POPULARITY
Lange war der Boden der Ozeane in weiten Teilen unerforscht: Forscherinnen und Forscher glaubten an eine flache und wenig interessante Wüste tief unter dem Meer, während Geologen sich komplett auf die Gesteine an Land konzentrierten. Denn die Kontinente galten den meisten ohnehin als unbeweglich. Das änderte sich erst in den 1950er Jahren, als sich Reihe geophysikalischer Messmethoden durchsetzte. Echoortung mittels Sonar und seismische Messungen erlaubten eine Abtastung des Meeresbodens und der Gesteine darunter. In dieser Zeit begann die US-Geologin und Kartografin Marie Tharp am Lamont-Doherty Earth Observatory in New York City, die gewaltigen Datenberge der neuen Messgeräte auszuwerten. Ihre Tätigkeit war trotz ihrer Qualifikation die einer Assistentin. Doch Tharp schuf nicht nur die erste Karte des Atlantikbodens; sie entdeckte dabei ein 65.000 Kilometer langes Grabenbruchsystem, das den gesamten Planeten umspannt. Tharp gab mit dieser gewaltigen Entdeckung den Anstoß zur Entwicklung der modernen Plattentektonik. Karl zeichnet in dieser Podcast-Folge das Wirken von Marie Tharp und ihrer Kollegen in Lamont nach, die zunächst gewaltige Widerstände unter den Geologen hervorrief. Als sich wenige Jahre später die Plattentektonik als akzeptierte Hypothese durchsetzte, geriet Maries Rolle in Vergessenheit.
Prof. Beate Gütschow. Künstlerin, Berlin. Zitate aus dem Podcast: »Mich interessiert der Blick auf das Medium selbst.« »Ich beschäftige mich seit Jahren mit der Photogrammetrie.« »Bei darktaxa diskutieren wir immer wieder, ob nicht alles was wie Fotografie aussieht auch Fotografie ist.« »Muss eine Abtastung der Wirklichkeit stattgefunden haben, damit es Fotografie ist?« »Heute gibt es viele Hybride Formen der Fotografie.« »Die Algorithmen herrschen heute über die Bilder.« »Wir verstehen die Welt nicht, wenn wir die dahinter liegende Technik nicht verstehen.« Beate Gütschow wurde 1970 in Mainz geboren und studierte an der Hoschschule für bildende Künste in Hamburg und an der Kunsthochschule Oslo. Ihre Lehrer waren unter anderem Bernhard Blume und Wolfgang Tilmans. Sie lehrte als Gastprofessorin von 2009 bis 2010 an der Hochschule für Grafik und Buchkunst in Leipzig. Seit 2011 ist sie Professorin für Künstlerische Fotografie an der Kunsthochschule für Medien Köln. https://www.khm.de/lehrende/id.20771.prof-beate-gutschow/ https://de.wikipedia.org/wiki/Beate_G%C3%BCtschow https://beateguetschow.de/ https://www.instagram.com/beateguetschow/ http://www.darktaxa-project.net/about/ Episoden-Cover-Gestaltung: Andy Scholz Episoden-Cover-Foto: Anke Illing Idee, Produktion, Redaktion, Moderation: Andy Scholz http://fotografieneudenken.de/ https://www.instagram.com/fotografieneudenken/ Der Podcast ist eine Produktion von STUDIO ANDY SCHOLZ 2021. Andy Scholz wurde 1971 in Varel am Jadebusen geboren. Er studierte Philosophie und Medienwissenschaften in Düsseldorf, Kunst und Design an der HBK Braunschweig und Fotografie/Fototheorie in Essen an der Folkwang Universität der Künste. Seit 2005 ist er freier Künstler, Autor sowie künstlerischer Leiter und Kurator vom FESTIVAL FOTOGRAFISCHER BILDER, das er gemeinsam mit Martin Rosner 2016 in Regensburg gründete. Seit 2012 unterrichtet er an verschiedenen Instituten, u.a. Universität Regensburg, Fachhochschule Würzburg, North Dakota State University in Fargo (USA), Philipps-Universität Marburg, Ruhr Universität Bochum. Im ersten Lockdown, im Juni 2020, begann er mit dem Podcast. Er lebt und arbeitet in Essen. https://festival-fotografischer-bilder.de/ http://fotografieneudenken.de/ https://www.instagram.com/fotografieneudenken/ http://andyscholz.com/ http://photography-now.com/exhibition/147186
