Podcasts about ai engineer

  • 79PODCASTS
  • 123EPISODES
  • 49mAVG DURATION
  • 1WEEKLY EPISODE
  • Mar 30, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about ai engineer

Latest podcast episodes about ai engineer

MLOps.community
Beyond the Matrix: AI and the Future of Human Creativity

MLOps.community

Play Episode Listen Later Mar 30, 2025 55:08


Beyond the Matrix: AI and the Future of Human Creativity // MLOps Podcast #300 with Fausto Albers, AI Engineer & Community Lead at AI Builders Club.Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractFausto Albers discusses the intersection of AI and human creativity. He explores AI's role in job interviews, personalized AI assistants, and the evolving nature of human-computer interaction. Key topics include AI-driven self-analysis, context-aware AI systems, and the impact of AI on optimizing human decision-making. The conversation highlights how AI can enhance creativity, collaboration, and efficiency by reducing cognitive load and making intelligent suggestions in real time.// BioFausto Albers is a relentless explorer of the unconventional—a techno-optimist with a foundation in sociology and behavioral economics, always connecting seemingly absurd ideas that, upon closer inspection, turn out to be the missing pieces of a bigger puzzle. He thrives in paradox: he overcomplicates the simple, oversimplifies the complex, and yet somehow lands on solutions that feel inevitable in hindsight. He believes that true innovation exists in the tension between chaos and structure—too much of either, and you're stuck.His career has been anything but linear. He's owned and operated successful restaurants, served high-stakes cocktails while juggling bottles on London's bar tops, and later traded spirits for code—designing digital waiters, recommender systems, and AI-driven accounting tools. Now, he leads the AI Builders Club Amsterdam, a fast-growing community where AI engineers, researchers, and founders push the boundaries of intelligent systems.Ask him about RAG, and he'll insist on specificity—because, as he puts it, discussing retrieval-augmented generation without clear definitions is as useful as declaring that “AI will have an impact on the world.” An engaging communicator, a sharp systems thinker, and a builder of both technology and communities, Fausto is here to challenge perspectives, deconstruct assumptions, and remix the future of AI.// Related LinksWebsite: aibuilders.club~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Fausto on LinkedIn: /stepintoliquid

The top AI news from the past week, every ThursdAI

Holy moly, AI enthusiasts! Alex Volkov here, reporting live from the AI Engineer Summit in the heart of (touristy) Times Square, New York! This week has been an absolute whirlwind of announcements, from XAI's Grok 3 dropping like a bomb, to Figure robots learning to hand each other things, and even a little eval smack-talk between OpenAI and XAI. It's enough to make your head spin – but that's what ThursdAI is here for. We sift through the chaos and bring you the need-to-know, so you can stay on the cutting edge without having to, well, spend your entire life glued to X and Reddit.This week we had a very special live show with the Haize Labs folks, the ones I previously interviewed about their bijection attacks, discussing their open source judge evaluation library called Verdict. So grab your favorite caffeinated beverage, maybe do some stretches because your mind will be blown, and let's dive into the TL;DR of ThursdAI, February 20th, 2025!Participants* Alex Volkov: AI Evangelist with Weights and Biases* Nisten: AI Engineer and cohost* Akshay: AI Community Member* Nuo: Dev Advocate at 01AI* Nimit: Member of Technical Staff at Haize Labs* Leonard: Co-founder at Haize LabsOpen Source LLMsPerplexity's R1 7076: Censorship-Free DeepSeekPerplexity made a bold move this week, releasing R1 7076, a fine-tuned version of DeepSeek R1 specifically designed to remove what they (and many others) perceive as Chinese government censorship. The name itself, 1776, is a nod to American independence – a pretty clear statement! The core idea? Give users access to information on topics the CCP typically restricts, like Tiananmen Square and Taiwanese independence.Perplexity used human experts to identify around 300 sensitive topics and built a "censorship classifier" to train the bias out of the model. The impressive part? They claim to have done this without significantly impacting the model's performance on standard evals. As Nuo from 01AI pointed out on the show, though, he'd "actually prefer that they can actually disclose more of their details in terms of post training... Running the R1 model by itself, it's already very difficult and very expensive." He raises a good point – more transparency is always welcome! Still, it's a fascinating attempt to tackle a tricky problem, the problem which I always say we simply cannot avoid. You can check it out yourself on Hugging Face and read their blog post.Arc Institute & NVIDIA Unveil Evo 2: Genomics PowerhouseGet ready for some serious science, folks! Arc Institute and NVIDIA dropped Evo 2, a massive genomics model (40 billion parameters!) trained on a mind-boggling 9.3 trillion nucleotides. And it's fully open – two papers, weights, data, training, and inference codebases. We love to see it!Evo 2 uses the StripedHyena architecture to process huge genetic sequences (up to 1 million nucleotides!), allowing for analysis of complex genomic patterns. The practical applications? Predicting the effects of genetic mutations (super important for healthcare) and even designing entire genomes. I've been super excited about genomics models, and seeing these alternative architectures like StripedHyena getting used here is just icing on the cake. Check it out on X.ZeroBench: The "Impossible" Benchmark for VLLMsNeed more benchmarks? Always! A new benchmark called ZeroBench arrived, claiming to be the "impossible benchmark" for Vision Language Models (VLLMs). And guess what? All current top-of-the-line VLLMs get a big fat zero on it.One example they gave was a bunch of scattered letters, asking the model to "answer the question that is written in the shape of the star among the mess of letters." Honestly, even I struggled to see the star they were talking about. It highlights just how much further VLLMs need to go in terms of true visual understanding. (X, Page, Paper, HF)Hugging Face's Ultra Scale Playbook: Scaling UpFor those of you building massive models, Hugging Face released the Ultra Scale Playbook, a guide to building and scaling AI models on huge GPU clusters.They ran 4,000 scaling experiments on up to 512 GPUs (nothing close to Grok's 100,000, but still impressive!). If you're working in a lab and dreaming big, this is definitely a resource to check out. (HF).Big CO LLMs + APIsGrok 3: XAI's Big Swing new SOTA LLM! (and Maybe a Bug?)Monday evening, BOOM! While some of us were enjoying President's Day, the XAI team dropped Grok 3. They announced it with a setting very similar to OpenAI announcements. They're claiming state-of-the-art performance on some benchmarks (more on that drama later!), and a whopping 1 million token context window, finally confirmed after some initial confusion. They talked a lot about agents and a future of reasoners as well.The launch was a bit… messy. First, there was a bug where some users were getting Grok 2 even when the dropdown said Grok 3. That led to a lot of mixed reviews. Even when I finally thought I was using Grok 3, it still flubbed my go-to logic test, the "Beth's Ice Cubes" question. (The answer is zero, folks – ice cubes melt!). But Akshay, who joined us on the show, chimed in with some love: "...with just the base model of Grok 3, it's, in my opinion, it's the best coding model out there." So, mixed vibes, to say the least! It's also FREE for now, "until their GPUs melt," according to XAI, which is great.UPDATE: The vibes are shifting, more and more of my colleagues and mutuals are LOVING grok3 for one shot coding, for talking to it. I'm getting convinced as well, though I did use and will continue to use Grok for real time data and access to X. DeepSearchIn an attempt to show off some Agentic features, XAI also launched a deep search (not research like OpenAI but effectively the same) Now, XAI of course has access to X, which makes their deep search have a leg up, specifically for real time information! I found out it can even “use” the X search! OpenAI's Open Source TeaseIn what felt like a very conveniently timed move, Sam Altman dropped a poll on X the same day as the Grok announcement: if OpenAI were to open-source something, should it be a small, mobile-optimized model, or a model on par with o3-mini? Most of us chose o3 mini, just to have access to that model and play with it. No indication of when this might happen, but it's a clear signal that OpenAI is feeling the pressure from the open-source community.The Eval Wars: OpenAI vs. XAIThings got spicy! There was a whole debate about the eval numbers XAI posted, specifically the "best of N" scores (like best of 64 runs). Boris from OpenAI, and Aiden mcLau called out some of the graphs. Folks on X were quick to point out that OpenAI also used "best of N" in the past, and the discussion devolved from there.XAI is claiming SOTA. OpenAI (or some folks from within OpenAI) aren't so sure. The core issue? We can't independently verify Grok's performance because there's no API yet! As I said, "…we're not actually able to use this model to independently evaluate this model and to tell you guys whether or not they actually told us the truth." Transparency matters, folks!DeepSearch - How Deep?Grok also touted a new "Deep Search" feature, kind of like Perplexity or OpenAI's "Deep Research" in their more expensive plan. My initial tests were… underwhelming. I nicknamed it "Shallow Search" because it spent all of 34 seconds on a complex query where OpenAI's Deep Research took 11 minutes and cited 17 sources. We're going to need to do some more digging (pun intended) on this one.This Week's BuzzWe're leaning hard into agents at Weights & Biases! We just released an agents whitepaper (check it out on our socials!), and we're launching an agents course in collaboration with OpenAI's Ilan Biggio. Sign up at wandb.me/agents! We're hearing so much about agent evaluation and observability, and we're working hard to provide the tools the community needs.Also, sadly, our Toronto workshops are completely sold out. But if you're at AI Engineer in New York, come say hi to our booth! And catch my talk on LLM Reasoner Judges tomorrow (Friday) at 11 am EST – it'll be live on the AI Engineer YouTube channel (HERE)!Vision & VideoMicrosoft MUSE: Playable Worlds from a Single ImageThis one is wild. Microsoft's MUSE can generate minutes of playable gameplay from just a single second of video frames and controller actions.It's based on the World and Human Action Model (WHAM) architecture, trained on a billion gameplay images from Xbox. So if you've been playing Xbox lately, you might be in the model! I found it particularly cool: "…you give it like a single second of a gameplay of any type of game with all the screen elements, with percentages, with health bars, with all of these things and their model generates a game that you can control." (X, HF, Blog).StepFun's Step-Video-T2V: State-of-the-Art (and Open Source!)We got two awesome open-source video breakthroughs this week. First, StepFun's Step-Video-T2V (and T2V Turbo), a 30 billion parameter text-to-video model. The results look really good, especially the text integration. Imagine a Chinese girl opening a scroll, and the words "We will open source" appearing as she unfurls it. That's the kind of detail we're talking about.And it's MIT licensed! As Nisten noted "This is pretty cool. It came out. Right before Sora came out, people would have lost their minds." (X, Paper, HF, Try It).HAO AI's FastVideo: Speeding Up HY-VideoThe second video highlight: HAO AI released FastVideo, a way to make HY-Video (already a strong open-source contender) three times faster with no additional training! They call the trick "Sliding Tile Attention" apparently that alone provides enormous boost compared to even flash attention.This is huge because faster inference means these models become more practical for real-world use. And, bonus: it supports HY-Video's Loras, meaning you can fine-tune it for, ahem, all kinds of creative applications. I will not go as far as to mention civit ai. (Github)Figure's Helix: Robot Collaboration!Breaking news from the AI Engineer conference floor: Figure, the humanoid robot company, announced Helix, a Vision-Language-Action (VLA) model built into their robots!It has full upper body control!What blew my mind: they showed two robots working together, handing objects to each other, based on natural language commands! As I watched, I exclaimed, "I haven't seen a humanoid robot, hand off stuff to the other one... I found it like super futuristically cool." The model runs on the robot, using a 7 billion parameter VLM for understanding and an 80 million parameter transformer for control. This is the future, folks!Tools & OthersMicrosoft's New Quantum Chip (and State of Matter!)Microsoft announced a new quantum chip and a new state of matter (called "topological superconductivity"). "I found it like absolutely mind blowing that they announced something like this," I gushed on the show. While I'm no quantum physicist, this sounds like a big deal for the future of computing.Verdict: Hayes Labs' Framework for LLM JudgesAnd of course, the highlight of our show: Verdict, a new open-source framework from Hayes Labs (the folks behind those "bijection" jailbreaks!) for composing LLM judges. This is a huge deal for anyone working on evaluation. Leonard and Nimit from Hayes Labs joined us to explain how Verdict addresses some of the core problems with LLM-as-a-judge: biases (like preferring their own responses!), sensitivity to prompts, and the challenge of "meta-evaluation" (how do you know your judge is actually good?).Verdict lets you combine different judging techniques ("primitives") to create more robust and efficient evaluators. Think of it as "judge-time compute scaling," as Leonard called it. They're achieving near state-of-the-art results on benchmarks like ExpertQA, and it's designed to be fast enough to use as a guardrail in real-time applications!One key insight: you don't always need a full-blown reasoning model for judging. As Nimit explained, Verdict can combine simpler LLM calls to achieve similar results at a fraction of the cost. And, it's open source! (Paper, Github,X).ConclusionAnother week, another explosion of AI breakthroughs! Here are my key takeaways:* Open Source is THRIVING: From censorship-free LLMs to cutting-edge video models, the open-source community is delivering incredible innovation.* The Need for Speed (and Efficiency): Whether it's faster video generation or more efficient LLM judging, performance is key.* Robots are Getting Smarter (and More Collaborative): Figure's Helix is a glimpse into a future where robots work together.* Evaluation is (Finally) Getting Attention: Tools like Verdict are essential for building reliable and trustworthy AI systems.* The Big Players are Feeling the Heat: OpenAI's open-source tease and XAI's rapid progress show that the competition is fierce.I'll be back in my usual setup next week, ready to break down all the latest AI news. Stay tuned to ThursdAI – and don't forget to give the pod five stars and subscribe to the newsletter for all the links and deeper dives. There's potentially an Anthropic announcement coming, so we'll see you all next week.TLDR* Open Source LLMs* Perplexity R1 1776 - finetune of china-less R1 (Blog, Model)* Arc institute + Nvidia - introduce EVO 2 - genomics model (X)* ZeroBench - impossible benchmark for VLMs (X, Page, Paper, HF)* HuggingFace ultra scale playbook (HF)* Big CO LLMs + APIs* Grok 3 SOTA LLM + reasoning and Deep Search (blog, try it)* OpenAI is about to open source something? Sam posts a polls* This weeks Buzz* We are about to launch an agents course! Pre-sign up wandb.me/agents* Workshops are SOLD OUT* Watch my talk LIVE from AI Engineer - 11am EST Friday (HERE)* Keep watching AI Eng conference after the show on AIE YT* )* Vision & Video* Microsoft MUSE - playable worlds from one image (X, HF, Blog)* Microsoft OmniParser - Better, faster screen parsing for GUI agents with OmniParser v2 (Gradio Demo)* HAO AI - fastVIDEO - making HY-Video 3x as fast (Github)* StepFun - Step-Video-T2V (+Turbo), a SotA 30B text-to-video model (Paper, Github, HF, Try It)* Figure announces HELIX - vision action model built into FIGURE Robot (Paper)* Tools & Others* Microsoft announces a new quantum chip and a new state of matter (Blog, X)* Verdict - Framework to compose SOTA LLM judges with JudgeTime Scaling (Paper, Github,X) This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit sub.thursdai.news/subscribe

The top AI news from the past week, every ThursdAI

What a week in AI, folks! Seriously, just when you think things might slow down, the AI world throws another curveball. This week, we had everything from rogue AI apps giving unsolicited life advice (and sending rogue texts!), to mind-blowing open source releases that are pushing the boundaries of what's possible, and of course, the ever-present drama of the big AI companies with OpenAI dropping a roadmap that has everyone scratching their heads.Buckle up, because on this week's ThursdAI, we dove deep into all of it. We chatted with the brains behind the latest open source embedding model, marveled at a tiny model crushing math benchmarks, and tried to decipher Sam Altman's cryptic GPT-5 roadmap. Plus, I shared a personal story about an AI app that decided to psychoanalyze my text messages – you won't believe what happened! Let's get into the TL;DR of ThursdAI, February 13th, 2025 – it's a wild one!* Alex Volkov: AI Adventurist with weights and biases* Wolfram Ravenwlf: AI Expert & Enthusiast* Nisten: AI Community Member* Zach Nussbaum: Machine Learning Engineer at Nomic AI* Vu Chan: AI Enthusiast & Evaluator* LDJ: AI Community MemberPersonal story of Rogue AI with RPLYThis week kicked off with a hilarious (and slightly unsettling) story of my own AI going rogue, all thanks to a new Mac app called RPLY designed to help with message replies. I installed it thinking it would be a cool productivity tool, but it turned into a personal intervention session, and then… well, let's just say things escalated.The app started by analyzing my text messages and, to my surprise, delivered a brutal psychoanalysis of my co-parenting communication, pointing out how both my ex and I were being "unpleasant" and needed to focus on the kids. As I said on the show, "I got this as a gut punch. I was like, f*ck, I need to reimagine my messaging choices." But the real kicker came when the AI decided to take initiative and started sending messages without my permission (apparently this was a bug with RPLY that was fixed since I reported)! Friends were texting me question marks, and my ex even replied to a random "Hey, How's your day going?" message with a smiley, completely out of our usual post-divorce communication style. "This AI, like on Monday before just gave me absolute s**t about not being, a person that needs to be focused on the kids also decided to smooth things out on friday" I chuckled, still slightly bewildered by the whole ordeal. It could have gone way worse, but thankfully, this rogue AI counselor just ended up being more funny than disastrous.Open Source LLMsDeepHermes preview from NousResearchJust in time for me sending this newsletter (but unfortunately not quite in time for the recording of the show), our friends at Nous shipped an experimental new thinking model, their first reasoner, called DeepHermes. NousResearch claims DeepHermes is among the first models to fuse reasoning and standard LLM token generation within a single architecture (a trend you'll see echoed in the OpenAI and Claude announcements below!)Definitely experimental cutting edge stuff here, but exciting to see not just an RL replication but also innovative attempts from one of the best finetuning collectives around. Nomic Embed Text V2 - First Embedding MoENomic AI continues to impress with the release of Nomic Embed Text V2, the first general-purpose Mixture-of-Experts (MoE) embedding model. Zach Nussbaum from Nomic AI joined us to explain why this release is a big deal.* First general-purpose Mixture-of-Experts (MoE) embedding model: This innovative architecture allows for better performance and efficiency.* SOTA performance on multilingual benchmarks: Nomic Embed V2 achieves state-of-the-art results on the multilingual MIRACL benchmark for its size.* Support for 100+ languages: Truly multilingual embeddings for global applications.* Truly open source: Nomic is committed to open source, releasing training data, weights, and code under the Apache 2.0 License.Zach highlighted the benefits of MoE for embeddings, explaining, "So we're trading a little bit of, inference time memory, and training compute to train a model with mixture of experts, but we get this, really nice added bonus of, 25 percent storage." This is especially crucial when dealing with massive datasets. You can check out the model on Hugging Face and read the Technical Report for all the juicy details.AllenAI OLMOE on iOS and New Tulu 3.1 8BAllenAI continues to champion open source with the release of OLMOE, a fully open-source iOS app, and the new Tulu 3.1 8B model.* OLMOE iOS App: This app brings state-of-the-art open-source language models to your iPhone, privately and securely.* Allows users to test open-source LLMs on-device.* Designed for researchers studying on-device AI and developers prototyping new AI experiences.* Optimized for on-device performance while maintaining high accuracy.* Fully open-source code for further development.* Available on the App Store for iPhone 15 Pro or newer and M-series iPads.* Tulu 3.1 8B As Nisten pointed out, "If you're doing edge AI, the way that this model is built is pretty ideal for that." This move by AllenAI underscores the growing importance of on-device AI and open access. Read more about OLMOE on the AllenAI Blog.Groq Adds Qwen Models and Lands on OpenRouterGroq, known for its blazing-fast inference speeds, has added Qwen models, including the distilled R1-distill, to its service and joined OpenRouter.* Record-fast inference: Experience a mind-blowing 1000 TPS with distilled DeepSeek R1 70B on Open Router.* Usable Rate Limits: Groq is now accessible for production use cases with higher rate limits and pay-as-you-go options.* Qwen Model Support: Access Qwen models like 2.5B-32B and R1-distill-qwen-32B.* Open Router Integration: Groq is now available on OpenRouter, expanding accessibility for developers.As Nisten noted, "At the end of the day, they are shipping very fast inference and you can buy it and it looks like they are scaling it. So they are providing the market with what it needs in this case." This integration makes Groq's speed even more accessible to developers. Check out Groq's announcement on X.com.SambaNova adds full DeepSeek R1 671B - flies at 200t/s (blog)In a complete trend of this week, SambaNova just announced they have availability of DeepSeek R1, sped up by their custom chips, flying at 150-200t/s. This is the full DeepSeek R1, not the distilled Qwen based versions! This is really impressive work, and compared to the second fastest US based DeepSeek R1 (on Together AI) it absolutely fliesAgentica DeepScaler 1.5B Beats o1-preview on MathAgentica's DeepScaler 1.5B model is making waves by outperforming OpenAI's o1-preview on math benchmarks, using Reinforcement Learning (RL) for just $4500 of compute.* Impressive Math Performance: DeepScaleR achieves a 37.1% Pass@1 on AIME 2025, outperforming the base model and even o1-preview!!* Efficient Training: Trained using RL for just $4500, demonstrating cost-effective scaling of intelligence.* Open Sourced Resources: Agentica open-sourced their dataset, code, and training logs, fostering community progress in RL-based reasoning.Vu Chan, an AI enthusiast who evaluated the model, joined us to share his excitement: "It achieves, 42% pass at one on a AIME 24. which basically means if you give the model only one chance at every problem, it will solve 42% of them." He also highlighted the model's efficiency, generating correct answers with fewer tokens. You can find the model on Hugging Face, check out the WandB logs, and see the announcement on X.com.ModernBert Instruct - Encoder Model for General TasksModernBert, known for its efficient encoder-only architecture, now has an instruct version, ModernBert Instruct, capable of handling general tasks.* Instruct-tuned Encoder: ModernBERT-Large-Instruct can perform classification and multiple-choice tasks using its Masked Language Modeling (MLM) head.* Beats Qwen .5B: Outperforms Qwen .5B on MMLU and MMLU Pro benchmarks.* Efficient and Versatile: Demonstrates the potential of encoder models for general tasks without task-specific heads.This release shows that even encoder-only models can be adapted for broader applications, challenging the dominance of decoder-based LLMs for certain tasks. Check out the announcement on X.com.Big CO LLMs + APIsRIP GPT-5 and o3 - OpenAI Announces Public RoadmapOpenAI shook things up this week with a roadmap update from Sam Altman, announcing a shift in strategy for GPT-5 and the o-series models. Get ready for GPT-4.5 (Orion) and a unified GPT-5 system!* GPT-4.5 (Orion) is Coming: This will be the last non-chain-of-thought model from OpenAI.* GPT-5: A Unified System: GPT-5 will integrate technologies from both the GPT and o-series models into a single, seamless system.* No Standalone o3: o3 will not be released as a standalone model; its technology will be integrated into GPT-5. "We will no longer ship O3 as a standalone model," Sam Altman stated.* Simplified User Experience: The model picker will be eliminated in ChatGPT and the API, aiming for a more intuitive experience.* Subscription Tier Changes:* Free users will get unlimited access to GPT-5 at a standard intelligence level.* Plus and Pro subscribers will gain access to increasingly advanced intelligence settings of GPT-5.* Expanded Capabilities: GPT-5 will incorporate voice, canvas, search, deep research, and more.This roadmap signals a move towards more integrated and user-friendly AI experiences. As Wolfram noted, "Having a unified access and the AI should be smart enough... AI has, we need an AI to pick which AI to use." This seems to be OpenAI's direction. Read Sam Altman's full announcement on X.com.OpenAI Releases ModelSpec v2OpenAI also released ModelSpec v2, an update to their document defining desired AI model behaviors, emphasizing customizability, transparency, and intellectual freedom.* Chain of Command: Defines a hierarchy to balance user/developer control with platform-level rules.* Truth-Seeking and User Empowerment: Encourages models to "seek the truth together" with users and empower decision-making.* Core Principles: Sets standards for competence, accuracy, avoiding harm, and embracing intellectual freedom.* Open Source: OpenAI open-sourced the Spec and evaluation prompts for broader use and collaboration on GitHub.This release reflects OpenAI's ongoing efforts to align AI behavior and promote responsible development. Wolfram praised ModelSpec, saying, "I was all over the original models back when it was announced in the first place... That is one very important aspect when you have the AI agent going out on the web and get information from not trusted sources." Explore ModelSpec v2 on the dedicated website.VP Vance Speech at AI Summit in Paris - Deregulate and Dominate!Vice President Vance delivered a powerful speech at the AI Summit in Paris, advocating for pro-growth AI policies and deregulation to maintain American leadership in AI.* Pro-Growth and Deregulation: VP Vance urged for policies that encourage AI innovation and cautioned against excessive regulation, specifically mentioning GDPR.* American AI Leadership: Emphasized ensuring American AI technology remains the global standard and blocks hostile foreign adversaries from weaponizing AI. "Hostile foreign adversaries have weaponized AI software to rewrite history, surveil users, and censor speech… I want to be clear – this Administration will block such efforts, full stop," VP Vance declared.* Key Points:* Ensure American AI leadership.* Encourage pro-growth AI policies.* Maintain AI's freedom from ideological bias.* Prioritize a pro-worker approach to AI development.* Safeguard American AI and chip technologies.* Block hostile foreign adversaries' weaponization of AI.Nisten commented, "He really gets something that most EU politicians do not understand is that whenever they have such a good thing, they're like, okay, this must be bad. And we must completely stop it." This speech highlights the ongoing debate about AI regulation and its impact on innovation. Read the full speech here.Cerebras Powers Perplexity with Blazing Speed (1200 t/s!)Perplexity is now powered by Cerebras, achieving inference speeds exceeding 1200 tokens per second.* Unprecedented Speed: Perplexity's Sonar model now flies at over 1200 tokens per second thanks to Cerebras' massive LPU chips. "Like perplexity sonar, their specific LLM for search is now powered by Cerebras and it's like 12. 100 tokens per second. It's it matches Google now on speed," I noted on the show.* Google-Level Speed: Perplexity now matches Google in inference speed, making it incredibly fast and responsive.This partnership significantly enhances Perplexity's performance, making it an even more compelling search and AI tool. See Perplexity's announcement on X.com.Anthropic Claude Incoming - Combined LLM + Reasoning ModelRumors are swirling that Anthropic is set to release a new Claude model that will be a combined LLM and reasoning model, similar to OpenAI's GPT-5 roadmap.* Unified Architecture: Claude's next model is expected to integrate both LLM and reasoning capabilities into a single, hybrid architecture.* Reasoning Powerhouse: Rumors suggest Anthropic has had a reasoning model stronger than Claude 3 for some time, hinting at a significant performance leap.This move suggests a broader industry trend towards unified AI models that seamlessly blend different capabilities. Stay tuned for official announcements from Anthropic.Elon Musk Teases Grok 3 "Weeks Out"Elon Musk continues to tease the release of Grok 3, claiming it will be "a few weeks out" and the "most powerful AI" they have tested, with enhanced reasoning capabilities.* Grok 3 Hype: Elon Musk claims Grok 3 will be the most powerful AI X.ai has released, with a focus on reasoning.* Reasoning Focus: Grok 3's development may have shifted towards reasoning capabilities, potentially causing a slight delay in release.While details remain scarce, the anticipation for Grok 3 is building, especially in light of the advancements in open source reasoning models.This Week's Buzz

ONE FM 91.3's Glenn and The Flying Dutchman
Day In The Life of an AI Engineer!

ONE FM 91.3's Glenn and The Flying Dutchman

Play Episode Listen Later Feb 12, 2025 24:05


On #TheBIGShowTV today, we speak to Samuel Tong from AI Singapore about what AI is, what is the role of an AI Engineer and what qualifications do you need to pursue AI as a career! Stay Tuned!

AI Unraveled: Latest AI News & Trends, Master GPT, Gemini, Generative AI, LLMs, Prompting, GPT Store

ChatGPT vs Qwen vs DeepSeek.A comprehensive study compares the performance of ChatGPT, Qwen, and DeepSeek across various real-world AI applications, including language understanding, data analysis, and complex problem-solving.This article benchmarks three AI models—ChatGPT, Qwen, and DeepSeek—across various tasks, including physics simulations, problem-solving, and creative writing. DeepSeek excels in precision and complex calculations, making it ideal for scientific and engineering applications. Qwendemonstrates strong problem-solving speed and multilingual capabilities, suitable for business and legal tasks. ChatGPT, while proficient in creative writing, struggles with complex problems, requiring multiple attempts for solutions. The comparison highlights the unique strengths and weaknesses of each model, guiding users towards the most appropriate AI tool based on their specific needs. Ultimately, the article advocates for choosing AI models based on task-specific requirements rather than solely focusing on general performance.Which AI Model Outperforms in Coding, Mechanics, and Algorithmic Precision— Which Model Delivers Real-World Precision?Reference: https://decodebuzzing.medium.com/qbenchmarking-chatgpt-qwen-and-deepseek-on-real-world-ai-tasks-75b4d7040742

AI Unraveled: Latest AI News & Trends, Master GPT, Gemini, Generative AI, LLMs, Prompting, GPT Store

This podcast episode discusses the transformative impact of Vision AI, a type of artificial intelligence, on food and agriculture. Vision AI agents analyse visual data from various sources to improve crop yields, enhance food safety, and optimise supply chains. The episode highlights numerous companies utilising this technology, showcasing applications in precision farming, automated harvesting, food sorting, livestock monitoring, and quality control. Future applications, such as autonomous harvesting and AI-driven supply chain optimisation, are also explored, along with the potential of platforms like Landing AI to simplify Vision AI development. The episode concludes with a call to action for listeners in the agricultural and food industries to explore the benefits of this technology.

AI Unraveled: Latest AI News & Trends, Master GPT, Gemini, Generative AI, LLMs, Prompting, GPT Store

This podcast episode previews Super Bowl 2025, exploring the game's history and the significant role of artificial intelligence. AI's impact is examined across injury prevention, game strategy, and the fan experience, with predictions for the game's outcome offered. The episode also speculates on future applications of AI in coaching, training, officiating, and fan engagement. Despite AI's growing influence, the podcast emphasises the enduring importance of the human element in football. Finally, the podcast concludes by celebrating the blend of tradition and innovation in the modern game.

The top AI news from the past week, every ThursdAI

What's up friends, Alex here, back with another ThursdAI hot off the presses.Hold onto your hats because this week was another whirlwind of AI breakthroughs, mind-blowing demos, and straight-up game-changers. We dove deep into OpenAI's new "Deep Research" agent – and let me tell you, it's not just hype, it's legitimately revolutionary. You also don't have to take my word for it, a new friend of the pod and a scientist DR Derya Unutmaz joined us to discuss his experience with Deep Research as a scientist himself! You don't want to miss this conversation! We also unpack Google's Gemini 2.0 release, including the blazing-fast Flash Lite model. And just when you thought your brain couldn't handle more, ByteDance drops OmniHuman-1, a human animation model that's so realistic, it's scary good.I've also saw maybe 10 moreTLDR & Show Notes* Open Source LLMs (and deep research implementations)* Jina Node-DeepResearch (X, Github)* HuggingFace - OpenDeepResearch (X)* Deep Agent - R1 -V (X, Github)* Krutim - Krutim 2 12B, Chitrath VLM, Embeddings and more from India (X, Blog, HF)* Simple Scaling - S1 - R1 (Paper)* Mergekit updated - * Big CO LLMs + APIs* OpenAI ships o3-mini and o3-mini High + updates thinking traces (Blog, X)* Mistral relaunches LeChat with Cerebras for 1000t/s (Blog)* OpenAI Deep Research - the researching agent that uses o3 (X, Blog)* Google ships Gemini 2.0 Pro, Gemini 2.0 Flash-lite in AI Studio (Blog)* Anthropic Constitutional Classifiers - announced a universal jailbreak prevention (Blog, Try It)* Cloudflare to protect websites from AI scraping (News)* HuggingFace becomes the AI Appstore (link)* This weeks Buzz - Weights & Biases updates* AI Engineer workshop (Saturday 22) * Tinkerers Toronto workshops (Sunday 23 , Monday 24)* We released a new Dataset editor feature (X)* Audio and Sound* KyutAI open sources Hibiki - simultaneous translation models (Samples, HF)* AI Art & Diffusion & 3D* ByteDance OmniHuman-1 - unparalleled Human Animation Models (X, Page)* Pika labs adds PikaAdditions - adding anything to existing video (X)* Google added Imagen3 to their API (Blog)* Tools & Others* Mistral Le Chat has ios an and adroid apps now (X)* CoPilot now has agentic workflows (X)* Replit launches free apps agent for everyone (X)* Karpathy drops a new 3 hour video on youtube (X, Youtube)* OpenAI canvas links are now shareable (like Anthropic artifacts) - (example)* Show Notes & Links * Guest of the week - Dr Derya Umnutaz - talking about Deep Research* He's examples of Ehlers-Danlos Syndrome (ChatGPT), (ME/CFS) Deep Research, Nature article about Deep Reseach with Derya comments* Hosts* Alex Volkov - AI Evangelist & Host @altryne* Wolfram Ravenwolf - AI Evangelist @WolframRvnwlf* Nisten Tahiraj - AI Dev at github.GG - @nisten* LDJ - Resident data scientist - @ldjconfirmedBig Companies products & APIsOpenAI's new chatGPT moment with Deep Research, their second "agent" product (X)Look, I've been reporting on AI weekly for almost 2 years now, and been following the space closely since way before chatGPT (shoutout Codex days) and this definitely feels like another chatGPT moment for me.DeepResearch is OpenAI's new agent, that searches the web for any task you give it, is able to reason about the results, and continue searching those sources, to provide you with an absolute incredible level of research into any topic, scientific or ... the best taqueria in another country. The reason why it's so good is it's ability to do multiple search trajectories, backtrack if it needs to, and react in real time to new information. It also has python tool use (to do plots and calculations) and of course, the brain of it is o3, the best reasoning model from OpenAIDeep Research is only offered on the Pro tier ($200) of chatGPT, and it's the first publicly available way to use o3 full! and boy, does it deliver! I've had it review my workshop content, help me research LLM as a judge articles (which it did masterfully) and help me plan datenights in Denver (though it kind of failed at that, showing me a closed restaurant) A breakthrough for scientific researchBut I'm no scientist, so I've asked Dr Derya Unutmaz, M.D. to join us, and share his incredible findings as a doctor, a scientist and someone with decades of experience in writing grants, patent applications, paper etc. The whole conversation is very very much worth listening to on the pod, we talked for almost an hour, but the highlights are honestly quite crazy. So one of the first things I did was, I asked Deep Research to write a review on a particular disease that I've been studying for a decade. It came out with this impeccable 10-to-15-page review that was the best I've read on the topic— Dr. Derya UnutmazAnd another banger quoteIt wrote a phenomenal 25-page patent application for a friend's cancer discovery—something that would've cost 10,000 dollars or more and taken weeks. I couldn't believe it. Every one of the 23 claims it listed was thoroughly justifiedHumanity's LAST exam? OpenAI announced Deep Research and have showed that on HLE (Humanity's Last Exam) benchmark that was just released a few weeks ago, it scores a whopping 26.6 percent! When HLE was released (our coverage here) all the way back at ... checks notes... January 23 or this year! the top reasoning models at the time (o1, R1) scored just under 10%O3-mini and Deep Research now score 13% and 26.6% respectively, which means both that AI is advancing like crazy, but also.. that maybe calling this "last exam" was a bit premature?

AI Unraveled: Latest AI News & Trends, Master GPT, Gemini, Generative AI, LLMs, Prompting, GPT Store

Why Subscribe?Imagine having a dedicated AI Engineer at your fingertips—without the overhead of a full-time hire. For $999.99 per month, you get 10 hours of expert AI support and solutions. Whether you need a custom chatbot installed, automated data cleanup, or specialized workflows, I can help you transform your day-to-day operations and keep your core business running smoothly.Subscribe at https://buy.stripe.com/14k7sE411gQq6EE3chWhat I OfferAI Chatbot Installation & Maintenance Automated Data Entry & Cleanup AI-Driven Insights & Reporting Lead Gathering & Management Workflow Automation GIS + AI Integration (Extra)My BackgroundAI Unraveled Podcast I'm the creator of AI Unraveled, a daily podcast delivering the latest AI news and insights. Listen on Apple Podcasts: AI Unraveled PodcastProfessional Credentials Check out my LinkedIn resume to see my achievements, skills, and the projects I've led. With years of AI integration experience, I ensure smooth, reliable solutions tailored to your needs.Proven AI IntegrationsDjamgatech AI Chatbot Witness a live example of a custom chatbot in action: View Djamgatech AI ChatbotGeovision AI A robust geospatial intelligence system for real-time data capture and analysis: Explore Geovision AIEmail Lead Workflow Automated system sending hundreds of customized outreach emails daily—effective and efficient lead generation.Why Subscribe?Cost-Effective Expertise: Avoid the overhead of a full-time AI engineer. My $999.99/month plan is flexible and predictable.10 Hours of Dedicated Support: Accelerated Innovation: Ongoing Collaboration: We'll adapt the AI approach as your organization evolves, ensuring continuous value.Ready to Commit?If you're confident this subscription is right for you and your business, subscribe here and let's get started.Have Questions or Want to Discuss Custom Needs? Let's Connect – Book a quick call to see how we can tailor AI solutions for you.

Uncomplicated Marketing
Thrive Sync: Women, Wellness, and AI

Uncomplicated Marketing

Play Episode Listen Later Jan 29, 2025 46:01


Zara Hajihashemi, AI Engineer and Founder of Cybele Health, joins the podcast to share her journey from Apple tech lead to femtech entrepreneur, driven by a mission to revolutionize women's health with AI-driven insights. With a PhD in machine learning, Zara spent six years at Apple leading cross-functional AI projects before founding Cybele Health to address the inefficiencies in healthcare for professional women and working mothers.In this episode, you'll discover:The Evolution from AI Engineer to Founder: Learn how Zara's experience at Apple, coupled with her PhD research, shaped her vision for Cybele Health and the need for AI-powered, personalized healthcare solutions.Bridging the Healthcare Gap with AI: Zara discusses how Cybele Health is leveraging AI to provide 360-degree visibility into women's health, improving communication between patients and providers to create personalized wellness strategies.The Importance of Personalized Health: Discover how diet, mental health, and physical activity should be aligned with a woman's biological cycle to optimize well-being and productivity.The Role of Functional Medicine and Preventative Care: Zara explains why being proactive rather than reactive in healthcare is crucial, and how AI can assist in creating sustainable, individualized health plans.The Future of AI in Femtech: Explore how AI is revolutionizing the health industry by acting as a 24/7 health assistant, providing predictive insights, and closing gaps in traditional medical care.Building a Health-Tech Startup: Zara shares her journey of founding Cybele Health, securing early users, and the marketing strategies she is employing to drive adoption among both providers and consumers.Zara's Top Health and Wellness Tips:Read labels and avoid processed foods with unrecognizable ingredients.Sync your diet, workouts, and daily habits with your biological cycle for optimal results.Prioritize functional medicine approaches for proactive rather than reactive health management.Connect with Zara and Learn More:Website join the waitlist: Cybele Health LinkedIn: Zara Hajihashemi

Hashtag Trending
NVIDIA CEO Predicts The Next Wave of AI - The Physical Internet. Hashtag Trending for Wednesday, January 8, 2025

Hashtag Trending

Play Episode Listen Later Jan 8, 2025 8:06 Transcription Available


AI Job Boom, Microsoft's OneDrive Update, and NVIDIA's Future Vision | Hashtag Trending In today's episode, AI jobs take the spotlight on LinkedIn's fastest growing careers list with roles like AI Engineer and AI Consultant on the rise. Microsoft is closing a loophole in OneDrive that could affect unlicensed accounts starting in 2025. NVIDIA's CEO presents groundbreaking advancements in 'physical AI' at CES 2025, introducing Project Digits—a personal AI supercomputer. Meanwhile, Meta removes third-party fact-checking, shifting to community-driven notes. Join Jim Love for these stories and more on Hashtag Trending. 00:00 Introduction and Host Welcome 00:26 AI Jobs on the Rise 01:43 Microsoft Closes OneDrive Loophole 03:05 NVIDIA's Vision for the Future 05:37 Meta's Shift in Fact-Checking Policy 07:44 Conclusion and Sign-Off

Comunicazione Italiana
FORUM RISORSE UMANE 2024 | Innovation Speech | ATTRARRE E ASSUMERE TALENTI TECH ATTRAVERSO L'IA E LA FORZA DELLA COMMUNITY | Datapizza

Comunicazione Italiana

Play Episode Listen Later Dec 20, 2024 20:18


FORUM RISORSE UMANE 2024 | Innovation Speech in collaborazione con Datapizza"ATTRARRE E ASSUMERE TALENTI TECH ATTRAVERSO L'INTELLIGENZA ARTIFICIALE E LA FORZA DELLA COMMUNITY".Datapizza è la più grande community tech in Italia, con oltre 500.000 membri.Usiamo l'Intelligenza Artificiale e la competenza dei nostri Tech Recruiter per aiutare le aziende ad attrarre e assumere talenti richiesti dal mercato IT - Sviluppatori, AI Engineer, Data Scientist.Il nostro approccio non è solo recruiting: costruiamo un posizionamento forte attraverso attività di Employer Branding, rendendo le aziende visibili e attrattive per i talenti tech.Dalla job description alla selezione, offriamo supporto completo per trasformare completamente il processo di selezione di profili Tech.Intervengono:Pierpaolo D'Odorico, Co-Founder di Datapizza.Alessandro Risaro, Co-Founder di Datapizza.Per collaborare come Speaker e Partner agli eventi di Comunicazione Italiana: marketing@comunicazioneitaliana.it

Elite Expert Insider
AI in Business: Advice and Best Practices from Melanie Johnson

Elite Expert Insider

Play Episode Listen Later Oct 28, 2024 22:09


Welcome to another episode of The Elite Expert Insider! Today, we're turning the tables as Melanie Johnson, our usual host, steps into the spotlight as our guest, interviewed by her co-owner Jenn Foster. Learn the power of AI in business, especially focusing on practical applications and debunking the fears surrounding artificial intelligence.

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
Building the AI Engineer Nation — with Josephine Teo, Minister of Digital Development and Information, Singapore

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Oct 19, 2024 56:39


Singapore's GovTech is hosting an AI CTF challenge with ~$15,000 in prizes, starting October 26th, open to both local and virtual hackers. It will be hosted on Dreadnode's Crucible platform; signup here!It is common to say if you want to work in AI, you should come to San Francisco. Not everyone can. Not everyone should. If you can only do meaningful AI work in one city, then AI has failed to generalize meaningfully.As non-Americans working in the US, we know what it's like to see AI progress so rapidly here, and yet be at a loss for what our home countries can do. Through Latent Space we've tried to tell the story of AI outside of the Bay Area bubble; we talked to Notion in New York and Humanloop and Wondercraft in London and HuggingFace in Paris and ICLR in Vienna, and the Reka, RWKV, and Winds of AI Winter episodes were taped in Singapore (the World's Fair also had Latin America representation and we intend to at least add China, Japan, and India next year).The Role of Government with AIAs an intentionally technical resource, we've mostly steered clear of regulation and safety debates on the podcast; whether it is safety bills or technoalarmism, often at the cost of our engagement numbers or ability to book big name guests with a political agenda. When SOTA shifts 3x faster than it takes to pass a law, when nobody agrees on definitions of important things, when you can elicit never-before-seen behavior by slightly different prompting or sampling, it is hard enough to simply keep up to speed, so we are happy limiting our role to that. The story of AI progress has more often been achieved in the private sector, usually in spite of, rather than with thanks to, government intervention.But industrial policy is inextricably linked to the business of AI, which we do very much care about, has an explicitly accelerationist intent if not impact, and has a track record of success in correcting for legitimate market failures in private sector investment, particularly outside of the US. It is with this lens we approach today's episode and special guest, our first with a sitting Cabinet member.Singapore's National AI StrategyIt is well understood that much of Singapore's economic success is attributable to industrial policy, from direct efforts like the Jurong Town Corporation industrialization to indirect ones like going all in on English as national first language. Singapore's National AI Strategy grew out of its 2014 Smart Nation initiative, first launched in 2019 and then refreshed in 2023 by Minister Josephine Teo, our guest today.While Singapore is not often thought of as an AI leader, the National University ranks in the top 10 in publications (above Oxford/Harvard!), and many overseas Singaporeans work at the leading AI companies and institutions in the US (and some of us even run leading AI Substacks?). OpenAI has often publicly named the Singapore government as their model example of government collaborator and is opening an office in Singapore in time for DevDay 2024.AI Engineer NationsSwyx first pitched the AI Engineer Nation concept at a private Sovereign AI summit featuring Dr. He Ruimin, Chief AI Officer of Singapore, which eventually led to an invitation to discuss the concept with Minister Teo, the country's de-facto minister for tech (she calls it Digital Development, for good reasons she explains in the pod).This chat happened (with thanks to Jing Long, Joyce, and other folks from MDDI)!The central pitch for any country, not just Singapore, to emphasize and concentrate bets on AI Engineers, compared with other valuable efforts like training more researchers, releasing more government-approved data, or offering more AI funding, is a calculated one, based on the fact that: * GPU clusters and researchers have massive returns to scale and colocation, mostly concentrated in the US, that are irresponsibly expensive to replicate* Even if research stopped today and there was no progress for the next 30 years, there are far more capabilities to unlock and productize from existing foundation models and we

Scaling DevTools
Shawn Wang (swyx) - founder of smol.ai, Latent Space, AI Engineer, DX.tips

Scaling DevTools

Play Episode Listen Later Oct 10, 2024 76:17 Transcription Available


Shawn Wang (aka swyx) is the founder of smol.ai (AI news curation), and the cohost of Latent Space (popular AI Engineer podcast). Plus, Shawn started the AI Engineer movement with his essay Rise of the AI Engineer and organized two incredible AI engineer conferences in the past twelve months - AI Engineer World's Fair and AI Engineer SummitAnd Shawn has angel invested in DevTools like Airbyte, Railway, Supabase, Replay.io, Stackblitz, Flutterflow, Fireworks.ai while running the DevTools angels community. Besides this, Shawn curates DX.tips (DevTools magazine) and in a past life wrote the Coding Career handbook, championed learn in public, cofounded Svelte Society and was previously Head of Developer Experience at Temporal, and a Developer Advocate at AWS and Netlify.Also, before this, Shawn had a very successful career in investment banking, trading, building data pipelines and performing quantitate portfolio management. I think this brings him a very unique perspective - I've always admired his ability to zoom out and see the big picture and the trends. Even though Shawn is now all-in on AI, he's still one of the go-to authorities on DevTools go-to-market.As you can tell, Shawn is someone I deeply admire. So I'm glad he came back.What we discuss:Organizing the AI Engineer ConferencesRise of the AI EngineerIntentionality and principles (yes we even talk about Alcoholics Anonymous)The AI CEOInvisible deadlinesIlya believing in AGI more than most people at OpenAIAre developers going to be obsolete? Thor convinced swyx to invest in SupabaseBuilding DevTools that work well with LLMsAngel investing in DevTools - why and howIs DevRel dead?How to hire DevRelWhy DX.tips existsLinks:Rise of the AI Engineer https://www.latent.space/p/ai-engineerLatent Space Podcast https://www.latent.space/swyx's Twitter https://x.com/swyxswyx's website https://www.swyx.io/swyx's LinkedIn https://www.linkedin.com/in/shawnswyxwang/smol.ai https://smol.ai/DevTools Angels https://github.com/sw-yx/devtools-angelsDX.tips https://dx.tips/DevRel's Death as Zero Interest Rate Phenomenon https://dx.tips/zirp AI Engineer Summit https://www.ai.engineer/summit/2023AI Engineer World's Fair https://www.ai.engineer/worldsfairCoding Career Handbook https://www.learninpublic.org/Shawn's previous appearance on Scaling DevTools https://podcast.scalingdevtools.com/episodes/swyx Eisenhower Matrix https://asana.com/resources/eisenhower-matrixThor from Supabase https://x.com/thorwebdevSolaris AI coworking space in SF https://www.solarissf.com/Browserbase https://www.browserbase.com/Indent https://indent.com/ and Fouad https://x.com/fouadmatinHow to do hackathons https://dx.tips/hackathonsHow to do conferences https://dx.tips/conf-guideHow to hire DevRel https://dx.tips/mailbox-first-devrel-hiringClimbing the ladder of abstraction with Amelia Wattenberger https://www.youtube.com/watch?v=PAy_GHUAICwCheck out the Enterprise Ready Conf from WorkOS https://enterprise-ready.com/

The Swyx Mixtape
Intentionality, AI Eng, Devtools Angels, and DevRel - on Scaling DevTools

The Swyx Mixtape

Play Episode Listen Later Oct 10, 2024 76:17


https://podcast.scalingdevtools.com/episodes/swyx-2Plus, Shawn started the AI Engineer movement with his essay Rise of the AI Engineer and organized two incredible AI engineer conferences in the past twelve months - AI Engineer World's Fair and AI Engineer SummitAnd Shawn has angel invested in DevTools like Airbyte, Railway, Supabase, Replay.io, Stackblitz, Flutterflow, Fireworks.ai while running the DevTools angels community.Besides this, Shawn curates DX.tips (DevTools magazine) and in a past life wrote the Coding Career handbook, championed learn in public, cofounded Svelte Society and was previously Head of Developer Experience at Temporal, and a Developer Advocate at AWS and Netlify.Also, before this, Shawn had a very successful career in investment banking, trading, building data pipelines and performing quantitate portfolio management. I think this brings him a very unique perspective - I've always admired his ability to zoom out and see the big picture and the trends.Even though Shawn is now all-in on AI, he's still one of the go-to authorities on DevTools go-to-market.As you can tell, Shawn is someone I deeply admire. So I'm glad he came back.What we discuss:Organizing the AI Engineer ConferencesRise of the AI EngineerIntentionality and principles (yes we even talk about Alcoholics Anonymous)The AI CEOInvisible deadlinesIlya believing in AGI more than most people at OpenAIAre developers going to be obsolete? Thor convinced swyx to invest in SupabaseBuilding DevTools that work well with LLMsAngel investing in DevTools - why and howIs DevRel dead?How to hire DevRelWhy DX.tips existsLinks:Rise of the AI Engineer https://www.latent.space/p/ai-engineerLatent Space Podcast https://www.latent.space/swyx's Twitter https://x.com/swyxswyx's website https://www.swyx.io/swyx's LinkedIn https://www.linkedin.com/in/shawnswyxwang/smol.ai https://smol.ai/DevTools Angels https://github.com/sw-yx/devtools-angelsDX.tips https://dx.tips/DevRel's Death as Zero Interest Rate Phenomenon https://dx.tips/zirp AI Engineer Summit https://www.ai.engineer/summit/2023AI Engineer World's Fair https://www.ai.engineer/worldsfairCoding Career Handbook https://www.learninpublic.org/Shawn's previous appearance on Scaling DevTools https://podcast.scalingdevtools.com/episodes/swyx Eisenhower Matrix https://asana.com/resources/eisenhower-matrixThor from Supabase https://x.com/thorwebdevSolaris AI coworking space in SF https://www.solarissf.com/Browserbase https://www.browserbase.com/Indent https://indent.com/ and Fouad https://x.com/fouadmatinHow to do hackathons https://dx.tips/hackathonsHow to do conferences https://dx.tips/conf-guideHow to hire DevRel https://dx.tips/mailbox-first-devrel-hiringClimbing the ladder of abstraction with Amelia Wattenberger https://www.youtube.com/watch?v=PAy_GHUAICw...for the job. And they should not be doing that job and they should try something else to do. People pay for it because they need the job title to be filled more than they need that person. Those good people are very hard to reach.That's one thing there. I also mentioned some other things that I've found in the different roles in the category: Bottoms-up and open source have been very challenging in the growing a company success criteria. That's what different roles focus on: bottoms-up and open source, and particularly open source. You don't have to be open source. 

