spanish family with inherited left ventricular arrhythmogenic cardiomyopathy or dysplasia, and a high incidence of, at first, cardiac events. First in corresponding author, Dr. Bermudez Jimenez from Granada, Spain, describe for the first time the largest family to date with a single Desmond mutation with a phenotype of left dominant arrhythmogenic dysplasia in the absence of skeletal myopathy symptoms and atrioventricular conduction disorders and supported by strong clinical and functional data. In a series of elegant experiments using explanted cardiac tissues and mesenchymal stem cell derived cardio myocyte from the family members, the author showed that the pathogenic mechanism probably corresponds to alteration in Desmond dimer and oligomer assembly and its connection with membrane proteins within the intercalated discs, thus Desmond mutations should be suspected in patients presenting with a cardiomyopathy characterized by mild left ventricular systolic dysfunction and/or dilatation, fibrosis, ventricular arrhythmias and a family history of sudden death. The next study is the first large scale report examining the incremental risk of surgical aortic root enlargement in patients undergoing aortic valve replacement. First author Dr. Rocha, corresponding author Ouzounian from University of Toronto and their colleagues sought to evaluate the early outcomes of patients undergoing aortic valve replacement with or without surgical aortic root enlargement. Now aortic root enlargement allows for larger prosthesis implantation and maybe an important adjunct to surgical aortic valve replacement in the transcatheter valve in valve era. Among more than 7,000 patients undergoing aortic valve replacement at a single institution from 1990 to 2014, the authors observed no incremental risk in post-operative mortality or adverse events following surgical enlargement of the aortic root as compared to aortic valve replacement alone. They therefore concluded that surgical aortic root enlargement appears to be a safe adjunct to surgical aortic valve replacement in the modern era. The next study suggests that in patients with acute coronary syndrome and an LDL cholesterol above 50 milligrams per deciliters, health care providers should consider adding ezetimibe to statins, particularly in two patient subgroups. First in corresponding author Dr. Giugliano from the TIMI study group at Harvard Medical School in Boston, Massachusetts and his colleague explored outcomes stratified by diabetes in the "improve it" trial where patients with a recent acute coronary syndrome were randomized to ezetimibe versus placebo on top of backgrounds in the statin. They found that patients with diabetes derived significantly greater relative and absolute benefit with the addition of ezetimibe relative to patients without diabetes. This enhanced benefit was driven by reductions in acute ischemic events including myocardial infarction and ischemic stroke in diabetics, while non-diabetic patients who were more than 75 years of age or who had a high risk score also significantly benefited from the addition of Ezetimibe to Simvastatin. These benefits of Ezetimibe were achieved without an increase in safety events compared to placebo. Thus, the two patient subgroups of acute coronary system who are likely to achieve greater benefits with the addition of ezitimibe include: one, patients with diabetes, and two, patients without diabetes who have a high risk score. The final study provides insight into sudden cardiac arrests in the young and the potential contribution of standard cardiovascular risk factors to this risk, even in the young. First author, Dr. Reshmy Jayaraman, corresponding author Dr. Chugh from Cedars-Sinai Medical Center in California and their colleagues, prospectively ascertained 3,775 individuals who suffered sudden cardiac arrest between the ages of 5 and 34 years in the Portland, Oregon Metropolitan area and who were also followed up for 13 years. They found that 5% of cases occurred in young residents between the age of 5 and 34 years. Among the young, there was an unexpectedly high prevalence of classical cardiovascular risk factors, such as obesity, diabetes, hypertension, hyperlipidemia and smoking. In fact, one or more risk factor was observed in 58% of cases, with obesity being the most common. Less than a third had warning symptoms prior to their lethal event and sports activity was a trigger in only 14% of young cases. Thus, standard cardiovascular risk factors, especially obesity, may play a larger role in sudden cardiac arrests in the young than previously recognized. This suggests the potential role of public health approaches that screen for cardiovascular risk factors at earlier ages. And that wraps it up for our summaries, now for our feature discussion. Oh boy, today's featured discussion is gonna make everyone listening fall in love with exercise and seriously get off your chair right now as you listen to this discussion. It's about how exercising may reverse cardiac aging and I am so delighted to have with me none other than the corresponding author, Dr. Ben Levine from the institute of exercise and environmental medicine at Texas Health Presbyterian and UT Southwestern, as well as Dr. Jarett Berry, and he's our dear