!ACHTUNG KEINE WERBUNG! Takashi Miikes Ichi the Killer ist nichts für schwache Nerven und lässt sich dementsprechend auch schwer empfehlen. Deshalb können und wollen wir Ichi hier auch gar nicht bewerben. Vielmehr soll die Folge, die ich erneut fürs Kompendium des Unbehagens mit Michael aufgenommen habe, eine sorgsame Abtastung eines immer noch kontrovers diskutierten Films, die mit wissenschaftlichem Anspruch so viele Punkte wie nur möglich kritisch beleuchtet. Wer unter diesen Voraussetzungen noch Interesse hat, der Folge zu lauschen: Bittesehr! Folge direkt herunterladen
Im Rahmen des ersten Alumitreffens im neu renovierten Mathematikgebäude gibt uns unser Alumnus Markus Even einen Einblick in seine Arbeit als Mathematiker am Fraunhofer IOSB, dem Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung in Ettlingen in der Arbeitsgruppe zur Analyse und Visualisierung von SAR-Bilddaten. Er befasst sich mit der Entwicklung von Algorithmen für die Fernerkundung, genauer gesagt für die Deformationsanalyse mit Hilfe von SAR-Interferometrie (InSAR). Deformation bezieht sich hier auf Bewegungen der Erdkruste oder auf ihr befindlicher Strukturen, z.B. von Bauwerken. Hinter dem Stichwort SAR-Interferometrie verbirgt sich eine Vielfalt von Verfahren der Fernerkundung, die auf Synthetic Aperture Radar, auf Deutsch Radar mit synthetischer Apertur, beruhen, und die die Fähigkeit der Sensorik ein kohärentes Signal zu verarbeiten zur Erzeugung sogenannter Interferogramme nutzen. Für SAR ist es wesentlich, dass der Sensor bewegt wird. Zu diesem Zweck ist er auf einen Satelliten, ein Flugzeug oder auch auf einem auf Schienen laufenden Schlitten montiert. Für die Mehrzahl der Anwendungen wird er entlang einer näherungsweise geradlinigen Bahn bewegt und sendet in festen Zeitabständen elektromagnetische Signale im Mikrowellenbereich aus, deren Returns er, unterteilt in sehr kurze Zeitintervalle, aufzeichnet. Dabei "blickt" er schräg nach unten, um nicht systematisch von zwei verschiedenen Orten der Erdoberfläche rückkehrende Signale zu vermischen. Herauszuheben ist, dass er unabhängig von der Tageszeit- er beleuchtet die Szene selbst- und weitgehend unabhängig von den Wetterverhältnissen- die Atmosphäre verzögert das Signal, ist aber für diese Wellenlängen (ca. 3cm-85cm) bis auf seltene Ausnahmen durchlässig dafür- Aufnahmen machen kann. Dies ist ein Vorzug gegenüber Sensoren, die im optischen oder infraroten Teil des Spektrums arbeiten, und nachts oder bei Bewölkung nicht die gewünschten Informationen liefern können. Neben der Magnitude des rückgestreuten Signals zeichnet der SAR-Sensor auch dessen Phasenverschiebung gegenüber einem Referenzoszillator auf, die die Grundlage für die Interferometrie darstellt und viele Anwendungsmöglichkeiten bietet. Aus dem aufgezeichneten Signal wird das sogenannte fokusierte Bild berechnet. (Mathematisch gesehen handelt es sich bei dieser Aufgabe um ein inverses Problem.) Die Achsen dieses komplexwertigen Bildes entsprechen eine der Position des Satelliten auf seiner Bahn und die andere der Laufzeit des Signals. Der Zahlenwert eines Pixels kann vereinfacht als Mittel der aufgezeichneten Rückstreuung aus dem Volumen angesehen werden, dass durch das jeweilige Paar aus Bahninterval und Laufzeitinterval definiert ist. Dies ist der Kern von SAR: Die Radarkeule erfasst eine größere Fläche auf dem Boden, so dass das aufgezeichnete Signal aus der Überlagerung aller zurückkehrenden Wellen besteht. Diese Überlagerung wird durch die Fokusierung rückgängig gemacht. Dazu benutzt man, dass ein Auflösungselement am Boden zu allen Returns beiträgt, solange es von der Radarkeule erfasst wird und dabei eine bekannte Entfernungskurve durchläuft.Die Magnitude des sich so ergebenden Bildes erinnert bei hochaufgelösten Aufnahmen auf den ersten Blick an eine Schwarzweißphotographie. Betrachtet man sie jedoch genauer, so stellt man schnell Unterschiede fest. Erhabene Objekte kippen zum Sensor, da die höhergelegenen Punkte näher zu ihm