POPULARITY
Multiple Sclerosis News Today's multimedia associate, Price Wooldridge, explains how a four-protein complex of the protein STAT5 could be involved in the development of MS-like autoimmune disease in mice. He also reads “One Month of MS Awareness Isn't Enough”, from Ed Tobias' column, "The MS Wire". =================================== Are you interested in learning more about multiple sclerosis? If so, please visit: https://multiplesclerosisnewstoday.com/ ===================================== To join in on conversations regarding multiple sclerosis, please visit: https://multiplesclerosisnewstoday.com/forums/
That there are senescence-associated decreases in the JAK-STAT signaling transduction cascade has been observed in human lymphocyte lineages. This phenomena, as associated with a decreased JAK- tyrosine phosphorylation of STAT5, is linked to plasma membrane cholesterol content. Therefore, plasma membrane cholesterol content is involved in T cells modulation and proliferation. Acid sphingomyelinase- mediated ceramide lipid raft mobilization and aggregation of membrane receptors plays a crucial role in this pathobiochemical dynamic leading to multiple disease and comorbidity states in the elderly. Classical Papers Examined: Mech Ageing Dev. 2001 Sep 15;122(13):1413-30 Cytometry A. 2006 Mar;69(3):189-91 J Lipid Res. 2007 Jan;48(1):19-29. doi: 10.1194 --- Send in a voice message: https://anchor.fm/dr-daniel-j-guerra/message Support this podcast: https://anchor.fm/dr-daniel-j-guerra/support
Red and processed meat linked to increased risk of heart disease, study shows Oxford University, July 21, 2021 Globally, coronary heart diseases (caused by narrowed arteries that supply the heart with blood) claim nearly nine million lives each year1, the largest of any disease, and present a huge burden to health systems. Until now, it has been unclear whether eating meat increases the risk of heart disease, and if this varies for different kinds of meat. Researchers at the University of Oxford's Nuffield Department of Population Health have conducted the largest systematic review of the prospective evidence to date, including thirteen cohort studies involving over 1.4 million people. The study participants completed detailed dietary assessments, and their health was tracked for up to 30 years. The results are published today in Critical Reviews in Food Science and Nutrition. Overall, the evidence from the analysis indicated that: Each 50 g/day higher intake of processed meat (e.g. bacon, ham, and sausages) increased the risk of coronary heart disease by 18%. Each 50 g/day higher intake of unprocessed red meat (such as beef, lamb and pork) increased the risk of coronary heart disease by 9%. There was no clear link between eating poultry (such as chicken and turkey) and an increased risk of coronary heart disease. The findings may be because of the high content of saturated fat in red meat, and of sodium (salt) in processed meat. High intakes of saturated fat increase levels of harmful low-density lipoprotein (LDL) cholesterol, whilst excess salt consumption raises blood pressure. Both LDL cholesterol and high blood pressure are well-established risk factors for coronary heart disease. Previous work from the same research team has also indicated that even moderate intakes of red and processed meat are associated with increased risk of bowel cancer2. Dr. Keren Papier (Nuffield Department of Population Health), co-lead author of the study, said: "Red and processed meat have been consistently linked with bowel cancer and our findings suggest an additional role in heart disease. Therefore, current recommendations to limit red and processed meat consumption may also assist with the prevention of coronary heart disease." Dr. Anika Knüppel, from the Nuffield Department of Population Health and the other co-lead author of the study, added: "We know that meat production is a major contributor to greenhouse gas emissions and we need to reduce meat production and thereby consumption to benefit the environment. Our study shows that a reduction in red and processed meat intake would bring personal health benefits too." Currently in the UK, about 10 in 100 people would be expected to eventually die from coronary heart disease. Based on the findings from the present study and current red and processed meat intakes in the UK,4 if all these 100 people reduced their unprocessed red meat intake by three-quarters (for example from four times a week to one time a week), or if they stopped consuming processed meat altogether, deaths from coronary heart disease would decrease from 10 in 100 down to 9 in 100. The studies involved in this analysis were mostly based on white adults living in Europe or the U.S.. The research team say more data are needed to examine these associations in other populations, including East Asia and Africa. C is for Vitamin C -- a key ingredient for immune cell function Harnessing the combined power of Vitamin C and TET proteins may give scientists a leg up in treating autoimmune diseases La Jolla Institute for Immunology and Emory University, July 22, 2021 You can't make a banana split without bananas. And you can't generate stable regulatory T cells without Vitamin C or enzymes called TET proteins, it appears. Regulatory T cells (Tregs) help control inflammation and autoimmunity in the body. Tregs are so important, in fact, that scientists are working to generate stable induced Tregs (iTregs) in vitro for use as treatments for autoimmune diseases as well as rejection to transplanted organs. Unfortunately, it has proven difficult to find the right molecular ingredients to induce stable iTregs. Now scientists at La Jolla Institute for Immunology and Emory University School of Medicine report that Vitamin C and TET proteins can work together to give Tregs their life-saving power. "Vitamin C can be used to stabilize iTregs generated in vitro," says LJI Instructor Xiaojing Yue, Ph.D., who served as co-first author for the EMBO Reports study. "We hope that these kinds of induced Tregs can be used in the future for treatment of autoimmune diseases and organ transplantation." The recent study, led by LJI Professor Anjana Rao, Ph.D., and Emory Instructor Benjamin G Barwick, Ph.D., builds on the previous discovery that Vitamin C can enhance the enzymatic activity of TET proteins and prompt the generation of stable iTregs under lab conditions. This finding was encouraging, but the scientists did not want to work toward new autoimmune therapies without first analyzing the gene expression patterns and other key epigenetic features of the induced Tregs. "We wanted to study the entire system at a whole genome level using next generation sequencing technology to better understand the molecular features of these cells," says Yue. Study co-first author Daniela Samaniego-Castruita, a graduate student at LJI, spearheaded the analysis of gene expression and epigenetic changes in the iTregs. A major type of epigenetic modification involves the DNA itself through the addition or removal of molecules called methyl groups from cytosines, one of the four DNA bases. The methyl groups can be further oxidized by TET enzymes. All of these interactions can eventually change how cells "read" the DNA code. Another type of epigenetic change involves the alteration of DNA accessibility: whether DNA is loosely or tightly coiled. As the DNA coils unwind, regulatory regions become exposed which subsequently influence gene expression. In their analysis, the researchers found TET proteins are absolutely required for maintaining the gene expression and epigenetic features that make Tregs as what they are; and adding Vitamin C led to iTregs with similar similar gene expression and epigenetic features as normal "wild type" Tregs found in the body. The study also reveals an intriguing connection between TET enzymatic activity, Vitamin C and IL-2/STAT5 signaling. "In mice that are deficient for components of IL-2/STAT5 signaling, such as IL-2, IL-2 receptors or STAT5, the Tregs cannot develop properly or they can have impaired function," Yue says. The researchers demonstrate that on one hand, TET-deficiency in Treg cells leads to impaired IL-2/STAT5 signaling; on the other hand, Vitamin C confers iTregs enhanced IL-2/STAT5 signaling by increasing the expression level of IL-2 receptor and the functional form of STAT5, and STAT5 binding to essential regions in the genome, rendering these cells survive better in tough environments with low IL-2 supplementation. "We are looking for more small molecules to stabilize TET activity and generate induced Tregs that are even more stable," says Yue. "These induced Tregs could eventually be used to treat patients." "This research gives us a new way to think about treating autoimmune diseases," says Samaniego-Castruita. Resveratrol ameliorates high-fat-diet-induced abnormalities in liver glucose metabolism in mice via the AMPK pathway Hebei Medical Institute (China), July 19, 2021 A new study on high fat diet is now available. According to news originating from the Department of Internal Medicine by NewsRx correspondents, research stated, “Diabetes mellitus is highly prevalent worldwide.” Our news reporters obtained a quote from the research from Department of Internal Medicine: “High-fat-diet (HFD) consumption can lead to liver fat accumulation, impair hepatic glycometabolism, and cause insulin resistance and the development of diabetes. Resveratrol has been shown to improve the blood glucose concentration of diabetic mice, but its effect on the abnormal hepatic glycometabolism induced by HFD-feeding and the mechanism involved are unknown. In this study, we determined the effects of resveratrol on the insulin resistance of high-fat-diet-fed mice and a hepatocyte model by measuring serum biochemical indexes, key indicators of glycometabolism, glucose uptake, and glycogen synthesis in hepatocytes. We found that resveratrol treatment significantly ameliorated the HFD-induced abnormalities in glucose metabolism in mice, increased glucose absorption and glycogen synthesis, downregulated protein phosphatase 2A (PP2A) and activated Ca2+/CaM-dependent protein kinase kinase b (CaMKKb), and increased the phosphorylation of AMP-activated protein kinase (AMPK). In insulin-resistant HepG2 cells, the administration of a PP2A activator or CaMKKb inhibitor attenuated the effects of resveratrol, but the administration of an AMPK inhibitor abolished the effects of resveratrol. Resveratrol significantly ameliorates abnormalities in glycometabolism induced by HFD-feeding and increases glucose uptake and glycogen synthesis in hepatocytes.” According to the news editors, the research concluded: “These effects are mediated through the activation of AMPK by PP2A and CaMKKb.” Hundreds of chemicals, many in consumer products, could increase breast cancer risk List includes potential carcinogens that act by stimulating production of hormones that fuel breast tumors Silent Spring Institute, July 22, 2021 Every day, people are exposed to a variety of synthetic chemicals through the products they use or the food they eat. For many of these chemicals, the health effects are unknown. Now a new study shows that several hundred common chemicals, including pesticides, ingredients in consumer products, food additives, and drinking water contaminants, could increase the risk of breast cancer by causing cells in breast tissue to produce more of the hormones estrogen or progesterone. "The connection between estrogen and progesterone and breast cancer is well established," says co-author Ruthann Rudel, a toxicologist and research director at Silent Spring Institute. "So, we should be extremely cautious about chemicals in products that increase levels of these hormones in the body." For instance, in 2002, when the Women's Health Initiative study found combination hormone replacement therapy to be