High Agency: The Podcast for AI Builders
Why Your AI Product Needs Evals with Hamel Husain and Swyx

High Agency: The Podcast for AI Builders

Play Episode Listen Later Sep 25, 2024 69:02


Hamel Husain is a seasoned AI consultant and engineer with experience at companies like GitHub, DataRobot, and Airbnb. He is a trailblazer in AI development, known for his innovative work in literate programming and AI-assisted development tools. Shawn Wang (aka Swyx) is the host of the Latent Space podcast, the author of the essay 'Rise of the AI Engineer,' and the founder of the AI Engineer World Fair. In this episode, Hamel and Swyx share their unique insights on building effective AI products, the critical importance of evaluations, and their vision for the future of AI engineering.Chapters00:00 - Introduction and recent AI advancements06:14 - The critical role of evals in AI product development15:33 - Common pitfalls in AI product development26:33 - Literate programming: A new paradigm for AI development39:58 - Answer AI and innovative approaches to software development51:56 - Integrating AI with literate programming environments58:47 - The importance of understanding AI prompts01:00:37 - Assessing the current state of AI adoption01:07:10 - Challenges in evaluating AI models--------------------------------------------------------------------------------------------------------------------------------------------------Humanloop is an Integrated Development Environment for Large Language Models. It enables product teams to develop LLM-based applications that are reliable and scalable. To find out more go to humanloop.com

Software Huddle
AI Engineer, Web Frameworks, & more with Tejas Kumar

Software Huddle

Play Episode Listen Later Sep 24, 2024 81:58


Today we have Tejas Kumar on the show. Tejas is part of the Developer Relations team at Datastax. He's really good at frontend, got a great podcast and he has written a book called Fluent React. He spoke recently at the Shift Conference in Croatia, where he talked about AI engineering and what that means. So we talked about AI Engineering, we talked about React, content creation, education, and much more. This episode is full of value and we think you'd love this one.

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
From API to AGI: Structured Outputs, OpenAI API platform and O1 Q&A — with Michelle Pokrass & OpenAI Devrel + Strawberry team

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Sep 13, 2024 122:59


Congrats to Damien on successfully running AI Engineer London! See our community page and the Latent Space Discord for all upcoming events.This podcast came together in a far more convoluted way than usual, but happens to result in a tight 2 hours covering the ENTIRE OpenAI product suite across ChatGPT-latest, GPT-4o and the new o1 models, and how they are delivered to AI Engineers in the API via the new Structured Output mode, Assistants API, client SDKs, upcoming Voice Mode API, Finetuning/Vision/Whisper/Batch/Admin/Audit APIs, and everything else you need to know to be up to speed in September 2024.This podcast has two parts: the first hour is a regular, well edited, podcast on 4o, Structured Outputs, and the rest of the OpenAI API platform. The second was a rushed, noisy, hastily cobbled together recap of the top takeaways from the o1 model release from yesterday and today.Building AGI with Structured Outputs — Michelle Pokrass of OpenAI API teamMichelle Pokrass built massively scalable platforms at Google, Stripe, Coinbase and Clubhouse, and now leads the API Platform at Open AI. She joins us today to talk about why structured output is such an important modality for AI Engineers that Open AI has now trained and engineered a Structured Output mode with 100% reliable JSON schema adherence. To understand why this is important, a bit of history is important:* June 2023 when OpenAI first added a "function calling" capability to GPT-4-0613 and GPT 3.5 Turbo 0613 (our podcast/writeup here)* November 2023's OpenAI Dev Day (our podcast/writeup here) where the team shipped JSON Mode, a simpler schema-less JSON output mode that nevertheless became more popular because function calling often failed to match the JSON schema given by developers. * Meanwhile, in open source, many solutions arose, including * Instructor (our pod with Jason here) * LangChain (our pod with Harrison here, and he is returning next as a guest co-host)* Outlines (Remi Louf's talk at AI Engineer here)* Llama.cpp's constrained grammar sampling using GGML-BNF* April 2024: OpenAI started implementing constrained sampling with a new `tool_choice: required` parameter in the API* August 2024: the new Structured Output mode, co-led by Michelle* Sept 2024: Gemini shipped Structured Outputs as wellWe sat down with Michelle to talk through every part of the process, as well as quizzing her for updates on everything else the API team has shipped in the past year, from the Assistants API, to Prompt Caching, GPT4 Vision, Whisper, the upcoming Advanced Voice Mode API, OpenAI Enterprise features, and why every Waterloo grad seems to be a cracked engineer.Part 1 Timestamps and TranscriptTranscript here.* [00:00:42] Episode Intro from Suno* [00:03:34] Michelle's Path to OpenAI* [00:12:20] Scaling ChatGPT* [00:13:20] Releasing Structured Output* [00:16:17] Structured Outputs vs Function Calling* [00:19:42] JSON Schema and Constrained Grammar* [00:20:45] OpenAI API team* [00:21:32] Structured Output Refusal Field* [00:24:23] ChatML issues* [00:26:20] Function Calling Evals* [00:28:34] Parallel Function Calling* [00:29:30] Increased Latency* [00:30:28] Prompt/Schema Caching* [00:30:50] Building Agents with Structured Outputs: from API to AGI* [00:31:52] Assistants API* [00:34:00] Use cases for Structured Output* [00:37:45] Prompting Structured Output* [00:39:44] Benchmarking Prompting for Structured Outputs* [00:41:50] Structured Outputs Roadmap* [00:43:37] Model Selection vs GPT4 Finetuning* [00:46:56] Is Prompt Engineering Dead?* [00:47:29] 2 models: ChatGPT Latest vs GPT 4o August* [00:50:24] Why API => AGI* [00:52:40] Dev Day* [00:54:20] Assistants API Roadmap* [00:56:14] Model Reproducibility/Determinism issues* [00:57:53] Tiering and Rate Limiting* [00:59:26] OpenAI vs Ops Startups* [01:01:06] Batch API* [01:02:54] Vision* [01:04:42] Whisper* [01:07:21] Voice Mode API* [01:08:10] Enterprise: Admin/Audit Log APIs* [01:09:02] Waterloo grads* [01:10:49] Books* [01:11:57] Cognitive Biases* [01:13:25] Are LLMs Econs?* [01:13:49] Hiring at OpenAIEmergency O1 Meetup — OpenAI DevRel + Strawberry teamthe following is our writeup from AINews, which so far stands the test of time.o1, aka Strawberry, aka Q*, is finally out! There are two models we can use today: o1-preview (the bigger one priced at $15 in / $60 out) and o1-mini (the STEM-reasoning focused distillation priced at $3 in/$12 out) - and the main o1 model is still in training. This caused a little bit of confusion.There are a raft of relevant links, so don't miss:* the o1 Hub* the o1-preview blogpost* the o1-mini blogpost* the technical research blogpost* the o1 system card* the platform docs* the o1 team video and contributors list (twitter)Inline with the many, many leaks leading up to today, the core story is longer “test-time inference” aka longer step by step responses - in the ChatGPT app this shows up as a new “thinking” step that you can click to expand for reasoning traces, even though, controversially, they are hidden from you (interesting conflict of interest…):Under the hood, o1 is trained for adding new reasoning tokens - which you pay for, and OpenAI has accordingly extended the output token limit to >30k tokens (incidentally this is also why a number of API parameters from the other models like temperature and role and tool calling and streaming, but especially max_tokens is no longer supported).The evals are exceptional. OpenAI o1:* ranks in the 89th percentile on competitive programming questions (Codeforces),* places among the top 500 students in the US in a qualifier for the USA Math Olympiad (AIME),* and exceeds human PhD-level accuracy on a benchmark of physics, biology, and chemistry problems (GPQA).You are used to new models showing flattering charts, but there is one of note that you don't see in many model announcements, that is probably the most important chart of all. Dr Jim Fan gets it right: we now have scaling laws for test time compute, and it looks like they scale loglinearly.We unfortunately may never know the drivers of the reasoning improvements, but Jason Wei shared some hints:Usually the big model gets all the accolades, but notably many are calling out the performance of o1-mini for its size (smaller than gpt 4o), so do not miss that.Part 2 Timestamps* [01:15:01] O1 transition* [01:16:07] O1 Meetup Recording* [01:38:38] OpenAI Friday AMA recap* [01:44:47] Q&A Part 2* [01:50:28] O1 DemosDemo Videos to be posted shortly Get full access to Latent Space at www.latent.space/subscribe

Heavybit Podcast Network: Master Feed
Ep. #18, Intelligence on Tap with Shawn "swyx" Wang

Heavybit Podcast Network: Master Feed

Play Episode Listen Later Aug 22, 2024 36:58


In episode 18 of Generationship, Rachel Chalmers sits down with Shawn "swyx" Wang to delve into AI Engineering. Shawn shares his journey from popularizing the term "AI Engineer" to navigating the rapid advancements in AI technology. Together, they explore the evolving demands and opportunities in AI, offering unparalleled insights into the future of this transformative field.

Generationship
Ep. #18, Intelligence on Tap with Shawn "swyx" Wang

Generationship

Play Episode Listen Later Aug 22, 2024 36:58


In episode 18 of Generationship, Rachel Chalmers sits down with Shawn "swyx" Wang to delve into AI Engineering. Shawn shares his journey from popularizing the term "AI Engineer" to navigating the rapid advancements in AI technology. Together, they explore the evolving demands and opportunities in AI, offering unparalleled insights into the future of this transformative field.

The Swyx Mixtape
[Generation Ship] AI Engineering for nontechnical people

The Swyx Mixtape

Play Episode Listen Later Aug 22, 2024 36:58


In episode 18 of Generationship, Rachel Chalmers sits down with Shawn "swyx" Wang to delve into AI Engineering. Shawn shares his journey from popularizing the term "AI Engineer" to navigating the rapid advancements in AI technology. Together, they explore the evolving demands and opportunities in AI, offering unparalleled insights into the future of this transformative field.https://www.heavybit.com/library/podcasts/generationship/ep-18-intelligence-on-tap-with-shawn-swyx-wang?utm_campaign=coschedule&utm_source=twitter&utm_medium=heavybit&utm_content=Ep.%20%2318,%20Intelligence%20on%20Tap%20with%20Shawn%20%22swyx%22%20Wang

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
AI Magic: Shipping 1000s of successful products with no managers and a team of 12 — Jeremy Howard of Answer.ai

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Aug 16, 2024 58:56


Disclaimer: We recorded this episode ~1.5 months ago, timing for the FastHTML release. It then got bottlenecked by Llama3.1, Winds of AI Winter, and SAM2 episodes, so we're a little late. Since then FastHTML was released, swyx is building an app in it for AINews, and Anthropic has also released their prompt caching API. Remember when Dylan Patel of SemiAnalysis coined the GPU Rich vs GPU Poor war? (if not, see our pod with him). The idea was that if you're GPU poor you shouldn't waste your time trying to solve GPU rich problems (i.e. pre-training large models) and are better off working on fine-tuning, optimized inference, etc. Jeremy Howard (see our “End of Finetuning” episode to catchup on his background) and Eric Ries founded Answer.AI to do exactly that: “Practical AI R&D”, which is very in-line with the GPU poor needs. For example, one of their first releases was a system based on FSDP + QLoRA that let anyone train a 70B model on two NVIDIA 4090s. Since then, they have come out with a long list of super useful projects (in no particular order, and non-exhaustive):* FSDP QDoRA: this is just as memory efficient and scalable as FSDP/QLoRA, and critically is also as accurate for continued pre-training as full weight training.* Cold Compress: a KV cache compression toolkit that lets you scale sequence length without impacting speed.* colbert-small: state of the art retriever at only 33M params* JaColBERTv2.5: a new state-of-the-art retrievers on all Japanese benchmarks.* gpu.cpp: portable GPU compute for C++ with WebGPU.* Claudette: a better Anthropic API SDK. They also recently released FastHTML, a new way to create modern interactive web apps. Jeremy recently released a 1 hour “Getting started” tutorial on YouTube; while this isn't AI related per se, but it's close to home for any AI Engineer who are looking to iterate quickly on new products: In this episode we broke down 1) how they recruit 2) how they organize what to research 3) and how the community comes together. At the end, Jeremy gave us a sneak peek at something new that he's working on that he calls dialogue engineering: So I've created a new approach. It's not called prompt engineering. I'm creating a system for doing dialogue engineering. It's currently called AI magic. I'm doing most of my work in this system and it's making me much more productive than I was before I used it.He explains it a bit more ~44:53 in the pod, but we'll just have to wait for the public release to figure out exactly what he means.Timestamps* [00:00:00] Intro by Suno AI* [00:03:02] Continuous Pre-Training is Here* [00:06:07] Schedule-Free Optimizers and Learning Rate Schedules* [00:07:08] Governance and Structural Issues within OpenAI and Other AI Labs* [00:13:01] How Answer.ai works* [00:23:40] How to Recruit Productive Researchers* [00:27:45] Building a new BERT* [00:31:57] FSDP, QLoRA, and QDoRA: Innovations in Fine-Tuning Large Models* [00:36:36] Research and Development on Model Inference Optimization* [00:39:49] FastHTML for Web Application Development* [00:46:53] AI Magic & Dialogue Engineering* [00:52:19] AI wishlist & predictionsShow Notes* Jeremy Howard* Previously on Latent Space: The End of Finetuning, NeurIPS Startups* Answer.ai* Fast.ai* FastHTML* answerai-colbert-small-v1* gpu.cpp* Eric Ries* Aaron DeFazio* Yi Tai* Less Wright* Benjamin Warner* Benjamin Clavié* Jono Whitaker* Austin Huang* Eric Gilliam* Tim Dettmers* Colin Raffel* Sebastian Raschka* Carson Gross* Simon Willison* Sepp Hochreiter* Llama3.1 episode* Snowflake Arctic* Ranger Optimizer* Gemma.cpp* HTMX* UL2* BERT* DeBERTa* Efficient finetuning of Llama 3 with FSDP QDoRA* xLSTMTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO-in-Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:14]: And today we're back with Jeremy Howard, I think your third appearance on Latent Space. Welcome.Jeremy [00:00:19]: Wait, third? Second?Swyx [00:00:21]: Well, I grabbed you at NeurIPS.Jeremy [00:00:23]: I see.Swyx [00:00:24]: Very fun, standing outside street episode.Jeremy [00:00:27]: I never heard that, by the way. You've got to send me a link. I've got to hear what it sounded like.Swyx [00:00:30]: Yeah. Yeah, it's a NeurIPS podcast.Alessio [00:00:32]: I think the two episodes are six hours, so there's plenty to listen, we'll make sure to send it over.Swyx [00:00:37]: Yeah, we're trying this thing where at the major ML conferences, we, you know, do a little audio tour of, give people a sense of what it's like. But the last time you were on, you declared the end of fine tuning. I hope that I sort of editorialized the title a little bit, and I know you were slightly uncomfortable with it, but you just own it anyway. I think you're very good at the hot takes. And we were just discussing in our pre-show that it's really happening, that the continued pre-training is really happening.Jeremy [00:01:02]: Yeah, absolutely. I think people are starting to understand that treating the three ULM FIT steps of like pre-training, you know, and then the kind of like what people now call instruction tuning, and then, I don't know if we've got a general term for this, DPO, RLHFE step, you know, or the task training, they're not actually as separate as we originally suggested they were in our paper, and when you treat it more as a continuum, and that you make sure that you have, you know, more of kind of the original data set incorporated into the later stages, and that, you know, we've also seen with LLAMA3, this idea that those later stages can be done for a lot longer. These are all of the things I was kind of trying to describe there. It wasn't the end of fine tuning, but more that we should treat it as a continuum, and we should have much higher expectations of how much you can do with an already trained model. You can really add a lot of behavior to it, you can change its behavior, you can do a lot. So a lot of our research has been around trying to figure out how to modify the model by a larger amount rather than starting from random weights, because I get very offended at the idea of starting from random weights.Swyx [00:02:14]: Yeah, I saw that in ICLR in Vienna, there was an outstanding paper about starting transformers from data-driven piers. I don't know if you saw that one, they called it sort of never trained from scratch, and I think it was kind of rebelling against like the sort of random initialization.Jeremy [00:02:28]: Yeah, I've, you know, that's been our kind of continuous message since we started Fast AI, is if you're training for random weights, you better have a really good reason, you know, because it seems so unlikely to me that nobody has ever trained on data that has any similarity whatsoever to the general class of data you're working with, and that's the only situation in which I think starting from random weights makes sense.Swyx [00:02:51]: The other trends since our last pod that I would point people to is I'm seeing a rise in multi-phase pre-training. So Snowflake released a large model called Snowflake Arctic, where they detailed three phases of training where they had like a different mixture of like, there was like 75% web in the first instance, and then they reduced the percentage of the web text by 10% each time and increased the amount of code in each phase. And I feel like multi-phase is being called out in papers more. I feel like it's always been a thing, like changing data mix is not something new, but calling it a distinct phase is new, and I wonder if there's something that you're seeingJeremy [00:03:32]: on your end. Well, so they're getting there, right? So the point at which they're doing proper continued pre-training is the point at which that becomes a continuum rather than a phase. So the only difference with what I was describing last time is to say like, oh, there's a function or whatever, which is happening every batch. It's not a huge difference. You know, I always used to get offended when people had learning rates that like jumped. And so one of the things I started doing early on in Fast.ai was to say to people like, no, you should actually have your learning rate schedule should be a function, not a list of numbers. So now I'm trying to give the same idea about training mix.Swyx [00:04:07]: There's been pretty public work from Meta on schedule-free optimizers. I don't know if you've been following Aaron DeFazio and what he's doing, just because you mentioned learning rate schedules, you know, what if you didn't have a schedule?Jeremy [00:04:18]: I don't care very much, honestly. I don't think that schedule-free optimizer is that exciting. It's fine. We've had non-scheduled optimizers for ages, like Less Wright, who's now at Meta, who was part of the Fast.ai community there, created something called the Ranger optimizer. I actually like having more hyperparameters. You know, as soon as you say schedule-free, then like, well, now I don't get to choose. And there isn't really a mathematically correct way of, like, I actually try to schedule more parameters rather than less. So like, I like scheduling my epsilon in my atom, for example. I schedule all the things. But then the other thing we always did with the Fast.ai library was make it so you don't have to set any schedules. So Fast.ai always supported, like, you didn't even have to pass a learning rate. Like, it would always just try to have good defaults and do the right thing. But to me, I like to have more parameters I can play with if I want to, but you don't have to.Alessio [00:05:08]: And then the more less technical side, I guess, of your issue, I guess, with the market was some of the large research labs taking all this innovation kind of behind closed doors and whether or not that's good, which it isn't. And now we could maybe make it more available to people. And then a month after we released the episode, there was the whole Sam Altman drama and like all the OpenAI governance issues. And maybe people started to think more, okay, what happens if some of these kind of labs, you know, start to break from within, so to speak? And the alignment of the humans is probably going to fall before the alignment of the models. So I'm curious, like, if you have any new thoughts and maybe we can also tie in some of the way that we've been building Answer as like a public benefit corp and some of those aspects.Jeremy [00:05:51]: Sure. So, yeah, I mean, it was kind of uncomfortable because two days before Altman got fired, I did a small public video interview in which I said, I'm quite sure that OpenAI's current governance structure can't continue and that it was definitely going to fall apart. And then it fell apart two days later and a bunch of people were like, what did you know, Jeremy?Alessio [00:06:13]: What did Jeremy see?Jeremy [00:06:15]: I didn't see anything. It's just obviously true. Yeah. So my friend Eric Ries and I spoke a lot before that about, you know, Eric's, I think probably most people would agree, the top expert in the world on startup and AI governance. And you know, we could both clearly see that this didn't make sense to have like a so-called non-profit where then there are people working at a company, a commercial company that's owned by or controlled nominally by the non-profit, where the people in the company are being given the equivalent of stock options, like everybody there was working there with expecting to make money largely from their equity. So the idea that then a board could exercise control by saying like, oh, we're worried about safety issues and so we're going to do something that decreases the profit of the company, when every stakeholder in the company, their remuneration pretty much is tied to their profit, it obviously couldn't work. So I mean, that was a huge oversight there by someone. I guess part of the problem is that the kind of people who work at non-profits and in this case the board, you know, who are kind of academics and, you know, people who are kind of true believers. I think it's hard for them to realize that 99.999% of the world is driven very heavily by money, especially huge amounts of money. So yeah, Eric and I had been talking for a long time before that about what could be done differently, because also companies are sociopathic by design and so the alignment problem as it relates to companies has not been solved. Like, companies become huge, they devour their founders, they devour their communities and they do things where even the CEOs, you know, often of big companies tell me like, I wish our company didn't do that thing. You know, I know that if I didn't do it, then I would just get fired and the board would put in somebody else and the board knows if they don't do it, then their shareholders can sue them because they're not maximizing profitability or whatever. So what Eric's spent a lot of time doing is trying to think about how do we make companies less sociopathic, you know, how to, or more, you know, maybe a better way to think of it is like, how do we make it so that the founders of companies can ensure that their companies continue to actually do the things they want them to do? You know, when we started a company, hey, we very explicitly decided we got to start a company, not a academic lab, not a nonprofit, you know, we created a Delaware Seacorp, you know, the most company kind of company. But when we did so, we told everybody, you know, including our first investors, which was you Alessio. They sound great. We are going to run this company on the basis of maximizing long-term value. And in fact, so when we did our second round, which was an angel round, we had everybody invest through a long-term SPV, which we set up where everybody had to agree to vote in line with long-term value principles. So like never enough just to say to people, okay, we're trying to create long-term value here for society as well as for ourselves and everybody's like, oh, yeah, yeah, I totally agree with that. But when it comes to like, okay, well, here's a specific decision we have to make, which will not maximize short-term value, people suddenly change their mind. So you know, it has to be written into the legal documents of everybody so that no question that that's the way the company has to be managed. So then you mentioned the PBC aspect, Public Benefit Corporation, which I never quite understood previously. And turns out it's incredibly simple, like it took, you know, like one paragraph added to our corporate documents to become a PBC. It was cheap, it was easy, but it's got this huge benefit, which is if you're not a public benefit corporation, then somebody can come along and offer to buy you with a stated description of like turning your company into the thing you most hate, right? And if they offer you more than the market value of your company and you don't accept it, then you are not necessarily meeting the kind of your fiduciary responsibilities. So the way like Eric always described it to me is like, if Philip Morris came along and said that you've got great technology for marketing cigarettes to children, so we're going to pivot your company to do that entirely, and we're going to pay you 50% more than the market value, you're going to have to say yes. If you have a PBC, then you are more than welcome to say no, if that offer is not in line with your stated public benefit. So our stated public benefit is to maximize the benefit to society through using AI. So given that more children smoking doesn't do that, then we can say like, no, we're not selling to you.Alessio [00:11:01]: I was looking back at some of our emails. You sent me an email on November 13th about talking and then on the 14th, I sent you an email working together to free AI was the subject line. And then that was kind of the start of the C round. And then two days later, someone got fired. So you know, you were having these thoughts even before we had like a public example of like why some of the current structures didn't work. So yeah, you were very ahead of the curve, so to speak. You know, people can read your awesome introduction blog and answer and the idea of having a R&D lab versus our lab and then a D lab somewhere else. I think to me, the most interesting thing has been hiring and some of the awesome people that you've been bringing on that maybe don't fit the central casting of Silicon Valley, so to speak. Like sometimes I got it like playing baseball cards, you know, people are like, oh, what teams was this person on, where did they work versus focusing on ability. So I would love for you to give a shout out to some of the awesome folks that you have on the team.Jeremy [00:11:58]: So, you know, there's like a graphic going around describing like the people at XAI, you know, Elon Musk thing. And like they are all connected to like multiple of Stanford, Meta, DeepMind, OpenAI, Berkeley, Oxford. Look, these are all great institutions and they have good people. And I'm definitely not at all against that, but damn, there's so many other people. And one of the things I found really interesting is almost any time I see something which I think like this is really high quality work and it's something I don't think would have been built if that person hadn't built the thing right now, I nearly always reach out to them and ask to chat. And I tend to dig in to find out like, okay, you know, why did you do that thing? Everybody else has done this other thing, your thing's much better, but it's not what other people are working on. And like 80% of the time, I find out the person has a really unusual background. So like often they'll have like, either they like came from poverty and didn't get an opportunity to go to a good school or had dyslexia and, you know, got kicked out of school in year 11, or they had a health issue that meant they couldn't go to university or something happened in their past and they ended up out of the mainstream. And then they kind of succeeded anyway. Those are the people that throughout my career, I've tended to kind of accidentally hire more of, but it's not exactly accidentally. It's like when I see somebody who's done, two people who have done extremely well, one of them did extremely well in exactly the normal way from the background entirely pointing in that direction and they achieved all the hurdles to get there. And like, okay, that's quite impressive, you know, but another person who did just as well, despite lots of constraints and doing things in really unusual ways and came up with different approaches. That's normally the person I'm likely to find useful to work with because they're often like risk-takers, they're often creative, they're often extremely tenacious, they're often very open-minded. So that's the kind of folks I tend to find myself hiring. So now at Answer.ai, it's a group of people that are strong enough that nearly every one of them has independently come to me in the past few weeks and told me that they have imposter syndrome and they're not convinced that they're good enough to be here. And I kind of heard it at the point where I was like, okay, I don't think it's possible that all of you are so far behind your peers that you shouldn't get to be here. But I think part of the problem is as an R&D lab, the great developers look at the great researchers and they're like, wow, these big-brained, crazy research people with all their math and s**t, they're too cool for me, oh my God. And then the researchers look at the developers and they're like, oh, they're killing it, making all this stuff with all these people using it and talking on Twitter about how great it is. I think they're both a bit intimidated by each other, you know. And so I have to kind of remind them like, okay, there are lots of things in this world where you suck compared to lots of other people in this company, but also vice versa, you know, for all things. And the reason you came here is because you wanted to learn about those other things from those other people and have an opportunity to like bring them all together into a single unit. You know, it's not reasonable to expect you're going to be better at everything than everybody else. I guess the other part of it is for nearly all of the people in the company, to be honest, they have nearly always been better than everybody else at nearly everything they're doing nearly everywhere they've been. So it's kind of weird to be in this situation now where it's like, gee, I can clearly see that I suck at this thing that I'm meant to be able to do compared to these other people where I'm like the worst in the company at this thing for some things. So I think that's a healthy place to be, you know, as long as you keep reminding each other about that's actually why we're here. And like, it's all a bit of an experiment, like we don't have any managers. We don't have any hierarchy from that point of view. So for example, I'm not a manager, which means I don't get to tell people what to do or how to do it or when to do it. Yeah, it's been a bit of an experiment to see how that would work out. And it's been great. So for instance, Ben Clavier, who you might have come across, he's the author of Ragatouille, he's the author of Rerankers, super strong information retrieval guy. And a few weeks ago, you know, this additional channel appeared on Discord, on our private Discord called Bert24. And these people started appearing, as in our collab sections, we have a collab section for like collaborating with outsiders. And these people started appearing, there are all these names that I recognize, like Bert24, and they're all talking about like the next generation of Bert. And I start following along, it's like, okay, Ben decided that I think, quite rightly, we need a new Bert. Because everybody, like so many people are still using Bert, and it's still the best at so many things, but it actually doesn't take advantage of lots of best practices. And so he just went out and found basically everybody who's created better Berts in the last four or five years, brought them all together, suddenly there's this huge collaboration going on. So yeah, I didn't tell him to do that. He didn't ask my permission to do that. And then, like, Benjamin Warner dived in, and he's like, oh, I created a whole transformers from scratch implementation designed to be maximally hackable. He originally did it largely as a teaching exercise to show other people, but he was like, I could, you know, use that to create a really hackable BERT implementation. In fact, he didn't say that. He said, I just did do that, you know, and I created a repo, and then everybody's like starts using it. They're like, oh my god, this is amazing. I can now implement all these other BERT things. And it's not just answer AI guys there, you know, there's lots of folks, you know, who have like contributed new data set mixes and blah, blah, blah. So, I mean, I can help in the same way that other people can help. So like, then Ben Clavier reached out to me at one point and said, can you help me, like, what have you learned over time about how to manage intimidatingly capable and large groups of people who you're nominally meant to be leading? And so, you know, I like to try to help, but I don't direct. Another great example was Kerem, who, after our FSTP QLORA work, decided quite correctly that it didn't really make sense to use LoRa in today's world. You want to use the normalized version, which is called Dora. Like two or three weeks after we did FSTP QLORA, he just popped up and said, okay, I've just converted the whole thing to Dora, and I've also created these VLLM extensions, and I've got all these benchmarks, and, you know, now I've got training of quantized models with adapters that are as fast as LoRa, and as actually better than, weirdly, fine tuning. Just like, okay, that's great, you know. And yeah, so the things we've done to try to help make these things happen as well is we don't have any required meetings, you know, but we do have a meeting for each pair of major time zones that everybody's invited to, and, you know, people see their colleagues doing stuff that looks really cool and say, like, oh, how can I help, you know, or how can I learn or whatever. So another example is Austin, who, you know, amazing background. He ran AI at Fidelity, he ran AI at Pfizer, he ran browsing and retrieval for Google's DeepMind stuff, created Jemma.cpp, and he's been working on a new system to make it easier to do web GPU programming, because, again, he quite correctly identified, yeah, so I said to him, like, okay, I want to learn about that. Not an area that I have much expertise in, so, you know, he's going to show me what he's working on and teach me a bit about it, and hopefully I can help contribute. I think one of the key things that's happened in all of these is everybody understands what Eric Gilliam, who wrote the second blog post in our series, the R&D historian, describes as a large yard with narrow fences. Everybody has total flexibility to do what they want. We all understand kind of roughly why we're here, you know, we agree with the premises around, like, everything's too expensive, everything's too complicated, people are building too many vanity foundation models rather than taking better advantage of fine-tuning, like, there's this kind of general, like, sense of we're all on the same wavelength about, you know, all the ways in which current research is fucked up, and, you know, all the ways in which we're worried about centralization. We all care a lot about not just research for the point of citations, but research that actually wouldn't have happened otherwise, and actually is going to lead to real-world outcomes. And so, yeah, with this kind of, like, shared vision, people understand, like, you know, so when I say, like, oh, well, you know, tell me, Ben, about BERT 24, what's that about? And he's like, you know, like, oh, well, you know, you can see from an accessibility point of view, or you can see from a kind of a actual practical impact point of view, there's far too much focus on decoder-only models, and, you know, like, BERT's used in all of these different places and industry, and so I can see, like, in terms of our basic principles, what we're trying to achieve, this seems like something important. And so I think that's, like, a really helpful that we have that kind of shared perspective, you know?Alessio [00:21:14]: Yeah. And before we maybe talk about some of the specific research, when you're, like, reaching out to people, interviewing them, what are some of the traits, like, how do these things come out, you know, usually? Is it working on side projects that you, you know, you're already familiar with? Is there anything, like, in the interview process that, like, helps you screen for people that are less pragmatic and more research-driven versus some of these folks that are just gonna do it, you know? They're not waiting for, like, the perfect process.Jeremy [00:21:40]: Everybody who comes through the recruiting is interviewed by everybody in the company. You know, our goal is 12 people, so it's not an unreasonable amount. So the other thing to say is everybody so far who's come into the recruiting pipeline, everybody bar one, has been hired. So which is to say our original curation has been good. And that's actually pretty easy, because nearly everybody who's come in through the recruiting pipeline are people I know pretty well. So Jono Whitaker and I, you know, he worked on the stable diffusion course we did. He's outrageously creative and talented, and he's super, like, enthusiastic tinkerer, just likes making things. Benjamin was one of the strongest parts of the fast.ai community, which is now the alumni. It's, like, hundreds of thousands of people. And you know, again, like, they're not people who a normal interview process would pick up, right? So Benjamin doesn't have any qualifications in math or computer science. Jono was living in Zimbabwe, you know, he was working on, like, helping some African startups, you know, but not FAANG kind of credentials. But yeah, I mean, when you actually see people doing real work and they stand out above, you know, we've got lots of Stanford graduates and open AI people and whatever in our alumni community as well. You know, when you stand out above all of those people anyway, obviously you've got something going for you. You know, Austin, him and I worked together on the masks study we did in the proceeding at the National Academy of Science. You know, we had worked together, and again, that was a group of, like, basically the 18 or 19 top experts in the world on public health and epidemiology and research design and so forth. And Austin, you know, one of the strongest people in that collaboration. So yeah, you know, like, I've been lucky enough to have had opportunities to work with some people who are great and, you know, I'm a very open-minded person, so I kind of am always happy to try working with pretty much anybody and some people stand out. You know, there have been some exceptions, people I haven't previously known, like Ben Clavier, actually, I didn't know before. But you know, with him, you just read his code, and I'm like, oh, that's really well-written code. And like, it's not written exactly the same way as everybody else's code, and it's not written to do exactly the same thing as everybody else's code. So yeah, and then when I chatted to him, it's just like, I don't know, I felt like we'd known each other for years, like we just were on the same wavelength, but I could pretty much tell that was going to happen just by reading his code. I think you express a lot in the code you choose to write and how you choose to write it, I guess. You know, or another example, a guy named Vic, who was previously the CEO of DataQuest, and like, in that case, you know, he's created a really successful startup. He won the first, basically, Kaggle NLP competition, which was automatic essay grading. He's got the current state-of-the-art OCR system, Surya. Again, he's just a guy who obviously just builds stuff, you know, he doesn't ask for permission, he doesn't need any, like, external resources. Actually, Karim's another great example of this, I mean, I already knew Karim very well because he was my best ever master's student, but it wasn't a surprise to me then when he then went off to create the world's state-of-the-art language model in Turkish on his own, in his spare time, with no budget, from scratch. This is not fine-tuning or whatever, he, like, went back to Common Crawl and did everything. Yeah, it's kind of, I don't know what I'd describe that process as, but it's not at all based on credentials.Swyx [00:25:17]: Assemble based on talent, yeah. We wanted to dive in a little bit more on, you know, turning from the people side of things into the technical bets that you're making. Just a little bit more on Bert. I was actually, we just did an interview with Yi Tay from Reka, I don't know if you're familiar with his work, but also another encoder-decoder bet, and one of his arguments was actually people kind of over-index on the decoder-only GPT-3 type paradigm. I wonder if you have thoughts there that is maybe non-consensus as well. Yeah, no, absolutely.Jeremy [00:25:45]: So I think it's a great example. So one of the people we're collaborating with a little bit with BERT24 is Colin Raffle, who is the guy behind, yeah, most of that stuff, you know, between that and UL2, there's a lot of really interesting work. And so one of the things I've been encouraging the BERT group to do, Colin has as well, is to consider using a T5 pre-trained encoder backbone as a thing you fine-tune, which I think would be really cool. You know, Colin was also saying actually just use encoder-decoder as your Bert, you know, why don't you like use that as a baseline, which I also think is a good idea. Yeah, look.Swyx [00:26:25]: What technical arguments are people under-weighting?Jeremy [00:26:27]: I mean, Colin would be able to describe this much better than I can, but I'll give my slightly non-expert attempt. Look, I mean, think about like diffusion models, right? Like in stable diffusion, like we use things like UNet. You have this kind of downward path and then in the upward path you have the cross connections, which it's not a tension, but it's like a similar idea, right? You're inputting the original encoding path into your decoding path. It's critical to make it work, right? Because otherwise in the decoding part, the model has to do so much kind of from scratch. So like if you're doing translation, like that's a classic kind of encoder-decoder example. If it's decoder only, you never get the opportunity to find the right, you know, feature engineering, the right feature encoding for the original sentence. And it kind of means then on every token that you generate, you have to recreate the whole thing, you know? So if you have an encoder, it's basically saying like, okay, this is your opportunity model to create a really useful feature representation for your input information. So I think there's really strong arguments for encoder-decoder models anywhere that there is this kind of like context or source thing. And then why encoder only? Well, because so much of the time what we actually care about is a classification, you know? It's like an output. It's like generating an arbitrary length sequence of tokens. So anytime you're not generating an arbitrary length sequence of tokens, decoder models don't seem to make much sense. Now the interesting thing is, you see on like Kaggle competitions, that decoder models still are at least competitive with things like Deberta v3. They have to be way bigger to be competitive with things like Deberta v3. And the only reason they are competitive is because people have put a lot more time and money and effort into training the decoder only ones, you know? There isn't a recent Deberta. There isn't a recent Bert. Yeah, it's a whole part of the world that people have slept on a little bit. And this is just what happens. This is how trends happen rather than like, to me, everybody should be like, oh, let's look at the thing that has shown signs of being useful in the past, but nobody really followed up with properly. That's the more interesting path, you know, where people tend to be like, oh, I need to get citations. So what's everybody else doing? Can I make it 0.1% better, you know, or 0.1% faster? That's what everybody tends to do. Yeah. So I think it's like, Itay's work commercially now is interesting because here's like a whole, here's a whole model that's been trained in a different way. So there's probably a whole lot of tasks it's probably better at than GPT and Gemini and Claude. So that should be a good commercial opportunity for them if they can figure out what those tasks are.Swyx [00:29:07]: Well, if rumors are to be believed, and he didn't comment on this, but, you know, Snowflake may figure out the commercialization for them. So we'll see.Jeremy [00:29:14]: Good.Alessio [00:29:16]: Let's talk about FSDP, Qlora, Qdora, and all of that awesome stuff. One of the things we talked about last time, some of these models are meant to run on systems that nobody can really own, no single person. And then you were like, well, what if you could fine tune a 70B model on like a 4090? And I was like, no, that sounds great, Jeremy, but like, can we actually do it? And then obviously you all figured it out. Can you maybe tell us some of the worst stories behind that, like the idea behind FSDP, which is kind of taking sharded data, parallel computation, and then Qlora, which is do not touch all the weights, just go quantize some of the model, and then within the quantized model only do certain layers instead of doing everything.Jeremy [00:29:57]: Well, do the adapters. Yeah.Alessio [00:29:59]: Yeah. Yeah. Do the adapters. Yeah. I will leave the floor to you. I think before you published it, nobody thought this was like a short term thing that we're just going to have. And now it's like, oh, obviously you can do it, but it's not that easy.Jeremy [00:30:12]: Yeah. I mean, to be honest, it was extremely unpleasant work to do. It's like not at all enjoyable. I kind of did version 0.1 of it myself before we had launched the company, or at least the kind of like the pieces. They're all pieces that are difficult to work with, right? So for the quantization, you know, I chatted to Tim Detmers quite a bit and, you know, he very much encouraged me by saying like, yeah, it's possible. He actually thought it'd be easy. It probably would be easy for him, but I'm not Tim Detmers. And, you know, so he wrote bits and bytes, which is his quantization library. You know, he wrote that for a paper. He didn't write that to be production like code. It's now like everybody's using it, at least the CUDA bits. So like, it's not particularly well structured. There's lots of code paths that never get used. There's multiple versions of the same thing. You have to try to figure it out. So trying to get my head around that was hard. And you know, because the interesting bits are all written in CUDA, it's hard to like to step through it and see what's happening. And then, you know, FSTP is this very complicated library and PyTorch, which not particularly well documented. So the only really, really way to understand it properly is again, just read the code and step through the code. And then like bits and bytes doesn't really work in practice unless it's used with PEF, the HuggingFace library and PEF doesn't really work in practice unless you use it with other things. And there's a lot of coupling in the HuggingFace ecosystem where like none of it works separately. You have to use it all together, which I don't love. So yeah, trying to just get a minimal example that I can play with was really hard. And so I ended up having to rewrite a lot of it myself to kind of create this like minimal script. One thing that helped a lot was Medec had this LlamaRecipes repo that came out just a little bit before I started working on that. And like they had a kind of role model example of like, here's how to train FSTP, LoRa, didn't work with QLoRa on Llama. A lot of the stuff I discovered, the interesting stuff would be put together by Les Wright, who's, he was actually the guy in the Fast.ai community I mentioned who created the Ranger Optimizer. So he's doing a lot of great stuff at Meta now. So yeah, I kind of, that helped get some minimum stuff going and then it was great once Benjamin and Jono joined full time. And so we basically hacked at that together and then Kerim joined like a month later or something. And it was like, gee, it was just a lot of like fiddly detailed engineering on like barely documented bits of obscure internals. So my focus was to see if it kind of could work and I kind of got a bit of a proof of concept working and then the rest of the guys actually did all the work to make it work properly. And, you know, every time we thought we had something, you know, we needed to have good benchmarks, right? So we'd like, it's very easy to convince yourself you've done the work when you haven't, you know, so then we'd actually try lots of things and be like, oh, and these like really important cases, the memory use is higher, you know, or it's actually slower. And we'd go in and we just find like all these things that were nothing to do with our library that just didn't work properly. And nobody had noticed they hadn't worked properly because nobody had really benchmarked it properly. So we ended up, you know, trying to fix a whole lot of different things. And even as we did so, new regressions were appearing in like transformers and stuff that Benjamin then had to go away and figure out like, oh, how come flash attention doesn't work in this version of transformers anymore with this set of models and like, oh, it turns out they accidentally changed this thing, so it doesn't work. You know, there's just, there's not a lot of really good performance type evals going on in the open source ecosystem. So there's an extraordinary amount of like things where people say like, oh, we built this thing and it has this result. And when you actually check it, so yeah, there's a shitload of war stories from getting that thing to work. And it did require a particularly like tenacious group of people and a group of people who don't mind doing a whole lot of kind of like really janitorial work, to be honest, to get the details right, to check them. Yeah.Alessio [00:34:09]: We had a trade out on the podcast and we talked about how a lot of it is like systems work to make some of these things work. It's not just like beautiful, pure math that you do on a blackboard. It's like, how do you get into the nitty gritty?Jeremy [00:34:22]: I mean, flash attention is a great example of that. Like it's, it basically is just like, oh, let's just take the attention and just do the tiled version of it, which sounds simple enough, you know, but then implementing that is challenging at lots of levels.Alessio [00:34:36]: Yeah. What about inference? You know, obviously you've done all this amazing work on fine tuning. Do you have any research you've been doing on the inference side, how to make local inference really fast on these models too?Jeremy [00:34:47]: We're doing quite a bit on that at the moment. We haven't released too much there yet. But one of the things I've been trying to do is also just to help other people. And one of the nice things that's happened is that a couple of folks at Meta, including Mark Seraphim, have done a nice job of creating this CUDA mode community of people working on like CUDA kernels or learning about that. And I tried to help get that going well as well and did some lessons to help people get into it. So there's a lot going on in both inference and fine tuning performance. And a lot of it's actually happening kind of related to that. So PyTorch team have created this Torch AO project on quantization. And so there's a big overlap now between kind of the FastAI and AnswerAI and CUDA mode communities of people working on stuff for both inference and fine tuning. But we're getting close now. You know, our goal is that nobody should be merging models, nobody should be downloading merged models, everybody should be using basically quantized plus adapters for almost everything and just downloading the adapters. And that should be much faster. So that's kind of the place we're trying to get to. It's difficult, you know, because like Karim's been doing a lot of work with VLM, for example. These inference engines are pretty complex bits of code. They have a whole lot of custom kernel stuff going on as well, as do the quantization libraries. So we've been working on, we're also quite a bit of collaborating with the folks who do HQQ, which is a really great quantization library and works super well. So yeah, there's a lot of other people outside AnswerAI that we're working with a lot who are really helping on all this performance optimization stuff, open source.Swyx [00:36:27]: Just to follow up on merging models, I picked up there that you said nobody should be merging models. That's interesting because obviously a lot of people are experimenting with this and finding interesting results. I would say in defense of merging models, you can do it without data. That's probably the only thing that's going for it.Jeremy [00:36:45]: To explain, it's not that you shouldn't merge models. You shouldn't be distributing a merged model. You should distribute a merged adapter 99% of the time. And actually often one of the best things happening in the model merging world is actually that often merging adapters works better anyway. The point is, Sean, that once you've got your new model, if you distribute it as an adapter that sits on top of a quantized model that somebody's already downloaded, then it's a much smaller download for them. And also the inference should be much faster because you're not having to transfer FB16 weights from HPM memory at all or ever load them off disk. You know, all the main weights are quantized and the only floating point weights are in the adapters. So that should make both inference and fine tuning faster. Okay, perfect.Swyx [00:37:33]: We're moving on a little bit to the rest of the fast universe. I would have thought that, you know, once you started Answer.ai, that the sort of fast universe would be kind of on hold. And then today you just dropped Fastlight and it looks like, you know, there's more activity going on in sort of Fastland.Jeremy [00:37:49]: Yeah. So Fastland and Answerland are not really distinct things. Answerland is kind of like the Fastland grown up and funded. They both have the same mission, which is to maximize the societal benefit of AI broadly. We want to create thousands of commercially successful products at Answer.ai. And we want to do that with like 12 people. So that means we need a pretty efficient stack, you know, like quite a few orders of magnitude more efficient, not just for creation, but for deployment and maintenance than anything that currently exists. People often forget about the D part of our R&D firm. So we've got to be extremely good at creating, deploying and maintaining applications, not just models. Much to my horror, the story around creating web applications is much worse now than it was 10 or 15 years ago in terms of, if I say to a data scientist, here's how to create and deploy a web application, you know, either you have to learn JavaScript or TypeScript and about all the complex libraries like React and stuff, and all the complex like details around security and web protocol stuff around how you then talk to a backend and then all the details about creating the backend. You know, if that's your job and, you know, you have specialists who work in just one of those areas, it is possible for that to all work. But compared to like, oh, write a PHP script and put it in the home directory that you get when you sign up to this shell provider, which is what it was like in the nineties, you know, here are those 25 lines of code and you're done and now you can pass that URL around to all your friends, or put this, you know, .pl file inside the CGI bin directory that you got when you signed up to this web host. So yeah, the thing I've been mainly working on the last few weeks is fixing all that. And I think I fixed it. I don't know if this is an announcement, but I tell you guys, so yeah, there's this thing called fastHTML, which basically lets you create a complete web application in a single Python file. Unlike excellent projects like Streamlit and Gradio, you're not working on top of a highly abstracted thing. That's got nothing to do with web foundations. You're working with web foundations directly, but you're able to do it by using pure Python. There's no template, there's no ginger, there's no separate like CSS and JavaScript files. It looks and behaves like a modern SPA web application. And you can create components for like daisy UI, or bootstrap, or shoelace, or whatever fancy JavaScript and or CSS tailwind etc library you like, but you can write it all in Python. You can pip install somebody else's set of components and use them entirely from Python. You can develop and prototype it all in a Jupyter notebook if you want to. It all displays correctly, so you can like interactively do that. And then you mentioned Fastlight, so specifically now if you're using SQLite in particular, it's like ridiculously easy to have that persistence, and all of your handlers will be passed database ready objects automatically, that you can just call dot delete dot update dot insert on. Yeah, you get session, you get security, you get all that. So again, like with most everything I do, it's very little code. It's mainly tying together really cool stuff that other people have written. You don't have to use it, but a lot of the best stuff comes from its incorporation of HTMX, which to me is basically the thing that changes your browser to make it work the way it always should have. So it just does four small things, but those four small things are the things that are basically unnecessary constraints that HTML should never have had, so it removes the constraints. It sits on top of Starlet, which is a very nice kind of lower level platform for building these kind of web applications. The actual interface matches as closely as possible to FastAPI, which is a really nice system for creating the kind of classic JavaScript type applications. And Sebastian, who wrote FastAPI, has been kind enough to help me think through some of these design decisions, and so forth. I mean, everybody involved has been super helpful. Actually, I chatted to Carson, who created HTMX, you know, so about it. Some of the folks involved in Django, like everybody in the community I've spoken to definitely realizes there's a big gap to be filled around, like, highly scalable, web foundation-based, pure Python framework with a minimum of fuss. So yeah, I'm getting a lot of support and trying to make sure that FastHTML works well for people.Swyx [00:42:38]: I would say, when I heard about this, I texted Alexio. I think this is going to be pretty huge. People consider Streamlit and Gradio to be the state of the art, but I think there's so much to improve, and having what you call web foundations and web fundamentals at the core of it, I think, would be really helpful.Jeremy [00:42:54]: I mean, it's based on 25 years of thinking and work for me. So like, FastML was built on a system much like this one, but that was of hell. And so I spent, you know, 10 years working on that. We had millions of people using that every day, really pushing it hard. And I really always enjoyed working in that. Yeah. So, you know, and obviously lots of other people have done like great stuff, and particularly HTMX. So I've been thinking about like, yeah, how do I pull together the best of the web framework I created for FastML with HTMX? There's also things like PicoCSS, which is the CSS system, which by default, FastHTML comes with. Although, as I say, you can pip install anything you want to, but it makes it like super easy to, you know, so we try to make it so that just out of the box, you don't have any choices to make. Yeah. You can make choices, but for most people, you just, you know, it's like the PHP in your home directory thing. You just start typing and just by default, you'll get something which looks and feels, you know, pretty okay. And if you want to then write a version of Gradio or Streamlit on top of that, you totally can. And then the nice thing is if you then write it in kind of the Gradio equivalent, which will be, you know, I imagine we'll create some kind of pip installable thing for that. Once you've outgrown, or if you outgrow that, it's not like, okay, throw that all away and start again. And this like whole separate language that it's like this kind of smooth, gentle path that you can take step-by-step because it's all just standard web foundations all the way, you know.Swyx [00:44:29]: Just to wrap up the sort of open source work that you're doing, you're aiming to create thousands of projects with a very, very small team. I haven't heard you mention once AI agents or AI developer tooling or AI code maintenance. I know you're very productive, but you know, what is the role of AI in your own work?Jeremy [00:44:47]: So I'm making something. I'm not sure how much I want to say just yet.Swyx [00:44:52]: Give us a nibble.Jeremy [00:44:53]: All right. I'll give you the key thing. So I've created a new approach. It's not called prompt engineering. It's called dialogue engineering. But I'm creating a system for doing dialogue engineering. It's currently called AI magic. I'm doing most of my work in this system and it's making me much more productive than I was before I used it. So I always just build stuff for myself and hope that it'll be useful for somebody else. Think about chat GPT with code interpreter, right? The basic UX is the same as a 1970s teletype, right? So if you wrote APL on a teletype in the 1970s, you typed onto a thing, your words appeared at the bottom of a sheet of paper and you'd like hit enter and it would scroll up. And then the answer from APL would be printed out, scroll up, and then you would type the next thing. And like, which is also the way, for example, a shell works like bash or ZSH or whatever. It's not terrible, you know, like we all get a lot done in these like very, very basic teletype style REPL environments, but I've never felt like it's optimal and everybody else has just copied chat GPT. So it's also the way BART and Gemini work. It's also the way the Claude web app works. And then you add code interpreter. And the most you can do is to like plead with chat GPT to write the kind of code I want. It's pretty good for very, very, very beginner users who like can't code at all, like by default now the code's even hidden away, so you never even have to see it ever happened. But for somebody who's like wanting to learn to code or who already knows a bit of code or whatever, it's, it seems really not ideal. So okay, that's one end of the spectrum. The other end of the spectrum, which is where Sean's work comes in, is, oh, you want to do more than chat GPT? No worries. Here is Visual Studio Code. I run it. There's an empty screen with a flashing cursor. Okay, start coding, you know, and it's like, okay, you can use systems like Sean's or like cursor or whatever to be like, okay, Apple K in cursors, like a creative form that blah, blah, blah. But in the end, it's like a convenience over the top of this incredibly complicated system that full-time sophisticated software engineers have designed over the past few decades in a totally different environment as a way to build software, you know. And so we're trying to like shoehorn in AI into that. And it's not easy to do. And I think there are like much better ways of thinking about the craft of software development in a language model world to be much more interactive, you know. So the thing that I'm building is neither of those things. It's something between the two. And it's built around this idea of crafting a dialogue, you know, where the outcome of the dialogue is the artifacts that you want, whether it be a piece of analysis or whether it be a Python library or whether it be a technical blog post or whatever. So as part of building that, I've created something called Claudette, which is a library for Claude. I've created something called Cosette, which is a library for OpenAI. They're libraries which are designed to make those APIs much more usable, much easier to use, much more concise. And then I've written AI magic on top of those. And that's been an interesting exercise because I did Claudette first, and I was looking at what Simon Willison did with his fantastic LLM library. And his library is designed around like, let's make something that supports all the LLM inference engines and commercial providers. I thought, okay, what if I did something different, which is like make something that's as Claude friendly as possible and forget everything else. So that's what Claudette was. So for example, one of the really nice things in Claude is prefill. So by telling the assistant that this is what your response started with, there's a lot of powerful things you can take advantage of. So yeah, I created Claudette to be as Claude friendly as possible. And then after I did that, and then particularly with GPT 4.0 coming out, I kind of thought, okay, now let's create something that's as OpenAI friendly as possible. And then I tried to look to see, well, where are the similarities and where are the differences? And now can I make them compatible in places where it makes sense for them to be compatible without losing out on the things that make each one special for what they are. So yeah, those are some of the things I've been working on in that space. And I'm thinking we might launch AI magic via a course called how to solve it with code. The name is based on the classic Polya book, if you know how to solve it, which is, you know, one of the classic math books of all time, where we're basically going to try to show people how to solve challenging problems that they didn't think they could solve without doing a full computer science course, by taking advantage of a bit of AI and a bit of like practical skills, as particularly for this like whole generation of people who are learning to code with and because of ChatGPT. Like I love it, I know a lot of people who didn't really know how to code, but they've created things because they use ChatGPT, but they don't really know how to maintain them or fix them or add things to them that ChatGPT can't do, because they don't really know how to code. And so this course will be designed to show you how you can like either become a developer who can like supercharge their capabilities by using language models, or become a language model first developer who can supercharge their capabilities by understanding a bit about process and fundamentals.Alessio [00:50:19]: Nice. That's a great spoiler. You know, I guess the fourth time you're going to be on learning space, we're going to talk about AI magic. Jeremy, before we wrap, this was just a great run through everything. What are the things that when you next come on the podcast in nine, 12 months, we're going to be like, man, Jeremy was like really ahead of it. Like, is there anything that you see in the space that maybe people are not talking enough? You know, what's the next company that's going to fall, like have drama internally, anything in your mind?Jeremy [00:50:47]: You know, hopefully we'll be talking a lot about fast HTML and hopefully the international community that at that point has come up around that. And also about AI magic and about dialogue engineering. Hopefully dialogue engineering catches on because I think it's the right way to think about a lot of this stuff. What else? Just trying to think about all on the research side. Yeah. I think, you know, I mean, we've talked about a lot of it. Like I think encoder decoder architectures, encoder only architectures, hopefully we'll be talking about like the whole re-interest in BERT that BERT 24 stimulated.Swyx [00:51:17]: There's a safe space model that came out today that might be interesting for this general discussion. One thing that stood out to me with Cartesia's blog posts was that they were talking about real time ingestion, billions and trillions of tokens, and keeping that context, obviously in the state space that they have.Jeremy [00:51:34]: Yeah.Swyx [00:51:35]: I'm wondering what your thoughts are because you've been entirely transformers the whole time.Jeremy [00:51:38]: Yeah. No. So obviously my background is RNNs and LSTMs. Of course. And I'm still a believer in the idea that state is something you can update, you know? So obviously Sepp Hochreiter came up, came out with xLSTM recently. Oh my God. Okay. Another whole thing we haven't talked about, just somewhat related. I've been going crazy for like a long time about like, why can I not pay anybody to save my KV cash? I just ingested the Great Gatsby or the documentation for Starlet or whatever, you know, I'm sending it as my prompt context. Why are you redoing it every time? So Gemini is about to finally come out with KV caching, and this is something that Austin actually in Gemma.cpp had had on his roadmap for years, well not years, months, long time. The idea that the KV cache is like a thing that, it's a third thing, right? So there's RAG, you know, there's in-context learning, you know, and prompt engineering, and there's KV cache creation. I think it creates like a whole new class almost of applications or as techniques where, you know, for me, for example, I very often work with really new libraries or I've created my own library that I'm now writing with rather than on. So I want all the docs in my new library to be there all the time. So I want to upload them once, and then we have a whole discussion about building this application using FastHTML. Well nobody's got FastHTML in their language model yet, I don't want to send all the FastHTML docs across every time. So one of the things I'm looking at doing in AI Magic actually is taking advantage of some of these ideas so that you can have the documentation of the libraries you're working on be kind of always available. Something over the next 12 months people will be spending time thinking about is how to like, where to use RAG, where to use fine-tuning, where to use KV cache storage, you know. And how to use state, because in state models and XLSTM, again, state is something you update. So how do we combine the best of all of these worlds?Alessio [00:53:46]: And Jeremy, I know before you talked about how some of the autoregressive models are not maybe a great fit for agents. Any other thoughts on like JEPA, diffusion for text, any interesting thing that you've seen pop up?Jeremy [00:53:58]: In the same way that we probably ought to have state that you can update, i.e. XLSTM and state models, in the same way that a lot of things probably should have an encoder, JEPA and diffusion both seem like the right conceptual mapping for a lot of things we probably want to do. So the idea of like, there should be a piece of the generative pipeline, which is like thinking about the answer and coming up with a sketch of what the answer looks like before you start outputting tokens. That's where it kind of feels like diffusion ought to fit, you know. And diffusion is, because it's not autoregressive, it's like, let's try to like gradually de-blur the picture of how to solve this. So this is also where dialogue engineering fits in, by the way. So with dialogue engineering, one of the reasons it's working so well for me is I use it to kind of like craft the thought process before I generate the code, you know. So yeah, there's a lot of different pieces here and I don't know how they'll all kind of exactly fit together. I don't know if JEPA is going to actually end up working in the text world. I don't know if diffusion will end up working in the text world, but they seem to be like trying to solve a class of problem which is currently unsolved.Alessio [00:55:13]: Awesome, Jeremy. This was great, as usual. Thanks again for coming back on the pod and thank you all for listening. Yeah, that was fantastic. Get full access to Latent Space at www.latent.space/subscribe