liegen. Hohe Werte der Magnitude, also hohe Rückstreuung, sind in der Regel mit günstigen geometrischen Konstellationen verbunden: Eine ebene Fläche muss dazu beispielsweise senkrecht zum einfallenden Signal ausgerichtet sein, was selten der Fall ist. Geht man an die Grenze des aktuell Möglichen und betrachtet ein Bild einer städtischen Umgebung eines luftgetragenen Sensors mit wenigen Zentimetern Auflösung, so scheint es beinahe in punktförmige Streuer zu zerfallen. Diese werden durch dihedrale (Pfosten) und- häufiger- trihedrale Strukturen erzeugt. Trihedrale Strukturen reflektieren das einfallende Signal parallel zur Einfallsrichtung (man kennt das von den an Fahrzeugen verwendeten, Katzenaugen genannten Reflektoren). Sehr niedrige Rückstreuung ist meist darin begründet, dass kein Signal mit der entsprechenden Laufzeit zum Sensor zurückkehrt, sei es weil keine Streuer erreicht werden (Schatten) oder das Signal auf glatten Flächen vom Satelliten weggespiegelt wird. Für Wellenlängen von einigen Zentimetern sind z.B. asphaltierte oder gepflasterte Flächen glatt, bei Windstille ist es auch Wasser. Daneben gibt es auch kompliziertere Streumechanismen, die zu Magnituden mittlerer Höhe führen, etwa Volumenstreuung in Vegetation, Schnee und Sand, verteilte Streuung an Flächen mit vielen kleinen, homogen verteilten Objekten (z.B. Kiesflächen oder andere Flächen mit spärlicher Vegetation) oder einer gewissen Rauigkeit. Außer diesen gibt es noch viele weitere Möglichkeiten, wie Mehrfachreflektionen oder das Zusammenfallen in verschiedenen Höhen positionierter Streuer in einer Entfernungszelle.Die für die SAR-Interferometrie wesentliche Information aber ist die Phase. Sie kann allerdings nur genutzt werden, wenn zwei oder mehr Aufnahmen aus annähernd der gleichen Position vorliegen. Die grundlegende Idee dabei ist die Betrachtung von Doppeldifferenzen der Phase zweier Pixel zweier Aufnahmezeitpunkte. Um sie zu verstehen nehmen wir zunächst an, dass sich in beiden Auflösungszellen je ein dominanter, punktförmiger Streuer befindet, was so gemeint ist, dass die Phase einer Laufzeit entspricht. Da die Subpixelpositionen unbekannt sind und die Größe der Auflösungszelle um Vieles größer als die Wellenlänge ist, ist die Phasendifferenz zweier Pixel eines einzelnen Bildes nicht verwertbar. In der Doppeldifferenz heben sich die unbekannten Subpixelpositionen allerdings heraus. Die Doppeldifferenz ist in dieser idealisierten Situation die Summe dreier Anteile: des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien, des Laufzeitunterschiedes auf Grund einer relativen Positionsänderung der Streuer während der zwischen den Aufnahmen verstrichenen Zeit und des Laufzeitunterschiedes auf Grund der räumlichen und zeitlichen Variation der atmosphärischen Verzögerung. Diese drei Anteile können jeder für sich nützliche Information darstellen. Der Erste wird zur Gewinnung von Höhenmodellen genutzt, der Zweite zur Detektion von Deformationen der Erdoberfläche und der Dritte, obwohl meist als Störterm angesehen, kann bei der Bestimmung der Verteilung von Wasserdampf in der Atmosphäre genutzt werden. Es stellt sich aber die Frage, wie man diese Terme separiert, zumal noch die Mehrdeutigkeit aufgelöst werden muss, die darin liegt, dass die Phase nur bis auf ganzzahlige Vielfache von zwei Pi bekannt ist.Weitere Fragen ergeben sich, da in realen Daten diese Annahmen für viele Pixel nicht erfüllt sind. Stellt man sich beispielsweise eine Auflösungszelle mit mehreren oder vielen kleineren Streuern vor (z.B. mit Geröll), so ändert sich die Phase der überlagerten Returns mit dem Einfallswinkel des Signals. Sie ändert sich auch, wenn manche der Streuer bewegt wurden oder die beiden Aufnahmen nicht ausreichend genau zur Deckung gebracht wurden. Dies führt dazu, dass die Phase sich um einen schlecht quantifizierbaren