associate editor from UT Southwestern. Ben, I have been dying to have you on this show, so welcome and please, tell us what you did. Dr. Ben Levine: Thank you very much, it's a pleasure to be here Carolyn, thanks for inviting me to talk about it. As you know, our lab has been particularly interested in the components of aging that are related to senescent versus those that are related to senescence activity. Perhaps the most dramatic reason that we're interested in this, I'm just gonna give you a little bit of background, if you don't mind, comes from one of the most important studies ever done in our field, that was done in Dallas in the mid-1960s. It's called the Dallas Bedrest and Training Study. At that time, my mentors, G Blomqvist, Jerry Mitchell, Bengt Saltin, took five young men, put them to bed for three weeks and then trained them for two months and virtually everything we know about the adaptive capacity of the circulation to exercise starts without study. I was only ten years old, so I really had nothing to do with it, but 1996, 30 years later, we found those same five guys and brought them back to Dallas to study them again. Now, these are the most intensively studied humans probably in the history of the world. 78 pages of circulation in 1968. What we found was quite amazing. We found that not a single one of those five guys was in worse shape 30 years later, than they were after three weeks of bed rest when they were in their 20s. So, three weeks of bed rest was worse for the body's ability to physically work than 30 years of aging. And so, we sort of launched off that in a series of experiments, trying to figure out when in the aging process does the shrinking and stiffening of the heart develop, that is the sine qua non. if you will, of the cardiac aging. So, when does it start? How much exercise do you have to do to prevent that? We did one interesting study where we compared a group of very highly selected seniors, all aged around 70, who were healthy, but did no exercise, compared to a group of elite Masters Athletes. Amazingly, the healthy seniors, their hearts got smaller and it shrunk and they got stiffer and the athletes had hearts that were indistinguishable from healthy 30 year olds. So, a lifelong training at the level of being an elite athlete completely prevented that aging response, which is really interesting scientifically, but not a very good public health measure. So, we then asked how much exercise do you need to do over a lifetime to preserve the compliance, the youthfulness, if you will, of the circulation, and at times, they act like you need to do about 4 or 5 days a week over a lifetime. 2 to 3 days a week didn't do anything. 4 to 5 days a week did almost as much as being an elite competitive athlete. So, now we've got the dose. 4 to 5 days a week. We said, "okay, if we do that, can we reverse cardiac aging once it's occurred?" So, we took our healthy sedentary people and we also looked at a group of HFpEF patients and we trained them for a year, at the right dose, using high intensity exercises. We made them fitter, but we couldn't touch their cardiac or vascular stiffness. Quite disappointing actually. Last thing then, we said "okay, this leads up in to our current study maybe, just maybe, if we pick the right sweet spot in time, when the heart is just beginning to stiffen in that late middle age period and deal the right dose at the right time for a long enough period, we could reverse the effects. And, that's what we did. We took 60 people, healthy, middle aged, 45-64, mean age around 50. We randomly assigned them to two years of exercise training or two years of yoga, balance, flexibility, and we did 2 light heart caths. We measured their cardiac compliance directly invasively and we showed that our 2 year training program, which included high intensity intervals, reversed the effects of decades of sedentary aging. Dr. Carolyn Lam: Wow, Ben, you know, no one tells the story like you and I have to tell you, I've been a fan of your work, citing it since I was 10. Thank you so much for this amazing contribution to the Journal this week. I just know everybody's asking questions like "So, you've given us when to start, you given us the dose, but we want to understand a bit better, what do you mean high intensity, how many minutes and what exactly." Could you give us an idea? Dr. Ben Levine: Sure. There are multiple different ways to go about doing HIIT or High Intensity Interval Training. And there's no magic to intervals. Intervals just allow you to do something for a shorter period of time and harder than you could do for a longer period of time. That is the strategy that athletes use to go faster and stronger and higher, because the body adapts to the load that's placed on it. Interval training, what I like, is based on an old Norwegian ski team workout. It's called the "4x4". What that means is 4 minutes at 95% of your maximum followed by 3 minutes of recovery, active recovery, repeated 4 times. So, basically, you go as hard as you can go for 4 minutes and at the end of those 4 minutes, you should be ready to stop. Typically, your heart rate will drift up towards 95% of maximum or so. Then, at the end of the 3 minutes of recovery, you should be ready to do the next interval. As