German mathematician
POPULARITY
Emmy Noether showed that fundamental physical laws are just a consequence of simple symmetries. A century later, her insights continue to shape physics. “The post How Noether's Theorem Revolutionized Physics first appeared on Quanta Magazine.
fWotD Episode 2964: Emmy Noether Welcome to Featured Wiki of the Day, your daily dose of knowledge from Wikipedia's finest articles.The featured article for Monday, 16 June 2025, is Emmy Noether.Amalie Emmy Noether (US: , UK: ; German: [ˈnøːtɐ]; 23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's first and second theorems, which are fundamental in mathematical physics. Noether was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important woman in the history of mathematics. As one of the leading mathematicians of her time, she developed theories of rings, fields, and algebras. In physics, Noether's theorem explains the connection between symmetry and conservation laws.Noether was born to a Jewish family in the Franconian town of Erlangen; her father was the mathematician Max Noether. She originally planned to teach French and English after passing the required examinations, but instead studied mathematics at the University of Erlangen–Nuremberg, where her father lectured. After completing her doctorate in 1907 under the supervision of Paul Gordan, she worked at the Mathematical Institute of Erlangen without pay for seven years. At the time, women were largely excluded from academic positions. In 1915, she was invited by David Hilbert and Felix Klein to join the mathematics department at the University of Göttingen, a world-renowned center of mathematical research. The philosophical faculty objected, however, and she spent four years lecturing under Hilbert's name. Her habilitation was approved in 1919, allowing her to obtain the rank of Privatdozent.Noether remained a leading member of the Göttingen mathematics department until 1933; her students were sometimes called the "Noether Boys". In 1924, Dutch mathematician B. L. van der Waerden joined her circle and soon became the leading expositor of Noether's ideas; her work was the foundation for the second volume of his influential 1931 textbook, Moderne Algebra. By the time of her plenary address at the 1932 International Congress of Mathematicians in Zürich, her algebraic acumen was recognized around the world. The following year, Germany's Nazi government dismissed Jews from university positions, and Noether moved to the United States to take up a position at Bryn Mawr College in Pennsylvania. There, she taught graduate and post-doctoral women including Marie Johanna Weiss and Olga Taussky-Todd. At the same time, she lectured and performed research at the Institute for Advanced Study in Princeton, New Jersey.Noether's mathematical work has been divided into three "epochs". In the first (1908–1919), she made contributions to the theories of algebraic invariants and number fields. Her work on differential invariants in the calculus of variations, Noether's theorem, has been called "one of the most important mathematical theorems ever proved in guiding the development of modern physics". In the second epoch (1920–1926), she began work that "changed the face of [abstract] algebra". In her classic 1921 paper Idealtheorie in Ringbereichen (Theory of Ideals in Ring Domains), Noether developed the theory of ideals in commutative rings into a tool with wide-ranging applications. She made elegant use of the ascending chain condition, and objects satisfying it are named Noetherian in her honor. In the third epoch (1927–1935), she published works on noncommutative algebras and hypercomplex numbers and united the representation theory of groups with the theory of modules and ideals. In addition to her own publications, Noether was generous with her ideas and is credited with several lines of research published by other mathematicians, even in fields far removed from her main work, such as algebraic topology.This recording reflects the Wikipedia text as of 01:12 UTC on Monday, 16 June 2025.For the full current version of the article, see Emmy Noether on Wikipedia.This podcast uses content from Wikipedia under the Creative Commons Attribution-ShareAlike License.Visit our archives at wikioftheday.com and subscribe to stay updated on new episodes.Follow us on Mastodon at @wikioftheday@masto.ai.Also check out Curmudgeon's Corner, a current events podcast.Until next time, I'm standard Geraint.
Send us a textWelcome to the latest episode of Living Proof, our podcast produced in collaboration with Plus.maths.orgIn this episode, we talked to famous Maths historian, David E. Rowe, who provided scientific advice for the play Diving into math with Emmy Noether, which was staged as part of the Modern History of Mathematics research programme and the Inclusivity in the Mathematical Sciences workshop at the INI. We dive deep into the life and work of Emmy Noether, and about what it's like putting mathematics on stage.The play is produced by Portrait Theater Vienna in co-operation with Freie Universität Berlin, directed by Sandra Schueddekopf, and features Anita Zieher as Emmy Noether.Read article Emmy Noether: a creative mathematical genius produced by Plus magazine as part of their collaboration with INI.
Every now and again, and more often than you'd think, the work of mathematics overlaps with the world of theatre and film. This happened again recently when the Isaac Newton Institute for Mathematical Sciences (INI) organised a staging of the play Diving into math with Emmy Noether. Noether was a pure mathematician whose results made waves far beyond her field. Albert Einstein called her a "creative mathematical genius". The play is produced by Portrait Theater Vienna in co-operation with Freie Universität Berlin, directed by Sandra Schueddekopf, and features Anita Zieher as Emmy Noether. It was put on as part of the Modern History of Mathematics research programme that is currently taking place at the INI and the Inclusivity in the Mathematical Sciences workshop that was organised by the Newton Gateway to Mathematics in March 2025. In this episode of Maths on the move we talk to historian of mathematics David E. Rowe, who provided scientific advice for the play, about the life and work of Emmy Noether, and about what it's like putting mathematics on stage. You might also want to read our article Emmy Noether: A creative mathematical genius. This content was produced as part of our collaborations with the Isaac Newton Institute for Mathematical Sciences (INI) and the Newton Gateway to Mathematics. The INI is an international research centre and our neighbour here on the University of Cambridge's maths campus. The Newton Gateway is the impact initiative of the INI, which engages with users of mathematics. You can find all the content from the collaboration here.