Betrag ändert. Man spricht dann von Dekorrelation. Eventuell besteht nach Änderung der physischen Gegebenheiten in der Auflösungszelle keine Beziehung mehr zwischen den Phasenwerten eines Pixels. Dies ist etwa der Fall, wenn ein dominanter Streuer hinzu kommt oder nicht mehr anwesend ist, ein Gelände überschwemmt wird oder trocken fällt. Es stellt sich also die Frage, welche Pixel überhaupt Information tragen, bzw. wie ihre Qualität ist und wie sie extrahiert werden kann.Die Geschichte der SAR-Interferometrie begann nach dem Start des ESA-Satelliten ERS 1 im Jahr 1991 mit einfachen differentiellen Interferogrammen. Das berühmteste ist sicher das vom Landers-Erdbeben 1992 in Kalifornien. Zum ersten Mal in der Geschichte der Wissenschaft war es möglich, das Deformationsfeld eines Erdbebens flächig zu messen, wenn auch nur die Komponente in Sichtlinie des Sensors. Statt Werte hunderter in der Region installierter Messstationen stellte das Interferogramm ein Bild des Erdbebens mit Millionen Datenpunkten dar. Diese Fähigkeit, großflächig Deformationen der Erdoberfläche aufzuzeichnen, besitzt nur die SAR-Interferometrie! Allerdings ist zu bemerken, dass dieses Resultat seine Entstehung auch günstigen Umständen verdankt. Landers liegt in der Mojave-Wüste, so dass die Variation der atmosphärischen Verzögerung und die Dekorrelation vernachlässigbar waren. Dank der Verfügbarkeit eines guten Höhenmodells konnte der Anteil des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien eliminiert werden (man spricht dann von einem differentiellen Interferogramm). Ein weiterer Meilenstein war die Shuttle Radar Topography Mission des Space Shuttle Endeavour im Februar 2000, während der die Daten für ein Höhenmodell der gesamten Landmasse zwischen 54 Grad südlicher Breite und 60 Grad nördlicher Breite aufgezeichnet wurden. Für diesen Zweck wurde die Endeavour mit zwei SAR-Antennen ausgestattet, eine am Rumpf, eine an einem 60 Meter langen Ausleger. Dank zeitgleicher Aufnahmen waren die Phasenanteile auf Grund Deformation und atmosphärischer Verzögerung vernachlässigbar. Dekorrelation auf Grund von Änderungen der physischen Gegebenheiten spielt hier auch keine Rolle. Dem Wunsch nach einem weltweiten, dazu deutlich höher aufgelösten Höhenmodell kommt seit 2010 die TanDEM-X-Mission des DLR nach, bei der die beiden SAR-Antennen von zwei Satelliten im Formationsflug getragen werden. Auch in der Algorithmik gab es entscheidende Fortschritte. Einer der fruchtbarsten war die Erfindung von Permanent Scatterer Interferometric SAR (PSInSAR) um das Jahr 2000, das durch die Verwendung einer längeren Zeitreihe von differentiellen Interferogrammen und einiger neuer Ideen das Problem der Separierung der im vorangehenden Abschnitt genannten Terme löste. Der Ausgangspunkt hierfür war die Entdeckung, dass häufig eine größere Anzahl über lange Zeiträume phasenstabile Streuer, die sogenannten Permanent Scatterer (auch Persistent Scatterer oder PS), gefunden werden können, die man sich vereinfacht als Pixel vorstellen darf, deren Auflösungszelle einen dominanten, punktförmigen, über die Zeitreihe unveränderten Streuer enthält. Auf diese wird nun die Auswertung beschränkt, die vereinfacht folgende Schritte durchläuft: Definition eines Graphen mit den PS als Knoten und Paaren benachbarter PS als Kanten; Schätzung einer Modellphase für Deformation und Höhenmodellfehler an Hand der Doppeldifferenzen aller verwendeten differentiellen Interferogramme für alle Kanten; Entrollen von Originalphase minus Modellphase, d.h. Auflösen der Mehrdeutigkeiten; räumlich-zeitliche Filterung, um die Variation der atmosphärischen Verzögerung zu eliminieren. Als Produkt ergeben sich für jeden PS seine Bewegung in Sichtlinie des Sensors und eine Korrektur seiner Höhenlage relativ zum für die Erzeugung der differentiellen Interferogramme