Podcasts about cyp2c19

  • 20PODCASTS
  • 36EPISODES
  • 18mAVG DURATION
  • ?INFREQUENT EPISODES
  • Feb 27, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about cyp2c19

Latest podcast episodes about cyp2c19

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Today's sponsor is Freed AI! Freed's AI medical scribe listens, transcribes, and writes notes for you. Over 15,000 healthcare professionals use Freed and you should too! Learn more here! Clopidogrel (Plavix) is an antiplatelet medication. You need to understand the pharmacokinetics of clopidogrel and how CYP2C19 affects this medication. Doxycycline is a tetracycline antibiotic. Calcium, iron, and other metal cations can bind doxycycline and reduce the absorption of the medication. Hyzaar is a combination of losartan and hydrochlorothiazide. Losartan is an ARB and hydrochlorothiazide is a thiazide diuretic. Kytril (granisetron) is an antiemetic medication. It is from the same class of medication as the more commonly used ondansetron. Restoril (temazepam) is a benzodiazepine. It is primarily used to treat insomnia as it has a much shorter half-life than many of the other benzodiazepines.

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Today's sponsor is Freed AI! Freed's AI medical scribe listens, transcribes, and writes notes for you. Over 15,000 healthcare professionals use Freed and you should too! Learn more here! On this episode of the Top 200 Drugs Podcast, I cover medications 151-155. This podcast includes; cefuroxime, ketoconazole, pregabalin, esomeprazole, and ipratropium/albuterol. Cefuroxime is a 2nd generation cephalosporin that has a very similar bacterial coverage profile to amoxicillin. It has significant gram positive coverage. Ketoconazole is an azole antifungal medication. It is well known for causing hepatotoxicity as well as interactions via CYP3A4. Pregabalin has a lot of similarities with gabapentin. It can be used fo various pain syndromes such as neuropathy and fibromyalgia. Esomeprazole is a PPI and has a similar profile to omeprazole. It inhibits CYP2C19 and has a few notable interactions that I cover in this episode. Ipratropium and albuterol is a combination of a short acting anticholinergic and short acting beta agonist.

JACC Speciality Journals
JACC: Advances - CYP2C19 genotype prevalence and association with recurrent myocardial infarction in British-South Asians treated with clopidogrel

JACC Speciality Journals

Play Episode Listen Later Sep 29, 2023 2:51


HelixTalk - Rosalind Franklin University's College of Pharmacy Podcast
167 - Beyond One-Size-Fits-All: Unraveling the Genetic Tapestry of CYP2D6 Drug Metabolism

HelixTalk - Rosalind Franklin University's College of Pharmacy Podcast

Play Episode Listen Later Jun 27, 2023 35:18


In this episode, we review the science behind genetic differences in humans in the CYP2D6 hepatic enzyme responsible for drug metabolism and how these genetic variants can lead to certain drugs being metabolized far too much or far too little, which can cause drug toxicities or a lack of effectiveness. Key Concepts About 20-25% of drugs on the market are metabolized by CYP2D6. Humans have a huge degree of variability in CYP2D6 metabolism ranging from “ultra” metabolizers to “poor” metabolizers. Drugs that heavily rely on CYP2D6 metabolism are prone to large variability in responses due to these genetic differences. Some drugs rely on metabolic inactivation of CYP2D6 whereas other drugs use the enzyme to become converted to a more active compound. Codeine and tramadol both heavily rely on CYP2D6 activation to a more potent opioid compound. Patients with excessive CYP2D6 activity will have toxicities (from too much of an active metabolite) whereas patients with low CYP2D6 activity will have little therapeutic effect. Numerous antidepressants (paroxetine, nearly all tricyclic antidepressants, and venlafaxine) rely on CYP2D6 metabolism. Differences in CYP2D6 metabolism have been shown to either cause toxicity or a lack of effectiveness with these medications. References Chartrand R, Forte AM, Hoger JD, Kane SP, Kisor DF. Pharmacogenomics and Commonly Prescribed Medications. AdvanCE. October 10, 2022. https://www.advancepharmacist.com/courses/pharmacogenomics-and-commonly-prescribed-medications. Caudle KE, Sangkuhl K, Whirl-Carrillo M, et al. Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2020;13(1):116-124. doi:10.1111/cts.12692 Bousman CA, Stevenson JM, Ramsey LB, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants [published online ahead of print, 2023 Apr 9]. Clin Pharmacol Ther. 2023;10.1002/cpt.2903. doi:10.1002/cpt.2903 Crews KR, Monte AA, Huddart R, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin Pharmacol Ther. 2021;110(4):888-896. doi:10.1002/cpt.2149

The Vox Markets Podcast
1436: Top 5 Most Read RNS's on Vox Markets for Friday 19th May 2023

The Vox Markets Podcast

Play Episode Listen Later May 19, 2023 2:55


Top 5 Most Read RNS's on Vox Markets for Friday 19th May 2023 1. Premier African Minerals #PREM - Funding and Appointment of Joint Broker Premier African Minerals announces a further placing to raise £610,000 at 0.925p for the ongoing Zulu Lithium and Tantalum Project Pilot Plant optimisation. George Roach, Chief Executive Officer, has agreed to participate in the placing at the Placing Price by way of a subscription of £110,000. 2. Genedrive #GDR - NICE recommends CYP2C19 genotyping genedrive announces that the UK's National Institute for Health and Care Excellence ("NICE") has recommended in draft guidance that CYP2C19 genotyping should be used before clopidogrel administration in the management of ischemic stroke ("IS") patients. Although the Genedrive® CYP2C19 ID test is in development, the NICE Committee included its predicted performance and pricing in its clinical and economic models. 3. Tharisa #THS - H1 FY2023 Results and dividend timetable REVENUE US$335.3m up 0.4%, PROFIT BEFORE TAX US$72.4 m down 41.8% (HY2022: US$124.3 m), INTERIM DIVIDEND US 3 cents. 4. Europa Metals #EUZ - Drilling Results Europa Metals announce the first assay results from its ongoing infill diamond drilling programme at the Company's 100% owned Toral Pb, Zn & Ag project. Significant intersection from drillhole TOD-043 of 8.70m @ 11.03% ZnEq(PbAg)*, including: o 3.10m @ 20.35% ZnEq(PbAg)* 5. Conroy Gold & Natural Resources #CGNR - Debt capitalisation of amounts owed by KDR Conroy Gold and Natural Resources has acquired an equity interest in AIM-quoted Karelian Diamond Resources through entering into a debt capitalisation arrangement, including the issue of convertible loan notes, with Karelian Diamonds. Capitalisation of debt amounting to £125,000 into new ordinary shares in Karelian Diamond Resources plc at a price of 2.5p per share Exchange of debt amounting to £112,500 into a convertible loan of £112,500 in Karelian Diamond Resources plc.

Mayo Clinic Pharmacy Grand Rounds
A CYmPle Matter – CYP2C19 Polymorphisms and P2Y12 Inhibitor Selection in Ischemic Stroke

Mayo Clinic Pharmacy Grand Rounds

Play Episode Listen Later Nov 9, 2022 40:47


Jo Ann Leal, PharmD (Twitter: @jojopharmd) describes the implications of various CYP2C19 phenotypes on clopidogrel metabolism and activity, analyzes the available literature evaluating outcomes of clopidogrel versus ticagrelor in ischemic stroke patients based on CYP2C19 metabolizer status and selects a preferred antiplatelet agent and dose for secondary prevention of ischemic stroke given patient specific pharmacogenomic information. For more pharmacy content, follow Mayo Clinic Pharmacy Residency Programs @MayoPharmRes or the host, Garrett E. Schramm, Pharm.D., @garrett_schramm on Twitter! You can also connect with the Mayo Clinic's School of Continuous Professional Development online at https://ce.mayo.edu/ or on Twitter @MayoMedEd. 

The Vox Markets Podcast
842: Top 5 Most Read RNS's on Vox Markets for Monday 22nd August 2022

The Vox Markets Podcast

Play Episode Listen Later Aug 22, 2022 1:48


Top 5 Most Read RNS's on Vox Markets for Monday 22nd August 2022 5. Dev Clever Holdings - Funding Facility Dev Clever have obtained A Three-Year Unsecured Convertible Funding Facility With Riverfort Global Opportunities For Up To $30 Million (Click here to read the RNS) 4. Dev Clever Holdings - Annual Financial Report. Total revenue up 486% to £7.36 million (2020: £1.25 million), reflecting revenue arising from the Aldebaron agreement. Adjusted EBITDA profit was £1.30 million (2020: loss £0.79m). The loss before tax was £2.54 million (2020: £1.06 million). (Click here to read the RNS) 3. Genedrive PLC - NICE includes CYP2C19-ID Kit in new programme. Genedrive plc announces that the UK's National Institute for Health and Clinical Excellence ('NICE') has commenced an evaluation of CYP2C19 genotype testing for Clopidogrel treatment, via a new NICE Diagnostics Assessment Programme ('DAP'). Genedrive's CYP2C19 ID Kit, currently in development, has been included in the assessment. Both of genedrive's new emergency Point of Care genetic screening tests are now included in new NICE reviews, following the MT-RNR1 DAP announcement on 16 June 2022. (Click here to read the RNS) 2. Open Orphan PLC - £10.4m contract with existing Big Pharma client. Open Orphan plc (AIM: ORPH), a rapidly growing specialist contract research organisation (CRO) and world leader in testing infectious and respiratory disease products using human challenge clinical trials, announces that hVIVO, a subsidiary of Open Orphan, has signed a £10.4m contract with an existing top 5 global pharmaceutical client to manufacture a new batch of H1N1 influenza challenge virus, leveraging off an existing in-house generated challenge model, and to conduct a human challenge trial to test the client's antiviral product. (Click here to read the RNS) 1. Cineworld Group plc - Response to media speculation The strategic options through which Cineworld may achieve its restructuring objectives include a possible voluntary Chapter 11 filing in the United States and associated ancillary proceedings in other jurisdictions as part of an orderly implementation process. Cineworld is in discussions with many of its major stakeholders including its secured lenders and their legal and financial advisers. (Click here to read the RNS)

Cardionerds
220. Guidelines: 2021 ESC Cardiovascular Prevention – Question #17 with Dr. Melissa Tracy

Cardionerds

Play Episode Listen Later Jul 7, 2022 8:51 Very Popular


The following question refers to Section 4.9 of the 2021 ESC CV Prevention Guidelines. The question is asked by Dr. Christian Faaborg-Andersen, answered first by UCSD fellow Dr. Patrick Azcarate, and then by expert faculty Dr. Melissa Tracy.Dr. Tracy is a preventive cardiologist, former Director of the Echocardiography Lab, Director of Cardiac Rehabilitation, and solid organ transplant cardiologist at Rush University.The CardioNerds Decipher The Guidelines Series for the 2021 ESC CV Prevention Guidelines represents a collaboration with the ACC Prevention of CVD Section, the National Lipid Association, and Preventive Cardiovascular Nurses Association. Question #17 A 74-year-old man with a history of hypertension, chronic kidney disease, and gastroesophageal reflux presents with chest pain and is found to have an NSTEMI due to an obstructive lesion in the proximal LAD. One drug-eluting stent is placed, and he is started on dual antiplatelet therapy with aspirin and clopidogrel. He is concerned about the risk of bleeding from his gastrointestinal tract. What would you recommend to reduce his risk of bleeding? A. Lansoprazole, a proton pump inhibitorB. Famotidine, a histamine-2 blocker C. Calcium carbonate, an antacid D. None, proton pump inhibitors are contraindicated. Answer #17 The correct answer is A.The ESC recommends that patients at high risk for GI bleeding who are receiving antiplatelet therapy take proton pump inhibitors (Class I, LOE A). High risk for bleeding includes patients who are age ≥65, history of peptic ulcer disease, Helicobacter pylori infection, dyspepsia or GERD symptoms, chronic renal failure, diabetes mellitus, and concomitant use of other antiplatelet agents, anticoagulants, nonsteroidal anti-inflammatory drugs, or steroids.Coadministration of proton pump inhibitors that specifically inhibit CYP2C19 (omeprazole or esomeprazole) may reduce the pharmacodynamic response to clopidogrel. Although this interaction has not been shown to affect the risk of ischemic events, coadministration of omeprazole or esomeprazole with clopidogrel is not recommended.Main TakeawayIn patients with high gastrointestinal bleeding risk who are receiving antiplatelet therapy, proton pump inhibitors are recommended. Omeprazole and esomeprazole may reduce the efficacy of clopidogrel and should not be used concomitantly with clopidogrel.Guideline LocationSection 4.9.3, Page 3291Figure 13 page 3278; recommendation table page 3279. CardioNerds Decipher the Guidelines - 2021 ESC Prevention SeriesCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor RollCardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron!

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Lansoprazole is a proton pump inhibitor that can be commonly used for GERD, PUD, and GI prophylaxis. Lansoprazole can inhibit CYP2C19 which can cause concentrations of drugs like escitalopram and citalopram to rise. Hypomagnesemia, low B12, osteoporosis, and an increase in C. Diff risk are potential complications with longer-term PPI use. PPIs like lansoprazole are best given 30-60 minutes before meals. This is something that patients often forget. I discuss important drug interactions on the podcast, be sure to check out my latest project which is a 200+ page book on managing drug interactions in primary care. Be sure to check out our free Top 200 study guide – a 31-page PDF that is yours for FREE!

The Cabral Concept
2298: Night Shift Eating, Gene Mutations, Daylight Savings vs. Biology, Athlete Extra Needs, Nocturnal Convulsions, Cow's Milk for Kids (HouseCall)

The Cabral Concept

Play Episode Listen Later May 22, 2022 23:59 Very Popular


Thank you for joining us for our 2nd Cabral HouseCall of the weekend! I'm looking forward to sharing with you some of our community's questions that have come in over the past few weeks…   Stephanie: Hi Dr. Cabral! I am a night shift nurse and I am having a tough time with timing my meals/food during the nights i'm working. I am trying be as healthy as I can working night shift (7p-7a). I know the number one best thing for me to do for my health would be to switch to day shift but unfortunately with the staffing shortage at the hospital I am unable to switch as of now and need to stay on nights. I work 3 nights of 12hr shifts a week. Would you be able to recommend the best meal timing for the nights i'm working? I have listened to your podcasts about meal timing for a normal sleep cycle with being awake during the day which I follow on my days off! :) Thank you so much! -Stephanie, a fellow New Englander   Anita: Thank you for your podcasts and all you do to promote health and wellness. I appreciate you. I am not able to tolerate any of supplements or even the detox protocol. I do ok for one or two days and then I am terribly sick and cannot even tolerate hardly any foods. I have CYP2C19-2 copies of variant. Overall functional effect- no enzyme function (drugs less effective, increased chance side effects, and unable to clear from liver- blood thinners, PPIs, anti fungals, anti seizure drugs, SSRI'S, and TCAs. I also have SLCO1B1- one copy. Predicted decreased function. Overall functional effect- Decreased protein function. One copy of Hemochromatosis HFE variant also, may not increase risk. My question is: is there an enzyme I can take something I can do to reverse the effects of these genes? Thank you so much!   Erica: How does daylight savings time affect our biological processes and rhythms?   Erica: Would you ever consider doing an episode that sums up all the recommendations that you would make specifically for professional athletes and how this differs from the average client? For example, through trial and error I feel that my body tends to need more vitamin C, zinc, and magnesium; I've also found ashwaganda to help, as well as higher protein, and I also tend to feel best after around 9 hours of sleep even though my genotype is kapha-pitta (for reference, I'm a professional boxer so there's around 2.5-3 hours of training and about another 1 of walking every day, so it's high demand). I'm a newbie to the podcast but I wanted to thank you because it's already become a constant part of my routine to listen to every morning, which is really comforting and helpful so I really appreciate you putting all the time and effort into doing these episodes and connecting with your audience. Also, I was wondering if you've heard of the hypnotherapist Marisa Peer? You give so many great recommendations, and after listening to a few of your Motivation Monday podcasts (which are some of my favorite), I thought her YouTube videos on mindset and taking control of inner narrative might be something you (or other members of the audience) might enjoy so I wanted to pay it forward :)   Terry: My wife thinks I have nocturnal convulsions. She said I have the symptoms as described by Dr. Google. I searched to see if you have ever discussed nocturnal convulsions on your podcast and did find any hits. If that is what I have, what can be done? I have run the big 5 labs and I have a good idea of my mineral deficiencies that I am working on improving. The symptoms seems to have gotten worse since I have been walking 10,000+ steps per day.   Jamie: Thank you again for everything that you do and your help to help us all be a little better every day. Really appreciate you and your team. We have a bit of a quandary at home as we have a toddler aged just over 2.5 years and a new baby around 16 weeks old. Whilst my wife and i do not have any dairy in the house (i've largely fixed my gut and know i have a sensitivity and she is very much on baord and will do big 5 later this year). EVery medical practicioner is pushing dairy, her nursery has dairy every day. She is exposed to some and we are ok with it as we control what we can at home but there is a worry about her receiving enough calcium for her growth. What specifically would you suggest food / drink wise if you were to cut dairy completely to ensure your kids had enough calcium when growing? Also as an extra add on question does this change as they get older...?thank you again   Thank you for tuning into this weekend's Cabral HouseCalls and be sure to check back tomorrow for our Mindset & Motivation Monday show to get your week started off right! - - - Show Notes and Resources: StephenCabral.com/2298 - - - Get a FREE Copy of Dr. Cabral's Book: The Rain Barrel Effect - - - Join the Community & Get Your Questions Answered: CabralSupportGroup.com - - - Dr. Cabral's Most Popular At-Home Lab Tests: > Complete Minerals & Metals Test (Test for mineral imbalances & heavy metal toxicity) - - - > Complete Candida, Metabolic & Vitamins Test (Test for 75 biomarkers including yeast & bacterial gut overgrowth, as well as vitamin levels) - - - > Complete Stress, Mood & Metabolism Test (Discover your complete thyroid, adrenal, hormone, vitamin D & insulin levels) - - - > Complete Food Sensitivity Test (Find out your hidden food sensitivities) - - - > Complete Omega-3 & Inflammation Test (Discover your levels of inflammation related to your omega-6 to omega-3 levels) - - - Get Your Question Answered On An Upcoming HouseCall: StephenCabral.com/askcabral - - - Would You Take 30 Seconds To Rate & Review The Cabral Concept? The best way to help me spread our mission of true natural health is to pass on the good word, and I read and appreciate every review!

google kids eating milk biology cows mutation predicted daylight savings night shift cabral nocturnal ssri decreased motivation monday free copy new englanders marisa peer ppis tcas convulsions cyp2c19 complete stress complete omega complete food sensitivity test find inflammation test discover complete candida metabolic vitamins test test mood metabolism test discover
Real Life Pharmacology - Pharmacology Education for Health Care Professionals
Esomeprazole (Nexium) Pharmacology

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Play Episode Listen Later Apr 14, 2022 15:37 Very Popular


On this episode, I discuss esomeprazole (Nexium) pharmacology, adverse effects, tapering, kinetics, and drug interactions. I spend a good amount of time discussing the esomeprazole and clopidogrel interaction in this podcast episode. Esomeprazole inhibits CYP2C19. This can cause an increase in citalopram concentrations and raise the potential for QTc prolongation. It is critical to reassess the length of therapy and the dose of PPIs like esomeprazole.