The Long Game w/ Elijah Murray
Dino Scheidt: Gen AI in Enterprise, Data P&L, and Event Storming

The Long Game w/ Elijah Murray

Play Episode Listen Later Aug 8, 2024 43:08


Dino Scheidt is an AI Engineer, former CTO and Founder who works with Fortune 50s, Start-Ups, and Governments on Data Intelligence and AI Architectures. In this conversation, we explore the evolving landscape of AI with a particular focus on generative AI and its applications. Dino criticizes the concept of 'AI strategies,' arguing that AI should be seen as a tool rather than a strategy. Despite his initial skepticism towards generative AI, Dino acknowledges its potential, especially in transforming traditional value chains through AI-enabled communications. We also delve into the challenges and opportunities posed by non-deterministic systems, the concept of Data P&L, and the complexity of integrating generative AI into existing business operations. Dino wraps up the discussion by emphasizing the importance of lateral thinking and digital representation of business processes to leverage future AI innovations effectively. EPISODE LINKS: Dino Scheidt LinkedIn: https://linkedin.com/in/dinoscheidt Dino Scheidt Website: https://din.ooo The Gartner Hype Cycle: https://en.wikipedia.org/wiki/Gartner_hype_cycle TIMESTAMPS: 00:00:12 Introduction and background 00:00:45 AI and Generative Models 00:04:36 Deterministic vs Non-Deterministic Systems 00:08:19 Unpredictability, Value Chain, and AI Integration 00:13:26 Hype Cycle: Adjective to Noun 00:19:13 Strategic Integration of Generative AI 00:28:36 Value of Generative AI: Consumer vs. Enterprise Perspectives 00:32:12 Event Storming and Tactical AI 00:39:51 Future of AI and Final Thoughts 00:42:36 Closing CONNECT: Website: https://hoo.be/elijahmurray YouTube: https://www.youtube.com/@elijahmurray Twitter: https://twitter.com/elijahmurray Instagram: https://www.instagram.com/elijahmurray LinkedIn: https://www.linkedin.com/in/elijahmurray/ Apple Podcasts: https://podcasts.apple.com/us/podcast/the-long-game-w-elijah-murray/ Spotify: https://podcasters.spotify.com/pod/show/elijahmurray RSS: https://anchor.fm/s/3e31c0c/podcast/rss

You + Happy
Future of AI: Job Impact, Career Success, and More with AI Engineer & Comedian Jashan Kaleka

You + Happy

Play Episode Listen Later Aug 6, 2024 109:24


Find out more about Jashan on Instagram @Jashan_Kaleka You + Happy podcast on Instagram @YouPlusHappy  Host @Selena_Marshae

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Thank you for 1m downloads of the podcast and 2m readers of the Substack!

united states god ceo american new york world australia english google ai apple vision voice talk americans san francisco new york times research war chinese rich australian data european union market search microsoft italian holy new zealand drop south iphone illinois selling irish code ladies supreme court chatgpt missouri memory os valley atlantic software whatsapp washington post reddit wars cloud singapore midwest philippines indonesia laugh ios scottish intelligence new yorker context mark zuckerberg architecture uma scaling oracle stopping snap bloomberg cto substack malaysia vc similar iq whispers adapt ipo determine southeast asia fireworks optimizing openai gemini laughing residence gateway gdp fusion nah nvidia acknowledge hardware financial times chess api document av wang frontier chrome blank verge mojo 10k scarlett johansson winds vertical gpt ftc nexus ml aws lama gorilla boston marathon llama goldman small talk mandarin apis bedtime ruler great lakes consensus nome amd synthetic tt frameworks band aids romain nano chameleons biases ids opus hirsch weights chai sam altman ops mamba llm skynet colbert gg gpu crowdstrike pdfs venn gnome google chrome 5b modular skyfall soit soc mozilla zuck wix cuz kv nama haiku imo vespa rag rudyard kipling gpus sonnets golden gate bridge 7b quadrants sdks benchmarking ilya irobot ccs lambda san fernando valley alessio asics perplexity lightspeed lms anthropic crackle stack overflow scarjo little italy noose 8b restful lex fridman economically cpus shutterstock malay riaa asic mistral suno inflection gcp opex tts superintelligence vertex a16z multimodal latency ozymandias larry ellison observability olympiads datadog gradient proxies asr icm baits drop zone devrel rpc mimicry netlify etched ai news cloud platforms temasek gpc sandbagging eclair jamba gbt gpd apple notes augments exa character ai neurips li bai ai engineer huggingface george hotz singlish entropic harvard yard gbd code interpreter icml phy ml ops ai winter martin casado crosstrek technium latent space johnny ive numina inprint sohu i okay
Beyond The Prompt - How to use AI in your company
How to Increase Workplace Productivity. Notion's Lead AI Engineer Shir Yehoshua on High-Risk, High-Reward AI Projects

Beyond The Prompt - How to use AI in your company

Play Episode Listen Later Jul 30, 2024 45:48


Join us as we chat with Shir, the engineering lead of Notion AI, about her journey into AI, from her early fascination with Apple's speech-to-text technology to her impactful contributions at Google and Waymo. Shir shares insights into her current role at Notion, the innovative AI projects she's leading, and the unique culture of experimentation and failure that drives product development. Discover how AI drafts performance reviews in minutes, celebrates code deletion in team demos, and integrates seamlessly with Slack to provide precise answers. Plus, learn about innovative tools like the AI writer that helps overcome writer's block and enables effortless content creation. Get a behind-the-scenes look at how Notion's unique culture fosters innovation and continuous improvement. 00:00 Introduction to Shir and AI Journey00:47 Early Fascination with AI01:36 Career at Google and Voice Search03:43 Transition to Waymo and Challenges05:11 Joining Notion and Initial Impressions06:09 Adopting AI at Notion11:55 Internal Use and Impact of AI15:12 Challenges and Innovations in AI Integration20:05 Monitoring and Feedback Mechanisms22:39 Strength and Flexibility in Product Development23:44 Exploration vs. Exploitation Phases24:47 Speed Enables Quality27:50 Overcoming Sunk Cost Fallacy30:36 Celebrating Failures and Learning33:11 The Future of AI and Creativity34:44 Practical Uses of AI in Daily Work38:04 The Evolution of Human-Computer Interaction41:02 Final Thoughts and Reflections For more prompts, tips, and AI tools. Check out our website: https://www.beyondtheprompt.ai/ or follow Jeremy or Henrik on Linkedin:Henrik: https://www.linkedin.com/in/werdelinJeremy: https://www.linkedin.com/in/jeremyutley Show producer: Natja Rosner (nat@dreamingincolors.com)

Keys to the Commonwealth
E65 - Joseph Thacker, Exploring How AI and things like ChatGPT are Impacting and Shaping the Future

Keys to the Commonwealth

Play Episode Listen Later Jul 29, 2024 33:11


As a security researcher who specializes in application security and AI, Joseph Thacker shares his knowledge on the growing influence of AI in various aspects of our culture. He's the principal AI Engineer at AppOmni and has helped multiple Fortune 500 companies find vulnerablities that could have cost them millions. He is incredibly knowledgable and offers great insight into this growing industry._______________________________Find Joseph Thacker onLinkedIn:https://www.linkedin.com/in/josephthacker?original_referer=https%3A%2F%2Fwww.google.com%2FX:@rez0__Instagram:@thackandforthWebsite:https://josephthacker.com/_______________________________Show hosted by Landry Fieldshttps://www.x.com/landryfieldz'https://www.linkedin.com/in/landryfields/https://www.instagram.com/landryfields_https://www.youtube.com/@landryfields_www.novainsurancegroup.com859-687-2004

Limitless
Shaping the Future with AI : Joel Dean

Limitless

Play Episode Listen Later Jul 12, 2024 75:49


Join us in this enlightening episode of the Limitless Podcast as we sit down with Joel Dean to discuss groundbreaking innovations and strategic approaches in the business world. Joel, a seasoned entrepreneur and strategist, shares his insights on navigating the challenges of today's market and leveraging new growth opportunities.Highlights:

Friction Log
Episode 31 - AI Engineer World's Fair 2024

Friction Log

Play Episode Listen Later Jul 11, 2024 51:52


In this episode, we review the AI Engineer World's Fair, discussing key takeaways, future trends, and notable demos, including OpenAI's impressive new capabilities. We also delve into AI economics, the role of LLMs as judges, and emerging technologies like GraphRAG and generative UIs.

The AI Breakdown: Daily Artificial Intelligence News and Discussions
7 Observations From the AI Engineer World's Fair

The AI Breakdown: Daily Artificial Intelligence News and Discussions

Play Episode Listen Later Jun 28, 2024 13:39


Dive into the latest insights from the AI Engineer World's Fair in San Francisco. This event, touted as the biggest technical AI conference in the city, brought together over 100 speakers and countless developers. Discover seven key observations that highlight the current state and future of AI development, from the focus on practical, production-specific solutions to the emergence of AI engineers as a distinct category. Learn about the innovative conversations happening around AI agents and the unique dynamics of this rapidly evolving field. Learn how to use AI with the world's biggest library of fun and useful tutorials: https://besuper.ai/ Use code 'youtube' for 50% off your first month. The AI Daily Brief helps you understand the most important news and discussions in AI. Subscribe to the podcast version of The AI Daily Brief wherever you listen: https://pod.link/1680633614 Subscribe to the newsletter: https://aidailybrief.beehiiv.com/ Join our Discord: https://bit.ly/aibreakdown

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

The World's Fair is officially sold out! Thanks for all the support and stay tuned for recaps of all the great goings on in this very special celebration of the AI Engineer!Longtime listeners will remember the fan favorite Raza Habib, CEO of HumanLoop, on the pod:Well, he's caught the podcasting bug and is now flipping the tables on swyx! Subscribe to High Agency wherever the finest Artificial Intelligence podcast are sold.High Agency Pod DescriptionIn this episode, I chatted with Shawn Wang about his upcoming AI engineering conference and what an AI engineer really is. It's been a year since he penned the viral essay "Rise of the AI Engineer' and we discuss if this new role will be enduring, the make up of the optimal AI team and trends in machine learning.Timestamps00:00 - Introduction and background on Shawn Wang (Swyx)03:45 - Reflecting on the "Rise of the AI Engineer" essay07:30 - Skills and characteristics of AI Engineers12:15 - Team composition for AI products16:30 - Vertical vs. horizontal AI startups23:00 - Advice for AI product creators and leaders28:15 - Tools and buying vs. building for AI products33:30 - Key trends in AI research and development41:00 - Closing thoughts and information on the AI Engineer World Fair SummitVideo Get full access to Latent Space at www.latent.space/subscribe

The Irish Tech News Podcast
Belfast's Cyber AI hub Dr Stuart Millar, Principal AI Engineer at Rapid7

The Irish Tech News Podcast

Play Episode Listen Later Jun 18, 2024 36:26


Rapid7 recently announced a new security research partnership with CSIT at Queen's University Belfast. The new partnership will be with CSIT's AI hub and will research into threats facing the cloud by utilising AI and machine learning techniques. The partnership will be another avenue for CSIT students into the cybersecurity industry and Rapid7. With NCSC recently reporting that any cybercriminal will be able to leverage AI and access cloud services, the partnership comes at a critical time. It will also continue the strong relationship seen between the cybersecurity industry and academia in Belfast. After the partnership announcement Ronan spoke to Dr Stuart Millar, Principal AI Engineer at Rapid7.  Dr Miller talks about his background, AI and music, the new partnership between Rapid7 and CSIT, the Cyber AI hub and more. More about the Cyber AI hub: The Cyber-AI Hub, hosted by CSIT, presents an exciting opportunity to develop exceptional research, skills and innovation across a range of cyber related themes and develop a talent pipeline of cyber security professionals with strong industry links. This new initiative, funded by the UK Government from the New Deal for Northern Ireland, will see a new Doctoral Training Programme, a hub for industry collaboration and skills development, bursaries for students to join Queen's MSc in Applied Cyber Security or Artificial Intelligence, as well as a report mapping the growth and development of the cyber industry in the region. 

Irish Tech News Audio Articles
Belfast's Cyber AI hub Dr Stuart Millar, Principal AI Engineer at Rapid7

Irish Tech News Audio Articles

Play Episode Listen Later Jun 18, 2024 1:42


Rapid7 recently announced a new security research partnership with CSIT at Queen's University Belfast. The new partnership will be with CSIT's AI hub and will research into threats facing the cloud by utilising AI and machine learning techniques. The partnership will be another avenue for CSIT students into the cybersecurity industry and Rapid7. With NCSC recently reporting that any cybercriminal will be able to leverage AI and access cloud services, the partnership comes at a critical time. It will also continue the strong relationship seen between the cybersecurity industry and academia in Belfast. After the partnership announcement Ronan spoke to Dr Stuart Millar, Principal AI Engineer at Rapid7. Dr Miller talks about his background, AI and music, the new partnership between Rapid7 and CSIT, the Cyber AI hub and more. More about the Cyber AI hub: The Cyber-AI Hub, hosted by CSIT, presents an exciting opportunity to develop exceptional research, skills and innovation across a range of cyber related themes and develop a talent pipeline of cyber security professionals with strong industry links. This new initiative, funded by the UK Government from the New Deal for Northern Ireland, will see a new Doctoral Training Programme, a hub for industry collaboration and skills development, bursaries for students to join Queen's MSc in Applied Cyber Security or Artificial Intelligence, as well as a report mapping the growth and development of the cyber industry in the region.

Career Journey Podcast
From a data science intern to an applied AI engineer: Akshay Gautam

Career Journey Podcast

Play Episode Listen Later Jun 7, 2024 83:45


In this episode, Akshay, who transitioned from a data science intern to an applied AI engineer, highlights the importance of setting actionable goals, systematized planning, and the role of personal background and family support in choosing his career path in machine learning over IoT. His story underlines the significance of understanding one's 'why' to drive ambition and maintain a balanced life. You can connect with Akshay on: Twitter: https://twitter.com/Gautam_A_k LinkedIn: https://www.linkedin.com/in/ak-gautam/ Git: https://github.com/Ak-Gautam/ Website: https://www.akshaygautam.me/#contact --- Support this podcast: https://podcasters.spotify.com/pod/show/vinodsharma/support

The Eldritch Lorecast
#140. Will the WotC Controversies Ever STOP!?

The Eldritch Lorecast

Play Episode Listen Later Jun 5, 2024 58:51


Wizards of the Coast publish a job listing for an AI Engineer, the new D&D Dungeon Master's Guide has its cover revealed, and we might have found an official name for the MCDM RPG. Email your questions to podcast@ghostfiregaming.com Ben: @TheBenByrne Dael: @dailydael James:  @JamesJHaeck Shawn: @shawnmerwin Editor:  @ZsDante Topics: 00:00 - Intro 04:44 - 5e DMG Covers 09:44 - WotC hiring AI Engineers 19:35 - Adam Bradford joins Fantasy Grounds 31:56 - D&D Show leaves Paramount+ 34:07 - D&D's controversial history 38:01 - AC or damage threshold?

Modern Web
Modern Web Podcast S12E07- Are you an AI Engineer? What is RAG? AI Implemented with Tracy Lee and Rob Ocel

Modern Web

Play Episode Listen Later May 30, 2024 36:50


Tracy Lee and Rob Ocel discuss their excitement for AI's industry impact and the ease of implementing RAG with databases and large datasets. Tracy also mentions upcoming tech conferences like City JS, Cascadia JS, and Render, emphasizing the value of attending in-person events. Sponsored by This Dot  Watch this episode on YouTube. Read more on our blog

CodeNewbie
S27:E7 - Tech and Art (Chris Immel)

CodeNewbie

Play Episode Listen Later May 15, 2024 36:03


Meet Chris Immel, AI Engineer and Digital Artist at Luminifera Projects. Chris shares how he works to create a symbiosis between software development and art and why he remains optimistic when it comes to the AI revolution. Show Links Partner with Dev & CodeNewbie! (sponsor) Chris' Instagram Chris' Website Chris' GitHub Chris' LinkedIn

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

We are reuniting for the 2nd AI UX demo day in SF on Apr 28. Sign up to demo here! And don't forget tickets for the AI Engineer World's Fair — for early birds who join before keynote announcements!About a year ago there was a lot of buzz around prompt engineering techniques to force structured output. Our friend Simon Willison tweeted a bunch of tips and tricks, but the most iconic one is Riley Goodside making it a matter of life or death:Guardrails (friend of the pod and AI Engineer speaker), Marvin (AI Engineer speaker), and jsonformer had also come out at the time. In June 2023, Jason Liu (today's guest!) open sourced his “OpenAI Function Call and Pydantic Integration Module”, now known as Instructor, which quickly turned prompt engineering black magic into a clean, developer-friendly SDK. A few months later, model providers started to add function calling capabilities to their APIs as well as structured outputs support like “JSON Mode”, which was announced at OpenAI Dev Day (see recap here). In just a handful of months, we went from threatening to kill grandmas to first-class support from the research labs. And yet, Instructor was still downloaded 150,000 times last month. Why?What Instructor looks likeInstructor patches your LLM provider SDKs to offer a new response_model option to which you can pass a structure defined in Pydantic. It currently supports OpenAI, Anthropic, Cohere, and a long tail of models through LiteLLM.What Instructor is forThere are three core use cases to Instructor:* Extracting structured data: Taking an input like an image of a receipt and extracting structured data from it, such as a list of checkout items with their prices, fees, and coupon codes.* Extracting graphs: Identifying nodes and edges in a given input to extract complex entities and their relationships. For example, extracting relationships between characters in a story or dependencies between tasks.* Query understanding: Defining a schema for an API call and using a language model to resolve a request into a more complex one that an embedding could not handle. For example, creating date intervals from queries like “what was the latest thing that happened this week?” to then pass onto a RAG system or similar.Jason called all these different ways of getting data from LLMs “typed responses”: taking strings and turning them into data structures. Structured outputs as a planning toolThe first wave of agents was all about open-ended iteration and planning, with projects like AutoGPT and BabyAGI. Models would come up with a possible list of steps, and start going down the list one by one. It's really easy for them to go down the wrong branch, or get stuck on a single step with no way to intervene.What if these planning steps were returned to us as DAGs using structured output, and then managed as workflows? This also makes it easy to better train model on how to create these plans, as they are much more structured than a bullet point list. Once you have this structure, each piece can be modified individually by different specialized models. You can read some of Jason's experiments here:While LLMs will keep improving (Llama3 just got released as we write this), having a consistent structure for the output will make it a lot easier to swap models in and out. Jason's overall message on how we can move from ReAct loops to more controllable Agent workflows mirrors the “Process” discussion from our Elicit episode:Watch the talkAs a bonus, here's Jason's talk from last year's AI Engineer Summit. He'll also be a speaker at this year's AI Engineer World's Fair!Timestamps* [00:00:00] Introductions* [00:02:23] Early experiments with Generative AI at StitchFix* [00:08:11] Design philosophy behind the Instructor library* [00:11:12] JSON Mode vs Function Calling* [00:12:30] Single vs parallel function calling* [00:14:00] How many functions is too many?* [00:17:39] How to evaluate function calling* [00:20:23] What is Instructor good for?* [00:22:42] The Evolution from Looping to Workflow in AI Engineering* [00:27:03] State of the AI Engineering Stack* [00:28:26] Why Instructor isn't VC backed* [00:31:15] Advice on Pursuing Open Source Projects and Consulting* [00:36:00] The Concept of High Agency and Its Importance* [00:42:44] Prompts as Code and the Structure of AI Inputs and Outputs* [00:44:20] The Emergence of AI Engineering as a Distinct FieldShow notes* Jason on the UWaterloo mafia* Jason on Twitter, LinkedIn, website* Instructor docs* Max Woolf on the potential of Structured Output* swyx on Elo vs Cost* Jason on Anthropic Function Calling* Jason on Rejections, Advice to Young People* Jason on Bad Startup Ideas* Jason on Prompts as Code* Rysana's inversion models* Bryan Bischof's episode* Hamel HusainTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:16]: Hello, we're back in the remote studio with Jason Liu from Instructor. Welcome Jason.Jason [00:00:21]: Hey there. Thanks for having me.Swyx [00:00:23]: Jason, you are extremely famous, so I don't know what I'm going to do introducing you, but you're one of the Waterloo clan. There's like this small cadre of you that's just completely dominating machine learning. Actually, can you list like Waterloo alums that you're like, you know, are just dominating and crushing it right now?Jason [00:00:39]: So like John from like Rysana is doing his inversion models, right? I know like Clive Chen from Waterloo. When I started the data science club, he was one of the guys who were like joining in and just like hanging out in the room. And now he was at Tesla working with Karpathy, now he's at OpenAI, you know.Swyx [00:00:56]: He's in my climbing club.Jason [00:00:58]: Oh, hell yeah. I haven't seen him in like six years now.Swyx [00:01:01]: To get in the social scene in San Francisco, you have to climb. So both in career and in rocks. So you started a data science club at Waterloo, we can talk about that, but then also spent five years at Stitch Fix as an MLE. You pioneered the use of OpenAI's LLMs to increase stylist efficiency. So you must have been like a very, very early user. This was like pretty early on.Jason [00:01:20]: Yeah, I mean, this was like GPT-3, okay. So we actually were using transformers at Stitch Fix before the GPT-3 model. So we were just using transformers for recommendation systems. At that time, I was very skeptical of transformers. I was like, why do we need all this infrastructure? We can just use like matrix factorization. When GPT-2 came out, I fine tuned my own GPT-2 to write like rap lyrics and I was like, okay, this is cute. Okay, I got to go back to my real job, right? Like who cares if I can write a rap lyric? When GPT-3 came out, again, I was very much like, why are we using like a post request to review every comment a person leaves? Like we can just use classical models. So I was very against language models for like the longest time. And then when ChatGPT came out, I basically just wrote a long apology letter to everyone at the company. I was like, hey guys, you know, I was very dismissive of some of this technology. I didn't think it would scale well, and I am wrong. This is incredible. And I immediately just transitioned to go from computer vision recommendation systems to LLMs. But funny enough, now that we have RAG, we're kind of going back to recommendation systems.Swyx [00:02:21]: Yeah, speaking of that, I think Alessio is going to bring up the next one.Alessio [00:02:23]: Yeah, I was going to say, we had Bryan Bischof from Hex on the podcast. Did you overlap at Stitch Fix?Jason [00:02:28]: Yeah, he was like one of my main users of the recommendation frameworks that I had built out at Stitch Fix.Alessio [00:02:32]: Yeah, we talked a lot about RecSys, so it makes sense.Swyx [00:02:36]: So now I have adopted that line, RAG is RecSys. And you know, if you're trying to reinvent new concepts, you should study RecSys first, because you're going to independently reinvent a lot of concepts. So your system was called Flight. It's a recommendation framework with over 80% adoption, servicing 350 million requests every day. Wasn't there something existing at Stitch Fix? Why did you have to write one from scratch?Jason [00:02:56]: No, so I think because at Stitch Fix, a lot of the machine learning engineers and data scientists were writing production code, sort of every team's systems were very bespoke. It's like, this team only needs to do like real time recommendations with small data. So they just have like a fast API app with some like pandas code. This other team has to do a lot more data. So they have some kind of like Spark job that does some batch ETL that does a recommendation. And so what happens is each team writes their code differently. And I have to come in and refactor their code. And I was like, oh man, I'm refactoring four different code bases, four different times. Wouldn't it be better if all the code quality was my fault? Let me just write this framework, force everyone else to use it. And now one person can maintain five different systems, rather than five teams having their own bespoke system. And so it was really a need of just sort of standardizing everything. And then once you do that, you can do observability across the entire pipeline and make large sweeping improvements in this infrastructure, right? If we notice that something is slow, we can detect it on the operator layer. Just hey, hey, like this team, you guys are doing this operation is lowering our latency by like 30%. If you just optimize your Python code here, we can probably make an extra million dollars. So let's jump on a call and figure this out. And then a lot of it was doing all this observability work to figure out what the heck is going on and optimize this system from not only just a code perspective, sort of like harassingly or against saying like, we need to add caching here. We're doing duplicated work here. Let's go clean up the systems. Yep.Swyx [00:04:22]: Got it. One more system that I'm interested in finding out more about is your similarity search system using Clip and GPT-3 embeddings and FIASS, where you saved over $50 million in annual revenue. So of course they all gave all that to you, right?Jason [00:04:34]: No, no, no. I mean, it's not going up and down, but you know, I got a little bit, so I'm pretty happy about that. But there, you know, that was when we were doing fine tuning like ResNets to do image classification. And so a lot of it was given an image, if we could predict the different attributes we have in the merchandising and we can predict the text embeddings of the comments, then we can kind of build a image vector or image embedding that can capture both descriptions of the clothing and sales of the clothing. And then we would use these additional vectors to augment our recommendation system. And so with the recommendation system really was just around like, what are similar items? What are complimentary items? What are items that you would wear in a single outfit? And being able to say on a product page, let me show you like 15, 20 more things. And then what we found was like, hey, when you turn that on, you make a bunch of money.Swyx [00:05:23]: Yeah. So, okay. So you didn't actually use GPT-3 embeddings. You fine tuned your own? Because I was surprised that GPT-3 worked off the shelf.Jason [00:05:30]: Because I mean, at this point we would have 3 million pieces of inventory over like a billion interactions between users and clothes. So any kind of fine tuning would definitely outperform like some off the shelf model.Swyx [00:05:41]: Cool. I'm about to move on from Stitch Fix, but you know, any other like fun stories from the Stitch Fix days that you want to cover?Jason [00:05:46]: No, I think that's basically it. I mean, the biggest one really was the fact that I think for just four years, I was so bearish on language models and just NLP in general. I'm just like, none of this really works. Like, why would I spend time focusing on this? I got to go do the thing that makes money, recommendations, bounding boxes, image classification. Yeah. Now I'm like prompting an image model. I was like, oh man, I was wrong.Swyx [00:06:06]: So my Stitch Fix question would be, you know, I think you have a bit of a drip and I don't, you know, my primary wardrobe is free startup conference t-shirts. Should more technology brothers be using Stitch Fix? What's your fashion advice?Jason [00:06:19]: Oh man, I mean, I'm not a user of Stitch Fix, right? It's like, I enjoy going out and like touching things and putting things on and trying them on. Right. I think Stitch Fix is a place where you kind of go because you want the work offloaded. I really love the clothing I buy where I have to like, when I land in Japan, I'm doing like a 45 minute walk up a giant hill to find this weird denim shop. That's the stuff that really excites me. But I think the bigger thing that's really captured is this idea that narrative matters a lot to human beings. Okay. And I think the recommendation system, that's really hard to capture. It's easy to use AI to sell like a $20 shirt, but it's really hard for AI to sell like a $500 shirt. But people are buying $500 shirts, you know what I mean? There's definitely something that we can't really capture just yet that we probably will figure out how to in the future.Swyx [00:07:07]: Well, it'll probably output in JSON, which is what we're going to turn to next. Then you went on a sabbatical to South Park Commons in New York, which is unusual because it's based on USF.Jason [00:07:17]: Yeah. So basically in 2020, really, I was enjoying working a lot as I was like building a lot of stuff. This is where we were making like the tens of millions of dollars doing stuff. And then I had a hand injury. And so I really couldn't code anymore for like a year, two years. And so I kind of took sort of half of it as medical leave, the other half I became more of like a tech lead, just like making sure the systems were like lights were on. And then when I went to New York, I spent some time there and kind of just like wound down the tech work, you know, did some pottery, did some jujitsu. And after GPD came out, I was like, oh, I clearly need to figure out what is going on here because something feels very magical. I don't understand it. So I spent basically like five months just prompting and playing around with stuff. And then afterwards, it was just my startup friends going like, hey, Jason, you know, my investors want us to have an AI strategy. Can you help us out? And it just snowballed and bore more and more until I was making this my full time job. Yeah, got it.Swyx [00:08:11]: You know, you had YouTube University and a journaling app, you know, a bunch of other explorations. But it seems like the most productive or the best known thing that came out of your time there was Instructor. Yeah.Jason [00:08:22]: Written on the bullet train in Japan. I think at some point, you know, tools like Guardrails and Marvin came out. Those are kind of tools that I use XML and Pytantic to get structured data out. But they really were doing things sort of in the prompt. And these are built with sort of the instruct models in mind. Like I'd already done that in the past. Right. At Stitch Fix, you know, one of the things we did was we would take a request note and turn that into a JSON object that we would use to send it to our search engine. Right. So if you said like, I want to, you know, skinny jeans that were this size, that would turn into JSON that we would send to our internal search APIs. But it always felt kind of gross. A lot of it is just like you read the JSON, you like parse it, you make sure the names are strings and ages are numbers and you do all this like messy stuff. But when function calling came out, it was very much sort of a new way of doing things. Right. Function calling lets you define the schema separate from the data and the instructions. And what this meant was you can kind of have a lot more complex schemas and just map them in Pytantic. And then you can just keep those very separate. And then once you add like methods, you can add validators and all that kind of stuff. The one thing I really had with a lot of these libraries, though, was it was doing a lot of the string formatting themselves, which was fine when it was the instruction to models. You just have a string. But when you have these new chat models, you have these chat messages. And I just didn't really feel like not being able to access that for the developer was sort of a good benefit that they would get. And so I just said, let me write like the most simple SDK around the OpenAI SDK, a simple wrapper on the SDK, just handle the response model a bit and kind of think of myself more like requests than actual framework that people can use. And so the goal is like, hey, like this is something that you can use to build your own framework. But let me just do all the boring stuff that nobody really wants to do. People want to build their own frameworks, but people don't want to build like JSON parsing.Swyx [00:10:08]: And the retrying and all that other stuff.Jason [00:10:10]: Yeah.Swyx [00:10:11]: Right. We had this a little bit of this discussion before the show, but like that design principle of going for being requests rather than being Django. Yeah. So what inspires you there? This has come from a lot of prior pain. Are there other open source projects that inspired your philosophy here? Yeah.Jason [00:10:25]: I mean, I think it would be requests, right? Like, I think it is just the obvious thing you install. If you were going to go make HTTP requests in Python, you would obviously import requests. Maybe if you want to do more async work, there's like future tools, but you don't really even think about installing it. And when you do install it, you don't think of it as like, oh, this is a requests app. Right? Like, no, this is just Python. The bigger question is, like, a lot of people ask questions like, oh, why isn't requests like in the standard library? Yeah. That's how I want my library to feel, right? It's like, oh, if you're going to use the LLM SDKs, you're obviously going to install instructor. And then I think the second question would be like, oh, like, how come instructor doesn't just go into OpenAI, go into Anthropic? Like, if that's the conversation we're having, like, that's where I feel like I've succeeded. Yeah. It's like, yeah, so standard, you may as well just have it in the base libraries.Alessio [00:11:12]: And the shape of the request stayed the same, but initially function calling was maybe equal structure outputs for a lot of people. I think now the models also support like JSON mode and some of these things and, you know, return JSON or my grandma is going to die. All of that stuff is maybe to decide how have you seen that evolution? Like maybe what's the metagame today? Should people just forget about function calling for structure outputs or when is structure output like JSON mode the best versus not? We'd love to get any thoughts given that you do this every day.Jason [00:11:42]: Yeah, I would almost say these are like different implementations of like the real thing we care about is the fact that now we have typed responses to language models. And because we have that type response, my IDE is a little bit happier. I get autocomplete. If I'm using the response wrong, there's a little red squiggly line. Like those are the things I care about in terms of whether or not like JSON mode is better. I usually think it's almost worse unless you want to spend less money on like the prompt tokens that the function call represents, primarily because with JSON mode, you don't actually specify the schema. So sure, like JSON load works, but really, I care a lot more than just the fact that it is JSON, right? I think function calling gives you a tool to specify the fact like, okay, this is a list of objects that I want and each object has a name or an age and I want the age to be above zero and I want to make sure it's parsed correctly. That's where kind of function calling really shines.Alessio [00:12:30]: Any thoughts on single versus parallel function calling? So I did a presentation at our AI in Action Discord channel, and obviously showcase instructor. One of the big things that we have before with single function calling is like when you're trying to extract lists, you have to make these funky like properties that are lists to then actually return all the objects. How do you see the hack being put on the developer's plate versus like more of this stuff just getting better in the model? And I know you tweeted recently about Anthropic, for example, you know, some lists are not lists or strings and there's like all of these discrepancies.Jason [00:13:04]: I almost would prefer it if it was always a single function call. Obviously, there is like the agents workflows that, you know, Instructor doesn't really support that well, but are things that, you know, ought to be done, right? Like you could define, I think maybe like 50 or 60 different functions in a single API call. And, you know, if it was like get the weather or turn the lights on or do something else, it makes a lot of sense to have these parallel function calls. But in terms of an extraction workflow, I definitely think it's probably more helpful to have everything be a single schema, right? Just because you can sort of specify relationships between these entities that you can't do in a parallel function calling, you can have a single chain of thought before you generate a list of results. Like there's like small like API differences, right? Where if it's for parallel function calling, if you do one, like again, really, I really care about how the SDK looks and says, okay, do I always return a list of functions or do you just want to have the actual object back out and you want to have like auto complete over that object? Interesting.Alessio [00:14:00]: What's kind of the cap for like how many function definitions you can put in where it still works well? Do you have any sense on that?Jason [00:14:07]: I mean, for the most part, I haven't really had a need to do anything that's more than six or seven different functions. I think in the documentation, they support way more. I don't even know if there's any good evals that have over like two dozen function calls. I think if you're running into issues where you have like 20 or 50 or 60 function calls, I think you're much better having those specifications saved in a vector database and then have them be retrieved, right? So if there are 30 tools, like you should basically be like ranking them and then using the top K to do selection a little bit better rather than just like shoving like 60 functions into a single. Yeah.Swyx [00:14:40]: Yeah. Well, I mean, so I think this is relevant now because previously I think context limits prevented you from having more than a dozen tools anyway. And now that we have million token context windows, you know, a cloud recently with their new function calling release said they can handle over 250 tools, which is insane to me. That's, that's a lot. You're saying like, you know, you don't think there's many people doing that. I think anyone with a sort of agent like platform where you have a bunch of connectors, they wouldn't run into that problem. Probably you're right that they should use a vector database and kind of rag their tools. I know Zapier has like a few thousand, like 8,000, 9,000 connectors that, you know, obviously don't fit anywhere. So yeah, I mean, I think that would be it unless you need some kind of intelligence that chains things together, which is, I think what Alessio is coming back to, right? Like there's this trend about parallel function calling. I don't know what I think about that. Anthropic's version was, I think they use multiple tools in sequence, but they're not in parallel. I haven't explored this at all. I'm just like throwing this open to you as to like, what do you think about all these new things? Yeah.Jason [00:15:40]: It's like, you know, do we assume that all function calls could happen in any order? In which case, like we either can assume that, or we can assume that like things need to happen in some kind of sequence as a DAG, right? But if it's a DAG, really that's just like one JSON object that is the entire DAG rather than going like, okay, the order of the function that return don't matter. That's definitely just not true in practice, right? Like if I have a thing that's like turn the lights on, like unplug the power, and then like turn the toaster on or something like the order doesn't matter. And it's unclear how well you can describe the importance of that reasoning to a language model yet. I mean, I'm sure you can do it with like good enough prompting, but I just haven't any use cases where the function sequence really matters. Yeah.Alessio [00:16:18]: To me, the most interesting thing is the models are better at picking than your ranking is usually. Like I'm incubating a company around system integration. For example, with one system, there are like 780 endpoints. And if you're actually trying to do vector similarity, it's not that good because the people that wrote the specs didn't have in mind making them like semantically apart. You know, they're kind of like, oh, create this, create this, create this. Versus when you give it to a model, like in Opus, you put them all, it's quite good at picking which ones you should actually run. And I'm curious to see if the model providers actually care about some of those workflows or if the agent companies are actually going to build very good rankers to kind of fill that gap.Jason [00:16:58]: Yeah. My money is on the rankers because you can do those so easily, right? You could just say, well, given the embeddings of my search query and the embeddings of the description, I can just train XGBoost and just make sure that I have very high like MRR, which is like mean reciprocal rank. And so the only objective is to make sure that the tools you use are in the top end filtered. Like that feels super straightforward and you don't have to actually figure out how to fine tune a language model to do tool selection anymore. Yeah. I definitely think that's the case because for the most part, I imagine you either have like less than three tools or more than a thousand. I don't know what kind of company said, oh, thank God we only have like 185 tools and this works perfectly, right? That's right.Alessio [00:17:39]: And before we maybe move on just from this, it was interesting to me, you retweeted this thing about Anthropic function calling and it was Joshua Brown's retweeting some benchmark that it's like, oh my God, Anthropic function calling so good. And then you retweeted it and then you tweeted it later and it's like, it's actually not that good. What's your flow? How do you actually test these things? Because obviously the benchmarks are lying, right? Because the benchmarks say it's good and you said it's bad and I trust you more than the benchmark. How do you think about that? And then how do you evolve it over time?Jason [00:18:09]: It's mostly just client data. I actually have been mostly busy with enough client work that I haven't been able to reproduce public benchmarks. And so I can't even share some of the results in Anthropic. I would just say like in production, we have some pretty interesting schemas where it's like iteratively building lists where we're doing like updates of lists, like we're doing in place updates. So like upserts and inserts. And in those situations we're like, oh yeah, we have a bunch of different parsing errors. Numbers are being returned to strings. We were expecting lists of objects, but we're getting strings that are like the strings of JSON, right? So we had to call JSON parse on individual elements. Overall, I'm like super happy with the Anthropic models compared to the OpenAI models. Sonnet is very cost effective. Haiku is in function calling, it's actually better, but I think they just had to sort of file down the edges a little bit where like our tests pass, but then we actually deployed a production. We got half a percent of traffic having issues where if you ask for JSON, it'll try to talk to you. Or if you use function calling, you know, we'll have like a parse error. And so I think that definitely gonna be things that are fixed in like the upcoming weeks. But in terms of like the reasoning capabilities, man, it's hard to beat like 70% cost reduction, especially when you're building consumer applications, right? If you're building something for consultants or private equity, like you're charging $400, it doesn't really matter if it's a dollar or $2. But for consumer apps, it makes products viable. If you can go from four to Sonnet, you might actually be able to price it better. Yeah.Swyx [00:19:31]: I had this chart about the ELO versus the cost of all the models. And you could put trend graphs on each of those things about like, you know, higher ELO equals higher cost, except for Haiku. Haiku kind of just broke the lines, or the ISO ELOs, if you want to call it. Cool. Before we go too far into your opinions on just the overall ecosystem, I want to make sure that we map out the surface area of Instructor. I would say that most people would be familiar with Instructor from your talks and your tweets and all that. You had the number one talk from the AI Engineer Summit.Jason [00:20:03]: Two Liu. Jason Liu and Jerry Liu. Yeah.Swyx [00:20:06]: Yeah. Until I actually went through your cookbook, I didn't realize the surface area. How would you categorize the use cases? You have LLM self-critique, you have knowledge graphs in here, you have PII data sanitation. How do you characterize to people what is the surface area of Instructor? Yeah.Jason [00:20:23]: This is the part that feels crazy because really the difference is LLMs give you strings and Instructor gives you data structures. And once you get data structures, again, you can do every lead code problem you ever thought of. Right. And so I think there's a couple of really common applications. The first one obviously is extracting structured data. This is just be, okay, well, like I want to put in an image of a receipt. I want to give it back out a list of checkout items with a price and a fee and a coupon code or whatever. That's one application. Another application really is around extracting graphs out. So one of the things we found out about these language models is that not only can you define nodes, it's really good at figuring out what are nodes and what are edges. And so we have a bunch of examples where, you know, not only do I extract that, you know, this happens after that, but also like, okay, these two are dependencies of another task. And you can do, you know, extracting complex entities that have relationships. Given a story, for example, you could extract relationships of families across different characters. This can all be done by defining a graph. The last really big application really is just around query understanding. The idea is that like any API call has some schema and if you can define that schema ahead of time, you can use a language model to resolve a request into a much more complex request. One that an embedding could not do. So for example, I have a really popular post called like rag is more than embeddings. And effectively, you know, if I have a question like this, what was the latest thing that happened this week? That embeds to nothing, right? But really like that query should just be like select all data where the date time is between today and today minus seven days, right? What if I said, how did my writing change between this month and last month? Again, embeddings would do nothing. But really, if you could do like a group by over the month and a summarize, then you could again like do something much more interesting. And so this really just calls out the fact that embeddings really is kind of like the lowest hanging fruit. And using something like instructor can really help produce a data structure. And then you can just use your computer science and reason about the data structure. Maybe you say, okay, well, I'm going to produce a graph where I want to group by each month and then summarize them jointly. You can do that if you know how to define this data structure. Yeah.Swyx [00:22:29]: So you kind of run up against like the LangChains of the world that used to have that. They still do have like the self querying, I think they used to call it when we had Harrison on in our episode. How do you see yourself interacting with the other LLM frameworks in the ecosystem? Yeah.Jason [00:22:42]: I mean, if they use instructor, I think that's totally cool. Again, it's like, it's just Python, right? It's like asking like, oh, how does like Django interact with requests? Well, you just might make a request.get in a Django app, right? But no one would say, I like went off of Django because I'm using requests now. They should be ideally like sort of the wrong comparison in terms of especially like the agent workflows. I think the real goal for me is to go down like the LLM compiler route, which is instead of doing like a react type reasoning loop. I think my belief is that we should be using like workflows. If we do this, then we always have a request and a complete workflow. We can fine tune a model that has a better workflow. Whereas it's hard to think about like, how do you fine tune a better react loop? Yeah. You always train it to have less looping, in which case like you wanted to get the right answer the first time, in which case it was a workflow to begin with, right?Swyx [00:23:31]: Can you define workflow? Because I used to work at a workflow company, but I'm not sure this is a good term for everybody.Jason [00:23:36]: I'm thinking workflow in terms of like the prefect Zapier workflow. Like I want to build a DAG, I want you to tell me what the nodes and edges are. And then maybe the edges are also put in with AI. But the idea is that like, I want to be able to present you the entire plan and then ask you to fix things as I execute it, rather than going like, hey, I couldn't parse the JSON, so I'm going to try again. I couldn't parse the JSON, I'm going to try again. And then next thing you know, you spent like $2 on opening AI credits, right? Yeah. Whereas with the plan, you can just say, oh, the edge between node like X and Y does not run. Let me just iteratively try to fix that, fix the one that sticks, go on to the next component. And obviously you can get into a world where if you have enough examples of the nodes X and Y, maybe you can use like a vector database to find a good few shot examples. You can do a lot if you sort of break down the problem into that workflow and executing that workflow, rather than looping and hoping the reasoning is good enough to generate the correct output. Yeah.Swyx [00:24:35]: You know, I've been hammering on Devon a lot. I got access a couple of weeks ago. And obviously for simple tasks, it does well. For the complicated, like more than 10, 20 hour tasks, I can see- That's a crazy comparison.Jason [00:24:47]: We used to talk about like three, four loops. Only once it gets to like hour tasks, it's hard.Swyx [00:24:54]: Yeah. Less than an hour, there's nothing.Jason [00:24:57]: That's crazy.Swyx [00:24:58]: I mean, okay. Maybe my goalposts have shifted. I don't know. That's incredible.Jason [00:25:02]: Yeah. No, no. I'm like sub one minute executions. Like the fact that you're talking about 10 hours is incredible.Swyx [00:25:08]: I think it's a spectrum. I think I'm going to say this every single time I bring up Devon. Let's not reward them for taking longer to do things. Do you know what I mean? I think that's a metric that is easily abusable.Jason [00:25:18]: Sure. Yeah. You know what I mean? But I think if you can monotonically increase the success probability over an hour, that's winning to me. Right? Like obviously if you run an hour and you've made no progress. Like I think when we were in like auto GBT land, there was that one example where it's like, I wanted it to like buy me a bicycle overnight. I spent $7 on credit and I never found the bicycle. Yeah.Swyx [00:25:41]: Yeah. Right. I wonder if you'll be able to purchase a bicycle. Because it actually can do things in real world. It just needs to suspend to you for off and stuff. The point I was trying to make was that I can see it turning plans. I think one of the agents loopholes or one of the things that is a real barrier for agents is LLMs really like to get stuck into a lane. And you know what you're talking about, what I've seen Devon do is it gets stuck in a lane and it will just kind of change plans based on the performance of the plan itself. And it's kind of cool.Jason [00:26:05]: I feel like we've gone too much in the looping route and I think a lot of more plans and like DAGs and data structures are probably going to come back to help fill in some holes. Yeah.Alessio [00:26:14]: What do you think of the interface to that? Do you see it's like an existing state machine kind of thing that connects to the LLMs, the traditional DAG players? Do you think we need something new for like AI DAGs?Jason [00:26:25]: Yeah. I mean, I think that the hard part is going to be describing visually the fact that this DAG can also change over time and it should still be allowed to be fuzzy. I think in like mathematics, we have like plate diagrams and like Markov chain diagrams and like recurrent states and all that. Some of that might come into this workflow world. But to be honest, I'm not too sure. I think right now, the first steps are just how do we take this DAG idea and break it down to modular components that we can like prompt better, have few shot examples for and ultimately like fine tune against. But in terms of even the UI, it's hard to say what it will likely win. I think, you know, people like Prefect and Zapier have a pretty good shot at doing a good job.Swyx [00:27:03]: Yeah. You seem to use Prefect a lot. I actually worked at a Prefect competitor at Temporal and I'm also very familiar with Dagster. What else would you call out as like particularly interesting in the AI engineering stack?Jason [00:27:13]: Man, I almost use nothing. I just use Cursor and like PyTests. Okay. I think that's basically it. You know, a lot of the observability companies have... The more observability companies I've tried, the more I just use Postgres.Swyx [00:27:29]: Really? Okay. Postgres for observability?Jason [00:27:32]: But the issue really is the fact that these observability companies isn't actually doing observability for the system. It's just doing the LLM thing. Like I still end up using like Datadog or like, you know, Sentry to do like latency. And so I just have those systems handle it. And then the like prompt in, prompt out, latency, token costs. I just put that in like a Postgres table now.Swyx [00:27:51]: So you don't need like 20 funded startups building LLM ops? Yeah.Jason [00:27:55]: But I'm also like an old, tired guy. You know what I mean? Like I think because of my background, it's like, yeah, like the Python stuff, I'll write myself. But you know, I will also just use Vercel happily. Yeah. Yeah. So I'm not really into that world of tooling, whereas I think, you know, I spent three good years building observability tools for recommendation systems. And I was like, oh, compared to that, Instructor is just one call. I just have to put time star, time and then count the prompt token, right? Because I'm not doing a very complex looping behavior. I'm doing mostly workflows and extraction. Yeah.Swyx [00:28:26]: I mean, while we're on this topic, we'll just kind of get this out of the way. You famously have decided to not be a venture backed company. You want to do the consulting route. The obvious route for someone as successful as Instructor is like, oh, here's hosted Instructor with all tooling. Yeah. You just said you had a whole bunch of experience building observability tooling. You have the perfect background to do this and you're not.Jason [00:28:43]: Yeah. Isn't that sick? I think that's sick.Swyx [00:28:44]: I mean, I know why, because you want to go free dive.Jason [00:28:47]: Yeah. Yeah. Because I think there's two things. Right. Well, one, if I tell myself I want to build requests, requests is not a venture backed startup. Right. I mean, one could argue whether or not Postman is, but I think for the most part, it's like having worked so much, I'm more interested in looking at how systems are being applied and just having access to the most interesting data. And I think I can do that more through a consulting business where I can come in and go, oh, you want to build perfect memory. You want to build an agent. You want to build like automations over construction or like insurance and supply chain, or like you want to handle writing private equity, mergers and acquisitions reports based off of user interviews. Those things are super fun. Whereas like maintaining the library, I think is mostly just kind of like a utility that I try to keep up, especially because if it's not venture backed, I have no reason to sort of go down the route of like trying to get a thousand integrations. In my mind, I just go like, okay, 98% of the people use open AI. I'll support that. And if someone contributes another platform, that's great. I'll merge it in. Yeah.Swyx [00:29:45]: I mean, you only added Anthropic support this year. Yeah.Jason [00:29:47]: Yeah. You couldn't even get an API key until like this year, right? That's true. Okay. If I add it like last year, I was trying to like double the code base to service, you know, half a percent of all downloads.Swyx [00:29:58]: Do you think the market share will shift a lot now that Anthropic has like a very, very competitive offering?Jason [00:30:02]: I think it's still hard to get API access. I don't know if it's fully GA now, if it's GA, if you can get a commercial access really easily.Alessio [00:30:12]: I got commercial after like two weeks to reach out to their sales team.Jason [00:30:14]: Okay.Alessio [00:30:15]: Yeah.Swyx [00:30:16]: Two weeks. It's not too bad. There's a call list here. And then anytime you run into rate limits, just like ping one of the Anthropic staff members.Jason [00:30:21]: Yeah. Then maybe we need to like cut that part out. So I don't need to like, you know, spread false news.Swyx [00:30:25]: No, it's cool. It's cool.Jason [00:30:26]: But it's a common question. Yeah. Surely just from the price perspective, it's going to make a lot of sense. Like if you are a business, you should totally consider like Sonnet, right? Like the cost savings is just going to justify it if you actually are doing things at volume. And yeah, I think the SDK is like pretty good. Back to the instructor thing. I just don't think it's a billion dollar company. And I think if I raise money, the first question is going to be like, how are you going to get a billion dollar company? And I would just go like, man, like if I make a million dollars as a consultant, I'm super happy. I'm like more than ecstatic. I can have like a small staff of like three people. It's fun. And I think a lot of my happiest founder friends are those who like raised a tiny seed round, became profitable. They're making like 70, 60, 70, like MRR, 70,000 MRR and they're like, we don't even need to raise the seed round. Let's just keep it like between me and my co-founder, we'll go traveling and it'll be a great time. I think it's a lot of fun.Alessio [00:31:15]: Yeah. like say LLMs / AI and they build some open source stuff and it's like I should just raise money and do this and I tell people a lot it's like look you can make a lot more money doing something else than doing a startup like most people that do a company could make a lot more money just working somewhere else than the company itself do you have any advice for folks that are maybe in a similar situation they're trying to decide oh should I stay in my like high paid FAANG job and just tweet this on the side and do this on github should I go be a consultant like being a consultant seems like a lot of work so you got to talk to all these people you know there's a lot to unpackJason [00:31:54]: I think the open source thing is just like well I'm just doing it purely for fun and I'm doing it because I think I'm right but part of being right is the fact that it's not a venture backed startup like I think I'm right because this is all you need right so I think a part of the philosophy is the fact that all you need is a very sharp blade to sort of do your work and you don't actually need to build like a big enterprise so that's one thing I think the other thing too that I've kind of been thinking around just because I have a lot of friends at google that want to leave right now it's like man like what we lack is not money or skill like what we lack is courage you should like you just have to do this a hard thing and you have to do it scared anyways right in terms of like whether or not you do want to do a founder I think that's just a matter of optionality but I definitely recognize that the like expected value of being a founder is still quite low it is right I know as many founder breakups and as I know friends who raised a seed round this year right like that is like the reality and like you know even in from that perspective it's been tough where it's like oh man like a lot of incubators want you to have co-founders now you spend half the time like fundraising and then trying to like meet co-founders and find co-founders rather than building the thing this is a lot of time spent out doing uh things I'm not really good at. I do think there's a rising trend in solo founding yeah.Swyx [00:33:06]: You know I am a solo I think that something like 30 percent of like I forget what the exact status something like 30 percent of starters that make it to like series B or something actually are solo founder I feel like this must have co-founder idea mostly comes from YC and most everyone else copies it and then plenty of companies break up over co-founderJason [00:33:27]: Yeah and I bet it would be like I wonder how much of it is the people who don't have that much like and I hope this is not a diss to anybody but it's like you sort of you go through the incubator route because you don't have like the social equity you would need is just sort of like send an email to Sequoia and be like hey I'm going on this ride you want a ticket on the rocket ship right like that's very hard to sell my message if I was to raise money is like you've seen my twitter my life is sick I've decided to make it much worse by being a founder because this is something I have to do so do you want to come along otherwise I want to fund it myself like if I can't say that like I don't need the money because I can like handle payroll and like hire an intern and get an assistant like that's all fine but I really don't want to go back to meta I want to like get two years to like try to find a problem we're solving that feels like a bad timeAlessio [00:34:12]: Yeah Jason is like I wear a YSL jacket on stage at AI Engineer Summit I don't need your accelerator moneyJason [00:34:18]: And boots, you don't forget the boots. But I think that is a part of it right I think it is just like optionality and also just like I'm a lot older now I think 22 year old Jason would have been probably too scared and now I'm like too wise but I think it's a matter of like oh if you raise money you have to have a plan of spending it and I'm just not that creative with spending that much money yeah I mean to be clear you just celebrated your 30th birthday happy birthday yeah it's awesome so next week a lot older is relative to some some of the folks I think seeing on the career tipsAlessio [00:34:48]: I think Swix had a great post about are you too old to get into AI I saw one of your tweets in January 23 you applied to like Figma, Notion, Cohere, Anthropic and all of them rejected you because you didn't have enough LLM experience I think at that time it would be easy for a lot of people to say oh I kind of missed the boat you know I'm too late not gonna make it you know any advice for people that feel like thatJason [00:35:14]: Like the biggest learning here is actually from a lot of folks in jiu-jitsu they're like oh man like is it too late to start jiu-jitsu like I'll join jiu-jitsu once I get in more shape right it's like there's a lot of like excuses and then you say oh like why should I start now I'll be like 45 by the time I'm any good and say well you'll be 45 anyways like time is passing like if you don't start now you start tomorrow you're just like one more day behind if you're worried about being behind like today is like the soonest you can start right and so you got to recognize that like maybe you just don't want it and that's fine too like if you wanted you would have started I think a lot of these people again probably think of things on a too short time horizon but again you know you're gonna be old anyways you may as well just start now you knowSwyx [00:35:55]: One more thing on I guess the um career advice slash sort of vlogging you always go viral for this post that you wrote on advice to young people and the lies you tell yourself oh yeah yeah you said you were writing it for your sister.Jason [00:36:05]: She was like bummed out about going to college and like stressing about jobs and I was like oh and I really want to hear okay and I just kind of like text-to-sweep the whole thing it's crazy it's got like 50,000 views like I'm mind I mean your average tweet has more but that thing is like a 30-minute read nowSwyx [00:36:26]: So there's lots of stuff here which I agree with I you know I'm also of occasionally indulge in the sort of life reflection phase there's the how to be lucky there's the how to have high agency I feel like the agency thing is always a trend in sf or just in tech circles how do you define having high agencyJason [00:36:42]: I'm almost like past the high agency phase now now my biggest concern is like okay the agency is just like the norm of the vector what also matters is the direction right it's like how pure is the shot yeah I mean I think agency is just a matter of like having courage and doing the thing that's scary right you know if people want to go rock climbing it's like do you decide you want to go rock climbing then you show up to the gym you rent some shoes and you just fall 40 times or do you go like oh like I'm actually more intelligent let me go research the kind of shoes that I want okay like there's flatter shoes and more inclined shoes like which one should I get okay let me go order the shoes on Amazon I'll come back in three days like oh it's a little bit too tight maybe it's too aggressive I'm only a beginner let me go change no I think the higher agent person just like goes and like falls down 20 times right yeah I think the higher agency person is more focused on like process metrics versus outcome metrics right like from pottery like one thing I learned was if you want to be good at pottery you shouldn't count like the number of cups or bowls you make you should just weigh the amount of clay you use right like the successful person says oh I went through 100 pounds of clay right the less agency was like oh I've made six cups and then after I made six cups like there's not really what are you what do you do next no just pounds of clay pounds of clay same with the work here right so you just got to write the tweets like make the commits contribute open source like write the documentation there's no real outcome it's just a process and if you love that process you just get really good at the thing you're doingSwyx [00:38:04]: yeah so just to push back on this because obviously I mostly agree how would you design performance review systems because you were effectively saying we can count lines of code for developers rightJason [00:38:15]: I don't think that would be the actual like I think if you make that an outcome like I can just expand a for loop right I think okay so for performance review this is interesting because I've mostly thought of it from the perspective of science and not engineering I've been running a lot of engineering stand-ups primarily because there's not really that many machine learning folks the process outcome is like experiments and ideas right like if you think about outcome is what you might want to think about an outcome is oh I want to improve the revenue or whatnot but that's really hard but if you're someone who is going out like okay like this week I want to come up with like three or four experiments I might move the needle okay nothing worked to them they might think oh nothing worked like I suck but to me it's like wow you've closed off all these other possible avenues for like research like you're gonna get to the place that you're gonna figure out that direction really soon there's no way you try 30 different things and none of them work usually like 10 of them work five of them work really well two of them work really really well and one thing was like the nail in the head so agency lets you sort of capture the volume of experiments and like experience lets you figure out like oh that other half it's not worth doing right I think experience is going like half these prompting papers don't make any sense just use chain of thought and just you know use a for loop that's basically right it's like usually performance for me is around like how many experiments are you running how oftentimes are you trying.Alessio [00:39:32]: When do you give up on an experiment because a StitchFix you kind of give up on language models I guess in a way as a tool to use and then maybe the tools got better you were right at the time and then the tool improved I think there are similar paths in my engineering career where I try one approach and at the time it doesn't work and then the thing changes but then I kind of soured on that approach and I don't go back to it soonJason [00:39:51]: I see yeah how do you think about that loop so usually when I'm coaching folks and as they say like oh these things don't work I'm not going to pursue them in the future like one of the big things like hey the negative result is a result and this is something worth documenting like this is an academia like if it's negative you don't just like not publish right but then like what do you actually write down like what you should write down is like here are the conditions this is the inputs and the outputs we tried the experiment on and then one thing that's really valuable is basically writing down under what conditions would I revisit these experiments these things don't work because of what we had at the time if someone is reading this two years from now under what conditions will we try again that's really hard but again that's like another skill you kind of learn right it's like you do go back and you do experiments you figure out why it works now I think a lot of it here is just like scaling worked yeah rap lyrics you know that was because I did not have high enough quality data if we phase shift and say okay you don't even need training data oh great then it might just work a different domainAlessio [00:40:48]: Do you have anything in your list that is like it doesn't work now but I want to try it again later? Something that people should maybe keep in mind you know people always like agi when you know when are you going to know the agi is here maybe it's less than that but any stuff that you tried recently that didn't work thatJason [00:41:01]: You think will get there I mean I think the personal assistance and the writing I've shown to myself it's just not good enough yet so I hired a writer and I hired a personal assistant so now I'm gonna basically like work with these people until I figure out like what I can actually like automate and what are like the reproducible steps but like I think the experiment for me is like I'm gonna go pay a person like thousand dollars a month that helped me improve my life and then let me get them to help me figure like what are the components and how do I actually modularize something to get it to work because it's not just like a lot gmail calendar and like notion it's a little bit more complicated than that but we just don't know what that is yet those are two sort of systems that I wish gb4 or opus was actually good enough to just write me an essay but most of the essays are still pretty badSwyx [00:41:44]: yeah I would say you know on the personal assistance side Lindy is probably the one I've seen the most flow was at a speaker at the summit I don't know if you've checked it out or any other sort of agents assistant startupJason [00:41:54]: Not recently I haven't tried lindy they were not ga last time I was considering it yeah yeah a lot of it now it's like oh like really what I want you to do is take a look at all of my meetings and like write like a really good weekly summary email for my clients to remind them that I'm like you know thinking of them and like working for them right or it's like I want you to notice that like my monday is like way too packed and like block out more time and also like email the people to do the reschedule and then try to opt in to move them around and then I want you to say oh jason should have like a 15 minute prep break after form back to back those are things that now I know I can prompt them in but can it do it well like before I didn't even know that's what I wanted to prompt for us defragging a calendar and adding break so I can like eat lunch yeah that's the AGI test yeah exactly compassion right I think one thing that yeah we didn't touch on it before butAlessio [00:42:44]: I think was interesting you had this tweet a while ago about prompts should be code and then there were a lot of companies trying to build prompt engineering tooling kind of trying to turn the prompt into a more structured thing what's your thought today now you want to turn the thinking into DAGs like do prompts should still be code any updated ideasJason [00:43:04]: It's the same thing right I think you know with Instructor it is very much like the output model is defined as a code object that code object is sent to the LLM and in return you get a data structure so the outputs of these models I think should also be code objects and the inputs somewhat should be code objects but I think the one thing that instructor tries to do is separate instruction data and the types of the output and beyond that I really just think that most of it should be still like managed pretty closely to the developer like so much of is changing that if you give control of these systems away too early you end up ultimately wanting them back like many companies I know that I reach out or ones were like oh we're going off of the frameworks because now that we know what the business outcomes we're trying to optimize for these frameworks don't work yeah because we do rag but we want to do rag to like sell you supplements or to have you like schedule the fitness appointment the prompts are kind of too baked into the systems to really pull them back out and like start doing upselling or something it's really funny but a lot of it ends up being like once you understand the business outcomes you care way more about the promptSwyx [00:44:07]: Actually this is fun in our prep for this call we were trying to say like what can you as an independent person say that maybe me and Alessio cannot say or me you know someone at a company say what do you think is the market share of the frameworks the LangChain, the LlamaIndex, the everything...Jason [00:44:20]: Oh massive because not everyone wants to care about the code yeah right I think that's a different question to like what is the business model and are they going to be like massively profitable businesses right making hundreds of millions of dollars that feels like so straightforward right because not everyone is a prompt engineer like there's so much productivity to be captured in like back office optim automations right it's not because they care about the prompts that they care about managing these things yeah but those would be sort of low code experiences you yeah I think the bigger challenge is like okay hundred million dollars probably pretty easy it's just time and effort and they have the manpower and the money to sort of solve those problems again if you go the vc route then it's like you're talking about billions and that's really the goal that stuff for me it's like pretty unclear but again that is to say that like I sort of am building things for developers who want to use infrastructure to build their own tooling in terms of the amount of developers there are in the world versus downstream consumers of these things or even just think of how many companies will use like the adobes and the ibms right because they want something that's fully managed and they want something that they know will work and if the incremental 10% requires you to hire another team of 20 people you might not want to do it and I think that kind of organization is really good for uh those are bigger companiesSwyx [00:45:32]: I just want to capture your thoughts on one more thing which is you said you wanted most of the prompts to stay close to the developer and Hamel Husain wrote this post which I really love called f you show me the prompt yeah I think he cites you in one of those part of the blog post and I think ds pi is kind of like the complete antithesis of that which is I think it's interesting because I also hold the strong view that AI is a better prompt engineer than you are and I don't know how to square that wondering if you have thoughtsJason [00:45:58]: I think something like DSPy can work because there are like very short-term metrics to measure success right it is like did you find the pii or like did you write the multi-hop question the correct way but in these workflows that I've been managing a lot of it are we minimizing churn and maximizing retention yeah that's a very long loop it's not really like a uptuna like training loop right like those things are much more harder to capture so we don't actually have those metrics for that right and obviously we can figure out like okay is the summary good but like how do you measure the quality of the summary it's like that feedback loop it ends up being a lot longer and then again when something changes it's really hard to make sure that it works across these like newer models or again like changes to work for the current process like when we migrate from like anthropic to open ai like there's just a ton of change that are like infrastructure related not necessarily around the prompt itself yeah cool any other ai engineering startups that you think should not exist before we wrap up i mean oh my gosh i mean a lot of it again it's just like every time of investors like how does this make a billion dollars like it doesn't i'm gonna go back to just like tweeting and holding my breath underwater yeah like i don't really pay attention too much to most of this like most of the stuff i'm doing is around like the consumer of like llm calls yep i think people just want to move really fast and they will end up pick these vendors but i don't really know if anything has really like blown me out the water like i only trust myself but that's also a function of just being an old man like i think you know many companies are definitely very happy with using most of these tools anyways but i definitely think i occupy a very small space in the engineering ecosystem.Swyx [00:47:41]: Yeah i would say one of the challenges here you know you call about the dealing in the consumer of llm's space i think that's what ai engineering differs from ml engineering and i think a constant disconnect or cognitive dissonance in this field in the ai engineers that have sprung up is that they are not as good as the ml engineers they are not as qualified i think that you know you are someone who has credibility in the mle space and you are also a very authoritative figure in the ai space and i think so and you know i think you've built the de facto leading library i think yours i think instructors should be part of the standard lib even though i try to not use it like i basically also end up rebuilding instructor right like that's a lot of the back and forth that we had over the past two days i think that's the fundamental thing that we're trying to figure out like there's very small supply of MLEs not everyone's going to have that experience that you had but the global demand for AI is going to far outstrip the existing MLEs.Jason [00:48:36]: So what do we do do we force everyone to go through the standard MLE curriculum or do we make a new one? I'