associated with an increased risk of breast cancer, women stopped taking the drugs and incidence rates went down. "Not surprisingly, one of the most common therapies for treating breast cancer is a class of drugs called aromatase inhibitors that lower levels of estrogen in the body, depriving breast cancer cells of the hormones they need to grow," adds Rudel. To identify these chemical risk factors, Rudel and Silent Spring scientist Bethsaida Cardona combed through data on more than 2000 chemicals generated by the U.S. Environmental Protection Agency (EPA)'s ToxCast program. The goal of ToxCast is to improve the ability of scientists to predict whether a chemical will be harmful or not. The program uses automated chemical screening technologies to expose living cells to chemicals and then examine the different biological changes they cause. Reporting in the journal Environmental Health Perspectives, Rudel and Cardona identified 296 chemicals that were found to increase estradiol (a form of estrogen) or progesterone in cells in the laboratory. Seventy-one chemicals were found to increase levels of both hormones. The chemicals included ingredients in personal care products such as hair dye, chemical flame retardants in building materials and furnishings, and a number of pesticides. The researchers don't yet know how these chemicals are causing cells to produce more hormones. It could be the chemicals are acting as aromatase activators, for instance, which would lead to higher levels of estrogen, says Cardona. "What we do know is that women are exposed to multiple chemicals from multiple sources on a daily basis, and that these exposures add up." The Silent Spring researchers hope this study will be a wakeup call for regulators and manufacturers in how they test chemicals for safety. For instance, current safety tests in animals fail to look at changes in hormone levels in the animal's mammary glands in response to a chemical exposure. And, although high throughput testing in cells has been used to identify chemicals that activate the estrogen receptor, mimicking estrogen, the testing has not been used to identify chemicals that increase estrogen or progesterone synthesis. "This study shows that a number of chemicals currently in use have the ability to manipulate hormones known to adversely affect breast cancer risk," says Dr. Sue Fenton, associate editor for the study and an expert in mammary gland development at the National Institute of Environmental Health Sciences. "Especially concerning is the number of chemicals that alter progesterone, the potential bad actor in hormone replacement therapy. Chemicals that elevate progesterone levels in the breast should be minimized." The researchers outlined a number of recommendations in their study for improving chemical safety testing to help identify potential breast carcinogens before they end up in products, and suggest finding ways to reduce people's exposures, particularly during critical periods of development, such as during puberty or pregnancy when the breast undergoes important changes. The project is part of Silent Spring Institute's Safer Chemicals Program which is developing new cost-effective ways of screening chemicals for their effects on the breast. Knowledge generated by this effort will help government agencies regulate chemicals more effectively and assist companies in developing safer products. Antioxidant activity of limonene counteracts neurotoxicity triggered by amyloid beta 1-42 oligomers in cortical neurons University of Naples (Italy), July 19, 2021 According to news reporting from Naples, Italy, by NewsRx journalists, research stated, “Many natural-derived compounds, including the essential oils from plants, are investigated to find new potential protective agents in several neurodegenerative disorders such as Alzheimer's disease (AD).” The news editors obtained a quote from the research from School of Medicine: “In the present study, we tested the neuroprotective effect of limonene, one of the main components of the genus * * Citrus* * , against the neurotoxicity elicited by Ab [ [1-42] ] oligomers, currently considered a triggering factor in AD. To this aim, we assessed the acetylcholinesterase activity by Ellman's colorimetric method, the mitochondrial dehydrogenase activity by MTT assay, the nuclear morphology by Hoechst 33258, the generation of reactive oxygen species (ROS) by DCFH-DA fluorescent dye, and the electrophysiological activity of K [ [V] ] 3.4 potassium channel subunits by patch-clamp electrophysiology. Interestingly, the monoterpene limonene showed a specific activity against acetylcholinesterase with an IC [ [50] ] almost comparable to that of galantamine, used as positive control. Moreover, at the concentration of 10 g/mL, limonene counteracted the increase of ROS production triggered by Ab [ [1-42] ] oligomers, thus preventing the upregulation of K [ [V] ] 3.4 activity. This, in turn, prevented cell death in primary cortical neurons, showing an interesting neuroprotective profile against Ab [ [1-42] ] -induced toxicity.” According to the news editors, the research concluded: “Collectively, the present results showed that the antioxidant properties of the main component of the genus * * Citrus* * , limonene, may be useful to prevent neuronal suffering induced by Ab [ [1-42] ] oligomers preventing the hyperactivity of K [ [V] ] 3.4.” Meditation And Yoga Change Your DNA To Reverse Effects Of Stress, Study Shows Coventry University (UK), July 22, 2021 Many people participate in practices such as meditation and yoga because they help us relax. At least those are the immediate effects we feel. But much more is happening on a molecular level, reveal researchers out of Coventry University in England. Published in the journal Frontiers in Immunology, this new research examined 18 studies on mind-body interventions (MBIs). These include practices such as mindfulness meditation and yoga. Comprehensively, these studies encompassed 846 participants over 11 years. The new analysis reveals that MBIs result in molecular changes in the human body. Furthermore, researchers claim that these changes are beneficial to our mental and physical health. Body's Response to Stress Causes Damage To elaborate, consider the effect that stress has on the body. When we are under stress, the body increases the production of proteins that cause cell inflammation. This is the natural effect of the body's fight-or-flight response. It is widely believed that inflammation in the body leads to numerous illnesses, including cancer. Moreover, scientists also deduct that a persistent inflammation is more likely to cause psychiatric problems. Unfortunately, many people suffer from persistent stress, therefore they suffer from pro-inflammatory gene expression. But there is good news! According to this new analysis out of Coventry, people that practice MBIs such as meditation and yoga can reverse pro-inflammatory gene expression. This results in a reduced risk of inflammation-related diseases and mental conditions. Lead investigator Ivana Buric from Coventry University's Centre for Psychology, Behaviour and Achievement stated: Millions of people around the world already enjoy the health benefits of mind-body interventions like yoga or meditation, but what they perhaps don't realise is that these benefits begin at a molecular level and can change the way our genetic code goes about its business. These activities are leaving what we call a molecular signature in our cells, which reverses the effect that stress or anxiety would have on the body by changing how our genes are expressed. Put simply, MBIs cause the brain to steer our DNA processes along a path which improves our wellbeing. More needs to be done to understand these effects in greater depth, for example how they compare with other healthy interventions like exercise or nutrition. But this is an important foundation to build on to help future researchers explore the benefits of increasingly popular mind-body activities. Large-scale study finds greater sedentary hours increases risk of obstructive sleep apnea Study finds that maintaining an active lifestyle can reduce the risk of OSA, encourages physicians to recommend exercise-based interventions for those at risk Brigham and Women's Hospital, July 22, 2021 A new study by investigators from Brigham and Women's Hospital examined the relationship between active lifestyles and the risk of obstructive sleep apnea (OSA). The study followed around 130,000 men and women in the United States over a follow-up period of 10-to-18 years and found that higher levels of physical activity and lower levels of sedentary behavior were associated with a lower risk of OSA. Their results are published in the European Respiratory Journal. "In our study, higher levels of physical activity and fewer hours of TV watching, and sitting either at work or away from home were associated with lower OSA incidence after accounting for potential confounders," said Tianyi Huang, MSc, ScD, an Associate Epidemiologist at the Brigham. "Our results suggest that promoting an active lifestyle may have substantial benefits for both prevention and treatment of OSA." OSA is a type of sleep apnea in which some muscles relax during sleep, causing an airflow blockage. Severe OSA increases the risk of various heart issues, including abnormal heart rhythms and heart failure. Using the Nurses' Health Study (NHS), Nurses' Health Study II (NHSII) and Health Professionals Follow-Up Study (HPFS), the research team used statistical modeling to compare physical activity and sedentary hours with diagnoses of OSA. Both moderate and vigorous physical activity were examined separately and both were strongly correlated with lower risk of OSA, showing no appreciable differences in the intensity of activity. Moreover, stronger associations were found for women, adults over the age of 65 and those with a BMI greater than or equal to 25 kg/m2. "Most prior observational studies on the associations of physical activity and sedentary behavior with OSA were cross-sectional, with incomplete exposure assessment and inadequate control for confounding," said Huang. "This is the first prospective study that simultaneously evaluates physical activity and sedentary behavior in relation to OSA risk." This study also differs from others because of its large sample size and detailed assessment pf physical activity and sedentary behaviors. The research team was able to take many associated factors into account, making the findings more credible. The authors note that all collected data, both of OSA diagnosis and physical activity or sedentary behavior, were self-reported. While all study participants were health professionals, mild OSA is often difficult to detect and can remain clinically unrecognized. Furthermore, only recreational physical activity was taken into consideration, leaving out any physical activity in occupational settings. Sedentary behavior was only counted as sitting while watching TV and sitting away from home or at work. According to Huang, the next research steps would be to collect data using actigraphy, home sleep apnea tests and polysomnography, rather than self-reports. In light of the findings, investigators encourage physicians to highlight the benefits of physical activity to lower OSA risk. "We found that physical activity and sedentary behavior are independently associated with OSA risk," said Huang. "That is, for people who spend long hours sitting every day, increasing physical activity in their leisure time can equally lower OSA risk. Similarly, for those who are not able to participate in a lot of physical activity due to physical restrictions, reducing sedentary hours by standing or doing some mild activities could also lower OSA risk. However, those who can lower sedentary time and increase physical activity would have the lowest risk."