På Berlin filmfestival i helgen gick årets Guldbjörn till Drömmar av den norska regissören Dag Johan Haugerud, som nu har gått i mål med sin filmtrilogi. Lyssna på alla avsnitt i Sveriges Radio Play. Dag Johan Haugeruds mastodontprojekt består av filmerna ”Drömmar”, ”Sex” och ”Kärlek”. Emma Engström har pratat med den glada, och faktiskt lättade, guldbjörnsbelönade filmregissören.VÄLKOMMEN TILL APOKALYPSEN – I GÖTEBORG!Utställningen ”Apokalyps. Från yttersta domen till klimathot” på Göteborg konstmuseum tecknar undergångens konsthistoria, från 1500-talet fram till idag. P1 Kulturs Mårten Arndtzén har varit där.OLLE GRANATH OM ETT LIV I KONSTENS VÄRLDHan är en av Sveriges mesta museimänniskor inom konsten. Nu har Olle Granath gett ut sina memoarer, med titeln: ”I konstens värld – Från fyra amerikaner till Midvinterblot”. P1 Kulturs Karsten Thurfjell har träffat honom.RADIOESSÄ: UKON OM MATEMATIK OCH POESI OCH EN TID UTAN TIDKan läsningen av en dikt liknas vid matematiskt tänkande? Ulf Karl Olov Nilsson funderar över matematik och poesi utifrån matematikern Emmy Noether – som ibland kallas för algebrans moder – och Jacques Roubaud, poet och matematiker.Programledare: Jenny TelemanProducent: Maria Götselius
Kan läsningen av en dikt liknas vid matematiskt tänkande? Ulf Karl Olov Nilsson funderar över Emmy Noether, Jacques Roubaud och en tid utan tid. Lyssna på alla avsnitt i Sveriges Radio Play. ESSÄ: Detta är en text där skribenten reflekterar över ett ämne eller ett verk. Åsikter som uttrycks är skribentens egna.Emmy Noether var en av det tidiga 1900-talets största matematiker, ibland kallas hon för den moderna algebrans moder. På hennes lika opedagogiska som briljanta föreläsningar på matematiska institutionen i Göttingen hände det att hon vankade fram och tillbaka med kritan i handen framför svarta tavlan, länge länge länge, och muttrade för sig själv, innan hon liksom ur intet, eller kanske snarare ur sitt inre, kastade fram en förtätad och nytänkande matematisk formel, ungefär som en fotograf framkallar en stillbild.Det så kallade Noethers teorem från 1918 var epokgörande. I teoremet sker ett slags abstraktion, ett åsidosättande av omständigheter och kontext; det förklarar vad det innebär att inte vara förankrad i vare sig plats eller tid och det kom att utgöra ett slags grund för vetenskaplig metod, användbar för kvantfysik, relativitetsteori och förståelsen av big-bang.Men bortsett från sin häpnadsväckande användbarhet beskrivs teoremet också som osedvanligt vackert; det är rent, det är abstrakt, det är symmetriskt. I två extremt förtätade utsagor uttryckta i ett par ynka rader, understödda av några siffror, parenteser och matematiska symboler kunde hon sammanfatta rent ofattbara saker: fysikens tidlöshet, naturlagarnas grundläggande villkor.Man undrar: Hur räknade hon ut detta? Hur går ett sådant tänkande till egentligen? Tänker man i siffror? Ja, hur?Jag läser om Emmy Noether i teknikhistorikern Julia Ravanis bok ”Emmys teorem” där populärvetenskapliga beskrivningar och fysikaliska utsagor varvas med kvinnliga erfarenheter ur Noethers och Ravanis egna liv. Noethers biografi var såklart – det är nämligen alla liv – präglat av konkreta livsomständigheter. I början på 1900-talet fanns det knappast några kvinnor i akademin. Och som judinna var hon tvungen att lämna Tyskland för USA på 30-talet. Å andra sidan ägde hennes existens också ett slags abstraktionsgrad; hon tycktes obekymrad om många traditionella jordiska värden såsom karriär, pengar, familj, formell akademisk status och hon gick konsekvent klädd i samma svarta klänningar. Det var på många sätt ett liv i algebrans tjänst. Men även om hon skandalöst nog aldrig utnämndes till professor var hennes informella status odiskutabel. Tidens alla viktiga matematiker insåg Emmy Noethers unika förmåga och hon hade en inte obetydlig skara lärjungar.Ja, hur gick hennes tänkande till egentligen? Julia Ravanis beskriver hur Noether inte gillade långa uträkningar, alltså där man kan följa hur matematikern sida upp och sida ned följer ett resonemang. Hon verkade således inte ha föredragit att tänka och arbeta diakront, alltså att hon räknade fram resultatet läng en tidsaxel. Istället – så uppfattar jag det – arbetade hon samordnat, synkront: hon tänkte så att säga alla siffror samtidigt; hon tänkte matematiken som fotografi snarare än film. Ravanis skriver: ”Om matematiken är ett landskap och beräkningen en väg sökte Emmy Noether fågelvägen.” Noether kunde alltså se hela det matematiska landskapet från en hög utkikspunkt, snarare än att hon arbetade sig fram längs en slingrande landsväg.Jag menar att vi kan finna en likhet mellan den riktigt abstrakta matematiken och en viss typ av poesi där båda tycks arbeta synkroniserat, liktidigt. Generellt sett och bara aningen förenklat så har ju varken matematiken eller poesin någon egentlig handling. Någon som tycks kunna stödja en sådant påstående var just både matematiker och poet, nämligen Jacques Roubaud, som för övrigt föddes den femte december 1932 och avled samma dag, synkront och symmetriskt alltså, den femte december 2024.2016 publicerade han den omfattande boken Poétique Remarques, alltså Poetik Anmärkningar. Den består av en stor mängd, ja faktiskt en fullkomligt enorm mängd, ytterst komprimerade aforistiska anteckningar, närmare bestämt 4755. I ett kort förord skriver Roubaud: ”Varje anmärkning är en bild och läsaren bör ta emot den som en sådan”. Han nämner att de är skrivna under halvsekel men varken daterade eller kronologiskt ordnade utan således tidlösa.Så här lyder den 773:e aforismen: ”En dikt säger inte 'jag är' utan 'är är' och ”jag jag.” Vad kan, undrar man, ett sådant märkligt påstående betyda?För mig visar det just på den synkrona sidan hos litteraturen, i motsats till den diakrona. Textens aspekt av samtidighet; när man läser en viss typ av dikt – företrädesvis en kort dikt – läser man inte nödvändigtvis en rad i taget utan liksom alla rader samtidigt. Alla bokstäver och ord står faktiskt där på en och samma gång.Om vi översätter resonemanget till musik så läser vi inte dikten som vore den en melodi, där en ton följer på en annan som följer på en tredje. Utan som ett ackord, en klang. Flera toner på samma gång. Eller ännu radikalare: tänk att höra alla toner av alla instrument i en pianokonsert av Mozart i ett enda stort ”plonk!” Eller hela sångslingan i en treminuters melodifestivallåt komprimerad till en enda sekundsnabb wailande kvidande utandning! För att sedan i efterhand i huvudet räkna ut hur melodin gick!Det vore som musik utan tid, utan hastighet. Det vore som musik som huvudräkning inuti den teoretiska fysikens tidlösa svarta hål.Ja, kanske Emmy Noether tänkte fram sitt matematiska teorem på det sätt världen var beskaffad före big-bangTiden före tiden. Det stora stillaståendet innan bilden exploderade i bitar och sekvenser.Jacques Roubaud igen, i anmärkning nummer 118: ”Att säga att dikten är 'nu', det är att säga att den presenterar sig för anden som ett föremål som i sin helhet är möjligt att uppfatta i en fullständig inre bild, vars slut går att föregripa redan innan den börjat.”Ulf Karl Olov Nilssonförfattare, psykoanalytiker och översättareLitteraturJulia Ravanis: Emmys teorem. Natur & kultur, 2024.Jacques Roubaud: Poétique. Remarques – Poésie, mémoire, nombre, temps, rythme, contrainte, forme, etc. Seuil, 2016.
