Podcasts about nullstellen

  • 5PODCASTS
  • 15EPISODES
  • 40mAVG DURATION
  • ?INFREQUENT EPISODES
  • Mar 20, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about nullstellen

Latest podcast episodes about nullstellen

mauerstrassenwetten
#89 U/PROF_GOLDGRAF - EHEMALIGER GOLDMANS SACHS DERIVATEBANKER, FNFLUENZA UND LEGENDE DER MAUERSTRASSE WEIST UNS DEN WEG!

mauerstrassenwetten

Play Episode Listen Later Mar 20, 2024 76:24


Liebe Taschenhalter, Lukerinnen, Perma-Bullen und Stückmünzen-Hodler! Aus dem Münchner Wurstkessel präsentiert u/Battleham_117 besondere Schmankerl. Dieses Mal wieder in auditiver Form! Es war mein erster hochkarätiger Gast, also verzeiht mir die anfängliche Aufregung. Prof. Dr. Holger M. Goldgraf u/prof_goldgraf ist heute mit dabei! Kniet nieder, ihr Dividenden-Jäger, Kompetenz ist zu Gast! Der Deutsche Finfluenza, der eigentlich keine Vorstellung benötigt, ist heute erneut auf der Mauerstraße vertreten. Er ist einer der Wenigen, die es gekonnt mit einer Prise Humor schaffen, einen deutlichen Mehrwert für alle Finanz-Interessierten im deutschsprachigen Raum zu leisten. Die Mauerstraße wird ihn wie bei der INVEST 2024 in Stuttgart vertreten sein. (Communitytreffen - 27.04.2024 - Samstag) // Kommt in die Gruppe! Mehr Informationen folgen (TM). Wie immer auf Spotify, Apple Podcast, Google Podcast und überall sonst. Alle Links sind auch dem Profil von u/monchella420 zu finden. Die Fragen wurden von der Community gesammelt und von mir fachmännisch destilliert: Hauptfragen: 1. Wie geht es dir? 2. Denkst du manchmal an mich?