it turns out, that's extremely effective training stimulus. Not just for healthy people or athletes, for the patients with hypertension and with heart failure. Dr. Carolyn Lam: I noticed that you have to screen over 260 individuals to finally get your 60, so how doable is this and what was the compliance? Dr. Ben Levine: Right. You have to remember that out of those 260 individuals that we screened, the majority of them were excluded up front because they had hypertension or if they were obese or they already had heart disease. So, the first round of screening was making sure we're getting people of the right age and were healthy. And, then another fraction, say 40 of them or so, didn't wanna undergo two light heart catheterizations. And, I get that. We were pretty pleased that somebody volunteered to do it, but you know, it's an intense commitment. People have to be willing to be randomized. So, they couldn't say "Well, I wanna do your study, but only if I get randomized to exercise", that was not acceptable. So, everybody had to be prepared to be randomized to either yoga or the fitness training and the yoga, it makes people feel better, it's relaxing. I think it provided that clinical equipoise and it ensured that even the controlled patients had close contact with our research team. Then, what we had was, on average 88% of the prescribed sessions were followed by our exercisers and a fraction of them, 15 or 20%, actually did 100% of their prescribed sessions over two years, didn't miss a single one. Dr. Carolyn Lam: So, Jarett, have you started doing that yourself now? Dr. J Berry: I tell you, I pried my kids out of bed last summer, to go do 4x4s and get them ready for cross country. I talked all about Ben Levine and told my kids that we were doing what Dr. Levine recommended. That didn't help too much, they found it rather challenging. It was interesting that the VO2 plateaus a little bit at that 10 month mark, when you guys backed off on that additional interval training. Do you think that the plateau is just a limitation of the training effect or do you think that something that has to do with the lower level of interval training at that time? Dr. Ben Levine: You know Jarett, I think that's a fascinating question and it's one of the things that really surprised me. So, Jarett pointing to the fact that at that 10 month mark, we measured VO2 max, we didn't cath them, but we did an Echo, and it showed that from 10 months to 2 years VO2 max didn't increase very much. There was a dramatic increase from baseline to 10 months. It took 3 months at that peak dose. But then, when we dropped one interval and did the same thing every week for 2 years, there wasn't an influence of time. The heart didn't continue to get bigger, the stroke volume didn't continue to enlarge. I think it highlights a critical part, an essential element, to that exercise training and that is, doing the same thing, over and over again doesn't get you fitter. If you wanna get fitter than you are, you have to change things around, you have to increase the load. So, I think that if we had wanted to make them even fitter than they were at 10 months, we'd have had to either kept that second interval or added another one or increase the duration of some of the base training sessions. It's really interesting to me, that they didn't continue to improve simply on the basis of time. That surprised me. Dr. Jarett Berry: Yeah, cause you wonder. You think about, the guidelines suggest moderate intensity exercise, which is obviously much lower intensity than what you're talking about with this interval training, but very little guidance with regard to interval training. Your data here obviously suggests that it's not just getting off the couch and doing something, and not just doing a decent amount, it seems to suggest that the interval training component may be a secret ingredient that might be most helpful, at least for those patients who can tolerate that level of training. Dr. Ben Levine: Yeah, I think that maybe it's the secret sauce, Jarett, but I think, you do have to ask yourself, what is the goal of training and what is your objective outcome? What you want is to reduce cardiovascular mortality. I think we would all agree that you get the biggest bang for your buck by going from sedentary to active. And, the mechanism of that is uncertain, but could relate to autonomic function or clotting or improving stabilization of endothelium or other risk factors, inflammation, who knows, there's a lot of different candidates. So, I think that particularly for people who are at the highest risk for heart failure, either from their family history or other risk factors, like hypertension and diabetes, those are the ones who were likely to get in a special benefit on altering cardiac structure. That's why I think our data is still an important poll. We didn't really know why do you get the biggest bank for your buck with a little training, but if you really wanna prevent heart failure, you gotta do more. In our data that we did partnered with the Cooper Clinic and looked at people who had done the same number of exercise sessions over 25 years. None, 2-3, 4-5 or 6-7, over 25 years, we saw virtually no effect of 2-3 days a week of what we call casual training