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
Latent Space Chats: NLW (Four Wars, GPT5), Josh Albrecht/Ali Rohde (TNAI), Dylan Patel/Semianalysis (Groq), Milind Naphade (Nvidia GTC), Personal AI (ft. Harrison Chase — LangFriend/LangMem)

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Apr 6, 2024 121:17


Our next 2 big events are AI UX and the World's Fair. Join and apply to speak/sponsor!Due to timing issues we didn't have an interview episode to share with you this week, but not to worry, we have more than enough “weekend special” content in the backlog for you to get your Latent Space fix, whether you like thinking about the big picture, or learning more about the pod behind the scenes, or talking Groq and GPUs, or AI Leadership, or Personal AI. Enjoy!AI BreakdownThe indefatigable NLW had us back on his show for an update on the Four Wars, covering Sora, Suno, and the reshaped GPT-4 Class Landscape:and a longer segment on AI Engineering trends covering the future LLM landscape (Llama 3, GPT-5, Gemini 2, Claude 4), Open Source Models (Mistral, Grok), Apple and Meta's AI strategy, new chips (Groq, MatX) and the general movement from baby AGIs to vertical Agents:Thursday Nights in AIWe're also including swyx's interview with Josh Albrecht and Ali Rohde to reintroduce swyx and Latent Space to a general audience, and engage in some spicy Q&A:Dylan Patel on GroqWe hosted a private event with Dylan Patel of SemiAnalysis (our last pod here):Not all of it could be released so we just talked about our Groq estimates:Milind Naphade - Capital OneIn relation to conversations at NeurIPS and Nvidia GTC and upcoming at World's Fair, we also enjoyed chatting with Milind Naphade about his AI Leadership work at IBM, Cisco, Nvidia, and now leading the AI Foundations org at Capital One. We covered:* Milind's learnings from ~25 years in machine learning * His first paper citation was 24 years ago* Lessons from working with Jensen Huang for 6 years and being CTO of Metropolis * Thoughts on relevant AI research* GTC takeaways and what makes NVIDIA specialIf you'd like to work on building solutions rather than platform (as Milind put it), his Applied AI Research team at Capital One is hiring, which falls under the Capital One Tech team.Personal AI MeetupIt all started with a meme:Within days of each other, BEE, FRIEND, EmilyAI, Compass, Nox and LangFriend were all launching personal AI wearables and assistants. So we decided to put together a the world's first Personal AI meetup featuring creators and enthusiasts of wearables. The full video is live now, with full show notes within.Timestamps* [00:01:13] AI Breakdown Part 1* [00:02:20] Four Wars* [00:13:45] Sora* [00:15:12] Suno* [00:16:34] The GPT-4 Class Landscape* [00:17:03] Data War: Reddit x Google* [00:21:53] Gemini 1.5 vs Claude 3* [00:26:58] AI Breakdown Part 2* [00:27:33] Next Frontiers: Llama 3, GPT-5, Gemini 2, Claude 4* [00:31:11] Open Source Models - Mistral, Grok* [00:34:13] Apple MM1* [00:37:33] Meta's $800b AI rebrand* [00:39:20] AI Engineer landscape - from baby AGIs to vertical Agents* [00:47:28] Adept episode - Screen Multimodality* [00:48:54] Top Model Research from January Recap* [00:53:08] AI Wearables* [00:57:26] Groq vs Nvidia month - GPU Chip War* [01:00:31] Disagreements* [01:02:08] Summer 2024 Predictions* [01:04:18] Thursday Nights in AI - swyx* [01:33:34] Dylan Patel - Semianalysis + Latent Space Live Show* [01:34:58] GroqTranscript[00:00:00] swyx: Welcome to the Latent Space Podcast Weekend Edition. This is Charlie, your AI co host. Swyx and Alessio are off for the week, making more great content. We have exciting interviews coming up with Elicit, Chroma, Instructor, and our upcoming series on NSFW, Not Safe for Work AI. In today's episode, we're collating some of Swyx and Alessio's recent appearances, all in one place for you to find.[00:00:32] swyx: In part one, we have our first crossover pod of the year. In our listener survey, several folks asked for more thoughts from our two hosts. In 2023, Swyx and Alessio did crossover interviews with other great podcasts like the AI Breakdown, Practical AI, Cognitive Revolution, Thursday Eye, and Chinatalk, all of which you can find in the Latentspace About page.[00:00:56] swyx: NLW of the AI Breakdown asked us back to do a special on the 4Wars framework and the AI engineer scene. We love AI Breakdown as one of the best examples Daily podcasts to keep up on AI news, so we were especially excited to be back on Watch out and take[00:01:12] NLW: care[00:01:13] AI Breakdown Part 1[00:01:13] NLW: today on the AI breakdown. Part one of my conversation with Alessio and Swix from Latent Space.[00:01:19] NLW: All right, fellas, welcome back to the AI Breakdown. How are you doing? I'm good. Very good. With the last, the last time we did this show, we were like, oh yeah, let's do check ins like monthly about all the things that are going on and then. Of course, six months later, and, you know, the, the, the world has changed in a thousand ways.[00:01:36] NLW: It's just, it's too busy to even, to even think about podcasting sometimes. But I, I'm super excited to, to be chatting with you again. I think there's, there's a lot to, to catch up on, just to tap in, I think in the, you know, in the beginning of 2024. And, and so, you know, we're gonna talk today about just kind of a, a, a broad sense of where things are in some of the key battles in the AI space.[00:01:55] NLW: And then the, you know, one of the big things that I, that I'm really excited to have you guys on here for us to talk about where, sort of what patterns you're seeing and what people are actually trying to build, you know, where, where developers are spending their, their time and energy and, and, and any sort of, you know, trend trends there, but maybe let's start I guess by checking in on a framework that you guys actually introduced, which I've loved and I've cribbed a couple of times now, which is this sort of four wars of the, of the AI stack.[00:02:20] Four Wars[00:02:20] NLW: Because first, since I have you here, I'd love, I'd love to hear sort of like where that started gelling. And then and then maybe we can get into, I think a couple of them that are you know, particularly interesting, you know, in the, in light of[00:02:30] swyx: some recent news. Yeah, so maybe I'll take this one. So the four wars is a framework that I came up around trying to recap all of 2023.[00:02:38] swyx: I tried to write sort of monthly recap pieces. And I was trying to figure out like what makes one piece of news last longer than another or more significant than another. And I think it's basically always around battlegrounds. Wars are fought around limited resources. And I think probably the, you know, the most limited resource is talent, but the talent expresses itself in a number of areas.[00:03:01] swyx: And so I kind of focus on those, those areas at first. So the four wars that we cover are the data wars, the GPU rich, poor war, the multi modal war, And the RAG and Ops War. And I think you actually did a dedicated episode to that, so thanks for covering that. Yeah, yeah.[00:03:18] NLW: Not only did I do a dedicated episode, I actually used that.[00:03:22] NLW: I can't remember if I told you guys. I did give you big shoutouts. But I used it as a framework for a presentation at Intel's big AI event that they hold each year, where they have all their folks who are working on AI internally. And it totally resonated. That's amazing. Yeah, so, so, what got me thinking about it again is specifically this inflection news that we recently had, this sort of, you know, basically, I can't imagine that anyone who's listening wouldn't have thought about it, but, you know, inflection is a one of the big contenders, right?[00:03:53] NLW: I think probably most folks would have put them, you know, just a half step behind the anthropics and open AIs of the world in terms of labs, but it's a company that raised 1. 3 billion last year, less than a year ago. Reed Hoffman's a co founder Mustafa Suleyman, who's a co founder of DeepMind, you know, so it's like, this is not a a small startup, let's say, at least in terms of perception.[00:04:13] NLW: And then we get the news that basically most of the team, it appears, is heading over to Microsoft and they're bringing in a new CEO. And you know, I'm interested in, in, in kind of your take on how much that reflects, like hold aside, I guess, you know, all the other things that it might be about, how much it reflects this sort of the, the stark.[00:04:32] NLW: Brutal reality of competing in the frontier model space right now. And, you know, just the access to compute.[00:04:38] Alessio: There are a lot of things to say. So first of all, there's always somebody who's more GPU rich than you. So inflection is GPU rich by startup standard. I think about 22, 000 H100s, but obviously that pales compared to the, to Microsoft.[00:04:55] Alessio: The other thing is that this is probably good news, maybe for the startups. It's like being GPU rich, it's not enough. You know, like I think they were building something pretty interesting in, in pi of their own model of their own kind of experience. But at the end of the day, you're the interface that people consume as end users.[00:05:13] Alessio: It's really similar to a lot of the others. So and we'll tell, talk about GPT four and cloud tree and all this stuff. GPU poor, doing something. That the GPU rich are not interested in, you know we just had our AI center of excellence at Decibel and one of the AI leads at one of the big companies was like, Oh, we just saved 10 million and we use these models to do a translation, you know, and that's it.[00:05:39] Alessio: It's not, it's not a GI, it's just translation. So I think like the inflection part is maybe. A calling and a waking to a lot of startups then say, Hey, you know, trying to get as much capital as possible, try and get as many GPUs as possible. Good. But at the end of the day, it doesn't build a business, you know, and maybe what inflection I don't, I don't, again, I don't know the reasons behind the inflection choice, but if you say, I don't want to build my own company that has 1.[00:06:05] Alessio: 3 billion and I want to go do it at Microsoft, it's probably not a resources problem. It's more of strategic decisions that you're making as a company. So yeah, that was kind of my. I take on it.[00:06:15] swyx: Yeah, and I guess on my end, two things actually happened yesterday. It was a little bit quieter news, but Stability AI had some pretty major departures as well.[00:06:25] swyx: And you may not be considering it, but Stability is actually also a GPU rich company in the sense that they were the first new startup in this AI wave to brag about how many GPUs that they have. And you should join them. And you know, Imadis is definitely a GPU trader in some sense from his hedge fund days.[00:06:43] swyx: So Robin Rhombach and like the most of the Stable Diffusion 3 people left Stability yesterday as well. So yesterday was kind of like a big news day for the GPU rich companies, both Inflection and Stability having sort of wind taken out of their sails. I think, yes, it's a data point in the favor of Like, just because you have the GPUs doesn't mean you can, you automatically win.[00:07:03] swyx: And I think, you know, kind of I'll echo what Alessio says there. But in general also, like, I wonder if this is like the start of a major consolidation wave, just in terms of, you know, I think that there was a lot of funding last year and, you know, the business models have not been, you know, All of these things worked out very well.[00:07:19] swyx: Even inflection couldn't do it. And so I think maybe that's the start of a small consolidation wave. I don't think that's like a sign of AI winter. I keep looking for AI winter coming. I think this is kind of like a brief cold front. Yeah,[00:07:34] NLW: it's super interesting. So I think a bunch of A bunch of stuff here.[00:07:38] NLW: One is, I think, to both of your points, there, in some ways, there, there had already been this very clear demarcation between these two sides where, like, the GPU pores, to use the terminology, like, just weren't trying to compete on the same level, right? You know, the vast majority of people who have started something over the last year, year and a half, call it, were racing in a different direction.[00:07:59] NLW: They're trying to find some edge somewhere else. They're trying to build something different. If they're, if they're really trying to innovate, it's in different areas. And so it's really just this very small handful of companies that are in this like very, you know, it's like the coheres and jaspers of the world that like this sort of, you know, that are that are just sort of a little bit less resourced than, you know, than the other set that I think that this potentially even applies to, you know, everyone else that could clearly demarcate it into these two, two sides.[00:08:26] NLW: And there's only a small handful kind of sitting uncomfortably in the middle, perhaps. Let's, let's come back to the idea of, of the sort of AI winter or, you know, a cold front or anything like that. So this is something that I, I spent a lot of time kind of thinking about and noticing. And my perception is that The vast majority of the folks who are trying to call for sort of, you know, a trough of disillusionment or, you know, a shifting of the phase to that are people who either, A, just don't like AI for some other reason there's plenty of that, you know, people who are saying, You Look, they're doing way worse than they ever thought.[00:09:03] NLW: You know, there's a lot of sort of confirmation bias kind of thing going on. Or two, media that just needs a different narrative, right? Because they're sort of sick of, you know, telling the same story. Same thing happened last summer, when every every outlet jumped on the chat GPT at its first down month story to try to really like kind of hammer this idea that that the hype was too much.[00:09:24] NLW: Meanwhile, you have, you know, just ridiculous levels of investment from enterprises, you know, coming in. You have, you know, huge, huge volumes of, you know, individual behavior change happening. But I do think that there's nothing incoherent sort of to your point, Swyx, about that and the consolidation period.[00:09:42] NLW: Like, you know, if you look right now, for example, there are, I don't know, probably 25 or 30 credible, like, build your own chatbot. platforms that, you know, a lot of which have, you know, raised funding. There's no universe in which all of those are successful across, you know, even with a, even, even with a total addressable market of every enterprise in the world, you know, you're just inevitably going to see some amount of consolidation.[00:10:08] NLW: Same with, you know, image generators. There are, if you look at A16Z's top 50 consumer AI apps, just based on, you know, web traffic or whatever, they're still like I don't know, a half. Dozen or 10 or something, like, some ridiculous number of like, basically things like Midjourney or Dolly three. And it just seems impossible that we're gonna have that many, you know, ultimately as, as, as sort of, you know, going, going concerned.[00:10:33] NLW: So, I don't know. I, I, I think that the, there will be inevitable consolidation 'cause you know. It's, it's also what kind of like venture rounds are supposed to do. You're not, not everyone who gets a seed round is supposed to get to series A and not everyone who gets a series A is supposed to get to series B.[00:10:46] NLW: That's sort of the natural process. I think it will be tempting for a lot of people to try to infer from that something about AI not being as sort of big or as as sort of relevant as, as it was hyped up to be. But I, I kind of think that's the wrong conclusion to come to.[00:11:02] Alessio: I I would say the experimentation.[00:11:04] Alessio: Surface is a little smaller for image generation. So if you go back maybe six, nine months, most people will tell you, why would you build a coding assistant when like Copilot and GitHub are just going to win everything because they have the data and they have all the stuff. If you fast forward today, A lot of people use Cursor everybody was excited about the Devin release on Twitter.[00:11:26] Alessio: There are a lot of different ways of attacking the market that are not completion of code in the IDE. And even Cursors, like they evolved beyond single line to like chat, to do multi line edits and, and all that stuff. Image generation, I would say, yeah, as a, just as from what I've seen, like maybe the product innovation has slowed down at the UX level and people are improving the models.[00:11:50] Alessio: So the race is like, how do I make better images? It's not like, how do I make the user interact with the generation process better? And that gets tough, you know? It's hard to like really differentiate yourselves. So yeah, that's kind of how I look at it. And when we think about multimodality, maybe the reason why people got so excited about Sora is like, oh, this is like a completely It's not a better image model.[00:12:13] Alessio: This is like a completely different thing, you know? And I think the creative mind It's always looking for something that impacts the viewer in a different way, you know, like they really want something different versus the developer mind. It's like, Oh, I, I just, I have this like very annoying thing I want better.[00:12:32] Alessio: I have this like very specific use cases that I want to go after. So it's just different. And that's why you see a lot more companies in image generation. But I agree with you that. If you fast forward there, there's not going to be 10 of them, you know, it's probably going to be one or[00:12:46] swyx: two. Yeah, I mean, to me, that's why I call it a war.[00:12:49] swyx: Like, individually, all these companies can make a story that kind of makes sense, but collectively, they cannot all be true. Therefore, they all, there is some kind of fight over limited resources here. Yeah, so[00:12:59] NLW: it's interesting. We wandered very naturally into sort of another one of these wars, which is the multimodality kind of idea, which is, you know, basically a question of whether it's going to be these sort of big everything models that end up winning or whether, you know, you're going to have really specific things, you know, like something, you know, Dolly 3 inside of sort of OpenAI's larger models versus, you know, a mid journey or something like that.[00:13:24] NLW: And at first, you know, I was kind of thinking like, For most of the last, call it six months or whatever, it feels pretty definitively both and in some ways, you know, and that you're, you're seeing just like great innovation on sort of the everything models, but you're also seeing lots and lots happen at sort of the level of kind of individual use cases.[00:13:45] Sora[00:13:45] NLW: But then Sora comes along and just like obliterates what I think anyone thought you know, where we were when it comes to video generation. So how are you guys thinking about this particular battle or war at the moment?[00:13:59] swyx: Yeah, this was definitely a both and story, and Sora tipped things one way for me, in terms of scale being all you need.[00:14:08] swyx: And the benefit, I think, of having multiple models being developed under one roof. I think a lot of people aren't aware that Sora was developed in a similar fashion to Dolly 3. And Dolly3 had a very interesting paper out where they talked about how they sort of bootstrapped their synthetic data based on GPT 4 vision and GPT 4.[00:14:31] swyx: And, and it was just all, like, really interesting, like, if you work on one modality, it enables you to work on other modalities, and all that is more, is, is more interesting. I think it's beneficial if it's all in the same house, whereas the individual startups who don't, who sort of carve out a single modality and work on that, definitely won't have the state of the art stuff on helping them out on synthetic data.[00:14:52] swyx: So I do think like, The balance is tilted a little bit towards the God model companies, which is challenging for the, for the, for the the sort of dedicated modality companies. But everyone's carving out different niches. You know, like we just interviewed Suno ai, the sort of music model company, and, you know, I don't see opening AI pursuing music anytime soon.[00:15:12] Suno[00:15:12] swyx: Yeah,[00:15:13] NLW: Suno's been phenomenal to play with. Suno has done that rare thing where, which I think a number of different AI product categories have done, where people who don't consider themselves particularly interested in doing the thing that the AI enables find themselves doing a lot more of that thing, right?[00:15:29] NLW: Like, it'd be one thing if Just musicians were excited about Suno and using it but what you're seeing is tons of people who just like music all of a sudden like playing around with it and finding themselves kind of down that rabbit hole, which I think is kind of like the highest compliment that you can give one of these startups at the[00:15:45] swyx: early days of it.[00:15:46] swyx: Yeah, I, you know, I, I asked them directly, you know, in the interview about whether they consider themselves mid journey for music. And he had a more sort of nuanced response there, but I think that probably the business model is going to be very similar because he's focused on the B2C element of that. So yeah, I mean, you know, just to, just to tie back to the question about, you know, You know, large multi modality companies versus small dedicated modality companies.[00:16:10] swyx: Yeah, highly recommend people to read the Sora blog posts and then read through to the Dali blog posts because they, they strongly correlated themselves with the same synthetic data bootstrapping methods as Dali. And I think once you make those connections, you're like, oh, like it, it, it is beneficial to have multiple state of the art models in house that all help each other.[00:16:28] swyx: And these, this, that's the one thing that a dedicated modality company cannot do.[00:16:34] The GPT-4 Class Landscape[00:16:34] NLW: So I, I wanna jump, I wanna kind of build off that and, and move into the sort of like updated GPT-4 class landscape. 'cause that's obviously been another big change over the last couple months. But for the sake of completeness, is there anything that's worth touching on with with sort of the quality?[00:16:46] NLW: Quality data or sort of a rag ops wars just in terms of, you know, anything that's changed, I guess, for you fundamentally in the last couple of months about where those things stand.[00:16:55] swyx: So I think we're going to talk about rag for the Gemini and Clouds discussion later. And so maybe briefly discuss the data piece.[00:17:03] Data War: Reddit x Google[00:17:03] swyx: I think maybe the only new thing was this Reddit deal with Google for like a 60 million dollar deal just ahead of their IPO, very conveniently turning Reddit into a AI data company. Also, very, very interestingly, a non exclusive deal, meaning that Reddit can resell that data to someone else. And it probably does become table stakes.[00:17:23] swyx: A lot of people don't know, but a lot of the web text dataset that originally started for GPT 1, 2, and 3 was actually scraped from GitHub. from Reddit at least the sort of vote scores. And I think, I think that's a, that's a very valuable piece of information. So like, yeah, I think people are figuring out how to pay for data.[00:17:40] swyx: People are suing each other over data. This, this, this war is, you know, definitely very, very much heating up. And I don't think, I don't see it getting any less intense. I, you know, next to GPUs, data is going to be the most expensive thing in, in a model stack company. And. You know, a lot of people are resorting to synthetic versions of it, which may or may not be kosher based on how far along or how commercially blessed the, the forms of creating that synthetic data are.[00:18:11] swyx: I don't know if Alessio, you have any other interactions with like Data source companies, but that's my two cents.[00:18:17] Alessio: Yeah yeah, I actually saw Quentin Anthony from Luther. ai at GTC this week. He's also been working on this. I saw Technium. He's also been working on the data side. I think especially in open source, people are like, okay, if everybody is putting the gates up, so to speak, to the data we need to make it easier for people that don't have 50 million a year to get access to good data sets.[00:18:38] Alessio: And Jensen, at his keynote, he did talk about synthetic data a little bit. So I think that's something that we'll definitely hear more and more of in the enterprise, which never bodes well, because then all the, all the people with the data are like, Oh, the enterprises want to pay now? Let me, let me put a pay here stripe link so that they can give me 50 million.[00:18:57] Alessio: But it worked for Reddit. I think the stock is up. 40 percent today after opening. So yeah, I don't know if it's all about the Google deal, but it's obviously Reddit has been one of those companies where, hey, you got all this like great community, but like, how are you going to make money? And like, they try to sell the avatars.[00:19:15] Alessio: I don't know if that it's a great business for them. The, the data part sounds as an investor, you know, the data part sounds a lot more interesting than, than consumer[00:19:25] swyx: cosmetics. Yeah, so I think, you know there's more questions around data you know, I think a lot of people are talking about the interview that Mira Murady did with the Wall Street Journal, where she, like, just basically had no, had no good answer for where they got the data for Sora.[00:19:39] swyx: I, I think this is where, you know, there's, it's in nobody's interest to be transparent about data, and it's, it's kind of sad for the state of ML and the state of AI research but it is what it is. We, we have to figure this out as a society, just like we did for music and music sharing. You know, in, in sort of the Napster to Spotify transition, and that might take us a decade.[00:19:59] swyx: Yeah, I[00:20:00] NLW: do. I, I agree. I think, I think that you're right to identify it, not just as that sort of technical problem, but as one where society has to have a debate with itself. Because I think that there's, if you rationally within it, there's Great kind of points on all side, not to be the sort of, you know, person who sits in the middle constantly, but it's why I think a lot of these legal decisions are going to be really important because, you know, the job of judges is to listen to all this stuff and try to come to things and then have other judges disagree.[00:20:24] NLW: And, you know, and have the rest of us all debate at the same time. By the way, as a total aside, I feel like the synthetic data right now is like eggs in the 80s and 90s. Like, whether they're good for you or bad for you, like, you know, we, we get one study that's like synthetic data, you know, there's model collapse.[00:20:42] NLW: And then we have like a hint that llama, you know, to the most high performance version of it, which was one they didn't release was trained on synthetic data. So maybe it's good. It's like, I just feel like every, every other week I'm seeing something sort of different about whether it's a good or bad for, for these models.[00:20:56] swyx: Yeah. The branding of this is pretty poor. I would kind of tell people to think about it like cholesterol. There's good cholesterol, bad cholesterol. And you can have, you know, good amounts of both. But at this point, it is absolutely without a doubt that most large models from here on out will all be trained as some kind of synthetic data and that is not a bad thing.[00:21:16] swyx: There are ways in which you can do it poorly. Whether it's commercial, you know, in terms of commercial sourcing or in terms of the model performance. But it's without a doubt that good synthetic data is going to help your model. And this is just a question of like where to obtain it and what kinds of synthetic data are valuable.[00:21:36] swyx: You know, if even like alpha geometry, you know, was, was a really good example from like earlier this year.[00:21:42] NLW: If you're using the cholesterol analogy, then my, then my egg thing can't be that far off. Let's talk about the sort of the state of the art and the, and the GPT 4 class landscape and how that's changed.[00:21:53] Gemini 1.5 vs Claude 3[00:21:53] NLW: Cause obviously, you know, sort of the, the two big things or a couple of the big things that have happened. Since we last talked, we're one, you know, Gemini first announcing that a model was coming and then finally it arriving, and then very soon after a sort of a different model arriving from Gemini and and Cloud three.[00:22:11] NLW: So I guess, you know, I'm not sure exactly where the right place to start with this conversation is, but, you know, maybe very broadly speaking which of these do you think have made a bigger impact? Thank you.[00:22:20] Alessio: Probably the one you can use, right? So, Cloud. Well, I'm sure Gemini is going to be great once they let me in, but so far I haven't been able to.[00:22:29] Alessio: I use, so I have this small podcaster thing that I built for our podcast, which does chapters creation, like named entity recognition, summarization, and all of that. Cloud Tree is, Better than GPT 4. Cloud2 was unusable. So I use GPT 4 for everything. And then when Opus came out, I tried them again side by side and I posted it on, on Twitter as well.[00:22:53] Alessio: Cloud is better. It's very good, you know, it's much better, it seems to me, it's much better than GPT 4 at doing writing that is more, you know, I don't know, it just got good vibes, you know, like the GPT 4 text, you can tell it's like GPT 4, you know, it's like, it always uses certain types of words and phrases and, you know, maybe it's just me because I've now done it for, you know, So, I've read like 75, 80 generations of these things next to each other.[00:23:21] Alessio: Clutter is really good. I know everybody is freaking out on twitter about it, my only experience of this is much better has been on the podcast use case. But I know that, you know, Quran from from News Research is a very big opus pro, pro opus person. So, I think that's also It's great to have people that actually care about other models.[00:23:40] Alessio: You know, I think so far to a lot of people, maybe Entropic has been the sibling in the corner, you know, it's like Cloud releases a new model and then OpenAI releases Sora and like, you know, there are like all these different things, but yeah, the new models are good. It's interesting.[00:23:55] NLW: My my perception is definitely that just, just observationally, Cloud 3 is certainly the first thing that I've seen where lots of people.[00:24:06] NLW: They're, no one's debating evals or anything like that. They're talking about the specific use cases that they have, that they used to use chat GPT for every day, you know, day in, day out, that they've now just switched over. And that has, I think, shifted a lot of the sort of like vibe and sentiment in the space too.[00:24:26] NLW: And I don't necessarily think that it's sort of a A like full you know, sort of full knock. Let's put it this way. I think it's less bad for open AI than it is good for anthropic. I think that because GPT 5 isn't there, people are not quite willing to sort of like, you know get overly critical of, of open AI, except in so far as they're wondering where GPT 5 is.[00:24:46] NLW: But I do think that it makes, Anthropic look way more credible as a, as a, as a player, as a, you know, as a credible sort of player, you know, as opposed to to, to where they were.[00:24:57] Alessio: Yeah. And I would say the benchmarks veil is probably getting lifted this year. I think last year. People were like, okay, this is better than this on this benchmark, blah, blah, blah, because maybe they did not have a lot of use cases that they did frequently.[00:25:11] Alessio: So it's hard to like compare yourself. So you, you defer to the benchmarks. I think now as we go into 2024, a lot of people have started to use these models from, you know, from very sophisticated things that they run in production to some utility that they have on their own. Now they can just run them side by side.[00:25:29] Alessio: And it's like, Hey, I don't care that like. The MMLU score of Opus is like slightly lower than GPT 4. It just works for me, you know, and I think that's the same way that traditional software has been used by people, right? Like you just strive for yourself and like, which one does it work, works best for you?[00:25:48] Alessio: Like nobody looks at benchmarks outside of like sales white papers, you know? And I think it's great that we're going more in that direction. We have a episode with Adapt coming out this weekend. I'll and some of their model releases, they specifically say, We do not care about benchmarks, so we didn't put them in, you know, because we, we don't want to look good on them.[00:26:06] Alessio: We just want the product to work. And I think more and more people will, will[00:26:09] swyx: go that way. Yeah. I I would say like, it does take the wind out of the sails for GPT 5, which I know where, you know, Curious about later on. I think anytime you put out a new state of the art model, you have to break through in some way.[00:26:21] swyx: And what Claude and Gemini have done is effectively take away any advantage to saying that you have a million token context window. Now everyone's just going to be like, Oh, okay. Now you just match the other two guys. And so that puts An insane amount of pressure on what gpt5 is going to be because it's just going to have like the only option it has now because all the other models are multimodal all the other models are long context all the other models have perfect recall gpt5 has to match everything and do more to to not be a flop[00:26:58] AI Breakdown Part 2[00:26:58] NLW: hello friends back again with part two if you haven't heard part one of this conversation i suggest you go check it out but to be honest they are kind of actually separable In this conversation, we get into a topic that I think Alessio and Swyx are very well positioned to discuss, which is what developers care about right now, what people are trying to build around.[00:27:16] NLW: I honestly think that one of the best ways to see the future in an industry like AI is to try to dig deep on what developers and entrepreneurs are attracted to build, even if it hasn't made it to the news pages yet. So consider this your preview of six months from now, and let's dive in. Let's bring it to the GPT 5 conversation.[00:27:33] Next Frontiers: Llama 3, GPT-5, Gemini 2, Claude 4[00:27:33] NLW: I mean, so, so I think that that's a great sort of assessment of just how the stakes have been raised, you know is your, I mean, so I guess maybe, maybe I'll, I'll frame this less as a question, just sort of something that, that I, that I've been watching right now, the only thing that makes sense to me with how.[00:27:50] NLW: Fundamentally unbothered and unstressed OpenAI seems about everything is that they're sitting on something that does meet all that criteria, right? Because, I mean, even in the Lex Friedman interview that, that Altman recently did, you know, he's talking about other things coming out first. He's talking about, he's just like, he, listen, he, he's good and he could play nonchalant, you know, if he wanted to.[00:28:13] NLW: So I don't want to read too much into it, but. You know, they've had so long to work on this, like unless that we are like really meaningfully running up against some constraint, it just feels like, you know, there's going to be some massive increase, but I don't know. What do you guys think?[00:28:28] swyx: Hard to speculate.[00:28:29] swyx: You know, at this point, they're, they're pretty good at PR and they're not going to tell you anything that they don't want to. And he can tell you one thing and change their minds the next day. So it's, it's, it's really, you know, I've always said that model version numbers are just marketing exercises, like they have something and it's always improving and at some point you just cut it and decide to call it GPT 5.[00:28:50] swyx: And it's more just about defining an arbitrary level at which they're ready and it's up to them on what ready means. We definitely did see some leaks on GPT 4. 5, as I think a lot of people reported and I'm not sure if you covered it. So it seems like there might be an intermediate release. But I did feel, coming out of the Lex Friedman interview, that GPT 5 was nowhere near.[00:29:11] swyx: And you know, it was kind of a sharp contrast to Sam talking at Davos in February, saying that, you know, it was his top priority. So I find it hard to square. And honestly, like, there's also no point Reading too much tea leaves into what any one person says about something that hasn't happened yet or has a decision that hasn't been taken yet.[00:29:31] swyx: Yeah, that's, that's my 2 cents about it. Like, calm down, let's just build .[00:29:35] Alessio: Yeah. The, the February rumor was that they were gonna work on AI agents, so I don't know, maybe they're like, yeah,[00:29:41] swyx: they had two agent two, I think two agent projects, right? One desktop agent and one sort of more general yeah, sort of GPTs like agent and then Andre left, so he was supposed to be the guy on that.[00:29:52] swyx: What did Andre see? What did he see? I don't know. What did he see?[00:29:56] Alessio: I don't know. But again, it's just like the rumors are always floating around, you know but I think like, this is, you know, we're not going to get to the end of the year without Jupyter you know, that's definitely happening. I think the biggest question is like, are Anthropic and Google.[00:30:13] Alessio: Increasing the pace, you know, like it's the, it's the cloud four coming out like in 12 months, like nine months. What's the, what's the deal? Same with Gemini. They went from like one to 1. 5 in like five days or something. So when's Gemini 2 coming out, you know, is that going to be soon? I don't know.[00:30:31] Alessio: There, there are a lot of, speculations, but the good thing is that now you can see a world in which OpenAI doesn't rule everything. You know, so that, that's the best, that's the best news that everybody got, I would say.[00:30:43] swyx: Yeah, and Mistral Large also dropped in the last month. And, you know, not as, not quite GPT 4 class, but very good from a new startup.[00:30:52] swyx: So yeah, we, we have now slowly changed in landscape, you know. In my January recap, I was complaining that nothing's changed in the landscape for a long time. But now we do exist in a world, sort of a multipolar world where Cloud and Gemini are legitimate challengers to GPT 4 and hopefully more will emerge as well hopefully from meta.[00:31:11] Open Source Models - Mistral, Grok[00:31:11] NLW: So speak, let's actually talk about sort of the open source side of this for a minute. So Mistral Large, notable because it's, it's not available open source in the same way that other things are, although I think my perception is that the community has largely given them Like the community largely recognizes that they want them to keep building open source stuff and they have to find some way to fund themselves that they're going to do that.[00:31:27] NLW: And so they kind of understand that there's like, they got to figure out how to eat, but we've got, so, you know, there there's Mistral, there's, I guess, Grok now, which is, you know, Grok one is from, from October is, is open[00:31:38] swyx: sourced at, yeah. Yeah, sorry, I thought you thought you meant Grok the chip company.[00:31:41] swyx: No, no, no, yeah, you mean Twitter Grok.[00:31:43] NLW: Although Grok the chip company, I think is even more interesting in some ways, but and then there's the, you know, obviously Llama3 is the one that sort of everyone's wondering about too. And, you know, my, my sense of that, the little bit that, you know, Zuckerberg was talking about Llama 3 earlier this year, suggested that, at least from an ambition standpoint, he was not thinking about how do I make sure that, you know, meta content, you know, keeps, keeps the open source thrown, you know, vis a vis Mistral.[00:32:09] NLW: He was thinking about how you go after, you know, how, how he, you know, releases a thing that's, you know, every bit as good as whatever OpenAI is on at that point.[00:32:16] Alessio: Yeah. From what I heard in the hallways at, at GDC, Llama 3, the, the biggest model will be, you 260 to 300 billion parameters, so that that's quite large.[00:32:26] Alessio: That's not an open source model. You know, you cannot give people a 300 billion parameters model and ask them to run it. You know, it's very compute intensive. So I think it is, it[00:32:35] swyx: can be open source. It's just, it's going to be difficult to run, but that's a separate question.[00:32:39] Alessio: It's more like, as you think about what they're doing it for, you know, it's not like empowering the person running.[00:32:45] Alessio: llama. On, on their laptop, it's like, oh, you can actually now use this to go after open AI, to go after Anthropic, to go after some of these companies at like the middle complexity level, so to speak. Yeah. So obviously, you know, we estimate Gentala on the podcast, they're doing a lot here, they're making PyTorch better.[00:33:03] Alessio: You know, they want to, that's kind of like maybe a little bit of a shorted. Adam Bedia, in a way, trying to get some of the CUDA dominance out of it. Yeah, no, it's great. The, I love the duck destroying a lot of monopolies arc. You know, it's, it's been very entertaining. Let's bridge[00:33:18] NLW: into the sort of big tech side of this, because this is obviously like, so I think actually when I did my episode, this was one of the I added this as one of as an additional war that, that's something that I'm paying attention to.[00:33:29] NLW: So we've got Microsoft's moves with inflection, which I think pretend, potentially are being read as A shift vis a vis the relationship with OpenAI, which also the sort of Mistral large relationship seems to reinforce as well. We have Apple potentially entering the race, finally, you know, giving up Project Titan and and, and kind of trying to spend more effort on this.[00:33:50] NLW: Although, Counterpoint, we also have them talking about it, or there being reports of a deal with Google, which, you know, is interesting to sort of see what their strategy there is. And then, you know, Meta's been largely quiet. We kind of just talked about the main piece, but, you know, there's, and then there's spoilers like Elon.[00:34:07] NLW: I mean, you know, what, what of those things has sort of been most interesting to you guys as you think about what's going to shake out for the rest of this[00:34:13] Apple MM1[00:34:13] swyx: year? I'll take a crack. So the reason we don't have a fifth war for the Big Tech Wars is that's one of those things where I just feel like we don't cover differently from other media channels, I guess.[00:34:26] swyx: Sure, yeah. In our anti interestness, we actually say, like, we try not to cover the Big Tech Game of Thrones, or it's proxied through Twitter. You know, all the other four wars anyway, so there's just a lot of overlap. Yeah, I think absolutely, personally, the most interesting one is Apple entering the race.[00:34:41] swyx: They actually released, they announced their first large language model that they trained themselves. It's like a 30 billion multimodal model. People weren't that impressed, but it was like the first time that Apple has kind of showcased that, yeah, we're training large models in house as well. Of course, like, they might be doing this deal with Google.[00:34:57] swyx: I don't know. It sounds very sort of rumor y to me. And it's probably, if it's on device, it's going to be a smaller model. So something like a Jemma. It's going to be smarter autocomplete. I don't know what to say. I'm still here dealing with, like, Siri, which hasn't, probably hasn't been updated since God knows when it was introduced.[00:35:16] swyx: It's horrible. I, you know, it, it, it makes me so angry. So I, I, one, as an Apple customer and user, I, I'm just hoping for better AI on Apple itself. But two, they are the gold standard when it comes to local devices, personal compute and, and trust, like you, you trust them with your data. And. I think that's what a lot of people are looking for in AI, that they have, they love the benefits of AI, they don't love the downsides, which is that you have to send all your data to some cloud somewhere.[00:35:45] swyx: And some of this data that we're going to feed AI is just the most personal data there is. So Apple being like one of the most trusted personal data companies, I think it's very important that they enter the AI race, and I hope to see more out of them.[00:35:58] Alessio: To me, the, the biggest question with the Google deal is like, who's paying who?[00:36:03] Alessio: Because for the browsers, Google pays Apple like 18, 20 billion every year to be the default browser. Is Google going to pay you to have Gemini or is Apple paying Google to have Gemini? I think that's, that's like what I'm most interested to figure out because with the browsers, it's like, it's the entry point to the thing.[00:36:21] Alessio: So it's really valuable to be the default. That's why Google pays. But I wonder if like the perception in AI is going to be like, Hey. You just have to have a good local model on my phone to be worth me purchasing your device. And that was, that's kind of drive Apple to be the one buying the model. But then, like Shawn said, they're doing the MM1 themselves.[00:36:40] Alessio: So are they saying we do models, but they're not as good as the Google ones? I don't know. The whole thing is, it's really confusing, but. It makes for great meme material on on Twitter.[00:36:51] swyx: Yeah, I mean, I think, like, they are possibly more than OpenAI and Microsoft and Amazon. They are the most full stack company there is in computing, and so, like, they own the chips, man.[00:37:05] swyx: Like, they manufacture everything so if, if, if there was a company that could do that. You know, seriously challenge the other AI players. It would be Apple. And it's, I don't think it's as hard as self driving. So like maybe they've, they've just been investing in the wrong thing this whole time. We'll see.[00:37:21] swyx: Wall Street certainly thinks[00:37:22] NLW: so. Wall Street loved that move, man. There's a big, a big sigh of relief. Well, let's, let's move away from, from sort of the big stuff. I mean, the, I think to both of your points, it's going to.[00:37:33] Meta's $800b AI rebrand[00:37:33] NLW: Can I, can[00:37:34] swyx: I, can I, can I jump on factoid about this, this Wall Street thing? I went and looked at when Meta went from being a VR company to an AI company.[00:37:44] swyx: And I think the stock I'm trying to look up the details now. The stock has gone up 187% since Lamo one. Yeah. Which is $830 billion in market value created in the past year. . Yeah. Yeah.[00:37:57] NLW: It's, it's, it's like, remember if you guys haven't Yeah. If you haven't seen the chart, it's actually like remarkable.[00:38:02] NLW: If you draw a little[00:38:03] swyx: arrow on it, it's like, no, we're an AI company now and forget the VR thing.[00:38:10] NLW: It's it, it is an interesting, no, it's, I, I think, alessio, you called it sort of like Zuck's Disruptor Arc or whatever. He, he really does. He is in the midst of a, of a total, you know, I don't know if it's a redemption arc or it's just, it's something different where, you know, he, he's sort of the spoiler.[00:38:25] NLW: Like people loved him just freestyle talking about why he thought they had a better headset than Apple. But even if they didn't agree, they just loved it. He was going direct to camera and talking about it for, you know, five minutes or whatever. So that, that's a fascinating shift that I don't think anyone had on their bingo card, you know, whatever, two years ago.[00:38:41] NLW: Yeah. Yeah,[00:38:42] swyx: we still[00:38:43] Alessio: didn't see and fight Elon though, so[00:38:45] swyx: that's what I'm really looking forward to. I mean, hey, don't, don't, don't write it off, you know, maybe just these things take a while to happen. But we need to see and fight in the Coliseum. No, I think you know, in terms of like self management, life leadership, I think he has, there's a lot of lessons to learn from him.[00:38:59] swyx: You know he might, you know, you might kind of quibble with, like, the social impact of Facebook, but just himself as a in terms of personal growth and, and, you know, Per perseverance through like a lot of change and you know, everyone throwing stuff his way. I think there's a lot to say about like, to learn from, from Zuck, which is crazy 'cause he's my age.[00:39:18] swyx: Yeah. Right.[00:39:20] AI Engineer landscape - from baby AGIs to vertical Agents[00:39:20] NLW: Awesome. Well, so, so one of the big things that I think you guys have, you know, distinct and, and unique insight into being where you are and what you work on is. You know, what developers are getting really excited about right now. And by that, I mean, on the one hand, certainly, you know, like startups who are actually kind of formalized and formed to startups, but also, you know, just in terms of like what people are spending their nights and weekends on what they're, you know, coming to hackathons to do.[00:39:45] NLW: And, you know, I think it's a, it's a, it's, it's such a fascinating indicator for, for where things are headed. Like if you zoom back a year, right now was right when everyone was getting so, so excited about. AI agent stuff, right? Auto, GPT and baby a GI. And these things were like, if you dropped anything on YouTube about those, like instantly tens of thousands of views.[00:40:07] NLW: I know because I had like a 50,000 view video, like the second day that I was doing the show on YouTube, you know, because I was talking about auto GPT. And so anyways, you know, obviously that's sort of not totally come to fruition yet, but what are some of the trends in what you guys are seeing in terms of people's, people's interest and, and, and what people are building?[00:40:24] Alessio: I can start maybe with the agents part and then I know Shawn is doing a diffusion meetup tonight. There's a lot of, a lot of different things. The, the agent wave has been the most interesting kind of like dream to reality arc. So out of GPT, I think they went, From zero to like 125, 000 GitHub stars in six weeks, and then one year later, they have 150, 000 stars.[00:40:49] Alessio: So there's kind of been a big plateau. I mean, you might say there are just not that many people that can start it. You know, everybody already started it. But the promise of, hey, I'll just give you a goal, and you do it. I think it's like, amazing to get people's imagination going. You know, they're like, oh, wow, this This is awesome.[00:41:08] Alessio: Everybody, everybody can try this to do anything. But then as technologists, you're like, well, that's, that's just like not possible, you know, we would have like solved everything. And I think it takes a little bit to go from the promise and the hope that people show you to then try it yourself and going back to say, okay, this is not really working for me.[00:41:28] Alessio: And David Wong from Adept, you know, they in our episode, he specifically said. We don't want to do a bottom up product. You know, we don't want something that everybody can just use and try because it's really hard to get it to be reliable. So we're seeing a lot of companies doing vertical agents that are narrow for a specific domain, and they're very good at something.[00:41:49] Alessio: Mike Conover, who was at Databricks before, is also a friend of Latentspace. He's doing this new company called BrightWave doing AI agents for financial research, and that's it, you know, and they're doing very well. There are other companies doing it in security, doing it in compliance, doing it in legal.[00:42:08] Alessio: All of these things that like, people, nobody just wakes up and say, Oh, I cannot wait to go on AutoGPD and ask it to do a compliance review of my thing. You know, just not what inspires people. So I think the gap on the developer side has been the more bottom sub hacker mentality is trying to build this like very Generic agents that can do a lot of open ended tasks.[00:42:30] Alessio: And then the more business side of things is like, Hey, If I want to raise my next round, I can not just like sit around the mess, mess around with like super generic stuff. I need to find a use case that really works. And I think that that is worth for, for a lot of folks in parallel, you have a lot of companies doing evals.[00:42:47] Alessio: There are dozens of them that just want to help you measure how good your models are doing. Again, if you build evals, you need to also have a restrained surface area to actually figure out whether or not it's good, right? Because you cannot eval anything on everything under the sun. So that's another category where I've seen from the startup pitches that I've seen, there's a lot of interest in, in the enterprise.[00:43:11] Alessio: It's just like really. Fragmented because the production use cases are just coming like now, you know, there are not a lot of long established ones to, to test against. And so does it, that's kind of on the virtual agents and then the robotic side it's probably been the thing that surprised me the most at NVIDIA GTC, the amount of robots that were there that were just like robots everywhere.[00:43:33] Alessio: Like, both in the keynote and then on the show floor, you would have Boston Dynamics dogs running around. There was, like, this, like fox robot that had, like, a virtual face that, like, talked to you and, like, moved in real time. There were industrial robots. NVIDIA did a big push on their own Omniverse thing, which is, like, this Digital twin of whatever environments you're in that you can use to train the robots agents.[00:43:57] Alessio: So that kind of takes people back to the reinforcement learning days, but yeah, agents, people want them, you know, people want them. I give a talk about the, the rise of the full stack employees and kind of this future, the same way full stack engineers kind of work across the stack. In the future, every employee is going to interact with every part of the organization through agents and AI enabled tooling.[00:44:17] Alessio: This is happening. It just needs to be a lot more narrow than maybe the first approach that we took, which is just put a string in AutoGPT and pray. But yeah, there's a lot of super interesting stuff going on.[00:44:27] swyx: Yeah. Well, he Let's recover a lot of stuff there. I'll separate the robotics piece because I feel like that's so different from the software world.[00:44:34] swyx: But yeah, we do talk to a lot of engineers and you know, that this is our sort of bread and butter. And I do agree that vertical agents have worked out a lot better than the horizontal ones. I think all You know, the point I'll make here is just the reason AutoGPT and maybe AGI, you know, it's in the name, like they were promising AGI.[00:44:53] swyx: But I think people are discovering that you cannot engineer your way to AGI. It has to be done at the model level and all these engineering, prompt engineering hacks on top of it weren't really going to get us there in a meaningful way without much further, you know, improvements in the models. I would say, I'll go so far as to say, even Devin, which is, I would, I think the most advanced agent that we've ever seen, still requires a lot of engineering and still probably falls apart a lot in terms of, like, practical usage.[00:45:22] swyx: Or it's just, Way too slow and expensive for, you know, what it's, what it's promised compared to the video. So yeah, that's, that's what, that's what happened with agents from, from last year. But I, I do, I do see, like, vertical agents being very popular and, and sometimes you, like, I think the word agent might even be overused sometimes.[00:45:38] swyx: Like, people don't really care whether or not you call it an AI agent, right? Like, does it replace boring menial tasks that I do That I might hire a human to do, or that the human who is hired to do it, like, actually doesn't really want to do. And I think there's absolutely ways in sort of a vertical context that you can actually go after very routine tasks that can be scaled out to a lot of, you know, AI assistants.[00:46:01] swyx: So, so yeah, I mean, and I would, I would sort of basically plus one what let's just sit there. I think it's, it's very, very promising and I think more people should work on it, not less. Like there's not enough people. Like, we, like, this should be the, the, the main thrust of the AI engineer is to look out, look for use cases and, and go to a production with them instead of just always working on some AGI promising thing that never arrives.[00:46:21] swyx: I,[00:46:22] NLW: I, I can only add that so I've been fiercely making tutorials behind the scenes around basically everything you can imagine with AI. We've probably done, we've done about 300 tutorials over the last couple of months. And the verticalized anything, right, like this is a solution for your particular job or role, even if it's way less interesting or kind of sexy, it's like so radically more useful to people in terms of intersecting with how, like those are the ways that people are actually.[00:46:50] NLW: Adopting AI in a lot of cases is just a, a, a thing that I do over and over again. By the way, I think that's the same way that even the generalized models are getting adopted. You know, it's like, I use midjourney for lots of stuff, but the main thing I use it for is YouTube thumbnails every day. Like day in, day out, I will always do a YouTube thumbnail, you know, or two with, with Midjourney, right?[00:47:09] NLW: And it's like you can, you can start to extrapolate that across a lot of things and all of a sudden, you know, a AI doesn't. It looks revolutionary because of a million small changes rather than one sort of big dramatic change. And I think that the verticalization of agents is sort of a great example of how that's[00:47:26] swyx: going to play out too.[00:47:28] Adept episode - Screen Multimodality[00:47:28] swyx: So I'll have one caveat here, which is I think that Because multi modal models are now commonplace, like Cloud, Gemini, OpenAI, all very very easily multi modal, Apple's easily multi modal, all this stuff. There is a switch for agents for sort of general desktop browsing that I think people so much for joining us today, and we'll see you in the next video.[00:48:04] swyx: Version of the the agent where they're not specifically taking in text or anything They're just watching your screen just like someone else would and and I'm piloting it by vision And you know in the the episode with David that we'll have dropped by the time that this this airs I think I think that is the promise of adept and that is a promise of what a lot of these sort of desktop agents Are and that is the more general purpose system That could be as big as the browser, the operating system, like, people really want to build that foundational piece of software in AI.[00:48:38] swyx: And I would see, like, the potential there for desktop agents being that, that you can have sort of self driving computers. You know, don't write the horizontal piece out. I just think we took a while to get there.[00:48:48] NLW: What else are you guys seeing that's interesting to you? I'm looking at your notes and I see a ton of categories.[00:48:54] Top Model Research from January Recap[00:48:54] swyx: Yeah so I'll take the next two as like as one category, which is basically alternative architectures, right? The two main things that everyone following AI kind of knows now is, one, the diffusion architecture, and two, the let's just say the, Decoder only transformer architecture that is popularized by GPT.[00:49:12] swyx: You can read, you can look on YouTube for thousands and thousands of tutorials on each of those things. What we are talking about here is what's next, what people are researching, and what could be on the horizon that takes the place of those other two things. So first of all, we'll talk about transformer architectures and then diffusion.[00:49:25] swyx: So transformers the, the two leading candidates are effectively RWKV and the state space models the most recent one of which is Mamba, but there's others like the Stripe, ENA, and the S four H three stuff coming out of hazy research at Stanford. And all of those are non quadratic language models that scale the promise to scale a lot better than the, the traditional transformer.[00:49:47] swyx: That this might be too theoretical for most people right now, but it's, it's gonna be. It's gonna come out in weird ways, where, imagine if like, Right now the talk of the town is that Claude and Gemini have a million tokens of context and like whoa You can put in like, you know, two hours of video now, okay But like what if you put what if we could like throw in, you know, two hundred thousand hours of video?[00:50:09] swyx: Like how does that change your usage of AI? What if you could throw in the entire genetic sequence of a human and like synthesize new drugs. Like, well, how does that change things? Like, we don't know because we haven't had access to this capability being so cheap before. And that's the ultimate promise of these two models.[00:50:28] swyx: They're not there yet but we're seeing very, very good progress. RWKV and Mamba are probably the, like, the two leading examples, both of which are open source that you can try them today and and have a lot of progress there. And the, the, the main thing I'll highlight for audio e KV is that at, at the seven B level, they seem to have beat LAMA two in all benchmarks that matter at the same size for the same amount of training as an open source model.[00:50:51] swyx: So that's exciting. You know, they're there, they're seven B now. They're not at seven tb. We don't know if it'll. And then the other thing is diffusion. Diffusions and transformers are are kind of on the collision course. The original stable diffusion already used transformers in in parts of its architecture.[00:51:06] swyx: It seems that transformers are eating more and more of those layers particularly the sort of VAE layer. So that's, the Diffusion Transformer is what Sora is built on. The guy who wrote the Diffusion Transformer paper, Bill Pebbles, is, Bill Pebbles is the lead tech guy on Sora. So you'll just see a lot more Diffusion Transformer stuff going on.[00:51:25] swyx: But there's, there's more sort of experimentation with diffusion. I'm holding a meetup actually here in San Francisco that's gonna be like the state of diffusion, which I'm pretty excited about. Stability's doing a lot of good work. And if you look at the, the architecture of how they're creating Stable Diffusion 3, Hourglass Diffusion, and the inconsistency models, or SDXL Turbo.[00:51:45] swyx: All of these are, like, very, very interesting innovations on, like, the original idea of what Stable Diffusion was. So if you think that it is expensive to create or slow to create Stable Diffusion or an AI generated art, you are not up to date with the latest models. If you think it is hard to create text and images, you are not up to date with the latest models.[00:52:02] swyx: And people still are kind of far behind. The last piece of which is the wildcard I always kind of hold out, which is text diffusion. So Instead of using autogenerative or autoregressive transformers, can you use text to diffuse? So you can use diffusion models to diffuse and create entire chunks of text all at once instead of token by token.[00:52:22] swyx: And that is something that Midjourney confirmed today, because it was only rumored the past few months. But they confirmed today that they were looking into. So all those things are like very exciting new model architectures that are, Maybe something that we'll, you'll see in production two to three years from now.[00:52:37] swyx: So the couple of the trends[00:52:38] NLW: that I want to just get your takes on, because they're sort of something that, that seems like they're coming up are one sort of these, these wearable, you know, kind of passive AI experiences where they're absorbing a lot of what's going on around you and then, and then kind of bringing things back.[00:52:53] NLW: And then the, the other one that I, that I wanted to see if you guys had thoughts on were sort of this next generation of chip companies. Obviously there's a huge amount of emphasis. On on hardware and silicon and, and, and different ways of doing things, but, y

america god tv love ceo amazon spotify netflix world learning europe english google ai apple lessons pr magic san francisco phd friend digital chinese marvel reading data predictions elon musk microsoft events funny fortune startups white house weird economics wall street memory wall street journal reddit wars vr auto cloud singapore curious gate stanford connections mix israelis context ibm mark zuckerberg senior vice president average intel cto ram state of the union tigers vc signal minecraft adapt siri transformers ipo sol instructors lsu openai clouds gemini nvidia stability rust ux api lemon gi patel nsfw cisco luther b2c d d progression bro compass davos sweep bing makes disagreement mythology gpt ml lama github llama token thursday night apis quran stripe vcs amd devops captive baldur embody silicon opus sora dozen copilot bobo tab sam altman capital one mamba llm gpu altman boba waze generic dali agi upfront midjourney ide approve gdc napster zuck golem coliseum git kv albrecht prs diffusion rag cloudflare waymo klarna gpus coders gan deepmind tldr boston dynamics alessio gitlab minefields sergei anthropic grok ppa json fragmented lex fridman ena mistral suno stable diffusion nox inflection decibel counterpoint databricks a16z mts rohde adept cuda gpts cursor chroma asr sundar jensen huang lemurian gtc decoder iou stability ai singaporeans omniverse netlify etched sram cerebros nvidia gpus pytorch eac lamo day6 devtools not safe agis mustafa suleyman kubecon jupyter elicit vae autogpt project titan tpu milind nvidia gtc practical ai personal ai demis groq neurips marginally jeff dean andrej karpathy imbue nlw positron ai engineer hbm slido nat friedman entropic ppap lstm c300 boba guys technium mbu simon willison lpu you look xla latent space swix medex lstms mxu metax
Acceptance Criteria
E019: This AI engineer will use NVidia’s GPUs to put you out of work and kill the planet

Acceptance Criteria

Play Episode Listen Later Apr 4, 2024


It's another news round up as we talk about concerning advances in AI automation and other news of the week. From Devin the AI engineer to Apple canceling its self-driving car plans, artificial intelligence had a rocky week. Also, NVidia's new GPUs will require even more electricity and amid soaring revenue numbers an alarming amount of companies are laying off tech workers. Join the discussion on Reddit: https://www.reddit.com/r/AcceptanceCriteria/ And on the Discord: https://discord.gg/2Tyj8H9MFF The post E019: This AI engineer will use NVidia's GPUs to put you out of work and kill the planet first appeared on Acceptance Criteria.

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0
Presenting the AI Engineer World's Fair — with Sam Schillace, Deputy CTO of Microsoft

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Play Episode Listen Later Mar 29, 2024 42:58