The Senior Care Pharmacist Podcast
Implications of Cannabidiol in Pharmacogenomic-Based Drug Interactions with CYP2C19 Substrates

The Senior Care Pharmacist Podcast

Play Episode Listen Later Dec 13, 2021 22:26


This is a patient case exploring the importance of evaluating herbal and dietary supplements and how they may impact drug-drug and drug-gene implications based on pharmacogenomics test results. Even though herbal supplements are considered natural by many patients, which is often the reason for starting them, herbal supplements may still be metabolized by the same pathways as other medications, potentially contributing to drug-drug, drug-herb, and drug-gene interactions, and therefore, potentially impacting a patient's response to medications.

Stroke Alert
Stroke Alert November 2021

Stroke Alert

Play Episode Listen Later Nov 18, 2021 28:22


On Episode 10 of the Stroke Alert Podcast, host Dr. Negar Asdaghi highlights two articles from the November 2021 issue of Stroke: “Biomarkers of Coagulation and Inflammation in COVID-19–Associated Ischemic Stroke” and “Treatment-Associated Stroke in Patients Undergoing Endovascular Therapy in the ARUBA Trial.” She also interviews Dr. S. Claiborne Johnston about “Ischemic Benefit and Hemorrhage Risk of Ticagrelor-Aspirin Versus Aspirin in Patients With Acute Ischemic Stroke or Transient Ischemic Attack.” Dr. Negar Asdaghi: 1) What is the net ischemic benefit derived from combination of ticagrelor and aspirin treatment in patients with mild ischemic stroke or transient ischemic attack? 2) Is the ischemic stroke in patients hospitalized with COVID-19 associated with the rise in biomarkers of inflammation and coagulopathy? 3) What are the characteristics associated with periprocedural stroke in patients treated endovascularly for an unruptured AVM? We'll discuss these topics and much more at today's podcast. Stay with us. Dr. Negar Asdaghi:                        Welcome back to the Stroke Alert Podcast. My name is Negar Asdaghi. I'm an Associate Professor of Neurology at the University of Miami Miller School of Medicine and your host for the monthly Stroke Alert Podcast. For the November 2021 issue of Stroke, we have a large selection of topics, from peanut consumption reducing the risk of ischemic stroke, and the decline in the rate of progression of coronary atherosclerosis in patients on a Mediterranean diet, to how the efficacy of endovascular thrombectomy diminishes in patients with more pervious thrombus composition, which I encourage you to review in addition to our podcast today. Dr. Negar Asdaghi:                        Later in the podcast, I have the distinct honor of interviewing Dr. Claiborne Johnston from Dell Medical School at UT Austin on his latest work with data from the THALES trial to clarify the net ischemic benefits derived from a combination of ticagrelor and aspirin therapy in comparison with the risks of hemorrhage associated with this treatment in patients with mild and moderate stroke and TIA. But first with these two articles. Dr. Negar Asdaghi:                        COVID-19–associated ischemic stroke, or CAIS, is a new term that, unfortunately, stroke physicians need to be familiar with. While acute ischemic stroke can occur in parallel from, say, traditional causes of stroke in patients infected with coronavirus, ischemic stroke and other thrombotic events, such as myocardial infarction, pulmonary embolism, deep vein thrombosis, and acute limb thrombosis, can occur in the setting of overt hyperinflammation and subsequent coagulopathy that is observed in patients hospitalized with severe COVID-19 illness. Dr. Negar Asdaghi:                        Elevated D-dimer, although quite non-specific, has emerged as a marker of COVID-19–associated coagulopathy, but whether an elevated D-dimer in isolation or in combination with various other inflammatory and coagulation markers is associated with development of acute in-hospital ischemic stroke in those hospitalized with COVID is not known. Dr. Negar Asdaghi:                        So, in the current issue of the journal, in the article titled "Biomarkers of Coagulation and Inflammation in COVID-19–Associated Ischemic Stroke,” Dr. Charles Esenwa from the Department of Neurology at Montefiore Medical Center and colleagues did an interesting analysis of over 5,000 patients with COVID-19 who were admitted to one of the Montefiore Health System hospitals between March 1, 2020 and May 8, 2020. This was a retrospective analysis, so they had to work with the available biomarkers for each patient and use a machine learning cluster analysis of these biomarkers to divide the patients basically based on five biomarkers to four clusters. Dr. Negar Asdaghi:                        The following five biomarkers were chosen by this machine learning cluster analysis. These included CRP, D-dimer, LDH, white BC, and PTT. So, they had to come up with some arbitrary rules to exclude biomarkers that were either missing in over 30% of their population, and they also excluded those patients that were hospitalized for a long period of time, and they chose a 30-day hospitalization and over. And they also only used the first reading for each biomarker. Again, these were arbitrary rules that were set forth by the authors, and they found some alarming findings. When they clustered patients based on similarities in these biomarkers, they came up with predicted models for combined thrombotic events and acute ischemic stroke. Dr. Negar Asdaghi:                        For example, in the cluster where the patients had the highest mean values for CRP, D-dimer, LDH, and white BC, and a relatively low PTT, these patients had the highest prevalence of acute ischemic stroke. They had the highest prevalence of in-hospital strokes and severe strokes and highest percentage of total thrombotic events. In contrast, the cluster with the lowest mean of all of these five biomarkers had no cases of in-hospital acute ischemic strokes; they had the lowest prevalence of composite, all thrombotic events, and patients had the least severe complications. Dr. Negar Asdaghi:                        So, they also tested the effects of biomarkers individually for prediction of acute ischemic stroke. And it turns out that when they used a lone marker, only D-dimer again was associated with acute ischemic stroke. Very interestingly, D-dimer was specifically elevated in those COVID-19 patients in whom the stroke was ultimately classified as cryptogenic. Dr. Negar Asdaghi:                        So, what does that mean? That means that it's more likely that a stroke had occurred in the setting of severe COVID-19 hyperinflammatory response, and less likely associated with other classical causes of stroke. Dr. Negar Asdaghi:                        So, what did we learn overall from this study? Well, hospitalized COVID-19 patients with a combination of high CRP, D-dimer, LDH, and white BC, and slight reduction in their PTT, had a 4.5-fold increase in the risk of in-hospital mortality and a fivefold increase in the risk of in-hospital stroke as compared to the COVID-19 patients with the lowest mean values for all the five biomarkers mentioned above. So, important information to keep in mind as we treat hospitalized COVID-19 patients, and we await more prospective data on this topic. Dr. Negar Asdaghi:                        Arteriovenous malformations, or AVMs, are congenital vascular lesions that are associated with long-term excess mortality and morbidity, essentially almost all related to their risk of intracerebral hemorrhage. Roughly half the patients with brain AVMs present with intracerebral hemorrhage, resulting in a first-ever hemorrhage rate of about 0.5 per 100,000 person years. Dr. Negar Asdaghi:                        Annual risk of hemorrhage is estimated at 1 to 4% for all comers with AVMs, but varies significantly, and can be as low as 0.9% in patients with unruptured, superficially located brain AVMs with superficial drainage, but may be as high as over 34% in patients with ruptured, deeply seated brain AVMs with deep venous drainage. So, treatment would entirely be dependent on the type of presentations and characteristics of each patient with an AVM. Dr. Negar Asdaghi:                        Whether unruptured AVMs should be managed clinically or treated either endovascularly or surgically is the subject of the ARUBA trial that is a randomized trial of unruptured brain AVMs. The enrollment of ARUBA was halted by the study's DSMB board, but medical management was found to be superior to treatment arm for the primary outcome of symptomatic stroke and death. Dr. Negar Asdaghi:                        Since then, there's been a lot of focus in the literature and comparison of outcomes between treated and untreated patients with unruptured AVMs, but less has been published on characteristics of patients who suffered from periprocedural stroke, an important part of the primary outcome of ARUBA. So, in the current issue of the journal, we have the study titled “Treatment-Associated Stroke in Patients Undergoing Endovascular Therapy in the ARUBA Trial.” Dr. Negar Asdaghi:                        Dr. Joshua Burks and colleagues from the Department of Neurosurgery at the University of Miami and colleagues evaluated 64 patients with unruptured AVMs enrolled in the ARUBA trial who underwent endovascular treatment as part of the trial and looked at the characteristics of those who suffered a perioperative stroke, defined as a stroke recorded at or within 48 hours of intervention, as this would represent a direct procedure-related complication rather than sequelae of, say, treated or partially treated AVM itself. Dr. Negar Asdaghi:                        All patients who initiated endovascular intervention, including attempted interventions in cases where therapy was aborted secondary to technical or anatomical limitations, were included regardless of randomization or subsequent withdrawal from the study beyond 48 hours following the intervention. So, what they found was that 16% of interventions resulted in stroke, 11% hemorrhagic, and 5% ischemic strokes. And they had no perioperative mortality, which is good news. Dr. Negar Asdaghi:                        In univariate analysis, they found many factors that were more commonly seen in patients that suffered from perioperative stroke as compared to those who did not have a stroke perioperatively. Those factors included, for instance, female sex. Over half of these patients were female. Close to half were enrolled in France. And over 40% of those who suffered a stroke in the perioperative timeframe had Spetzler-Martin grade two AVMs. Dr. Negar Asdaghi:                        When they accounted for all confounding variables, they found that endovascularly treated unruptured AVMs that are supplied by the posterior cerebral artery cortical feeders and those with Spetzler-Martin grade two and three had a higher perioperative stroke risk as compared to their counterparts without these characteristics. Interestingly, there are also significant geographical disparities in the risk of stroke in that patients treated in the United States or Germany had a significantly lower stroke risk than patients treated in other countries. Dr. Negar Asdaghi:                        So, what did we learn from this study? There are patients and lesion characteristics that increase the risk of stroke associated with endovascular treatment of unruptured AVMs. The current study suggests that AVMs with cortical arterial feeders from posterior cerebral artery and those with grade two and three Spetzler-Martin were associated with a higher risk of procedural and periprocedural stroke. Dr. Negar Asdaghi:                        And very importantly, as with every surgical intervention, the risk of a procedure is operator-dependent, as well as center-dependent. And these are important factors to keep in mind as technology evolves and more treatments become available to decide whether to keep or to refer patients with unruptured AVMs to a more experienced center. Dr. Negar Asdaghi:                        Patients with mild ischemic stroke and transient ischemic attack are at high risk of having recurrent ischemic events, especially in the immediate aftermath of their symptom onset. Early diagnosis and initiation of secondary preventive measures, such as antiplatelet or anticoagulation therapies, in the appropriate setting considerably reduce this recurrent risk. Dr. Negar Asdaghi:                        Multiple randomized trials have shown that as compared to treatment with a single antiplatelet agent, dual antiplatelet treatment is more effective in reducing the risk of stroke and other major vascular events in the TIA mild stroke population, a benefit that comes with an expected increase in the risk of hemorrhage. Dr. Negar Asdaghi:                        THALES trial is one of the latest trials to determine the efficacy of dual, which is combination of ticagrelor and aspirin, versus mono-antiplatelet therapy, that is aspirin alone, in eligible patients with non-cardioembolic acute ischemic stroke and TIA. Now, it's important to keep in mind that the primary outcome of THALES is a composite of stroke or death, which included both ischemic and hemorrhagic events. Dr. Negar Asdaghi:                        Now, it's important to understand that while in the setting of a clinical trial, combining the risks associated with dual antiplatelet therapy, which is hemorrhage, and the potential treatment benefit, that is reduction of recurrent ischemic events, is appropriate as part of the outcome selection. In routine practice, this type of primary outcome can obscure the actual trade-offs between the benefits of dual antiplatelet treatment and its inherent hemorrhagic risk. Dr. Negar Asdaghi:                        So, in this issue of the journal, in the study titled "Ischemic Benefit and Hemorrhage Risk of Ticagrelor-Aspirin Versus Aspirin in Patients With Acute Ischemic Stroke or Transient Ischemic Attack," the THALES investigators led by Dr. Claiborne Johnston sought to separate the ischemic benefits of combination of ticagrelor and aspirin therapy from its hemorrhagic risks in patients enrolled in the trial. Dr. Negar Asdaghi:                        I'm joined today by Professor Johnston to discuss the findings of this paper. Dr. Johnston absolutely needs no introduction to the stroke community and our readership. He's a Professor of Neurology at Dell Medical School at the University of Texas at Austin. He's a leader in the field of cerebrovascular disorders, has served as the primary investigator of multiple randomized trials and large prospective studies to evaluate the preventive treatment outcomes in TIA and mild stroke, and has pioneered the development and validation of predictive models for recurrent stroke in this population. He's authored over 700 peer-reviewed manuscripts, has won several awards for research and teaching, and is recognized for his leadership in the field of medicine and healthcare. Dr. Negar Asdaghi:                        Good morning, Clay. We're delighted that you could join us on the podcast. Dr. S. Claiborne Johnston:           Well, thank you. It's wonderful to be here. Thank you for having me. Dr. Negar Asdaghi:                        Thank you. So, THALES is an exciting new addition to the most recent trials of dual antiplatelet therapy that studied mostly the role of clopidogrel and aspirin combination therapy. Can you please start us off by telling us why did we need a new trial in a very similar patient population? Dr. S. Claiborne Johnston:           Well, the primary reason was, yes, clopidogrel works in combination with aspirin in the setting, but clopidogrel is actually a prodrug. It requires conversion in the liver to its active form. And polymorphisms in CYP2C19 and Cyt P450 pathways are really common and associated with an inability or limited ability to convert that prodrug into its active form. So, there are a number of people who may not benefit much, if at all, from clopidogrel. So, it's kind of surprising that it works as well as it does. Dr. S. Claiborne Johnston:           Ticagrelor doesn't have that problem. It's not a prodrug. It acts directly on the P2Y12 inhibitor. And so, the hope was that we would have a more consistent and pronounced effect on risk reduction in patients after TIA and mild to moderate strokes. Dr. Negar Asdaghi:                        Primary efficacy outcome in THALES was different from the primary efficacy outcome chosen for the POINT trial, that was major ischemic events and death from ischemic vascular events, and that of the CHANCE trial, that was a combination of ischemic and hemorrhagic strokes in 90 days. Can you please tell us about the thought process behind choosing this particular primary efficacy outcome in THALES? Dr. S. Claiborne Johnston:           Yeah, so this was encouraged by the regulatory authorities. And so the primary efficacy outcome in THALES is all stroke, hemorrhagic and ischemic, and all death, hemorrhagic and ischemic. And we teased apart just the ischemic etiologies in POINT. Dr. S. Claiborne Johnston:           The rationale was that we were including all the major outcomes that the drug could impact. The problem is that people forget that it includes hemorrhagic events, and then they weigh that efficacy outcome against the safety outcome. And so there's confusion. There's sort of double-counting of safety elements in doing that comparison. Dr. Negar Asdaghi:                        Okay, great. And now, before we hear about how you disentangled the two safety and efficacy outcomes, can you please remind our listeners about the primary results of THALES, which was published obviously a few months ago? Dr. S. Claiborne Johnston:           Yeah, sure. So, it showed that the combination of ticagrelor and aspirin works. It reduced the stroke and death by about 17% over the 30-day period of treatment. So robust effect. There were some increased hemorrhages, and looking at severe hemorrhage as defined by the GUSTO definition, there was almost a fourfold increase, but it was tiny in absolute terms of 0.4% increase. Dr. Negar Asdaghi:                        Okay. So, now it's very important, as you mentioned, this disentangling of recurrent ischemic, again, safety from efficacy outcomes. Your current study that is published in the November issue of Stroke clarified these results. And we're excited to hear about those results. Dr. S. Claiborne Johnston:           That's right. So, there were two problems with the way people have interpreted the results of the THALES trial. One is this entanglement of safety events and both efficacy outcome and the safety outcome. The other was the use of relative risks as opposed to absolute risks, because a high relative risk for a rare event is less important than a small relative risk for a more difference between more common events. And so we wanted to deal with both of those issues. Dr. S. Claiborne Johnston:           So, we defined new outcomes that were not entangled. So, we defined major ischemic events, similar to what we had done in POINT, and then we defined major hemorrhage as being basically irreversible hemorrhage, and compared outcomes in the two groups. And what we found was that when we did it that way, for every 1,000 patients treated, we avoided 12 major ischemic events and produced three major hemorrhages. So, about a four-to-one ratio of ischemic benefit to hemorrhage risk. And that was true at various cutpoints for disability. Dr. S. Claiborne Johnston:           So, if we said, "Okay, yes, you had an event, and are you disabled at last follow-up at 30 days?" Then if we said that, there was also a four-to-one difference in disabling events, ischemic versus hemorrhagic. And if we said a two or greater, so moderate disability or worse, it was the same ratio, four-to-one. Dr. Negar Asdaghi:                        Okay, so four-to-one ratio of benefit. That's an important number to keep in mind. Also reassuring to see that this net clinical benefit or net clinical impact of the combination of therapy was practically the same across all the pre-specified subgroups in the trial. Were you at all surprised by the subgroup analysis? Dr. S. Claiborne Johnston:           Well you know if you do enough subgroup analyses, you're going to find differences, right? And thankfully, we have the looking at interaction terms to keep us honest, but even so, you look at 20 and you're going to have some significant interaction terms, as well. But yeah, it was reassuring that the effects were so consistent across groups. Dr. S. Claiborne Johnston:           I think there's been a tendency to over-interpret results from subgroup analyses. We don't have any evidence to suggest that we should be doing that here. I'm sure we can pick out groups that do better, and we've done that actually. The group with atherosclerosis does particularly well, but is that a chance event or is that real? I think we just have to be super-cautious about subgroup analyses. Dr. Negar Asdaghi:                        So, absolutely. One of the subgroups that I'm personally very interested in is just the time subgroup. So, all of the patients in THALES were enrolled within the first 24 hours, and the subgroup analysis did not show that there were any differences in terms of the net benefit between those that were enrolled earlier, within the first 12 hours, and those that were enrolled later, between 12 and 24 hours. But in routine clinical practice, we often see patients with TIA and mild stroke actually presented to us later than that timeframe entirely. Should we be giving them dual antiplatelet treatment? Dr. S. Claiborne Johnston:           That's a great question. So, we did an analysis in POINT where we modeled out, would we still have an important significant net benefit if we had started the trial later? And we didn't start the trial later, right? So, this was just pretending like anybody who had an event early on was not in the study in starting at a later timepoint and modeling that out. And basically what we found was that for out to three days, there was still a benefit. And, in fact, if you look at that data and look at those tables, you could even say, even out to five days. Dr. S. Claiborne Johnston:           I would say it's not unreasonable to do that given that the risks are so small and they're going to be even later with later treatment. But I would say, too, that even though we're not seeing greater impact within that first 24 hours versus 12 to 24, it just makes sense with event rates being as great as they are early on that if you don't treat with a preventive medication before an event occurs, it doesn't work. So, it just makes sense that as much as possible we ought to treat people as early as possible after their events. Dr. Negar Asdaghi:                        Very important findings and things to keep in mind. I want to ask you about the top two takeaway messages from the study. Dr. S. Claiborne Johnston:           One is that there's a favorable benefit-to-risk ratio for ticagrelor/aspirin in mild to moderate actually ischemic stroke and high-risk TIA from THALES. So that would be number one. Dr. S. Claiborne Johnston:           And then number two is watch your endpoints carefully. Think carefully, too, about whether balancing safety to efficacy events really makes sense and also whether focusing on relative risks really makes sense. I would encourage us, even though our journals tend to push us towards relative risks and we're more familiar with those, I'd encourage us to get more comfortable with using absolute risks in the way we look at data, but also in the way we talk to patients about their impact. Dr. Negar Asdaghi:                        Fair enough. I remember a few years ago, you visited us here at the University of Miami to deliver the annual Cerebrovascular Scheinberg Lecture. And you had mentioned that the idea of dual antiplatelet therapy treatment of patients with TIA mild stroke had come to you many years back when you were still in training, but it took many years for that idea to turn into reality, into randomized trials, and now translated into clinical practice. Dr. Negar Asdaghi:                        At the time, if you recall, this was right before you went to Europe to present the primary results of POINT at the European conference. And the trial results were not publicly available, so you were sworn to secrecy. You couldn't tell us about the results. It's been a few years since then. You've already completed yet another trial on this topic. Can I ask what's next for you and your team as it pertains to acute treatment of patients with TIA and mild stroke? Dr. S. Claiborne Johnston:           Well, there are a few things. So, CHANCE-2 is a really interesting trial. My role in that was peripheral, just really advisory, but it's an exciting trial. So, basically it's looking at people with those CYP2C19 polymorphisms that I mentioned before, people who don't rapidly and readily convert clopidogrel to its active form, and randomizing them to clopidogrel versus ticagrelor. Dr. S. Claiborne Johnston:           So, it's going to give us some head-to-head data on the two drugs and the people who may benefit the most from ticagrelor. And that is complete, and that will be published in the next few months. So, I that's going to be an important trial in people's thinking about how best to approach these patients. Dr. S. Claiborne Johnston:           The second is, you know, we're not done. We still have a 5% risk of events, even in those three dual antiplatelet therapy. And so we need more agents. And we need to think about secondary prevention extending to other groups as well, just as you said, longer periods of time, more severe strokes, people after thrombolysis/thrombectomy. Those are big groups of patients at extreme risk for secondary events, and we have no agents and no data right now. Dr. S. Claiborne Johnston:           I would be concerned about dual antiplatelet therapy in those patients, just given what we've seen about the risks of hemorrhage in the existing groups, which are again manageable and shouldn't change people's decision about treatment. But for the groups I just mentioned, risks of hemorrhage start to get greater. And so one worries about whether dual antiplatelet therapy's the right thing or whether other agents make more sense. So, yeah, we're interested in looking at other agents, some novel, for those other indications as well. Dr. Negar Asdaghi:                        Professor Johnston, thank you for your time, and we look forward to covering more of your research in the future. Dr. S. Claiborne Johnston:           Well, thank you. It's been a pleasure. Dr. Negar Asdaghi:                        Thank you. Dr. Negar Asdaghi:                        And this concludes our podcast for the November 2021 issue of Stroke. Please be sure to check out the November table of contents for a full list of publications, including two important topical review articles, one on thrombus composition after thrombectomy, and one on pearls and pitfalls of perfusion imaging in acute ischemic stroke, as advanced neuroimaging continues to play a critical role in decision-making for acute stroke therapies. Dr. Negar Asdaghi:                        Now, speaking of advanced neuroimaging and the immense role that neuroimaging plays in our day-to-day practice, let's take a moment as we end our November podcast to remember how the concept of medical imaging first began over 120 years ago with the discovery of X-ray by German professor of physics Wilhelm Röntgen. Dr. Negar Asdaghi:                        On Friday, November 8, 1895, while experimenting with electricity, Röntgen accidentally discovered a new kind of rays that he referred to as X-rays. He soon realized that X-rays were capable of passing through most substances, including the soft tissues of the body, but left bones and metals visible. Dr. Negar Asdaghi:                        One of his earliest photographic plates of his experiments was a film of his wife Bertha's hand with her wedding ring clearly visible. This was the first time that the inside of human body was seen without performing surgery. Dr. Negar Asdaghi:                        From Röntgen's first X-ray image to the advanced neuroimaging that we review today on our portable devices, I can't help but wonder, what will your accidental discovery on a Friday fall afternoon in November do to advance the field of science and stroke 100 years from now, as we continue to stay alert with Stroke Alert. Dr. Negar Asdaghi:                        This program is copyright of the American Heart Association, 2021. The opinions expressed by speakers in this podcast are their own and not necessarily those of the editors or of the American Heart Association. For more, visit AHAjournals.org.