verwendeten Höhenmodell. Seither wurden diese Grundideen modifiziert und verfeinert. Vor allem müssen die Berücksichtigung verteilter Streuer (auch Distributed Scatterer oder DS) für die Deformationsanalyse erwähnt werden, was die Informationsdichte vor allem in ariden Gebieten drastisch erhöhen kann, sowie die SAR-Tomographie, die eine Analyse auch dann erlaubt, wenn zwei oder drei vergleichbar starke Streuer in einer Auflösungszelle vorhanden sind (z.B. wenn ein Streuer am Boden, eine Fensterniche und eine Dachstruktur den gleichen Abstand zum Sensor haben). Die SAR-Interferometrie, insbesondere die Deformationsanalyse, verwendet vor allem mathematische Methoden aus den Bereichen Stochastik, Signalverarbeitung, Optimierungstheorie und Numerik. Besondere Herausforderungen ergeben sich daraus, dass die Vielfalt natürlicher Phänomene sich nur bedingt durch einfache statistische Modelle beschreiben lässt und aus dem Umstand, dass die Datensätze in der Regel sehr groß sind (ein Stapel von 30 Aufnahmen mit komplexwertigen 600 Megapixeln ist durchaus typisch). Es treten lineare Gleichungssysteme mit mehreren Zehntausend Unbekannten auf, die robust gelöst sein wollen. Für die Auflösung der Mehrdeutigkeiten verwenden die fortgeschrittensten Algorithmen ganzzahlige Optimierung. Wavelet-basierte Filterverfahren werden genutzt, um die atmosphärische Verzögerung vom Nutzsignal zu trennen. Im Zusammenhang mit der Schätzung der Variation der atmosphärischen Verzögerung werden geostatistische Verfahren wie Kriging eingesetzt. Statistische Tests werden bei der Auswahl der DS, sowie zur Detektion schlechter Pixel eingesetzt. Bei der Prozessierung der DS spielen Schätzer der Kovarianzmatrix eine prominente Rolle. Die SAR-Tomographie nutzt Compressive Sensing und viele weitere Verfahren. Zusammenfassend lässt sich sagen, dass die SAR-Interferometrie auch aus Perspektive eines Mathematikers ein reichhaltiges und spannendes Arbeitsgebiet ist. Eine wichtige Anwendung ist die Deformationsanalyse durch die InSAR-Methode: Die SAR-Interferometrie zeichnet sich vor allen anderen Techniken dadurch aus, dass sie bei geeignetem Gelände sehr großflächige Phänomene mit sehr hoher Informationsdichte abbilden kann. Allerdings liefert sie relative Messungen, so dass in der Regel eine Kombination mit Nivellement oder hochgenauen GPS-Messungen verwendet wird. Ihre Genauigkeit hängt neben der Qualität der Daten von der Wellenlänge ab und zeigt bei 3cm Wellenlänge meist nur wenige Millimeter je Jahr Standardabweichung. Damit können selbst sehr feine Bewegungen, wie z.B. die Hebung des Oberrheingrabens (ca. 2mm/y), nachgewiesen werden. Allerdings können wegen der Mehrdeutigkeit der Phase Bewegungen auch zu stark sein, um noch mit PSInSAR auswertbar zu sein. In diesem Fall können längere Wellenlängen, höhere zeitliche Abtastung oder Korrelationsverfahren helfen. Trotz der diskutierten Einschränkungen lässt sich die Deformationsanalyse mit InSAR in vielen Zusammenhängen nutzensreich einsetzen, denn auch die Ursachen für Deformationen der Erdoberfläche sind vielfältig. Neben geologischen und anderen natürlichen Phänomenen werden sie von Bergbau, Förderung von Wasser, Erdgas, Erdöl, durch Geothermiebohrungen, Tunnelbau oder andere Bautätigkeiten ausgelöst. Meist steht bei den Anwendungen die Einschätzung von Risiken im Fokus. Erdbeben, Vulkanismus, aber auch Schäden an kritischer Infrastruktur, wie Deichen, Staudämmen oder Kernkraftwerken können katastrophale Folgen haben. Ein weiteres wichtiges Thema ist die Entdeckung oder Beobachtung von Erdbewegungen, die sich potentiell zu einem Erdrutsch entwickeln könnten. Allein in den Alpen gibt es tausende Bergflanken, wo sich größere Bereiche in langsamer Bewegung befinden und in Leben oder Infrastruktur gefährdende Hangrutsche münden könnten. Auf Grund der zunehmenden Erderwärmung