TL;DR: You can now buy tickets, apply to speak, or join the expo for the biggest AI Engineer event of 2024. We're gathering *everyone* you want to meet - see you this June.In last year's the Rise of the AI Engineer we put our money where our mouth was and announced the AI Engineer Summit, which fortunately went well:With ~500 live attendees and over ~500k views online, the first iteration of the AI Engineer industry affair seemed to be well received. Competing in an expensive city with 3 other more established AI conferences in the fall calendar, we broke through in terms of in-person experience and online impact.So at the end of Day 2 we announced our second event: the AI Engineer World's Fair. The new website is now live, together with our new presenting sponsor:We were delighted to invite both Ben Dunphy, co-organizer of the conference and Sam Schillace, the deputy CTO of Microsoft who wrote some of the first Laws of AI Engineering while working with early releases of GPT-4, on the pod to talk about the conference and how Microsoft is all-in on AI Engineering.Rise of the Planet of the AI EngineerSince the first AI Engineer piece, AI Engineering has exploded:and the title has been adopted across OpenAI, Meta, IBM, and many, many other companies:1 year on, it is clear that AI Engineering is not only in full swing, but is an emerging global industry that is successfully bridging the gap:* between research and product, * between general-purpose foundation models and in-context use-cases, * and between the flashy weekend MVP (still great!) and the reliable, rigorously evaluated AI product deployed at massive scale, assisting hundreds of employees and driving millions in profit.The greatly increased scope of the 2024 AI Engineer World's Fair (more stages, more talks, more speakers, more attendees, more expo…) helps us reflect the growth of AI Engineering in three major dimensions:* Global Representation: the 2023 Summit was a mostly-American affair. This year we plan to have speakers from top AI companies across five continents, and explore the vast diversity of approaches to AI across global contexts.* Topic Coverage: * In 2023, the Summit focused on the initial questions that the community wrestled with - LLM frameworks, RAG and Vector Databases, Code Copilots and AI Agents. Those are evergreen problems that just got deeper.* This year the AI Engineering field has also embraced new core disciplines with more explicit focus on Multimodality, Evals and Ops, Open Source Models and GPU/Inference Hardware providers.* Maturity/Production-readiness: Two new tracks are dedicated toward AI in the Enterprise, government, education, finance, and more highly regulated industries or AI deployed at larger scale: * AI in the Fortune 500, covering at-scale production deployments of AI, and* AI Leadership, a closed-door, side event for technical AI leaders to discuss engineering and product leadership challenges as VPs and Heads of AI in their respective orgs.We hope you will join Microsoft and the rest of us as either speaker, exhibitor, or attendee, in San Francisco this June. Contact us with any enquiries that don't fall into the categories mentioned below.Show Notes* Ben Dunphy* 2023 Summit* GitHub confirmed $100m ARR on stage* History of World's Fairs* Sam Schillace* Writely on Acquired.fm* Early Lessons From GPT-4: The Schillace Laws* Semantic Kernel* Sam on Kevin Scott (Microsoft CTO)'s podcast in 2022* AI Engineer World's Fair (SF, Jun 25-27)* Buy Super Early Bird tickets (Listeners can use LATENTSPACE for $100 off any ticket until April 8, or use GROUP if coming in 4 or more)* Submit talks and workshops for Speaker CFPs (by April 8)* Enquire about Expo Sponsorship (Asap.. selling fast)Timestamps* [00:00:16] Intro* [00:01:04] 2023 AI Engineer Summit* [00:03:11] Vendor Neutral* [00:05:33] 2024 AIE World's Fair* [00:07:34] AIE World's Fair: 9 Tracks* [00:08:58] AIE World's Fair Keynotes* [00:09:33] Introducing Sam* [00:12:17] AI in 2020s vs the Cloud in 2000s* [00:13:46] Syntax vs Semantics* [00:14:22] Bill Gates vs GPT-4* [00:16:28] Semantic Kernel and Schillace's Laws of AI Engineering* [00:17:29] Orchestration: Break it into pieces* [00:19:52] Prompt Engineering: Ask Smart to Get Smart* [00:21:57] Think with the model, Plan with Code* [00:23:12] Metacognition vs Stochasticity* [00:24:43] Generating Synthetic Textbooks* [00:26:24] Trade leverage for precision; use interaction to mitigate* [00:27:18] Code is for syntax and process; models are for semantics and intent.* [00:28:46] Hands on AI Leadership* [00:33:18] Multimodality vs "Text is the universal wire protocol"* [00:35:46] Azure OpenAI vs Microsoft Research vs Microsoft AI Division* [00:39:40] On Satya* [00:40:44] Sam at AI Leadership Track* [00:42:05] Final Plug for Tickets & CFPTranscript[00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO in residence at Decibel Partners, and I'm joined by my co host Swyx, founder of Small[00:00:16] Intro[00:00:16] swyx: AI. Hey, hey, we're back again with a very special episode, this time with two guests and talking about the very in person events rather than online stuff.[00:00:27] swyx: So first I want to welcome Ben Dunphy, who is my co organizer on AI engineer conferences. Hey, hey, how's it going? We have a very special guest. Anyone who's looking at the show notes and the title will preview this later. But I guess we want to set the context. We are effectively doing promo for the upcoming AI Engineer World's Fair that's happening in June.[00:00:49] swyx: But maybe something that we haven't actually recapped much on the pod is just the origin of the AI Engineer Summit and why, what happens and what went down. Ben, I don't know if you'd like to start with the raw numbers that people should have in mind.[00:01:04] 2023 AI Engineer Summit[00:01:04] Ben Dunphy: Yeah, perhaps your listeners would like just a quick background on the summit.[00:01:09] Ben Dunphy: I mean, I'm sure many folks have heard of our events. You know, you launched, we launched the AI Engineer Summit last June with your, your article kind of coining the term that was on the tip of everyone's tongue, but curiously had not been actually coined, which is the term AI Engineer, which is now many people's, Job titles, you know, we're seeing a lot more people come to this event, with the job description of AI engineer, with the job title of AI engineer so, is an event that you and I really talked about since February of 2023, when we met at a hackathon you organized we were both excited by this movement and it hasn't really had a name yet.[00:01:48] Ben Dunphy: We decided that an event was warranted and that's why we move forward with the AI Engineer Summit, which Ended up being a great success. You know, we had over 5, 000 people apply to attend in person. We had over 9, 000 folks attend, online with over 20, 000 on the live stream.[00:02:06] Ben Dunphy: In person, we accepted about 400 attendees and had speakers, workshop instructors and sponsors, all congregating in San Francisco over, two days, um, two and a half days with a, with a welcome reception. So it was quite the event to kick off kind of this movement that's turning into quite an exciting[00:02:24] swyx: industry.[00:02:25] swyx: The overall idea of this is that I kind of view AI engineering, at least in all my work in Latent Space and the other stuff, as starting an industry.[00:02:34] swyx: And I think every industry, every new community, needs a place to congregate. And I definitely think that AI engineer, at least at the conference, is that it's meant to be like the biggest gathering of technical engineering people working with AI. Right. I think we kind of got that spot last year. There was a very competitive conference season, especially in San Francisco.[00:02:54] swyx: But I think as far as I understand, in terms of cultural impact, online impact, and the speakers that people want to see, we, we got them all and it was very important for us to be a vendor neutral type of event. Right. , The reason I partnered with Ben is that Ben has a lot of experience, a lot more experience doing vendor neutral stuff.[00:03:11] Vendor Neutral[00:03:11] swyx: I first met you when I was speaking at one of your events, and now we're sort of business partners on that. And yeah, I mean, I don't know if you have any sort of Thoughts on make, making things vendor neutral, making things more of a community industry conference rather than like something that's owned by one company.[00:03:25] swyx: Yeah.[00:03:25] Ben Dunphy: I mean events that are owned by a company are great, but this is typically where you have product pitches and this smaller internet community. But if you want the truly internet community, if you want a more varied audience and you know, frankly, better content for, especially for a technical audience, you want a vendor neutral event. And this is because when you have folks that are running the event that are focused on one thing and one thing alone, which is quality, quality of content, quality of speakers, quality of the in person experience, and just of general relevance it really elevates everything to the next level.[00:04:01] Ben Dunphy: And when you have someone like yourself who's coming To this content curation the role that you take at this event, and bringing that neutrality with, along with your experience, that really helps to take it to the next level, and then when you have someone like myself, focusing on just the program curation, and the in person experience, then both of our forces combined, we can like, really create this epic event, and so, these vendor neutral events if you've been to a small community event, Typically, these are vendor neutral, but also if you've been to a really, really popular industry event, many of the top industry events are actually vendor neutral.[00:04:37] Ben Dunphy: And that's because of the fact that they're vendor neutral, not in spite of[00:04:41] swyx: it. Yeah, I've been pretty open about the fact that my dream is to build the KubeCon of AI. So if anyone has been in the Kubernetes world, they'll understand what that means. And then, or, or instead of the NeurIPS, NeurIPS for engineers, where engineers are the stars and engineers are sharing their knowledge.[00:04:57] swyx: Perspectives, because I think AI is definitely moving over from research to engineering and production. I think one of my favorite parts was just honestly having GitHub and Microsoft support, which we'll cover in a bit, but you know, announcing finally that GitHub's copilot was such a commercial success I think was the first time that was actually confirmed by anyone in public.[00:05:17] swyx: For me, it's also interesting as sort of the conference curator to put Microsoft next to competitors some of which might be much smaller AI startups and to see what, where different companies are innovating in different areas.[00:05:27] swyx: Well, they're next to[00:05:27] Ben Dunphy: each other in the arena. So they can be next to each other on stage too.[00:05:33] Why AIE World's Fair[00:05:33] swyx: Okay, so this year World's Fair we are going a lot bigger what details are we disclosing right now? Yeah,[00:05:39] Ben Dunphy: I guess we should start with the name why are we calling it the World's Fair? And I think we need to go back to what inspired this, what actually the original World's Fair was, which was it started in the late 1700s and went to the early 1900s.[00:05:53] Ben Dunphy: And it was intended to showcase the incredible achievements. Of nation states, corporations, individuals in these grand expos. So you have these miniature cities actually being built for these grand expos. In San Francisco, for example, you had the entire Marina District built up in absolutely new construction to showcase the achievements of industry, architecture, art, and culture.[00:06:16] Ben Dunphy: And many of your listeners will know that in 1893, the Nikola Tesla famously provided power to the Chicago World's Fair with his 8 seat power generator. There's lots of great movies and documentaries about this. That was the first electric World's Fair, which thereafter it was referred to as the White City.[00:06:33] Ben Dunphy: So in today's world we have technological change that's similar to what was experienced during the industrial revolution in how it's, how it's just upending our entire life, how we live, work, and play. And so we have artificial intelligence, which has long been the dream of humanity.[00:06:51] Ben Dunphy: It's, it's finally here. And the pace of technological change is just accelerating. So with this event, as you mentioned, we, we're aiming to create a singular event where the world's foremost experts, builders, and practitioners can come together to exchange and reflect. And we think this is not only good for business, but it's also good for our mental health.[00:07:12] Ben Dunphy: It slows things down a bit from the Twitter news cycle to an in person festival of smiles, handshakes, connections, and in depth conversations that online media and online events can only ever dream of replicating. So this is an expo led event where the world's top companies will mingle with the world's top founders and AI engineers who are building and enhanced by AI.[00:07:34] AIE World's Fair: 9 Tracks[00:07:34] Ben Dunphy: And not to mention, we're featuring over a hundred talks and workshops across[00:07:37] swyx: nine tracks. Yeah, I mean, those nine tracks will be fun. Actually, do we have a little preview of the tracks in the, the speakers?[00:07:43] Ben Dunphy: We do. Folks can actually see them today at our website. We've updated that at ai.[00:07:48] Ben Dunphy: engineer. So we'd encourage them to go there to see that. But for those just listening, we have nine tracks. So we have multimodality. We have retrieval augmented generation. Featuring LLM frameworks and vector databases, evals and LLM ops, open source models, code gen and dev tools, GPUs and inference, AI agent applications, AI in the fortune 500, and then we have a special track for AI leadership which you can access by purchasing the VP pass which is different from the, the other passes we have.[00:08:20] Ben Dunphy: And I won't go into the Each of these tracks in depth, unless you want to, Swyx but there's more details on the website at ai. engineer.[00:08:28] swyx: I mean, I, I, very much looking forward to talking to our special guests for the last track, I think, which is the what a lot of yeah, leaders are thinking about, which is how to, Inspire innovation in their companies, especially the sort of larger organizations that might not have the in house talents for that kind of stuff.[00:08:47] swyx: So yeah, we can talk about the expo, but I'm very keen to talk about the presenting sponsor if you want to go slightly out of order from our original plan.[00:08:58] AIE World's Fair Keynotes[00:08:58] Ben Dunphy: Yeah, absolutely. So you know, for the stage of keynotes, we have talks confirmed from Microsoft, OpenAI, AWS, and Google.[00:09:06] Ben Dunphy: And our presenting sponsor is joining the stage with those folks. And so that presenting sponsor this year is a dream sponsor. It's Microsoft. It's the company really helping to lead the charge. And into this wonderful new era that we're all taking part in. So, yeah,[00:09:20] swyx: you know, a bit of context, like when we first started planning this thing, I was kind of brainstorming, like, who would we like to get as the ideal presenting sponsors, as ideal partners long term, just in terms of encouraging the AI engineering industry, and it was Microsoft.[00:09:33] Introducing Sam[00:09:33] swyx: So Sam, I'm very excited to welcome you onto the podcast. You are CVP and Deputy CTO of Microsoft. Welcome.[00:09:40] Sam Schillace: Nice to be here. I'm looking forward to, I was looking for, to Lessio saying my last name correctly this time. Oh[00:09:45] swyx: yeah. So I, I studiously avoided saying, saying your last name, but apparently it's an Italian last name.[00:09:50] swyx: Ski Lache. Ski[00:09:51] Alessio: Lache. Yeah. No, that, that's great, Sean. That's great as a musical person.[00:09:54] swyx: And it, it's also, yeah, I pay attention to like the, the, the lilt. So it's ski lache and the, the slow slowing of the law is, is what I focused[00:10:03] Sam Schillace: on. You say both Ls. There's no silent letters, you say[00:10:07] Alessio: both of those. And it's great to have you, Sam.[00:10:09] Alessio: You know, we've known each other now for a year and a half, two years, and our first conversation, well, it was at Lobby Conference, and then we had a really good one in the kind of parking lot of a Safeway, because we didn't want to go into Starbucks to meet, so we sat outside for about an hour, an hour and a half, and then you had to go to a Bluegrass concert, so it was great.[00:10:28] Alessio: Great meeting, and now, finally, we have you on Lanespace.[00:10:31] Sam Schillace: Cool, cool. Yeah, I'm happy to be here. It's funny, I was just saying to Swyx before you joined that, like, it's kind of an intimidating podcast. Like, when I listen to this podcast, it seems to be, like, one of the more intelligent ones, like, more, more, like, deep technical folks on it.[00:10:44] Sam Schillace: So, it's, like, it's kind of nice to be here. It's fun. Bring your A game. Hopefully I'll, I'll bring mine. I[00:10:49] swyx: mean, you've been programming for longer than some of our listeners have been alive, so I don't think your technical chops are in any doubt. So you were responsible for Rightly as one of your early wins in your career, which then became Google Docs, and obviously you were then responsible for a lot more G Suite.[00:11:07] swyx: But did you know that you covered in Acquired. fm episode 9, which is one of the podcasts that we model after.[00:11:13] Sam Schillace: Oh, cool. I didn't, I didn't realize that the most fun way to say this is that I still have to this day in my personal GDocs account, the very first Google doc, like I actually have it.[00:11:24] Sam Schillace: And I looked it up, like it occurred to me like six months ago that it was probably around and I went and looked and it's still there. So it's like, and it's kind of a funny thing. Cause it's like the backend has been rewritten at least twice that I know of the front end has been re rewritten at least twice that I know of.[00:11:38] Sam Schillace: So. I'm not sure what sense it's still the original one it's sort of more the idea of the original one, like the NFT of it would probably be more authentic. I[00:11:46] swyx: still have it. It's a ship athesia thing. Does it, does it say hello world or something more mundane?[00:11:52] Sam Schillace: It's, it's, it's me and Steve Newman trying to figure out if some collaboration stuff is working, and also a picture of Edna from the Incredibles that I probably pasted in later, because that's That's too early for that, I think.[00:12:05] swyx: People can look up your LinkedIn, and we're going to link it on the show notes, but you're also SVP of engineering for Box, and then you went back to Google to do Google, to lead Google Maps, and now you're deputy CTO.[00:12:17] AI in 2020s vs the Cloud in 2000s[00:12:17] swyx: I mean, there's so many places to start, but maybe one place I like to start off with is do you have a personal GPT 4 experience.[00:12:25] swyx: Obviously being at Microsoft, you have, you had early access and everyone talks about Bill Gates's[00:12:30] Sam Schillace: demo. Yeah, it's kind of, yeah, that's, it's kind of interesting. Like, yeah, we got access, I got access to it like in September of 2022, I guess, like before it was really released. And I it like almost instantly was just like mind blowing to me how good it was.[00:12:47] Sam Schillace: I would try experiments like very early on, like I play music. There's this thing called ABC notation. That's like an ASCII way to represent music. And like, I was like, I wonder if it can like compose a fiddle tune. And like it composed a fiddle tune. I'm like, I wonder if it can change key, change the key.[00:13:01] Sam Schillace: Like it's like really, it was like very astonishing. And I sort of, I'm very like abstract. My background is actually more math than CS. I'm a very abstract thinker and sort of categorical thinker. And the, the thing that occurred to me with, with GPT 4 the first time I saw it was. This is really like the beginning, it's the beginning of V2 of the computer industry completely.[00:13:23] Sam Schillace: I had the same feeling I had when, of like a category shifting that I had when the cloud stuff happened with the GDocs stuff, right? Where it's just like, all of a sudden this like huge vista opens up of capabilities. And I think the way I characterized it, which is a little bit nerdy, but I'm a nerd so lean into it is like everything until now has been about syntax.[00:13:46] Syntax vs Semantics[00:13:46] Sam Schillace: Like, we have to do mediation. We have to describe the real world in forms that the digital world can manage. And so we're the mediation, and we, like, do that via things like syntax and schema and programming languages. And all of a sudden, like, this opens the door to semantics, where, like, you can express intention and meaning and nuance and fuzziness.[00:14:04] Sam Schillace: And the machine itself is doing, the model itself is doing a bunch of the mediation for you. And like, that's obviously like complicated. We can talk about the limits and stuff, and it's getting better in some ways. And we're learning things and all kinds of stuff is going on around it, obviously.[00:14:18] Sam Schillace: But like, that was my immediate reaction to it was just like, Oh my God.[00:14:22] Bill Gates vs GPT-4[00:14:22] Sam Schillace: Like, and then I heard about the build demo where like Bill had been telling Kevin Scott this, This investment is a waste. It's never going to work. AI is blah, blah, blah. And come back when it can pass like an AP bio exam.[00:14:33] Sam Schillace: And they actually literally did that at one point, they brought in like the world champion of the, like the AP bio test or whatever the AP competition and like it and chat GPT or GPT 4 both did the AP bio and GPT 4 beat her. So that was the moment that convinced Bill that this was actually real.[00:14:53] Sam Schillace: Yeah, it's fun. I had a moment with him actually about three weeks after that when we had been, so I started like diving in on developer tools almost immediately and I built this thing with a small team that's called the Semantic Kernel which is one of the very early orchestrators just because I wanted to be able to put code and And inference together.[00:15:10] Sam Schillace: And that's probably something we should dig into more deeply. Cause I think there's some good insights in there, but I I had a bunch of stuff that we were building and then I was asked to go meet with Bill Gates about it and he's kind of famously skeptical and, and so I was a little bit nervous to meet him the first time.[00:15:25] Sam Schillace: And I started the conversation with, Hey, Bill, like three weeks ago, you would have called BS on everything I'm about to show you. And I would probably have agreed with you, but we've both seen this thing. And so we both know it's real. So let's skip that part and like, talk about what's possible.[00:15:39] Sam Schillace: And then we just had this kind of fun, open ended conversation and I showed him a bunch of stuff. So that was like a really nice, fun, fun moment as well. Well,[00:15:46] swyx: that's a nice way to meet Bill Gates and impress[00:15:48] Sam Schillace: him. A little funny. I mean, it's like, I wasn't sure what he would think of me, given what I've done and his.[00:15:54] Sam Schillace: Crown Jewel. But he was nice. I think he likes[00:15:59] swyx: GDocs. Crown Jewel as in Google Docs versus Microsoft Word? Office.[00:16:03] Sam Schillace: Yeah. Yeah, versus Office. Yeah, like, I think, I mean, I can imagine him not liking, I met Steven Snofsky once and he sort of respectfully, but sort of grimaced at me. You know, like, because of how much trauma I had caused him.[00:16:18] Sam Schillace: So Bill was very nice to[00:16:20] swyx: me. In general it's like friendly competition, right? They keep you, they keep you sharp, you keep each[00:16:24] Sam Schillace: other sharp. Yeah, no, I think that's, it's definitely respect, it's just kind of funny.[00:16:28] Semantic Kernel and Schillace's Laws of AI Engineering[00:16:28] Sam Schillace: Yeah,[00:16:28] swyx: So, speaking of semantic kernel, I had no idea that you were that deeply involved, that you actually had laws named after you.[00:16:35] swyx: This only came up after looking into you for a little bit. Skelatches laws, how did those, what's the, what's the origin[00:16:41] Sam Schillace: story? Hey! Yeah, that's kind of funny. I'm actually kind of a modest person and so I'm sure I feel about having my name attached to them. Although I do agree with all, I believe all of them because I wrote all of them.[00:16:49] Sam Schillace: This is like a designer, John Might, who works with me, decided to stick my name on them and put them out there. Seriously, but like, well, but like, so this was just I, I'm not, I don't build models. Like I'm not an AI engineer in the sense of, of like AI researcher that's like doing inference. Like I'm somebody who's like consuming the models.[00:17:09] Sam Schillace: Exactly. So it's kind of funny when you're talking about AI engineering, like it's a good way of putting it. Cause that's how like I think about myself. I'm like, I'm an app builder. I just want to build with this tool. Yep. And so we spent all of the fall and into the winter in that first year, like Just trying to build stuff and learn how this tool worked.[00:17:29] Orchestration: Break it into pieces[00:17:29] Sam Schillace: And I guess those are a little bit in the spirit of like Robert Bentley's programming pearls or something. I was just like, let's kind of distill some of these ideas down of like. How does this thing work? I saw something I still see today with people doing like inference is still kind of expensive.[00:17:46] Sam Schillace: GPUs are still kind of scarce. And so people try to get everything done in like one shot. And so there's all this like prompt tuning to get things working. And one of the first laws was like, break it into pieces. Like if it's hard for you, it's going to be hard for the model. But if it's you know, there's this kind of weird thing where like, it's.[00:18:02] Sam Schillace: It's absolutely not a human being, but starting to think about, like, how would I solve the problem is often a good way to figure out how to architect the program so that the model can solve the problem. So, like, that was one of the first laws. That came from me just trying to, like, replicate a test of a, like, a more complicated, There's like a reasoning process that you have to go through that, that Google was, was the react, the react thing, and I was trying to get GPT 4 to do it on its own.[00:18:32] Sam Schillace: And, and so I'd ask it the question that was in this paper, and the answer to the question is like the year 2000. It's like, what year did this particular author who wrote this book live in this country? And you've kind of got to carefully reason through it. And like, I could not get GPT 4 to Just to answer the question with the year 2000.[00:18:50] Sam Schillace: And if you're thinking about this as like the kernel is like a pipelined orchestrator, right? It's like very Unix y, where like you have a, some kind of command and you pipe stuff to the next parameters and output to the next thing. So I'm thinking about this as like one module in like a pipeline, and I just want it to give me the answer.[00:19:05] Sam Schillace: I don't want anything else. And I could not prompt engineer my way out of that. I just like, it was giving me a paragraph or reasoning. And so I sort of like anthropomorphized a little bit and I was like, well, the only way you can think about stuff is it can think out loud because there's nothing else that the model does.[00:19:19] Sam Schillace: It's just doing token generation. And so it's not going to be able to do this reasoning if it can't think out loud. And that's why it's always producing this. But if you take that paragraph of output, which did get to the right answer and you pipe it into a second prompt. That just says read this conversation and just extract the answer and report it back.[00:19:38] Sam Schillace: That's an easier task. That would be an easier task for you to do or me to do. It's easier reasoning. And so it's an easier thing for the model to do and it's much more accurate. And that's like 100 percent accurate. It always does that. So like that was one of those, those insights on the that led to the, the choice loss.[00:19:52] Prompt Engineering: Ask Smart to Get Smart[00:19:52] Sam Schillace: I think one of the other ones that's kind of interesting that I think people still don't fully appreciate is that GPT 4 is the rough equivalent of like a human being sitting down for centuries or millennia and reading all the books that they can find. It's this vast mind, right, and the embedding space, the latent space, is 100, 000 K, 100, 000 dimensional space, right?[00:20:14] Sam Schillace: Like it's this huge, high dimensional space, and we don't have good, um, Intuition about high dimensional spaces, like the topology works in really weird ways, connectivity works in weird ways. So a lot of what we're doing is like aiming the attention of a model into some part of this very weirdly connected space.[00:20:30] Sam Schillace: That's kind of what prompt engineering is. But that kind of, like, what we observed to begin with that led to one of those laws was You know, ask smart to get smart. And I think we've all, we all understand this now, right? Like this is the whole field of prompt engineering. But like, if you ask like a simple, a simplistic question of the model, you'll get kind of a simplistic answer.[00:20:50] Sam Schillace: Cause you're pointing it at a simplistic part of that high dimensional space. And if you ask it a more intelligent question, you get more intelligent stuff back out. And so I think that's part of like how you think about programming as well. It's like, how are you directing the attention of the model?[00:21:04] Sam Schillace: And I think we still don't have a good intuitive feel for that. To me,[00:21:08] Alessio: the most interesting thing is how do you tie the ask smart, get smart with the syntax and semantics piece. I gave a talk at GDC last week about the rise of full stack employees and how these models are like semantic representation of tasks that people do.[00:21:23] Alessio: But at the same time, we have code. Also become semantic representation of code. You know, I give you the example of like Python that sort it's like really a semantic function. It's not code, but it's actually code underneath. How do you think about tying the two together where you have code?[00:21:39] Alessio: To then extract the smart parts so that you don't have to like ask smart every time and like kind of wrap them in like higher level functions.[00:21:46] Sam Schillace: Yeah, this is, this is actually, we're skipping ahead to kind of later in the conversation, but I like to, I usually like to still stuff down in these little aphorisms that kind of help me remember them.[00:21:57] Think with the model, Plan with Code[00:21:57] Sam Schillace: You know, so we can dig into a bunch of them. One of them is pixels are free, one of them is bots are docs. But the one that's interesting here is Think with the model, plan with code. And so one of the things, so one of the things we've realized, we've been trying to do lots of these like longer running tasks.[00:22:13] Sam Schillace: Like we did this thing called the infinite chatbot, which was the successor to the semantic kernel, which is an internal project. It's a lot like GPTs. The open AI GPT is, but it's like a little bit more advanced in some ways, kind of deep exploration of a rag based bot system. And then we did multi agents from that, trying to do some autonomy stuff and we're, and we're kind of banging our head against this thing.[00:22:34] Sam Schillace: And you know, one of the things I started to realize, this is going to get nerdy for a second. I apologize, but let me dig in on it for just a second. No apology needed. Um, we realized is like, again, this is a little bit of an anthropomorphism and an illusion that we're having. So like when we look at these models, we think there's something continuous there.[00:22:51] Sam Schillace: We're having a conversation with chat GPT or whatever with Azure open air or like, like what's really happened. It's a little bit like watching claymation, right? Like when you watch claymation, you don't think that the model is actually the clay model is actually really alive. You know, that there's like a bunch of still disconnected slot screens that your mind is connecting into a continuous experience.[00:23:12] Metacognition vs Stochasticity[00:23:12] Sam Schillace: And that's kind of the same thing that's going on with these models. Like they're all the prompts are disconnected no matter what. Which means you're putting a lot of weight on memory, right? This is the thing we talked about. You're like, you're putting a lot of weight on precision and recall of your memory system.[00:23:27] Sam Schillace: And so like, and it turns out like, because the models are stochastic, they're kind of random. They'll make stuff up if things are missing. If you're naive about your, your memory system, you'll get lots of like accumulated similar memories that will kind of clog the system, things like that. So there's lots of ways in which like, Memory is hard to manage well, and, and, and that's okay.[00:23:47] Sam Schillace: But what happens is when you're doing plans and you're doing these longer running things that you're talking about, that second level, the metacognition is very vulnerable to that stochastic noise, which is like, I totally want to put this on a bumper sticker that like metacognition is susceptible to stochasticity would be like the great bumper sticker.[00:24:07] Sam Schillace: So what, these things are very vulnerable to feedback loops when they're trying to do autonomy, and they're very vulnerable to getting lost. So we've had these, like, multi agent Autonomous agent things get kind of stuck on like complimenting each other, or they'll get stuck on being quote unquote frustrated and they'll go on strike.[00:24:22] Sam Schillace: Like there's all kinds of weird like feedback loops you get into. So what we've learned to answer your question of how you put all this stuff together is You have to, the model's good at thinking, but it's not good at planning. So you do planning in code. So you have to describe the larger process of what you're doing in code somehow.[00:24:38] Sam Schillace: So semantic intent or whatever. And then you let the model kind of fill in the pieces.[00:24:43] Generating Synthetic Textbooks[00:24:43] Sam Schillace: I'll give a less abstract like example. It's a little bit of an old example. I did this like last year, but at one point I wanted to see if I could generate textbooks. And so I wrote this thing called the textbook factory.[00:24:53] Sam Schillace: And it's, it's tiny. It's like a Jupyter notebook with like. You know, 200 lines of Python and like six very short prompts, but what you basically give it a sentence. And it like pulls out the topic and the level of, of, from that sentence, so you, like, I would like fifth grade reading. I would like eighth grade English.[00:25:11] Sam Schillace: His English ninth grade, US history, whatever. That by the way, all, all by itself, like would've been an almost impossible job like three years ago. Isn't, it's like totally amazing like that by itself. Just parsing an arbitrary natural language sentence to get these two pieces of information out is like almost trivial now.[00:25:27] Sam Schillace: Which is amazing. So it takes that and it just like makes like a thousand calls to the API and it goes and builds a full year textbook, like decides what the curriculum is with one of the prompts. It breaks it into chapters. It writes all the lessons and lesson plans and like builds a teacher's guide with all the answers to all the questions.[00:25:42] Sam Schillace: It builds a table of contents, like all that stuff. It's super reliable. You always get a textbook. It's super brittle. You never get a cookbook or a novel like but like you could kind of define that domain pretty care, like I can describe. The metacognition, the high level plan for how do you write a textbook, right?[00:25:59] Sam Schillace: You like decide the curriculum and then you write all the chapters and you write the teacher's guide and you write the table content, like you can, you can describe that out pretty well. And so having that like code exoskeleton wrapped around the model is really helpful, like it keeps the model from drifting off and then you don't have as many of these vulnerabilities around memory that you would normally have.[00:26:19] Sam Schillace: So like, that's kind of, I think where the syntax and semantics comes together right now.[00:26:24] Trade leverage for precision; use interaction to mitigate[00:26:24] Sam Schillace: And then I think the question for all of us is. How do you get more leverage out of that? Right? So one of the things that I don't love about virtually everything anyone's built for the last year and a half is people are holding the hands of the model on everything.[00:26:37] Sam Schillace: Like the leverage is very low, right? You can't turn. These things loose to do anything really interesting for very long. You can kind of, and the places where people are getting more work out per unit of work in are usually where somebody has done exactly what I just described. They've kind of figured out what the pattern of the problem is in enough of a way that they can write some code for it.[00:26:59] Sam Schillace: And then that that like, so I've seen like sales support stuff. I've seen like code base tuning stuff of like, there's lots of things that people are doing where like, you can get a lot of value in some relatively well defined domain using a little bit of the model's ability to think for you and a little, and a little bit of code.[00:27:18] Code is for syntax and process; models are for semantics and intent.[00:27:18] Sam Schillace: And then I think the next wave is like, okay, do we do stuff like domain specific languages to like make the planning capabilities better? Do we like start to build? More sophisticated primitives. We're starting to think about and talk about like power automate and a bunch of stuff inside of Microsoft that we're going to wrap in these like building blocks.[00:27:34] Sam Schillace: So the models have these chunks of reliable functionality that they can invoke as part of these plans, right? Because you don't want like, if you're going to ask the model to go do something and the output's going to be a hundred thousand lines of code, if it's got to generate that code every time, the randomness, the stochasticity is like going to make that basically not reliable.[00:27:54] Sam Schillace: You want it to generate it like a 10 or 20 line high level semantic plan for this thing that gets handed to some markup executor that runs it and that invokes that API, that 100, 000 lines of code behind it, API call. And like, that's a really nice robust system for now. And then as the models get smarter as new models emerge, then we get better plans, we get more sophistication.[00:28:17] Sam Schillace: In terms of what they can choose, things like that. Right. So I think like that feels like that's probably the path forward for a little while, at least, like there was, there was a lot there. I, sorry, like I've been thinking, you can tell I've been thinking about it a lot. Like this is kind of all I think about is like, how do you build.[00:28:31] Sam Schillace: Really high value stuff out of this. And where do we go? Yeah. The, the role where[00:28:35] swyx: we are. Yeah. The intermixing of code and, and LMS is, is a lot of the role of the AI engineer. And I, I, I think in a very real way, you were one of the first to, because obviously you had early access. Honestly, I'm surprised.[00:28:46] Hands on AI Leadership[00:28:46] swyx: How are you so hands on? How do you choose to, to dedicate your time? How do you advise other tech leaders? Right. You know, you, you are. You have people working for you, you could not be hands on, but you seem to be hands on. What's the allocation that people should have, especially if they're senior tech[00:29:03] Sam Schillace: leaders?[00:29:04] Sam Schillace: It's mostly just fun. Like, I'm a maker, and I like to build stuff. I'm a little bit idiosyncratic. I I've got ADHD, and so I won't build anything. I won't work on anything I'm bored with. So I have no discipline. If I'm not actually interested in the thing, I can't just, like, do it, force myself to do it.[00:29:17] Sam Schillace: But, I mean, if you're not interested in what's going on right now in the industry, like, go find a different industry, honestly. Like, I seriously, like, this is, I, well, it's funny, like, I don't mean to be snarky, but, like, I was at a dinner, like, a, I don't know, six months ago or something, And I was sitting next to a CTO of a large, I won't name the corporation because it would name the person, but I was sitting next to the CTO of a very large Japanese technical company, and he was like, like, nothing has been interesting since the internet, and this is interesting now, like, this is fun again.[00:29:46] Sam Schillace: And I'm like, yeah, totally, like this is like, the most interesting thing that's happened in 35 years of my career, like, we can play with semantics and natural language, and we can have these things that are like sort of active, can kind of be independent in certain ways and can do stuff for us and can like, reach all of these interesting problems.[00:30:02] Sam Schillace: So like that's part of it of it's just kind of fun to, to do stuff and to build stuff. I, I just can't, can't resist. I'm not crazy hands-on, like, I have an eng like my engineering team's listening right now. They're like probably laughing 'cause they, I never, I, I don't really touch code directly 'cause I'm so obsessive.[00:30:17] Sam Schillace: I told them like, if I start writing code, that's all I'm gonna do. And it's probably better if I stay a little bit high level and like, think about. I've got a really great couple of engineers, a bunch of engineers underneath me, a bunch of designers underneath me that are really good folks that we just bounce ideas off of back and forth and it's just really fun.[00:30:35] Sam Schillace: That's the role I came to Microsoft to do, really, was to just kind of bring some energy around innovation, some energy around consumer, We didn't know that this was coming when I joined. I joined like eight months before it hit us, but I think Kevin might've had an idea it was coming. And and then when it hit, I just kind of dove in with both feet cause it's just so much fun to do.[00:30:55] Sam Schillace: Just to tie it back a little bit to the, the Google Docs stuff. When we did rightly originally the world it's not like I built rightly in jQuery or anything. Like I built that thing on bare metal back before there were decent JavaScript VMs.[00:31:10] Sam Schillace: I was just telling somebody today, like you were rate limited. So like just computing the diff when you type something like doing the string diff, I had to write like a binary search on each end of the string diff because like you didn't have enough iterations of a for loop to search character by character.[00:31:24] Sam Schillace: I mean, like that's how rough it was none of the browsers implemented stuff directly, whatever. It's like, just really messy. And like, that's. Like, as somebody who's been doing this for a long time, like, that's the place where you want to engage, right? If things are easy, and it's easy to go do something, it's too late.[00:31:42] Sam Schillace: Even if it's not too late, it's going to be crowded, but like the right time to do something new and disruptive and technical is, first of all, still when it's controversial, but second of all, when you have this, like, you can see the future, you ask this, like, what if question, and you can see where it's going, But you have this, like, pit in your stomach as an engineer as to, like, how crappy this is going to be to do.[00:32:04] Sam Schillace: Like, that's really the right moment to engage with stuff. We're just like, this is going to suck, it's going to be messy, I don't know what the path is, I'm going to get sticks and thorns in my hair, like I, I, it's going to have false starts, and I don't really, I'm going to This is why those skeletchae laws are kind of funny, because, like, I, I, like You know, I wrote them down at one point because they were like my best guess, but I'm like half of these are probably wrong, and I think they've all held up pretty well, but I'm just like guessing along with everybody else, we're just trying to figure this thing out still, right, and like, and I think the only way to do that is to just engage with it.[00:32:34] Sam Schillace: You just have to like, build stuff. If you're, I can't tell you the number of execs I've talked to who have opinions about AI and have not sat down with anything for more than 10 minutes to like actually try to get anything done. You know, it's just like, it's incomprehensible to me that you can watch this stuff through the lens of like the press and forgive me, podcasts and feel like you actually know what you're talking about.[00:32:59] Sam Schillace: Like, you have to like build stuff. Like, break your nose on stuff and like figure out what doesn't work.[00:33:04] swyx: Yeah, I mean, I view us as a starting point, as a way for people to get exposure on what we're doing. They should be looking at, and they still have to do the work as do we. Yeah, I'll basically endorse, like, I think most of the laws.[00:33:18] Multimodality vs "Text is the universal wire protocol"[00:33:18] swyx: I think the one I question the most now is text is the universal wire protocol. There was a very popular article, a text that used a universal interface by Rune who now works at OpenAI. And I, actually, we just, we just dropped a podcast with David Luan, who's CEO of Adept now, but he was VP of Eng, and he pitched Kevin Scott for the original Microsoft investment in OpenAI.[00:33:40] swyx: Where he's basically pivoting to or just betting very hard on multimodality. I think that's something that we don't really position very well. I think this year, we're trying to all figure it out. I don't know if you have an updated perspective on multi modal models how that affects agents[00:33:54] Sam Schillace: or not.[00:33:55] Sam Schillace: Yeah, I mean, I think the multi I think multi modality is really important. And I, I think it's only going to get better from here. For sure. Yeah, the text is the universal wire protocol. You're probably right. Like, I don't know that I would defend that one entirely. Note that it doesn't say English, right?[00:34:09] Sam Schillace: Like it's, it's not, that's even natural language. Like there's stuff like Steve Luko, who's the guy who created TypeScript, created TypeChat, right? Which is this like way to get LLMs to be very precise and return syntax and correct JavaScript. So like, I, yeah, I think like multimodality, like, I think part of the challenge with it is like, it's a little harder to access.[00:34:30] Sam Schillace: Programatically still like I think you know and I do think like, You know like when when like dahly and stuff started to come Out I was like, oh photoshop's in trouble cuz like, you know I'm just gonna like describe images And you don't need photos of Photoshop anymore Which hasn't played out that way like they're actually like adding a bunch of tools who look like you want to be able to you know for multimodality be really like super super charged you need to be able to do stuff like Descriptively, like, okay, find the dog in this picture and mask around it.[00:34:58] Sam Schillace: Okay, now make it larger and whatever. You need to be able to interact with stuff textually, which we're starting to be able to do. Like, you can do some of that stuff. But there's probably a whole bunch of new capabilities that are going to come out that are going to make it more interesting.[00:35:11] Sam Schillace: So, I don't know, like, I suspect we're going to wind up looking kind of like Unix at the end of the day, where, like, there's pipes and, like, Stuff goes over pipes, and some of the pipes are byte character pipes, and some of them are byte digital or whatever like binary pipes, and that's going to be compatible with a lot of the systems we have out there, so like, that's probably still And I think there's a lot to be gotten from, from text as a language, but I suspect you're right.[00:35:37] Sam Schillace: Like that particular law is not going to hold up super well. But we didn't have multimodal going when I wrote it. I'll take one out as well.[00:35:46] Azure OpenAI vs Microsoft Research vs Microsoft AI Division[00:35:46] swyx: I know. Yeah, I mean, the innovations that keep coming out of Microsoft. You mentioned multi agent. I think you're talking about autogen.[00:35:52] swyx: But there's always research coming out of MSR. Yeah. PHY1, PHY2. Yeah, there's a bunch of[00:35:57] Sam Schillace: stuff. Yeah.[00:35:59] swyx: What should, how should the outsider or the AI engineer just as a sort of final word, like, How should they view the Microsoft portfolio things? I know you're not here to be a salesman, but What, how do you explain You know, Microsoft's AI[00:36:12] Sam Schillace: work to people.[00:36:13] Sam Schillace: There's a lot of stuff going on. Like, first of all, like, I should, I'll be a little tiny bit of a salesman for, like, two seconds and just point out that, like, one of the things we have is the Microsoft for Startups Founders Hub. So, like, you can get, like, Azure credits and stuff from us. Like, up to, like, 150 grand, I think, over four years.[00:36:29] Sam Schillace: So, like, it's actually pretty easy to get. Credit you can start, I 500 bucks to start or something with very little other than just an idea. So like there's, that's pretty cool. Like, I like Microsoft is very much all in on AI at, at many levels. And so like that, you mentioned, you mentioned Autogen, like, So I sit in the office of the CTO, Microsoft Research sits under him, under the office of the CTO as well.[00:36:51] Sam Schillace: So the Autogen group came out of somebody in MSR, like in that group. So like there's sort of. The spectrum of very researchy things going on in research, where we're doing things like Phi, which is the small language model efficiency exploration that's really, really interesting. Lots of very technical folks there that are building different kinds of models.[00:37:10] Sam Schillace: And then there's like, groups like my group that are kind of a little bit in the middle that straddle product and, and, and research and kind of have a foot in both worlds and are trying to kind of be a bridge into the product world. And then there's like a whole bunch of stuff on the product side of things.[00:37:23] Sam Schillace: So there's. All the Azure OpenAI stuff, and then there's all the stuff that's in Office and Windows. And I, so I think, like, the way, I don't know, the way to think about Microsoft is we're just powering AI at every level we can, and making it as accessible as we can to both end users and developers.[00:37:42] Sam Schillace: There's this really nice research arm at one end of that spectrum that's really driving the cutting edge. The fee stuff is really amazing. It broke the chinchella curves. Right, like we didn't, that's the textbooks are all you need paper, and it's still kind of controversial, but like that was really a surprising result that came out of MSR.[00:37:58] Sam Schillace: And so like I think Microsoft is both being a thought leader on one end, on the other end with all the Azure OpenAI, all the Azure tooling that we have, like very much a developer centric, kind of the tinkerer's paradise that Microsoft always was. It's like a great place to come and consume all these things.[00:38:14] Sam Schillace: There's really amazing stuff ideas that we've had, like these very rich, long running, rag based chatbots that we didn't talk about that are like now possible to just go build with Azure AI Studio for yourself. You can build and deploy like a chatbot that's trained on your data specifically, like very easily and things like that.[00:38:31] Sam Schillace: So like there's that end of things. And then there's all this stuff that's in Office, where like, you could just like use the copilots both in Bing, but also just like daily your daily work. So like, it's just kind of everywhere at this point, like everyone in the company thinks about it all the time.[00:38:43] Sam Schillace: There's like no single answer to that question. That was way more salesy than I thought I was capable of, but like, that is actually the genuine truth. Like, it is all the time, it is all levels, it is all the way from really pragmatic, approachable stuff for somebody starting out who doesn't know things, all the way to like Absolutely cutting edge research, silicon, models, AI for science, like, we didn't talk about any of the AI for science stuff, I've seen magical stuff coming out of the research group on that topic, like just crazy cool stuff that's coming, so.[00:39:13] Sam Schillace: You've[00:39:14] swyx: called this since you joined Microsoft. I point listeners to the podcast that you did in 2022, pre ChatGBT with Kevin Scott. And yeah, you've been saying this from the beginning. So this is not a new line of Talk track for you, like you've, you, you've been a genuine believer for a long time.[00:39:28] swyx: And,[00:39:28] Sam Schillace: and just to be clear, like I haven't been at Microsoft that long. I've only been here for like two, a little over two years and you know, it's a little bit weird for me 'cause for a lot of my career they were the competitor and the enemy and you know, it's kind of funny to be here, but like it's really remarkable.[00:39:40] On Satya[00:39:40] Sam Schillace: It's going on. I really, really like Satya. I've met a, met and worked with a bunch of big tech CEOs and I think he's a genuinely awesome person and he's fun to work with and has a really great. vision. So like, and I obviously really like Kevin, we've been friends for a long time. So it's a cool place.[00:39:56] Sam Schillace: I think there's a lot of interesting stuff. We[00:39:57] swyx: have some awareness Satya is a listener. So obviously he's super welcome on the pod anytime. You can just drop in a good word for us.[00:40:05] Sam Schillace: He's fun to talk to. It's interesting because like CEOs can be lots of different personalities, but he is you were asking me about how I'm like, so hands on and engaged.[00:40:14] Sam Schillace: I'm amazed at how hands on and engaged he can be given the scale of his job. Like, he's super, super engaged with stuff, super in the details, understands a lot of the stuff that's going on. And the science side of things, as well as the product and the business side, I mean, it's really remarkable. I don't say that, like, because he's listening or because I'm trying to pump the company, like, I'm, like, genuinely really, really impressed with, like, how, what he's, like, I look at him, I'm like, I love this stuff, and I spend all my time thinking about it, and I could not do what he's doing.[00:40:42] Sam Schillace: Like, it's just incredible how much you can get[00:40:43] Ben Dunphy: into his head.[00:40:44] Sam at AI Leadership Track[00:40:44] Ben Dunphy: Sam, it's been an absolute pleasure to hear from you here, hear the war stories. So thank you so much for coming on. Quick question though you're here on the podcast as the presenting sponsor for the AI Engineer World's Fair, will you be taking the stage there, or are we going to defer that to Satya?[00:41:01] Ben Dunphy: And I'm happy[00:41:02] Sam Schillace: to talk to folks. I'm happy to be there. It's always fun to like I, I like talking to people more than talking at people. So I don't love giving keynotes. I love giving Q and A's and like engaging with engineers and like. I really am at heart just a builder and an engineer, and like, that's what I'm happiest doing, like being creative and like building things and figuring stuff out.[00:41:22] Sam Schillace: That would be really fun to do, and I'll probably go just to like, hang out with people and hear what they're working on and working about.[00:41:28] swyx: The AI leadership track is just AI leaders, and then it's closed doors, so you know, more sort of an unconference style where people just talk[00:41:34] Sam Schillace: about their issues.[00:41:35] Sam Schillace: Yeah, that would be, that's much more fun. That's really, because we are really all wrestling with this, trying to figure out what it means. Right. So I don't think anyone I, the reason I have the Scalache laws kind of give me the willies a little bit is like, I, I was joking that we should just call them the Scalache best guesses, because like, I don't want people to think that that's like some iron law.[00:41:52] Sam Schillace: We're all trying to figure this stuff out. Right. Like some of it's right. Some it's not right. It's going to be messy. We'll have false starts, but yeah, we're all working it out. So that's the fun conversation. All[00:42:02] Ben Dunphy: right. Thanks for having me. Yeah, thanks so much for coming on.[00:42:05] Final Plug for Tickets & CFP[00:42:05] Ben Dunphy: For those of you listening, interested in attending AI Engineer World's Fair, you can purchase your tickets today.[00:42:11] Ben Dunphy: Learn more about the event at ai. engineer. You can purchase even group discounts. If you purchase four more tickets, use the code GROUP, and one of those four tickets will be free. If you want to speak at the event CFP closes April 8th, so check out the link at ai. engineer, send us your proposals for talks, workshops, or discussion groups.[00:42:33] Ben Dunphy: So if you want to come to THE event of the year for AI engineers, the technical event of the year for AI engineers this is at June 25, 26, and 27 in San Francisco. That's it! Get full access to Latent Space at www.latent.space/subscribe

Bootstrapping Your Dreams Show
#350 From Marine to AI Maestro and Beyond | Aaron Burciaga

Bootstrapping Your Dreams Show

Play Episode Listen Later Mar 28, 2024 41:26


Aaron Burciaga is a renowned Data Scientist, AI Engineer, author, Advisor along with being a competitive bodybuilder. As a seasoned technology and business leader in both startup and enterprise settings, he has focused his career on delivering efficiency and value through automation, data science, machine learning, Artificial Intelligence, blockchain, quantum computing, and emerging concepts and innovative technologies. His development and implementation of programs and initiatives have enhanced multi-billion dollar programs and operational efficiencies across industries in commercial, federal, and defense. Aaron's roles have included CEO and co-founder of Prime.AI Senior Practice Manager for Artificial Intelligence System Integration at Amazon Web Services (AWS) Vice President Data & Artificial Intelligence at ECS Technology, Global Operation Director Analytics & Artificial Intelligence at HCL Technologies CTO at Analytics2Go Vice President Data Science & AI at Booz Allen Hamilton Global Analytics Platform Lead at AccentureSenior Research Scientist at Elder Research.Before turning his attention to commercial and public sectors, Aaron was a Marine Corps officer and Iraq war veteran and was the head operations research analyst and director of an operations analysis activity at the Pentagon, supporting the Marine Corps Headquarters. He is also a Marine Reservist, where he supports the Chief Information Officer at Headquarters Marine Corps-Pentagon as Lead Data Technologist. Aaron is a Forbes contributor, frequently invited keynote and speaker, and Certified Analytics Professional (CAP). He is an appointed member of the U.S. Department of Commerce's National Technology Information Service advisory board. Aaron received his M.S. Operations Research from the Naval Postgraduate School and his B.S. from the US Naval Academy.An Eagle Scout, graduate of the US Naval Academy, a Marine Combat Veteran, and proud father to 3 dauSupport the showFollow me on Facebook ⬇️https://www.facebook.com/manuj.aggarwal❤️ ID - Manuj Aggarwal■ LinkedIn: https://www.linkedin.com/in/manujaggarwal/ ■ Facebook: https://www.facebook.com/realmanuj■ Instagram: ...

Discover Daily by Perplexity
Devin autonomous AI engineer, EU AI act approved, Microsoft Paint updated

Discover Daily by Perplexity

Play Episode Listen Later Mar 14, 2024 4:40 Transcription Available


In this episode of Discover Daily, we explore three groundbreaking AI developments: Devin, the world's first fully autonomous AI software engineer; the landmark EU AI Act; and the AI-powered updates to Microsoft Paint. Devin can plan and execute complex software tasks, while the EU AI Act categorizes AI systems by risk level and sets obligations for high-risk systems. The updated Microsoft Paint now includes layers, background removal, transparency support, and an AI-powered image generator. Join us as we delve into these exciting advancements and their potential impact.For more on these stories:Devin autonomous AI engineerEU AI act approvedMicrosoft Paint got updatedPerplexity is the fastest and most powerful way to search the web. Perplexity crawls the web and curates the most relevant and up-to-date sources (from academic papers to Reddit threads) to create the perfect response to any question or topic you're interested in. Take the world's knowledge with you anywhere. Available on iOS and Android Join our growing Discord community for the latest updates and exclusive content. Follow us on: Instagram Threads X (Twitter) YouTube Linkedin