Modellansatz
Algorithmisches Differenzieren

Modellansatz

Play Episode Listen Later Jan 23, 2020 68:58


In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden. Gudruns Arbeitsgruppe begrüßte im Januar 2020 Andrea Walther als Gast. Sie ist Expertin für das algorithmische Differenzieren (AD) und ihre Arbeitsgruppe ist verantwortlich für das ADOL-C Programmpaket zum algorithmischen Differenzieren. Zusammen mit Andreas Griewank hat sie 2008 das Standardbuch zu AD veröffentlicht. Im Abitur und im mathematischen Grundstudium lernt jede und jeder Anwendungen kennen, wo Ableitungen von Funktionen gebraucht werden. Insbesondere beim Auffinden von Minima und Maxima von Funktionen ist es sehr praktisch, dies als Nullstellen der Ableitung zu finden. Bei der Modellierung komplexer Zusammenhänge mit Hilfe von partiellen Differentialgleichungen ist es möglich, diese Idee in ein abstrakteres Setting zu Übertragen. Eine sogenannte Kostenfunktion misst, wie gut Lösungen von partiellen Differentialgleichungen einer vorgegebenen Bedingung genügen. Man kann sich beispielsweise einen Backofen vorstellen, der aufgeheizt wird, indem am oberen und unteren Rand eine Heizspirale Wärme in den Ofen überträgt. Für den Braten wünscht man sich eine bestimmte Endtemperaturverteilung. Die Wärmeverteilung lässt sich mit Hilfe der Wärmeleitungsgleichung berechnen. In der Kostenfunktion wird dann neben der gewünschten Temperatur auch noch Energieeffizienz gemessen und die Abweichung von der Endtemperatur wird zusammen mit der benötigten Energie minimiert. Auch hierzu werden Ableitungen berechnet, deren Nullstellen helfen, diese Kosten zu minimeren. Man spricht hier von optimaler Steuerung. Eine Möglichkeit, die abstrakte Ableitung auszudrücken, ist das Lösen eines sogenannten adjungierten partiellen Differenzialgleichungsproblems. Aber hier wird es sehr schwierig, immer schnell und fehlerfrei Ableitungen von sehr komplexen und verschachtelten Funktionen zu berechnen, zumal sie für jedes Problem immer wieder neu und anders aussehen. Außerdem braucht man in der numerischen Auswertung des Algorithmus oft nur Werte dieser Ableitung an bestimmten Stellen. Deshalb ist die effiziente Berechnung von Funktionswerten der Ableitung ein unverzichtbarer Baustein in zahlreichen Anwendungen, die von Methoden zur Lösung nichtlinearer Gleichungen bis hin zu ausgefeilten Simulationen in der Optimierung und optimalen Kontrolle reichen. Am liebsten sollte dies der Computer fehlerfrei oder doch mit sehr kleinen Fehlern übernehmen können. Auch für das Newtonverfahren braucht man die Ableitung der Funktion. Es ist das Standardverfahren zur Lösung nichtlinearer Gleichungen und Gleichungssysteme. Das algorithmische Differenzieren (AD) liefert genaue Werte für jede Funktion, die in einer höheren Programmiersprache gegeben ist, und zwar mit einer zeitlichen und räumlichen Komplexität, die durch die Komplexität der Auswertung der Funktion beschränkt ist. Der Kerngedanke der AD ist die systematische Anwendung der Kettenregel der Analysis. Zu diesem Zweck wird die Berechnung der Funktion in eine (typischerweise lange) Folge einfacher Auswertungen zerlegt, z.B. Additionen, Multiplikationen und Aufrufe von elementaren Funktionen wie zum Beispiel Exponentialfunktion oder Potenzen. Die Ableitungen bezüglich der Argumente dieser einfachen Operationen können leicht berechnet werden. Eine systematische Anwendung der Kettenregel ergibt dann die Ableitungen der gesamten Sequenz in Bezug auf die Eingangsvariablen Man unterscheidet zwei Verfahren: den Vorwärts- und den Rückwärtsmodus. Im Vorwärtsmodus berechnet man das Matrizenprodukt der Jacobi-Matrix mit einer beliebigen Matrix (sogenannte Seedmatrix), ohne vorher die Komponenten der Jacobi-Matrix zu bestimmen. Der Rückwärtsmodus besteht aus zwei Phasen. Die Originalfunktion wird zunächst ausgeführt und gewisse Daten abgespeichert. Anschließend rechnet man rückwärts. Dabei werden Richtungsableitungen übergeben und es werden die im ersten Schritt gespeicherten Daten verwendet. Mit dem Rückwärtsmodus von AD ist es möglich, den Gradienten einer skalarwertigen Funktion mit Laufzeitkosten von weniger als vier Funktionsauswertungen zu berechnen. Diese Grenze ist auch noch völlig unabhängig von der Anzahl der Eingangsvariablen. Das ist phänomenal effektiv, aber er ist mit einem erhöhten Speicherbedarf verbunden. Im Laufe der Jahre wurden Checkpointing-Strategien entwickelt, um einen goldenen Mittelweg zu finden. Die Methoden sind für viele und sehr unterschiedliche Anwendungen interessant. In DFG-Projekten an denen Andrea beteiligt war und ist, wurde das unter anderem für die Modellierung von Piezokeramiken und für die Maxwellsche Wellengleichung umgesetzt. Außerdem sprechen Gudrun und Andrea über die Optimierung der Form einer Turbinenschaufel. Andrea begann ihre berufliche Laufbahn mit einer Ausbildung zur Bankkauffrau in Bremerhaven. Sie entschied sich anschließend für ein Studium der Wirtschaftsmathematik, um Mathematik und ihren erlernten Beruf zusammen zu halten. Unter den wenigen verfügbaren Standorten für so ein Studium in Deutschland entschied sie sich für die Universität Bayreuth. Nach Abschluss des Diploms gab es die Chance, an der TU Dresden im Optimierungsfeld zu arbeiten. Dort promovierte sie, wurde es später Leiterin der selbständigen Nachwuchsgruppe "Analyse und Optimierung von Computermodellen", Juniorprofessorin für "Analyse und Optimierung von Computermodellen" und habilitierte sich. 2009-2019 war sie als Professorin für "Mathematik und ihre Anwendungen" an der Universität Paderborn tätig. Seit Oktober 2019 ist sie Professorin für "Mathematische Optimierung", Humboldt-Universität zu Berlin. Literatur und weiterführende Informationen A. Griewank und A. Walther: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM (2008). A. Gebremedhin und A. Walther: An Introduction to Algorithmic Differentiation. in WIREs Data Mining and Knowledge Discovery. S. Fiege, A. Walther und A. Griewank: An algorithm for nonsmooth optimization by successive piecewise linearization. Mathematical Programming 177(1-2):343-370 (2019). A. Walther und A. Griewank: Characterizing and testing subdifferential regularity for piecewise smooth objective functions. SIAM Journal on Optimization 29(2):1473-1501 (2019). Podcasts G. Thäter, A. Zarth: Automatic Differentiation, Gespräch im Modellansatz Podcast, Folge 167, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, P. Allinger und N. Stockelkamp: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 053, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.

Catch The Numbers Podcast
#036 | Schnittpunkte mit den Koordinatenachsen | Nullstellen | ANALYSIS | Staffel 2

Catch The Numbers Podcast

Play Episode Listen Later Sep 27, 2019 5:28


Die Schnittpunkte mit den beiden Koordinatenachsen berechnen zu können, gehört zu den absoluten Basics bei Funktionen und kommt so gut wie in jeder Aufgabe dran. Ganz besonders in Textaufgaben musst du in der Lage sein zu erkennen, wann diese Punkte gesucht sind. Was die Besonderheit bei diesen Punkten ist und wie du sie ausrechnest, erkläre ich dir in dieser Folge :) Der Podcast soll in Zusammenarbeit mit DIR entstehen. Also lass mir sehr gerne deine Anregungen, Wünsche, Ideen, Fragen da. Das kannst du auf meiner Website www.catchthenumbers.de oder bei Instagram @catchthenumbers machen. Auf meiner Website findest du außerdem mein Coaching-Programm. Make Yourself proud! Deine Nadine :)