nimmt diese Bedrohung überall dort zu, wo Permafrost zu tauen beginnt, der bisher den Boden stabilisierte. InSAR wird bei der Erstellung von Risikokarten genutzt, die der Beurteilung der Gefährdungslage und der Entscheidung über Gegenmaßnahmen dienen. In vielen Regionen der Erde werden Deformationen der Erdoberfläche durch veränderte Grundwasserstände verursacht. Nimmt das Grundwasser ab, etwa wegen Entnahme zur Bewässerung oder industriellen Verwendung, so senkt sich die Erdoberfläche. Nimmt das Grundwasser während regenreicher Zeiten zu, so hebt sich die Erdoberfläche. Das Monitoring mit InSAR ist hier aus mehreren Gründen interessant. Bewegungen der Erdoberfläche können Schäden an Gebäuden oder anderen Strukturen verursachen (Bsp. Mexico City). Übermäßige Wasserentnahme kann zu irreversibler Verdichtung der wasserführenden Schichten führen, was Konsequenzen für die zukünftige Verfügbarkeit der lebenswichtigen Flüssigkeit hat. Bei Knappheit muss die Entnahme reguliert und überwacht werden (Bsp. Central Valley, Kalifornien). Von besonderer Bedeutung sind durch geologische Phänomene wie Vulkanismus oder tektonische Bewegungen verursachte Deformationen der Erdoberfläche. Die von SAR-Satelliten gewonnenen Daten werden zur Einschätzung von Risiken benutzt, auch wenn eine sichere, frühzeitige und zeitgenaue Vorhersage von Erdbeben oder Vulkanausbrüchen mit den heutigen Methoden nicht möglich ist. Sie sind aber die Grundlage für eine ausgedehnte Forschungsaktivität, die unser Verständnis der Vorgänge in der Erdkruste stetig wachsen lässt und immer genauere Vorhersagen erlaubt. Dies ist in erster Linie den SAR-Satelliten der ESA (ERS-1, ERS-2, Envisat und aktuell Sentinel-1A) zu verdanken, die seit 1991 mit lediglich einer Lücke von zwei Jahren (2012-2014) kontinuierlich die gesamte Erde aufnehmen. Die Idee dabei ist, dass so in festem zeitlichen Rhythmus (bei ERS alle 35 Tage) jeder Punkt der Erde aufgenommen wird. Dadurch ist ein großes Archiv entstanden, das es nach einem geologischen Ereignis ermöglicht, dieses mit den Methoden der SAR-Interferometrie zu untersuchen, da die Vorgeschichte verfügbar ist. Eine Entwicklung der letzten Jahre ist die Nutzung bei der Erschließung von Erdgas und Erdöl. Die mit InSAR sichtbar gemachten Deformationen erlauben es, neue Einsicht in die Struktur der Lagerstätten zu erhalten, geomechanische Modelle zu kalibrieren und letztlich die Rohstoffe Dank optimierter Positionierung von Bohrlöchern effektiver und kostengünstiger zu fördern. Wer InSAR noch besser verstehen will, der findet in den InSAR Guidlines der ESA die Grundlagen sehr gut erklärt. Einen etwas breiteren Überblick über Anwendungsmöglichkeiten kann man sich auf der Homepage von TRE verschaffen, einem Unternehmen, das von den Schöpfern von PSInSAR gegründet wurde und im Bereich InSAR-Auswertungen nach wie vor führend ist. Die Wettbewerber ADS und e-GEOS bieten außer InSAR weitere Anwendungen von SAR-Daten. Aus wissenschaftlich/politischer Perspektive kann man sich in der Broschüre der DLR über Themenfelder der Erdbeobachtung informieren. Zu dem speziellen Thema der Erdbewegung auf Grund Absenkung des Grundwasserspiegels in den USA gibt es weitere Informationen. Literatur und weiterführende Informationen A. Ferretti, A. Monti-Guarnieri, C. Prati, F. Rocca, D. Massonnet: InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, TM-19, ESA Publications, 2007. M. Fleischmann, D. Gonzalez (eds): Erdbeobachtung – Unseren Planeten erkunden, vermessen und verstehen, Deutsches Zentrum für Luft- und Raumfahrt e.V., 2013. Land Subsidence, U.S. Geological Survey. M. Even, A. Schunert, K. Schulz, U. Soergel: Atmospheric phase screen-estimation for PSInSAR applied to TerraSAR-X high resolution spotlight-data, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2010. M. Even, A. Schunert, K. Schulz, U. Soergel: Variograms for atmospheric phase screen estimation from TerraSAR-X high resolution spotlight data, SPIE Proceedings Vol. 7829, SAR Image Analysis, Modeling, and Techniques X, 2010. M. Even: Advanced InSAR processing in the footsteps of SqueeSAR Podcast: Raumzeit RZ037: TanDEM-X Podcast: Modellansatz Modell010: Positionsbestimmung Podcast: Modellansatz Modell012: Erdbeben und Optimale Versuchsplanung Podcast: Modellansatz Modell015: Lawinen