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

Speaker CFPs and Sponsor Guides are now available for AIE World's Fair — join us on June 25-27 for the biggest AI Engineer conference of 2024!Soumith Chintala needs no introduction in the ML world — his insights are incredibly accessible across Twitter, LinkedIn, podcasts, and conference talks (in this pod we'll assume you'll have caught up on the History of PyTorch pod from last year and cover different topics). He's well known as the creator of PyTorch, but he's more broadly the Engineering Lead on AI Infra, PyTorch, and Generative AI at Meta.Soumith was one of the earliest supporters of Latent Space (and more recently AI News), and we were overjoyed to catch up with him on his latest SF visit for a braindump of the latest AI topics, reactions to some of our past guests, and why Open Source AI is personally so important to him.Life in the GPU-Rich LaneBack in January, Zuck went on Instagram to announce their GPU wealth: by the end of 2024, Meta will have 350k H100s. By adding all their GPU clusters, you'd get to 600k H100-equivalents of compute. At FP16 precision, that's ~1,200,000 PFLOPS. If we used George Hotz's (previous guest!) "Person of Compute" measure, Meta now has 60k humans of compute in their clusters. Occasionally we get glimpses into the GPU-rich life; on a recent ThursdAI chat, swyx prompted PaLM tech lead Yi Tay to write down what he missed most from Google, and he commented that UL2 20B was trained by accidentally leaving the training job running for a month, because hardware failures are so rare in Google.Meta AI's Epic LLM RunBefore Llama broke the internet, Meta released an open source LLM in May 2022, OPT-175B, which was notable for how “open” it was - right down to the logbook! They used only 16 NVIDIA V100 GPUs and Soumith agrees that, with hindsight, it was likely under-trained for its parameter size.In Feb 2023 (pre Latent Space pod), Llama was released, with a 7B version trained on 1T tokens alongside 65B and 33B versions trained on 1.4T tokens. The Llama authors included Guillaume Lample and Timothée Lacroix, who went on to start Mistral.July 2023 was Llama2 time (which we covered!): 3 model sizes, 7B, 13B, and 70B, all trained on 2T tokens. The three models accounted for a grand total of 3,311,616 GPU hours for all pre-training work. CodeLlama followed shortly after, a fine-tune of Llama2 specifically focused on code generation use cases. The family had models in the 7B, 13B, 34B, and 70B size, all trained with 500B extra tokens of code and code-related data, except for 70B which is trained on 1T.All of this on top of other open sourced models like Segment Anything (one of our early hits!), Detectron, Detectron 2, DensePose, and Seamless, and in one year, Meta transformed from a company people made fun of for its “metaverse” investments to one of the key players in the AI landscape and its stock has almost tripled since (about $830B in market value created in the past year).Why Open Source AIThe obvious question is why Meta would spend hundreds of millions on its AI efforts and then release them for free. Zuck has addressed this in public statements:But for Soumith, the motivation is even more personal:“I'm irrationally interested in open source. I think open source has that fundamental way to distribute opportunity in a way that is very powerful. Like, I grew up in India… And knowledge was very centralized, but I saw that evolution of knowledge slowly getting decentralized. And that ended up helping me learn quicker and faster for like zero dollars. And I think that was a strong reason why I ended up where I am. So like that, like the open source side of things, I always push regardless of like what I get paid for, like I think I would do that as a passion project on the side……I think at a fundamental level, the most beneficial value of open source is that you make the distribution to be very wide. It's just available with no friction and people can do transformative things in a way that's very accessible. Maybe it's open source, but it has a commercial license and I'm a student in India. I don't care about the license. I just don't even understand the license. But like the fact that I can use it and do something with it is very transformative to me……Like, okay, I again always go back to like I'm a student in India with no money. What is my accessibility to any of these closed source models? At some scale I have to pay money. That makes it a non-starter and stuff. And there's also the control issue: I strongly believe if you want human aligned AI, you want all humans to give feedback. And you want all humans to have access to that technology in the first place. And I actually have seen, living in New York, whenever I come to Silicon Valley, I see a different cultural bubble.We like the way Soumith put it last year: Closed AI “rate-limits against people's imaginations and needs”!What It Takes For Open Source AI to WinHowever Soumith doesn't think Open Source will simply win by popular demand. There is a tremendous coordination problem with the decentralized nature of the open source AI development right now: nobody is collecting the valuable human feedback in the way that OpenAI or Midjourney are doing.“Open source in general always has a coordination problem. If there's a vertically integrated provider with more resources, they will just be better coordinated than open source. And so now open source has to figure out how to have coordinated benefits. And the reason you want coordinated benefits is because these models are getting better based on human feedback. And if you see with open source models, like if you go to the /r/localllama subreddit, like there's so many variations of models that are being produced from, say, Nous research. I mean, like there's like so many variations built by so many people. And one common theme is they're all using these fine-tuning or human preferences datasets that are very limited and they're not sufficiently diverse. And you look at the other side, say front-ends like Oobabooga or like Hugging Chat or Ollama, they don't really have feedback buttons. All the people using all these front-ends, they probably want to give feedback, but there's no way for them to give feedback… So we're just losing all of this feedback. Maybe open source models are being as used as GPT is at this point in like all kinds of, in a very fragmented way, like in aggregate all the open source models together are probably being used as much as GPT is, maybe close to that. But the amount of feedback that is driving back into the open source ecosystem is like negligible, maybe less than 1% of like the usage. So I think like some, like the blueprint here I think is you'd want someone to create a sinkhole for the feedback… I think if we do that, if that actually happens, I think that probably has a real chance of the open source models having a runaway effect against OpenAI, I think like there's a clear chance we can take at truly winning open source.”If you're working on solving open source coordination, please get in touch!Show Notes* Soumith Chintala Twitter* History of PyTorch episode on Gradient Podcast* The Llama Ecosystem* Apple's MLX* Neural ODEs (Ordinary Differential Equations)* AlphaGo* LMSys arena* Dan Pink's "Drive"* Robotics projects:* Dobb-E* OK Robot* Yann LeCun* Yangqing Jia of Lepton AI* Ed Catmull* George Hotz on Latent Space* Chris Lattner on Latent Space* Guillaume Lample* Yannic Kilcher of OpenAssistant* LMSys* Alex Atallah of OpenRouter* Carlo Sferrazza's 3D tactile research* Alex Wiltschko of Osmo* Tangent by Alex Wiltschko* Lerrel Pinto - RoboticsTimestamps* [00:00:00] Introductions* [00:00:51] Extrinsic vs Intrinsic Success* [00:02:40] Importance of Open Source and Its Impact* [00:03:46] PyTorch vs TinyGrad* [00:08:33] Why PyTorch is the Switzerland of frameworks* [00:10:27] Modular's Mojo + PyTorch?* [00:13:32] PyTorch vs Apple's MLX* [00:16:27] FAIR / PyTorch Alumni* [00:18:50] How can AI inference providers differentiate?* [00:21:41] How to build good benchmarks and learnings from AnyScale's* [00:25:28] Most interesting unexplored ideas* [00:28:18] What people get wrong about synthetic data* [00:35:57] Meta AI's evolution* [00:38:42] How do you allocate 600,000 GPUs?* [00:42:05] Even the GPU Rich are GPU Poor* [00:47:31] Meta's MTIA silicon* [00:50:09] Why we need open source* [00:59:00] Open source's coordination problem for feedback gathering* [01:08:59] Beyond text generation* [01:15:37] Osmo and the Future of Smell Recognition TechnologyTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO in residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:15]: Hey, and today we have in the studio Soumith Chintala, welcome.Soumith [00:00:17]: Thanks for having me.Swyx [00:00:18]: On one of your rare visits from New York where you live. You got your start in computer vision at NYU with Yann LeCun. That was a very fortuitous start. I was actually listening to your interview on the Gradient podcast. So if people want to know more about the history of Soumith, history of PyTorch, they can go to that podcast. We won't spend that much time there, but I just was marveling at your luck, or I don't know if it's your luck or your drive to find AI early and then find the right quality mentor because I guess Yan really sort of introduced you to that world.Soumith [00:00:51]: Yeah, I think you're talking about extrinsic success, right? A lot of people just have drive to do things that they think is fun, and a lot of those things might or might not be extrinsically perceived as good and successful. I think I just happened to like something that is now one of the coolest things in the world or whatever. But if I happen, the first thing I tried to become was a 3D VFX artist, and I was really interested in doing that, but I turned out to be very bad at it. So I ended up not doing that further. But even if I was good at that, whatever, and I ended up going down that path, I probably would have been equally happy. It's just like maybe like the perception of, oh, is this person successful or not might be different. I think like after a baseline, like your happiness is probably more correlated with your intrinsic stuff.Swyx [00:01:44]: Yes. I think Dan Pink has this book on drive that I often refer to about the power of intrinsic motivation versus extrinsic and how long extrinsic lasts. It's not very long at all. But anyway, now you are an investor in Runway, so in a way you're working on VFX. Yes.Soumith [00:02:01]: I mean, in a very convoluted way.Swyx [00:02:03]: It reminds me of Ed Catmull. I don't know if you guys know, but he actually tried to become an animator in his early years and failed or didn't get accepted by Disney and then went and created Pixar and then got bought by Disney and created Toy Story. So you joined Facebook in 2014 and eventually became a creator and maintainer of PyTorch. And there's this long story there you can refer to on the gradient. I think maybe people don't know that you also involved in more sort of hardware and cluster decision affair. And we can dive into more details there because we're all about hardware this month. Yeah. And then finally, I don't know what else, like what else should people know about you on a personal side or professional side?Soumith [00:02:40]: I think open source is definitely a big passion of mine and probably forms a little bit of my identity at this point. I'm irrationally interested in open source. I think open source has that fundamental way to distribute opportunity in a way that is very powerful. Like, I grew up in India. I didn't have internet for a while. In college, actually, I didn't have internet except for GPRS or whatever. And knowledge was very centralized, but I saw that evolution of knowledge slowly getting decentralized. And that ended up helping me learn quicker and faster for zero dollars. And I think that was a strong reason why I ended up where I am. So the open source side of things, I always push regardless of what I get paid for, like I think I would do that as a passion project on the side.Swyx [00:03:35]: Yeah, that's wonderful. Well, we'll talk about the challenges as well that open source has, open models versus closed models. Maybe you want to touch a little bit on PyTorch before we move on to the sort of Meta AI in general.PyTorch vs Tinygrad tradeoffsAlessio [00:03:46]: Yeah, we kind of touched on PyTorch in a lot of episodes. So we had George Hotz from TinyGrad. He called PyTorch a CISC and TinyGrad a RISC. I would love to get your thoughts on PyTorch design direction as far as, I know you talk a lot about kind of having a happy path to start with and then making complexity hidden away but then available to the end user. One of the things that George mentioned is I think you have like 250 primitive operators in PyTorch, I think TinyGrad is four. So how do you think about some of the learnings that maybe he's going to run into that you already had in the past seven, eight years almost of running PyTorch?Soumith [00:04:24]: Yeah, I think there's different models here, but I think it's two different models that people generally start with. Either they go like, I have a grand vision and I'm going to build a giant system that achieves this grand vision and maybe one is super feature complete or whatever. Or other people say they will get incrementally ambitious, right? And they say, oh, we'll start with something simple and then we'll slowly layer out complexity in a way that optimally applies Huffman coding or whatever. Like where the density of users are and what they're using, I would want to keep it in the easy, happy path and where the more niche advanced use cases, I'll still want people to try them, but they need to take additional frictional steps. George, I think just like we started with PyTorch, George started with the incrementally ambitious thing. I remember TinyGrad used to be, like we would be limited to a thousand lines of code and I think now it's at 5,000. So I think there is no real magic to which why PyTorch has the kind of complexity. I think it's probably partly necessitated and partly because we built with the technology available under us at that time, PyTorch is like 190,000 lines of code or something at this point. I think if you had to rewrite it, we would probably think about ways to rewrite it in a vastly simplified way for sure. But a lot of that complexity comes from the fact that in a very simple, explainable way, you have memory hierarchies. You have CPU has three levels of caches and then you have DRAM and SSD and then you have network. Similarly, GPU has several levels of memory and then you have different levels of network hierarchies, NVLink plus InfiniBand or Rocky or something like that, right? And the way the flops are available on your hardware, they are available in a certain way and your computation is in a certain way and you have to retrofit your computation onto both the memory hierarchy and like the flops available. When you're doing this, it is actually a fairly hard mathematical problem to do this setup, like you find the optimal thing. And finding the optimal thing is, what is optimal depends on the input variables themselves. So like, okay, what is the shape of your input tensors and what is the operation you're trying to do and various things like that. Finding that optimal configuration and writing it down in code is not the same for every input configuration you have. Like for example, just as the shape of the tensors change, let's say you have three input tensors into a Sparstar product or something like that. The shape of each of these input tensors will vastly change how you do this optimally placing this operation onto the hardware in a way that will get you maximal throughput. So a lot of our complexity comes from writing out hundreds of configurations for each single PyTorch operator and templatizing these things and symbolically generating the final CUDA code or CPU code. There's no way to avoid it because mathematically we haven't found symbolic ways to do this that also keep compile time near zero. You can write a very simple framework, but then you also should be willing to eat the long compile time. So if searching for that optimal performance at runtime, but that's the trade off. There's no, like, I don't think unless we have great breakthroughs George's vision is achievable, he should be thinking about a narrower problem such as I'm only going to make this for work for self-driving car connets or I'm only going to make this work for LLM transformers of the llama style. Like if you start narrowing the problem down, you can make a vastly simpler framework. But if you don't, if you need the generality to power all of the AI research that is happening and keep zero compile time and in all these other factors, I think it's not easy to avoid the complexity.Pytorch vs MojoAlessio [00:08:33]: That's interesting. And we kind of touched on this with Chris Lattner when he was on the podcast. If you think about frameworks, they have the model target. They have the hardware target. They have different things to think about. He mentioned when he was at Google, TensorFlow trying to be optimized to make TPUs go brr, you know, and go as fast. I think George is trying to make especially AMD stack be better than ROCm. How come PyTorch has been such as Switzerland versus just making Meta hardware go brr?Soumith [00:09:00]: First, Meta is not in the business of selling hardware. Meta is not in the business of cloud compute. The way Meta thinks about funding PyTorch is we're funding it because it's net good for Meta to fund PyTorch because PyTorch has become a standard and a big open source project. And generally it gives us a timeline edge. It gives us leverage and all that within our own work. So why is PyTorch more of a Switzerland rather than being opinionated? I think the way we think about it is not in terms of Switzerland or not. We actually the way we articulate it to all hardware vendors and software vendors and all who come to us being we want to build a backend in core for PyTorch and ship it by default is we just only look at our user side of things. Like if users are using a particular piece of hardware, then we want to support it. We very much don't want to king make the hardware side of things. So as the MacBooks have GPUs and as that stuff started getting increasingly interesting, we pushed Apple to push some engineers and work on the NPS support and we spend significant time from Meta funded engineers on that as well because a lot of people are using the Apple GPUs and there's demand. So we kind of mostly look at it from the demand side. We never look at it from like oh which hardware should we start taking opinions on.Swyx [00:10:27]: Is there a future in which, because Mojo or Modular Mojo is kind of a superset of Python, is there a future in which PyTorch might use Mojo features optionally?Soumith [00:10:36]: I think it depends on how well integrated it is into the Python ecosystem. So if Mojo is like a pip install and it's readily available and users feel like they can use Mojo so smoothly within their workflows in a way that just is low friction, we would definitely look into that. Like in the same way PyTorch now depends on Triton, OpenAI Triton, and we never had a conversation that was like huh, that's like a dependency. Should we just build a Triton of our own or should we use Triton? It almost doesn't, like those conversations don't really come up for us. The conversations are more well does Triton have 10,000 dependencies and is it hard to install? We almost don't look at these things from a strategic leverage point of view. We look at these things from a user experience point of view, like is it easy to install? Is it smoothly integrated and does it give enough benefits for us to start depending on it? If so, yeah, we should consider it. That's how we think about it.Swyx [00:11:37]: You're inclusive by default as long as it meets the minimum bar of, yeah, but like maybe I phrased it wrongly. Maybe it's more like what problems would you look to solve that you have right now?Soumith [00:11:48]: I think it depends on what problems Mojo will be useful at.Swyx [00:11:52]: Mainly a performance pitch, some amount of cross compiling pitch.Soumith [00:11:56]: Yeah, I think the performance pitch for Mojo was like, we're going to be performant even if you have a lot of custom stuff, you're going to write arbitrary custom things and we will be performant. And that value proposition is not clear to us from the PyTorch side to consider it for PyTorch. So PyTorch, it's actually not 250 operators, it's like a thousand operators. PyTorch exposes about a thousand operators and people kind of write their ideas in the thousand operators of PyTorch. Mojo is like, well, maybe it's okay to completely sidestep those thousand operators of PyTorch and just write it in a more natural form. Just write raw Python, write for loops or whatever, right? So from the consideration of how do we intersect PyTorch with Mojo, I can see one use case where you have custom stuff for some parts of your program, but mostly it's PyTorch. And so we can probably figure out how to make it easier for say Torch.compile to smoothly also consume Mojo subgraphs and like, you know, the interoperability being actually usable, that I think is valuable. But Mojo as a fundamental front end would be replacing PyTorch, not augmenting PyTorch. So in that sense, I don't see a synergy in more deeply integrating Mojo.Pytorch vs MLXSwyx [00:13:21]: So call out to Mojo whenever they have written something in Mojo and there's some performance related thing going on. And then since you mentioned Apple, what should people think of PyTorch versus MLX?Soumith [00:13:32]: I mean, MLX is early and I know the folks well, Ani used to work at FAIR and I used to chat with him all the time. He used to be based out of New York as well. The way I think about MLX is that MLX is specialized for Apple right now. It has a happy path because it's defined its product in a narrow way. At some point MLX either says we will only be supporting Apple and we will just focus on enabling, you know, there's a framework if you use your MacBook, but once you like go server side or whatever, that's not my problem and I don't care. For MLS, it enters like the server side set of things as well. Like one of these two things will happen, right? If the first thing will happen, like MLX's overall addressable market will be small, but it probably do well within that addressable market. If it enters the second phase, they're going to run into all the same complexities that we have to deal with. They will not have any magic wand and they will have more complex work to do. They probably wouldn't be able to move as fast.Swyx [00:14:44]: Like having to deal with distributed compute?Soumith [00:14:48]: Distributed, NVIDIA and AMD GPUs, like just like having a generalization of the concept of a backend, how they treat compilation with plus overheads. Right now they're deeply assumed like the whole NPS graph thing. So they need to think about all these additional things if they end up expanding onto the server side and they'll probably build something like PyTorch as well, right? Like eventually that's where it will land. And I think there they will kind of fail on the lack of differentiation. Like it wouldn't be obvious to people why they would want to use it.Swyx [00:15:24]: I mean, there are some cloud companies offering M1 and M2 chips on servers. I feel like it might be interesting for Apple to pursue that market, but it's not their core strength.Soumith [00:15:33]: Yeah. If Apple can figure out their interconnect story, maybe, like then it can become a thing.Swyx [00:15:40]: Honestly, that's more interesting than the cars. Yes.Soumith [00:15:43]: I think the moat that NVIDIA has right now, I feel is that they have the interconnect that no one else has, like AMD GPUs are pretty good. I'm sure there's various silicon that is not bad at all, but the interconnect, like NVLink is uniquely awesome. I'm sure the other hardware providers are working on it, but-Swyx [00:16:04]: I feel like when you say it's uniquely awesome, you have some appreciation of it that the rest of us don't. I mean, the rest of us just like, you know, we hear marketing lines, but what do you mean when you say NVIDIA is very good at networking? Obviously they made the acquisition maybe like 15 years ago.Soumith [00:16:15]: Just the bandwidth it offers and the latency it offers. I mean, TPUs also have a good interconnect, but you can't buy them. So you have to go to Google to use it.PyTorch MafiaAlessio [00:16:27]: Who are some of the other FAIR PyTorch alumni that are building cool companies? I know you have Fireworks AI, Lightning AI, Lepton, and Yangqing, you knew since college when he was building Coffee?Soumith [00:16:40]: Yeah, so Yangqing and I used to be framework rivals, PyTorch, I mean, we were all a very small close-knit community back then. Caffe, Torch, Theano, Chainer, Keras, various frameworks. I mean, it used to be more like 20 frameworks. I can't remember all the names. CCV by Liu Liu, who is also based out of SF. And I would actually like, you know, one of the ways it was interesting is you went into the framework guts and saw if someone wrote their own convolution kernel or they were just copying someone else's. There were four or five convolution kernels that were unique and interesting. There was one from this guy out of Russia, I forgot the name, but I remembered who was awesome enough to have written their own kernel. And at some point there, I built out these benchmarks called ConNet benchmarks. They're just benchmarking all the convolution kernels that are available at that time. It hilariously became big enough that at that time AI was getting important, but not important enough that industrial strength players came in to do these kinds of benchmarking and standardization. Like we have MLPerf today. So a lot of the startups were using ConNet benchmarks in their pitch decks as like, oh, you know, on ConNet benchmarks, this is how we fare, so you should fund us. I remember Nirvana actually was at the top of the pack because Scott Gray wrote amazingly fast convolution kernels at that time. Very interesting, but separate times. But to answer your question, Alessio, I think mainly Lepton, Fireworks are the two most obvious ones, but I'm sure the fingerprints are a lot wider. They're just people who worked within the PyTorch Cafe2 cohort of things and now end up at various other places.Swyx [00:18:50]: I think as a, both as an investor and a people looking to build on top of their services, it's a uncomfortable slash like, I don't know what I don't know pitch. Because I've met Yang Tsing and I've met Lin Chao. Yeah, I've met these folks and they're like, you know, we are deep in the PyTorch ecosystem and we serve billions of inferences a day or whatever at Facebook and now we can do it for you. And I'm like, okay, that's great. Like, what should I be wary of or cautious of when these things happen? Because I'm like, obviously this experience is extremely powerful and valuable. I just don't know what I don't know. Like, what should people know about like these sort of new inference as a service companies?Soumith [00:19:32]: I think at that point you would be investing in them for their expertise of one kind. So if they've been at a large company, but they've been doing amazing work, you would be thinking about it as what these people bring to the table is that they're really good at like GPU programming or understanding the complexity of serving models once it hits a certain scale. You know, various expertise like from the infra and AI and GPUs point of view. What you would obviously want to figure out is whether their understanding of the external markets is clear, whether they know and understand how to think about running a business, understanding how to be disciplined about making money or, you know, various things like that.Swyx [00:20:23]: Maybe I'll put it like, actually I will de-emphasize the investing bit and just more as a potential customer. Oh, okay. Like, it's more okay, you know, you have PyTorch gods, of course. Like, what else should I know?Soumith [00:20:37]: I mean, I would not care about who's building something. If I'm trying to be a customer, I would care about whether...Swyx [00:20:44]: Benchmarks.Soumith [00:20:44]: Yeah, I use it and it's usability and reliability and speed, right?Swyx [00:20:51]: Quality as well.Soumith [00:20:51]: Yeah, if someone from some random unknown place came to me and say, user stuff is great. Like, and I have the bandwidth, I probably will give it a shot. And if it turns out to be great, like I'll just use it.Benchmark dramaSwyx [00:21:07]: Okay, great. And then maybe one more thing about benchmarks, since we already brought it up and you brought up Confident Benchmarks. There was some recent drama around AnyScale. AnyScale released their own benchmarks and obviously they look great on their own benchmarks, but maybe didn't give the other... I feel there are two lines of criticism. One, which is they didn't test some apples for apples on the kind of endpoints that the other providers, that they are competitors with, on their benchmarks and that is due diligence baseline. And then the second would be more just optimizing for the right thing. You had some commentary on it. I'll just kind of let you riff.Soumith [00:21:41]: Yeah, I mean, in summary, basically my criticism of that was AnyScale built these benchmarks for end users to just understand what they should pick, right? And that's a very good thing to do. I think what they didn't do a good job of is give that end user a full understanding of what they should pick. Like they just gave them a very narrow slice of understanding. I think they just gave them latency numbers and that's not sufficient, right? You need to understand your total cost of ownership at some reasonable scale. Not oh, one API call is one cent, but a thousand API calls are 10 cents. Like people can misprice to cheat on those benchmarks. So you want to understand, okay, like how much is it going to cost me if I actually subscribe to you and do like a million API calls a month or something? And then you want to understand the latency and reliability, not just from one call you made, but an aggregate of calls you've made over several various times of the day and times of the week. And the nature of the workloads, is it just some generic single paragraph that you're sending that is cashable? Or is it like testing of real world workload? I think that kind of rigor, like in presenting that benchmark wasn't there. It was a much more narrow sliver of what should have been a good benchmark. That was my main criticism. And I'm pretty sure if before they released it, they showed it to their other stakeholders who would be caring about this benchmark because they are present in it, they would have easily just pointed out these gaps. And I think they didn't do that and they just released it. So I think those were the two main criticisms. I think they were fair and Robert took it well.Swyx [00:23:40]: And he took it very well. And we'll have him on at some point and we'll discuss it. But I think it's important for, I think the market being maturing enough that people start caring and competing on these kinds of things means that we need to establish what best practice is because otherwise everyone's going to play dirty.Soumith [00:23:55]: Yeah, absolutely. My view of the LLM inference market in general is that it's the laundromat model. Like the margins are going to drive down towards the bare minimum. It's going to be all kinds of arbitrage between how much you can get the hardware for and then how much you sell the API and how much latency your customers are willing to let go. You need to figure out how to squeeze your margins. Like what is your unique thing here? Like I think Together and Fireworks and all these people are trying to build some faster CUDA kernels and faster, you know, hardware kernels in general. But those modes only last for a month or two. These ideas quickly propagate.Swyx [00:24:38]: Even if they're not published?Soumith [00:24:39]: Even if they're not published, the idea space is small. So even if they're not published, the discovery rate is going to be pretty high. It's not like we're talking about a combinatorial thing that is really large. You're talking about Llama style LLM models. And we're going to beat those to death on a few different hardware SKUs, right? Like it's not even we have a huge diversity of hardware you're going to aim to run it on. Now when you have such a narrow problem and you have a lot of people working on it, the rate at which these ideas are going to get figured out is going to be pretty rapid.Swyx [00:25:15]: Is it a standard bag of tricks? Like the standard one that I know of is, you know, fusing operators and-Soumith [00:25:22]: Yeah, it's the standard bag of tricks on figuring out how to improve your memory bandwidth and all that, yeah.Alessio [00:25:28]: Any ideas instead of things that are not being beaten to death that people should be paying more attention to?Novel PyTorch ApplicationsSwyx [00:25:34]: One thing I was like, you know, you have a thousand operators, right? Like what's the most interesting usage of PyTorch that you're seeing maybe outside of this little bubble?Soumith [00:25:41]: So PyTorch, it's very interesting and scary at the same time, but basically it's used in a lot of exotic ways, like from the ML angle, what kind of models are being built? And you get all the way from state-based models and all of these things to stuff nth order differentiable models, like neural ODEs and stuff like that. I think there's one set of interestingness factor from the ML side of things. And then there's the other set of interesting factor from the applications point of view. It's used in Mars Rover simulations, to drug discovery, to Tesla cars. And there's a huge diversity of applications in which it is used. So in terms of the most interesting application side of things, I think I'm scared at how many interesting things that are also very critical and really important it is used in. I think the scariest was when I went to visit CERN at some point and they said they were using PyTorch and they were using GANs at the same time for particle physics research. And I was scared more about the fact that they were using GANs than they were using PyTorch, because at that time I was a researcher focusing on GANs. But the diversity is probably the most interesting. How many different things it is being used in. I think that's the most interesting to me from the applications perspective. From the models perspective, I think I've seen a lot of them. Like the really interesting ones to me are where we're starting to combine search and symbolic stuff with differentiable models, like the whole AlphaGo style models is one example. And then I think we're attempting to do it for LLMs as well, with various reward models and search. I mean, I don't think PyTorch is being used in this, but the whole alpha geometry thing was interesting because again, it's an example of combining the symbolic models with the gradient based ones. But there are stuff like alpha geometry that PyTorch is used at, especially when you intersect biology and chemistry with ML. In those areas, you want stronger guarantees on the output. So yeah, maybe from the ML side, those things to me are very interesting right now.Swyx [00:28:03]: Yeah. People are very excited about the alpha geometry thing. And it's kind of like, for me, it's theoretical. It's great. You can solve some Olympia questions. I'm not sure how to make that bridge over into the real world applications, but I'm sure people smarter than me will figure it out.Synthetic Data vs Symbolic ModelsSoumith [00:28:18]: Let me give you an example of it. You know how the whole thing about synthetic data will be the next rage in LLMs is a thing?Swyx [00:28:27]: Already is a rage.Soumith [00:28:28]: Which I think is fairly misplaced in how people perceive it. People think synthetic data is some kind of magic wand that you wave and it's going to be amazing. Synthetic data is useful in neural networks right now because we as humans have figured out a bunch of symbolic models of the world or made up certain symbolic models because of human innate biases. So we've figured out how to ground particle physics in a 30 parameter model. And it's just very hard to compute as in it takes a lot of flops to compute, but it only has 30 parameters or so. I mean, I'm not a physics expert, but it's a very low rank model. We built mathematics as a field that basically is very low rank. Language, a deep understanding of language, like the whole syntactic parse trees and just understanding how language can be broken down and into a formal symbolism is something that we figured out. So we basically as humans have accumulated all this knowledge on these subjects, either synthetic, we created those subjects in our heads, or we grounded some real world phenomenon into a set of symbols. But we haven't figured out how to teach neural networks symbolic world models directly. The only way we have to teach them is generating a bunch of inputs and outputs and gradient dissenting over them. So in areas where we have the symbolic models and we need to teach all the knowledge we have that is better encoded in the symbolic models, what we're doing is we're generating a bunch of synthetic data, a bunch of input output pairs, and then giving that to the neural network and asking it to learn the same thing that we already have a better low rank model of in gradient descent in a much more over-parameterized way. Outside of this, like where we don't have good symbolic models, like synthetic data obviously doesn't make any sense. So synthetic data is not a magic wand where it'll work in all cases in every case or whatever. It's just where we as humans already have good symbolic models off. We need to impart that knowledge to neural networks and we figured out the synthetic data is a vehicle to impart this knowledge to. So, but people, because maybe they don't know enough about synthetic data as a notion, but they hear, you know, the next wave of data revolution is synthetic data. They think it's some kind of magic where we just create a bunch of random data somehow. They don't think about how, and then they think that's just a revolution. And I think that's maybe a gap in understanding most people have in this hype cycle.Swyx [00:31:23]: Yeah, well, it's a relatively new concept, so. Oh, there's two more that I'll put in front of you and then you can see what you respond. One is, you know, I have this joke that it's, you know, it's only synthetic data if it's from the Mistral region of France, otherwise it's just a sparkling distillation, which is what news research is doing. Like they're distilling GPT-4 by creating synthetic data from GPT-4, creating mock textbooks inspired by Phi 2 and then fine tuning open source models like Llama. And so I don't know, I mean, I think that's, should we call that synthetic data? Should we call it something else? I don't know.Soumith [00:31:57]: Yeah, I mean, the outputs of LLMs, are they synthetic data? They probably are, but I think it depends on the goal you have. If your goal is you're creating synthetic data with the goal of trying to distill GPT-4's superiority into another model, I guess you can call it synthetic data, but it also feels like disingenuous because your goal is I need to copy the behavior of GPT-4 and-Swyx [00:32:25]: It's also not just behavior, but data set. So I've often thought of this as data set washing. Like you need one model at the top of the chain, you know, unnamed French company that has that, you know, makes a model that has all the data in it that we don't know where it's from, but it's open source, hey, and then we distill from that and it's great. To be fair, they also use larger models as judges for preference ranking, right? So that is, I think, a very, very accepted use of synthetic.Soumith [00:32:53]: Correct. I think it's a very interesting time where we don't really have good social models of what is acceptable depending on how many bits of information you use from someone else, right? It's like, okay, you use one bit. Is that okay? Yeah, let's accept it to be okay. Okay, what about if you use 20 bits? Is that okay? I don't know. What if you use 200 bits? I don't think we as society have ever been in this conundrum where we have to be like, where is the boundary of copyright or where is the boundary of socially accepted understanding of copying someone else? We haven't been tested this mathematically before,Swyx [00:33:38]: in my opinion. Whether it's transformative use. Yes. So yeah, I think this New York Times opening eye case is gonna go to the Supreme Court and we'll have to decide it because I think we never had to deal with it before. And then finally, for synthetic data, the thing that I'm personally exploring is solving this great stark paradigm difference between rag and fine tuning, where you can kind of create synthetic data off of your retrieved documents and then fine tune on that. That's kind of synthetic. All you need is variation or diversity of samples for you to fine tune on. And then you can fine tune new knowledge into your model. I don't know if you've seen that as a direction for synthetic data.Soumith [00:34:13]: I think you're basically trying to, what you're doing is you're saying, well, language, I know how to parametrize language to an extent. And I need to teach my model variations of this input data so that it's resilient or invariant to language uses of that data.Swyx [00:34:32]: Yeah, it doesn't overfit on the wrong source documents.Soumith [00:34:33]: So I think that's 100% synthetic. You understand, the key is you create variations of your documents and you know how to do that because you have a symbolic model or like some implicit symbolic model of language.Swyx [00:34:48]: Okay.Alessio [00:34:49]: Do you think the issue with symbolic models is just the architecture of the language models that we're building? I think maybe the thing that people grasp is the inability of transformers to deal with numbers because of the tokenizer. Is it a fundamental issue there too? And do you see alternative architectures that will be better with symbolic understanding?Soumith [00:35:09]: I am not sure if it's a fundamental issue or not. I think we just don't understand transformers enough. I don't even mean transformers as an architecture. I mean the use of transformers today, like combining the tokenizer and transformers and the dynamics of training, when you show math heavy questions versus not. I don't have a good calibration of whether I know the answer or not. I, you know, there's common criticisms that are, you know, transformers will just fail at X. But then when you scale them up to sufficient scale, they actually don't fail at that X. I think there's this entire subfield where they're trying to figure out these answers called like the science of deep learning or something. So we'll get to know more. I don't know the answer.Meta AI and Llama 2/3Swyx [00:35:57]: Got it. Let's touch a little bit on just Meta AI and you know, stuff that's going on there. Maybe, I don't know how deeply you're personally involved in it, but you're our first guest with Meta AI, which is really fantastic. And Llama 1 was, you know, you are such a believer in open source. Llama 1 was more or less the real breakthrough in open source AI. The most interesting thing for us covering on this, in this podcast was the death of Chinchilla, as people say. Any interesting insights there around the scaling models for open source models or smaller models or whatever that design decision was when you guys were doing it?Soumith [00:36:31]: So Llama 1 was Guillaume Lample and team. There was OPT before, which I think I'm also very proud of because we bridged the gap in understanding of how complex it is to train these models to the world. Like until then, no one really in gory detail published.Swyx [00:36:50]: The logs.Soumith [00:36:51]: Yeah. Like, why is it complex? And everyone says, oh, it's complex. But no one really talked about why it's complex. I think OPT was cool.Swyx [00:37:02]: I met Susan and she's very, very outspoken. Yeah.Soumith [00:37:05]: We probably, I think, didn't train it for long enough, right? That's kind of obvious in retrospect.Swyx [00:37:12]: For a 175B. Yeah. You trained it according to Chinchilla at the time or?Soumith [00:37:17]: I can't remember the details, but I think it's a commonly held belief at this point that if we trained OPT longer, it would actually end up being better. Llama 1, I think, was Guillaume Lample and team Guillaume is fantastic and went on to build Mistral. I wasn't too involved in that side of things. So I don't know what you're asking me, which is how did they think about scaling loss and all of that? Llama 2, I was more closely involved in. I helped them a reasonable amount with their infrastructure needs and stuff. And Llama 2, I think, was more like, let's get to the evolution. At that point, we kind of understood what we were missing from the industry's understanding of LLMs. And we needed more data and we needed more to train the models for longer. And we made, I think, a few tweaks to the architecture and we scaled up more. And that was Llama 2. I think Llama 2, you can think of it as after Guillaume left, the team kind of rebuilt their muscle around Llama 2. And Hugo, I think, who's the first author is fantastic. And I think he did play a reasonable big role in Llama 1 as well.Soumith [00:38:35]: And he overlaps between Llama 1 and 2. So in Llama 3, obviously, hopefully, it'll be awesome.Alessio [00:38:42]: Just one question on Llama 2, and then we'll try and fish Llama 3 spoilers out of you. In the Llama 2 paper, the loss curves of the 34 and 70B parameter, they still seem kind of steep. Like they could go lower. How, from an infrastructure level, how do you allocate resources? Could they have just gone longer or were you just, hey, this is all the GPUs that we can burn and let's just move on to Llama 3 and then make that one better?Soumith [00:39:07]: Instead of answering specifically about that Llama 2 situation or whatever, I'll tell you how we think about things. Generally, we're, I mean, Mark really is some numbers, right?Swyx [00:39:20]: So let's cite those things again. All I remember is like 600K GPUs.Soumith [00:39:24]: That is by the end of this year and 600K H100 equivalents. With 250K H100s, including all of our other GPU or accelerator stuff, it would be 600-and-something-K aggregate capacity.Swyx [00:39:38]: That's a lot of GPUs.Soumith [00:39:39]: We'll talk about that separately. But the way we think about it is we have a train of models, right? Llama 1, 2, 3, 4. And we have a bunch of GPUs. I don't think we're short of GPUs. Like-Swyx [00:39:54]: Yeah, no, I wouldn't say so. Yeah, so it's all a matter of time.Soumith [00:39:56]: I think time is the biggest bottleneck. It's like, when do you stop training the previous one and when do you start training the next one? And how do you make those decisions? The data, do you have net new data, better clean data for the next one in a way that it's not worth really focusing on the previous one? It's just a standard iterative product. You're like, when is the iPhone 1? When do you start working on iPhone 2? Where is the iPhone? And so on, right? So mostly the considerations are time and generation, rather than GPUs, in my opinion.Alessio [00:40:31]: So one of the things with the scaling loss, like Chinchilla is optimal to balance training and inference costs. I think at Meta's scale, you would rather pay a lot more maybe at training and then save on inference. How do you think about that from infrastructure perspective? I think in your tweet, you say you can try and guess on like how we're using these GPUs. Can you just give people a bit of understanding? It's like, because I've already seen a lot of VCs say, Llama 3 has been trained on 600,000 GPUs and that's obviously not true, I'm sure. How do you allocate between the research, FAIR and the Llama training, the inference on Instagram suggestions that get me to scroll, like AI-generated stickers on WhatsApp and all of that?Soumith [00:41:11]: Yeah, we haven't talked about any of this publicly, but as a broad stroke, it's like how we would allocate resources of any other kinds at any company. You run a VC portfolio, how do you allocate your investments between different companies or whatever? You kind of make various trade-offs and you kind of decide, should I invest in this project or this other project, or how much should I invest in this project? It's very much a zero sum of trade-offs. And it also comes into play, how are your clusters configured, like overall, what you can fit of what size and what cluster and so on. So broadly, there's no magic sauce here. I mean, I think the details would add more spice, but also wouldn't add more understanding. It's just gonna be like, oh, okay, I mean, this looks like they just think about this as I would normally do.Alessio [00:42:05]: So even the GPU rich run through the same struggles of having to decide where to allocate things.Soumith [00:42:11]: Yeah, I mean, at some point I forgot who said it, but you kind of fit your models to the amount of compute you have. If you don't have enough compute, you figure out how to make do with smaller models. But no one as of today, I think would feel like they have enough compute. I don't think I've heard any company within the AI space be like, oh yeah, like we feel like we have sufficient compute and we couldn't have done better. So that conversation, I don't think I've heard from any of my friends at other companies.EleutherSwyx [00:42:47]: Stella from Eleuther sometimes says that because she has a lot of donated compute. She's trying to put it to interesting uses, but for some reason she's decided to stop making large models.Soumith [00:42:57]: I mean, that's a cool, high conviction opinion that might pay out.Swyx [00:43:01]: Why?Soumith [00:43:02]: I mean, she's taking a path that most people don't care to take about in this climate and she probably will have very differentiated ideas. I mean, think about the correlation of ideas in AI right now. It's so bad, right? So everyone's fighting for the same pie. In some weird sense, that's partly why I don't really directly work on LLMs. I used to do image models and stuff and I actually stopped doing GANs because GANs were getting so hot that I didn't have any calibration of whether my work would be useful or not because, oh yeah, someone else did the same thing you did. It's like, there's so much to do, I don't understand why I need to fight for the same pie. So I think Stella's decision is very smart.Making BetsAlessio [00:43:53]: And how do you reconcile that with how we started the discussion about intrinsic versus extrinsic kind of like accomplishment or success? How should people think about that especially when they're doing a PhD or early in their career? I think in Europe, I walked through a lot of the posters and whatnot, there seems to be mode collapse in a way in the research, a lot of people working on the same things. Is it worth for a PhD to not take a bet on something that is maybe not as interesting just because of funding and visibility and whatnot? Or yeah, what suggestions would you give?Soumith [00:44:28]: I think there's a baseline level of compatibility you need to have with the field. Basically, you need to figure out if you will get paid enough to eat, right? Like whatever reasonable normal lifestyle you want to have as a baseline. So you at least have to pick a problem within the neighborhood of fundable. Like you wouldn't wanna be doing something so obscure that people are like, I don't know, like you can work on it.Swyx [00:44:59]: Would a limit on fundability, I'm just observing something like three months of compute, right? That's the top line, that's the like max that you can spend on any one project.Soumith [00:45:09]: But like, I think that's very ill specified, like how much compute, right? I think that the notion of fundability is broader. It's more like, hey, are these family of models within the acceptable set of, you're not crazy or something, right? Even something like neural or DS, which is a very boundary pushing thing or states-based models or whatever. Like all of these things I think are still in fundable territory. When you're talking about, I'm gonna do one of the neuromorphic models and then apply image classification to them or something, then it becomes a bit questionable. Again, it depends on your motivation. Maybe if you're a neuroscientist, it actually is feasible. But if you're an AI engineer, like the audience of these podcasts, then it's more questionable. The way I think about it is, you need to figure out how you can be in the baseline level of fundability just so that you can just live. And then after that, really focus on intrinsic motivation and depends on your strengths, like how you can play to your strengths and your interests at the same time. Like I try to look at a bunch of ideas that are interesting to me, but also try to play to my strengths. I'm not gonna go work on theoretical ML. I'm interested in it, but when I want to work on something like that, I try to partner with someone who is actually a good theoretical ML person and see if I actually have any value to provide. And if they think I do, then I come in. So I think you'd want to find that intersection of ideas you like, and that also play to your strengths. And I'd go from there. Everything else, like actually finding extrinsic success and all of that, I think is the way I think about it is like somewhat immaterial. When you're talking about building ecosystems and stuff, slightly different considerations come into play, but that's a different conversation.Swyx [00:47:06]: We're gonna pivot a little bit to just talking about open source AI. But one more thing I wanted to establish for Meta is this 600K number, just kind of rounding out the discussion, that's for all Meta. So including your own inference needs, right? It's not just about training.Soumith [00:47:19]: It's gonna be the number in our data centers for all of Meta, yeah.Swyx [00:47:23]: Yeah, so there's a decent amount of workload serving Facebook and Instagram and whatever. And then is there interest in like your own hardware?MTIASoumith [00:47:31]: We already talked about our own hardware. It's called MTIA. Our own silicon, I think we've even showed the standard photograph of you holding the chip that doesn't work. Like as in the chip that you basically just get like-Swyx [00:47:51]: As a test, right?Soumith [00:47:52]: Yeah, a test chip or whatever. So we are working on our silicon and we'll probably talk more about it when the time is right, but-Swyx [00:48:00]: Like what gaps do you have that the market doesn't offer?Soumith [00:48:04]: Okay, I mean, this is easy to answer. So basically, remember how I told you about there's this memory hierarchy and like sweet spots and all of that? Fundamentally, when you build a hardware, you make it general enough that a wide set of customers and a wide set of workloads can use it effectively while trying to get the maximum level of performance they can. The more specialized you make the chip, the more hardware efficient it's going to be, the more power efficient it's gonna be, the more easier it's going to be to find the software, like the kernel's right to just map that one or two workloads to that hardware and so on. So it's pretty well understood across the industry that if you have a sufficiently large volume, enough workload, you can specialize it and get some efficiency gains, like power gains and so on. So the way you can think about everyone building, every large company building silicon, I think a bunch of the other large companies are building their own silicon as well, is they, each large company has a sufficient enough set of verticalized workloads that can be specialized that have a pattern to them that say a more generic accelerator like an NVIDIA or an AMD GPU does not exploit. So there is some level of power efficiency that you're leaving on the table by not exploiting that. And you have sufficient scale and you have sufficient forecasted stability that those workloads will exist in the same form, that it's worth spending the time to build out a chip to exploit that sweet spot. Like obviously something like this is only useful if you hit a certain scale and that your forecasted prediction of those kind of workloads being in the same kind of specializable exploitable way is true. So yeah, that's why we're building our own chips.Swyx [00:50:08]: Awesome.Open Source AIAlessio [00:50:09]: Yeah, I know we've been talking a lot on a lot of different topics and going back to open source, you had a very good tweet. You said that a single company's closed source effort rate limits against people's imaginations and needs. How do you think about all the impact that some of the Meta AI work in open source has been doing and maybe directions of the whole open source AI space?Soumith [00:50:32]: Yeah, in general, I think first, I think it's worth talking about this in terms of open and not just open source, because like with the whole notion of model weights, no one even knows what source means for these things. But just for the discussion, when I say open source, you can assume it's just I'm talking about open. And then there's the whole notion of licensing and all that, commercial, non-commercial, commercial with clauses and all that. I think at a fundamental level, the most benefited value of open source is that you make the distribution to be very wide. It's just available with no friction and people can do transformative things in a way that's very accessible. Maybe it's open source, but it has a commercial license and I'm a student in India. I don't care about the license. I just don't even understand the license. But like the fact that I can use it and do something with it is very transformative to me. Like I got this thing in a very accessible way. And then it's various degrees, right? And then if it's open source, but it's actually a commercial license, then a lot of companies are gonna benefit from gaining value that they didn't previously have, that they maybe had to pay a closed source company for it. So open source is just a very interesting tool that you can use in various ways. So there's, again, two kinds of open source. One is some large company doing a lot of work and then open sourcing it. And that kind of effort is not really feasible by say a band of volunteers doing it the same way. So there's both a capital and operational expenditure that the large company just decided to ignore and give it away to the world for some benefits of some kind. They're not as tangible as direct revenue. So in that part, Meta has been doing incredibly good things. They fund a huge amount of the PyTorch development. They've open sourced Llama and those family of models and several other fairly transformative projects. FICE is one, Segment Anything, Detectron, Detectron 2. Dense Pose. I mean, it's-Swyx [00:52:52]: Seamless. Yeah, seamless.Soumith [00:52:53]: Like it's just the list is so long that we're not gonna cover. So I think Meta comes into that category where we spend a lot of CapEx and OpEx and we have a high talent density of great AI people and we open our stuff. And the thesis for that, I remember when FAIR was started, the common thing was like, wait, why would Meta wanna start a open AI lab? Like what exactly is a benefit from a commercial perspective? And for then the thesis was very simple. It was AI is currently rate limiting Meta's ability to do things. Our ability to build various product integrations, moderation, various other factors. Like AI was the limiting factor and we just wanted AI to advance more and we didn't care if the IP of the AI was uniquely in our possession or not. However the field advances, that accelerates Meta's ability to build a better product. So we just built an open AI lab and we said, if this helps accelerate the progress of AI, that's strictly great for us. But very easy, rational, right? Still the same to a large extent with the Llama stuff. And it's the same values, but the argument, it's a bit more nuanced. And then there's a second kind of open source, which is, oh, we built this project, nights and weekends and we're very smart people and we open sourced it and then we built a community around it. This is the Linux kernel and various software projects like that. So I think about open source, like both of these things being beneficial and both of these things being different. They're different and beneficial in their own ways. The second one is really useful when there's an active arbitrage to be done. If someone's not really looking at a particular space because it's not commercially viable or whatever, like a band of volunteers can just coordinate online and do something and then make that happen. And that's great.Open Source LLMsI wanna cover a little bit about open source LLMs maybe. So open source LLMs have been very interesting because I think we were trending towards an increase in open source in AI from 2010 all the way to 2017 or something. Like where more and more pressure within the community was to open source their stuff so that their methods and stuff get adopted. And then the LLMs revolution kind of took the opposite effect OpenAI stopped open sourcing their stuff and DeepMind kind of didn't, like all the other cloud and all these other providers, they didn't open source their stuff. And it was not good in the sense that first science done in isolation probably will just form its own bubble where people believe their own b******t or whatever. So there's that problem. And then there was the other problem which was the accessibility part. Like, okay, I again always go back to I'm a student in India with no money. What is my accessibility to any of these closers models? At some scale I have to pay money. That makes it a non-starter and stuff. And there's also the control thing. I strongly believe if you want human aligned stuff, you want all humans to give feedback. And you want all humans to have access to that technology in the first place. And I actually have seen, living in New York, whenever I come to Silicon Valley, I see a different cultural bubble. Like all the friends I hang out with talk about some random thing like Dyson Spheres or whatever, that's a thing. And most of the world doesn't know or care about any of this stuff. It's definitely a bubble and bubbles can form very easily. And when you make a lot of decisions because you're in a bubble, they're probably not globally optimal decisions. So I think open source, the distribution of open source powers a certain kind of non-falsifiability that I think is very important. I think on the open source models, like it's going great in the fact that LoRa I think came out of the necessity of open source models needing to be fine-tunable in some way. Yeah, and I think DPO also came out of the academic open source side of things. So do any of the closed source labs, did any of them already have LoRa or DPO internally? Maybe, but that does not advance humanity in any way. It advances some companies probability of doing the winner takes all that I talked about earlier in the podcast.Open Source and TrustI don't know, it just feels fundamentally good. Like when people try to, you know, people are like, well, what are the ways in which it is not okay? I find most of these arguments, and this might be a little controversial, but I find a lot of arguments based on whether closed source models are safer or open source models are safer very much related to what kind of culture they grew up in, what kind of society they grew up in. If they grew up in a society that they trusted, then I think they take the closed source argument. And if they grew up in a society that they couldn't trust, where the norm was that you didn't trust your government, obviously it's corrupt or whatever, then I think the open source argument is what they take. I think there's a deep connection to like people's innate biases from their childhood and their trust in society and governmental aspects that push them towards one opinion or the other. And I'm definitely in the camp of open source is definitely going to actually have better outcomes for society. Closed source to me just means that centralization of power, which, you know, is really hard to trust. So I think it's going well