Episode 347 is an updated guide to somatropic hormone and GOD did I go crazy on this one! I honestly want to know more about growth hormone than anyone alive and thus, begins this string of GH based guides! I DID finally discuss the MoA for how GH causes localized fat loss which really had me excited since no one in our industry has EVER talked about this so that definitely was an interesting avenue to go down! Below I am going to reference a lot of the literature for this hormone that I was read through over the past few years on this topic so please DO NOT TAKE MY WORD FOR THIS - READ THESE YOURSELF! Keep in mind this is a brief snippet of every bit of literature on the topic however. REFERENCES Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10:68–91. [PubMed] [Google Scholar] Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34. [PubMed] [Google Scholar] Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22:53–74. [PubMed] [Google Scholar] Melmed S. Endocrinology. 5th edn. Philadelphia: Elsevier Saunders; 2006. pp. 411–428. [Google Scholar] Fain, J. N., García‐Sáinz, JA. (1983) Adrenergic regulation of adipocytes metabolism. J Lipid Res 24: 945– 966. CAS PubMed Web of Science®Google Scholar Gilman, AG. (1987) G protein: transducer of receptor‐generated signals. Annu Rev Biochem 56: 615– 649. Crossref CAS PubMed Web of Science®Google Scholar Jimenez, M., Lèger, B., Canola, K., et al (2002) Beta(1)/beta(2)/beta(3)‐adrenoceptor knockout mice are obese and cold‐sensitive but have normal lipolytic responses to fasting. FEBS Lett 530: 37– 40. Wiley Online Library CAS PubMed Web of Science®Google Scholar Birnbaumer, L., Abramowitz, J., Brown, AM. (1990) Receptor‐effector coupling by G proteins. Biochim Biophys Acta 1031: 163– 224. Crossref CAS PubMed Web of Science®Google Scholar Spiegel, A. M., Shenker, A., Weinstein, LS. (1992) Receptor‐effector coupling by G‐protein: implications for normal and abnormal signal transduction. Endocr Rev 13: 536– 565. Crossref CAS PubMed Web of Science®Google Scholar Beebe, S. J., Holloway, R., Rannels, R. S., Corbin, JD. (1984) Two classes of cAMP analogs which are selective for the two different cAMP‐binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J Biol Chem 269: 3539– 3547. PubMed Google Scholar Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48–58. [PubMed] [Google Scholar] Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299:1346–1351. [PubMed] [Google Scholar] Ibrahim YH, Yee D. Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res. 2004;14:261–269. [PubMed] [Google Scholar] Laban C, Bustin SA, Jenkins PJ. The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab. 2003;14:28–34. [PubMed] [Google Scholar] Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–928. [PubMed] [Google Scholar] Mayo KE. A little lesson in growth regulation. Nat Genet. 1996;12:8–9. [PubMed] [Google Scholar] Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J. Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev. 1994;15:369–390. [PubMed] [Google Scholar] Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM. Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med. 1995;333:1093–1098. [PubMed] [Google Scholar] Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349:2211–2222. [PubMed] [Google Scholar] Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med. 1996;335:1363–1367. [PubMed] [Google Scholar] Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol. 2001;229:141–162. [PubMed] [Google Scholar] Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993;7:2609–2617. [PubMed] [Google Scholar] Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M. Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci U S A. 2006;103:7315–7320. [PMC free article] [PubMed] [Google Scholar] Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D. Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest. 2002;109:347–355. [PMC free article] [PubMed] [Google Scholar] Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995;270:12109–12116. [PubMed] [Google Scholar] Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A. 1998;95:15603–15607. [PMC free article] [PubMed] [Google Scholar] Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014–1019. [PubMed] [Google Scholar] Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001;27:195–200. [PubMed] [Google Scholar] Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol. 2002;157:137– 148. [PMC free article] [PubMed] [Google Scholar] Caroni P, Schneider C. Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci. 1994;14:3378–3388. [PMC free article] [PubMed] [Google Scholar] Edwall D, Schalling M, Jennische E, Norstedt G. Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology. 1989;124:820–825. [PubMed] [Google Scholar] DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol. 1990;259:E89–E95. [PubMed] [Google Scholar] Carson JA, Nettleton D, Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J. 2002;16:207–209. [PubMed] [Google Scholar] Waters MJ, Hoang HN, Fairlie DP, Pelekanos RA, Brown RJ. New insights into growth hormone action. J Mol Endocrinol. 2006;36:1–7. [PubMed] [Google Scholar] Herrington J, Carter-Su C. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab. 2001;12:252–257. [PubMed] [Google Scholar] Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2006;7:225–235. [PubMed] [Google Scholar] Rotwein P, Thomas MJ, Harris DM, Gronowski AM, LeStunff C. Nuclear actions of growth hormone: an in vivo perspective. J Anim Sci. 1997;75:11–19. [Google Scholar] Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene. 2000;19:2585–2597. [PubMed] [Google Scholar] Levy DE, Darnell JEJ. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–662. [PubMed] [Google Scholar] Gronowski AM, Rotwein P. Rapid changes in nuclear protein tyrosine phosphorylation after growth hormone treatment in vivo. Identification of phosphorylated mitogen-activated protein kinase and STAT91. J Biol Chem. 1994;269:7874–7878. [PubMed] [Google Scholar] Gronowski AM, Zhong Z, Wen Z, Thomas MJ, Darnell JEJ, Rotwein P. In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol Endocrinol. 1995;9:171–177. [PubMed] [Google Scholar] Ram PA, Park SH, Choi HK, Waxman DJ. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem. 1996;271:5929–5940. [PubMed] [Google Scholar] Campbell GS, Meyer DJ, Raz R, Levy DE, Schwartz J, Carter-Su C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem. 1995;270:3974–3979. [PubMed] [Google Scholar] Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C. Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic acid binding activity of Stat5A and Stat5B. Endocrinology. 1997;138:3426–3434. [PubMed] [Google Scholar] Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol. 1996;10:519–533. [PubMed] [Google Scholar] Gebert CA, Park SH, Waxman DJ. Regulation of signal transducer and activator of transcription (STAT) 5b activation by the temporal pattern of growth hormone stimulation. Mol Endocrinol. 1997;11:400–414. [PubMed] [Google Scholar] Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–850. [PubMed] [Google Scholar] Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94:7239–7244. [PMC free article] [PubMed] [Google Scholar] Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. 2003;349:1139–1147. [PubMed] [Google Scholar] Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, Berberoglu M, Rosenfeld RG. Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005;90:4260–4266. [PubMed] [Google Scholar] Rosenfeld RG, Belgorosky A, Camacho-Hubner C, Savage MO, Wit JM, Hwa V. Defects in growth hormone receptor signaling. Trends Endocrinol Metab. 2007;18:134–141. [PubMed] [Google Scholar] Thompson BJ, Shang CA, Waters MJ. Identification of genes induced by growth hormone in rat liver using cDNA arrays. Endocrinology. 2000;141:4321–4324. [PubMed] [Google Scholar] Flores-Morales A, Stahlberg N, Tollet-Egnell P, Lundeberg J, Malek RL, Quackenbush J, Lee NH, Norstedt G. Microarray analysis of the in vivo effects of hypophysectomy and growth hormone treatment on gene expression in the rat. Endocrinology. 2001;142:3163–3176. [PubMed] [Google Scholar] Rowland JE, Lichanska AM, Kerr LM, White M, d'Aniello EM, Maher SL, Brown R, Teasdale RD, Noakes PG, Waters MJ. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol Cell Biol. 2005;25:66–77. [PMC free article] [PubMed] [Google Scholar] Huo JS, McEachin RC, Cui TX, Duggal NK, Hai T, States DJ, Schwartz J. Profiles of growth hormone (GH)-regulated genes reveal time-dependent responses and identify a mechanism for regulation of activating transcription factor 3 by GH. J Biol Chem. 2006;281:4132–4141. [PubMed] [Google Scholar] Vidal OM, Merino R, Rico-Bautista E, Fernandez-Perez L, Chia DJ, Woelfle J, Ono M, Lenhard B, Norstedt G, Rotwein P, Flores-Morales A. In vivo transcript profiling and phylogenetic analysis identifies suppressor of cytokine signaling 2 as a direct signal transducer and activator of transcription 5b target in liver. Mol Endocrinol. 2007;21:293–311. [PubMed] [Google Scholar] Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol. 2006;20:1333–1351. [PubMed] [Google Scholar] Jorgensen JO, Jessen N, Pedersen SB, Vestergaard E, Gormsen L, Lund SA, Billestrup N. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am J Physiol Endocrinol Metab. 2006;291:E899–E905. [PubMed] [Google Scholar] Nielsen C, Gormsen LC, Jessen N, Pedersen SB, Moller N, Lund S, Jorgensen JO. Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor blockade. J Clin Endocrinol Metab. 2008;93:2842–2850. [PubMed] [Google Scholar] Waxman DJ, O'Connor C. Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol. 2006;20:2613–2629. [PubMed] [Google Scholar] Wauthier V, Waxman DJ. Sex-specific early growth hormone response genes in rat liver. Mol Endocrinol. 2008;22:1962–1974. [PMC free article] [PubMed] [Google Scholar] Ahluwalia A, Clodfelter KH, Waxman DJ. Sexual dimorphism of rat liver gene expression: regulatory role of growth hormone revealed by deoxyribonucleic Acid microarray analysis. Mol Endocrinol. 