Mayo Clinic Pharmacy Grand Rounds
Pop Pop. Fizz Fizz. Oh What a Relief It Is. New CPIC Proton Pump Inhibitor Guidelines

Mayo Clinic Pharmacy Grand Rounds

Play Episode Listen Later Aug 4, 2021 30:22


Ashley Kate Ragan, PharmD defines actionable proton pump inhibitor (PPI) drug-gene associations, discusses current pharmacogenomic PPI guidelines, including the 2018 Dutch Pharmacogenomic Working Group (DPWG) and 2020 Clinical Pharmacogenetic Implementation Consortium (CPIC) and reviews primary literature depicting CYP2C19 guided PPI dosing. For more pharmacy content, follow Mayo Clinic Pharmacy Residency Programs @MayoPharmRes or the host, Garrett E. Schramm, Pharm.D., @garrett_schramm on Twitter! You can also connect with the Mayo Clinic's School of Continuous Professional Development online at https://ce.mayo.edu/ or on Twitter @MayoMedEd. 

Memorizing Pharmacology Podcast: Prefixes, Suffixes, and Side Effects for Pharmacy and Nursing Pharmacology by Body System
Ep 5 Acid Reducer Drug Suffix PRAZOLE Pharmacology (Proton Pump Inhibitor Suffix)

Memorizing Pharmacology Podcast: Prefixes, Suffixes, and Side Effects for Pharmacy and Nursing Pharmacology by Body System

Play Episode Listen Later Jul 12, 2021 17:46


Find the Memorizing Pharmacology book here: https://adbl.co/3wAZEmN The body system we continue to cover is gastrointestinal and omeprazole, esomeprazole, lansoprazole, pantoprazole are all proton pump inhibitors PPIs.  TonyPharmD YouTube Channel here: https://www.youtube.com/c/tonypharmd Suffixes Omeprazole (Prilosec) with the -prazole suffix, p-r-a-z-o-l-e suffix is a true proton pump inhibitor, abbreviated PPI. We want to watch out for aripiprazole (Abilify) and brexpiprazole (Rexulti) which are antipsychotics, not PPIs but have the -piprazole ending, p-i-p-r-a-z-o-l-e. Also, some drug cards say the ending is -azole, but that is not an actual suffix, that is a chemical group, using that ending might have you confuse antifungals like fluconazole (Diflucan) for PPIs, so again, the PPI suffix is -prazole. You will notice that omeprazole (Prilosec) and esomeprazole (Nexium) are very similar and it's that omeprazole contains two molecules, a left and right mirror image and esomeprazole only contains the left-handed image. In Latin, left is sinister, so the “es, e-s” represents that only left-handed side. Why does that matter? That left-handed molecule is the active molecule. Mechanism of Action (MOA) PPIs or “prazoles” work by blocking your stomach's parietal cells which normally release hydrogen ions contributing to the stomachs' acidity. This, without the proton pump inhibitor, could lead to heartburn or possible GI ulceration. The proton pump inhibitor blocks the hydrogen/potassium ATPase pump preventing protons from going in the stomach. This raises the pH, making it more basic, and removes the excessive acid. Indications We then use proton pump inhibitors to manage heartburn, gastroesophageal reflux disease (GERD), peptic ulcer disease, and Barrett's esophagus. Barrett's esophagus is a condition where the acid reflux damages the esophagus causes it to redden. Many times patients who are on chronic NSAIDs or anticoagulants have a higher GI bleed risk and a proton pump inhibitor is for prophylaxis rather than active treatment. Dosing Traditional dosing is to give the PPI 30 to 60 minutes before breakfast. A concern comes when the medication does not seem to work, but it is not the medication, rather, the patient is taking with or even after breakfast. Make sure you know which is which. Also, H2 blockers work a bit more quickly, so the patient might expect a similar timetable with a PPI, let them know that it will take a bit longer. Clinical Considerations Acute use for a few weeks, especially with over-the-counter lengths of time, usually 2 weeks, tends to cause few side effects. Long term, however, we have concerns of B-12 deficiency, increased fracture risk, C. Diff, an opportunistic infection. Again, B-12 deficiency comes because the now less acidic stomach does not do as good a job at absorbing B-12. Before we start this section, here's a reminder contrasting enzyme inhibition and enzyme induction. A drug that inhibits and enzyme blocks the enzyme somewhat increasing drug levels making the patient toxic. A drug that induces and enzyme, makes the enzyme work better reducing drug levels and making the patient subtherapeutic. CYP2C19 inhibition can happen with citalopram (Celexa) and escitalopram (Lexapro), so in this case the antidepressant drug levels can go up leading to QTc prolongation. That's why we have dosing maximums on citalopram of 20 milligrams daily with someone on omeprazole. CYP2C19 induction with omeprazole and clopidogrel (Plavix) is one class example as clopidogrel is a pro-drug and by inducing the enzyme to break down more clopidogrel, the enzyme lowers clopidogrel levels. A pro-drug is one that is not quite the drug yet, the liver may have to metabolize it into a drug. Clopidogrel itself is an antiplatelet drug, so reducing the effectiveness of an antiplatelet drug while trying to prevent myocardial infarction (heart attacks) and strokes.   Note, prescribers can use cilostazol (Pletal) for intermittent claudication, a problem with blood flow in the legs where they might be in pain for short distances and the drug allows them to walk further is also a concern. Using lansoprazole or a similar PPI might create a favorable effect. Some drugs need an acidic environment for absorption like iron supplements and lowering the acidity runs counter to the best situation for iron. Adding ascorbic acid, vitamin C can help. Cefuroxime (Ceftin) is a second-generation cephalosporin antibiotic with good gram-positive coverage, but one might change to another antibiotic if they see omeprazole in the chart. Mesalamine (Pentasa) for ulcerative colitis and itraconazole (Sporanox) and antifungal both both benefit from an acidic stomach.    

MDedge Psychcast
Precision medicine and mental health: Implementing pharmacogenomics into your private or institutional practice with Dr. Vicki L. Ellingrod

MDedge Psychcast

Play Episode Listen Later Apr 7, 2021 23:54


Guest host Vicki L. Ellingrod, PharmD, talks with Kristen M. Ward, PharmD, and Amy Pasternak, PharmD, about integrating pharmacogenomic testing into psychiatric practice. Dr. Ellingrod is senior associate dean at the University of Michigan College of Pharmacy, Ann Arbor, and professor of psychiatry in the medical school. She is also section editor of the savvy psychopharmacology department in Current Psychiatry. Dr. Ellingrod has no relevant financial relationships to disclose. Dr. Ward and Dr. Pasternak are clinical assistant professors of pharmacy at the University of Michigan.  Dr. Ward and Dr. Pasternak report no relevant disclosures. Dr. Ward and Dr. Pasternak are team leads in the University of Michigan’s Precision Health Implementation Workgroup. Take-home points Pharmacogenomics is defined as the study of the relationship between genetic variations and how our body responds to medications. Two common reasons for ordering pharmacogenomic testing are that a patient or clinician wants testing completed before starting the trial of a psychotropic medication and that there are concerns about nonresponse or loss of response to medications. Common insurance criteria used to justify such testing include at least one failed medical trial; future use of a medication likely to be affected by genetic variants, such as metabolism through CYP2D6 or CYP2C19; or identification of human leukocyte antigen (HLA) variants before starting carbamazepine or oxcarbazepine. Quality improvement and usability campaigns around pharmacogenomic testing include ensuring that testing results are readily available in the medical record. Results should be searchable. Alerts can be created for prescribers when they order a medication for which a patient has a relevant genetic variant. After ordering testing, clinicians should document the patient’s medication response genotype and phenotype in the medical record so the information can be used for medications other than psychotropics. Summary Pharmacogenomic testing may be ordered for several reasons, including cases in which a patient or clinician wants information before switching to another medication or there are questions about failed medication trials. For approximately 50% of individuals who undergo pharmacogenomic testing, there may not be a change in treatment plans, or the results might not be conclusive enough to affect treatment. However, pharmacogenomic testing is useful in reassuring and improving adherence in patients who experience somatic adverse effects to psychotropic medications and want to know whether those effects are related to their metabolism. Getting insurance companies to cover pharmacogenetic testing can be tricky, and clinicians should be familiar with the criteria requested by insurers before ordering the tests. Many of the genetic-testing companies include a patient-assistance program to cover payment when insurance companies do not. In the medical record, it’s important to document the patient's genotype and phenotype. The patient’s genotype affects their metabolism of medications beyond psychotropics. Pharmacogenomic testing results can prevent serious adverse drug reactions. If testing comments on a patient’s carrier status for specific HLA subtypes implicated in drug metabolism, carbamazepine or other related medications should be added to the patient’s drug allergy list. States requirements about informed consent for genetic testing vary, so any clinicians who order such tests should be informed about their local laws. References Ellingrod VL. Current Psychiatry. 2019 Apr;18(4):29-33. Deardorff OG et al. Current Psychiatry. 2018 Jul;17(7):41-5. Ellingrod VL and Ward KM. Current Psychiatry. 2018 Jan;17(1):43-6. Bishop JR. Current Psychiatry. 2010 Sep;9(9):32-5. Maruf AA et al. Can J Psychiatry. 2020 Aug;65(8):521-30. National Institutes of Health. National Human Genome Research Institute. Genome Statute and Legislative Database. Clinical Pharmacogenetics Implementation Consortium. CPIC guidelines.. Pharmacogenetics Knowledge Base. *  *  * Show notes by Jacqueline Posada, MD, associate producer of the Psychcast; assistant clinical professor in the department of psychiatry and behavioral sciences at George Washington University in Washington; and staff physician at George Washington Medical Faculty Associates, also in Washington. Dr. Posada has no conflicts of interest. For more MDedge Podcasts, go to mdedge.com/podcasts Email the show: podcasts@mdedge.com

Drug Cards Daily
#25: carisoprodol (Soma) | Short Term Benefit For Discomfort of Musculoskeletal Conditions

Drug Cards Daily

Play Episode Listen Later Apr 5, 2021 5:06


Carisoprodol is a skeletal muscle relaxant that is most commonly known as the brand name Soma. The lesser known brand name is Vanadom. This drug has benefits in treating discomfort experienced from acute painful skeletal muscle conditions over a 2-3 week duration of therapy. The benefits beyond a short term duration (2-3 weeks) has not been proven. There are two strengths in a tablet form being 250 mg and 350 mg. The medication is dose qid with tid in addition to at bedtime. Carisoprodol forms the metabolite meprobamate which has anxiolytic and sedative effects. Since CYP2C19 function is crucial to the metabolism to meprobamate it is important to be aware of drugs that may affect CYP2C19 function along with other factors such as race and gender. Asian and African Americans are of note since there is higher prevalence of poor CYP2C19 metabolizer function. Also females generally have a higher exposure to carisoprodol but not to the metabolized form of meprobamate. When monitoring patients it is important to be aware of signs of misuse and abuse along with assessing their mental status along with their level or relief regarding pain and muscle spasms. Go to DrugCardsDaily.com for my episode show notes which will contain a drug summary, quiz, and a link to FREE drug card sheets. SUBSCRIBE on Spotify or Apple Podcasts or search for us on your favorite place to listen to podcasts. I will go over the Top 100-200 Drugs as well as throwing in some recently released drugs that peak my interest. Also, if you'd like to say hello, suggest a drug, or leave any constructive feedback on the show I'd really appreciate it! Leave a voice message at anchor.fm/drugcardsdaily or message us through twitter @drugcardsdaily --- Send in a voice message: https://anchor.fm/drugcardsdaily/message

Drug Cards Daily
#17: omeprazole (Prilosec) | GERD, Heartburn, PUD, and Zollinger-Ellison Syndrome

Drug Cards Daily

Play Episode Listen Later Feb 8, 2021 9:39


Omeprazole is a proton pump inhibiting drug that helps regulate the secretion of stomach acid. The most common brand name is Prilosec. Omeprazole is available over the counter (OTC) as well as by prescription only (RX). The OTC indication is for heartburn and should be used no longer than 14 days in a 4 month period. Typical dosing ranges from 10 -40 mg po qid to bid unless treating Zollinger-Ellison Syndrome. When treating Zollinger-Ellison Syndrome doses can get as high as 180 mg daily. The average Zollinger-Ellison Syndrome dose is 60-70 mg qd. Omeprazole should be used cautiously (if at all) in the geriatric population due to risk of bone fracture if taking longer than 1 year. This drug is primarily metabolized through the CYP2C19 pathway use with strong inducers are to be avoided. Common side effects are headache, stomach pain, diarrhea, and gas. Diarrhea may be of particular concern due to risk of C.diff. Go to DrugCardsDaily.com for episode show notes which consist of the drug summary, quiz, and link to the drug card for FREE! Please SUBSCRIBE, FOLLOW, and RATE on Spotify, Apple Podcasts, or wherever your favorite place to listen to podcasts are. The main goal is to go over the Top 200 Drugs with the occasional drug of interest. Also, if you'd like to say hello, suggest a drug, or leave some feedback I'd really appreciate hearing from you! Leave a voice message at anchor.fm/drugcardsdaily or find me on twitter @drugcardsdaily --- Send in a voice message: https://anchor.fm/drugcardsdaily/message

Journal Club 前沿医学报导
Journal Club 心脏血管星期一 Episode31

Journal Club 前沿医学报导

Play Episode Listen Later Dec 13, 2020 34:12


FDA 批准颈动脉窦压力反射刺激疗法治疗心衰Lancet 血ACE2水平与心血管疾病及死亡的关系Science子刊 一种具有几何适应性的人工心脏瓣膜BAROSTIM NEO系统BAROSTIM NEO系统包括一个植入式脉冲发生器(IPG)、一个颈动脉窦含铅套件和一个程序。医生将BAROSTIM NEO脉冲发生器植入晚期心力衰竭患者的左或右锁骨下方,并在患者的左或右颈动脉窦处放置颈动脉窦导线,然后将脉冲发生器连接到颈动脉窦导线上。医生根据病人的个人需求制定脉冲发生器程序,然后向颈动脉的压力感受器传递电脉冲。压力反射激活(BAT)疗法的目的是激活颈动脉壁的压力感受器,刺激自主神经系统的传入和传出神经,大脑接收到神经信号作出相应反应:松弛血管、降低心率、并通过改善肾功能来减少液体储留。2019年8月,FDA批准BAROSTIM NEO系统用于药物治疗无效的、不符合心脏再同步化治疗适应症的、难治性心力衰竭患者。《BeAT-HF研究:这项研究证明了压力反射刺激疗法(BAT)对射血分数降低的心力衰竭患者的安全性和有效性》Journal of American College of Cardiology,2020年7月 (1) BeAT-HF研究是一项多中心、前瞻性、随机对照研究,纳入408名射血分数降低的心力衰竭(HFrEF)患者中,入组要求:纽约心功能分级II-III级、射血分数≤35%、药物治疗方案稳定≥4周、不符合心脏再同步化治疗的I类指征。这篇报告重点汇报了D队列中、NT-proBNP