on anything we could measure, related to cardiac structure. Their vascular stiffness was the same as people who were sedentary, their cardiac stiffness was the same as people who were sedentary. They were a little fitter and perhaps there were other important differences that are related to just improving immortality, but you have to get past that low to moderate dose to have the structural effects on the circulation. Dr. Jarett Berry: These are really great points here, Ben. I want for our listeners to hear you comment a little bit more on the primary outcome and how you guys measured stiffness, because I think in addition to the level of training, it's also the approach and the phenotype that you collected to measure this and I think it would be helpful for you to walk us through that a little bit and how you guys measured stiffness. Dr. Ben Levine: We used an old physiological technique called "Lower Body Negative Pressure". We first let the subject settle down, we measure a variety of cardiovascular variables, cardiac output, and we do an advanced ECHO imaging and some arterial stiffness measures and after about 40-45 minutes or so, we'll measure the pulmonary capillary wedge pressure, that's what we use as an index, and plus ventricular and diastolic pressure. We'll do 3D ECHO volumes and then we unload the heart by doing Lower Body Negative Pressure. We basically seal the subject in a box at the iliac crest and turn on a vacuum cleaner and suck blood into their venous capacitance. It's a very simple way to unload the heart. In contrast to people who do put in conductants or reflectant catheters and occlude the IVC and do pressure volume rudes, we have taken a little bit of a different approach. I do steady state and diastolic pressure volume curves. So that means, we look at the pressure and volume in the heart at baseline at two different unloading levels. So, let's say the baseline ledge is 10. The first level of LBNT of minus 15 will get it down to 6 or 7. The next level of minus 30 gets it down to 2 or 3. And, so we get a nice unloading of the heart and we're able to establish a steady state, which is probably more afunctional than a release of an IVC occlusion. Then, we let go of the suction, everything returns to normal. We repeat our baseline measures and then we give the rapid saline infusion. When I say rapid saline, I mean 15 and 30 mls per kilogram, that's at 200 mls a minute. That's a big volume infusion, but we'll give those doses and we'll raise the ceiling pressure from 10 at baseline to 15 and then 19, 18, 19. So, we get a large physiologic range of the diastolic pressure volume curve, and then we'll fit that to an extremely widely accepted exponential equation, which allows us to calculate the overall stiffness of the heart, the diastolic component, and then we'll do a few other things, we'll measure distensibility , which is the volume at any given pressure and DPDV, the change in pressure for a given volume, which is the hansen float to the exponential curve fitting. Dr. Jarett Berry: Can you comment a little bit about what this means for how this is distinguished perhaps from maybe more conventional non invasive measurements of cardiac stiffness? Dr. Ben Levine: I think the most important thing to realize is that, cardiac compliance is dynamic. It depends on the volume at which you're making that measurement. So, as you unload the heart, any heart, even the stiff heart, it gets more compliant, and as you load the heart, even a compliant heart, it gets stiffer. Part of that is a function of pericardial constraint, as well as myocardial stiffness. The whole idea that there is a measure of diastolic function that you can measure by ECHO that is load independent is frankly an oxymoron, because, diastole is load dependent. I think the ECHO measurements are interesting and useful, depending on what you're trying to find out, because there are many different aspects of feeling and diastolic suction and diastolic stiffness. All of which influence how well the heart feels at rest and during exercise. Dr. Carolyn Lam: I have to ask you one last question. I am so pleased that you included at least 52% women. Were there any differences by sex? Dr. Ben Levine: Of course, Carolyn, it's critical to include women, since they're 50% of the population. We've been very interested in their training responses in men and women at different age groups in many of our other studies. What's interesting is that in premenopausal women, there's a quite clear distinction in how women respond to training. They don't hypertrophy as much, even for the same stimulus, heart beats a heart beat, over a year, there's a much less hypertrophic response to premenopausal women than young men. We didn't see anywhere near that difference in our mostly postmenopausal middle aged men and women. We didn't have enough power to clearly be confident that there was no difference, but when we tried to test that hypothesis, whether there was a different response in men or women, we could not detect a difference. Dr. Carolyn Lam: That is a good thing. So, women out there, you heard it from Dr. Levine. We got to exercise too. High intensity. All the time. Thank you audience, for listening today. Don't forget to tune in again next week.