LMU Rechenmethoden 2013/14
Mathe-Vorkurs: Vorlesung 2 – Teil A

LMU Rechenmethoden 2013/14

Play Episode Listen Later Mar 13, 2018 101:35


Lineare Funktionen, Polynome, Nullstellen, quadratische Ergänzung, Sinus, Cosinus

erg mathe sinus vorlesung cosinus vorkurs nullstellen
Modellansatz
Quantenchaos

Modellansatz

Play Episode Listen Later Jan 28, 2016 31:26


Diesmal traf sich Gudrun zum Gespräch mit Anke Pohl, die zur Zeit am Max-Planck-Institut für Mathematik in Bonn arbeitet. Das Thema der Unterhaltung ist Mathematisches Quantenchaos. Anke Pohl untersucht nämlich, welchen Zusammenhang die geometrischen und spektralen Eigenschaften Riemannscher Mannigfaltigkeiten haben. Historisch ist das Interesse an diesen Eigenschaften und ihren Wechselwirkungen bei physikalischen Betrachtungen entstanden, wie z.B. bei den Studien der Schwingungen einer Membran. Im Jahre 1910 vermuteten Lorentz und Sommerfeld, dass der Flächeninhalt einer Membran (die ein Beispiel für eine Riemannsche Mannigfaltigkeit ist) durch die (Ober-)töne dieser Membran (die durch die Eigenwerte eines gewissen Operators bestimmt sind, der die Schwingungen der Membran beschreibt) bestimmt sind. Bereits kurze Zeit später gelang es Hermann Weyl, diese Vermutung mathematisch zu beweisen. Im Laufe der Zeit ist die Untersuchung solcher Zusammenhänge zu einem Teilgebiet der Mathematik und Mathematischen Physik angewachsen, welches sowohl hinsichtlich Motivation als auch in Bezug auf Methoden eng mit diversen anderen Teilgebieten der Mathematik, wie z.B. der Geometrie, der Zahlentheorie und der Analysis, zusammenhängt. Und auch heute noch liefern physikalische Erkenntnisse und Intuitionen gute Heuristiken bzw. sind wegweisend für mathematische Ansätze. Aktuelle große Vermutungen mit sowohl mathematischer als auch physikalischer Motivation sind beispielsweise die Rudnick-Sarnak Vermutung über eindeutige Quantenergodizität auf gewissen kompakten Riemannschen Mannigfaltigkeiten (Gleichverteilung von Eigenfunktionen im Mittel bei wachsendem Eigenwert; für den Beweis von eindeutiger arithmetischer Quantenergodizität wurde E. Lindenstrauss 2010 eine Fieldsmedaille verliehen), die Phillips-Sarnak Vermutung über die (Nicht-)Existenz von quadrat-integrierbaren Eigenfunktionen auf gewissen nicht-arithmetischen Mannigfaltigkeiten, die Sarnaksche Vermutung über das Größenwachstum von Eigenfunktionen bei wachsendem Eigenwert, oder die Sjöstrandsche Vermutung über die asymptotische Anzahl von Resonanzen in Streifen bei hyperbolischen Flächen unendlichen Inhalts. Details und weiterführende Informationen zu diesen und anderen Vermutungen sind beispielsweise in den Übersichtsartikel in den untenstehenden Referenzen enthalten. Anke Pohls befasst sich zur Zeit mit bestimmten Flüssen, den sogenannten geodätischen Flüssen, auf einer speziellen Klasse von Riemannschen Mannigfaltigkeiten. Als erste, recht elementare, Beispiele für Mannigfaltigkeiten kann man sich zunächst Oberflächen vorstellen. Wenn man auf ihnen Größen definiert hat, die zum Messen von Abständen und Winkel dienen, werden sie Riemannsche Mannigfaltigkeit genannt. Wie bei den oben genannten Membranen sind Geodäten. Mathematisch werden die Schwingungen als Lösungen des Laplaceoperators in der zugrundeliegenden Geometrie beschrieben bzw. mit Hilfe der Eigenwerte und Eigenfunktionen des Operators. Aus der Anschauung ist klar, dass die Schwingungen von den geometrischen Eigenschaften der Fläche abhängen. Wenn z.B. die Fläche oder Membran eingerissen ist oder ein Loch hat, klingt sie anders als wenn sie geschlossen ist bzw. gut eingespannt ist. Für kompakte Flächen ist bekannt, dass es unendlich viele solcher Eigenfunktionen gibt. Je nach Grad der Offenheit (also z.B. eine Fläche mit Riss oder Loch) ist es jedoch schwierig zu sagen, wie sich die Schar der Lösungen verändert. Ein interessantes Beispiel wäre z.B. zu betrachten, dass an einer Stelle die eingespannte Fläche im Unendlichen verankert ist, aber das darunterliegende Volumen endlich