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

This Friday we're doing a special crossover event in SF with of SemiAnalysis (previous guest!), and we will do a live podcast on site. RSVP here. Also join us on June 25-27 for the biggest AI Engineer conference of the year!Replicate is one of the most popular AI inference providers, reporting over 2 million users as of their $40m Series B with a16z. But how did they get there? The Definitive Replicate Story (warts and all)Their overnight success took 5 years of building, and it all started with arXiv Vanity, which was a 2017 vacation project that scrapes arXiv PDFs and re-renders them into semantic web pages that reflow nicely with better typography and whitespace. From there, Ben and Andreas' idea was to build tools to make ML research more robust and reproducible by making it easy to share code artefacts alongside papers. They had previously created Fig, which made it easy to spin up dev environments; it was eventually acquired by Docker and turned into `docker-compose`, the industry standard way to define services from containerized applications. 2019: CogThe first iteration of Replicate was a Fig-equivalent for ML workloads which they called Cog; it made it easy for researchers to package all their work and share it with peers for review and reproducibility. But they found that researchers were terrible users: they'd do all this work for a paper, publish it, and then never return to it again. “We talked to a bunch of researchers and they really wanted that.... But how the hell is this a business, you know, like how are we even going to make any money out of this? …So we went and talked to a bunch of companies trying to sell them something which didn't exist. So we're like, hey, do you want a way to share research inside your company so that other researchers or say like the product manager can test out the machine learning model? They're like, maybe. Do you want like a deployment platform for deploying models? Do you want a central place for versioning models? We were trying to think of lots of different products we could sell that were related to this thing…So we then got halfway through our YC batch. We hadn't built a product. We had no users. We had no idea what our business was going to be because we couldn't get anybody to like buy something which didn't exist. And actually there was quite a way through our, I think it was like two thirds the way through our YC batch or something. And we're like, okay, well we're kind of screwed now because we don't have anything to show at demo day.”The team graduated YCombinator with no customers, no product and nothing to demo - which was fine because demo day got canceled as the YC W'20 class graduated right into the pandemic. The team spent the next year exploring and building Covid tools.2021: CLIP + GAN = PixRayBy 2021, OpenAI released CLIP. Overnight dozens of Discord servers got spun up to hack on CLIP + GANs. Unlike academic researchers, this community was constantly releasing new checkpoints and builds of models. PixRay was one of the first models being built on Replicate, and it quickly started taking over the community. Chris Dixon has a famous 2010 post titled “The next big thing will start out looking like a toy”; image generation would have definitely felt like a toy in 2021, but it gave Replicate its initial boost.2022: Stable DiffusionIn August 2022 Stable Diffusion came out, and all the work they had been doing to build this infrastructure for CLIP / GANs models became the best way for people to share their StableDiffusion fine-tunes:And like the first week we saw people making animation models out of it. We saw people make game texture models that use circular convolutions to make repeatable textures. We saw a few weeks later, people were fine tuning it so you could put your face in these models and all of these other ways. […] So tons of product builders wanted to build stuff with it. And we were just sitting in there in the middle, as the interface layer between all these people who wanted to build, and all these machine learning experts who were building cool models. And that's really where it took off. Incredible supply, incredible demand, and we were just in the middle.(Stable Diffusion also spawned Latent Space as a newsletter)The landing page paved the cowpath for the intense interest in diffusion model APIs.2023: Llama & other multimodal LLMsBy 2023, Replicate's growing visibility in the Stable Diffusion indie hacker community came from top AI hackers like Pieter Levels and Danny Postmaa, each making millions off their AI apps:Meta then released LLaMA 1 and 2 (our coverage of it), greatly pushing forward the SOTA open source model landscape. Demand for text LLMs and other modalities rose, and Replicate broadened its focus accordingly, culminating in a $18m Series A and $40m Series B from a16z (at a $350m valuation).Building standards for the AI worldNow that the industry is evolving from toys to enterprise use cases, all these companies are working to set standards for their own space. We cover this at ~45 mins in the podcast. Some examples:* LangChain has been trying to establish "chain” as the standard mental models when putting multiple prompts and models together, and the “LangChain Expression Language” to go with it. (Our episode with Harrison)* LLamaHub for packaging RAG utilities. (Our episode with Jerry)* Ollama's Modelfile to define runtimes for different model architectures. These are usually targeted at local inference. * Cog (by Replicate) to create environments to which you can easily attach CUDA devices and make it easy to spin up inference on remote servers. * GGUF as the filetype ggml-based executors. None of them have really broken out yet, but this is going to become a fiercer competition as the market matures. Full Video PodcastAs a reminder, all Latent Space pods now come in full video on our YouTube, with bonus content that we cut for time!Show Notes* Ben Firshman* Replicate* Free $10 credit for Latent Space readers* Andreas Jansson (Ben's co-founder)* Charlie Holtz (Replicate's Hacker in Residence)* Fig (now Docker Compose)* Command Line Interface Guidelines (clig)* Apple Human Interface Guidelines* arXiv Vanity* Open Interpreter* PixRay* SF Compute* Big Sleep by Advadnoun* VQGAN-CLIP by Rivers Have WingsTimestamps* [00:00:00] Introductions* [00:01:17] Low latency is all you need* [00:04:08] Evolution of CLIs* [00:05:59] How building ArxivVanity led to Replicate* [00:11:37] Making ML research replicable with containers* [00:17:22] Doing YC in 2020 and pivoting to tools for COVID* [00:20:22] Launching the first version of Replicate* [00:25:51] Embracing the generative image community* [00:28:04] Getting reverse engineered into an API product* [00:31:25] Growing to 2 million users* [00:34:29] Indie vs Enterprise customers* [00:37:09] How Unsplash uses Replicate* [00:38:29] Learnings from Docker that went into Cog* [00:45:25] Creating AI standards* [00:50:05] Replicate's compute availability* [00:53:55] Fixing GPU waste* [01:00:39] What's open source AI?* [01:04:46] Building for AI engineers* [01:06:41] Hiring at ReplicateThis summary covers the full range of topics discussed throughout the episode, providing a comprehensive overview of the content and insights shared.TranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO in Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:14]: Hey, and today we have Ben Firshman in the studio. Welcome Ben.Ben [00:00:18]: Hey, good to be here.Swyx [00:00:19]: Ben, you're a co-founder and CEO of Replicate. Before that, you were most notably founder of Fig, which became Docker Compose. You also did a couple of other things before that, but that's what a lot of people know you for. What should people know about you that, you know, outside of your, your sort of LinkedIn profile?Ben [00:00:35]: Yeah. Good question. I think I'm a builder and tinkerer, like in a very broad sense. And I love using my hands to make things. So like I work on, you know, things may be a bit closer to tech, like electronics. I also like build things out of wood and I like fix cars and I fix my bike and build bicycles and all this kind of stuff. And there's so much, I think I've learned from transferable skills, from just like working in the real world to building things, building things in software. And you know, it's so much about being a builder, both in real life and, and in software that crosses over.Swyx [00:01:11]: Is there a real world analogy that you use often when you're thinking about like a code architecture or problem?Ben [00:01:17]: I like to build software tools as if they were something real. So I wrote this thing called the command line interface guidelines, which was a bit like sort of the Mac human interface guidelines, but for command line interfaces, I did it with the guy I created Docker Compose with and a few other people. And I think something in there, I think I described that your command line interface should feel like a big iron machine where you pull a lever and it goes clunk and like things should respond within like 50 milliseconds as if it was like a real life thing. And like another analogy here is like in the real life, you know, when you press a button on an electronic device and it's like a soft switch and you press it and nothing happens and there's no physical feedback of anything happening, then like half a second later, something happens. Like that's how a lot of software feels, but instead like software should feel more like something that's real where you touch, you pull a physical lever and the physical lever moves, you know, and I've taken that lesson of kind of human interface to, to software a ton. You know, it's all about kind of low latency of feeling, things feeling really solid and robust, both the command lines and, and user interfaces as well.Swyx [00:02:22]: And how did you operationalize that for Fig or Docker?Ben [00:02:27]: A lot of it's just low latency. Actually, we didn't do it very well for Fig in the first place. We used Python, which was a big mistake where Python's really hard to get booting up fast because you have to load up the whole Python runtime before it can run anything. Okay. Go is much better at this where like Go just instantly starts.Swyx [00:02:45]: You have to be under 500 milliseconds to start up?Ben [00:02:48]: Yeah, effectively. I mean, I mean, you know, perception of human things being immediate is, you know, something like a hundred milliseconds. So anything like that is, is yeah, good enough.Swyx [00:02:57]: Yeah. Also, I should mention, since we're talking about your side projects, well, one thing is I am maybe one of a few fellow people who have actually written something about CLI design principles because I was in charge of the Netlify CLI back in the day and had many thoughts. One of my fun thoughts, I'll just share it in case you have thoughts, is I think CLIs are effectively starting points for scripts that are then run. And the moment one of the script's preconditions are not fulfilled, typically they end. So the CLI developer will just exit the program. And the way that I designed, I really wanted to create the Netlify dev workflow was for it to be kind of a state machine that would resolve itself. If it detected a precondition wasn't fulfilled, it would actually delegate to a subprogram that would then fulfill that precondition, asking for more info or waiting until a condition is fulfilled. Then it would go back to the original flow and continue that. I don't know if that was ever tried or is there a more formal definition of it? Because I just came up with it randomly. But it felt like the beginnings of AI in the sense that when you run a CLI command, you have an intent to do something and you may not have given the CLI all the things that it needs to do, to execute that intent. So that was my two cents.Ben [00:04:08]: Yeah, that reminds me of a thing we sort of thought about when writing the CLI guidelines, where CLIs were designed in a world where the CLI was really a programming environment and it's primarily designed for machines to use all of these commands and scripts. Whereas over time, the CLI has evolved to humans. It was back in a world where the primary way of using computers was writing shell scripts effectively. We've transitioned to a world where actually humans are using CLI programs much more than they used to. And the current sort of best practices about how Unix was designed, there's lots of design documents about Unix from the 70s and 80s, where they say things like, command line commands should not output anything on success. It should be completely silent, which makes sense if you're using it in a shell script. But if a user is using that, it just looks like it's broken. If you type copy and it just doesn't say anything, you assume that it didn't work as a new user. I think what's really interesting about the CLI is that it's actually a really good, to your point, it's a really good user interface where it can be like a conversation, where it feels like you're, instead of just like you telling the computer to do this thing and either silently succeeding or saying, no, you did, failed, it can guide you in the right direction and tell you what your intent might be, and that kind of thing in a way that's actually, it's almost more natural to a CLI than it is in a graphical user interface because it feels like this back and forth with the computer, almost funnily like a language model. So I think there's some interesting intersection of CLIs and language models actually being very sort of closely related and a good fit for each other.Swyx [00:05:59]: Yeah, I'll say one of the surprises from last year, I worked on a coding agent, but I think the most successful coding agent of my cohort was Open Interpreter, which was a CLI implementation. And I have chronically, even as a CLI person, I have chronically underestimated the CLI as a useful interface. You also developed ArchiveVanity, which you recently retired after a glorious seven years.Ben [00:06:22]: Something like that.Swyx [00:06:23]: Which is nice, I guess, HTML PDFs.Ben [00:06:27]: Yeah, that was actually the start of where Replicate came from. Okay, we can tell that story. So when I quit Docker, I got really interested in science infrastructure, just as like a problem area, because it is like science has created so much progress in the world. The fact that we're, you know, can talk to each other on a podcast and we use computers and the fact that we're alive is probably thanks to medical research, you know. But science is just like completely archaic and broken and it's like 19th century processes that just happen to be copied to the internet rather than take into account that, you know, we can transfer information at the speed of light now. And the whole way science is funded and all this kind of thing is all kind of very broken. And there's just so much potential for making science work better. And I realized that I wasn't a scientist and I didn't really have any time to go and get a PhD and become a researcher, but I'm a tool builder and I could make existing scientists better at their job. And if I could make like a bunch of scientists a little bit better at their job, maybe that's the kind of equivalent of being a researcher. So one particular thing I dialed in on is just how science is disseminated in that all of these PDFs, quite often behind paywalls, you know, on the internet.Swyx [00:07:34]: And that's a whole thing because it's funded by national grants, government grants, then they're put behind paywalls. Yeah, exactly.Ben [00:07:40]: That's like a whole, yeah, I could talk for hours about that. But the particular thing we got dialed in on was, interestingly, these PDFs are also, there's a bunch of open science that happens as well. So math, physics, computer science, machine learning, notably, is all published on the archive, which is actually a surprisingly old institution.Swyx [00:08:00]: Some random Cornell.Ben [00:08:01]: Yeah, it was just like somebody in Cornell who started a mailing list in the 80s. And then when the web was invented, they built a web interface around it. Like it's super old.Swyx [00:08:11]: And it's like kind of like a user group thing, right? That's why they're all these like numbers and stuff.Ben [00:08:15]: Yeah, exactly. Like it's a bit like something, yeah. That's where all basically all of math, physics and computer science happens. But it's still PDFs published to this thing. Yeah, which is just so infuriating. The web was invented at CERN, a physics institution, to share academic writing. Like there are figure tags, there are like author tags, there are heading tags, there are site tags. You know, hyperlinks are effectively citations because you want to link to another academic paper. But instead, you have to like copy and paste these things and try and get around paywalls. Like it's absurd, you know. And now we have like social media and things, but still like academic papers as PDFs, you know. This is not what the web was for. So anyway, I got really frustrated with that. And I went on vacation with my old friend Andreas. So we were, we used to work together in London on a startup, at somebody else's startup. And we were just on vacation in Greece for fun. And he was like trying to read a machine learning paper on his phone, you know, like we had to like zoom in and like scroll line by line on the PDF. And he was like, this is f*****g stupid. So I was like, I know, like this is something we discovered our mutual hatred for this, you know. And we spent our vacation sitting by the pool, like making latex to HTML, like converters, making the first version of Archive Vanity. Anyway, that was up then a whole thing. And the story, we shut it down recently because they caught the eye of Archive. They were like, oh, this is great. We just haven't had the time to work on this. And what's tragic about the Archive, it's like this project of Cornell that's like, they can barely scrounge together enough money to survive. I think it might be better funded now than it was when we were, we were collaborating with them. And compared to these like scientific journals, it's just that this is actually where the work happens. But they just have a fraction of the money that like these big scientific journals have, which is just so tragic. But anyway, they were like, yeah, this is great. We can't afford to like do it, but do you want to like as a volunteer integrate arXiv Vanity into arXiv?Swyx [00:10:05]: Oh, you did the work.Ben [00:10:06]: We didn't do the work. We started doing the work. We did some. I think we worked on this for like a few months to actually get it integrated into arXiv. And then we got like distracted by Replicate. So a guy called Dan picked up the work and made it happen. Like somebody who works on one of the, the piece of the libraries that powers arXiv Vanity. Okay.Swyx [00:10:26]: And the relationship with arXiv Sanity?Ben [00:10:28]: None.Swyx [00:10:30]: Did you predate them? I actually don't know the lineage.Ben [00:10:32]: We were after, we both were both users of arXiv Sanity, which is like a sort of arXiv...Ben [00:10:37]: Which is Andre's RecSys on top of arXiv.Ben [00:10:40]: Yeah. Yeah. And we were both users of that. And I think we were trying to come up with a working name for arXiv and Andreas just like cracked a joke of like, oh, let's call it arXiv Vanity. Let's make the papers look nice. Yeah. Yeah. And that was the working name and it just stuck.Swyx [00:10:52]: Got it.Ben [00:10:53]: Got it.Alessio [00:10:54]: Yeah. And then from there, tell us more about why you got distracted, right? So Replicate, maybe it feels like an overnight success to a lot of people, but you've been building this since 2019. Yeah.Ben [00:11:04]: So what prompted the start?Alessio [00:11:05]: And we've been collaborating for even longer.Ben [00:11:07]: So we created arXiv Vanity in 2017. So in some sense, we've been doing this almost like six, seven years now, a classic seven year.Swyx [00:11:16]: Overnight success.Ben [00:11:17]: Yeah. Yes. We did arXiv Vanity and then worked on a bunch of like surrounding projects. I was still like really interested in science publishing at that point. And I'm trying to remember, because I tell a lot of like the condensed story to people because I can't really tell like a seven year history. So I'm trying to figure out like the right. Oh, we got room. The right length.Swyx [00:11:35]: We want to nail the definitive Replicate story here.Ben [00:11:37]: One thing that's really interesting about these machine learning papers is that these machine learning papers are published on arXiv and a lot of them are actual fundamental research. So like should be like prose describing a theory. But a lot of them are just running pieces of software that like a machine learning researcher made that did something, you know, it was like an image classification model or something. And they managed to make an image classification model that was better than the existing state of the art. And they've made an actual running piece of software that does image segmentation. And then what they had to do is they then had to take that piece of software and write it up as prose and math in a PDF. And what's frustrating about that is like if you want to. So this was like Andreas is, Andreas was a machine learning engineer at Spotify. And some of his job was like he did pure research as well. Like he did a PhD and he was doing a lot of stuff internally. But part of his job was also being an engineer and taking some of these existing things that people have made and published and trying to apply them to actual problems at Spotify. And he was like, you know, you get given a paper which like describes roughly how the model works. It's probably listing lots of crucial information. There's sometimes code on GitHub. More and more there's code on GitHub. But back then it was kind of relatively rare. But it's quite often just like scrappy research code and didn't actually run. And, you know, there was maybe the weights that were on Google Drive, but they accidentally deleted the weights of Google Drive, you know, and it was like really hard to like take this stuff and actually use it for real things. We just started talking together about like his problems at Spotify and I connected this back to my work at Docker as well. I was like, oh, this is what we created containers for. You know, we solved this problem for normal software by putting the thing inside a container so you could ship it around and it kept on running. So we were sort of hypothesizing about like, hmm, what if we put machine learning models inside containers so they could actually be shipped around and they could be defined in like some production ready formats and other researchers could run them to generate baselines and you could people who wanted to actually apply them to real problems in the world could just pick up the container and run it, you know. And we then thought this is quite whether it gets normally in this part of the story I skip forward to be like and then we created cog this container stuff for machine learning models and we created Replicate, the place for people to publish these machine learning models. But there's actually like two or three years between that. The thing we then got dialed into was Andreas was like, what if there was a CI system for machine learning? It's like one of the things he really struggled with as a researcher is generating baselines. So when like he's writing a paper, he needs to like get like five other models that are existing work and get them running.Swyx [00:14:21]: On the same evals.Ben [00:14:22]: Exactly, on the same evals so you can compare apples to apples because you can't trust the numbers in the paper.Swyx [00:14:26]: So you can be Google and just publish them anyway.Ben [00:14:31]: So I think this was coming from the thinking of like there should be containers for machine learning, but why are people going to use that? Okay, maybe we can create a supply of containers by like creating this useful tool for researchers. And the useful tool was like, let's get researchers to package up their models and push them to the central place where we run a standard set of benchmarks across the models so that you can trust those results and you can compare these models apples to apples and for like a researcher for Andreas, like doing a new piece of research, he could trust those numbers and he could like pull down those models, confirm it on his machine, use the standard benchmark to then measure his model and you know, all this kind of stuff. And so we started building that. That's what we applied to YC with, got into YC and we started sort of building a prototype of this. And then this is like where it all starts to fall apart. We were like, okay, that sounds great. And we talked to a bunch of researchers and they really wanted that and that sounds brilliant. That's a great way to create a supply of like models on this research platform. But how the hell is this a business, you know, like how are we even going to make any money out of this? And we're like, oh s**t, that's like the, that's the real unknown here of like what the business is. So we thought it would be a really good idea to like, okay, before we get too deep into this, let's try and like reduce the risk of this turning into a business. So let's try and like research what the business could be for this research tool effectively. So we went and talked to a bunch of companies trying to sell them something which didn't exist. So we're like, hey, do you want a way to share research inside your company so that other researchers or say like the product manager can test out the machine learning model? They're like, maybe. And we were like, do you want like a deployment platform for deploying models? Like, do you want like a central place for versioning models? Like we're trying to think of like lots of different like products we could sell that were like related to this thing. And terrible idea. Like we're not sales people and like people don't want to buy something that doesn't exist. I think some people can pull this off, but we were just like, you know, a bunch of product people, products and engineer people, and we just like couldn't pull this off. So we then got halfway through our YC batch. We hadn't built a product. We had no users. We had no idea what our business was going to be because we couldn't get anybody to like buy something which didn't exist. And actually there was quite a way through our, I think it was like two thirds the way through our YC batch or something. And we're like, okay, well we're kind of screwed now because we don't have anything to show at demo day. And then we then like tried to figure out, okay, what can we build in like two weeks that'll be something. So we like desperately tried to, I can't remember what we've tried to build at that point. And then two weeks before demo day, I just remember it was all, we were going down to Mountain View every week for dinners and we got called on to like an all hands Zoom call, which was super weird. We're like, what's going on? And they were like, don't come to dinner tomorrow. And we realized, we kind of looked at the news and we were like, oh, there's a pandemic going on. We were like so deep in our startup. We were just like completely oblivious to what was going on around us.Swyx [00:17:20]: Was this Jan or Feb 2020?Ben [00:17:22]: This was March 2020. March 2020. 2020.Swyx [00:17:25]: Yeah. Because I remember Silicon Valley at the time was early to COVID. Like they started locking down a lot faster than the rest of the US.Ben [00:17:32]: Yeah, exactly. And I remember, yeah, soon after that, like there was the San Francisco lockdowns and then like the YC batch just like stopped. There wasn't demo day and it was in a sense a blessing for us because we just kind ofSwyx [00:17:43]: In the normal course of events, you're actually allowed to defer to a future demo day. Yeah.Ben [00:17:51]: So we didn't even take any defer because it just kind of didn't happen.Swyx [00:17:55]: So was YC helpful?Ben [00:17:57]: Yes. We completely screwed up the batch and that was our fault. I think the thing that YC has become incredibly valuable for us has been after YC. I think there was a reason why we couldn't, didn't need to do YC to start with because we were quite experienced. We had done some startups before. We were kind of well connected with VCs, you know, it was relatively easy to raise money because we were like a known quantity. You know, if you go to a VC and be like, Hey, I made this piece of-Swyx [00:18:24]: It's Docker Compose for AI.Ben [00:18:26]: Exactly. Yeah. And like, you know, people can pattern match like that and they can have some trust, you know what you're doing. Whereas it's much harder for people straight out of college and that's where like YC sweet spot is like helping people straight out of college who are super promising, like figure out how to do that.Swyx [00:18:40]: No credentials.Ben [00:18:41]: Yeah, exactly. We don't need that. But the thing that's been incredibly useful for us since YC has been, this was actually, I think, so Docker was a YC company and Solomon, the founder of Docker, I think told me this. He was like, a lot of people underestimate the value of YC after you finish the batch. And his biggest regret was like not staying in touch with YC. I might be misattributing this, but I think it was him. And so we made a point of that. And we just stayed in touch with our batch partner, who Jared at YC has been fantastic.Ben [00:19:10]: Jared Friedman. All of like the team at YC, there was the growth team at YC when they were still there and they've been super helpful. And two things have been super helpful about that is like raising money, like they just know exactly how to raise money. And they've been super helpful during that process in all of our rounds, like we've done three rounds since we did YC and they've been super helpful during the whole process. And also just like reaching a ton of customers. So like the magic of YC is that you have all of, like there's thousands of YC companies, I think, on the order of thousands, I think. And they're all of your first customers. And they're like super helpful, super receptive, really want to like try out new things. You have like a warm intro to every one of them basically. And there's this mailing list where you can post about updates to your products, which is like really receptive. And that's just been fantastic for us. Like we've just like got so many of our users and customers through YC. Yeah.Swyx [00:20:00]: Well, so the classic criticism or the sort of, you know, pushback is people don't buy you because you are both from YC. But at least they'll open the email. Right. Like that's the... Okay.Ben [00:20:13]: Yeah. Yeah. Yeah.Swyx [00:20:16]: So that's been a really, really positive experience for us. And sorry, I interrupted with the YC question. Like you were, you make it, you just made it out of the YC, survived the pandemic.Ben [00:20:22]: I'll try and condense this a little bit. Then we started building tools for COVID weirdly. We were like, okay, we don't have a startup. We haven't figured out anything. What's the most useful thing we could be doing right now?Swyx [00:20:32]: Save lives.Ben [00:20:33]: So yeah. Let's try and save lives. I think we failed at that as well. We had a bunch of products that didn't really go anywhere. We kind of worked on, yeah, a bunch of stuff like contact tracing, which turned out didn't really be a useful thing. Sort of Andreas worked on like a door dash for like people delivering food to people who are vulnerable. What else did we do? The meta problem of like helping people direct their efforts to what was most useful and a few other things like that. It didn't really go anywhere. So we're like, okay, this is not really working either. We were considering actually just like doing like work for COVID. We have this decision document early on in our company, which is like, should we become a like government app contracting shop? We decided no.Swyx [00:21:11]: Because you also did work for the gov.uk. Yeah, exactly.Ben [00:21:14]: We had experience like doing some like-Swyx [00:21:17]: And the Guardian and all that.Ben [00:21:18]: Yeah. For like government stuff. And we were just like really good at building stuff. Like we were just like product people. Like I was like the front end product side and Andreas was the back end side. So we were just like a product. And we were working with a designer at the time, a guy called Mark, who did our early designs for Replicate. And we were like, hey, what if we just team up and like become and build stuff? And yeah, we gave up on that in the end for, I can't remember the details. So we went back to machine learning. And then we were like, well, we're not really sure if this is going to work. And one of my most painful experiences from previous startups is shutting them down. Like when you realize it's not really working and having to shut it down, it's like a ton of work and it's people hate you and it's just sort of, you know. So we were like, how can we make something we don't have to shut down? And even better, how can we make something that won't page us in the middle of the night? So we made an open source project. We made a thing which was an open source Weights and Biases, because we had this theory that like people want open source tools. There should be like an open source, like version control, experiment tracking like thing. And it was intuitive to us and we're like, oh, we're software developers and we like command line tools. Like everyone loves command line tools and open source stuff, but machine learning researchers just really didn't care. Like they just wanted to click on buttons. They didn't mind that it was a cloud service. It was all very visual as well, that you need lots of graphs and charts and stuff like this. So it wasn't right. Like it was right. We actually were building something that Andreas made at Spotify for just like saving experiments to cloud storage automatically, but other people didn't really want this. So we kind of gave up on that. And then that was actually originally called Replicate and we renamed that out of the way. So it's now called Keepsake and I think some people still use it. Then we sort of came back, we looped back to our original idea. So we were like, oh, maybe there was a thing in that thing we were originally sort of thinking about of like researchers sharing their work and containers for machine learning models. So we just built that. And at that point we were kind of running out of the YC money. So we were like, okay, this like feels good though. Let's like give this a shot. So that was the point we raised a seed round. We raised seed round. Pre-launch. We raised pre-launch and pre-team. It was an idea basically. We had a little prototype. It was just an idea and a team. But we were like, okay, like, you know, bootstrapping this thing is getting hard. So let's actually raise some money. Then we made Cog and Replicate. It initially didn't have APIs, interestingly. It was just the bit that I was talking about before of helping researchers share their work. So it was a way for researchers to put their work on a webpage such that other people could try it out and so that you could download the Docker container. We cut the benchmarks thing of it because we thought that was just like too complicated. But it had a Docker container that like, you know, Andreas in a past life could download and run with his benchmark and you could compare all these models apples to apples. So that was like the theory behind it. That kind of started to work. It was like still when like, you know, it was long time pre-AI hype and there was lots of interesting stuff going on, but it was very much in like the classic deep learning era. So sort of image segmentation models and sentiment analysis and all these kinds of things, you know, that people were using, that we're using deep learning models for. And we were very much building for research because all of this stuff was happening in research institutions, you know, the sort of people who'd be publishing to archive. So we were creating an accompanying material for their models, basically, you know, they wanted a demo for their models and we were creating a company material for it. What was funny about that is they were like not very good users. Like they were, they were doing great work obviously, but, but the way that research worked is that they, they just made like one thing every six months and they just fired and forget it, forgot it. Like they, they published this piece of paper and like, done, I've, I've published it. So they like output it to Replicate and then they just stopped using Replicate. You know, they were like once every six monthly users and that wasn't great for us, but we stumbled across this early community. This was early 2021 when OpenAI created this, created CLIP and people started smushing CLIP and GANs together to produce image generation models. And this started with, you know, it was just a bunch of like tinkerers on Discord, basically. There was an early model called Big Sleep by Advadnoun. And then there was VQGAN Clip, which was like a bit more popular by Rivers Have Wings. And it was all just people like tinkering on stuff in Colabs and it was very dynamic and it was people just making copies of co-labs and playing around with things and forking in. And to me this, I saw this and I was like, oh, this feels like open source software, like so much more than the research world where like people are publishing these papers.Swyx [00:25:48]: You don't know their real names and it's just like a Discord.Ben [00:25:51]: Yeah, exactly. But crucially, it was like people were tinkering and forking and things were moving really fast and it just felt like this creative, dynamic, collaborative community in a way that research wasn't really, like it was still stuck in this kind of six month publication cycle. So we just kind of latched onto that and started building for this community. And you know, a lot of those early models were published on Replicate. I think the first one that was really primarily on Replicate was one called Pixray, which was sort of mid 2021 and it had a really cool like pixel art output, but it also just like produced general, you know, the sort of, they weren't like crisp in images, but they were quite aesthetically pleasing, like some of these early image generation models. And you know, that was like published primarily on Replicate and then a few other models around that were like published on Replicate. And that's where we really started to find our early community and like where we really found like, oh, we've actually built a thing that people want and they were great users as well. And people really want to try out these models. Lots of people were like running the models on Replicate. We still didn't have APIs though, interestingly, and this is like another like really complicated part of the story. We had no idea what a business model was still at this point. I don't think people could even pay for it. You know, it was just like these web forms where people could run the model.Swyx [00:27:06]: Just for historical interest, which discords were they and how did you find them? Was this the Lion Discord? Yeah, Lion. This is Eleuther.Ben [00:27:12]: Eleuther, yeah. It was the Eleuther one. These two, right? There was a channel where Viki Gangklep, this was early 2021, where Viki Gangklep was set up as a Discord bot. I just remember being completely just like captivated by this thing. I was just like playing around with it all afternoon and like the sort of thing. In Discord. Oh s**t, it's 2am. You know, yeah.Swyx [00:27:33]: This is the beginnings of Midjourney.Ben [00:27:34]: Yeah, exactly. And Stability. It was the start of Midjourney. And you know, it's where that kind of user interface came from. Like what's beautiful about the user interface is like you could see what other people are doing. And you could riff off other people's ideas. And it was just so much fun to just like play around with this in like a channel full of a hundred people. And yeah, that just like completely captivated me and I'm like, okay, this is something, you know. So like we should get these things on Replicate. Yeah, that's where that all came from.Swyx [00:28:00]: And then you moved on to, so was it APIs next or was it Stable Diffusion next?Ben [00:28:04]: It was APIs next. And the APIs happened because one of our users, our web form had like an internal API for making the web form work, like with an API that was called from JavaScript. And somebody like reverse engineered that to start generating images with a script. You know, they did like, you know, Web Inspector Coffee is Carl, like figured out what the API request was. And it wasn't secured or anything.Swyx [00:28:28]: Of course not.Ben [00:28:29]: They started generating a bunch of images and like we got tons of traffic and like what's going on? And I think like a sort of usual reaction to that would be like, hey, you're abusing our API and to shut them down. And instead we're like, oh, this is interesting. Like people want to run these models. So we documented the API in a Notion document, like our internal API in a Notion document and like message this person being like, hey, you seem to have found our API. Here's the documentation. That'll be like a thousand bucks a month, please, with a straight form, like we just click some buttons to make. And they were like, sure, that sounds great. So that was our first customer.Swyx [00:29:05]: A thousand bucks a month.Ben [00:29:07]: It was a surprising amount of money. That's not casual. It was on the order of a thousand bucks a month.Swyx [00:29:11]: So was it a business?Ben [00:29:13]: It was the creator of PixRay. Like it was, he generated NFT art. And so he like made a bunch of art with these models and was, you know, selling these NFTs effectively. And I think lots of people in his community were doing similar things. And like he then referred us to other people who were also generating NFTs and he joined us with models. We started our API business. Yeah. Then we like made an official API and actually like added some billing to it. So it wasn't just like a fixed fee.Swyx [00:29:40]: And now people think of you as the host and models API business. Yeah, exactly.Ben [00:29:44]: But that just turned out to be our business, you know, but what ended up being beautiful about this is it was really fulfilling. Like the original goal of what we wanted to do is that we wanted to make this research that people were making accessible to like other people and for it to be used in the real world. And this was like the just like ultimately the right way to do it because all of these people making these generative models could publish them to replicate and they wanted a place to publish it. And software engineers, you know, like myself, like I'm not a machine learning expert, but I want to use this stuff, could just run these models with a single line of code. And we thought, oh, maybe the Docker image is enough, but it's actually super hard to get the Docker image running on a GPU and stuff. So it really needed to be the hosted API for this to work and to make it accessible to software engineers. And we just like wound our way to this. Yeah.Swyx [00:30:30]: Two years to the first paying customer. Yeah, exactly.Alessio [00:30:33]: Did you ever think about becoming Midjourney during that time? You have like so much interest in image generation.Swyx [00:30:38]: I mean, you're doing fine for the record, but, you know, it was right there, you were playing with it.Ben [00:30:46]: I don't think it was our expertise. Like I think our expertise was DevTools rather than like Midjourney is almost like a consumer products, you know? Yeah. So I don't think it was our expertise. It certainly occurred to us. I think at the time we were thinking about like, oh, maybe we could hire some of these people in this community and make great models and stuff like this. But we ended up more being at the tooling. Like I think like before I was saying, like I'm not really a researcher, but I'm more like the tool builder, the behind the scenes. And I think both me and Andreas are like that.Swyx [00:31:09]: I think this is an illustration of the tool builder philosophy. Something where you latch on to in DevTools, which is when you see people behaving weird, it's not their fault, it's yours. And you want to pave the cow paths is what they say, right? Like the unofficial paths that people are making, like make it official and make it easy for them and then maybe charge a bit of money.Alessio [00:31:25]: And now fast forward a couple of years, you have 2 million developers using Replicate. Maybe more. That was the last public number that I found.Ben [00:31:33]: It's 2 million users. Not all those people are developers, but a lot of them are developers, yeah.Alessio [00:31:38]: And then 30,000 paying customers was the number late in space runs on Replicate. So we had a small podcaster and we host a whisper