Journal Club 前沿医学报导
Journal Club 心脏血管星期一 Episode31

Journal Club 前沿医学报导

Play Episode Listen Later Dec 13, 2020 34:12


FDA 批准颈动脉窦压力反射刺激疗法治疗心衰Lancet 血ACE2水平与心血管疾病及死亡的关系Science子刊 一种具有几何适应性的人工心脏瓣膜BAROSTIM NEO系统BAROSTIM NEO系统包括一个植入式脉冲发生器(IPG)、一个颈动脉窦含铅套件和一个程序。医生将BAROSTIM NEO脉冲发生器植入晚期心力衰竭患者的左或右锁骨下方,并在患者的左或右颈动脉窦处放置颈动脉窦导线,然后将脉冲发生器连接到颈动脉窦导线上。医生根据病人的个人需求制定脉冲发生器程序,然后向颈动脉的压力感受器传递电脉冲。压力反射激活(BAT)疗法的目的是激活颈动脉壁的压力感受器,刺激自主神经系统的传入和传出神经,大脑接收到神经信号作出相应反应:松弛血管、降低心率、并通过改善肾功能来减少液体储留。2019年8月,FDA批准BAROSTIM NEO系统用于药物治疗无效的、不符合心脏再同步化治疗适应症的、难治性心力衰竭患者。《BeAT-HF研究:这项研究证明了压力反射刺激疗法(BAT)对射血分数降低的心力衰竭患者的安全性和有效性》Journal of American College of Cardiology,2020年7月 (1) BeAT-HF研究是一项多中心、前瞻性、随机对照研究,纳入408名射血分数降低的心力衰竭(HFrEF)患者中,入组要求:纽约心功能分级II-III级、射血分数≤35%、药物治疗方案稳定≥4周、不符合心脏再同步化治疗的I类指征。这篇报告重点汇报了D队列中、NT-proBNP

Drug Cards Daily
#8: clopidogrel (Plavix) | Treating STEMI, NSTEMI, MI and Stroke

Drug Cards Daily

Play Episode Listen Later Nov 23, 2020 18:01


Clopidogrel is an antiplatelet drug. When I was in school it was the “classic” example of a prodrug. The brand name is Plavix. This drug works by irreversibly blocking the P2Y12 component of ADP receptors which prevents GPIIb/IIIa activation causing a reduction in platelet aggregation. Based on indications and diagnosis there may be a loading dose of 300 mg to 600 mg with the general treatment dosing of 75 mg po qd. The active form of this drug relies on the Cytochrome P450 CYP2C10 oxidation to active thiol. Common side effects include bleeding, bruising, rash. There is a black box warning for CYP2C19 metabolism and diminished efficacy in poor CYP2C19 metabolizer. Go to DrugCardsDaily.com for episode show notes which consist of the drug summary, quiz, and link to the drug card for FREE! Please SUBSCRIBE, FOLLOW, and RATE on Spotify, Apple Podcasts, or wherever your favorite place to listen to podcasts are. The main goal is to go over the Top 200 Drugs with the occasional drug of interest. Also, if you'd like to say hello, suggest a drug, or leave some feedback I'd really appreciate hearing from you! Leave a voice message at anchor.fm/drugcardsdaily or find me on twitter @drugcardsdaily --- Send in a voice message: https://anchor.fm/drugcardsdaily/message

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Omeprazole is a proton pump inhibitor that can be commonly used for GERD, PUD, and GI prophylaxis. Omeprazole can inhibit CYP2C19 which can cause concentrations of drugs like escitalopram and citalopram to rise. Hypomagnesemia, low B12, osteoporosis, and an increase in C. Diff risk are potential complications with longer term PPI use. PPI's like omeprazole are best given 30-60 minutes before meals. This is something that patients often forget.

Tox in Ten
ACMT Highlights Episode 18: Pharmacogenomics of cardiovascular drugs CYP2C19 and beyond

Tox in Ten

Play Episode Listen Later Aug 12, 2020 11:00


In this episode Dr. Gillian Beauchamp sits down with Dr. Will Heise to discuss the potential benefits of implementing pharmacogenomic testing in clinical inpatient and outpatient settings. 

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Citalopram is an SSRI used in the management of depression, anxiety, OCD, and PTSD. How do you manage the risk of citalopram causing QTc prolongation? I discuss it further in the podcast. Omeprazole can inhibit CYP2C19 which affects the metabolism of citalopram. I discuss the clinical impacts of this interaction in the podcast. Geriatric dosing with citalopram is recommended to be lower than traditional adult dosing. I discuss this further in the podcast.

Getting Personal: Omics of the Heart

Jane Ferguson:                  Hi there. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. I'm Jane Ferguson, and this is Episode 36 from February 2020.                                                 First up, we have “Identification of Circulating Proteins Associated with Blood Pressure Using Mendelian Randomization” from Sébastien Thériault, Guillaume Paré, and colleagues from McMaster University in Ontario. They set out to assess whether they could identify protein biomarkers of hypertension using a Mendelian randomization approach. They analyzed data from a genome-wide association study of 227 biomarkers which were profiled on a custom Luminex-based platform in over 4,000 diabetic or prediabetic participants of the origin trial.                                                 They constructed genetic predictors of each protein and then used these as instruments for Mendelian randomization. They obtained systolic and diastolic blood pressure measurements in almost 70,000 individuals, in addition to mean arterial pressure and pulse pressure in over 74,000 individuals, all European ancestry with GWAS data, as part of the International Consortium for Blood Pressure.                                                 Out of the 227 biomarkers tested, six of them were significantly associated with blood pressure traits by Mendelian randomization after correction for multiple testing. These included known biomarkers such as NT-proBNP, but also novel associations including urokinase-type plasminogen activator, adrenomedullin, interleukin-16, cellular fibronectin and insulin-like growth factor binding protein-3. They validated all of the associations apart from IL-16 in over 300,000 participants in UK Biobank. They probed associations with other cardiovascular risk markers and found that NT-proBNP associated with large artery atherosclerotic stroke, IGFBP3 associated with diabetes, and CFN associated with body mass index.                                                 This study identified novel biomarkers of blood pressure, which may be causal in hypertension. Further study of the underlying mechanisms is required to understand whether these could be useful therapeutic targets in hypertensive disease.                                                 The next paper comes from Sony Tuteja, Dan Rader, Jay Giri and colleagues from the University of Pennsylvania and it's entitled, “Prospective CYP2C19 Genotyping to Guide Antiplatelet Therapy Following Percutaneous Coronary Intervention: A Pragmatic Randomized Clinical Trial”.                                                 They designed a pharmacode genomic trial to assess effects of CYP2C19 genotyping on antiplatelet therapy following PCI. Because loss of function alleles in CYP2C19 impair the effectiveness of clopidogrel, the team were interested in understanding whether knowledge of genotype status would affect prescribing in a clinical setting. They randomized 504 participants to genotype guided or usual care groups and assessed the rate of prasugrel or ticagrelor prescribing in place of clopidogrel within each arm. As a secondary outcome, they assessed whether prescribers adhere to genotype guided recommendations. Of genotyped individuals, 28% carried loss of function alleles. Within the genotype guided group overall, there was higher use of prasugrel or ticagrelor with these being prescribed to 30% of patients compared with only 21% in the usual care group. Within genotype individuals carrying loss of function alleles, 53% were started on prasugrel or ticagrelor, demonstrating some adherence to genotype guided recommendations.                                                 However, this also meant that 47% of people whose genotype suggested reduced effectiveness were nevertheless prescribed clopidogrel. This study highlights that even when genotype information is available, interventional cardiologists consider clinical factors such as disease presentation and may weight these more highly than genotype information when selecting antiplatelet therapy following PCI.                                                 The next paper is about “Deep Mutational Scan of an SCN5A Voltage Sensor and comes to us from Andrew Glazer, Dan Roden and colleagues from Vanderbilt University Medical Center. In this paper, the team aim to characterize the functional consequences of variants and the S4 voltage sensor of domain IV and the SCN5A gene using a high throughput method that they developed. SCN5A encodes the major voltage gated sodium channel in the heart and variants in SCN5A can cause multiple distinct genetic arrhythmia syndromes, including Brugada syndrome, long QT syndrome, atrial fibrillation, and dilated cardiomyopathy, and have been linked to sudden cardiac death.                                                 Because of this, there's considerable interest in understanding the functional and clinical consequences of different variants, but previous approaches were time consuming and results were often inconclusive with many variants being classified as uncertain significance. This newly developed deep mutational scanning approach allows for simultaneous assessment of the function of thousands of variants, making it much more efficient than low throughput patch clamping. The team assessed the function of 248 variants using a triple drug assay in HEK293T cells expressing each variant and they identified 40 putative gain of function and 33 putative loss of function variants. They successfully validated eight of nine of these by patch clamping data. Their study highlights the effectiveness of this deep mutational scanning approach for investigating variants in the cardiac sodium channel SCN5A gene and suggests that this may also be an effective approach for investigating putative disease variants and other ion channels.                                                 The next article is a research letter from Connor Emdin, Amit Khera, and colleagues from Mass General Hospital in the Broad Institute entitled, “Genome-Wide Polygenic Score and Cardiovascular Outcomes with Evacetrapib in Patients with High-Risk Vascular Disease: A Nested Case-Control Study”. In this study, the team set out to probe the utility of using polygenic risk scores to predict the risk of major adverse cardiovascular events within individuals already known to be at high cardiovascular risk and to assess whether genetic scores can identify individuals who would benefit from the use of a CETP inhibitor such as Evacetrapib. They analyze data from the ACCELERATE trial which had tested Evacetrapib in a high risk population, and they found no effect on the incidents of major adverse cardiovascular events overall. Within a nested case-control sample of individuals experiencing major CVD events versus no events, they applied a polygenic risk score and found that the score predicted major cardiovascular events.                                                 Patients in the highest quintile of the risk score were at 60% higher risk of a major cardiovascular event than patients in the lowest quintile. There was no evidence of any interaction between the genetic risk score and Evacetrapib. These data suggest that genetic risk scores may have utility in identifying individuals at high risk events but may not have utility in identifying individuals who may derive more benefit from CETP inhibition. The next letter concerns “Epigenome-Wide Association Study Identifies a Novel DNA Methylation in Patients with Severe Aortic Valve Stenosis” and comes from Takahito Nasu, Mamoru Satoh, Makoto Sasaki and colleagues from Iwate Medical University in Japan. They were interested in understanding whether differences in DNA methylation could underlie the risk of aortic valve stenosis. They conducted an EWAS or epigenome-wide association study of peripheral blood mononuclear cells or PBMCs from 44 individuals with aortic stenosis and 44 disease free controls.                                                 They collected samples at baseline before a surgical intervention in the individuals with aortic stenosis and collected a follow-up sample one year later. They found that DNA methylation at a site on chromosome eight mapping to the TRIB1, or tribbles homolog one gene, was lower in the aortic stenosis group than in the controls at baseline. They replicated the association in an independent sample of 50 cases and 50 controls. TRIB1 MRNA levels were higher in the aortic stenosis group than the controls. When they looked at methylation status one year after aortic valve replacement or a transcatheter aortic valve implantation in patients with stenosis, they found that DNA methylation had increased in the cases while TRIB1 MRNA decreased. These data suggests that methylation status of TRIB1 and expression of TRIB1 may relate to the disease processes in aortic stenosis such as hemodynamic dysregulation and they can be reversed through surgical intervention. Changes in the methylation status of TRIB1 could be a novel biomarker of response to aortic valve replacement.                                                 The next letter comes from Niels Grote Beverborg, Pim van der Harst, and colleagues from University Medical Center Groningen and is entitled, “Genetically Determined High Levels of Iron Parameters Are Protective for Coronary Artery Disease”. Their study addresses the conflicting hypotheses that high iron status is either deleterious or protective against cardiovascular disease. The team constructed genetic predictors of serum iron status using 11 previously identified snips and tested the genetic association with CAD in UK Biobank data from over 408,000 white participants. Overall, the genetic score for higher iron status was associated with protection against CAD. Ten of the snips suggested individual neutral or protective effects of higher iron status on CAD, while one iron increasing snip was associated with increased risk of disease but this was thought to be likely through an iron independent mechanism. Overall, these data suggest that a genetic predisposition to higher iron status does not increase risk of CAD and is actually protective against disease.                                                 The final letter is entitled, “Confidence Weighting for Robust Automated Measurements of Popliteal Vessel Wall MRI” and comes from Daniel Hippe, Jenq-Neng Hwang, and colleagues from the University of Washington. They were interested in assessing whether images of popliteal artery wall incidentally obtained during knee MRI as part of an osteoarthritis study could be used to study the development and progression of atherosclerosis. They developed an automated deep learning based algorithm to segment and quantify the popliteal artery wall in images obtained over 10 years in over 4,700 individuals. Their approach, which they named FRAPPE, or fully automated and robust analysis technique for popliteal artery evaluation, was able to reduce the average time required for segmentation analysis from four hours to eight minutes per image. They applied weights based on confidence for each segment to automatically improve the accuracy of aggregate measurements such as mean wall thickness or mean lumen area. Their data suggest that this automated method can rapidly generate useful information on atherosclerosis from MRI images obtained as part of other studies. When combined with other data. This approach may facilitate novel discovery in secondary analyses of existing studies in an efficient and cost effective way.                                                 And that's all for issue one of 2020. Come back next time for more of the latest papers from Circulation: Genomic and Precision Medicine. Speaker 2:                           This podcast is copyright American Heart Association 2020.  

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Diazepam has numerous dosage forms. There are rectal, injectable, and oral formulations of the drug that are commonly used in clinical practice. Diazepam has 2 major metabolic pathways. It is broken down primarily by CYP3A4 and CYP2C19, leaving open the potential for numerous drug interactions. I discuss this further in the podcast. Diazepam is on the Beers list because it has a tendency to accumulate in the geriatric patient population and cause adverse effects like sedation, confusion, and falls. Respiratory depression, coma, and death are significantly more likely in overdose situations where opioids are used in combination with benzodiazepines like diazepam.

Science Says
Use of Pharmacogenetic Drugs by the Dutch Population

Science Says

Play Episode Listen Later Jul 24, 2019


Introduction: The Dutch Pharmacogenetics Working Group (DPWG) indicated a list of actionable genotypes that affect patients’ response to more 50 drugs; these drugs which show variable effects based on patients’ genetic traits were named as pharmacogenetics (PGX) drugs. Preemptive genetic testing before using these drugs may protect certain patients from serious adverse reactions and could help in avoiding treatment failures. The objectives of this study include identifying the rate of PGX drug usage among Dutch population, estimating the level of users who carry the actionable genotypes and determining the main genes involved in drug’s effect variability. Methods: Usage of PGX drugs over 2011–2017 by the insured population (an average of 11.4 million) in outpatient clinics in Netherlands was obtained from the publically available GIP databank. The data of 45 drugs were analyzed and their interactions with selected pharmacogenes were estimated. Frequency of actionable genotypes of 249 Dutch parents was obtained from the public database: Genome of Netherlands (GoNL), to identify the pattern of genetic characteristics of Dutch population. Results: Over a 7 year period, 51.3 million exposures of patients to PGX drugs were reported with an average of 5.3 exposures per each drug user. One quarterof the exposures (12.4 million) are predicted to be experienced by individuals with actionable genotypes (risky exposures). Up to 60% of the risky exposures (around 7.5 million) were related to drugs metabolized by CYP2D6. SLCO1B1, and CYP2C19 were also identified among the top genes affecting response of drugs users (involved in about 22 and 12.4% of the risky exposures, respectively). Cardiovascular medications were the top prescribed PGX drug class (43%), followed by gastroenterology (29%) and psychiatry/neurology medications (15%). Women use more PGX drugs than men (55.8 vs. 44.2%, respectively) with the majority (84%) of users in both sexes are above 45 years. Conclusion: PGX drugs are commonly used in Netherlands. Preemptive panel testing for CYP2D6, SLCO1B1, and CYP2C19 only could be useful to predict 95% of vulnerable patients’ exposures to PGX drugs. Future studies to assess the economic impact of preemptive panel testing on patients of older age are suggested. Alshabeeb MA, Deneer VHM, Khan A, Asselbergs FW. Use of Pharmacogenetic Drugs by the Dutch Population. Front Genet. 2019;10:567. Published 2019 Jul 2. doi:10.3389/fgene.2019.00567. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Sections of the Abstract, Introduction, and Discussion are presented in the Podcast. Link to the full-text article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614185/

Real Life Pharmacology - Pharmacology Education for Health Care Professionals

Clopidogrel is an antiplatelet agent that is often used in combination with aspirin to help reduce the risk of an MI. The risk of bleed is a high priority with the use of clopidogrel. Patients must be monitored for signs and symptoms of bleeding and bruising. Clopidogrel is a prodrug that is converted to its active metabolite by CYP2C19. Fluconazole can inhibit CYP2C19 which may reduce the effectiveness of clopidogrel.