ist. Vorstellen kann man sich das etwa so, dass man an dieser Stelle die Fläche samt ihren Abständen unendlich weit zieht. Man fragt sich dann, ob eine Welle auf der Fläche auch diese Singularität überlebt. Ein methodischer Ansatz, solche und andere Fragen zu studieren, ist es, Beziehungen zu anderen Objekten, vor allem rein geometrischen, zu finden. Selbergs Beweis zur Unendlichkeit der Anzahl der Eigenfunktionen auf gewissen hyperbolischen Flächen zeigt zunächst, dass die Eigenwerte der Eigenfunktionen (spektrale Objekte) durch die Längen der geschlossenen Geodäten (geometrische Objekte) bestimmt sind. Genauer, sie sind unter den Nullstellen einer generierenden Zetafunktion für das Längenspektrum der Geodäten. Ausnutzung zusätzlicher Eigenschaften der Flächen, wie z.B. Kompaktheit oder zusätzliche Symmetrien, erlaubt dann (manchmal) zu bestimmen, ob Nullstellen existieren und ob sie von Eigenwerten stammen. Anke Pohl schaut sich die Geodäten auf bestimmten hyperbolischen Flächen an, diskretisiert sie und findet ein assoziiertes diskretes dynamisches System auf dem reellen Zahlenstrahl. Für dieses diskrete System sucht sie gewisse invariante Größen, z. B. invariante Maße oder Dichten. Genauer fragt sie nach Eigenfunktionen des assoziierten Transferoperators mit gewissen Parametern (inversen Temperaturen). An dieser Stelle sieht man wieder einen Einfluss aus der Physik: Transferoperatoren entstammen dem thermodynamischen Formalismus der statistischen Mechanik. Sie zeigt dann, dass die Eigenfunktionen dieser Transferoperatoren bijektiv zu den L_2 Eigenfunktionen des Laplaceoperators der hyperbolischen Flächen sind. Da die Eigenfunktionen der Transferoperatoren alleine durch die geschlossenen Geodäten bestimmt sind und somit also geometrische Objekte der Fläche sind, stellt auch sie eine Beziehung zwischen gewissen geometrischen und gewissen spektralen Objekten dieser Flächen her. Zum Abschluss noch eine kurze Erklärung zur Bezeichnung "Quantenchaos" für dieses Themengebiet: Der Laplaceoperator ist gerade, bis auf Skalierung, der Schrödingeroperator in der Physik. Quantenmechanisch werden seine L_2 Eigenfunktionen als gebundene Zustände verstanden. Das zugehörige Objekt in der klassischen Mechanik ist gerade das Hamiltonsche Vektorfeld des geodätischen Flusses, d. h. die Bildungsvorschrift für die Geodäten oder die Bewegungsvorschrift für Kugeln auf der Fläche. Das Korrespondenzprinzip der Physik besagt nun, dass im Grenzfall (hier: Eigenwerte der Eigenfunktionen gehen gegen unendlich) die Gesetze der Quantenmechanik in die der klassischen Mechanik übergehen sollten. Hier fragt man also gerade danach, wie die spektralen und die geometrischen Eigenschaften Riemannscher Mannigfaltigen wechselwirken. Daraus ergibt sich der Bestandteil "Quanten" in "Quantenchaos". Der Bestandteil "Chaos" ist wie folgt motiviert: Bei den in diesem Gebiet studierten Flüssen verhalten sich Bahnen, die sehr nah beieinander starten, typischerweise nach recht kurzer Zeit sehr unterschiedlich. Mit anderen Worten, kleine Änderungen in den Anfangsbedingungen wirken sich typischerweise sehr stark aus, d.h., das System ist in gewisser Weise chaotisch. Frau Pohl hat Mathematik an der TU Clausthal studiert, an der Universität Paderborn promoviert und habilitiert gerade an der Universität Göttingen. Literatur und Zusatzinformationen William P. Thurston: The Geometry and Topology of Three-Manifolds, Mathematical Sciences Research Institute, 2002. A. Pohl: Symbolic dynamics for the geodesic flow on locally symmetric good orbifolds of rank one, Dissertation Uni Paderborn, 2009. A.Pohl: A dynamical approach to Maass cusp forms, arXiv preprint arXiv:1208.6178, 2012. M. Möller und A. Pohl: Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory and Dynamical Systems 33.01: 247-283, 2013. P. Sarnak: Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc 48: 211-228, 2012. S. Zelditch: Recent developments in mathematical quantum chaos, Current developments in mathematics 2009: 115-204, 2010.