2004;18:747–760. [PubMed] [Google Scholar] Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem. 1999;274:2672–2681. [PubMed] [Google Scholar] Zhou YC, Waxman DJ. STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 transactivation domain. J Biol Chem. 1999;274:29874–29882. [PubMed] [Google Scholar] Ono M, Chia DJ, Merino-Martinez R, Flores-Morales A, Unterman TG, Rotwein P. Signal transducer and activator of transcription (Stat) 5b-mediated inhibition of insulin-like growth factor binding protein-1 gene transcription: a mechanism for repression of gene expression by growth hormone. Mol Endocrinol. 2007;21:1443–1457. [PubMed] [Google Scholar] Murphy LJ. Insulin-like growth factor-binding proteins: functional diversity or redundancy? J Mol Endocrinol. 1998;21:97–107. [PubMed] [Google Scholar] Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005;16:183–189. [PubMed] [Google Scholar] Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421–426. [PubMed] [Google Scholar] Rotwein P. Contemporary endocrinology: the IGF system. Totowa: Humana Press; 1999. Molecular biology of IGF-I and IGF-II; pp. 19–35. [Google Scholar] Hall LJ, Kajimoto Y, Bichell D, Kim SW, James PL, Counts D, Nixon LJ, Tobin G, Rotwein P. Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol. 1992;11:301–313. [PubMed] [Google Scholar] Adamo ML, Ben-Hur H, Roberts CTJ, LeRoith D. Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes. Mol Endocrinol. 1991;5:1677–1686. [PubMed] [Google Scholar] Shimatsu A, Rotwein P. Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem. 1987;262:7894–7900. [PubMed] [Google Scholar] Kim SW, Lajara R, Rotwein P. Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol. 1991;5:1964–1972. [PubMed] [Google Scholar] Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CTJ, LeRoith D. Structure of the chum salmon insulin-like growth factor I gene. DNA Cell Biol. 1993;12:729–737. [PubMed] [Google Scholar] Hoyt EC, Van Wyk JJ, Lund PK. Tissue and development specific regulation of a complex family of rat insulin-like growth factor I messenger ribonucleic acids. Mol Endocrinol. 1988;2:1077–1086. [PubMed] [Google Scholar] Woelfle J, Billiard J, Rotwein P. Acute control of insulin-like growth factor-1 gene transcription by growth hormone through STAT5B. J Biol Chem. 2003;278:22696–22702. [PubMed] [Google Scholar] Woelfle J, Chia DJ, Rotwein P. Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem. 2003;278:51261–51266. [PubMed] [Google Scholar] Bichell DP, Kikuchi K, Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol. 1992;6:1899–1908. [PubMed] [Google Scholar] Thomas MJ, Kikuchi K, Bichell DP, Rotwein P. Characterization of deoxyribonucleic acid-protein interactions at a growth hormone-inducible nuclease hypersensitive site in the rat insulin-like growth factor-I gene. Endocrinology. 1995;136:562–569. [PubMed] [Google Scholar] An MR, Lowe WLJ. The major promoter of the rat insulin-like growth factor-I gene binds a protein complex that is required for basal expression. Mol Cell Endocrinol. 1995;114:77–89. [PubMed] [Google Scholar] Mittanck DW, Kim SW, Rotwein P. Essential promoter elements are located within the 5' untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol. 1997;126:153–163. [PubMed] [Google Scholar] Wang L,Wang X, Adamo ML. Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. Endocrinology. 2000;141:1118–1126. [PubMed] [Google Scholar] Wang X, Talamantez JL, Adamo ML. A CACCC box in the proximal exon 2 promoter of the rat insulin-like growth factor I gene is required for basal promoter activity. Endocrinology. 1998;139:1054–1066. [PubMed] [Google Scholar] Wang Y, Jiang H. Identification of a distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression. J Biol Chem. 2005;280:10955–10963. [PubMed] [Google Scholar] Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P. Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem. 2006;281:3190–3197. [PubMed] [Google Scholar] Eleswarapu S, Gu Z, Jiang H. Growth hormone regulation of insulin-like growth factor-I gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology. 2008;149:2230–2240. [PMC free article] [PubMed] [Google Scholar] Björntorp, P. (1992) Biochemistry of obesity in relation to diabetes. In: KGMM Alberti RA DeFronzo H Keen P Zimmet eds. International Textbook of Diabetes Mellitus 551– 568. John Wiley & Sons Ltd London, United Kingdom. Google Scholar Björntorp, P. (1992) Hormonal effects on fat distribution and its relationship to health risk factors. Acta Paediatr Suppl 383: 59– 60. CAS PubMed Google Scholar Rosèn, T., Bosaeus, I., Tolli, J., Lindstedt, G., Bengtsson, BA. (1993) Increased body fat mass and decreased extracellular fluid volume in adults with growth hormone deficiency. Clin Endocrinol (Oxf) 38: 63 Wiley Online Library PubMed Web of Science®Google Scholar Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r) Cell. 1993;75:59–72. [PubMed] [Google Scholar] Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse) Proc Natl Acad Sci U S A. 1997;94:13215–13220. [PMC free article] [PubMed] [Google Scholar] Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest. 2000;106:1095–1103. [PMC free article] [PubMed] [Google Scholar] Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110:771–781. [PMC free article] [PubMed] [Google Scholar] Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology. 2001;142:4349–4356. [PubMed] [Google Scholar] Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–1441. [PubMed] [Google Scholar] Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest. 1997;99:2961–2970. [PMC free article] [PubMed] [Google Scholar] McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124:1247–1253. [PubMed] [Google Scholar] Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141:2674–2682. [PubMed] [Google Scholar] Bengtsson, BÅ, Edén, S., Lönn, L., et al (1993) Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J Clin Endocrinol Metab 76: 309– 317. Crossref CAS PubMed Web of Science®Google Scholar Al‐Shoumer, K. A. S., Page, B., Thomas, E., Murphy, M., Beshyah, S. A., Johnston, DG. (1996) Effects of four years’ treatment with biosynthetic human growth hormone (GH) on body composition in GH‐deficient hypopituitary adults. Eur Endocrinol 135: 559– 567. Crossref CAS PubMed Web of Science®Google Scholar Li, C. H., Simpson, M. E., Evans, HM. (1949) Influence of growth and adrenocorticotropic hormone on the body composition of hypophysectomized rats. Endocrinology 44: 71– 75. Crossref CAS PubMed Web of Science®Google Scholar Scow, RO. (1959) Effects of growth hormone and thyroxine on growth and chemical composition of muscle, bone and other tissues in thyroidectomized‐hypophysectomized rats. Am J Physiol 196: 859– 865. CAS PubMed Web of Science®Google Scholar Lee, M. O., Schaffer, NK. (1934) Anterior pituitary growth hormone and the composition of growth. J Nutr 7: 337– 363. Crossref CAS Web of Science®Google Scholar Goodman, H. M., Schwartz, J. (1974) Growth hormone and lipid metabolism. In: E Enobil WH Sawyer eds. Handbook of Physiology, Part 2 IV: 211– 232. American Physiological Society Washington DC. Google Scholar Bengtsson, BÅ, Brummer, R. J. M., Edén, S., Rosèn, T., Sjöström, L. (1992) Effects of growth hormone on fat mass and fat distribution. Acta Paediatr Suppl 383: 62– 65. PubMed Google Scholar Tanner, J. M., Hughes, P. C. R., Whitehouse, RH. (1977) Comparative rapidity of response of height, limb muscle and limb fat to treatment with human growth hormone in patients with and without growth hormone deficiency. Acta Endocrinol (Copenh) 84: 53– 57. Google Scholar Goodman, H. M., Gorin, E., Honeyman, TW. (1988) Biochemical basis for the lipolytic activity of growth hormone. In: LE Underwood eds. Human Growth Hormone: Progress and Challenges 75– 111. Marcel Dekker Inc New York. Google Scholar Bonnet, F., Vanderschueren‐Lodeweyckx, M., Echels, R., Malvaux, P. (1974) Subcutaneous adipose tissue and lipids in blood in growth hormone deficiency before and after treatment with human growth hormone. Pediatr Res 8: 800– 805. Crossref CAS PubMed Web of Science®Google Scholar van Vliet, G, Bosson, D., Craen, M., Caju, NVLD, Malvaux, P., Vanderschueren‐Lodeweyckx, M. (1987) Comparative study of the lipolytic potencies of pituitary‐derived and biosynthetic human growth hormone in hypopituitary children. J Clin Endocrinol Metab 65: 876– 879. Crossref PubMed Web of Science®Google Scholar Beauville, M., Harent, I., Crampes, F., Riviere, D., Tauber, M. T., Tauber, J. P., Garrigues, M. (1992) Effect of long‐term rhGH administration in GH‐deficient adults on fat cell epinephrine response. Am J Physiol 263: E467– E472. Crossref CAS PubMed Web of Science®Google Scholar Vernon, R. G., Flint, DJ. (1989) Role of growth hormone in the regulation of adipocyte growth and function. In: RB Heap, C Prosser GE Lamming eds. Biotechnology in Growth Regulation 57– 71. Butterworths London, United Kingdom. Crossref Web of Science®Google Scholar Harant, I., Beauville, M., Crampes, F., et al (1994) Response of fat cells to growth hormone (GH): effect of long term treatment with recombinant human GH in GH‐deficient adults. J Clin Endocrinol Metab 78: 1392– 1395. Crossref PubMed Web of Science®Google Scholar Marcus, C., Bolme, P., Micha‐Johansson, G., Margery, V., Brönnegård, M. (1994) Growth hormone increases the lipolytic sensitivity from catecholamines in adipocytes from healthy adults. Life Sci 54: 1335– 1341. Crossref CAS PubMed Web of Science®Google Scholar Yang, S., Björntorp, P., Liu, X., Edén, S. (1996) Growth hormone treatment of hypophysectomized rats increases catecholamine‐induced lipolysis and the number of β‐adrenergic receptors in adipocytes: no differences in the effects of growth hormone on different fat depots. Obes Res 4: 471– 478. Wiley Online Library CAS PubMed Web of Science®Google Scholar Watt, P. W., Finley, E., Cork, S., Legg, R. A., Vernon, RG. (1991) Chronic control of the β‐ and α2‐adrenergic systems of sheep adipose tissue by growth hormone and insulin. Biochem J 273: 39– 