Entrevista con la profesora de investigación en el Instituto de Ciencia de Materiales de Madrid tras recibir el prestigioso premio de la Sociedad Europea de Física
Sie ist eine Pionierin der modernen Mathematik und die erste Mathematik-Professorin in Deutschland: Emmy Noether ist immer ihren eigenen Weg gegangen — und hat Geschichte geschrieben. Quelle: https://detektor.fm/wissen/geschichten-aus-der-mathematik-emmy-noether / Bitte abonniert den Original-Podcastfeed: https://feedpress.me/detektorfm_geschichten-aus-der-mathematik
Sie ist eine Pionierin der modernen Mathematik und die erste Mathematik-Professorin in Deutschland: Emmy Noether ist immer ihren eigenen Weg gegangen — und hat Geschichte geschrieben. (00:00:01) Einleitung (00:02:17) Der Bildungsweg von Emmy Noether (00:07:01) Noethers Weg zur Professur (00:09:45) Diskriminierung im Nationalsozialismus (00:13:46) Gutachten zugunsten Noethers (00:20:53) Die Schönheit von Symmetrien (00:22:50) Symmetrien in Gleichungen (00:24:08) Relation zwischen Symmetrie und Erhaltungsgröße (00:30:21) Das Ende der Geschichte (00:32:46) Verabschiedung Die Idee für diesen Podcast hat Demian Nahuel Goos am MIP.labor entwickelt, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-emmy-noether
Sie ist eine Pionierin der modernen Mathematik und die erste Mathematik-Professorin in Deutschland: Emmy Noether ist immer ihren eigenen Weg gegangen — und hat Geschichte geschrieben. (00:00:01) Einleitung (00:02:17) Der Bildungsweg von Emmy Noether (00:07:01) Noethers Weg zur Professur (00:09:45) Diskriminierung im Nationalsozialismus (00:13:46) Gutachten zugunsten Noethers (00:20:53) Die Schönheit von Symmetrien (00:22:50) Symmetrien in Gleichungen (00:24:08) Relation zwischen Symmetrie und Erhaltungsgröße (00:30:21) Das Ende der Geschichte (00:32:46) Verabschiedung Die Idee für diesen Podcast hat Demian Nahuel Goos am MIP.labor entwickelt, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-emmy-noether
Sie ist eine Pionierin der modernen Mathematik und die erste Mathematik-Professorin in Deutschland: Emmy Noether ist immer ihren eigenen Weg gegangen — und hat Geschichte geschrieben. (00:00:01) Einleitung (00:02:17) Der Bildungsweg von Emmy Noether (00:07:01) Noethers Weg zur Professur (00:09:45) Diskriminierung im Nationalsozialismus (00:13:46) Gutachten zugunsten Noethers (00:20:53) Die Schönheit von Symmetrien (00:22:50) Symmetrien in Gleichungen (00:24:08) Relation zwischen Symmetrie und Erhaltungsgröße (00:30:21) Das Ende der Geschichte (00:32:46) Verabschiedung Die Idee für diesen Podcast hat Demian Nahuel Goos am MIP.labor entwickelt, der Ideenwerkstatt für Wissenschaftsjournalismus zu Mathematik, Informatik und Physik an der Freien Universität Berlin, ermöglicht durch die Klaus Tschira Stiftung. >> Artikel zum Nachlesen: https://detektor.fm/wissen/geschichten-aus-der-mathematik-emmy-noether
Sandra Lucente"Quanti? Tanti!"Edizioni Dedalowww.edizionidedalo.itCicap Fest, PadovaQUANTI? TANTI! LE POTENZE DI DIECI E LA POTENZA DELLE DOMANDECon Sandra LucenteSabato 12 ottobre, ore 14:30Dall'infinitamente grande all'infinitamente piccolo, la scienza e la filosofia hanno sempre cercato di misurare e comprendere l'universo in tutta la sua vastità. Che si tratti di distanze cosmiche, delle dimensioni delle particelle elementari o delle gigantesche quantità di dati che plasmano il mondo moderno, le grandi domande sulle misure e sulle quantità ci affascinano da sempre. Questo incontro esplorerà il microcosmo e il macrocosmo attraverso le riflessioni di grandi menti, da Archimede a Emmy Noether. Un viaggio curioso e divertente tra numeri, grandezze e il mondo che ci circonda.Sandra Lucente"Quanti? Tanti!"Edizioni Dedalowww.edizionidedalo.itDell'infinitamente grande e dell'infinitamente piccolo si sono occupati scienziati e filosofi sin dai tempi più remoti. Ci sono domande che emergono in tutti noi dinanzi a quantità molto grandi o molto piccole. Nel mondo moderno queste osservazioni diventano ancora più quotidiane: manovre economiche miliardarie, record temporali impercettibili, i Big Data o la dimensione delle particelle elementari. Questo libro torna alle semplici domande dei singoli, stupiti dalla misura del microcosmo e del macrocosmo, e lascia la risposta a grandi scienziati del passato. Così Archimede racconta di distanze siderali ed Emmy Noether spiega il mondo quantistico.Un avventuroso percorso per misurare il numero di pagine di una biblioteca e lo spessore dei microprocessori, sentire il tempo che passa tra i secoli e gli orologi atomici, immaginare partite di scacchi e sequenze di numeri primi, senza tralasciare statistiche demografiche e variazioni di temperatura. Per un pubblico curioso e pronto alla narrazione giocosa.Sandra Lucente è docente di Analisi Matematica e Comunicazione della Scienza presso il Dipartimento Interateneo di Fisica e presidente del Museo della Matematica dell'Università di Bari. Tiene conferenze e laboratori di divulgazione ed è nel comitato editoriale di Maddmaths, Nuova Lettera Matematica e nel comitato scientifico di Sapere. Collabora con La Repubblica, è membro dell'Accademia Pugliese delle Scienze, della commissione di comunicazione della matematica per l'Unione Matematica Italiana e dell'European Mathematical Society. Ha scritto Itinerari Matematici in Puglia (2016) e Itinerari Matematici in Basilicata (2019) per Giazira Scritture, ha collaborato al testo Mezzogiorno di Scienza per edizioni Dedalo. È molto attiva sui social e ha una community in cui è molto seguita.IL POSTO DELLE PAROLEascoltare fa pensarewww.ilpostodelleparole.itDiventa un supporter di questo podcast: https://www.spreaker.com/podcast/il-posto-delle-parole--1487855/support.
Stephen Wolfram answers questions from his viewers about the history of science and technology as part of an unscripted livestream series, also available on YouTube here: https://wolfr.am/youtube-sw-qa Questions include: What could the following people have done with Wolfram? Aristotle, Archimedes, Emmy Noether, Vega, etc. - What would Ada Lovelace have done with current computing? And the possibilities? - Did Galileo have some mechanical math tools? - How does the abacus fit into the story of calculators? - What did Ada Lovelace say when asked about her coding style? "My code is like poetry, it's logical, elegant, and never divided by zero!" - Would authors such as Shakespeare find any use in Wolfram tech? How might he react to technology in general? - What about someone like Socrates? Or Plato?