Modellansatz
L-Funktionen

Modellansatz

Play Episode Listen Later Jun 11, 2015 59:51


Eine alte Fragestellung lautet, was die Summe der Kehrwerte aller natürlicher Zahlen ist. Mit anderen Worten: existiert der Grenzwert der Harmonischen Reihe ? Die Antwort, die man im ersten Semester kennenlernen ist: Diese Reihe ist divergiert, der Wert ist nicht endlich. Über die spannenden Entwicklungen in der Zahlentheorie, die sich daraus ergaben, berichtet Fabian Januszewski im Gespräch mit Gudrun Thäter. Eine verwandte Fragestellung zur harmonischen Reihe lautet: Wie steht es um den Wert von ? Diese Frage wurde im 17. Jahrhundert aufgeworfen und man wußte, daß der Wert dieser Reihe endlich ist. Allerdings kannte man den exakten Wert nicht. Diese Frage war als das sogannte Basel-Problem bekannt. Eine ähnliche Reihe ist Ihr Wert läßt sich elementar bestimmen. Dies war lange bekannt, und das Basel-Problem war ungleich schwieriger: Es blieb fast einhundert Jahre lang ungelöst. Erst Leonhard Euler löste es 1741: Die Riemann'sche -Funktion Die Geschichte der L-Reihen beginnt bereits bei Leonhard Euler, welcher im 18. Jahrhundert im Kontext des Basel-Problems die Riemann'sche -Funktion' entdeckte und zeigte, dass sie der Produktformel genügt, wobei die Menge der Primzahlen durchläuft und eine reelle Variable ist. Diese Tatsache ist äquivalent zum Fundamentalsatz der Arithmetik: jede natürliche Zahl besitzt eine eindeutige Primfaktorzerlegung. Eulers Lösung des Basel-Problems besagt, daß und diese Formel läßt sich auf alle geraden positiven Argumente verallgemeinern: , wobei die -te Bernoulli-Zahl bezeichnet. Im 19. Jahrhundert zeigte Bernhard Riemann, dass die a priori nur für konvergente Reihe eine holomorphe Fortsetzung auf besitzt, einer Funktionalgleichung der Form genügt und einen einfachen Pol mit Residuum bei aufweist. Letztere Aussage spiegelt die Tatsache wieder, dass in jedes Ideal ein Hauptideal ist und die einzigen multiplikativ invertierbaren Elemente sind. Weiterhin weiß viel über die Verteilung von Primzahlen. Setzen wir dann zeigte Riemann, daß die so definierte vervollständigte Riemann'sche -Funktion auf ganz holomorph ist und der Funktionalgleichung genügt. Da die -Funktion Pole bei nicht-positiven ganzzahligen Argumenten besitzt, ergibt sich hieraus die Existenz und Lage der sogenannten "trivialen Nullstellen" von : für . Konzeptionell sollte man sich den Faktor als Eulerfaktor bei vorstellen. John Tate zeigte in seiner berühmten Dissertation, daß dies tatsächlich sinnvoll ist: Die endlichen Eulerfaktoren werden von Tate als Integrale über interpretiert, und der "unendliche" Eulerfaktor ist ebenfalls durch ein entsprechendes Integral über gegeben. Er legte damit den Grundstein für weitreichende Verallgemeinerungen. Die Riemann'sche -Funktion ist der Prototyp einer -Funktion, einem Begriff, der langsam Schritt für Schritt verallgemeinert wurde, zunächst von Richard Dedekind, Lejeune Dirichlet und Erich Hecke und weiter von Emil Artin, Helmut Hasse, André Weil, Alexander Grothendieck, Pierre Deligne, Jean-Pierre Serre und Robert Langlands et al. -Funktionen spielen in der modernen Zahlentheorie eine zentrale Rolle, und bis heute ranken sich fundamentale Vermutungen um diesen Begriff. Selbst die Mysterien der Riemann'schen -Funktion sind auch heute bei weitem nicht vollständig ergründet. Die berühmteste Vermutung in diesem Kontext ist die Riemann'sche Vermutung. Riemann zeigte 1859 nicht nur, daß die Riemann'sche -Funktion eine holomorphe Fortsetzung auf besitzt, sondern stellte auch einen engen Zusammenhang zwischen der Verteilung der Primzahlen und den Nullstellen von her. Eulers Produktenwicklung von für zeigt, dass stets für . Aus der Funktionalgleichung von ergibt sich, dass für natürliche Zahlen . Die sind die sogenannten trivialen Nullstellen der -Funktion. Riemann vermutete, dass sämtliche nicht-trivialen Nullstellen auf der Geraden liegen. Euler bestimmte im wesentlichen die Werte für positives . Bis heute wissen wir sehr wenig über die Werte an positiven ungeraden Argumenten. Ein Satz von Apéry besagt, daß irrational ist. Wir haben allerdings keine einfache Formel für diesen Funktionswert. Konzeptionell unterscheiden sich die ungeraden von den geraden positiven Argumenten darin, daß der in auftretende Faktor der -Funktion für ungerades positives dort einen Pol besitzt, was ebenfalls das Verschwinden von zur Folge hat. Über die Werte an negativen ungeraden Argumenten wissen wir aus der Funktionalgleichung, daß . Insbesondere gilt . Dieser Wert kann in gewissen Kontexten als Grenzwert (der divergierenden!) Reihe interpretiert werden (formal ergeben diese Identitäten natürlich keinen Sinn). In gewissen Situationen ist der Funktionswert ein sinnvoller endlicher Ersatz für den nicht existierenden Grenzwert der Reihe . Derartige Phänomene treten in Zahlentheorie an vielen Stellen auf. Literatur und Zusatzinformationen Haruzo Hida, Elementary theory of -functions and Eisenstein series, Cambridge University Press, 1993. Jean-Pierre Serre, "Cours d'arithmétique", Presses Universitaires de France, 1970. Goro Shimura, "Introduction to the arithmetic theory of automorphic functions." Princeton University Press, 1971. Jürgen Neukirch, Algebraische Zahlentheorie, Springer Verlag, 1992. André Weil, Basic Number Theory, Springer Verlag, 1973. Podcast Modellansatz 036: Analysis und die Abschnittskontrolle Bernhard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1859 John T. Tate, "Fourier analysis in number fields, and Hecke's zeta-functions", Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, 1950, S. 305–347. Andrew Wiles, "Modular Elliptic Curves and Fermat’s Last Theorem." Annals of Mathematics 142, 1995, S. 443–551. Richard Taylor, Andrew Wiles, "Ring-theoretic properties of certain Hecke algebras." Annals of Mathematics 142, 1995, S. 553–572. Brian Conrad, Fred Diamond, Richard Taylor, "Modularity of certain potentially Barsotti-Tate Galois representations", Journal of the American Mathematical Society 12, 1999, S. 521–567. Christophe Breuil, Brian Conrad, Fred Diamond, Richard Taylor, "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society 14, 2001, S. 843–939. Frobeniushomomorphismus Galois-Darstellungen Weil-Vermutungen Standard-Vermutungen Automorphe Formen Das Langlands-Programm Wikipedia: Automorphe L-Funktionen Emil Artin, Über eine neue Art von -Reihen, Abh. Math. Seminar Hamburg, 1923. Armand Borel, "Automorphic L-functions", in A. Borel, W. Casselman, "Automorphic forms, representations and L-functions" (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Oregon, 1977), Teil 2, Proc. Sympos. Pure Math., XXXIII, American Mathematical Society, 1979, S. 27–61. Robert P. Langlands, "Problems in the theory of automorphic forms", in "Lectures in modern analysis and applications III," Lecture Notes in Math 170, 1970, S. 18–61. Robert P. Langlands, '"'Euler products", Yale University Press, 1971. Wikipedia: Spezielle Werte von L-Funktionen Pierre Deligne; "Valeurs de fonctions L et périodes d’intégrales." , in A. Borel, W. Casselman, "Automorphic forms, representations and L-functions" (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Oregon, 1977)'', Teil 2, Proc. Sympos. Pure Math., XXXIII, American Mathematical Society, 1979, S. 313–346.