Getting Personal: Omics of the Heart

Jane Ferguson:                Hi everybody. Welcome to Episode 25. I'm Jane Ferguson. This is Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine, and it is February 2019. Let's get started.                                            The first paper this issue is a concurrent publication and comes to us from 29 different editors-in-chief of 27 major cardiovascular journals, led by Joseph Hill, editor-in-chief of Circulation. This editorial, entitled Medical Misinformation: Vet the Message! gives a pointed reminder of the real life risks of misinformation that spreads rapidly through social media and influences people who are making crucial decisions about healthcare for themselves and their families. Quoting directly from the paper they say, "We, the editors-in-chief of the major cardiovascular scientific journals around the globe, sound the alarm that human lives are at stake. People who decline to use a statin when recommended by their doctor, or parents who withhold vaccines from their children, put lives in harm’s way."                                            In this editorial they call on those in the media to do a better job of taking responsibility for the information they disseminate. In particular, in evaluating content before disseminating it, and avoiding false equivalencies where overwhelming scientific evidence favors one side of the so called "debate." I'll add to that that those of us who are medical or scientific professionals need to do our best to take the time to explain our science to those around us. The science underlying most of medicine is complex and hard to explain and sometimes incomplete, but we do a disservice to people if we don't at least try. Let's all join the editors in calling everyone to vet information and hold those with power in the media accountable for the spread of misinformation they enable.                                            Next up this issue, a paper from Jody Ingles, Birgit Funke, and co-authors from the University of Sydney, Harvard Medical School and others, entitled Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. As panels for clinical genetic testing expands to include more genes, there are more and more variants that are detected and reported to patients, but do not necessarily have underlying evidence to support or disprove pathogenicity. This group aimed to systematically assess the validity of potential gene disease associations with hypertrophic cardiomyopathy and left ventricular hypertrophy by curating variants based on multiple lines of genetic and experimental evidence.                                            They categorized genes based on the strength of evidence of disease causation and reviewed HCM variant classification in the ClinVar variant and phenotype repository. They selected 57 genes to study based on those which were frequently included on test panels or had previous reports of association with HCM. Of HCM genes, only 24% were characterized as having definitive evidence for disease causation, 10% of the genes had moderate evidence, while 66% had limited or no evidence for disease causation. Of syndromic genes, 50% were definitively associated with left ventricular hypertrophy. Of over 4,000 HCM variants in ClinVar, 31% were in genes that, on review, had limited or no evidence for association with disease.                                            What this study shows is that many genes that are included on panels for diagnostic testing for HCM actually have little evidence for any relationship to disease. Systematic curation is required to improve the accuracy of information being acquired and reported to patients and families with HCM.                                            Moving on to the next paper. This manuscript describes the international Triadin Knockout Syndrome Registry: The Clinical Phenotype and Treatment Outcomes of Patients with Triadin Knockout Syndrome. It comes from Daniel Clemens, Michael Ackerman and colleagues from the Mayo Clinic. So, Triadin Knockout Syndrome is a rare inherited arrhythmia syndrome and it is caused by recessive null mutations in the cardiac triadin gene. To improve the ability to study this rare syndrome, this group established the International Triadin Knockout Syndrome Registry, with the goal of including patients across the world with homozygous or compound heterozygous triadin null mutations. The registry currently includes 21 patients from 16 families who have been carefully phenotyped and many of whom exhibit T wave inversions and have transient QTC prolongation.                                            The average age for first presentation with cardiac arrest or syncope was three years of age. Despite a variety of treatments, the majority still have recurrent breakthrough cardiac events. These data highlight the importance of conducting testing for triadin mutations in patients, particularly young children presenting with cardiac arrest, and as this registry grows it will enable a better understanding of the disease and hopefully pave the way for future triadin gene therapy trials.                                            The next paper comes from Daiane Hemerich, Folkert Asselbergs and colleagues from Utrecht University, and is entitled Integrative Functional Annotation of 52 Genetic Loci Influencing Myocardial Mass Identifies Candidate Regulatory Variants and Target Genes. They were interested in whether variants that have been associated with myocardial mass may exert their influence through regulatory elements. They analyze the hearts of hypertrophic cardiomyopathy patients and non-disease controls and ran ChIP-seq in 14 patients and 4 controls and RNA-seq in 11 patients and 11 controls.                                            They selected 52 loci that have been associated with electric cardiogram defined abnormalities in amplitude and duration of the QRS complex and looked specifically at these gene regions. They found differential expression of over 2,700 different genes between HCM and control. They further found differential acetylation over 7,000 regions. They identified over 1000 super enhancers that were unique to the HCM samples. They found significant enrichment for differential regulation between disease and control hearts within the loci previously associated with HCM, compared with loci not associated with HCM. They analyzed regions where putative causal SNPs overlapped regulatory regions, and identified 74 co-localized variants within 20 loci, with particular enrichment for SNPs in differentially expressed promoters. They confirmed associations with 18 previously implicated genes, as well as identifying 14 new genes. Overall, what this study demonstrates is that by looking at regulatory features that differ in affected tissues between disease and healthy individuals, we can learn more about the underlying mechanisms of disease.                                            Moving on, we have a paper entitled Interleukin-6 Receptor Signalling and Abdominal Aortic Aneurysm Growth Rates from Ellie Paige, Marc Clément, Daniel Freitag, Dirk Paul, Ziad Mallatt and colleagues from the University of Cambridge. They aimed to investigate a specific SNP in the Interleukin-6 receptor rs2228145, which has been associated with abdominal aortic aneurysms. Inflammation is thought to be a contributor to aneurism progression. The authors hypothesized that the IL-6 receptor's SNP may affect aneurysm growth. They use data from over 2,800 subjects from nine different prospective cohorts and examine the effect of genotype on annual change in aneurysm diameter. Although there was a significant association between genotype and baseline aneurysm size, there was no statistically significant association with growth over time. It appeared that growth was less in minor allele carriers, but the effect if true, was small and the analyses were not powered for small effect sizes.                                            Sample sizes are limited for cohorts with abdominal aortic aneurysms and the authors already used all available worldwide data. In complimentary experiments in mice, they examined the effect of blocking the IL-6 receptor pathway. They found that selective blockage of the IL-6 trans-signaling pathway mediated by soluble IL-6 receptor was associated with improved survival in two different mouse models. However, blocking the classical membrane-bound IL-6 signaling pathway in addition to the trans-signaling pathway did not lead to improved survival. Although the severe lack of enough subjects for well powered genetic analyses is a major limitation for the study of abdominal aortic aneurism and humans, this paper demonstrates the potential relevance of the IL-6 trans-signaling pathway and aneurysm growth, and suggests that further interrogation of this pathway may be informative in figuring out new ways to prevent aneurysm progression and rupture.                                            Next, we have the first of two research letters this issue. The letter on Common Genetic Variation in Relation to Brachial Vascular Dimensions and Flow-Mediated Vasodilation comes to us from Marcus Dorr, Renate Schnabel and co-authors from several institutions including University Heart Center in Hamburg. They were interested in gaining a better understanding of the genetics underlying vascular function. They ran a meta-analysis of brachial artery diameter, maximum brachial artery diameter adjusted for baseline diameter, and flow-mediated dilation in over 17,000 individuals of European ancestry from six different GWA studies. They sought to replicate findings in over 9,500 newly genotyped individuals. They identified two novel SNPs for baseline brachial artery diameter, but no SNPs reached significance or replication from maximum brachial artery diameter or flow-mediated dilation. One of the significant SNPs was located in the insulin-like growth factor binding protein 3, or IGFBP-3 gene. They analyzed plasma IGFBP-3 protein levels in 1,400 individuals and found a significant association with brachial artery diameter.                                            The second SNP they identified is located within the AS3MT gene for arsenite methyltransferase, and this SNP appears to be an eQTL for AS3MT expression in monocytes and arterial tissue. Along with identifying these two genes with potential involvement in baseline brachial artery diameter, this study also supports a low genetic component to flow-mediated dilation, indicating that environmental factors may be or more influential in FMD.                                            The final research letter comes from Alexis Williams, Craig Lee and colleagues from the University of North Carolina and is entitled CYP2C19 Genotype-Guided Antiplatelet Therapy and 30-Day Outcomes After Percutaneous Coronary Intervention. It is known that loss of function variants in CYP2C19 effect bioactivation of clopidogrel, and CYP2C19 genotyping is increasingly used to guide antiplatelet therapies. The authors were interested in whether genotype-guided therapy is effective in reducing major adverse cardiovascular events in the short term, specifically in the 30 days following percutaneous coronary intervention, when most MACE occurs. They followed over a thousand individuals undergoing PCI and CYP2C19 testing and looked at atherothrombotic and bleeding outcomes. Consistent with implementation of genotype-guided therapy, individuals carrying loss of function alleles were less likely to be prescribed clopidogrel.                                            However, out of loss of function carriers, those who did take clopidogrel had significantly higher risk of MACE with no difference in bleeding risk. There was no difference by therapy in individuals without a loss of function allele. What this study shows us is that even in the 30 days following PCI, genotype-guided therapy can be effective in protecting individuals carrying loss of function CYP2C19 variants.                                            And that's it from us for February. Go online to ahajournals.org/journal/circgen to read the full papers, access videos and more, and of course to delve into the podcast archives. Thank you for listening and I look forward to bringing you more next month. This podcast was brought to you by Circulation: Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.  

Getting Personal: Omics of the Heart

Jane:                                     Hi, everyone. Welcome to Episode 18 of Getting Personal: Omics of the Heart. I'm Jane Ferguson, and this podcast is brought to you by the Circulation: Genomic and Precision Medicine Journal and the American Heart Association Counsel on Genomic and Precision Medicine. It is July 2018, which means that the best possible place to be listening to this episode is at the beach, but failing that I can also recommend listening on planes, during your commute, while exercising or while drinking a nice cup of tea.                                                 So before I get into the papers we published this month, I want to ask for your help. If you're listening to this right now, hi, that means you, we're a year and a half into podcasting and I would love to know what content you like and where we could improve things. We have a poll up on Twitter this week, and I would really appreciate your input. If you're listening to this a little bit later and miss the active voting part of the poll, you can still leave suggestions.                                                 Okay, so what I would like you to do right now is to go to Twitter. You can find us as Circ_Gen and locate the poll. If you don't already follow us on Twitter, go do that now too. We want you to let us know what content we should focus on and what is most useful to you, so go ahead and pick your favorites from the options and also please reply or tweet at us with other thoughts and suggestions.                                                 Options include giving summaries of the recent articles like I'm about to do later this episode, conducting interviews with authors of recently published papers, interviews with people working in cardiovascular genomics, broader topics. For example, to get their insight on career paths and lessons learned along the way.                                                 And something we have not done yet on the podcast but are considering, would be to record podcasts that focus on particular topics in genomics and precision medicine. These could give some background on an emerging field or technology and we could talk to experts who are leading particular innovations in the field. So, if that sounds good to you, let me know! If you're not on Twitter, I don't want to exclude you, so you can email me at jane.f.ferguson@vanderbilt.edu and give me your thoughts that way. I'm looking forward to hearing from you.                                                 Okay, so on to the July 2018 issue of Circ.: Genomic and Precision Medicine. First up is a PhWAS from Abrahim Rao, Eric Ingelsson, and colleagues from Stanford. The discovery of the PCSK9 gene as a regulator of cholesterol levels has led to a new avenue of LDL lowering therapies through PCSK9 inhibition. However, some studies suggest that long term use of PCSK9 inhibitors could have adverse consequences. Because of the long follow-up time required, it will take many more years to address this question through clinical studies. However, genetic approaches offer a fast and convenient alternative to address the issue.                                                 In this paper, entitled: "Large Scale  Phenome-Wide Association Study of PCSK9 Variants Demonstrates Protection Against Ischemic Stroke," the authors use genetic and phenotype data from over 300,000 individuals in the UK BioBank to address whether genetic loss of function variants in PCSK9 are associated with phenotypes including coronary heart disease, stroke, type II diabetes, cataracts, heart failure, atrial fibrillation, epilepsy, and cognitive function.                                                 The missense variant RS11591147 was associated with protection against coronary heart disease and ischemic stroke. This SNP also associated with type II diabetes after adjustment for lipid medication status. Overall, this study recapitulated the associations between PCSK9 and coronary disease, and revealed an association with stroke.                                                 Previous studies suggested use of LDL lowering therapies may increase risk of cataracts, epilepsy, and cognitive dysfunction, but there was no evidence of association in this study. Overall, this study provides some reassurance that the primary effect of PCSK9 is on lipids and lipid related diseases, and that any effects on other phenotypes appear to be modest at best. While a PhWAS can't recapitulate a clinical trial, what this study indicates is that PCSK9 inhibition is an effective strategy for CVD prevention, which may confer protection against ischemic stroke and does not appear to convey increased risk for cognitive side effects.                                                 Next up we have a manuscript form Jason Cowan, Ray Hershberger, and colleagues from Ohio State University College of Medicine. Their paper, "Multigenic Disease and Bilineal Inheritance in Dilated Cardiomyopathy Is Illustrated in Non-segregating LMNA Pedigrees," explored pedigrees of apparent LMNA related cardiomyopathy identifying family members who manifested disease, despite not carrying the purported causal LMNA variant. Of 19 pedigrees studies, six of them had family members with dilated cardiomyopathy who did not carry the family's LMNA mutation. In five of those six pedigrees, the authors identified at least one additional rare variant in a known DCM gene that was a plausible candidate for disease causation.                                                 Presence of additional variants was associated with more severe disease phenotype in those individuals. Overall, what this study tells us is that in DCM, there is evidence for multi-gene causality and bilineal inheritance may be more common than previously suspected. Future larger studies should consider multi-genic causes and will be required to fully understand the genetic architecture of DCM.                                                 Yukiko Nakano, Yasuki Kihara, and colleagues from Hiroshima University published a manuscript detailing how HCN4 gene polymorphisms are associated with tachycardia inducted cardiomyopathy in patients with atrial fibrillation. Tachycardia induced cardiomyopathy is common in subjects with atrial fibrillation, but the pathophysiology is poorly understood. Recent studies have implicated the cardiac hyperpolarization activated cyclic nucleotide gated channel gene, or HCN4, in atrial fibrillation and ventricular function.                                                 In this paper, the authors enrolled almost 3,000 Japanese subjects with atrial fibrillation, both with and without tachycardia-induced cardiomyopathy, as well as non-AF controls. They compared frequency of variants in HCN4 in AF subjects with or without tachycardia-induced cardiomyopathy, and found a SNP, RS7164883, that may be a novel marker of tachycardia-induced cardiomyopathy in atrial fibrillation.                                                 Xinyu Yang, Fuli Yu, and coauthors from Tianjin University were interested in finding causal genes for intracranial aneurysms, and report their results in a manuscript entitled, "Rho Guanine Nucleotide Exchange Factor ARHGEF17 Is a Risk Gene for Intracranial Aneurysms." They sequenced the genomes of 20 Chinese intracranial aneurysm patients to search for potentially deleterious, rare, and low frequency variants. They found a coding variant in the ARHGEF17 gene which was associated with associated with increased risk in the discovery sample, and which they replicated in a sample of Japanese IA and in a larger Chinese sample.                                                 They expanded this to other published studies, including individuals of European-American and French-Canadian origin and found a significantly increased mutation burden in ARHGEF17 in IA patients across all samples. They were interested in further functional characterization of this gene and found that Zebra fish ARHGEF17 was highly expressed in blood vessels in the brain. They used morpholinos to knock down ARHGEF17 in Zebra fish, and found that ARHGEF17 deficient Zebra fish developed endothelial lesions on cerebral blood vessels, and showed evidence of bleeding consistent with defects in the vessel. This study implicates ARHGEF17 as a cerebro-vascular disease gene which may impact disease risk through effects on endothelial function and blood vessel stability.                                                 Sumeet Khetarpal, Paul Babb, Dan Rader, Ben Voight, and colleagues from the University of Pennsylvania used targeted resequencing to look at determinants of extreme HDL cholesterol in their aptly titled manuscript, "Multiplexed Targeted Resequencing Identifies Coding and Regulatory Variation Underlying Phenotypic Extremes of HDL Cholesterol in Humans." Stay tuned because we're gonna hear more about this paper from the first author Dr. Sumeet Khetarpal later this episode.                                                 Rounding out this issue we have a Perspective article from Chris Haggerty, Cynthia James, and coauthors from Geisinger and Johns Hopkins Medical Center entitled, "Managing Secondary Genomic Findings Associated With Arrhythmogenic Right Ventricular Cardiomyopathy: Case Studies and Proposal for Clinical Surveillance." In this paper the authors discuss the challenges for returning findings from clinical sequencing for arrhythmogenic right ventricular cardiomyopathy, presenting case studies exemplifying these challenges. They also propose a management approach for returning clinical genomic findings, and discuss new innovations in the light of precision medicine.                                                 We also published a review article by Pradeep Natarajan, Siddhartha Jaiswal, and Sekar Kathiresan from MGH on "Clonal Hematopoiesis Somatic Mutations in Blood Cells and Atherosclerosis", which discusses recent advances in our knowledge on the role of somatic mutations in cardiovascular disease risk.                                                 Finally, we have an update on some pharmacogenomics research into CYP2C19 Genotype-Guided Antiplatelet Therapy by Craig Lee and colleagues which we published a few months ago. Dr. Lee was also featured on Podcast episode 15 in April of this year.                                                 Jernice Aw and colleagues from Khoo Teck Puat Hospital, Singapore shared from complimentary data from their sample of 247 Asian subjects which found the risk for major adverse cardiovascular events was over 30-fold greater for poor metabolizers, as defined by CYP2C19 genotype on clopidogrel, as compared to those with no loss of function allele.                                                 You can read that letter and the response from Dr. Lee and colleagues online now. And, as usual, all of the original research articles come with an editorial to help give some more background and perspective to each paper. Go to circgenetics.ahajournals.org to find all the papers and to access video summaries and more.                                                 Our interview is with Dr. Sumeet Khetarpal who recently completed his MD-PhD training at the University of Pennsylvania, and is currently a resident in Internal Medicine at Massachusets General Hospital. Sumeet kindly took some time out from his busy residency schedule to talk to me about his recently published paper, and to explain how molecular inversion probe target capture actually works.                                                 So I am here with Dr. Sumeet Khetarpal who is co-first author on a manuscript entitled, "Multiplexed Targeted Resequencing Identifies Coding and Regulatory Variation Underlying Phenotypic Extremes of High-Density Lipoprotein Cholesterol in Humans."                                                 Welcome Sumeet, thanks for taking the time to talk to me. Dr. Khetarpal:                    Thank you so much Dr. Ferguson, it's really a pleasure to talk to you today. Jane:                                     Before we get started, maybe you could give a brief introduction on yourself and then how you started working on this paper. Dr. Khetarpal:                    Sure, so this work actually was a collaboration that came out at the University of Pennsylvania that I was involved with through my PhD thesis lab, my mentor was Dan Rader, and also a lab that is a somewhat newer lab at Penn, Benjamin Voight's lab which is a strong sort of computational genomic lab.                                                 This work actually highlights the fun of collaborating within your institution. We had, for some time, been interested in developing a way to sequence candidate genes. Both known genes and also new genes that have come out of genome-wide association studies that underlie the extremes of HDL cholesterol, namely very high cholesterol versus low HDL cholesterol. We've been looking for a cost-effective and scalable way to do this.                                                 Independently, Ben, who is very interested in capturing the non-coding genome, was interested in developing a method to better understand the non-coding variation, both common and rare variation that may be present at all of these new loci that have come out for complex traits such as HDL.                                                 We, at some Penn event several years ago, were talking about our common interest and Ben had actually identified this work that had come out of J. Shendure's lab at the University of Washington. A paper by the first author, Brian O'Rouke, in Science in 2012 in which they had developed an approach that involved molecular inversion probes, or MIPs, to capture regions of the genome related to target the gene that they were interested in studying for autism-spectrum disorders.                                                 They had applied this largely to coding regions of, I think, almost 50 genes and almost 2,500 patients with the feedback to do deep, targeted sequencing. So our thought was, well, we could try to apply this approach and adapt it to capture non-coding regions, and also see if we can expand the utility of this approach to study the phenotypic extremes of a complex trait such as HDL cholesterol. Jane:                                     Yeah, that's really cool. I love how you saw this method in a totally different application and then realized that there was expertise at Penn that you could bring together to apply this in a different way.                                                 I'd love to hear more about this MIP, the molecular inversion probe. How does it work? How difficult is it to actually do? Is it very different from normal library preparation for sequencing or is it something that's actually relatively easy to apply? Dr. Khetarpal:                    These MIP probes are oligonucleotide probes that capture your region of interest by flanking them and capturing by gap filling. There's a method to capture parts of the genome in a library-free way. They do ultimately involve barcoding the way traditional library-based target capture does and then deep sequencing.                                                 But the most impressive feature about them is just that they're very scalable. I think in the original paper by O'Rouke and colleagues they were able to sequence their set of genes and their set of samples at about a sample preparation cost of $1 per sample, and we were actually able to do about the same for our study.                                                 The main utility of the approach is just the economic scalability, and the ability to customize your panel to capture several regions of the genome that are adjacent to each other. Jane:                                     Right, so how many genes or regions can you multiplex at the same time? Is it just one prep, like you just design all of your oligos, you put them all together in one reaction, or are you doing separate reactions for each region? Dr. Khetarpal:                    We're actually doing all of our oligos together. In our case, I think it ended up being around the order of almost 600 oligos together to capture our ultimately 50kB of genomic territory that we wanted to capture. Really, our study was kind of a pilot experiment where we picked a few genes or regions of high interest to us, both known genes that effect HDL and also those that have been implicated in genome-wide association studies that were of high interest to our labs.                                                 I think that this approach could actually be expanded to capture much more genomic territory in a single capture reaction. We sort of touched the surface probably of what we could do. Jane:                                     Wow, that's cool! And then for sequencing it, I guess it's really just a function of how many samples you wanna multiplex and how much you want to sequence from each region. So I suppose the way you did it, you had about 50kB and then you had over 1,500 participants and you were able to do those on a single HiSeq run, right? Dr. Khetarpal:                    Right. Jane:                                     So I suppose if you'd done more genetic regions, you would've had fewer people and vice versa so you can balance that out depending on if you're having more samples or more genomic regions to sequence. Dr. Khetarpal:                    Exactly, in certain ways the design of our experiment we had a limited sample size that did afford us some luxury in terms of knowing that we would have deep coverage of the region that we were targeting. I think that's always a critical question in sort of targeted or just sequencing in general. The balance between the number of regions that you want to sequence and the number of samples you want to sequence is going to dictate what your sequencing depth with be. Jane:                                     Right, okay so I guess if we go on to what you actually found, how'd you pick this? You picked seven regions which encompasses eight candidate genes for HDL, so how did you select those? Dr. Khetarpal:                    The population that we were studying, the samples we were looking to sequence were largely individuals which fall into two bins if you will. One was extremely high HDL cholesterol which we're defining as the greater than the 95th percentile, but really there was a range within that population that spanned individuals with probably greater than the 99th percentile of HDL.                                                 We were hoping as a proof of principle effort to identify variation in genes that were known causes of high HDL cholesterol in prior studies of Mendelian genes for HDL. So genes such as LIP gene which encodes endothelial lipase or CETP or SCARB1, these 3 genes are, at this point, well-known genes that loss of function mutations are associated with extremely high HDL. We thought that capturing some of those genes would potentially both provide a level of validation for the approach, hypothesizing that individuals with high HDL would be enriched with these genes, but also may allow us to find new variants in these genes or also non-coding variants which has not previously been studied before.                                                 Some of the genes came out from that line of thinking, then some of the other genes happened to be genes that in the Rader laboratory we had a vested interest in understanding the genetic variation that might link the genes to HDL, which may not have necessarily come out before.                                                 For example, the gene GALNT2 is one of the first g-loss implicated novel genes for HDL, novel as in the earliest g-loss study for plasma lipids had identified that gene as associated with HDL but it never had come out before as being so. Our laboratory was very interested in better understanding the genetic relationship between genes such as GALNT2 and several of the others such as CCDC92 and ZNF664 with HDL.                                                 It ended up being a hodge-podge or a sampling of genes that had at some level been implicated with HDL, but really it's just a proof of principle that this method could work for both identifying variation in known genes and also less studied ones. Jane:                                     You validated the MIP genotyping by exome genotyping, and then saw concordance of over 90%, is that lower than you were expecting? Was it about what you were expecting based on these two different methods of genotyping? Dr. Khetarpal:                    Yes, I think we were expecting somewhere on the order of 90 plus percent. It's hard to know why we just hit that, we likely would've benefited from being able to genotype all of the individuals by the exome chip that we had sequenced as well, where we were able to validate in about two-thirds of those individuals.                                                 It's hard to know exactly what the cause of the about 10% discordance rate might be, whether it's just in certain samples the genotyping quality was perhaps on the border of being valid or the sequencing quality. Jane:                                     Right, I'm wondering sort of with the MIP, what's the gold standard? Is the XM chip genotyping still the gold standard and the MIP maybe is more error-prone, or perhaps the other way around? Or is it you can't tell at this point which is the true genotype and which is an error potentially for those discordant ones? Dr. Khetarpal:                    Certainly whenever there's a new sequencing methodology that is proposed I think it's critical to have some sort of validation. We happened to cover regions that would span the genome enough that we had XM chip genotyping in a large subset, that that might be the best approach. But if you had a limited number of regions or variance that you were interested in one could imagine also doing Sanger sequencing as the tried and tested validation approach. Of course it becomes not so scalable at a certain point.                                                 Certainly we would say that the MIPs, while the method has been developed and expanded by the Shendure lab, our hope is that through our studies maybe it will be applied further. It's still very much a new approach and so validation is key. Jane:                                     Very important. What do you think was the most exciting finding that came out of this, after you analyzed the data, what were you most excited about seeing? Dr. Khetarpal:                    The critical finding for us, which I think implies the utility of the approach, was just the validation of four of the loci that we had studied. Validation in our cohort of known genome-wide significant associations for HDL that had been published previously in almost 200,000 individuals in terms of sample size, in our experiment involving just about 1,500 people we were able to find consistent associations of those same variants that segregated with low versus high HDL. Directionally consistent with the large genome-wide association studies.                                                 I think the value of this finding is really just to emphasize the utility of the case control design in these phenotypic extremes, in addition to the overarching goal of our study, which was in a way that perhaps provides the most validation of the approach in terms of concordance with prior known studies. Jane:                                     So if somebody was listening to this and was trying to decide should they use MIP for a study they have in mind, should they use another technique? Based on your experience, what would you recommend? Dr. Khetarpal:                    I think in our current stage it's a very exciting time because we're just seeing whole genome sequencing really take off and being used at scale to ask critical questions about non-coding variation as it relates to both disease and complex traits. I don't think we're quite there yet with being able to apply that approach in a cost effective manner. The ability to annotate and analyze that data is still at it's infancy. The utility of the MIPs is that it provides a very cheap alternative.                                                 I can say from my experiences actually doing the capture and preparation from sample to sequencer stage that it's a very easy to use methodology that is very fast and cheap. That if one is really interested in a handful, or more than a handful, of candidate genes and their non-coding regions as it relates to a trait or disease of interest, it may not be the era for going full on with whole genome sequencing, especially at the current cost. That's where I think the MIPs really come in to be very useful. Jane:                                     It sounds great, is there anything else that you'd like to mention? Dr. Khetarpal:                    Just to say that we recognize it's a relatively small study as our pioneer approach with this method but that the Rader lab and Voight labs are actively pursuing larger applications of this to study, not only HDL, but other complex traits, such as diabetes, in much larger populations. I can't overemphasize how easy of a method it is to apply, but also that I think a bigger take home of this study for me as a very recent graduate student working in a very collaborative institution the ability of two laboratories to come together with different sets of expertise to try to tackle a problem that I think goes beyond the individual science. For any human geneticist how to find the variation you're interested in and not break the bank is kind of at the core of what we do, and so I think it was very fun to be part of this collaboration and our hope is that the outcome of it is a method that can be useful for many people, both in our field and beyond. Jane:                                     I think it's great and I'm hoping this will inspire a lot of other people to try this method and see if it can work for them. So, congratulations on the study, it's really nice work. Dr. Khetarpal:    Thank you so much!                                                                                                                                       Jane:                                     That's all I have for you for July, thanks for listening. Send me your thoughts on the podcast via Twitter or email, or leave us a review in Itunes. I look forward to talking to you next month.  