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Transiente Strukturen spielen eine Schlüsselrolle für das Verständnis molekularer Reaktionen. Lasergetriebene Plasma-Röntgenquellen bieten die Möglichkeit, die Dynamik solcher Strukturen mit einer Zeitauflösung im Sub-Pikosekundenbereich durch Anlagen im Maßstab eines normalen Universität-Laserlabors zu verfolgen. In dieser Arbeit wird Aufbau, Charakterisierung und Optimierung einer solchen Röntgenquelle mit einer Photonenenergie von 8 keV, ihre Integration in einen Anrege-Abtast-Aufbau und erste Experimente beschrieben. Die Anlage wurde speziell für Experimente an molekularen Kristallen entworfen, die eine möglichst hohe Anzahl an Röntgenphotonen pro Impuls erfordern und für einen unterbrechungsfreien Betrieb von bis zu acht Stunden bei 10 Hz ausgelegt. Polarisation, Einfallswinkel, Chirp und Bündeldurchmesser der Laserimpulse, welche die Röntgenstrahlung erzeugen, wurden optimiert. So können bis zu 3e10 Röntgenphotonen pro Sterad und Laserimpuls mit einem Rauschen der Anzahl der Röntgenphotonen von ca. 5 Prozent produziert werden. Dazu wurde auch eine neue Methode entwickelt, um die Optiken der Röntgenerzeugung vor Debris zu schützen. Für die Dauer der Röntgenimpulse lässt sich aus den Anrege-Abtast-Experimenten eine Obergrenze von wenigen Pikosekunden festlegen. Für die Anrege-Abtast-Experimente mit Anregung im sichtbaren Spektralbereich und Abtastung im harten Röntgenbereich wurde ein Referenzierungsverfahren entwickelt, das bei einer Messzeit von etwa zehn Minuten pro Datenpunkt das Rauschen auf weniger als 0,2 Prozent reduziert. Es basiert auf hoch-orientiertem pyrolytischen Graphit (HOPG) als Referenzprobe. Eine Bestimmung des zeitlichen Nullpunkts dieser Experimente konnte mit transienter Röntgenbeugung an Gallium-Arsenid für verschiedene Anregungswellenlängen im sichtbaren Spektralbereich erreicht werden. Erste Testmessungen an 4-(Diisopropylamino)-benzonitril (DIABN) haben die Eignung der Anlage für Messungen an Molekülkristallen bewiesen, zeigen aber auch, dass die Photostabilität der Proben noch die Anwendbarkeit begrenzt. In einem weiteren Experiment wurde das Verhalten von Gallium-Arsenid nach optischer Anregung untersucht. Dabei wurde durch einen ultrakurzen Laserimpuls mit 800 nm Wellenlänge eine Schockwelle induziert, die lokal das Gitter des Halbleiters verändert. Mittels transienter Röntgenbeugungsexperimente konnten Aufbau und Bewegung dieser Schockwelle über einen großen Zeitbereich von 3 ns mit einer Auflösung im Pikosekundenbereich verfolgt werden. Für den Aufbau der Schockwelle konnte eine charakteristische Zeitkonstante von 47 ps gefunden werden. Die Bewegung der Schockwelle ins Innere des Halbleiters aus dem durch Röntgenbeugung erfassten Volumen erfolgte mit einer Zeitkonstante von 0,61 ns in guter Übereinstimmung mit theoretischen Abschätzungen. Bei einer Anregungswellenlänge von 400 nm wurde der Anstieg beschleunigt, während die Abklingzeitkonstante unverändert blieb.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