Modellansatz
Teichmüllerkurven

Modellansatz

Play Episode Listen Later Dec 25, 2014 48:06


Jonathan Zachhuber war zum 12. Weihnachtsworkshop zur Geometrie und Zahlentheorie zurück an seine Alma Mater nach Karlsruhe gekommen und sprach mit Gudrun Thäter über Teichmüllerkurven. Kurven sind zunächst sehr elementare ein-dimensionale mathematische Gebilde, die über den komplexen Zahlen gleich viel reichhaltiger erscheinen, da sie im Sinne der Funktionentheorie als Riemannsche Fläche verstanden werden können und manchmal faszinierende topologische Eigenschaften besitzen. Ein wichtiges Konzept ist dabei das Verkleben von Flächen. Aus einem Rechteck kann man durch Verkleben der gegenüberliegenden Seiten zu einem Torus gelangen (Animation von Kieff zum Verkleben, veröffentlicht als Public Domain): Polynome in mehreren Variablen bieten eine interessante Art Kurven als Nullstellenmengen zu beschreiben: Die Nullstellen-Menge des Polynoms ergibt über den reellen Zahlen den Einheitskreis. Durch Ändern von Koeffizienten kann man die Kurve verformen, und so ist die Nullstellenmenge von eine Ellipse. Über den komplexen Zahlen können diese einfachen Kurven dann aber auch als Mannigfaltigkeiten interpretiert werden, die über Karten und Atlanten beschrieben werden können. Das ist so wie bei einer Straßenkarte, mit der wir uns lokal gut orientieren können. Im Umland oder anderen Städten braucht man weitere Karten, und alle Karten zusammen ergeben bei vollständiger Abdeckung den Straßenatlas. Auch wenn die entstehenden abstrakten Beschreibungen nicht immer anschaulich sind, so erleichtern die komplexen Zahlen den Umgang mit Polynomen in einem ganz wichtigen Punkt: Der Fundamentalsatz der Algebra besagt, dass der Grad des Polynoms gleich der Anzahl der Nullstellen in ihrer Vielfachheit ist. Also hat nun jedes nichtkonstante Polynom mindestens eine Nullstelle, und über den Grad des Polynoms wissen wir, wie viele Punkte sich in der Nullstellenmenge bewegen können, wenn wir an den Koeffizienten Veränderungen vornehmen. Eine gute Methode die entstehenden Flächen zu charakterisieren ist die Bestimmung möglicher geschlossener Kurven, und so gibt es beim Torus beispielsweise zwei unterschiedliche geschlossene Kurven. Die so enstehende Fundamentalgruppe bleibt unter einfachen Deformationen der Flächen erhalten, und ist daher eine Invariante, die hilft die Fläche topologisch zu beschreiben. Eine weitere wichtige topologische Invariante ist das Geschlecht der Fläche. Die Teichmüllerkurven entstehen nun z.B. durch das Verändern von einem Koeffizienten in den Polynomen, die uns durch Nullstellenmengen Kurven beschreiben- sie sind sozusagen Kurven von Kurven. Die entstehenden Strukturen kann man als Modulraum beschreiben, und so diesen Konstruktionen einen Parameterraum mit geometrischer Struktur zuordnen. Speziell entstehen Punkte auf Teichmüllerkurven gerade beim Verkleben von gegenüberliegenden parallelen Kanten eines Polygons; durch Scherung erhält man eine Familie von Kurven, die in seltenen Fällen selbst eine Kurve ist. Ein Beispiel ist das Rechteck, das durch Verkleben zu einem Torus wird, aber durch Scherung um ganz spezielle Faktoren zu einem ganz anderen Ergebnis führen kann. Die durch Verklebung entstandenen Flächen kann man als Translationsflächen in den Griff bekommen. Hier liefert die Translationssymmetrie die Methode um äquivalente Punkte zu identifizieren. Für die weitere Analyse werden dann auch Differentialformen eingesetzt. Translationen sind aber nur ein Beispiel für mögliche Symmetrien, denn auch Rotationen können Symmetrien erzeugen. Da die Multiplikation in den komplexen Zahlen auch als Drehstreckung verstanden werden kann, sind hier Rotationen als komplexe Isomorphismen ganz natürlich, und das findet man auch in den Einheitswurzeln wieder. Literatur und Zusatzinformationen A. Zorich: Flat Surfaces, Frontiers in Number Theory, Physics and Geometry, On Random Matrices, Zeta Functions, and Dynamical Systems, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove. Vol. 1. Berlin: pp. 439–586, Springer-Verlag, 2006. M. Möller: Teichmüller Curves, Mainly from the Viewpoint of Algebraic Geometry, IAS/Park City Mathematics Series, 2011. J. Zachhuber: Avoidance of by Teichmüller Curves in a Stratum of , Diplomarbeit an der Fakultät für Mathematik am Karlsruher Institut für Technologie (KIT), 2013. C. McMullen: Billiards and Teichmüller curves on Hilbert modular surfaces, Journal of the AMS 16.4, pp. 857–885, 2003. C. McMullen: Prym varieties and Teichmüller curves, Duke Math. J. 133.3, pp. 569–590, 2006. C. McMullen: Dynamics of SL(2,R) over moduli space in genus two, Ann. of Math. (2) 165, no. 2, 397–456, 2007. Weitere Paper von C. McMullen, u.a. The mathematical work of Maryam Mirzakhani Podcast: Modellansatz 040: Topologie mit Prof. Dr. Wolfgang Lück