Summary**Tensor Poster - If you are interested in the Breaking Math Tensor Poster on the mathematics of General Relativity, email us at BreakingMathPodcast@gmail.comIn this episode, Gabriel Hesch and Autumn Fanoff interview Steve Nadis, the author of the book 'The Gravity of Math.' They discuss the mathematics of gravity, including the work of Isaac Newton and Albert Einstein, gravitational waves, black holes, and recent developments in the field. Nadis shares his collaboration with Shing-Tung Yau and their journey in writing the book. They also talk about their shared experience at Hampshire College and the importance of independent thinking in education. In this conversation, Steve Nadis discusses the mathematical foundations of general relativity and the contributions of mathematicians to the theory. He explains how Einstein was introduced to the concept of gravity by Bernhard Riemann and learned about tensor calculus from Gregorio Ricci and Tullio Levi-Civita. Nadis also explores Einstein's discovery of the equivalence principle and his realization that a theory of gravity would require accelerated motion. He describes the development of the equations of general relativity and their significance in understanding the curvature of spacetime. Nadis highlights the ongoing research in general relativity, including the detection of gravitational waves and the exploration of higher dimensions and black holes. He also discusses the contributions of mathematician Emmy Noether to the conservation laws in physics. Finally, Nadis explains Einstein's cosmological constant and its connection to dark energy.Chapters00:00 Introduction and Book Overview08:09 Collaboration and Writing Process25:48 Interest in Black Holes and Recent Developments35:30 The Mathematical Foundations of General Relativity44:55 The Curvature of Spacetime and the Equations of General Relativity56:06 Recent Discoveries in General Relativity01:06:46 Emmy Noether's Contributions to Conservation Laws01:13:48 Einstein's Cosmological Constant and Dark Energy
Als Tochter eines angesehenen Mathematikers entdeckte Emmy Noether früh ihre Liebe zur Mathematik, einer Leidenschaft, der sie sich trotz der zahlreichen Hürden und Vorurteile, die Frauen in der Wissenschaft zu ihrer Zeit begegneten, mit Hingabe widmete. Ihre akademische Reise führte sie an die Universität Göttingen, wo sie nach jahrelangem Kampf die erste Frau in Deutschland wurde, die in Mathematik habilitieren durfte, ein bedeutender Meilenstein, der es ihr ermöglichte, zu lehren, auch wenn sie dafür lange Zeit nicht entlohnt wurde. Noether leistete bahnbrechende Arbeit in der abstrakten Algebra und theoretischen Physik. Insbesondere das nach ihr benannte Noethers Theorem bleibt ein Eckpfeiler in der Physik und zementiert ihr Erbe als eine der bedeutendsten Wissenschaftlerinnen ihrer Zeit.Emmy Noethers Leben und Werk überschreiten die Grenzen dessen, was als Frau in der Wissenschaft möglich gesehen wurde, und hinterlassen ein Vermächtnis, das weiterhin Wissenschaftlerinnen und Wissenschaftler weltweit inspiriert."Historische Heldinnen" lässt mithilfe von Künstlicher Intelligenz wichtige Frauen der Weltgeschichte auf ihr eigenes Leben zurückblicken. Selbstbewusst erzählen sie uns von ihrem Mut und ihrer Durchsetzungskraft.Viertausendhertz 2024 Hosted on Acast. See acast.com/privacy for more information.
Meet the female mathematician who Einstein thought was a genius! Aarati takes a stab at explaining Noether's Theorem and the underlying mathematical symmetries of our universe.For more information and sources for this episode, visit https://www.smartteapodcast.com.
En este capítulo especial por el día de la mujer y la niña en la ciencia nos acompaña Pilar López, investigadora en física de materiales en el CSIC, confundadora de la Asociación Mujeres en investigación y Tecnología, fundadora del grupo de Mujeres en Física de la Real Sociedad Española de Física, presidenta de la Comisión de mujeres en ciencia en el CSIC y premio Winter 2021 Emmy Noether entre otras cosas. Junto a Pilar indagaremos en los motivos de la desigualdad de género en el ámbito científico y de cómo esta acaba generando una ciencia sesgada cuyos resultados e investigaciones pueden no acabar ayudando a hombres y mujeres por igual. En las noticias, Mimas esconde un océano subterráneo, se han encontrado elementos clave para la vida en las muestras del asteroide Ryugu y un cosmonauta ruso ha batido el récord de más tiempo en el espacio. Este capítulo, desde luego, no va a dejar indiferente a nadie. 3, 2, 1... ¡Despegamos!
Der Weg an die Weltspitze der Mathematik war steinig für Emmy Noether. 1882 im Königreich Bayern geboren, schaffte sie es von der Höheren Töchterschule bis zur Habilitation in der Weimarer Republik. Dabei hat sie die moderne Algebra bis heute entscheidend vorangetrieben, weg von reiner Rechnerei hin zu abstrakten Strukturen. Albert Einstein war begeistert. Autor: Markus Mähner
Eine neue Studie zu grünem Wasserstoff aus Deutschland und ein KI-Modell, das ausfällig wird, sind Themen der neuen Podcast-Folge von MIT Technology Review.
Wenn dein kleiner Bruder immer alles schneller kriegt, nur weil er ein Junge ist - wie unfair ist das denn!? So ging es Emmy Noether ihr Leben lang. In der Schule, an der Uni, im Job. Aber sie hat Schleichwege und Komplitzen gefunden, die ihr halfen, es ohne Männer-Bonus zu schaffen. Sie war damit an vielen Stationen die erste Frau überhaupt. Zum Beispiel war sie die erste Frau die in Mathe habilitiert hat. Und Albert Einstein sagte sogar, sie sei so eine große Wissenschaftlerin wie Marie Curie. Es wird Zeit, dass wir Emmy Noether kennenlernen. Die Deutsche Forschungsgemeinschaft hilft mit dem Emmy Noether-Programm jungen Forschenden auf dem Weg zur Hochschulprofessur: http://bitly.ws/Ik3C Wir sind beim Poddifest dabei! Hier gibt's Tickets: https://190a.de/poddifest/ Und damit willkommen zu unserem True Science-Podcast! Wir reden über die absurden, irren, romantischen und verworrenen Geschichten hinter Entdeckungen und Erfindungen. Denn in der Wissenschaft gibt es jede Menge Gossip! Wir erzählen zum Beispiel, wie die Erfinderin des heutigen Schwangerschaftstests mit Hilfe einer Büroklammerbox den Durchbruch schaffte, oder wie eine Hollywood-Schauspielerin den Grundstein für unser heutiges WLAN legte. Immer samstags - am Science-Samstag. Wir, das sind Marie Eickhoff und Luisa Pfeiffenschneider. Wir haben Wissenschaftsjournalismus studiert und die Zeit im Labor schon immer lieber zum Quatschen genutzt. Schreibt uns gerne (podcast@behindscience.de)! Wir lieben Feedback, Themenwünsche und nette Grüße. Bei Instagram (behindscience.podcast) versorgen wir euch zwischen den Folgen mit Wissen. Hinweis: Die Werbung in dieser Folge erfolgt automatisiert. Wir haben keinen Einfluss auf die Auswahl. Vermarktung: Julep Media GmbH | Grafikdesign: Mara Strieder | Sprecherin: Madeleine Sabel | Fotos: Fatima Talalini
Emmy Noether hat die abstrakte Mathematik und die theoretische Physik entscheidend mitgeprägt, nicht zuletzt durch die nach ihr benannten Noether-Theoreme. Noether war es auch, die entscheidende Grundlagen für die mathematische Erklärung von Albert Einsteins Allgemeiner Relativitätstheorie legte - öffentlich gewürdigt wurde sie dafür jedoch lange Zeit nicht.
This week, Claire chatted to Georgia Chalvatzaki from the Technical University of Darmstadt all about mobile assistive robots, learning, and planning. Check out the trailer for the UK-RAS Network's one-of-a-kind livestream event, Robot Lab Live, returning to YouTube this June: https://www.youtube.com/watch?v=LC8LBdjCtD8. Join us for Robot Talk Live Robot Talk will be returning for another live episode recording in June! Claire will be chatting about Robotics and Science Fiction with three very special guests at Imperial College London at 1pm on Sunday 18th June, as part of the Great Exhibition Road Festival and the UK Festival of Robotics. Find out more: https://www.greatexhibitionroadfestival.co.uk/event/robotics-and-science-fiction/ Georgia Chalvatzaki is a Professor of Robot Perception and Learning at the Technical University of Darmstadt, Germany. Before that, she was an Assistant Professor and Independent Research Group Leader since March 2021, after getting the renowned Emmy Noether grant of the German Research Foundation. She completed her Ph.D. in 2019 at the Intelligent Robotics and Automation Lab at the National Technical University of Athens, Greece, with her thesis “Human-Centered Modeling for Assistive Robotics: Stochastic Estimation and Robot Learning in Decision-Making.”