42. Crossref CAS PubMed Web of Science®Google Scholar Arner, P. (1992) Adrenergic receptor function in fat cells. Am J Clin Nutr 55: 228S– 236S. Crossref CAS PubMed Web of Science®Google Scholar Arner, P., Hellmér, J., Wennlund, A., Östman, J., Engfeldt, P. (1988) Adrenoceptor occupancy in isolated human fat cells and its relationship with lipolysis rate. Eur J Pharmacol 146: 45– 56. Crossref CAS PubMed Web of Science®Google Scholar Davidson, MB. (1987) Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 8: 115– 131. Crossref CAS PubMed Web of Science®Google Scholar Ottosson, M., Lönnroth, P., Björntorp, Edén S. (2000) Effects of cortisol and growth hormone on lipolysis in human adipose tissue. J Clin Endocrinol Metab 85: 799– 803. Crossref CAS PubMed Web of Science®Google Scholar Pierlussi, J., Pierlussi, R., Aschcroft, SJH. (1980) Effects of growth hormone on insulin release in the rat. Diabetologia 19: 391– 396. Crossref PubMed Web of Science®Google Scholar Roupas, P., Ghou, S. T., Towns, R. J., Kostyo, JL. (1991) Growth hormone inhibits activation of phosphatidylinositol phospholipase C in adipose plasma membranes: evidence for a growth hormone‐induced change in G protein function. Physiol Pharmacol 88: 1691– 1695. CAS PubMed Web of Science®Google Scholar 72 Slavin, B. G., Ong, J. M., Kern, P. (1994) Hormonal regulation of hormone‐sensitive lipase activity and mRNA levels in isolated rat adiposities. J Lipid Res 35: 1535– 1541. CAS PubMed Web of Science®Google Scholar Sheridan, MK. (1986) Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, oncorhynchus kisutch, during smoltification. Gen Comp Endocrinol 64: 220– 238. Crossref CAS PubMed Web of Science®Google Scholar Dietz, J., Schwartz, J. (1991) Microdetermination of long chain fatty acids in plasma and tissue. J Biol Chem 235: 2595– 2599. PubMed Web of Science®Google Scholar Yang, S., Xu, X., Björntorp, P., Edén, S. (1995) Additive effects of growth hormone and testosterone on lipolysis in adipocytes of hypophysectomized rats. J Endocrinol 147: 147– 152. Crossref CAS PubMed Web of Science®Google Scholar Lands, A. M., Arnold, A., McAuliff, J. P., Bron, TG. (1967) Differentiation of receptor systems activated by sympathetic amines. Nature 214: 597– 598. Crossref CAS PubMed Web of Science®Google Scholar Stiles, G. L., Caron, M. G., Lefkowitz, RJ. (1984) β‐Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 64: 661– 743. Crossref CAS PubMed Web of Science®Google Scholar Emorine, L. J., Marullo, S., Briend‐Sutren, M. M., et al (1989) Molecular characterization of human β3‐adrenergic receptor. Science 245: 1118– 1121. Crossref CAS PubMed Web of Science®Google Scholar Ahquist, RP. (1948) A study of the adrenotropic receptors. Am J Physiol 153: 586– 600. PubMed Web of Science®Google Scholar Honnor, R. C., Dhillon, G. S., Londos, C. (1985) cAMP‐dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation and predictability in behavior. J Biol Chem 260: 15122– 15129. CAS PubMed Web of Science®Google Scholar Honnor, R. C., Dhillon, G. S., Londos, C. (1985) cAMP‐dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady‐state relationship with lipolytic and antilipolytic modulators. J Biol Chem 260: 15130– 15138. CAS PubMed Web of Science®Google Scholar Corbin, J. D., Cobb, C. E., Beebe, S. J., et al (1988) Mechanism and function of cAMP‐ and cGMP‐dependent protein kinases. Adv Second Messenger Phosphoprotein Res 21: 75– 86. CAS PubMed Web of Science®Google Scholar Londos, C., Brasaemle, D. L., Schultz, C. J., Segrest, J. P., Kimmel, AR. (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 10: 51– 58. Crossref CAS PubMed Web of Science®Google Scholar Holm, C., Osterlund, T., Laurell, H., Contreras, JA. (2000) Molecular mechanisms regulating hormone‐sensitive lipase and lipolysis. Annu Rev Nutr 20: 365– 393. Crossref CAS PubMed Web of Science®Google Scholar Brasaemle, D. L., Rubin, B., Harten, I. A., Gruia‐Gray, J., Kimmel, A. R., Londos, C. (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275: 38486– 38493. Crossref CAS PubMed Web of Science®Google Scholar Tansey, J. T., Huml, A. M., Vogt, R., et al (2003) Functional studies on native and mutated forms of perilipins. A role in protein kinase A‐mediated lipolysis of triacylglycerols. J Biol Chem 278: 8401– 8406. Crossref CAS PubMed Web of Science®Google Scholar Strålfors, P., Björgell, P., Belfrage, P. (1984) Hormone regulation of hormone‐sensitive lipase in intact adipocytes: Identification of phosphorylated sites and effects of the phosphorylation by lipolytic hormone and insulin. Proc Natl Acad Sci U S A 81: 3317– 3321. Crossref CAS PubMed Web of Science®Google Scholar Egan, J. J., Greenberg, A. S., Chang, M. K., Wek, SA Moos JMC, Londos, C. (1992) Mechanism of hormone‐stimulated lipolysis in adipocytes: translocation of hormone‐sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A 89: 8537– 8541. Crossref CAS PubMed Web of Science®Google Scholar Anthonsen, M. W., Ronnstrand, L., Wernstedt, C., Degerman, E., Holm, C. (1998) Identification of novel phosphorylation sites in hormone‐sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 273: 215– 221. Crossref CAS PubMed Web of Science®Google Scholar Sztalryd, C., Xu, G., Dorward, H., et al (2003) Perilipin A is essential for the translocation of hormone‐sensitive lipase during lipolytic activation. J Cell Boil 161: 1093– 1103. Crossref CAS PubMed Web of Science®Google Scholar Smith, PE. (1930) Hypophysectomy and replacement therapy in the rat. Am J Anat 45: 205– 273. Wiley Online Library Web of Science®Google Scholar Edén, S., Jansson, J. O., Oscarsson, J. (1987) Sexual dimorphism of growth hormone secretion. In: O Isaksson C Binder K Hall B Hökfelt eds. Growth Hormone—Basic and Clinical Aspects 129– 151. Elsevier Science Publishers B.V Amsterdam. Google Scholar Frohman, L. A., Bernardis, LL. (1970) Growth hormone secretion in rat: metabolic clearance and secretion rates. Endocrinology 86: 305– 312. Crossref CAS PubMed Google Scholar Jansson, J. O., Albertsson‐Wikaland, K., Edén, S., Thorngren, K. G., Isaksson, O. (1982) Circumstantial evidence for a role of the secretory pattern of growth hormone in control of body growth. Acta Endocrinol 99: 24– 30. CAS PubMed Web of Science®Google Scholar Björntorp, P., Karlsson, M., Pertoft, H., Pettersson, P., Sjöström, L., Smith, U. (1978) Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J Lipid Res 19: 316– 324. CAS PubMed Web of Science®Google Scholar Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, RJ. (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193: 265– 275. CAS PubMed Web of Science®Google Scholar Rebuffé‐Scrive, M. (1987) Sex steroid hormones and adipose tissue metabolism in adrenalectomized and ovariectomized rats. Acta Physiol Scand 129: 471– 477. Wiley Online Library CAS PubMed Web of Science®Google Scholar Laurell, S., Tibbling, G. (1966) An enzymatic fluorometric micromethod for the determination of glycerol. Clin Chim Acta 13: 317– 322. Crossref CAS PubMed Web of Science®Google Scholar Dole, V. P., Meinertz, H. (1960) Microdetermination of long chain fatty acids in plasma and tissues. J Biol Chem 235: 2595– 2599. CAS PubMed Web of Science®Google Scholar Smith, U., Sjöström, L., Björntorp, P. (1972) Comparison of two methods of determining human adipose cell size. J Lipid Res 13: 822– 824. CAS PubMed Web of Science®Google Scholar Östman, J., Arner, P., Kimura, H., Wahrenberg, H., Engfeldt, P. (1984) Influence of fasting on lipolytic response to adrenergic agonists and on adrenergic receptors in subcutaneous adipocytes. Eur J Clin Invest 14: 383– 391. Wiley Online Library PubMed Web of Science®Google Scholar Steiner, A. L., Pagliara, A. S., Chase, L. R., Kipnis, DM. (1972) Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′, 5′‐monophosphate and guanosine 3′, 5′‐monophosphate in mammalian tissues and body fluids. J Biol Chem 247: 1114– 1120. CAS PubMed Web of Science®Google Scholar Steiner, A. L., Parker, C. W., Kipnis, DM. (1972) Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem 247: 1106– 1113. CAS PubMed Web of Science®Google Scholar McKenzie, FR. (1988) Basic techniques to study G‐protein function. In: G Milligan eds. Signal Transduction—A Practical Approach, Part 2 31– 56. Oxford University Press New York. Google Scholar Solomon, S. S., Sibley, S. D., Dismukes, J.R. (1991) Growth hormone‐enhanced lipolysis in the spontaneously diabetic BB rat. J Lab Clin Med 118: 99– 105. CAS PubMed Web of Science®Google Scholar Nam, S. Y., Marcus, C. (2000) Growth hormone and adipocyte function in obesity. Horm Res 53: (Suppl 1), 87– 97. Crossref CAS PubMed Web of Science®Google Scholar Bahouth, S. W., Malbon, CC. (1988) Subclassification of β‐adrenergic receptors of rat fat cells: a re‐evaluation. Mol Pharmacol 34: 318– 326. CAS PubMed Web of Science®Google Scholar Granneman, J. G., Lahners, K. N., Chaudhry, A. (1992) Molecular cloning and expression of the rat β3‐adrenergic receptor. Mol Pharmacol 40: 895– 899. Web of Science®Google Scholar Hollenga, C. H., Zaagsma, J. (1989) Direct evidence for the atypical nature of functional β‐adrenoceptors in rat adipocytes. Br J Pharmacol 98: 1420– 1424. Wiley Online Library CAS PubMed Web of Science®Google Scholar Lacasa, D., Agli, B., Giudicelli, Y. (1985) Direct assessment of β‐adrenergic receptors in intact rat adipocytes by binding of [3H]CGP 12177. Eur J Biochem 146: 339– 346. Wiley Online Library CAS PubMed Web of Science®Google Scholar Umekawa, T., Yoshida, T., Sakane, N., Kondo, M. (1996) Effect of CL316, 243, a highly specific β3‐adrenoceptor agonit, on lipolysis of human and rat adipocytes. Horm Metab Res 28: 394– 396. Crossref CAS PubMed Web of Science®Google Scholar Bojanic, D., Nahorski, SR. (1983) Identification and subclassification of rat adipocyte β‐adrenoceptors using (±)‐[125I]cyanopindolol. Eur J Pharmacol 93: 235– 243. Crossref CAS PubMed Web of Science®Google Scholar Langin, D., Portillo, M., Saulnier‐Blache, J. S., Lafontan, M. (1991) Coexistence of three beta‐adrenergic receptor subtypes in white fat cells of various mammalian species. Eur J Pharmacol 199: 291– 301. Crossref CAS PubMed Web of Science®Google Scholar •••WANT YOUR QUESTION ANSWERED?••• Create a free account at www.theprepcoachforum.com and post up your question in the Mike Arnold PED Q&A open threat! •••SUPPORT OUR PEPTIDE/RESEARCH CHEMS SPONSORS••• (RESEARCH CHEMS) www.maresearchchems.net___use discount code “alex15” to save off your order! (SPECIALTY SUPPS) www.masupps.com___use discount code “alex20” to save off your order! (BEEF) www.skinnybeef.com___use discount code “alex10” to save off your order! •••FIND THE EPISODES••• ITUNES:https://itunes.apple.com/us/podcast/beastfitness-radios-podcast/id1065532968 LIBSYN:http://beastfitnessradio.libsyn.com VIMEO: www.vimeo.com/theprepcoach •••PREP COACH APPAREL••• https://teespring.com/stores/the-prep-coach-apparel