Circulation on the Run
Circulation June 5, 2018 Issue

Circulation on the Run

Play Episode Listen Later Jun 4, 2018 20:04


Dr Carolyn Lam:                Welcome to Circulation on the Run, your weekly podcast summary and backstage pass to the journal and its editors. I'm Dr Carolyn Lam, associated editor from the National Heart Center and Duke National University of Singapore. This week's feature paper reports results of the SWAP-4 study, which is the first study to evaluate the pharmacodynamic impact of the timing and dosing of clopidogrel administration when de-escalating from ticagrelor therapy. Extremely important take-home messages for clinicians looking after patients with coronary artery disease and a must listen to. Coming up right after these summaries.                                                 In the first original paper this week, chondroitin sulfate, well known in the context of the monogenic disease mucopolysaccharidosis type 6 may actually represent a novel therapeutic approach for the treatment of general heart failure. First author Dr Zhao, corresponding author Dr Foo, from Genome Institute of Singapore studied changes in myocardial chondroitin sulfate in non-mucopolysaccharidosis failing hearts and assessed its generic role in pathological cardiac remodeling. They found that failing human hearts display an abundant accumulation of chondroitin sulfate proteoglycans in the extracellular matrix largely localized to fibrotic regions.                                                 The main component of chondroitin sulfate glycosaminoglycan chains in human hearts was chondroitin 4 sulfate. TNF alpha was a direct binding partner of glycosaminoglycan chains rich in chondroitin 4 sulfate. Modification of the chondroitin sulfate chain with the recombinant human arylsulfatase B, which is an FDA-approved treatment for mucopolysaccharidosis type 6 that targets chondroitin 4 sulfate, actually ended up reducing myocardial inflammation and overall fibrosis in vivo. In two independent rodent models of pathological cardiac remodeling, this recombinant human arylsulfatase B treatment prevented cardiac deterioration and improved functional recovery. Thus, targeting extracellular matrix chondroitin sulfate represents a novel therapeutic approach for the treatment of heart failure.                                                 The next paper focuses on the subcutaneous ICD, which is an entirely subcutaneous system that does not require intra-procedural vascular access or endovascular defibrillator leads or coils. Now the subcutaneous ICD has a novel mechanism of defibrillation and is associated with an increased energy requirement for defibrillation when compared to traditional transvenous ICDs. Thus, ventricular fibrillation or VF conversion testing at the time of subcutaneous ICD implantation is a class 1 recommendation.                                                 Yet, what is the current adherence to this recommendation? Well, today's paper addresses this question from first and corresponding author Dr. Friedman from Duke Clinical Research Institute. He and his co-authors studied first time subcutaneous ICD recipients between 2012 and 2016 in the National Cardiovascular Database Registry ICD Registry to determine the predictors of use of conversion testing, predictors of an insufficient safety margin during testing and in-hospital outcomes associated with the use of conversion testing.                                                 Results show that use versus non-use of VF conversion testing after subcutaneous ICD implantation in the US was more related to physician preference than patient characteristics. The study also identified several patient characteristics associated with an insufficient defibrillation safety margin. That included increased body mass index, severely decreased ejection fraction, white race, and ventricular pacing on the pre-implantation ECG. Use of VF conversion testing after subcutaneous ICD implantation was not associated with a composite of in hospital complications or death. These data may inform ICD system selection and a targeted approach to conversion testing.                                                 We know that elderly patients are at elevated risk of both ischemic and bleeding complications after an acute coronary syndrome and display higher on clopidogrel platelet reactivity as compared to younger patients. Does prasugrel at five milligrams compared to clopidogrel reduce ischemic events without increasing bleeding in the elderly? Today's paper addresses this question from corresponding from corresponding author Dr Savonitto from Manzoni Hospital Italy and his colleagues.                                                 These authors performed a multicenter randomized open label blinded end point trial comparing a once daily maintenance dose of prasugrel five milligrams with the standard clopidogrel 75 milligrams in patients more than 74 years old with acute coronary syndrome undergoing percutaneous coronary intervention. The primary end point was a composite of mortality, myocardial infarction, disabling stroke and re-hospitalization for cardiovascular causes or bleeding within one year. Enrollment was interrupted due to futility for efficacy according to pre-specified criteria after a planned interim analysis when 1,443 patients had been enrolled with a median follow-up of 12 months.                                                 At this point of interruption, there was no difference in the primary end point between reduced dose prasugrel and standard dose clopidogrel. The results of this Elderly ACS 2 study therefore could not show overall clinical benefit of prasugrel five milligrams versus clopidogrel in elderly ACS patients undergoing early PCI.                                                 The final study is the first to define the cellular and molecular mechanisms of cardiac valve inflammation and fibrosis occurring in the setting of systemic inflammatory disease. First author Dr. Meier, corresponding author Dr Binstadt from University of Minnesota used T-cell receptor transgenic mice which spontaneously developed systemic auto antibody associated autoimmunity leading to fibro inflammatory mitral valve disease and arthritis.                                                 They identified a critical population of CD301b/MGL2 expressing mononuclear phagocytes that orchestrated mitral valve inflammation and fibrosis in this mouse model. They further demonstrated an analogous cell population was present in human inflammatory cardiac valve disease. Finally, they defined key inflammation molecules that drove mitral valve disease in this model, thus providing multiple potential therapeutic targets that are required for mitral valve inflammation and fibrosis. Dr Carolyn Lam:                That wraps it up for your summaries. Now for our feature discussion.                                                 Searching between different classes of P2Y12 inhibitors including de-escalation from ticagrelor to clopidogrel commonly occurs in clinical practice. However, what are the pharmacodynamic profiles of this strategy? Well, today's feature paper is going to provide a lot of insights. I am so pleased to have the corresponding author of the SWAP-4 study, Dr. Dominick Angiolillo from University of Florida College of Medicine Jacksonville, as well as our associate editor Dr. Gabriel Steg from Hôpital Bichat in Paris, France. Dominick, now this is SWAP-4. That means there was a SWAP 1, 2, 3. Could you just paint the background and rationale for SWAP-4 and tell us what you found? Dr Dominick Angiolillo:   We performed this study on the background of a line of research that we've been conducting over the past number of years of switching antiplatelet therapies. There's so many different types of switches that can occur and one of them is that which is defined as a de-escalation which is that from a more potent P2Y12 inhibitor to a less potent and one of those that occur frequently in clinical practice is the switching from a ticagrelor to clopidogrel and this was essentially the rationale for conducting the SWAP-4 study.                                                 Now I want to start off with saying that the reason for doing this study is not to advocate switching because we always recommend that individuals follow guideline recommendations but we performed this study because we wanted to provide clinicians with some additional insights that if you're going to switch particularly from ticagrelor to clopidogrel, which would be the modality which is associated with, put it this way, with the smoothest transition one drug to another.                                                 This is the rationale. What we did was do a pharmacodynamic, conduct a pharmacodynamic study taking patients who were on standard treatment with dual antiplatelet therapy aspirin and clopidogrel and they had a run-in phase with ticagrelor. And the reason why we took patients on the back part of aspirin and clopidogrel is because we then wanted to look at the effects after switching to compare it with a baseline. There have been some discussions about drug-drug interactions. And patients were randomized to either continue with treatment with ticagrelor to switch with a loading dose of clopidogrel, 600 milligrams 12 hours after last dose of ticagrelor. 24 hours after last dose of ticagrelor or directly switch with a maintenance dose. So, the randomization was into four groups.                                                 Essentially to keep a long story short, what we observed was that when de-escalating from ticagrelor to clopidogrel we did see an increase in platelet activity obviously as expected. But the use of a loading was not able to mitigate this increase but there were no differences according to timing of administration of the loading dose clopidogrel 12 or 24 hours. We had anticipated in our study design that with the administration of the loading dose 24 hours after last maintenance dose we could have achieved a smoother transition, but this was not the case.                                                 Nevertheless, the overall conclusions of our study are supported by the pharmacodynamic data in terms of you still achieve a better transition when you give a loading dose than without a loading dose. I was also want a little bit cautious and I think during the review process of the journal and feedback from the editors we kind of phrased in a very cautious way the suggestion for a drug-drug interaction, in fact we suggested because there are other ways to look into this phenomenon in more detailed manner. For example, doing some specific pharmacodynamic analysis which was not done in this study. Nevertheless, the take-home message from a clinical perspective remains unchanged. Dr Carolyn Lam:                Thanks so much, Dominick. That was a very important framing of the paper that you gave us at the start that this trial was not designed to try to say who should be de-escalated or not and that should be in line with the guideline recommendations and yet such an important just take-home message that if there is a need that the 600-milligram loading dose of clopidogrel should be used. You know, Gabriel, you've thought a lot about this and especially the drug-drug interaction question. What are your thoughts there? Dr Gabriel Steg:                Yeah, well first of I think this is an extraordinary, important study even though it's a pharmacodynamic study, which many clinicians might look at and then quickly read the abstract and turn the page I think this is actually one of the most interesting papers we've published in recent months. The reason for this is this is tackling a very common clinical scenario, which is having or desiring or wanting to de-escalate the intensity of platelet therapy after a PCI or ACS from a potent agent such as ticagrelor to a less potent agent such a clopidogrel. And as nicely explained in the paper, there are multiple reasons why this can occur.                                                 A common clinical scenario is that cost is a major issue. Because of the cost patients or physicians may want to switch to clopidogrel, a generic drug as opposed to a branded drug. Another scenario which is fairly common is side effects. Either nuisance bleeding or maybe dyspnea with ticagrelor may prompt some physicians and patients to want to deescalate to clopidogrel. To a less intensive therapy which may not have dyspnea or may not cause as much nuisance bleeding. And finally, sometimes it's done on purpose because some believe that within a few weeks or months following PCI or ACS the benefits of more intensive patient therapy is less, the risk remains the same and therefore maybe we could proposedly de-escalate therapy to clopidogrel and get away with it and there have been a number of randomized studies and observational studies that suggested that this might be feasible although these studies have weaknesses. They're often open label. They're often fairly small and somewhat underpowered.                                                 So, we don't have a definitive answer. Nevertheless, this happens on an everyday basis in most large clinical centers and we don't know exactly how to do it and what the best way to do it and I really want to credit Dominick's team for doing a rigorous series of investigations, including this one, which is the latest one but not the only one in trying to really map out how exactly we should as clinicians manipulate these agents to achieve the best safety and efficacy for our patients. And I think the message here is very clear. Yes, you can de-escalate but you have to be careful on how you do it. And I think you really need to use a loading dose, a 600-milligram loading dose of clopidogrel if you're going to deescalate from ticagrelor to clopidogrel to avoid a gap in protection that might be deleterious to patients.                                                 That does not address all of the questions that are raised by de-escalation and as I pointed out I think outcome trial data are really of paramount importance here, but I think this really important because it has major practical implications for clinicians worldwide on how to do this. So, I think this is a great study. I really want to congratulate Dominick. Dr Dominick Angiolillo:   Thank you. Dr Carolyn Lam:                You looked at the genetic status as well. Could you tell us about your findings there? Dr Dominick Angiolillo:   We in the spirit of trying to perform the most comprehensive possible assessment we have also looked at the genetic background of our patients and in particular looking whether the presence of a loss of function allele for CYP2C19, which is involved with clopidogrel metabolism, could have affected the outcomes. And the reason why we did this there've been a lot of studies clearly showing that if you have a loss of function allele for CYP2C19 you do have higher levels of platelet reactivity. Therefore, we want to see if those carriers would have had even a greater increase in platelet reactivity. And again, we did all this in the spirit of really trying to define again this from a pharmacodynamic standpoint, if there could be any potential safety hazards with such an increase in platelet reactivity with the de-escalation.                                                 When we did our analysis, we did not find any impact of a CYP2C19 on our data. However, I think it's important to underscore that we did not have too many patients with a loss of function allele so clearly the study was not designed or nearly closely powered to look into this assessment. So, I think that aspect does need to be interpreted with caution. Dr Carolyn Lam:                Thanks so much, Dominick. Were there perhaps caveats that clinicians listening in should pay attention to? For example, this study was conducted in stable patients with coronary artery disease. What about patients with recent acute coronary syndrome? Dr Dominick Angiolillo:   That's a great point. The reason why we conducted this study in a more stable setting was largely driven by two aspects. Well first of all, we wanted to have a run-in phase of patients switching from clopidogrel to ticagrelor to have some sort of baseline to reference to after the switch. And this would have been mostly ACS patients that would be less likely to be on clopidogrel. The second is purely a safety issue. We know that patients with acute coronary syndromes are associated with higher levels of platelet reactivity and in the context of a study where we do not know the pharmacodynamic profiles associated with de-escalation or better off we don't know the details.                                                 And so, there was a safety consideration there which is why we did it in stable patients. But what we can say is tied with Gabriel's comment before in all the studies out there are not powered or do not have the rigor of a mega trial. Although we give our suggestions and recommendations, practical recommendations on how to switch, there is an increase in platelet reactivity and we stress in our manuscript that if you are going to switch, please try to delay this as much as possible because those increases in platelet reactivity for example, in a patient with an ACS for example, immediately after PCI, something that we probably would not want for our patients. I'm very happy actually that we conducted the study in the more stable cohort because we had less confounders. This is kind of the reason behind all this. Dr Gabriel Steg:                The last question maybe I would ask Dominick is whether he believe that results would be different if we had the patients on a maintenance therapy for longer with clopidogrel, do you believe that the risk of rebound or drug-drug interaction are the same early on after institution of therapy or later on? Is there any reason to expect a difference? Dr Dominick Angiolillo:   That's a great question. My personal opinion would be that with longer duration the platelet reactivity would have gone back down to baseline. We actually continue to study out up to around 10 days following the switch which we thought would have been sufficient time to get back to baseline and it was not the case particularly in the patients whose switch was a 75 milligram. The answer's probably yes. Probably yes. To redesign the trial again maybe having that 30-day time point as well would have been obviously of added value. Dr Carolyn Lam:                Thank you so much, Gabriel and Dominick. This has been extremely insightful. Fun as always.                                                 You've been to Circulation on the Run. Don't forget to tune in again next week.  