Die Geschichte der verfolgten Wissenschaftler erstreckt sich über vier Jahrhunderte; sie beginnt bei Giordano Bruno und endet bei Alan Turing und Albert Einstein. Die Ursachen für die Verfolgung waren ganz unterschiedlich; sie reichen weit über den geschilderten Zeitraum hinaus bis heute: die Inquisition, die Französische Revolution, die Vernichtungsideologie des Dritten Reichs, der Terror von Stalin und Mao, die McCarthy-Ära bis hin zur Homophobie. Geschildert werden Leben und Leistung von acht überragenden Wissenschaftlerinnen und Wissenschaftler, die diffamiert, bespitzelt, verfolgt, inhaftiert, vertrieben oder getötet wurden. Erzählt wird ihr Schicksal, wie sie zu Opfern politischer, gesellschaftlicher oder ideologischer Zeitumstände wurden. Die acht Kapitel widmen sich folgenden Personen und ihrem Schicksal: Giordano Bruno (1548–1600)Antoine Laurent de Lavoisier (1743–1794) und Jean Sylvain Bailly (1736–1793)Lew Landau (1908–1968)Lise Meitner (1878–1968) und Emmy Noether (1882–1935)Albert Einstein (1879 –1955)Alan Turing (1912–1954) Ein eindringliches Plädoyer für die Freiheit von Forschung und Lehre sowie den unbedingten Schutz von Wissenschaftlern, deren Schicksal sich in den Zeiten von fake news wiederholen könnte. … Thomas Bührke, geb. 1956, studierte Physik und promovierte 1986 am Max-Planck-Institut für Astronomie in Heidelberg. Von 1990 bis 2020 Redakteur der Zeitschrift Physik in unserer Zeit; gleichzeitig arbeitet er als freier Wissenschaftsjournalist, u.a. für die Süddeutsche Zeitung, Die Welt, die Berliner Zeitung, Spektrum der Wissenschaft, Bild der Wissenschaft, Sterne und Weltraum sowie Max-Planck-Forschung. Zahlreiche äußerst erfolgreiche Publikationen zur modernen Physik. Im Einstein-Jahr 2005 erhielt Thomas Bührke den Roelin-Preis für Wissenschaftspublizistik, 2013 ehrte ihn die Deutsche Physikalische Gesellschaft mit der Publizistikmedaille.
El espacio de difusión de las noticias más importantes de la Máxima Casa de Estudios de Puebla lo encuentras de lunes a viernes a las 20:00 horas en Informativo BUAP. Gabriel Pérez Galmiche rinde su segundo informe de labores al frente del Complejo Regional Mixteca. La Biblioteca Central Universitaria alberga la exposición mundial itinerante: Todo lo que atesoras; por un mundo libre de armas nucleares. Hoy recordamos a Emmy Noether. Se realizará entrega de tickets, firma de nómina y pase de revista a jubilados y pensionados universitarios del 27 al 30 de marzo en CU. Hoy se celebra el Día Meteorológico Mundial. Disponible la oferta de los cursos de educación continua de la UpA. Arlem Aleida Castillo Ávila, especialista en interacción humano-computadora, habla sobre el uso de la inteligencia artificial en la educación. La Dra. María del Carmen García Aguilar, titular de la DIIGE, reflexiona sobre el Día Internacional del Síndrome de Down. Cultura: Carlos Maceda te presenta la crónica de la expo-venta artesanal: Saberes. Arte, tradición y diseño en el marco del Día internacional de las artesanas y los artesanos. Deportes: el selectivo de lacrosse recibió a la selección del Tec de Monterrey, campus México. Además, conoce las notas nacionales e internacionales más importantes. Te acompaña en la transmisión Thaan Fonseca.
Emmy Noether foi uma brilhante matemática com incríveis contribuições nos campos da Álgebra e Física. Nascida na Alemanha, em 23 de Março de 1882, Noether conseguiu destaque em um campo dominado por homens brancos, sendo reconhecida por seus colegas matemáticos e até mesmo Albert Einstein. MTST, A LUTA É PRA VALER!
Dead Ladies Show Podcast Episode 60 - Emmy Noether For our 60th episode, we bring back the presenter who appeared in our very first podcast episode, writer and translator Karen Margolis. Drawing from her own history in higher mathematics, Karen ably tells the tale of Germany's Emmy Noether, who developed key theorems in theoretical physics and made important contributions to abstract algebra. Excluded from academic positions in Germany as a woman, she worked unpaid and under other lecturers' names. Once she was finally allowed to teach in 1919, she had only 14 years until the Nazis banned her as a Jew. In American exile, she taught at the women's college Bryn Mawr and occasionally at Princeton, though she felt she was not welcome at “the men's university, where nothing female is admitted.” Nowadays, everything from fellowships to a crater on the moon has honored Emmy, so it was clearly our turn to do so. DLS co-founder Katy Derbyshire joins producer/host Susan Stone to introduce things. For more on Emmy Noether, please visit our episode notes at https://deadladiesshow.com/2023/03/16/podcast-60-emmy-noether/ For DLS NYC info and tickets, sign up to their newsletter here: https://tinyletter.com/DeadLadiesShowNYC Our theme music is “Little Lily Swing” by Tri-Tachyon https://freemusicarchive.org/music/Tri-Tachyon/the-kleptotonic-ep/little-lily-swing Thanks for listening! We'll be back with a new episode next month. **** The Dead Ladies Show is a series of entertaining and inspiring talks about women who achieved amazing things against all odds, presented live in Berlin and beyond. This podcast is based on that series. Because women's history is everyone's history. The Dead Ladies Show was founded by Florian Duijsens and Katy Derbyshire. The podcast is created, produced, edited, and presented by Susan Stone. Don't forget, we have a Patreon! Thanks to all of our current supporters! Please consider supporting our transcripts project and our ongoing work: www.patreon.com/deadladiesshowpodcast If you prefer to make a one-time donation, here's the link: paypal.me/dlspodcast
Trapped History reveals the hidden stories of unsung heroes. In this episode, we find out about Emmy Noether, the greatest mathematician of the 20th century.Emmy fought multiple prejudices all her life – she was a woman, she was Jewish and she came from a left-wing family. And this was Germany before the Nazis, already one of the most conservative places on earth. And yet, her pioneering work in abstract algebra and her proofs of Einstein's theory of relativity still stand today and are the basis of so much of our modern world.Join Oswin and Carla as we explore Emmy's world and try to understand a bit about the barriers she dealt with every day. And if you're lucky, you might pick up some of the maths too from Sums Of Anarchy's brilliant Dominique Miranda – with a side order of Einstein!Tune in also to hear the fascinating story of Dominique's nominee for the Trapped History Hall of Fame.