Jeremy Chataway discusses the surprising effects of simvastatin on patients with secondary progressive multiple sclerosis.
Commentary by Dr. Valentin Fuster
Todd Fraser, MD, speaks with Daniel F. McAuley, MD
Todd Fraser, MD, speaks with Daniel F. McAuley, MD
Alistair Lindsey talks to Christopher Cannon, Havard Clinical Research Institute, about the results of his IMPROVE-IT trial, which examined clinical outcomes of adding ezetimibe to simvastatin. This podcast was recorded at the American Heart Association scientific sessions in Chicago.
Originally Aired September 10, 2014: Simvastatin in Secondary Progressive Multiple Sclerosis and Communicating With Patients About Risk Rebecca and Amol want you to: 1. Recognize that simvastatin reduces the rate of whole brain atrophy in secondary progressive MS, which may be a promising new use for statins. 2. Understand that effective strategies to communicate risk include: Using ...The post 100% Bullish: Simvastatin in MS, Communicating Risk appeared first on Healthy Debate.
Originally Aired September 10, 2014: Simvastatin in Secondary Progressive Multiple Sclerosis and Communicating With Patients About Risk Rebecca and Amol want you to: 1. Recognize that simvastatin reduces the rate of whole brain atrophy in secondary progressive MS, which may be a promising new use for statins. 2. Understand that effective strategies to communicate risk include: Using ... The post 100% Bullish: Simvastatin in MS, Communicating Risk appeared first on Healthy Debate.
This week: Simvastatin in Secondary Progressive Multiple Sclerosis and Communicating With Patients About Risk Rebecca and Amol want you to: 1. Recognize that simvastatin reduces the rate of whole brain atrophy in secondary progressive MS, which may be a promising new use for statins. 2. Understand that effective strategies to communicate risk include: Using visual aids, speaking ... The post 100% Bullish: Simvastatin in MS, Communicating Risk appeared first on Healthy Debate.
Today in FirstWord:
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 14/19
Thu, 26 Jul 2012 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/14749/ https://edoc.ub.uni-muenchen.de/14749/1/Dao_Trong_Mai_Lan.pdf Dao Trong, Mai Lan
Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. As simvastatin exerts protective effects in inflammatory diseases we explored its effects on development of ALI and due to the importance of neutrophils in ALI also on neutrophil effector functions. C57Bl/6 mice were exposed to aerosolized LPS (500 µg/ml) for 30 min. The count of alveolar, interstitial, and intravasal neutrophils were assessed 4 h later by flow cytometry. Lung permeability changes were assessed by FITC-dextran clearance and albumin content in the BAL fluid. In vitro, we analyzed the effect of simvastatin on neutrophil adhesion, degranulation, apoptosis, and formation of reactive oxygen species. To monitor effects of simvastatin on bacterial clearance we performed phagocytosis and bacterial killing studies in vitro as well as sepsis experiments in mice. Simvastatin treatment before and after onset of ALI reduces neutrophil influx into the lung as well as lung permeability indicating the protective role of simvastatin in ALI. Moreover, simvastatin reduces the formation of ROS species and adhesion of neutrophils without affecting apoptosis, bacterial phagocytosis and bacterial clearance. Simvastatin reduces recruitment and activation of neutrophils hereby protecting from LPS-induced ALI. Our results imply a potential role for statins in the management of ALI.
Discussion of the long-term effectiveness and safety of statins in the prevention of heart disease.
Do baseline CRP concentrations influence the effect of statins in reducing cardiovascular risk?