Modellansatz
Systembiologie

Modellansatz

Play Episode Listen Later Nov 27, 2014 93:01


Auf den Vorschlag von Henning Krause verbreiteten viele Forschende unter dem Hashtag #1TweetForschung ihr Forschungsthema in Kurzform. So auch Lorenz Adlung, der in der Abteilung Systembiologie der Signaltransduktion am Deutschen Krebsforschungszentrum in Heidelberg die mathematische Modellbildung für biologische Prozesse erforscht. Bei der Anwendung einer Chemotherapie leiden Krebspatienten oft unter Blutarmut. Hier kann neben der Bluttransfusion das Hormon Erythropoetin, kurz EPO, helfen, da es die körpereigene Erzeugung von roten Blutkörperchen (Erythrozyten) unterstützt. Leider ist EPO als Dopingmittel bekannt, und um dem Doping noch deutlicher Einhalt zu gebieten, wurde im November 2014 in Deutschland ein Entwurf eines Anti-Doping-Gesetz vorgelegt. Trotz gängigem Einsatz und erprobter Wirkung von EPO ist die genaue Wirkung von EPO auf Krebszellen nicht bekannt. Daher verfolgt Lorenz Adlung den Ansatz der Systembiologie, um im Zusammenwirken von Modellbildung und Mathematik, Biologie und Simulationen sowohl qualitativ und quantitativ analysieren und bewerten zu können. Vereinfacht sind rote Blutkörperchen kleine Sauerstoff-transportierende Säckchen aus Hämoglobin, die auch die rote Farbe des Bluts verursachen. Sie stammen ursprünglich aus Stammzellen, aus denen sich im Differenzierungs-Prozess Vorläuferzellen bzw. Progenitorzellen bilden, die wiederum durch weitere Spezialisierung zu roten Blutkörperchen werden. Da es nur wenige Stammzellen gibt, aus denen eine unglaubliche große Anzahl von Trillionen von Blutkörperchen werden müssen, gibt es verschiedene Teilungs- bzw. Proliferationsprozesse. Das Ganze ergibt einen sehr komplexen Prozess, dessen Verständnis zu neuen Methoden zur Vermehrung von roten Blutkörperchen führen können. Den durch Differenzierung und Proliferation gekennzeichnete Prozess kann man mathematisch beschreiben. Eine zentrale Ansichtsweise in der Systembiologie der Signaltransduktion ist, Zellen als informationsverarbeitende Objekte zu verstehen, die zum Beispiel auf die Information einer höheren EPO-Konzentration in der Umgebung reagieren. Von diesem Ansatz werden durch Messungen Modelle und Parameter bestimmt, die das Verhalten angemessen beschreiben können. Diese Modelle werden in Einklang mit bekannten Prozessen auf molekularer Ebene gebracht, um mehr über die Abläufe zu lernen. Die erforderlichen quantitativen Messungen basieren sowohl auf manuellem Abzählen unter dem Mikroskop, als auch der Durchflusszytometrie, bei der durch Streuung von Laserlicht an Zellen durch Verwendung von Markern sogar Aussagen über die Zelloberflächen getroffen werden können. Zusätzlich kann mit der Massenspektrometrie auch das Innere von Zellen ausgemessen werden. In diesem Anwendungsfall werden die mathematischen Modelle in der Regel durch gekoppelte gewöhnliche Differenzialgleichungen beschrieben, die Zell- oder Proteinkonzentrationen über die Zeit beschreiben. Die Differenzialgleichungen und deren Parameter werden dabei sowohl mit Messungen kalibriert, als auch mit den Kenntnissen in der Molekularbiologie in Einklang gebracht. Die Anzahl der Parameter ist aber oft zu hoch, um naiv auf geeignete zu den Messungen passende Werte zu gelangen. Daher wird unter anderem das Latin Hypercube Sampling verwendet, um schnell nahe sinnvollen Parameterwerten zu gelangen, die durch gradienten-basierte Optimierungsverfahren verbessert werden können. Die Basis für diese Art von Optimierungsverfahren ist das Newton-Verfahren, mit dem man Nullstellen von Funktionen finden kann. Ein wichtiger Aspekt im Umgang mit Messergebnissen ist die Berücksichtigung von Messfehlern, die auch vom Wert der Messung abhängig verstanden werden muss- denn nahe der Messgenauigkeit oder der Sättigung können die relativen Fehler extrem groß werden. Die Bestimmung der Modellparameter ist schließlich auch ein Parameteridentifikationsproblem, wo insbesondere durch eine Sensitivitätsanalyse auch der Einfluss der geschätzten Parameter bestimmt werden kann. Sowohl die Parameter als auch die Sensitivitäten werden mit den biologischen Prozessen analysiert, ob die Ergebnisse stimmig sind, oder vielleicht auf neue Zusammenhänge gedeuten werden können. Hier ist die Hauptkomponentenanalyse ein wichtiges Werkzeug, um zentrale beeinflussende Faktoren erfassen zu können. Ein wichtiges Ziel der Modellbildung ist die numerische Simulation von Vorgängen, die als digitale Experimente sich zu einem eigenen Bereich der experimentellen Forschung entwickelt haben. Darüber hinaus ermöglicht das digitale Modell auch die optimale Planung von Experimenten, um bestimmte Fragestellungen möglichst gut untersuchen zu können. Die Umsetzung auf dem Computer erfolgt unter anderem mit Matlab, R (The R Project for Statistical Computing) und mit der spezialisierten und freien Software D2D - Data to Dynamics.Literatur und Zusatzinformationen M. Boehm, L. Adlung, M. Schilling, S. Roth, U. Klingmüller, W. Lehmann: Identification of Isoform-Specific Dynamics in Phosphorylation-Dependent STAT5 Dimerization by Quantitative Mass Spectrometry and Mathematical Modeling, Journal of Proteome Research, American Chemical Society, 2014. (PubMed) Studium der Systembiologie D2D-Software L. Adlung, C. Hopp, A. Köthe, N. Schnellbächer, O. Staufer: Tutorium Mathe für Biologen, Springer Spektrum, 2014. Science: NextGen Voices zur globalen wissenschaftlichen Zusammenarbeit- mit Lorenz Adlung Lorenz Adlung auf Twitter L. Adlung, et. al: Synbio meets Poetry, CreateSpace, 2013. Kollaborationspartner: U.a. Thomas Höfer, Heidelberg, Jens Timmer, Freiburg i. B., Fabian Theis, München Resonator-Podcast 015: DKFZ-Forscher Christof von Kalle Resonator-Podcast 014: Das DKFZ in Heidelberg Omega Tau-Podcast 069: Grundlagen der Zellbiologie Omega Tau-Podcast 072: Forschung in der Zellbiologie Konscience-Podcast 024, Kapitel 5: Das Hochlandgen aus "Wie kam das bloß durch die Ethikkommission?"