▶️ Dans cet épisode, j'ai eu le plaisir de recevoir Lysianne Hari, maîtresse de conférences au laboratoire de Mathématiques de Besançon. Elle évolue dans le champ des mathématiques appliquées. Toutefois, elle les aborde d'un point de vue purement théorique. Son domaine d'application est le merveilleux monde de la physique quantique. Elle prendra d'ailleurs le temps de nous y initier, notamment en nous expliquant les principales différences avec la physique classique. Ayant grandi en région parisienne, Lysianne s'est dirigée vers un lycée en section européenne sur les conseils de ses professeurs. Il s'agit d'une filière qui met davantage l'accent sur une langue, l'anglais dans son cas. N'étant pas très au fait du système des classes préparatoires, elle a alors poursuivi ses études à l'université de Cergy-Pontoise. Au cours de sa première année, elle a tout de même pu intégrer un programme spécial, qui était une sorte de classe prépa mais au sein de l'université et dont le but était de préparer certains concours. N'étant pas intéressée par les débouchés associés, elle a alors poursuivi en Master puis en Doctorat. Durant sa carte blanche, Lysianne a fait le choix de nous parler de la problématique "des femmes et des sciences". Les chiffres et actions dont elle parle peuvent, entre autres, être trouvés ici : https://femmes-et-maths.fr , https://filles-et-maths.fr/jfmi/ Cette conversation était vraiment un moment délicieux. On a, entre autres, parlé de chat zombie, d'équations tatouées sur le corps et du Disneyland de la recherche ! Voici les recommandations données dans cet épisode : Lysianne vous recommande les romans graphiques "Feynman" de Ottaviani et Myrick, "Logicomix" de Doxiadis, Papadimitriou et Di Donna et le hashtag #Noethember lancé par la mathématicienne et illustratrice Constanza Rojas-Molina rassemblant des illustrations sur la vie de la mathématicienne Emmy Noether. Vous pouvez en trouver une compilation ici : https://images.math.cnrs.fr/Noethember.html Je vous recommande pour ma part le podcast "Parcours Mathématiques" de Laurène Guidet dans lequel elle reçoit des personnes ayant fait des études mathématiques et qui font un métier en lien, mais pas forcément dans la recherche, disponible ici : https://anchor.fm/guidet-laurene
Wir springen in dieser Folge ins Russland des 19. Jahrhunderts. Dort wird im Jahr 1850 eine Frau geboren, die im Laufe ihres Lebens nicht nur die erste Frau der Neuzeit werden wird, der ein Doktortitel in Mathematik verliehen wird - sie wird außerdem die erste Professorin für Mathematik weltweit werden. Wir sprechen darüber wie es dazu kam, welche Hürden sie dabei überwinden musste und welches Vermächtnis sie der Mathematik und uns hinterließ. // Literatur * Bölling, Reinhard. „‚Königin Der Wissenschaft‘. Sofja Kowalewskaja Zum 150. Geburtstag“. Mitteilungen Der Deutschen Mathematiker-Vereinigung 8, Nr. 3 (15. Oktober 2000): 21–28. https://doi.org/10.1515/dmvm-2000-0077. * Hofbauer, Volker. „Sofja Kowalewskaja : eine große russische Mathematikerin“. Thesis, Wien, 2016. https://repositum.tuwien.at/handle/20.500.12708/9801. * Michele Audin. Remembering Sofya Kovalevskaya. Springer London, 2011. * Remarkable lives and legacy of Sofia Kovalevskaya and Emmy Noether by Leon Takhtajan, 2017. https://www.youtube.com/watch?v=2N7Wb8TPnCE. * Sofia Kowalewskaja Ein Leben für Mathematik und Emanzipation-Birkhäuser Basel (1993). Wilderich Tuschmann, Peter Hawig (auth.) Das Episodenbild zeigt Sofia Kowalewskaja im Jahr 1888. //Aus unserer Werbung Du möchtest mehr über unsere Werbepartner erfahren? Hier findest du alle Infos & Rabatte: https://linktr.ee/GeschichtenausderGeschichte NEU: Wer unsere Folgen lieber ohne Werbung anhören will, kann das über eine kleine Unterstützung auf Steady oder ein Abo des GeschichteFM-Plus Kanals auf Apple Podcasts tun. Wir freuen uns, wenn ihr den Podcast bei Apple Podcasts rezensiert oder bewertet. Für alle jene, die kein iTunes verwenden, gibt's die Podcastplattform Panoptikum, auch dort könnt ihr uns empfehlen, bewerten aber auch euer ganz eigenes Podcasthörer:innenprofil erstellen. Wir freuen uns auch immer, wenn ihr euren Freundinnen und Freunden, Kolleginnen und Kollegen oder sogar Nachbarinnen und Nachbarn von uns erzählt!
Under första halvan av 1900-talet kallades den tyska matematikern Emmy Noether för "den moderna algebrans moder". Noether samarbetade med Einstein och hennes viktigaste teorem bidrog till att vända på en världsbild som varit sann sedan Newtons dagar. Idag är h0n i stort sett bortglömd. Historikern Julia Ravanis följer Emmy Noether i spåren, reflekterar över tänkandets skönhet och naturvetenskapens kön. JULIA RAVANIS är doktorand i teknikhistoria vid Chalmers, skribent och författare till boken ”Skönheten i kaos” (Natur & Kultur 2021), som handlar om parallellerna mellan teoretisk fysik och mänskliga erfarenheter. Regissör: Lars in de Betou Redaktion: Hedvig Härnsten, Magnus Bremmer & Anna-Maria Hällgren. Inläsare: Magdalena in de Betou Musik: Oskar Schönning Producent: Magnus Bremmer ANEKDOT ESSÄ är en del av Anekdot – det digitala bildningsmagasinet, där Sveriges bästa forskare berättar, förklarar och fördjupar. Fler essäer, filmer och alla avsnitt av Bildningspodden hittar du på anekdot.se
Naturgesetze haben gewisse Symmetrien. Welch fundamentale Auswirkungen dies auf das Verständnis unseres Universums hat, hat die geniale Mathematikerin Emmy Noether gezeigt.