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.15.285551v1?rss=1 Authors: Ali, A., Shehwana, H., Hanif, A., Fatima, A., Shabbir, M., Rafiq, M. Abstract: Sepsis is a serious health situation caused by uncontrolled infection and septic shock is a severe condition of sepsis. RHBDD2 is a member of the rhomboid superfamily which is overexpressed in different types of cancer and associated with ER stress and estrogen receptor. Using microarray gene expression data and using different computational techniques this study investigated the role of RHBDD2 in sepsis and septic shock. Finds functional annotation of RHBDD2 using co-expression analysis and identified the deregulation of RHBDD2 in sepsis using differential expression analysis. Results show that RHBDD2 is overexpressed in sepsis and septic shock. The GO enrichment analysis, KEGG pathways, and biological functions of the RHBDD2 co-expressed genes module show that it is involved in most of the sepsis-related biological functions and also plays a role in most of the infection-related pathways which lead to sepsis and septic shock. RHBDD2 is regulated by STAT5 and SP1 transcriptional factors in sepsis and septic shock. The identification of the RHBDD2 as a biomarker may facilitate in septic shock diagnosis, treatment, and prognosis. Copy rights belong to original authors. Visit the link for more info
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.05.10.087650v1?rss=1 Authors: Georgescu, T., Ladyman, S. R., Brown, R. S. E., Grattan, D. R. Abstract: The anterior pituitary hormone, prolactin, is a fundamental regulator of lactation, and also plays a role in many other physiological processes including maternal behaviour, reproduction, immune response and even energy balance. Indeed, prolactin receptors (Prlr) are widely distributed throughout the body, including a number of different brain regions, further attesting to its pleiotropic nature. Within the brain, previous research has identified key areas upon which prolactin exerts effects on gene transcription through the canonical JAK2/STAT5 pathway downstream of the Prlr. In some neurones, however, such as the tuberoinfundibular dopamine neurones that control prolactin secretion, prolactin can also exert rapid actions to stimulate neuronal activity. While prolactin-induced activation of STAT5 has been described in a wide variety of brain regions, its capacity for acute modulation of electrical properties of many Prlr-expressing neurones remains to be elucidated. To investigate how widespread these rapid actions of prolactin are in various Prlr-expressing neurones, we utilised a transgenic mouse line in which Cre recombinase is specifically expressed in the coding region of the prolactin long form receptor gene (Prlr-iCre). This mouse line was crossed with a Cre-dependent calcium indicator (GCaMP6f) transgenic mouse, allowing us to visually monitor the electrical activity of Prlr-expressing neurones in ex vivo brain slice preparations. Here, we survey hypothalamic regions implicated in prolactin's diverse physiological functions such as: the arcuate (ARC) and paraventricular nuclei of the hypothalamus (PVN), and the medial preoptic area (MPOA). We observe that in both males and virgin and lactating females, bath application of prolactin is able to induce electrical changes in a subset of Prlr-expressing cells in all of these brain regions. The effects we detected ranged from rapid or sustained increases in intracellular calcium to inhibitory effects, indicating a heterogeneous nature of these Prlr-expressing populations. These results enhance our understanding of mechanisms by which prolactin acts on hypothalamic neurones and provide insights into how prolactin might influence neuronal circuits in the mouse brain. Copy rights belong to original authors. Visit the link for more info
¡Gracias por escuchar! Los medicamentos antimaláricos, hidroxicloroquina y cloroquina, son fármacos moduladores de las enfermedades reumáticas introducidos por serendipia y empíricamente para el tratamiento de diversas enfermedades reumáticas. Ni la cloroquina ni la hidroxicloroquina se sometieron al proceso de desarrollo de fármacos convencional, pero su uso se ha convertido en parte importante de los tratamiento actuales para la artritis reumatoide, lupus eritematoso sistémico, síndrome de anticuerpos antifosfolípido y síndrome de Sjögren primario. En este episodio exploraremos sus principales características desde la perspectiva farmacológica.Les pido amablemente dejen sus comentarios en tukua.podbean.com y la calificación a este y otros episodios en iTunes.Estas son algunas referencias de utilidad:Ruiz-Irastorza, G. et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann. Rheum. Dis. 69, 20–28 (2010).Ostensen, M. et al. Pregnancy and reproduction in autoimmune rheumatic diseases. Rheumatology 50, 657–664 (2011).Akhavan, P. S. et al. The early protective effect of hydroxychloroquine on the risk of cumulative damage in patients with systemic lupus erythematosus.Ponticelli, C. & Moroni, G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert. Opin. Drug Saf. 16, 411–419 (2017).Wang, S. Q. et al. Is hydroxychloroquine effective in treating primary Sjogren’s syndrome: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 18, 186 (2017).Rainsford, K. D. et al. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 23, 231–269 (2015).Collins, K. P., Jackson, K. M. & Gustafson, D. L. Hydroxychloroquine: a physiologically-based pharmacokinetic model in the context of cancerrelated autophagy modulation. J. Pharmacol. Exp. Ther. 365, 447–459 (2018).Munster, T. et al. Hydroxychloroquine concentrationresponse relationships in patients with rheumatoid arthritis. Arthritis Rheum. 46, 1460–1469 (2002).Carmichael, S. J., Charles, B. & Tett, S. E. Population pharmacokinetics of hydroxychloroquine in patients with rheumatoid arthritis. Ther. Drug Monit. 25, 671–681 (2003).Mok, C. C., Mak, A. & Ma, K. M. Bone mineral density in postmenopausal Chinese patients with systemic lupus erythematosus. Lupus 14, 106–112 (2005).Petri, M. Use of hydroxychloroquine to prevent thrombosis in systemic lupus erythematosus and in antiphospholipid antibody-positive patients. Curr. Rheumatol. Rep. 13, 77–80 (2011).Kingsbury, S. R. et al. Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis: a randomized trial. Ann. Intern. Med. 168, 385–395 (2018).Lee, W. et al. Efficacy of hydroxychloroquine in hand osteoarthritis: a randomized, double-blind, placebocontrolled trial. Arthritis Care Res. 70, 1320–1325 (2018).Rempenault, C. et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 77, 98–103 (2018).Ruiz-Irastorza, G. et al. Predictors of major infections in systemic lupus erythematosus. Arthritis Res. Ther. 11, R109 (2009).Flannery, E. L., Chatterjee, A. K. & Winzeler, E. A. Antimalarial drug discovery – approaches and progress towards new medicines. Nat. Rev. Microbiol. 11, 849–862 (2013).Ridley, R. G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693 (2002).Minie, M. et al. CANDO and the infinite drug discovery frontier. Drug Discov. Today 19, 1353–1363 (2014).Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).Hale, V. et al. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg. 77, 198–202 (2007).Somer, M. et al. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br. J. Clin. Pharmacol. 49, 549–554 (2000).Kormelink, T. G. et al. Decrease in immunoglobulin free light chains in patients with rheumatoid arthritis upon rituximab (anti-CD20) treatment correlates with decrease in disease activity. Ann. Rheum. Dis. 69, 2137–2144 (2010).Toimela, T., Tahti, H. & Salminen, L. Retinal pigment epithelium cell culture as a model for evaluation of the toxicity of tamoxifen and chloroquine. Ophthalmic Res. 27, 150–153 (1995).Bannwarth, B. et al. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin. Pharmacokinet. 30, 194–210 (1996).Carmichael, S. J. et al. Combination therapy with methotrexate and hydroxychloroquine for rheumatoid arthritis increases exposure to methotrexate. J. Rheumatol. 29, 2077–2083 (2002).van den Borne, B. E. et al. Combination therapy in recent onset rheumatoid arthritis: a randomized double blind trial of the addition of low dose cyclosporine to patients treated with low dose chloroquine. J. Rheumatol. 25, 1493–1498 (1998).Namazi, M. R. The potential negative impact of proton pump inhibitors on the immunopharmacologic effects of chloroquine and hydroxychloroquine. Lupus 18, 104–105 (2009).Jallouli, M. et al. Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus. Arthritis Rheumatol. 67, 2176–2184 (2015).Ezra, N. & Jorizzo, J. Hydroxychloroquine and smoking in patients with cutaneous lupus erythematosus. Clin. Exp. Dermatol. 37, 327–334 (2012).Yeon Lee, J. et al. Factors related to blood hydroxychloroquine concentration in patients with systemic lupus erythematosus. Arthritis Care Res. 69, 536–542 (2017).Borden, M. B. & Parke, A. L. Antimalarial drugs in systemic lupus erythematosus: use in pregnancy. Drug Saf. 24, 1055–1063 (2001).Costedoat-Chalumeau, N. et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun. Rev. 4, 111–115 (2005).Teng, Y. K. O. et al. An evidence-based approach to pre-pregnancy counselling for patients with systemic lupus erythematosus. Rheumatology 57, 1707–1720 (2017).Andreoli, L. et al. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann. Rheum. Dis. 76, 476–485 (2017).Gotestam Skorpen, C. et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 75, 795–810 (2016).Izmirly, P. M. et al. Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti-SSA/Ro-antibody-associated cardiac manifestations of neonatal lupus. Circulation 126, 76–82 (2012).Saxena, A. et al. Prevention and treatment in utero of autoimmune-associated congenital heart block. Cardiol. Rev. 22, 263–267 (2014).Friedman, D. et al. No histologic evidence of foetal cardiotoxicity following exposure to maternal hydroxychloroquine. Clin. Exp. Rheumatol. 35, 857–859 (2017).Sammaritano, L. R. & Bermas, B. L. Rheumatoid arthritis medications and lactation. Curr. Opin. Rheumatol. 26, 354–360 (2014).An, J. et al. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu. Rev. Med. 68, 317–330 (2017).An, J. et al. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J. Immunol. 194, 4089–4093 (2015).van den Borne, B. E. et al. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cellFasano, S. et al. Longterm hydroxychloroquine therapy and low-dose aspirin may have an additive effectiveness in the primary prevention of cardiovascular events in patients with systemic lupus erythematosus. J. Rheumatol. 44, 1032–1038 (2017).Towers, C. G. & Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 14, 15–23 (2016).Rand, J. H. et al. Hydroxychloroquine directly reduces the binding of antiphospholipid antibodyβ2-glycoprotein I complexes to phospholipid bilayers. Blood 112, 1687–1695 (2008).Jancinova, V., Nosal, R. & Petrikova, M. On the inhibitory effect of chloroquine on blood platelet aggregation. Thromb. Res. 74, 495–504 (1994).Bertrand, E. et al. Antiaggregation action of chloroquine. Med. Trop. 50, 143–146 (1990).Nosal, R., Jancinova, V. & Petrikova, M. Chloroquine inhibits stimulated platelets at the arachidonic acid pathway. Thromb. Res. 77, 531–542 (1995).Lazarus, M. N. et al. Incidence of cancer in a cohort of patients with primary Sjogren’s syndrome. Rheumatology 45, 1012–1015 (2006). J. Rheumatol. 21, 375–376 (1994).Wallace, D. J. et al. The relevance of antimalarial therapy with regard to thrombosis, hypercholesterolemia and cytokines in SLE. Lupus 2, S13–S15 (1993).Hjorton, K. et al. Cytokine production by activated plasmacytoid dendritic cells and natural killer cells is suppressed by an IRAK4 inhibitor. Arthritis Res. Ther. 20, 238 (2018).Willis, R. et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXXV), a multiethnic US cohort. Lupus 21, 830–835 (2012).Wu, S. F. et al. Hydroxychloroquine inhibits CD154 expression in CD4(+) T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res. Ther. 19, 183 (2017).Qushmaq, N. A. & Al-Emadi, S. A. Review on effectiveness of primary prophylaxis in aPLs with and without risk factors for thrombosis: efficacy and safety. ISRN Rheumatol. 2014, 348726 (2014).Nuri, E. et al. Long-term use of hydroxychloroquine reduces antiphospholipid antibodies levels in patients with primary antiphospholipid syndrome. Immunol. Res. 65, 17–24 (2017).Dadoun, S. et al. Mortality in rheumatoid arthritis over the last fifty years: systematic review and meta-analysis. Joint Bone Spine 80, 29–33 (2013).van den Hoek, J. et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol. Int. 37, 487–493 (2017).Avina-Zubieta, J. A. et al. Risk of myocardial infarction and stroke in newly diagnosed systemic lupus erythematosus: a general population-based study. Arthritis Care Res. 69, 849–856. (2017).Srinivasa, A., Tosounidou, S. & Gordon, C. Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: a brand-related issue? J. Rheumatol. 44, 398 (2017).Abdel-Hamid, H., Oddis, C. V. & Lacomis, D. Severe hydroxychloroquine myopathy. Muscle Nerve 38, 1206–1210 (2008).Jafri, K. et al. Antimalarial myopathy in a systemic lupus erythematosus patient with quadriparesis and seizures: a case-based review. Clin. Rheumatol. 36, 1437–1444 (2017).Khosa, S. et al. Hydroxychloroquine-induced autophagic vacuolar myopathy with mitochondrial abnormalities. Neuropathology 38, 646–652 (2018).Stein, M., Bell, M. J. & Ang, L. C. Hydroxychloroquine neuromyotoxicity. J. Rheumatol. 27, 2927–2931 (2000). Int. J. Cardiol. 157, 117–119 (2012).Sundelin, S. P. & Terman, A. Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS 110, 481–489 (2002).Jorge, A. et al. Hydroxychloroquine retinopathy implications of research advances for rheumatology care. Nat. Rev. Rheumatol. 14, 693–703 (2018).Marmor, M. F. et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 Revision). Ophthalmology 123, 1386–1394 (2016).Yusuf, I. H. et al. The Royal College of Ophthalmologists recommendations on screening for hydroxychloroquine and chloroquine users in the United Kingdom: executive summary. Eye 32, 1168–1173 (2018). J. Rheumatol. 44 1841–1849 (2017).Padol, I. T. & Hunt, R. H. Association of myocardial infarctions with COX-2 inhibition may be related to immunomodulation towards a Th1 response resulting in atheromatous plaque instability: an evidencebased interpretation. Rheumatology 49, 837–843 (2010).Hage, M. P., Al-Badri, M. R. & Azar, S. T. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther. Adv. Endocrinol. Metab. 5, 77–85 (2014).Costedoat-Chalumeau, N. et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 3284–3290 (2006).Costedoat-Chalumeau, N. et al. A prospective international study on adherence to treatment in 305 patients with flaring SLE: assessment by drug levels and self-administered questionnaires. Clin. Pharmacol. Ther. 103, 1074–1082 (2018).Bethel, M. et al. Hydroxychloroquine in patients with systemic lupus erythematosus with end-stage renal disease. J. Investig. Med. 64, 908–910 (2016).Sperati, C. J. & Rosenberg, A. Z. Hydroxychloroquineinduced mimic of renal Fabry disease. Kidney Int. 94, 634 (2018).Yusuf, I. H., Lotery, A. J. & Ardern-Jones, M. R. Joint recommendations for retinal screening in longterm users of hydroxychloroquine and chloroquine in the United Kingdom, 2018. Br. J. Dermatol. 179, 995–996 (2018).Melles, R. B. & Marmor, M. F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 132, 1453–1460 (2014).Costedoat-Chalumeau, N., Isenberg, D. & Petri, M. Letter in response to the 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus by Fanouriakis et al. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019215573 (2019).
Dr Jimena Ferraris of the Karolinska Institute and the University of Buenos Aires talks with NEN about her recently published work in Neuroendocrinology on the identification of signal transduction pathways that may play a role in the pathogenesis of prolactinomas. Interview by Dr. Julie Ann Lough de Dios, N., Orrillo, S.J., Irizarri, M., Theas, M., Boutillon, F., Candolfi, M., Seilicovic, A., Goffin, V., Pisera, D., Ferraris, J. (2018). JAK2/STAT5 pathway mediates prolactin-induced apoptosis of lactotropes. Neuroendocrinology, doi: 10.1159/000494975.
Symposia on Cancer Research 2012: Immunology and Inflammation in Cancer
Haiyan Li
Symposia on Cancer Research 2012: Immunology and Inflammation in Cancer
Haiyan Li
Top News aus der Medizinischen Forschung Wien vom 2010-05-05
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Bei etwa 30 % der Patienten mit akuter myeloischer Leukämie (AML) können aktivierende Mutationen der Rezeptortyrosinkinase FLT3 gefunden werden. Damit ist FLT3 eines der am häufigsten mutierten Gene in der AML. Die Mutationen treten in zwei Regionen des FLT3-Rezeptors auf: Längenmutationen (FLT3-LM) in der juxtamembranösen Region (24 %) und Punktmutationen der Aktivationsschleife der zweiten Tyrosinkinasedomäne (FLT3-TKD-Mutationen; 7 %). FLT3-Mutationen verleihen Ba/F3-Zellen Unabhängigkeit von Interleukin-3. In einem Knochenmarktransplantationsmodell der Maus erzeugen FLT3-LM ein myeloproliferatives Syndrom und in Zusammenwirken mit PML-RARα eine akute Promyelozytenleukämie. Darüber hinaus scheint das Auftreten von FLT3-LM bei Patienten mit einer schlechteren Prognose assoziiert zu sein. In dieser Arbeit wurden AML-Zelllinien und durch FLT3-Mutationen transformierte Ba/F3-Zellen mit dem kleinmolekularen PTK-Inhibitor SU5614 behandelt. SU5614 induziert selektiv Wachstumsarrest, Zellzyklusarrest und Apoptose in Ba/F3-Zellen und leukämischen Zelllinien, die FLT3-Mutationen tragen. Darüber hinaus hebt SU5614 die antiapoptotische und wachstumsfördernde Wirkung von FLT3-Ligand (FL) in FL-abhängigen Zellen auf. In Zelllinien, die keinen aktivierten FLT3-Rezeptor tragen, zeigte die Substanz keine zytotoxische Wirkung. Auf biochemischer Ebene hemmt SU5614 die Hyperphosphorylierung des FLT3-Rezeptors und seiner Downstream-Targets STAT3, STAT5 und MAPK, sowie die Expression der STAT5-Zielgene BCL-XL und p21. Es konnte somit demonstriert werden, dass das Indolinonderivat SU5614 ein potenter Hemmstoff von mutiertem FLT3 und Wildtyp-FLT3 ist. Des Weiteren konnte gezeigt werden, dass Zelllinien leukämischen Ursprungs, die endogen FLT3-Mutationen exprimieren, selektiv empfindlich gegenüber SU5614 sind. Diese selektive und potente Zytotoxizität von FLT3-Inhibitoren impliziert den klinischen Einsatz solcher Inhibitoren als zusätzliche molekulare Therapiemöglichkeit bei Patienten mit akuter myeloischer Leukämie und FLT3-Mutationen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Activating mutations in the juxtamembrane domain of FLT3 (FLT3-internal tandem duplications, FLT3-ITDs) represent the most frequent genetic alterations in acute myeloid leukemia (AML). FLT3-internal tandem duplications (FLT3-ITDs) are a heterogenous group of mutations in patients with acute leukemias that are prognostically important. To characterize the mechanism of transformation by FLT3-ITDs, we sequenced the juxtamembrane region (JM) of FLT3 from 284 patients with acute leukemias. The length of FLT3-ITDs varied from 2 to 42 amino acids (AA) with a median of 17 AA. The analysis of duplicated AAs showed that in the majority of patients, the duplications localize between AA 591 to 599 (YVDFREYEY). Arginine 595 (R595) within this region is duplicated in 77% of patients. Single duplication of R595 in FLT3 conferred factor-independent growth to Ba/F3 cells and activated STAT5. Moreover, deletion or substitution of the duplicated R595 in two FLT3-ITD constructs as well as the deletion of wildtype-R595 in FLT3-ITD substantially reduced the transforming potential, pointing to a critical role of the positive charge of R595 in stabilizing the active confirmation of FLT3-ITDs. Deletion of R595 in the FLT3-WT inhibited the growth of cells upon FL stimulation and the STAT5 activation. In this study we could also show that the tyrosine residues 589 and 591 of the FLT3-ITDs could be important phosphorylation sites and are very crucial for the activation of FLT3- ITDs. Simultaneous substitution of these two tyrosine residues with phenyalanine showed complete inhibition of the transforming potential of FLT3-ITDs and STAT5 activation. The substitution of tyrosine residues 597 and 599 did not show any effect on the transforming potential of FLT3-ITDs, supporting the previous hypothesis that these tyrosines may be only important to maintain the integrity of FLT3-WT in its inactive state. Our data provide important insights into the role of the juxtamembrane domain in the mechanism of transformation by FLT3-ITDs.