Getting Personal: Omics of the Heart
15 April 2018 Sony Tuteja Craig Lee

Getting Personal: Omics of the Heart

Play Episode Listen Later Apr 20, 2018 21:54


Jane Ferguson:                 Hello, welcome to Getting Personal: Omics of the Heart. This is podcast Episode 15 from April 2018. I'm Jane Ferguson, an Assistant Professor of Medicine at Vanderbilt University Medical Center, and this podcast is brought to you by Circulation Genomic and Precision Medicine and the AHA Council on Genomic and Precision Medicine.                                                 As usual, we have a great lineup of papers in Circ Genomic and Precision Medicine this month. The first is actually the subject of our interview this month. Sony Tuteja talked to Craig Lee from the University of North Carolina about his manuscript entitled, "Clinical Outcomes and Sustainability of Using CYP2C19 Genotype Guided Antiplatelet Therapy After Percutaneous Coronary Intervention." This manuscript investigated the use of pharmacogenomics to improve treatment after PCI, and you can hear a lot more about it directly from the first author later in the podcast.                                                 Our next manuscript also used pharmacogenomics approaches to look for snips associated with plasma renin activity and to assess the effect of top snips with blood pressure response to atenolol and hydrochlorothiazide. The first and last authors are Caitrin McDonough and Julie Johnson from the University of Florida. And their manuscript is entitled, "Genetic Variants Influencing Plasma Renin Activity in Hypertensive Patients from the Pharmacogenomic Evaluation of Antihypertensive Response," or PEAR study. They find that snips in the SNNTXNDC11 gene region associate with higher baseline plasma renin activity in their sample of over 700 subjects and with a smaller systolic blood pressure reduction to hydrochlorothiazide. Variation in the region may act through modulation of TXNDC11 gene expression. They also identified several other candidate genes of interest. These new candidates may allow for precision medicine approach to selection of hypertensive treatment and further study the mechanisms may reveal novel biology on blood pressure response to pharmacological treatment.                                                 Next up is a manuscript by Deirdre Tobias and colleagues entitled, "Circulating Branch Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of U.S. Women." I actually had the chance to talk to Deirdre about her research last month. So check out the March podcast, Episode 14, to hear more from Dr. Tobias about this study.                                                 A study of hypertrophic cardiomyopathy from Hannah [inaudible 00:02:36] and Michelle Michels and colleagues from the Erasmus Medical Center in the Netherlands assessed the effects of genetic screening in family members of patients with a known hypertrophic cardiomyopathy mutation. In their manuscript entitled, "Outcomes of Contemporary Family Screening and Hypertrophic Cardiomyopathy," they described their study which assessed cascade screening in 777 relatives of 209 probans between 1985 and 2016. Genetic and clinical screening resulted in a diagnosis of HCM in 30% of family members at the time of testing. An additional 16% of family members developed HCM over seven years of follow up. Of the 43% of family members who were genotype positive, 37% were ultimately diagnosed with HCM. There was no difference in survival between genotype positive and genotype negative family members or with relatives who did not undergo genetic testing.                                                 There are genetic considerations that are unique to the ancestral composition of the Netherlands with a high proportion of individuals with a founder mutation, so the proportion of probans with identified mutations is higher than in other reported studies. This paper demonstrates the potential benefit of genetic screening in family members, which can identify individuals who should undergo intensive screening, and at the same time reduce concerns for family members who are genotype negative. However, the classification of the pathogenicity of variants and understanding variable penetrance remains a challenge.                                                 A manuscript entitled, "Exome Sequencing in Children with Pulmonary Arterial Hypertension Demonstrates Differences Compared to Adults." From Na Zhu, Claudia Gonzaga-Jauregui, Carrie Welch, Wendy Chung, and colleagues from Columbia University, ask the question whether there were differences in the genetic mutations responsible for early onset pulmonary arterial hypertension, or PAH, in a pediatric sample compared with adult onset disease. While some mutations, particularly in BMPR2 appear to be similar in the pediatric and adult samples there were significantly more mutations in TBX4 in the children compared with adults.                                                 Further, children were more likely to have de novo mutations identified through exam sequencing that were predicted missense variants. Given the additional complications associated with pediatric onset of PAH, understanding the genetic differences in this population is an important step towards identifying novel genes and mechanisms which could guide future therapeutic development.                                                 Our next manuscript authored by Iisan Kadhen, Carolyn Macdonald, Mark Lindsay, and colleagues from Harvard Medical School is entitled, "Prospective Cardiovascular Genetics Evaluation in Spontaneous Coronary Artery Dissection," or SCAD. They genotyped individuals with SCAD to find out the genetic contribution to the disease. Of the patients for whom genetic testing was performed, six of them were 8.2%. Identifiable mutations in genes known to be involved in vascular disease, including COL3A1, LMX1B, PKD1, and SMAD3. These individuals were significantly younger at the time of their first SCAD event compared to patients with no identifiable mutation. Given the relatively higher rate of mutations identified in this sample, there may be a rationale to conduct genetic testing in all individuals presenting with SCAD, particularly in younger individuals.                                                 Shiu Lun Au Yeung, Maria-Carolina Borges, and Debbie Lawlor, from the University of Hong Kong and the University of Bristol, set out to find out if reduced lung function is causal in coronary artery disease. As reported in their manuscript, entitled "The Association of Genetic Instrumental Variables for Lung Function on Coronary Artery Disease Risk, A 2-Sample Mendelian Randomization Study," they used a Mendelian Randomization approach to assess causal relationships between two measures of lung function. Forced expiratory volume in one second, and forced vital capacity on CAD. Genetic predictors of increased forced expiratory volume were associated with lower risk of CAD. While there was a similar association with forced vital capacity, this was attenuated in sensitivity analyses. Overall, the data suggests that higher forced expiratory volume may independently protect against CAD. However, the mechanisms remain unclear.                                                 Finally, the April issue also contains a white paper from Kiran Musunuru, Xiao-zhong Luo, and colleagues entitled, "Functional Assays to Screen and Dissect Genomic Hits, Doubling Down on the National Investment in Genomic Research." This paper lays out strategies to followup on findings from high-throughput genomic analyses, including the use of novel technologies, assays, and model systems that can help to effectively translate big data findings and capitalize on previous investment in genomic discovery.                                                 To see the latest issue of Circulation Genomic and Precision Medicine, and to access all the papers we talked about and to browse previous issues, go to "circgenetics.ahajournals.org." Sony Tuteja:                       Hello, my name is Sony Tuteja, I'm an assistant Professor of Medicine at the University of Pennsylvania in Philadelphia, I'm also an early career member of the American Heart Association Council on Genomic and Precision Medicine. Today I'm joined by Dr. Craig Lee, an associate Professor of Pharmacy at the University of North Carolina School of Pharmacy. Dr. Lee is a first author of an article published in April 2018 issue of Circulation Genomic and Precision Medicine entitled, "Clinical Outcomes and Sustainability of Using CYP2C19 Genotype Guided Anti-Platelet Therapy After Percutaneous Coronary Intervention." Welcome Dr. Lee, and thank you for joining me today. Craig Lee:                            Thanks for having me. Sony Tuteja:                       First let me just say congratulations on spearheading such impactful work on the implementation of CYP2C19 pharmacogenetic testing. Craig Lee:                            Thanks, this has been a very complicated project, but a lot of fun. Sony Tuteja:                       Great. So I think some of our listeners may have not had time to read your paper yet so I was wondering if you could provide a brief overview of the paper and what the study was about. Craig Lee:                            Sure. Although it's been widely described that loss of function polymorphisms in the drug metabolizing enzyme, CYP2C19, which is responsible for the bio-activation of the antiplatelet drug clopidogrel, impairs its effectiveness, there remains considerable debate and uncertainties surrounding whether CYP2C19 genetic testing should be used clinically for guiding antiplatelet therapy in percutaneous coronary intervention, or PCI patients. As the evidence base is expanded, an increasing number of institutions are seeking to implement CYP2C19 genetic testing despite limited data on the use and impact of using this genetic testing to guide antiplatelet therapy selection following PCI in real world clinical settings.                                                 UNC was an early adopter for CYP2C19 genotype-guided antiplatelet therapy in high-risk PCI patients. Our algorithm recommends that patients carrying one or two loss of function alleles in CYP2C19 be prescribed an alternative antiplatelet therapy such as prasugrel or ticagrelor. Our algorithm was implemented back in the summer of 2012, under our then-director of the Catheterization Laboratory, and now Chief of Cardiology, Dr. Rick Stouffer. We conducted the study to better understand the feasibility, sustainability, and clinical impact of using CYP2C19 genetic testing to optimize antiplatelet therapy selection in PCI patients in real-world clinical practice.                                                 Basically what we did was following the implementation of our algorithm in the summer of 2012, we've been retrospectively collecting data from all patients that come through our Cath lab that undergo a PCI. We collect information on their clinical characteristics, whether or not they underwent CYP2C19 genetic testing, what antiplatelet therapy they were prescribed when they were in the hospital at discharge and over the course of followup, and more recently we've been assessing clinical outcomes, both ischemic outcomes and bleeding outcomes. The data presented in our paper described the algorithm's use at our institution over the first two years following its implementation from 2012 to 2014 with one year of followup data. Since we do about 600 PCI procedures per year on our Cath lab, the study population is just under 1200 patients.                                                 Our main findings were that CYP2C19 genotypes were frequently ordered, efficiently returned, and routinely used to guide antiplatelet therapy selection after PCI over this two year period. However, we also observed that the frequency of genotype testing and frequency of using alternative therapy such as prasugrel or ticagrelor in the patients that carried CYP2C19 loss of function alleles fluctuated over time. We also observed that use of clopidogrel in patients that were tested, but carried either one or two copies of a CYP2C19 loss of function allele was associated with a significantly higher risk of experiencing a major ischemic cardiovascular event compared to use of alternative therapy. These risks were particularly evident in the highest risk patients, and largely driven by patients who carry only one copy of the loss of function allele, the so-called intermediate metabolizers.                                                 Our primary takeaway from this analysis is that implementing a genotype-guided antiplatelet therapy algorithm is feasible, sustainable, and associated with better clinical outcomes in a real-world clinical settling, but challenging to maintain at a consistently high level over time. Sony Tuteja:                       Great. I know it's always challenging to implement new work flow and new testing into the clinical setting. Can you describe how the algorithm was incorporated in the cardiologist workflow to minimize disruption? Craig Lee:                            Absolutely. This algorithm was spearheaded by our interventional cardiologists with the support of our clinical pharmacy specialists and pathology laboratory. They key element to our success is that we have the capacity to do the genotype testing in our molecular pathology lab on site. Dr. Karen Weck is the director of that laboratory and is a coauthor on our paper. Since the prescribing decision for antiplatelet occurs in a highly specialized clinical setting, we have all the pieces in place to do this in-house at UNC, which seems to make things very efficient.                                                 There really wasn't very much disruption in the workflow given that the testing is done on-site and the test seems to be treated like another laboratory test that's done, which is really the ultimate goal of pharmacogenomics. We don't currently actually have clinical decision support built into our electronic health record, so the reason we could actually get this off the ground was because of the substantial collaboration between our physicians, pharmacists, and pathology lab.                                                 But one of the things we learned through this experience, which is described in the paper, is that there are fluctuations in the use of the genetic testing to guide prescribing over time that we believe could be remedied by developing more automated clinical decision support, to help make things a little bit more efficient for the clinicians. But at the start of it, it was really just a will to do it, which was really exciting to observe. Sony Tuteja:                       Absolutely. That's exciting that everybody was on board with this project. What do you think were the most challenging aspects of the implementation? Craig Lee:                            That's a great question, and one that often comes up. I think that the education on the front end is really, really important. It needs to recur as the implementation spans over a period of time. For example, there's turnover in the interventional cardiology fellows every summer as well as occasional turnover of attending physicians and clinical pharmacy specialists. As individuals come and go into the clinical environment, it is important that they understand how the algorithm works, and how it can be applied in practice. And this is accomplished by recurring education and communication.                                                 The other thing that's been a challenge is turnaround time. Even though our molecular pathology lab typically turns tests around within one day of a PCI procedure, if the test result isn't available or the antiplatelet therapy isn't changed in response to the genetic test before the patient is discharged from the hospital, we found that it can be challenging to followup on the result before the next encounter. Typically, if a change in medication needs to occur after discharge and prior to the first followup clinic visit, the communication piece has proven to be very important. It's not an insurmountable barrier, but one we observe that created one additional challenge. Other institutions around the country that are doing this have expressed similar things. Sony Tuteja:                       You showed in your study that during the middle of the implementation there was a decline in testing. What do you think were the major reasons that led to decrease in testing? Craig Lee:                            Yeah, that's a great question. We're not sure. We didn't collect information prospectively, and more specifically, we did not survey the physicians in terms of why they ordered the test. But we believe, just based on anecdotal experience and talking about this with everyone, there was this big surge of momentum, with the initial implementation, and as the practice evolved there was just sort-of a settling of individuals in terms of, I think, the practice patterns.                                                 Overall, the test was ordered and over 70% of PCI patients, an alternative therapy was prescribed and approximately 70% a loss of function allele carriers. These numbers exceeded 80% early on which was higher than we expected. They dropped down to about 60%, which is still a pretty high utilization rate when you compare to other institutions that have implemented. After some educational efforts, the testing rates and use of alternative therapy and loss of function allele carriers began to increase again over the last six months. Sony Tuteja:                       Yeah I was just gonna ask, since the study is completed, have you taken any further steps to maintain the frequency of the testing at the high level that you initially started with? Craig Lee:                            Yeah, so again recurring education has been really important particularly with interventional cardiology fellows, since they're the ones that really execute this in terms of ordering the tests and working with the clinical pharmacy specialists. And as I mentioned, we're in the process of developing clinical decision support to help make this a little bit easier on the prescribers. When a test result is available, we believe this will make it a little easier for the result to be more readily available for the clinical decision. Sony Tuteja:                       Yeah I think the CDS tools will be key to have more compliance with the results in adherence to the test results. I'm just curious, who pays for the genotype tests at your center and are you billing for these tests? Craig Lee:                            Yes. We're billing for these tests as part of routine clinical care. Sony Tuteja:                       Great, and you've had good success with reimbursement? Craig Lee:                            As far as we can tell, yes. Sony Tuteja:                       That's great to hear. I think that will really incentivize other centers to pursue similar lines of testing. So what do you think are the broader implications for implementing genetically guided care for other drugs? Craig Lee:                            Yeah, I think that it's interdisciplinary collaboration. Communication is really important among physicians, clinical pathologists, and clinical pharmacists. We found that this has been essential to success of the program here at UNC with this one gene drug pair. And again, this is fueled by a spirit of collaboration and will for our clinicians to work together to optimize patient care. And really, I think clinical pharmacists are uniquely positioned to help make this happen. Clinical pharmacists are uniquely positioned to interpret pharmacogenomic test results, provide medication recommendations, as well as counsel patients on how to interpret the tests and why the prescribing decision is being made. Our clinical pharmacists at UNC are fantastic and have really embraced this. They've shown that pharmacogenomics can be an important part of medication therapy management.                                                 Although implementation of pharmacogenomics testing is clearly a challenge, it is now part of the routine in our Cath lab and in our cardiology services. And again, that's been really exciting to observe. I also think this experience provides a foundation in an example for other pharmacogenomic implementations to occur at our institution. Sony Tuteja:                       That's great, it's so nice to hear about the team working together to get this accomplished. What has been the patient response to the testing? How have they responded to receiving genetic test results? Craig Lee:                            We think it has been overall positive. And again, it's now part of the workup in terms of providing the best possible care for the patient given the evidence that we have. And so again, since it's part of the clinical work flow, there's not a separate research consent that's done. The testing is part of the consent to the procedure. Sony Tuteja:                       Well great, that's all the questions I have for you today. Do you have any final thoughts you wanna share with our listeners? Craig Lee:                            No, other than just a thank you again for having me in for talking about our paper. And I guess, I would just urge those that are out there that are either planning to do this or doing this, to collect data. It's really important to evaluate the practice, evaluate the frequency of testing, the frequency of prescribing decisions being altered by the testing, and trying to understand what the barriers are. And if possible, evaluate clinical outcomes.                                                 You know, we started this study under the umbrella of continuous quality improvement and it really has taught us a lot. I think it has helped optimize how the algorithm is used, and as other centers around the country have been doing this, it provided a basis to collaborate and really evaluate the impact on clinical outcomes, which is really the question that is on everybody's minds. And as the evidence base expands, I think there will be a lot more comfort with doing these things, but we should always strive to generate the evidence we need to assure that we're making the right decisions in practice. Sony Tuteja:                       Absolutely, I think that outcomes piece will be critical to getting this in the mainstream. Well I'd like to thank you for your time today, it was a pleasure speaking to you and once again, congratulations. Craig Lee:                            Thanks. Jane Ferguson:                 That's all for this month. As a reminder you can follow us on Twitter, @Circ_Gen or connect with us on Facebook. Thanks for listening, and I look forward to bringing you more on genomics and precision medicine of the heart next month.  