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Beim Multiple Myelom sind die Myelomzellen hauptsächlich im Knochenmark lokalisiert, wo sie akkumulieren und durch ihr verdrägendes Wachstum zur Knochendestruktion und Beeinträchtigung der Hämatopoese führen. Die Wechselwirkung zwischen Myelomzellen und Knochenmarkmicroenvironment ist für die Pathogenese und Pathophysiologie des Multiplen Myeloms von entscheidender Bedeutung. In den letzten Jahren haben sich Hinweise gehäuft, dass durch direkten Zell-Zell-Kontakt zwischen Myelomzellen und Knochenmarkstromazellen die Empfindlichkeit der Myelomzellen gegenüber Zytostatika reduziert wird. Die zelladhäsionsvermittelte Chemoresistenz stellt in der Therapie des Multiplen Myeloms eine große Herausforderung dar. Die Fähigkeit der Bisphosphonate, die osteoklastäre Aktivität zu hemmen, hat sie zu einem festen Bestandteil der Myelomtherapie gemacht. Bisphosphonate und Statine greifen in den Mevalonatsignalweg ein und hemmen diesen an unterschiedlichen Stellen. In der Literatur wird beschrieben, dass in adhärenten, de novo resistenten Zellen die HMG-CoA-Reduktase hoch reguliert wird. Basierend auf diesem Phänomen wurde Simvastatin bezüglich einer potentiellen Antimyelomwirkung getestet. Tatsächlich konnte gezeigt werden, dass Statine antiproliferativ wirken und in Myelomzellen Apoptose induzieren. Darüber hinaus überwinden sie im Kokulturmodell die zelladhäsionsvermittelte Chemoresistenz. Dabei wirken Statine in der Kokultur über eine Hemmung des HMG-CoA-Reduktase/GG-PP/Rho/Rho-Kinase-Signalweges. Obwohl bekannt ist, dass Bisphosphonate mit dem Mevalonatsignalweg interferieren, zeigten sie weder in der Monokultur noch in der Kokultur einen Antimyelomeffekt. Da Dosiserhöhungen im Menschen aufgrund der damit einhergehender Nebenwirkungen nicht möglich sind, wurde in der vorliegenden Arbeit Zoledronsäure in Kombination mit Simvastatin in niedrigen, klinisch einsetzbaren Dosen verabreicht. In dieser Zusammensetzung zeigten sie einen synergistischen proapaoptotischen Effekt sowohl in der Monokultur als auch in der Kokultur. Die erhobenen Daten können in der Therapie des Multiplen Myeloms als Grundlage für eine Kombinationschemotherapie aus Bisphosphonaten und Statinen dienen. Die Blockade von CAM-DR durch eine kombinierte Verabreichung von Bisphosphonaten und Statinen könnte auch bei anderen Tumorentitäten zu besseren Therapieergebnissen führen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Das multiple Myelom ist eine Erkrankung, bei der terminal differenzierte Plasmazellen das Knochenmark infiltrieren, wodurch das typische klinische Bild eines Myelompatienten zustande kommt. In den letzten Jahren haben sich die Hinweise gehäuft, dass die Bindung der Myelomzellen im Knochenmark an Stromazellen die Chemosensitivität der Myelomzellen vermindert und somit zur „de-novo drug resistance" beiträgt. Das primäre Ziel dieser Arbeit war es, ein Zellmodell zu entwerfen, mit welchem die Untersuchung der Interaktionen von Stromazelle und Myelomzelle und damit der zelladhäsionsabhängigen Zytostatikaresistenz (CAM-DR) möglich ist. Darüber hinaus sollte diese Zytostatikaresistenz charakterisiert und mögliche molekulare Therapietargets identifiziert werden, welche eine Verhinderung von CAM-DR ermöglichen. Da das etablierte Kokulturmodell auf einer Kultur mit der Stromazelllinie HS-5 beruhte, wurde diese zuerst bezüglich der Oberflächenmarker und des Apoptoseverhaltens charakterisiert. Es wurde gezeigt, dass sich primäre Stromazellen aus Knochenmarksspiraten und die Stromazelllinie HS-5 zwar in ihrer Chemosensibilität unterscheiden, sie prinzipiell jedoch gleich reagieren. Beide lösen bei einer direkten Kokultur mit Myelomzellen im selben Maße CAMDR in den Myelomzellen