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
FLT3 (fms-like tyrosine kinase 3) ist bei ca. 30% aller Patienten mit akuter myeloischer Leukämie konstitutiv aktiviert und repräsentiert einen krankheitsspezifischen molekularen Marker. Zwei verschiedene Arten von Mutationen sind hierbei vorherrschend: ITD (internal tandem duplications) im Bereich der juxtamembranösen Region sind bei ungefähr 20-25% der Patienten nachweisbar sowie Mutationen im Bereich der Tyrosinkinasedomäne (TKD), die bei bis zu 8% der AML-Fälle auftreten. Es wurde bisher davon ausgegangen, dass die beiden Mutationstypen nicht im gleichen Patienten auftreten, da sie eine funktionelle Redundanz aufweisen. Neuere Daten zeigen jedoch, dass 1-2% aller AML-Patienten beide Mutationen (FLT3-ITD-TKD, duale Mutanten) tragen. Die Signifikanz dieser Beobachtung ist noch unklar, erste Studien haben jedoch gezeigt, dass diese dualen Mutationen mit einer besonders schlechten Prognose assoziiert sind. In dieser Arbeit konnte gezeigt werden, dass FLT3 duale Mutanten in in vitro Modellsystemen nicht nur Resistenzen gegenüber PTK Inhibitoren, sondern auch gegenüber dem Zytostatikum Daunorubicin induzieren können. Als molekularer Mechanismus hierfür konnte eine verstärkte Aktivierung von STAT5 (signal transducer and activator of transcription 5) sowie eine erhöhte Expression der STAT5-Zielproteine Bcl-x(L) und RAD51 identifiziert werden. Darüber hinaus konnte ein Arrest in der G2/M Phase des Zellzyklus beobachtet werden. Dieser Zellzyklusarrest erlaubt, DNA-Schäden zu reparieren und eine Apoptose zu vermeiden. Dass die Überexpression von Bcl-x(L) den wohl kritischen Punkt bei der Resistenzentstehung von FLT3-ITD-TKD Mutationen ausmacht, konnte dadurch bewiesen werden, dass Bcl-x(L)- und ITD- koexprimierende Zellen das Resistenzbild der dualen Mutanten imitieren können. Interessanterweise konnte der selektive mTOR-Inhibitor Rapamycin in Kombination mit PTK Inhibitoren die Sensitivität der dualen Mutanten wiederherstellen. Diese Arbeit beschreibt die molekularen Grundlagen von Resistenzbildungen gegenüber FLT3 PTK Inhibitoren und zeigt gleichzeitig therapeutische Ansätze auf, um Resistenzen zu verhindern oder zu überkommen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
In der akuten myeloischen Leukämie (AML) sind zwei Cluster aktivierender Mutationen im ´FMS-like tyrosine kinase-3´ (FLT3)-Gen bekannt: FLT3-´internal tandem duplications´ (FLT3-ITD) in der juxtamembranösen (JM)-Domäne in 20 - 25 % der Patienten und FLT3-Punktmutationen in der Tyrosinkinasedomäne (FLT3-TKD) in 7 – 10 % der Patienten. In dieser Studie haben wir eine neue Klasse aktivierender Punktmutationen (PM) charakterisiert, die in einem 16-Aminosäuren-Abschnitt der JM-Domäne von FLT3 (FLT3-JM-PM) lokalisiert sind. Die Expression von vier FLT3-JM-PM in IL-3-abhängigen Ba/F3-Zellen führte zu wachstumsfaktor-unabhängigem Wachstum, Hyperproliferation in Gegenwart von FL und Resistenz gegenüber apoptotischem Zelltod. FLT3-JM-PM-Rezeptoren waren autophosphoryliert und zeigten verglichen mit FLT3-WT-Rezeptoren eine höhere konstitutive Dimerisierungsrate. Als einen molekularen Mechanismus konnten wir die Aktivierung von STAT5 und eine erhöhte Expression von Bcl-x(L) in allen FLT3-JM-PM-exprimierenden Zellen im Vergleich zu FLT3-WT-Zellen zeigen. Der FLT3-Inhibitor PKC412 inhibierte das wachstumsfaktor-unabhängige Wachstum der FLT3-JM-PM-Zellen. Verglichen mit FLT3-ITD- und FLT3-TKD-Zellen, zeigten die FLT3-JM-PM-Zellen ein schwächeres Transformationspotential, verbunden mit geringerer Autophosphorylierung des Rezeptors und dessen nachgeordneten Ziel-Protein STAT5. Die Kartierung der FLT3-JM-PM auf die Kristallstruktur des FLT3-Proteins zeigte, dass diese Punktmutationen wahrscheinlich die Stabilität der autoinhibitorischen JM-Domäne reduzieren. Dies liefert eine strukturelle Erklärung für das transformierende Potential dieser neuen Klasse aktivierender Mutationen von FLT3. Die defekte Negativ-Regulation aktivierter Rezeptortyrosinkinasen (RTKs) ist ein bekannter Mechanismus der Onkogenese. Die RTK FLT3 wird in frühen myeloischen und lymphoiden Progenitorzellen exprimiert und ist an der Pathogenese der AML beteiligt. Das ´Casitas B-lineage lymphoma´ (CBL)-Protein ist in der Evolution stark konserviert und übernimmt wichtige Funktionen in der Negativ-Regulation der Signalübertragung verschiedener Zelloberflächenrezeptoren. Zwei CBL-Deletionsmutanten, die in vitro Fibroblasten transformieren, wurden aus murinen Retroviren isoliert, die Vorläufer-B-Zelllymphome induzieren. In dieser Arbeit konnte gezeigt werden, dass CBL nach FL-Stimulierung von FLT3-WT-exprimierenden Ba/F3-Zellen phosphoryliert wird und damit in die FLT3-nachgeordnete Signaltransduktion involviert ist. Die Koexpression der CBL-Deletionsmutanten CBL-70Z oder v-CBL mit FLT3 führt zur Transformation von Ba/F3-Zellen. Das transformierende Potential wird durch den FLT3-Rezeptor vermittelt, da die selektiven FLT3-PTK-Inhibitoren SU5614 und PKC412 die Proliferation der FLT3-WT/CBL-mutanten-Zellen vollständig aufheben. Die Aktivierung des PI3K/mTOR/AKT-Signalweges, jedoch nicht der SRC-Kinasen und MAPK, trägt wesentlich zum hyperproliferierenden Phänotyp der FLT3-WT/CBL-mutanten Zellen nach Ligandenstimulierung bei. Die Koexpression von CBL-70Z oder v-CBL mit FLT3 führt zur konstitutiven Aktivierung der FLT3-Rezeptoren sowie STAT5 und AKT. Nach FL-Stimulierung konnten wir eine Hyperaktivierung von STAT5 und AKT in FLT3-WT/CBL-70Z und FLT3-WT/v-CBL-Zellen beobachten. An der Interaktion von CBL und FLT3 sind die TKB-Domäne des CBL-Proteins und die JM-Tyrosine Y589 und Y599 des FLT3-Rezeptors beteiligt. Die Internalisierung der FLT3-Rezeptoren wird durch die Koexpression von CBL-70Z nicht verändert. Allerdings ist CBL an der Ubiquitinierung und Degradierung von Rezeptoren beteiligt und wir konnten zeigen, dass CBL-WT die Dephosphorylierung und Degradierung des FLT3-Rezeptors fördert. Es wurde vorgeschlagen, dass die CBL-Deletionsmutanten in dominant-negativer Weise agieren und die negativ-regulatorische Funktion von CBL-WT blockieren. Wir haben eine CBL-Deletionsmutante in den AML Zelllinie MOLM-13 und MOLM-14 identifiziert. Dieser CBL-Mutante fehlt Exon 8, das für Teile der Linker- und RING-Finger-Domäne kodiert, und erinnert an CBL-70Z. Die Entdeckung einer möglicherweise transformierenden CBL-Mutante in AML-Zellen unterstützt die Hypothese, dass CBL zum malignen Phänotyp der AML beiträgt. Zusammenfassend haben wir gezeigt, dass die strukturelle oder funktionelle Inaktivierung negativ-regulatorischer Mechanismen das transformierende Potential von FLT3 aktivieren kann: 1. Der Verlust der Autoinhibition durch Punktmutationen, die die geordnete Konformation der autoinhibitorischen JM-Domäne stören. 2. Die funktionelle Inaktivierung eines negativ-regulatorischen Proteins durch ´loss-of-function´-Mutationen. Diese Daten unterstreichen die zentrale Rolle von FLT3 in der Leukämogenese und als ein Zielprotein für therapeutische Ansätze.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Die akute Pankreatitis beginnt in den Azinuszellen, allerdings bestimmen die sich anschließenden außerazinären, immunologischen Geschehnisse den Schweregrad der Erkrankung. Diese immunologische Reaktion wird über Zytokine vermittelt, die hauptsächlich von Immunzellen, zusätzlich aber auch von Pankreasazinuszellen selbst sezerniert werden. In dieser Arbeit wurde untersucht, ob Pankreasazinuszellen in der Lage sind, auf autokrin oder parakrin freigesetzte Zytokine zu reagieren. Der JAK/STAT-Signaltransduktionsweg, eine Phosphorylierungskaskade, die von Oberflächenrezeptoren initiierte Signale in den Zellkern weiterleitet, stellt den Haupteffektor der meisten Zytokine dar. Wir konnten mittels Immunopräzipitation und Western-Blot die meisten JAK und STAT Proteine in Pankreasazinuszellen nachweisen (JAK1, JAK2 und TYK2 sowie STAT1, STAT2, STAT3, STAT5 und STAT6). Darüber hinaus konnten wir zeigen, dass einige dieser Proteine in Pankreasazinustellen durch physiologische (Zytokine), aber auch unphysiologische (Stress) Stimuli phosphoryliert und damit aktiviert werden. Dies belegt neben der Expression zusätzlich eine Regulation dieser Proteine und damit eine funktionelle Rolle des JAK/STATSignaltransduktionsweges im Pankreas. Exemplarisch wurde mitttels Immunhistochemie gezeigt, dass IFN-
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 03/19
Thu, 7 Oct 2004 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/2709/ https://edoc.ub.uni-muenchen.de/2709/1/Pau_Michael.pdf P