Circulation on the Run
Circulation January 3, 2017 Issue

Circulation on the Run

Play Episode Listen Later Dec 27, 2016 23:23


Dr. Carolyn Lam:               Welcome to Circulation on the Run, your weekly podcast summary and backstage pass to the journal and its editors. I'm Dr. Caroline Lam, associate editor from The National Heart Center and Duke National University of Singapore. Today we will be discussing the results of an individual level meta-analysis regarding venous thromboembolism and its risk factors, but first, here's your summary of this week's issue. The first paper provides insights into paracrine signalling pathways that regulate epicardial adipose tissue formation. That is, referring to the adipose tissue located between the epicardium and underlying myocardium that is known to be strongly associated with coronary artery disease. In the current study from Dr. Lira of Icahn School of Medicine at Mount Sinai, New York, Dr. Pu from Boston Children's Hospital, Dr. [Chien 00:00:56] from Karolinska Institute and colleagues, the authors used a novel modified mRNA screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the heart. Using two independent lineage tracing strategies in murine models, they showed that cells originating from the WT1-positive mesothelial lineage, which includes epicardial cells, differentiate into epicardial adipose tissue following myocardial infarction. This differentiation process required WT1 expression and was stimulated by insulin-like growth factor 1 receptor activation. Insulin-like growth factor 1 receptor inhibition significantly reduced its adipogenic differentiation and reduced WT1 lineage cell differentiation into adipocytes following myocardial infarction. These results thus establish insulin-like growth factor 1 receptor signalling as a key pathway that governs epicardial adipose tissue formation in the context of myocardial injury. And it does this by redirecting the fate of WT1-positive lineage cells. The study also demonstrates the utility of a modified RNA based paracrine library screening to dissect signalling pathways in homeostasis and disease. The next study brings us closer to understanding the mechanisms underlying diabetes-associated heart failure. In this study by first author, Dr. Wang, corresponding authors, Dr. Abel and Xiang from University of California, Davis and colleagues. High-fat diet feeding was used to induce obesity and diabetes in wild-type mice or mice lacking the beta-2 adrenergic receptor or beta-arrestin 2. High-fat diet feeding was found to selectively increase the expression of phosphodiesterase 4D in the mouse hearts in concert with the reduced phosphokinase A phosphorylation of phospholamban which contributed to systolic and diastolic dysfunction. The expression of phosphodiesterase 4D was also elevated in human hearts with diabetes. The induction of phosphodiesterase 4D expression was mediated by an insulin receptor and substrate as well as by beta-arrestin-2 dependent activation of a beta adrenergic receptor, ERK signalling cascade. Genetic deletion of beta-2 adrenergic receptor or beta-arrestin-2 or pharmacological inhibition of beta-2 adrenergic receptor with carvedilol or G-protein receptor kinase 2 with paroxetine all significantly attenuated insulin-induced phosphorylation of ERK and phosphodiesterase 4D induction thus preventing diabetes-related systolic dysfunction. Thus, targeting the insulin beta-2 adrenergic receptor pathway may be a novel way to prevent diabetes-associated heart failure. The next study addresses the gap in care pertaining to implantable cardioverter-defibrillator or ICD use among Medicare patients with low ejection fraction following myocardial infarction. Dr. Pokorny and colleagues from Duke University Medical Center examined rates of post-discharge ejection fraction assessment and ICD implantation among more than 10,280 Medicare-insured patients age 65 years above with an ejection fraction 35% and below during an index myocardial infarction admission in the ACTION Registry Get With the Guidelines. They found that the cumulative incidence of ejection fraction reassessment within one year of myocardial infarction was 66.8%. Within the first year of post-myocardial infarction, 11% of patients who had an ejection fraction reassessment underwent ICD implantation which was significantly higher than patients without an ejection fraction reassessment. After multivariable adjustment, ejection fraction reassessment remained significantly associated with a higher likelihood of ICD implantation within one year in both revascularized and non-revascularized patients. Based on these findings, the authors recommend that all patients who are potential candidates for ICD therapy be scheduled for follow-up outpatient ejection fraction assessment prior to hospital discharge to bridge these currently observed gaps in care. The next study is the first multi-institutional study in Asia describing current treatment strategies for total anomalous pulmonary venous connection. This retrospective study of 768 patients with total anomalous pulmonary venous connection operated on between 2005 and 2014 is from first authors Dr. Shi, Zhu, and Chen, corresponding authors, Dr. Chen and Zhuang and colleagues from the Shanghai Children's Medical Center and Guangdong General Hospital in China. While most patients underwent conventional repair, a sutureless patient was technique was employed in 10% of patients. Over a median follow-up of 23 months, there were 38 intraoperative deaths and 13 late deaths. A younger age at the time of repair, next an infracardiac total anomalous venous connections, pre-operative pulmonary venous obstruction, prolonged cardiopulmonary bypass time and longer duration of ventilation were all factors associated with increased mortality. Among these 717 survivors, recurrent pulmonary venous obstruction was found in 15% or 111 patients. Risk factors for recurrent pulmonary venous obstruction included pre-operative pulmonary venous obstruction, infracardiac total anomalous pulmonary connection, mixed venous connections and prolonged cardiopulmonary bypass time, a sutureless technique was associated with a lower restenosis rate compared to conventional repair in patients with pre-operative pulmonary venous obstruction but not in newborn patients. Thus, this study provides an important data on the outcomes following surgical correction and risk factors for poor prognosis in total anomalous pulmonary venous connection in Asia. The final study is the first systematic review and meta-analysis on the association of genetic polymorphisms and outcome of clopidogrel-treated patients with ischemic stroke or transient ischemic attacks. In this paper from first author, Dr. Pan, corresponding author, Dr. Wang and colleagues from Beijing Tiantan Hospital, Capital Medical University in Beijing, China. Authors looked at 15 studies of 4,762 patients with stroke or transient ischemic attack treated with clopidogrel and this included 3 studies from Europe and 12 studies from East Asia. They found that carriers of the CYP2C19 loss-of-function alleles were at increased risk of stroke compared to noncarriers. Composite vascular events were also more frequent in carriers compared to noncarriers while bleeding rates were similar. There was no evidence of statistical heterogeneity among the included studies for stroke but there was for composite vascular events suggesting that publication bias cannot be ruled out. Genetic variance other than CYP2C19 were not associated with clinical outcomes. The author suggested that their findings may justify genetic testing when clopidogrel is otherwise considered the preferred treatment modality, especially in East Asian patient populations in whom the prevalence of CYP2C19 loss-of-function allele is high. In an accompanying editorial, Dr. Simon and [inaudible 00:10:11] suggest it maybe time to consider a prospective trial of personalized medicine using CYP2C19 genotyping in acute ischemic stroke and perhaps considering alternative medications in poor or intermediate metabolizers such as in the popular ongoing genetics trial in STEMI patients undergoing PCI. That wraps it up for the summaries this week. Now for our feature discussion. Today's feature paper talks about the association of traditional cardiovascular risk factors with venous thromboembolism. And it is the first individual level meta-analysis of prospective studies. I am so delighted to have the first and corresponding author here with us, Dr. Bhaktawar Khan Mahmoodie from San Antonio's Hospital in the Netherlands. Hi Khan, thanks for being here. Dr. Bhaktawar Khan Mahmoodie:             Thank you for inviting me. Thanks a lot. Dr. Carolyn Lam:               And I am particularly delighted to have associate editor, Dr. Josh Beckman from Vanderbilt University joining us today as well. Welcome Josh. Dr. Josh Beckman:           Caroline, it is such a pleasure to be here with you. I've been listening to these podcasts and they have been incredible. I've been waiting to be able to jump in and today's paper is an awesome place to start. Dr. Carolyn Lam:               It certainly is. Congratulations on managing such an important paper. Khan, maybe I could start with you. Venous thromboembolism versus arterial thromboembolism. We're very familiar with the latter. We know it comprises coronary heart disease, stroke, peripheral artery disease. We're very familiar with the risk factors such as hypertension, hyperlipidemia, diabetes, smoking. But here you're asking, are these same risk factors applicable in venous thromboembolism. That would include deep venous thrombosis, pulmonary embolism, where we traditionally classify it into provoked events that is triggered by things we know well like immobilization, surgery and so on. And then there are the unprovoked events that don't have any risk factors. So could you, first of all, point out ... you were looking at venous thromboembolism. What was your hypothesis with regards to the traditional cardiovascular risk factors? Dr. Bhaktawar Khan Mahmoodie:             Many researchers in the last 10, 15 years, they go questions whether there is connection between venous and arterial thromboembolism. Since then, several studies published on that with controversial results. So our hypothesis for this paper was to see whether there is real associations or are we looking at some kind of associations due to confounding factors such as age and overweight which are risk factors for both. Dr. Carolyn Lam:               Yeah. And yours is actually the first individual level meta-analyses of prospective studies dealing with this. Tell us what you found in ... Were you surprised by your findings? Dr. Bhaktawar Khan Mahmoodie:             What we found that actually traditional, modifiable, cardiovascular risk factors like hypertension, diabetes and hyperlipidemia were not risk factors for venous thromboembolism. The exception was smoking, current smoking, which was particularly associated with provoked venous thromboembolism which is probably pro its association with cancer. And cancer itself is a strong risk factor for venous thromboembolism. About whether I was surprised, I was not surprised at all. We saw in several cohort studies and well-defined cohort studies that the association disappeared after adjustment for age and body mass index which are important confounders in these [inaudible 00:14:06]. That's what I expected and we found it and it is confirmed with this large individual level meta-analysis. Dr. Carolyn Lam:               Great. But what did you think of the association of higher systolic blood pressure not with higher but with lower risk of venous thromboembolism? Dr. Bhaktawar Khan Mahmoodie:             That was a bit surprising for us too but I think the best explanation we can give at the moment is probably that we have some kind of competing risk. And one suggestion that we gave in the paper as well is that maybe what we already know is that higher blood pressure is a strong risk factor for atrial fibrillation. Most of these people they receive oral anticoagulants. That is subsequently probably a protective factor for venous thromboembolism. We probably deal with some kind of competing risk from another condition like the atrial fibrillation and use of anticoagulants which we could not unfortunately adjust for in this analysis. Dr. Carolyn Lam:               Sure. That makes sense. Josh, can I bring you into this? I mean I remember well our multiple and long discussions at the editors meetings. This is one of those papers that is extremely important for its negative, neutral associations isn't it? Dr. Josh Beckman:           I think this is one of the more important papers in this field in a long time. I am one of those people who has followed this literature and believed, based on the best previous publications, that there was a link between many of the arterial thrombosis or atherothrombotic risk factors and venous thromboembolism. In fact, Circulation published one of these meta-analyses, and I'm going to say only because this little paper is so large with only 21,000 patients demonstrating a clear association. So the first question I would have, we published that back at 2008, the first question I would have is can you describe for the general readership what such a large series of patients allows you to do that was not permitted by the other meta-analyses of say twenty to thirty thousand patients that have been previously in the literature. Dr. Bhaktawar Khan Mahmoodie:             Thank you Dr. Beckman and thank you also for managing this paper. This is an important question and I think what we were able to do compared to the previous analysis in 2008, we were able to adjust for confounding risk factors. In the course, we included were all with validated venous thromboembolism events and also the events are temporal character, like all the risk factors were measured and then followed-up for event. While in that paper, there were many case-controlled studies added and the results were not adjusted for age and also not adjusted for body mass index. And if we do the same with what's done there, then we have the same results like in our [inaudible 00:17:14] associations, all of these risk factors were indeed positively associated with risk for venous thromboembolism. Dr. Carolyn Lam:               Let me just state, I mean, there were almost 245,000 participants in your study. With 4,910 thromboembolism events, so this is really huge and gives you a lot of power to look at this thing very carefully. Dr. Josh Beckman:           It was a 10-fold increase from any of the major publications in this area. It was almost geometrically larger in size which is why, I think its conclusion will be accepted differently than all the previous analyses. Now, let me ask one question about what you already identified in your discussion as a possible limitation. Is this study applicable to all populations around the globe or do you think it is a bit more focused? Dr. Bhaktawar Khan Mahmoodie:             I think it is focused at least. We don't have Asian population in these analyses and also the proportion of African-Americans were limited which was only limited to some U.S. cohorts so I think that there is a limitation which is results are probably only applicable for Caucasian population. Dr. Josh Beckman:           I guess my other question is, one of the reasons that people, I think, advance the argument that there may be overlap between the two kinds thrombosis is that there was evidence that the medication, statin, may ... to a much smaller degree, reduce venous thrombosis as well as reducing arterial thrombosis. Do you think that this is evidence of some common pathophysiology? Or is it like smoking, it's truly working separately from arterial disease? Dr. Bhaktawar Khan Mahmoodie:             Personally, I think that this association or the finding of statins reduce the risk of thromboembolism could be due to some pleiotropic effects of statins. Like even for stroke, we know that the association of cholesterol with stroke is not so clear-cut as it is with myocardial infarction but still it reduces risk of stroke. And also for venous thromboembolism, the risk reduction of venous thrombosis in the JUPITER trial was like 50%, which is very high, even better than aspirin. But I think that may not be directly related cholesterol levels but more to another pleiotropic effects of statins. It could influence levels of various coagulation [inaudible 00:19:56] in the endothelial stabilization which may be also important risk factors for venous thrombosis. Dr. Josh Beckman:           One of the reasons that this paper is very important is that we begin to look for therapies and risk factors based on what the disease is caused by. And so the fact that you guys were able to establish, in my opinion, quite clearly what does and what does not contribute to venous thrombosis allows us to begin to think about the disease differently and approach it differently. I would like to provide congratulations. My one little ask of you is that one of the things that I think this podcast is great for is to explain to the readership what goes into this kind of work. Everybody thinks that someone else's research is easier to do than their own, which of course is a ridiculous thing. But can you describe for us what it's like and how long it took from the study initiation to when you completed it? How much work went into trying to get all these studies together to create this individual patient level data? Dr. Bhaktawar Khan Mahmoodie:             Yeah. That was a great amount of work. Actually, I did a systematic review of the only PubMed publications back in 2014 and it took almost 2 years at least. I was not always active the whole 2 years but still I had to visit several PIs of the studies to get them so far to share their data. Eventually, I had to develop a code that will make it possible without sharing the individual level data by using the same definitions and the same categorization of variables so we call it a two-stage meta-analysis similar to one-stage if the definitions are similar. And eventually, I think that the real part of the analysis and inclusion of studies took like half a year or so. There was a lot of work. Dr. Josh Beckman:           I think this is a tremendous amount of work and for those members of our readership who do basic research, or translational work, or practice in the clinics, it really needs to be made clear that this is a heroic effort of hundreds and hundreds of hours. And that getting together all of these studies is just an enormous undertaking. And that even though, we can read the paper in 10 minutes and gleam the most important part. It is an incredible amount of work for which you guys are to be congratulated. Dr. Bhaktawar Khan Mahmoodie:             Thank you for acknowledging this. Thanks a lot. Dr. Carolyn Lam:               Josh, I couldn't agree with you more and I truly couldn't have said it any better. Thank you both of you for making this just one of the best discussions we've had on this podcast. I'm sure the listeners all agree what a wonderful time we've had. You've been listening to Circulation on the Run. Please remember to tune in next week.  

DPL-Surveillance-Equipment.com
The Perfect Prescription For Personalized Medicine

DPL-Surveillance-Equipment.com

Play Episode Listen Later May 9, 2016


Click Here Or On Above Image To Reach Our ExpertsUS. Can Learn From China's Spot-The-Spy ProgramPeople can respond to drugs very differently. A medication that brings relief for some patients might show no benefit at all in others, or even cause harmful side effects.A growing array of genetic tests is designed to help predict how people are likely to respond to many common medications, from antidepressants and antihistamines to pain relievers and blood thinners. The tests, which are controversial, look for tiny variations in genes that determine how fast or slow we metabolize medications.Because of such gene variations, codeine, frequently prescribed to relieve pain, has little effect on as much as 20% of the population, while 2% of people have such a strong reaction that a normal dose can be life-threatening. About 25% of people can't effectively absorb Plavix, a clot-busting drug, putting them at increased risk for a heart attack or stroke. PRO-DTECH II FREQUENCY DETECTOR(Buy/Rent/Layaway)Even everyday drugs such as Advil and Motrin, for pain relief, and Zocor, to lower cholesterol, can have widely varying effects. Testing patients for gene variations could avoid some of the 700,000 serious drug reactions in the U.S. each year, some experts say. Proponents of the tests, which are done with a cheek swab, say they also could help doctors rely less on trial and error in choosing the right drug and the right dosage for individual patients.CELLPHONE DETECTOR (PROFESSIONAL)(Buy/Rent/Layaway)The Food and Drug Administration has included cautionary information for people with certain gene variations on the labels of more than 100 prescription medications. As yet, only about 20% of doctors order such tests, according to a survey by the American Medical Association, and many patients don't know they exist.PRO-DTECH III FREQUENCY DETECTOR(Buy/Rent/Layaway)Some major medical associations, including the American College of Cardiology and the American Psychiatric Association, have been slow to endorse the testing, mainly because there are no large, randomized controlled trials showing the technique significantly improves patient care. And the tests, which range from $500 to $2,000, are only covered by some insurers in some cases.PRO-DTECH III FREQUENCY DETECTOR(Buy/Rent/Layaway)NOT RIGHT FOR EVERYONEMany common medications can affect people differently depending on minor variations in the genes that regulate key enzymes. The variations can make people metabolize certain drugs either more slowly or rapidly than normal. Some examples:DRUGSPain relievers codeine or oxycodone, including Tylenol 3 and PercocetENZYME PATHWAY AT WORKCYP2D6IMPACTA standard dose can have little effect in up to 20% of people, while as many as 2% can have a life-threatening reaction.DRUGSBlood thinner Plavix (clopidogrel) and acid reducers Prilosec (omeprazole) and Prevacid (lansoprazole)ENZYME PATHWAY AT WORKCYP2C19IMPACTUp to 15% of people metabolize these drugs very slowly, resulting in a higher effective dose and greater risk of side effects.DRUGBlood thinner Coumadin (warfarin)ENZYME PATHWAY AT WORKCYP2C9IMPACTPeople with some gene variants have twice the risk of severe bleeding, but other factors are involved and population percentages are unclear.DRUGCholesterol reducer Zocor (simvastatin)ENZYME PATHWAY AT WORKSLCO181IMPACTUp to 40% of people have impaired ability to metabolize this drug, giving them increased risk of muscle pain and other side effects.Source: Clinical Pharmacogenetics Implementation ConsortiumAlan Pocinki, an internist in Rockville, Md., says he orders gene testing for patients who have a history of unexplained symptoms or who haven't gotten relief from drugs in the past. In many cases, he is able to find a better treatment based on their DNA, he says. “It makes a huge difference clinically among people I see every day.”PRO-DTECH III FREQUENCY DETECTOR(Buy/Rent/Layaway)How people's genes affect their response to medic

JACC Podcast
Impact of CYP2C19 Metabolizer Status on Outcomes and Platelet Function of Medically Managed ACS Patients

JACC Podcast

Play Episode Listen Later Feb 22, 2016 7:08


Commentary by Dr. Valentin Fuster

Clinical Chemistry Podcast
Clopidogrel and CYP2C19: Pharmacogenetic Testing Ready for Clinical Prime Time?

Clinical Chemistry Podcast

Play Episode Listen Later Oct 8, 2015 11:11


For patients with acute coronary syndrome who have undergone interventions such as placement of a stent, it has become standard practice to treat them with a combination of aspirin and opidogrel to prevent subsequent thrombotic events; however, clopidogrel is a drug that requires activation by a liver enzyme, CYP2C19.