Mathematik für die Oberstufe
15. Kurvendiskussion Teil 2

Mathematik für die Oberstufe

Play Episode Listen Later Mar 17, 2012 20:48


analysis funktion wendepunkt mathe tiefpunkt oberstufe symmetrie ableitung kurvendiskussion hochpunkt extremum lernzuflucht ausklammern nullstellen faktorisierung
Mathematik für die Oberstufe
16. Potenzgesetze

Mathematik für die Oberstufe

Play Episode Listen Later Mar 17, 2012 16:00


analysis funktion wendepunkt mathe tiefpunkt oberstufe symmetrie ableitung kurvendiskussion hochpunkt extremum lernzuflucht ausklammern nullstellen faktorisierung
Mathematik für die Oberstufe
13. Substitution zur Nullstellenberechnung

Mathematik für die Oberstufe

Play Episode Listen Later Mar 11, 2012 11:20


analysis substitution mathe oberstufe lernzuflucht nullstellen faktorisierung
Mathematik für die Oberstufe
14. Kurvendiskussion Teil 1

Mathematik für die Oberstufe

Play Episode Listen Later Mar 11, 2012 35:30


analysis funktion wendepunkt mathe tiefpunkt oberstufe symmetrie ableitung kurvendiskussion hochpunkt extremum lernzuflucht ausklammern nullstellen faktorisierung
Mathematik für die Oberstufe
12. Nullstellen durch Ausklammern

Mathematik für die Oberstufe

Play Episode Listen Later Mar 6, 2012 12:33


durch analysis mathe oberstufe lernzuflucht ausklammern nullstellen faktorisierung
Mathematik für die Oberstufe
10. Die Polynomdivision

Mathematik für die Oberstufe

Play Episode Listen Later Feb 25, 2012 14:18


funktionen mathe oberstufe gleichungen kubisch lernzuflucht nullstellen
Mathematik für die Oberstufe
9. Nullstellen quadratischer Funktionen

Mathematik für die Oberstufe

Play Episode Listen Later Feb 24, 2012 8:42