aus. Die anschließende Charakterisierung von CAM-DR bewies, dass CAM-DR nicht zelllinienspezifisch und nicht zytostatikaspezifisch ist. HS-5-Zellen verhinderten nicht nur die Entstehung von später sondern auch von früher Apoptose. Es zeigte sich, dass das Ausmaß von CAM-DR maßgeblich von der Dauer der Kokultivierung abhängt. Des Weiteren stellte sich heraus, dass in diesem Zellmodell die von den HS-5-Zellen sezernierten Zytokine keinen Einfluss auf die Apoptoseinduktion hatten. Konsequenterweise wurden die Oberflächenantigene auf den Myelomzellen und den Stromazellen quantifiziert und teilweise deren Alteration nach einer Inkubation mit Zytostatika festgestellt. Sowohl eine Blockade der wichtigsten Integrine VLA-4 und LFA-1 als die Modulation der wichtigsten Signalwege konnte CAM-DR zwar teilweise, aber nicht vollkommen verhindern. Allein Vertreter der Statine, Simvastatin und Lovastatin, konnten CAM-DR drastisch reduzieren. Wie weiterhin gezeigt werden konnte, lag dies nicht an einer verminderten Expression von Oberflächenintegrinen, einer verminderten Zytokinsekretion der Stromazellen oder einer verstärkten Deadhäsion der Myelomzellen von den Stromazellen, sondern an der Hemmung der Geranylgeraniolpyrophosphatsynthese. Wir wiesen nach, daß Statine in der Kokultur über die Hemmung des HMG-CoA-Reduktase/GG-PP/Rho/Rho-kinase-Signalwegs wirken. Dies wurde in weiteren Experimenten, in denen selektiv die Geranylgeranioltransferase mittels GGTI-298 und die Rho-Kinase mit Y-27632 gehemmt wurden, bestätigt. Die Ergebnisse der vorliegenden Arbeit können als Grundlage für einen potentiellen Einsatz von Statinen in der Therapie des multiplen Myeloms dienen, denn bezüglich des dargestellten Signalwegs wirken die Statine bereits im subtoxischen Bereich. Die weitere Erforschung von CAM-DR und deren assoziierte Signalwege bei anderen Tumorentitäten sowie die Evaluation der klinischen Relevanz der Gabe von Statinen zur Blockade von CAM-DR ergeben sich als wichtige nächste Schritte als Konsequenz der vorliegenden Arbeit.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 02/19
Sowohl für die Inhibierung der Apoptose zur Plaquestabilisierung, wie auch für eine selektive Induktion von Apoptose in Zellen der Neointima zur Restenose-prävention ist ein besseres Verständnis der Apoptoseregulation in glatten Gefäßmuskelzellen erforderlich. In dieser Arbeit wurden glatte Gefäßmuskelzellen aus Media und Neointima der Ratte im Hinblick auf ihre Empfindlichkeit auf Statinbehandlung untersucht. Diese Zellen repräsentieren ein gut charakterisiertes und breit verwendetes Modell. Die Ergebnisse basieren auf Versuchen mit Zellkulturen und können als Grundlage für Versuche mit menschlichen Zellen und/oder weitere Tierexperimente betrachtet werden. Man kann Folgendes zusammenfassen: A). Statine induzieren in vitro Apoptose sowohl in Media als auch in Neointima glatter Gefäßmuskelzellen. Diesen Effekt beobachtet man nur bei den lipophilen Statinen Lovastatin, Simvastatin und Fluvastatin. Das hydrophile Pravastatin zeigt keinen Effekt. Die Apoptoseinduktion in glatten Gefäßmuskelzellen aus der Media war gering bei serumfreien Bedingungen. B). Die Neointima Zellen sind im Vergleich zu den Media Zellen sowohl bei serumhaltigen, als auch unter serumfreien Bedingungen deutlich empfindlicher auf Apoptoseinduktion durch Statine. C). Eine mögliche Erklärung für die beobachteten Unterschiede könnte in der niedrigeren Expression des antiapoptotischen Proteins cIAP-1 in Neointima Zellen liegen. Dank der Ergebnisse dieser Versuche könnten neue effektive Strategien zur Prävention der Restenose nach Ballonangioplastie entwickelt werden, z.B. durch die lokale Anwendung lipophiler Statine mittels entsprechender Stentbeschich-tung.