In dieser Arbeit wurde die Verschleißfestigkeit von einem neu auf dem Markt erhältlichen, modifiziertem Glasionomerzement Chemfil Rock von der Firma Dentsply im Vergleich zu bereits in der Praxis bewährten Glasionomerzementen untersucht. Des Weiteren wurde in dieser Arbeit getestet, ob sich die Verschleißfestigkeit von Glasionomerzementen durch das Auftragen von Oberflächenschutzlacken, sog. Coatings, erhöhen lässt und ob Coatings die Verschleißfestigkeit durch eine Verbesserung der Maturation der Glasionomerzemente oder durch einen erhöhten Schutz gegenüber Abrasion steigern. Da das Coating während der Demastikation zügig von der Oberfläche entfernt wird, wurde in dieser Studie neben der antiabrasiven Wirkung des Coatings auch der Einfluß des Coatings auf den darunterliegenden Zement untersucht, nachdem dieses von der Oberfläche entfernt worden war. Hierfür wurden zwei Coatings verwendet: G- Coat-Plus von Gc Corporation und Ketac Glaze von der Firma 3M Espe. Die Verschleißprüfung der Materialproben wurde in der ACTA-Maschine der (Firma Willytec, München) als Drei-Körper-Verschleiß durchgeführt, die als internationaler Standard gilt (De Gee 1994). Alle Proben wurden nach der Verschleißprüfung mit einem neuen, optischen 3-dimensionalen LED-Scanner mit konfokalem Sensor zur optischen Abtastung der Materialoberfläche und Evaluierung des Materialverlustes an der Probenoberfläche vermessen und die Daten anschließend mit dem Programm Match 3D ausgewertet. Um die mikromorphologischen Verschleißmechanismen zu verstehen, wurden im Anschluss Aufnahmen mit dem Rasterelektronenmikroskop erstellt. Die Verschleißfestigkeit des Glasionomerzements Chemfil Rock profitierte nicht durch die veränderte Füllstoff- und Polymertechnologie, denn dieser Glasionomerzement erreichte mit Abstand die höchsten Verschleißwerte. Die in der Literatur beschriebene deutliche Verbesserung der Biegefestigkeit von Glasionomerzementen durch die Applikation von Coatings wird in dieser Studie nicht von einer Verbesserung der Verschleißfestigkeit begleitet, im Gegenteil, es wurden überraschenderweise höhere Verschleißwerte im Vergleich zu den nicht gecoateten Materialien gemessen. Nachdem das Coating von der Oberfläche abradiert wurde, hatte es keinen positiven Effekt auf den darunterliegenden Glasionomerzement. Auch eine verlängerte Lagerungszeit verbesserte die Materialeigenschaften nicht. Jedoch zeigten die Aufnahmen im Rasterelektronemmikroskop, dass das Coating den Glasionomerzement versiegelt, was die Verbesserung der Biegefestigkeit erklären könnte.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Ziel dieser auf sechs Monate terminierten Studie war die Ermittlung und der Vergleich der Veränderungen an Zahnhart- und Weichgewebe an ausgewählten Zähnen durch den Gebrauch der elektrischen Zahnbürste Sonicare Advance (® Fa. Philips) und einer durch die ADA empfohlenen Referenzzahnbürste. Beide Zahnbürsten wurden bezüglich ihrer Effizienz innerhalb von Sitzungen (kurzfristig) als auch über den Testzeitraum von drei Monaten pro Zahnbürste im Cross-over-Design untersucht. Die Evaluierung der Indices und der daraus gewonnenen Daten ergab, dass beide Zahnbürsten jeweils zu einer Reduktion des Weichgewebevolumens als auch der Plaque - sowohl innerhalb der Sitzungen als auch innerhalb der drei Monate - führten. Die Wash-out-Phase von sieben Tagen sollte mundhygienebedingte Auswirkungen auf die zweite Testphase vermeiden und Carry-over-Effekte minimieren. Mit Hilfe der oralen Metrologie wurden anhand der gewonnenen Abdrücke der untersuchten Zähne, die daraus resultierenden Daten mit den Ergebnissen der Plaque- und Gingivitisindices sowie die Abrasion am Hartgewebe verglichen und objektiv verifiziert. Durch die laseroptische Abtastung der Modelle wurden Ergebnisse erzielt, die aufzeigten, dass beide Zahnbürsten zu einer Reduktion des Zahnhart- und Weichgewebevolumens führten, hierbei war die verursachte Abrasion und Weichgewebereduktion durch die ADA-Zahnbürste größer. Weiteres Ziel dieser Studie war die Bewertung einer neu eingeführten Methode der Abdrucknahme zur Erstellung von hochpräzisen Replikamodellen für das darauffolgende laseroptische 3D-Messverfahren.