A lo largo de este programa, y en clave de tertulia, analizamos la vida y obra de Emmy Noether, sin duda una mujer fundamental para entender la Ciencia del siglo XX y XXI. Una matemática extraordinaria que sentó las bases de algunas de las áreas más desarrolladas en matemáticas en el último siglo, pero que además, desarrolló el llamado "Teorema de Noether" que es sin duda uno de los pilares fundamentales e imprescindibles sobre los que se asienta la Física moderna. Todo ello de la mano de David Ibáñez, Avelino Vicente e Isabel Cordero. Aquí tenéis el enlace al podcast Luciérnagas que recomendamos en el programa https://www.ivoox.com/podcast-luciernagas-clpu-despierta-tu-curiosidad_sq_f11366227_1.html Escucha el episodio completo en la app de iVoox, o descubre todo el catálogo de iVoox Originals
15 febbraio 2022 - Catalina Curceanu - La Meccanica Quantistica (MQ), teoria di enorme successo e pilastro della fisica moderna, è al centro di un vivace dibattito rappresentato dal famoso paradosso del “Gatto di Schrödinger”, lo zombie gatto “quantistico” che è sia vivo che morto. Fra le varie soluzioni proposte per risolvere questo intrigante paradosso ci sono alcune molto esotiche: mondi paralleli oppure teorie che vedono nell'attuale MQ un limite di una nuova teoria ancora da scoprire. Io stessa conduco un esperimento nel silenzio cosmico dei laboratori sotterranei del Gran Sasso per trovare una soluzione a questo e altri paradossi. Per i ricercatori le proprietà quantistiche, quali la sovrapposizione degli stati e l'entanglement, sono risorse incredibilmente ricche per nuove tecnologie che potrebbero cambiarci la vita. Fra queste i computer quantistici sono in prima fila! Vi porterò in un viaggio nel mondo quantistico, dal gatto di Schrödinger alla sinfonia dei qubit. Catalina Curceanu è prima ricercatrice dei Laboratori Nazionali di Frascati dell'Istituto Nazionale di Fisica Nucleare e membro della Foundational Questions Institute (FQXi) americana. Nata in Transilvania, si è laureata in fisica con la specializzazione in fisica delle particelle elementari e fisica nucleare. Ha svolto il dottorato di ricerca nell'ambito dell'esperimento OBELIX (CERN) nel campo della spettroscopia dei mesoni esotici. Autrice di piu' di 400 articoli scientifici dirige un gruppo di ricerca che svolge esperimenti nell'ambito della fisica nucleare e della fisica quantistica, sia in Italia che all'estero ed è a capo delle collaborazioni internazionali SIDDHARTA2 (esperimento sull'acceleratore DAFNE dei Laboratori Nazionali di Frascati) e VIP (esperimento ai Laboratori Nazionali di Gran Sasso). Coordina vari progetti internazionali e ha ricevuto numerosi premi e riconoscimenti internazionali, tra i quali il premio 2017 – Emmy Noether, della Societa' Europea di Fisica (EPS). Nel 2018 è stata insignita dell'Ordine “Merito Culturale” nel grado di Cavaliere dal Presidente della Romania. E' autrice del libro “Dai buchi neri all'adroterapia. Un viaggio nella Fisica Moderna” (Springer – I Blu).
This podcast episode marks an important centenary: 100 years ago, in 1922, the trailblazing modern mathematician, Emmy Noether, was finally given a paid lectureship at the University of Göttingen in Germany. Despite a formidable reputation in her field, Noether had been denied paid academic work due to her gender and her Jewish heritage. She is now rightly recognized as one of the greatest mathematicians who ever lived, but she never really saw the rewards of her brilliance in her lifetime. While conditions for women in STEM and academia have certainly improved since Noether's day, even now, in Europe, only around 10-15% of permanent academic positions in mathematics are held by women, and women occupy just 3% of CEO positions in STEM industry.(https://www.theatlantic.com/science/archive/2016/11/math-women/506417/) To explore this lingering problem, I interview Professor June Barrow-Green, a historian of mathematics at the Open University, Iseult O'Rourke, a mathematics and French teacher at Loretto Balbriggan, an all-girls secondary school in County Dublin, and Mireia Martínez i Sellarès, a PhD candidate in mathematics at Utrecht University, who has worked with the European Girls Mathematical Olympiad (EGMO). We attempt to identify the obstacles stand in the way of a more equitable and fair academic environment and discuss how creating more meaningful connections between the sciences and the arts can help us overcome them. We ask: What cultural and societal perceptions hinder a welcoming environment for girls and women in mathematics? What can we do about it? Is mathematics inherently creative? How can connections between mathematics and literature, art and culture help shed light on inequalities in the subject in academia? Find out more here https://www.tcd.ie/trinitylongroomhub/hublic-sphere-podcast.php
Jack and Mark talk about how certain "big ideas" in physics, called conservation laws, are built upon deep symmetries that are found in nature and in the laws that describe nature. This connection was first discovered by German mathematician Emmy Noether. Listeners will hear how symmetry and violations of symmetry help scientists understand the universe, perhaps explaining why there is more matter in the cosmos than antimatter. In other words, the assymmetry may be related to the the question, "Why is there something rather than nothing." Click here to view the show notes.
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Look For Principles Which Will Carry Over To The Next Paradigm, published by johnswentworth on January 14, 2022 on LessWrong. In 1918, Emmy Noether published her famous theorem showing that each symmetry of the laws of physics implies a corresponding conserved quantity. Laws which remain the same even if we move the whole universe left or right a little result in conservation of momentum, laws which remain the same over time result in conservation of energy, and so forth. At the time, Noether's Theorem was only proven for the sorts of systems used in classical physics - i.e. a bunch of differential equations derived by minimizing an “action”. Over the next few decades, the foundational paradigm shifted from classical to quantum, and Noether's original proof did not carry over. But the principle - the idea that symmetries imply conserved quantities - did carry over. Indeed, the principle is arguably simpler and more elegant in quantum mechanics than in classical. This is the sort of thing I look for in my day-to-day research: principles which are simple enough, fundamental enough, and general enough that they're likely to carry over to the next paradigm. I don't know what the next paradigm will be, yet; the particulars of a proof or formulation of a problem might end up obsolete. But I look for principles which I expect will survive, even if the foundations shift beneath them. Examples In My Own Work My own day-to-day research focuses on modelling abstraction. I generally build these models on a framework of probability, information theory, and causal models. I know that this framework will not cover all of abstraction - for example, it doesn't cover mathematical abstractions like “addition” or “linearity”. Those abstractions are built into the structure of logic, and probability theory takes all of logic as given. There may be some way in which the abstraction of linearity lets me answer some broad class of questions more easily, but standard probability and information theory ignore all that by just assuming that all pure-logic questions are answered for free. . yet I continue to use this probability/information/causality framework, rather than throwing it away and looking for something more general on which to build the theory. Why? Well, I expect that this framework is general enough to figure out principles which will carry over to the next paradigm. I can use this framework to talk about things like “throwing away information while still accurately answering queries” or “information relevant far away” or “massively redundant information”, I can show that various notions of “abstraction” end up equivalent, I can mathematically derive the surprising facts implied by various assumptions. For instance, I can prove the Telephone Theorem: when transmitted over a sufficiently long distance, all information is either completely lost or arbitrarily perfectly conserved. I expect a version of that principle to carry over to whatever future paradigm comes along, even after the underlying formulations of “information” and “distance” change. Why Not Just Jump To The Next Paradigm? One obvious alternative to looking for such principles is to instead focus on the places where my current foundational framework falls short, and try to find the next foundational framework upfront. Jump right to the next paradigm, as quickly as possible. The main reason not to do that is that I don't think I have enough information yet to figure out what the next paradigm is. Noether's Theorem and principles like it played a causal role in figuring out quantum mechanics. It was the simple, general principles of classical mechanics which provided constraints on our search for quantum mechanical laws. Without those guideposts, the search space of possible physical laws would have been too wide. Speci...
Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Look For Principles Which Will Carry Over To The Next Paradigm, published by johnswentworth on January 14, 2022 on LessWrong. In 1918, Emmy Noether published her famous theorem showing that each symmetry of the laws of physics implies a corresponding conserved quantity. Laws which remain the same even if we move the whole universe left or right a little result in conservation of momentum, laws which remain the same over time result in conservation of energy, and so forth. At the time, Noether's Theorem was only proven for the sorts of systems used in classical physics - i.e. a bunch of differential equations derived by minimizing an “action”. Over the next few decades, the foundational paradigm shifted from classical to quantum, and Noether's original proof did not carry over. But the principle - the idea that symmetries imply conserved quantities - did carry over. Indeed, the principle is arguably simpler and more elegant in quantum mechanics than in classical. This is the sort of thing I look for in my day-to-day research: principles which are simple enough, fundamental enough, and general enough that they're likely to carry over to the next paradigm. I don't know what the next paradigm will be, yet; the particulars of a proof or formulation of a problem might end up obsolete. But I look for principles which I expect will survive, even if the foundations shift beneath them. Examples In My Own Work My own day-to-day research focuses on modelling abstraction. I generally build these models on a framework of probability, information theory, and causal models. I know that this framework will not cover all of abstraction - for example, it doesn't cover mathematical abstractions like “addition” or “linearity”. Those abstractions are built into the structure of logic, and probability theory takes all of logic as given. There may be some way in which the abstraction of linearity lets me answer some broad class of questions more easily, but standard probability and information theory ignore all that by just assuming that all pure-logic questions are answered for free. . yet I continue to use this probability/information/causality framework, rather than throwing it away and looking for something more general on which to build the theory. Why? Well, I expect that this framework is general enough to figure out principles which will carry over to the next paradigm. I can use this framework to talk about things like “throwing away information while still accurately answering queries” or “information relevant far away” or “massively redundant information”, I can show that various notions of “abstraction” end up equivalent, I can mathematically derive the surprising facts implied by various assumptions. For instance, I can prove the Telephone Theorem: when transmitted over a sufficiently long distance, all information is either completely lost or arbitrarily perfectly conserved. I expect a version of that principle to carry over to whatever future paradigm comes along, even after the underlying formulations of “information” and “distance” change. Why Not Just Jump To The Next Paradigm? One obvious alternative to looking for such principles is to instead focus on the places where my current foundational framework falls short, and try to find the next foundational framework upfront. Jump right to the next paradigm, as quickly as possible. The main reason not to do that is that I don't think I have enough information yet to figure out what the next paradigm is. Noether's Theorem and principles like it played a causal role in figuring out quantum mechanics. It was the simple, general principles of classical mechanics which provided constraints on our search for quantum mechanical laws. Without those guideposts, the search space of possible physical laws would have been too wide. Speci...
Courtney Gibbons likes isomorphism theorems. All three of them, in fact, and she wants to remind you they are due to Emmy Noether, despite most textbooks ignoring that fact. Also, bunnies.
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/new-books-network
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/eastern-european-studies
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/religion
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/intellectual-history
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/literary-studies
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/history
Long before Kabbalah books lined multiple books shelves in bookstores, Jewish educators in the sixteenth and seventeenth centuries, thought of copious ways of making Kabbalah more accessible for readers who were not acquainted with this lore. The book, Kabbalah in Print: The Study and Popularization of Jewish Mysticism in Early Modernity (SUNY Press, 2020), introduces the reader to an early seventeenth-century rabbi, Yissachar Baer, who lived and worked in Prague. Each of his four works seeks to illuminate a different facet of the Zohar (Book of Splendour), the medieval classic of kabbalistic speculation. His goal was to simplify the language of the Zohar as well as to assemble its halakhic teachings so Jews could enrich their daily observance of the commandments with the corresponding mystical explanation. He also wrote a short introduction to the study of Kabbalah and organized brief excerpts of the Zohar into an anthology. His works were important mediators of the Zohar and Kabbalah to Jewish and Christian readers alike. Andrea Gondos is an Emmy Noether post-doctoral fellow at Freie Universität (Berlin) where her current research centers on women's health and healing as discussed in early modern Jewish recipe books of magic and practical Kabbalah Her next book project will examine how the female body and its reproductive powers constituted a unique epistemological space for ba'alei shem (Jewish wonder-working healers) where knowledge concerning creation and regeneration could be accessed and controlled. Prior to joining the Emmy Noether research group, she held post-doctoral positions at Tel Aviv University and at Ben-Gurion University of the Negev. She was also a fellow at the Katz Centre of Advanced Judaic Studies at the University of Pennsylvania. Dr. Yakir Englander is the National Director of Leadership programs at the Israeli-American Council. He also teaches at the AJR. He can be reached at: Yakir1212englander@gmail.com Learn more about your ad choices. Visit megaphone.fm/adchoices Support our show by becoming a premium member! https://newbooksnetwork.supportingcast.fm/jewish-studies
La profesora Solángel, experta en álgebra moderna, introduce a Valentina, estudiante de Física, en la vida de una de las matemáticas más grandes de todos los tiempos, la alemana Emmy Noether (1882-1935). En agradecimiento y conmovida por la historia de Emmy, Valentina le promete a Solángel escribir un relato breve sobre la conversación que tuvieron. Dirección Actoral - Orlando Cajamarca Castro. Teatro Esquina Latina, Cali. En la locución: Valentina - Darling Silva. Solángel - Adriana Gonzalías. Grabación - Juan Manuel Calderón. Se agradece a Orlando Cajamarca Castro, director del Teatro Esquina Latina de Cali, la lectura crítica de los relatos, al técnico de grabación y a las actrices y actores que hicieron las locuciones de los 6 episodios de este podcast. Se agradece a Beatriz Londoño, Margarita Granada, Juan Carlos Granada, Diana Hernández y Gecko Gómez la lectura crítica de los relatos. Producción sonora: Gecko Gómez Cubides Diagramación: Sebastián Narváez Díaz Investigación y Presentación: Ana Cecilia Agudelo Henao Dirección: Ana Cecilia Agudelo Henao Literatura consultada: Emmy Noether, madre del álgebra abstracta, Capi Corrales Rodrigáñez. Mujeres con ciencia, Vidas científicas, 2 de junio de 2014. https://mujeresconciencia.com/2014/06/02/emmy-noether-la-madre-del-algebra-abstracta/ Emmy Noether. Una matemática ideal, Mujeres con ciencia, Entre páginas, 9 de abril de 2015. https://mujeresconciencia.com/2015/04/09/emmy-noether-una-matematica-ideal/ Josué Tonelli Cueto, Emmy Noether, retrato alfabético, Mujeres con ciencia, Retrato alfabético, 5 de octubre de 2015. https://mujeresconciencia.com/2015/10/05/emmy-noether-retrato-alfabetico/ Marta Macho Stadler, La extraordinaria Emmy Noether, Mujeres con ciencia, Ciencia y más, 2 agosto 2017. https://mujeresconciencia.com/2017/08/02/la-extraordinaria-emmy-noether/ Emmy Amalie Noether por Enrique R. Aznar. Universidad de Granada. https://www.ugr.es/~eaznar/emmy_noether.htm
Celebrating the forgotten people behind history's biggest scientific breakthroughs, this episode is an ode to unsung heroes. Starting with the American chemist Alice Ball, the team discusses her groundbreaking work on leprosy in the 20th century. They then remember the German mathematician Emmy Noether whose theorem is so impressive it puts Pythagoras to shame! And last but not least Mary Sherman Morgan gets the spotlight, an American rocket fuel scientist who helped the US enter the space race. On the pod are Timothy Revell, Bethan Ackerley and Anna Demming. Find out more at newscientist.com/podcasts. Our GDPR privacy policy was updated on August 8, 2022. Visit acast.com/privacy for more information.