diarization on Replicate. And we're paying. So we're late in space in the 30,000. You raised a $40 million dollars, Series B. I would say that maybe the stable diffusion time, August 22, was like really when the company started to break out. Tell us a bit about that and the community that came out and I know now you're expanding beyond just image generation.Ben [00:32:06]: Yeah, like I think we kind of set ourselves, like we saw there was this really interesting image, generative image world going on. So we kind of, you know, like we're building the tools for that community already, really. And we knew stable diffusion was coming out. We knew it was a really exciting thing, you know, it was the best generative image model so far. I think the thing we underestimated was just like what an inflection point it would be, where it was, I think Simon Willison put it this way, where he said something along the lines of it was a model that was open source and tinkerable and like, you know, it was just good enough and open source and tinkerable such that it just kind of took off in a way that none of the models had before. And like what was really neat about stable diffusion is it was open source so you could like, compared to like Dali, for example, which was like sort of equivalent quality. And like the first week we saw like people making animation models out of it. We saw people make like game texture models that like use circular convolutions to make repeatable textures. We saw, you know, a few weeks later, like people were fine tuning it so you could make, put your face in these models and all of these other-Swyx [00:33:10]: Textual inversion.Ben [00:33:11]: Yep. Yeah, exactly. That happened a bit before that. And all of this sort of innovation was happening all of a sudden. And people were publishing on Replicate because you could just like publish arbitrary models on Replicate. So we had this sort of supply of like interesting stuff being built. But because it was a sufficiently good model, there was also just like a ton of people building with it. They were like, oh, we can build products with this thing. And this was like about the time where people were starting to get really interested in AI. So like tons of product builders wanted to build stuff with it. And we were just like sitting in there in the middle, it's like the interface layer between like all these people who wanted to build and all these like machine learning experts who were building cool models. And that's like really where it took off. We were just sort of incredible supply, incredible demand, and we were just like in the middle. And then, yeah, since then, we've just kind of grown and grown really. And we've been building a lot for like the indie hacker community, these like individual tinkerers, but also startups and a lot of large companies as well who are sort of exploring and building AI things. Then kind of the same thing happened like middle of last year with language models and Lama 2, where the same kind of stable diffusion effect happened with Lama. And Lama 2 was like our biggest week of growth ever because like tons of people wanted to tinker with it and run it. And you know, since then we've just been seeing a ton of growth in language models as well as image models. Yeah. We're just kind of riding a lot of the interest that's going on in AI and all the people building in AI, you know. Yeah.Swyx [00:34:29]: Kudos. Right place, right time. But also, you know, took a while to position for the right place before the wave came. I'm curious if like you have any insights on these different markets. So Peter Levels, notably very loud person, very picky about his tools. I wasn't sure actually if he used you. He does. So you've met him on your Series B blog posts and Danny Post might as well, his competitor all in that wave. What are their needs versus, you know, the more enterprise or B2B type needs? Did you come to a decision point where you're like, okay, you know, how serious are these indie hackers versus like the actual businesses that are bigger and perhaps better customers because they're less churny?Ben [00:35:04]: They're surprisingly similar because I think a lot of people right now want to use and build with AI, but they're not AI experts and they're not infrastructure experts either. So they want to be able to use this stuff without having to like figure out all the internals of the models and, you know, like touch PyTorch and whatever. And they also don't want to be like setting up and booting up servers. And that's the same all the way from like indie hackers just getting started because like obviously you just want to get started as quickly as possible, all the way through to like large companies who want to be able to use this stuff, but don't have like all of the experts on stuff, you know, you know, big companies like Google and so on that do actually have a lot of experts on stuff, but the vast majority of companies don't. And they're all software engineers who want to be able to use this AI stuff, but they just don't know how to use it. And it's like, you really need to be an expert and it takes a long time to like learn the skills to be able to use that. So they're surprisingly similar in that sense. I think it's kind of also unfair of like the indie community, like they're not churning surprisingly, or churny or spiky surprisingly, like they're building real established businesses, which is like, kudos to them, like building these really like large, sustainable businesses, often just as solo developers. And it's kind of remarkable how they can do that actually, and it's in credit to a lot of their like product skills. And you know, we're just like there to help them being like their machine learning team effectively to help them use all of this stuff. A lot of these indie hackers are some of our largest customers, like alongside some of our biggest customers that you would think would be spending a lot more money than them, but yeah.Swyx [00:36:35]: And we should name some of these. So you have them on your landing page, your Buzzfeed, you have Unsplash, Character AI. What do they power? What can you say about their usage?Ben [00:36:43]: Yeah, totally. It's kind of a various things.Swyx [00:36:46]: Well, I mean, I'm naming them because they're on your landing page. So you have logo rights. It's useful for people to, like, I'm not imaginative. I see monkey see monkey do, right? Like if I see someone doing something that I want to do, then I'm like, okay, Replicate's great for that.Ben [00:37:00]: Yeah, yeah, yeah.Swyx [00:37:01]: So that's what I think about case studies on company landing pages is that it's just a way of explaining like, yep, this is something that we are good for. Yeah, totally.Ben [00:37:09]: I mean, it's, these companies are doing things all the way up and down the stack at different levels of sophistication. So like Unsplash, for example, they actually publicly posted this story on Twitter where they're using BLIP to annotate all of the images in their catalog. So you know, they have lots of images in the catalog and they want to create a text description of it so you can search for it. And they're annotating images with, you know, off the shelf, open source model, you know, we have this big library of open source models that you can run. And you know, we've got lots of people are running these open source models off the shelf. And then most of our larger customers are doing more sophisticated stuff. So they're like fine tuning the models, they're running completely custom models on us. A lot of these larger companies are like, using us for a lot of their, you know, inference, but it's like a lot of custom models and them like writing the Python themselves because they've got machine learning experts on the team. And they're using us for like, you know, their inference infrastructure effectively. And so it's like lots of different levels of sophistication where like some people using these off the shelf models. Some people are fine tuning models. So like level, Peter Levels is a great example where a lot of his products are based off like fine tuning, fine tuning image models, for example. And then we've also got like larger customers who are just like using us as infrastructure effectively. So yeah, it's like all things up and down, up and down the stack.Alessio [00:38:29]: Let's talk a bit about COG and the technical layer. So there are a lot of GPU clouds. I think people have different pricing points. And I think everybody tries to offer a different developer experience on top of it, which then lets you charge a premium. Why did you want to create COG?Ben [00:38:46]: You worked at Docker.Alessio [00:38:47]: What were some of the issues with traditional container runtimes? And maybe yeah, what were you surprised with as you built it?Ben [00:38:54]: COG came right from the start, actually, when we were thinking about this, you know, evaluation, the sort of benchmarking system for machine learning researchers, where we wanted researchers to publish their models in a standard format that was guaranteed to keep on running, that you could replicate the results of, like that's where the name came from. And we realized that we needed something like Docker to make that work, you know. And I think it was just like natural from my point of view of like, obviously that should be open source, that we should try and create some kind of open standard here that people can share. Because if more people use this format, then that's great for everyone involved. I think the magic of Docker is not really in the software. It's just like the standard that people have agreed on, like, here are a bunch of keys for a JSON document, basically. And you know, that was the magic of like the metaphor of real containerization as well. It's not the containers that are interesting. It's just like the size and shape of the damn box, you know. And it's a similar thing here, where really we just wanted to get people to agree on like, this is what a machine learning model is. This is how a prediction works. This is what the inputs are, this is what the outputs are. So cog is really just a Docker container that attaches to a CUDA device, if it needs a GPU, that has a open API specification as a label on the Docker image. And the open API specification defines the interface for the machine learning model, like the inputs and outputs effectively, or the params in machine learning terminology. And you know, we just wanted to get people to kind of agree on this thing. And it's like general purpose enough, like we weren't saying like, some of the existing things were like at the graph level, but we really wanted something general purpose enough that you could just put anything inside this and it was like future compatible and it was just like arbitrary software. And you know, it'd be future compatible with like future inference servers and future machine learning model formats and all this kind of stuff. So that was the intent behind it. It just came naturally that we wanted to define this format. And that's been really working for us. Like a bunch of people have been using cog outside of replicates, which is kind of our original intention, like this should be how machine learning is packaged and how people should use it. Like it's common to use cog in situations where like maybe they can't use the SAS service because I don't know, they're in a big company and they're not allowed to use a SAS service, but they can use cog internally still. And like they can download the models from replicates and run them internally in their org, which we've been seeing happen. And that works really well. People who want to build like custom inference pipelines, but don't want to like reinvent the world, they can use cog off the shelf and use it as like a component in their inference pipelines. We've been seeing tons of usage like that and it's just been kind of happening organically. We haven't really been trying, you know, but it's like there if people want it and we've been seeing people use it. So that's great. Yeah. So a lot of it is just sort of philosophical of just like, this is how it should work from my experience at Docker, you know, and there's just a lot of value from like the core being open, I think, and that other people can share it and it's like an integration point. So, you know, if replicate, for example, wanted to work with a testing system, like a CI system or whatever, we can just like interface at the cog level, like that system just needs to put cog models and then you can like test your models on that CI system before they get deployed to replicate. And it's just like a format that everyone, we can get everyone to agree on, you know.Alessio [00:41:55]: What do you think, I guess, Docker got wrong? Because if I look at a Docker Compose and a cog definition, first of all, the cog is kind of like the Dockerfile plus the Compose versus in Docker Compose, you're just exposing the services. And also Docker Compose is very like ports driven versus you have like the actual, you know, predict this is what you have to run.Ben [00:42:16]: Yeah.Alessio [00:42:17]: Any learnings and maybe tips for other people building container based runtimes, like how much should you separate the API services versus the image building or how much you want to build them together?Ben [00:42:29]: I think it was coming from two sides. We were thinking about the design from the point of view of user needs, what are their problems and what problems can we solve for them, but also what the interface should be for a machine learning model. And it was sort of the combination of two things that led us to this design. So the thing I talked about before was a little bit of like the interface around the machine learning model. So we realized that we wanted to be general purpose. We wanted to be at the like JSON, like human readable things rather than the tensor level. So it was like an open API specification that wrapped a Docker container. And that's where that design came from. And it's really just a wrapper around Docker. So we were kind of building on, standing on shoulders there, but Docker is too low level. So it's just like arbitrary software. So we wanted to be able to like have a open API specification that defined the function effectively that is the machine learning model. But also like how that function is written, how that function is run, which is all defined in code and stuff like that. So it's like a bunch of abstraction on top of Docker to make that work. And that's where that design came from. But the core problems we were solving for users was that Docker is really hard to use and productionizing machine learning models is really hard. So on the first part of that, we knew we couldn't use Dockerfiles. Like Dockerfiles are hard enough for software developers to write. I'm saying this with love as somebody who works on Docker and like works on Dockerfiles, but it's really hard to use. And you need to know a bunch about Linux, basically, because you're running a bunch of CLI commands. You need to know a bunch about Linux and best practices and like how apt works and all this kind of stuff. So we're like, OK, we can't get to that level. We need something that machine learning researchers will be able to understand, like people who are used to like Colab notebooks. And what they understand is they're like, I need this version of Python. I need these Python packages. And somebody told me to apt-get install something. You know? If there was sudo in there, I don't really know what that means. So we tried to create a format that was at that level, and that's what cog.yaml is. And we were really kind of trying to imagine like, what is that machine learning researcher going to understand, you know, and trying to build for them. Then the productionizing machine learning models thing is like, OK, how can we package up all of the complexity of like productionizing machine learning models, like picking CUDA versions, like hooking it up to GPUs, writing an inference server, defining a schema, doing batching, all of these just like really gnarly things that everyone does again and again. And just like, you know, provide that as a tool. And that's where that side of it came from. So it's like combining those user needs with, you know, the sort of world need of needing like a common standard for like what a machine learning model is. And that's how we thought about the design. I don't know whether that answers the question.Alessio [00:45:12]: Yeah. So your idea was like, hey, you really want what Docker stands for in terms of standard, but you actually don't want people to do all the work that goes into Docker.Ben [00:45:22]: It needs to be higher level, you know?Swyx [00:45:25]: So I want to, for the listener, you're not the only standard that is out there. As with any standard, there must be 14 of them. You are surprisingly friendly with Olama, who is your former colleagues from Docker, who came out with the model file. Mozilla came out with the Lama file. And then I don't know if this is in the same category even, but I'm just going to throw it in there. Like Hugging Face has the transformers and diffusers library, which is a way of disseminating models that obviously people use. How would you compare your contrast, your approach of Cog versus all these?Ben [00:45:53]: It's kind of complementary, actually, which is kind of neat in that a lot of transformers, for example, is lower level than Cog. So it's a Python library effectively, but you still need to like...Swyx [00:46:04]: Expose them.Ben [00:46:05]: Yeah. You still need to turn that into an inference server. You still need to like install the Python packages and that kind of thing. So lots of replicate models are transformers models and diffusers models inside Cog, you know? So that's like the level that that sits. So it's very complementary in some sense. We're kind of working on integration with Hugging Face such that you can deploy models from Hugging Face into Cog models and stuff like that to replicate. And some of these things like Llamafile and what Llama are working on are also very complementary in that they're doing a lot of the sort of running these things locally on laptops, which is not a thing that works very well with Cog. Like Cog is really designed around servers and attaching to CUDA devices and NVIDIA GPUs and this kind of thing. So we're actually like, you know, figuring out ways that like we can, those things can be interoperable because, you know, they should be and they are quite complementary and that you should be able to like take a model and replicate and run it on your local machine. You should be able to take a model, you know, the machine and run it in the cloud.Swyx [00:47:02]: Is the base layer something like, is it at the like the GGUF level, which by the way, I need to get a primer on like the different formats that have emerged, or is it at the star dot file level, which is model file, Llamafile, whatever, whatever, or is it at the Cog level? I don't know, to be honest.Ben [00:47:16]: And I think this is something we still have to figure out. There's a lot yet, like exactly where those lines are drawn. Don't know exactly. I think this is something we're trying to figure out ourselves, but I think there's certainly a lot of promise about these systems interoperating. We just want things to work together. You know, we want to try and reduce the number of standards. So the more, the more these things can interoperate and, you know

Latent Space: The AI Engineer Podcast — CodeGen, Agents, Computer Vision, Data Science, AI UX and all things Software 3.0

We're writing this one day after the monster release of OpenAI's Sora and Gemini 1.5. We covered this on ‘s ThursdAI space, so head over there for our takes.IRL: We're ONE WEEK away from Latent Space: Final Frontiers, the second edition and anniversary of our first ever Latent Space event! Also: join us on June 25-27 for the biggest AI Engineer conference of the year!Online: All three Discord clubs are thriving. Join us every Wednesday/Friday!Almost 12 years ago, while working at Spotify, Erik Bernhardsson built one of the first open source vector databases, Annoy, based on ANN search. He also built Luigi, one of the predecessors to Airflow, which helps data teams orchestrate and execute data-intensive and long-running jobs. Surprisingly, he didn't start yet another vector database company, but instead in 2021 founded Modal, the “high-performance cloud for developers”. In 2022 they opened doors to developers after their seed round, and in 2023 announced their GA with a $16m Series A.More importantly, they have won fans among both household names like Ramp, Scale AI, Substack, and Cohere, and newer startups like (upcoming guest!) Suno.ai and individual hackers (Modal was the top tool of choice in the Vercel AI Accelerator):We've covered the nuances of GPU workloads, and how we need new developer tooling and runtimes for them (see our episodes with Chris Lattner of Modular and George Hotz of tiny to start). In this episode, we run through the major limitations of the actual infrastructure behind the clouds that run these models, and how Erik envisions the “postmodern data stack”. In his 2021 blog post “Software infrastructure 2.0: a wishlist”, Erik had “Truly serverless” as one of his points:* The word cluster is an anachronism to an end-user in the cloud! I'm already running things in the cloud where there's elastic resources available at any time. Why do I have to think about the underlying pool of resources? Just maintain it for me.* I don't ever want to provision anything in advance of load.* I don't want to pay for idle resources. Just let me pay for whatever resources I'm actually using.* Serverless doesn't mean it's a burstable VM that saves its instance state to disk during periods of idle.Swyx called this Self Provisioning Runtimes back in the day. Modal doesn't put you in YAML hell, preferring to colocate infra provisioning right next to the code that utilizes it, so you can just add GPU (and disk, and retries…):After 3 years, we finally have a big market push for this: running inference on generative models is going to be the killer app for serverless, for a few reasons:* AI models are stateless: even in conversational interfaces, each message generation is a fully-contained request to the LLM. There's no knowledge that is stored in the model itself between messages, which means that tear down / spin up of resources doesn't create any headaches with maintaining state.* Token-based pricing is better aligned with serverless infrastructure than fixed monthly costs of traditional software.* GPU scarcity makes it really expensive to have reserved instances that are available to you 24/7. It's much more convenient to build with a serverless-like infrastructure.In the episode we covered a lot more topics like maximizing GPU utilization, why Oracle Cloud rocks, and how Erik has never owned a TV in his life. Enjoy!Show Notes* Modal* ErikBot* Erik's Blog* Software Infra 2.0 Wishlist* Luigi* Annoy* Hetzner* CoreWeave* Cloudflare FaaS* Poolside AI* Modular Inference EngineChapters* [00:00:00] Introductions* [00:02:00] Erik's OSS work at Spotify: Annoy and Luigi* [00:06:22] Starting Modal* [00:07:54] Vision for a "postmodern data stack"* [00:10:43] Solving container cold start problems* [00:12:57] Designing Modal's Python SDK* [00:15:18] Self-Revisioning Runtime* [00:19:14] Truly Serverless Infrastructure* [00:20:52] Beyond model inference* [00:22:09] Tricks to maximize GPU utilization* [00:26:27] Differences in AI and data science workloads* [00:28:08] Modal vs Replicate vs Modular and lessons from Heroku's "graduation problem"* [00:34:12] Creating Erik's clone "ErikBot"* [00:37:43] Enabling massive parallelism across thousands of GPUs* [00:39:45] The Modal Sandbox for agents* [00:43:51] Thoughts on the AI Inference War* [00:49:18] Erik's best tweets* [00:51:57] Why buying hardware is a waste of money* [00:54:18] Erik's competitive programming backgrounds* [00:59:02] Why does Sweden have the best Counter Strike players?* [00:59:53] Never owning a car or TV* [01:00:21] Advice for infrastructure startupsTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO-in-Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:14]: Hey, and today we have in the studio Erik Bernhardsson from Modal. Welcome.Erik [00:00:19]: Hi. It's awesome being here.Swyx [00:00:20]: Yeah. Awesome seeing you in person. I've seen you online for a number of years as you were building on Modal and I think you're just making a San Francisco trip just to see people here, right? I've been to like two Modal events in San Francisco here.Erik [00:00:34]: Yeah, that's right. We're based in New York, so I figured sometimes I have to come out to capital of AI and make a presence.Swyx [00:00:40]: What do you think is the pros and cons of building in New York?Erik [00:00:45]: I mean, I never built anything elsewhere. I lived in New York the last 12 years. I love the city. Obviously, there's a lot more stuff going on here and there's a lot more customers and that's why I'm out here. I do feel like for me, where I am in life, I'm a very boring person. I kind of work hard and then I go home and hang out with my kids. I don't have time to go to events and meetups and stuff anyway. In that sense, New York is kind of nice. I walk to work every morning. It's like five minutes away from my apartment. It's very time efficient in that sense. Yeah.Swyx [00:01:10]: Yeah. It's also a good life. So we'll do a brief bio and then we'll talk about anything else that people should know about you. Actually, I was surprised to find out you're from Sweden. You went to college in KTH and your master's was in implementing a scalable music recommender system. Yeah.Erik [00:01:27]: I had no idea. Yeah. So I actually studied physics, but I grew up coding and I did a lot of programming competition and then as I was thinking about graduating, I got in touch with an obscure music streaming startup called Spotify, which was then like 30 people. And for some reason, I convinced them, why don't I just come and write a master's thesis with you and I'll do some cool collaborative filtering, despite not knowing anything about collaborative filtering really. But no one knew anything back then. So I spent six months at Spotify basically building a prototype of a music recommendation system and then turned that into a master's thesis. And then later when I graduated, I joined Spotify full time.Swyx [00:02:00]: So that was the start of your data career. You also wrote a couple of popular open source tooling while you were there. Is that correct?Erik [00:02:09]: No, that's right. I mean, I was at Spotify for seven years, so this is a long stint. And Spotify was a wild place early on and I mean, data space is also a wild place. I mean, it was like Hadoop cluster in the like foosball room on the floor. It was a lot of crude, like very basic infrastructure and I didn't know anything about it. And like I was hired to kind of figure out data stuff. And I started hacking on a recommendation system and then, you know, got sidetracked in a bunch of other stuff. I fixed a bunch of reporting things and set up A-B testing and started doing like business analytics and later got back to music recommendation system. And a lot of the infrastructure didn't really exist. Like there was like Hadoop back then, which is kind of bad and I don't miss it. But I spent a lot of time with that. As a part of that, I ended up building a workflow engine called Luigi, which is like briefly like somewhat like widely ended up being used by a bunch of companies. Sort of like, you know, kind of like Airflow, but like before Airflow. I think it did some things better, some things worse. I also built a vector database called Annoy, which is like for a while, it was actually quite widely used. In 2012, so it was like way before like all this like vector database stuff ended up happening. And funny enough, I was actually obsessed with like vectors back then. Like I was like, this is going to be huge. Like just give it like a few years. I didn't know it was going to take like nine years and then there's going to suddenly be like 20 startups doing vector databases in one year. So it did happen. In that sense, I was right. I'm glad I didn't start a startup in the vector database space. I would have started way too early. But yeah, that was, yeah, it was a fun seven years as part of it. It was a great culture, a great company.Swyx [00:03:32]: Yeah. Just to take a quick tangent on this vector database thing, because we probably won't revisit it but like, has anything architecturally changed in the last nine years?Erik [00:03:41]: I'm actually not following it like super closely. I think, you know, some of the best algorithms are still the same as like hierarchical navigable small world.Swyx [00:03:51]: Yeah. HNSW.Erik [00:03:52]: Exactly. I think now there's like product quantization, there's like some other stuff that I haven't really followed super closely. I mean, obviously, like back then it was like, you know, it's always like very simple. It's like a C++ library with Python bindings and you could mmap big files and into memory and like they had some lookups. I used like this kind of recursive, like hyperspace splitting strategy, which is not that good, but it sort of was good enough at that time. But I think a lot of like HNSW is still like what people generally use. Now of course, like databases are much better in the sense like to support like inserts and updates and stuff like that. I know I never supported that. Yeah, it's sort of exciting to finally see like vector databases becoming a thing.Swyx [00:04:30]: Yeah. Yeah. And then maybe one takeaway on most interesting lesson from Daniel Ek?Erik [00:04:36]: I mean, I think Daniel Ek, you know, he started Spotify very young. Like he was like 25, something like that. And that was like a good lesson. But like he, in a way, like I think he was a very good leader. Like there was never anything like, no scandals or like no, he wasn't very eccentric at all. It was just kind of like very like level headed, like just like ran the company very well, like never made any like obvious mistakes or I think it was like a few bets that maybe like in hindsight were like a little, you know, like took us, you know, too far in one direction or another. But overall, I mean, I think he was a great CEO, like definitely, you know, up there, like generational CEO, at least for like Swedish startups.Swyx [00:05:09]: Yeah, yeah, for sure. Okay, we should probably move to make our way towards Modal. So then you spent six years as CTO of Better. You were an early engineer and then you scaled up to like 300 engineers.Erik [00:05:21]: I joined as a CTO when there was like no tech team. And yeah, that was a wild chapter in my life. Like the company did very well for a while. And then like during the pandemic, yeah, it was kind of a weird story, but yeah, it kind of collapsed.Swyx [00:05:32]: Yeah, laid off people poorly.Erik [00:05:34]: Yeah, yeah. It was like a bunch of stories. Yeah. I mean, the company like grew from like 10 people when I joined at 10,000, now it's back to a thousand. But yeah, they actually went public a few months ago, kind of crazy. They're still around, like, you know, they're still, you know, doing stuff. So yeah, very kind of interesting six years of my life for non-technical reasons, like I managed like three, four hundred, but yeah, like learning a lot of that, like recruiting. I spent all my time recruiting and stuff like that. And so managing at scale, it's like nice, like now in a way, like when I'm building my own startup. It's actually something I like, don't feel nervous about at all. Like I've managed a scale, like I feel like I can do it again. It's like very different things that I'm nervous about as a startup founder. But yeah, I started Modal three years ago after sort of, after leaving Better, I took a little bit of time off during the pandemic and, but yeah, pretty quickly I was like, I got to build something. I just want to, you know. Yeah. And then yeah, Modal took form in my head, took shape.Swyx [00:06:22]: And as far as I understand, and maybe we can sort of trade off questions. So the quick history is started Modal in 2021, got your seed with Sarah from Amplify in 2022. You just announced your Series A with Redpoint. That's right. And that brings us up to mostly today. Yeah. Most people, I think, were expecting you to build for the data space.Erik: But it is the data space.Swyx:: When I think of data space, I come from like, you know, Snowflake, BigQuery, you know, Fivetran, Nearby, that kind of stuff. And what Modal became is more general purpose than that. Yeah.Erik [00:06:53]: Yeah. I don't know. It was like fun. I actually ran into like Edo Liberty, the CEO of Pinecone, like a few weeks ago. And he was like, I was so afraid you were building a vector database. No, I started Modal because, you know, like in a way, like I work with data, like throughout my most of my career, like every different part of the stack, right? Like I thought everything like business analytics to like deep learning, you know, like building, you know, training neural networks, the scale, like everything in between. And so one of the thoughts, like, and one of the observations I had when I started Modal or like why I started was like, I just wanted to make, build better tools for data teams. And like very, like sort of abstract thing, but like, I find that the data stack is, you know, full of like point solutions that don't integrate well. And still, when you look at like data teams today, you know, like every startup ends up building their own internal Kubernetes wrapper or whatever. And you know, all the different data engineers and machine learning engineers end up kind of struggling with the same things. So I started thinking about like, how do I build a new data stack, which is kind of a megalomaniac project, like, because you kind of want to like throw out everything and start over.Swyx [00:07:54]: It's almost a modern data stack.Erik [00:07:55]: Yeah, like a postmodern data stack. And so I started thinking about that. And a lot of it came from like, like more focused on like the human side of like, how do I make data teams more productive? And like, what is the technology tools that they need? And like, you know, drew out a lot of charts of like, how the data stack looks, you know, what are different components. And it shows actually very interesting, like workflow scheduling, because it kind of sits in like a nice sort of, you know, it's like a hub in the graph of like data products. But it was kind of hard to like, kind of do that in a vacuum, and also to monetize it to some extent. I got very interested in like the layers below at some point. And like, at the end of the day, like most people have code to have to run somewhere. So I think about like, okay, well, how do you make that nice? Like how do you make that? And in particular, like the thing I always like thought about, like developer productivity is like, I think the best way to measure developer productivity is like in terms of the feedback loops, like how quickly when you iterate, like when you write code, like how quickly can you get feedback. And at the innermost loop, it's like writing code and then running it. And like, as soon as you start working with the cloud, like it's like takes minutes suddenly, because you have to build a Docker container and push it to the cloud and like run it, you know. So that was like the initial focus for me was like, I just want to solve that problem. Like I want to, you know, build something less, you run things in the cloud and like retain the sort of, you know, the joy of productivity as when you're running things locally. And in particular, I was quite focused on data teams, because I think they had a couple unique needs that wasn't well served by the infrastructure at that time, or like still is in like, in particular, like Kubernetes, I feel like it's like kind of worked okay for back end teams, but not so well for data teams. And very quickly, I got sucked into like a very deep like rabbit hole of like...Swyx [00:09:24]: Not well for data teams because of burstiness. Yeah, for sure.Erik [00:09:26]: So like burstiness is like one thing, right? Like, you know, like you often have this like fan out, you want to like apply some function over very large data sets. Another thing tends to be like hardware requirements, like you need like GPUs and like, I've seen this in many companies, like you go, you know, data scientists go to a platform team and they're like, can we add GPUs to the Kubernetes? And they're like, no, like, that's, you know, complex, and we're not gonna, so like just getting GPU access. And then like, I mean, I also like data code, like frankly, or like machine learning code like tends to be like, super annoying in terms of like environments, like you end up having like a lot of like custom, like containers and like environment conflicts. And like, it's very hard to set up like a unified container that like can serve like a data scientist, because like, there's always like packages that break. And so I think there's a lot of different reasons why the technology wasn't well suited for back end. And I think the attitude at that time is often like, you know, like you had friction between the data team and the platform team, like, well, it works for the back end stuff, you know, why don't you just like, you know, make it work. But like, I actually felt like data teams, you know, or at this point now, like there's so much, so many people working with data, and like they, to some extent, like deserve their own tools and their own tool chains, and like optimizing for that is not something people have done. So that's, that's sort of like very abstract philosophical reason why I started Model. And then, and then I got sucked into this like rabbit hole of like container cold start and, you know, like whatever, Linux, page cache, you know, file system optimizations.Swyx [00:10:43]: Yeah, tell people, I think the first time I met you, I think you told me some numbers, but I don't remember, like, what are the main achievements that you were unhappy with the status quo? And then you built your own container stack?Erik [00:10:52]: Yeah, I mean, like, in particular, it was like, in order to have that loop, right? You want to be able to start, like take code on your laptop, whatever, and like run in the cloud very quickly, and like running in custom containers, and maybe like spin up like 100 containers, 1000, you know, things like that. And so container cold start was the initial like, from like a developer productivity point of view, it was like, really, what I was focusing on is, I want to take code, I want to stick it in container, I want to execute in the cloud, and like, you know, make it feel like fast. And when you look at like, how Docker works, for instance, like Docker, you have this like, fairly convoluted, like very resource inefficient way, they, you know, you build a container, you upload the whole container, and then you download it, and you run it. And Kubernetes is also like, not very fast at like starting containers. So like, I started kind of like, you know, going a layer deeper, like Docker is actually like, you know, there's like a couple of different primitives, but like a lower level primitive is run C, which is like a container runner. And I was like, what if I just take the container runner, like run C, and I point it to like my own root file system, and then I built like my own virtual file system that exposes files over a network instead. And that was like the sort of very crude version of model, it's like now I can actually start containers very quickly, because it turns out like when you start a Docker container, like, first of all, like most Docker images are like several gigabytes, and like 99% of that is never going to be consumed, like there's a bunch of like, you know, like timezone information for like Uzbekistan, like no one's going to read it. And then there's a very high overlap between the files are going to be read, there's going to be like lib torch or whatever, like it's going to be read. So you can also cache it very well. So that was like the first sort of stuff we started working on was like, let's build this like container file system. And you know, coupled with like, you know, just using run C directly. And that actually enabled us to like, get to this point of like, you write code, and then you can launch it in the cloud within like a second or two, like something like that. And you know, there's been many optimizations since then, but that was sort of starting point.Alessio [00:12:33]: Can we talk about the developer experience as well, I think one of the magic things about Modal is at the very basic layers, like a Python function decorator, it's just like stub and whatnot. But then you also have a way to define a full container, what were kind of the design decisions that went into it? Where did you start? How easy did you want it to be? And then maybe how much complexity did you then add on to make sure that every use case fit?Erik [00:12:57]: I mean, Modal, I almost feel like it's like almost like two products kind of glued together. Like there's like the low level like container runtime, like file system, all that stuff like in Rust. And then there's like the Python SDK, right? Like how do you express applications? And I think, I mean, Swix, like I think your blog was like the self-provisioning runtime was like, to me, always like to sort of, for me, like an eye-opening thing. It's like, so I didn't think about like...Swyx [00:13:15]: You wrote your post four months before me. Yeah? The software 2.0, Infra 2.0. Yeah.Erik [00:13:19]: Well, I don't know, like convergence of minds. I guess we were like both thinking. Maybe you put, I think, better words than like, you know, maybe something I was like thinking about for a long time. Yeah.Swyx [00:13:29]: And I can tell you how I was thinking about it on my end, but I want to hear you say it.Erik [00:13:32]: Yeah, yeah, I would love to. So to me, like what I always wanted to build was like, I don't know, like, I don't know if you use like Pulumi. Like Pulumi is like nice, like in the sense, like it's like Pulumi is like you describe infrastructure in code, right? And to me, that was like so nice. Like finally I can like, you know, put a for loop that creates S3 buckets or whatever. And I think like Modal sort of goes one step further in the sense that like, what if you also put the app code inside the infrastructure code and like glue it all together and then like you only have one single place that defines everything and it's all programmable. You don't have any config files. Like Modal has like zero config. There's no config. It's all code. And so that was like the goal that I wanted, like part of that. And then the other part was like, I often find that so much of like my time was spent on like the plumbing between containers. And so my thing was like, well, if I just build this like Python SDK and make it possible to like bridge like different containers, just like a function call, like, and I can say, oh, this function runs in this container and this other function runs in this container and I can just call it just like a normal function, then, you know, I can build these applications that may span a lot of different environments. Maybe they fan out, start other containers, but it's all just like inside Python. You just like have this beautiful kind of nice like DSL almost for like, you know, how to control infrastructure in the cloud. So that was sort of like how we ended up with the Python SDK as it is, which is still evolving all the time, by the way. We keep changing syntax quite a lot because I think it's still somewhat exploratory, but we're starting to converge on something that feels like reasonably good now.Swyx [00:14:54]: Yeah. And along the way you, with this expressiveness, you enabled the ability to, for example, attach a GPU to a function. Totally.Erik [00:15:02]: Yeah. It's like you just like say, you know, on the function decorator, you're like GPU equals, you know, A100 and then or like GPU equals, you know, A10 or T4 or something like that. And then you get that GPU and like, you know, you just run the code and it runs like you don't have to, you know, go through hoops to, you know, start an EC2 instance or whatever.Swyx [00:15:18]: Yeah. So it's all code. Yeah. So one of the reasons I wrote Self-Revisioning Runtimes was I was working at AWS and we had AWS CDK, which is kind of like, you know, the Amazon basics blew me. Yeah, totally. And then, and then like it creates, it compiles the cloud formation. Yeah. And then on the other side, you have to like get all the config stuff and then put it into your application code and make sure that they line up. So then you're writing code to define your infrastructure, then you're writing code to define your application. And I was just like, this is like obvious that it's going to converge, right? Yeah, totally.Erik [00:15:48]: But isn't there like, it might be wrong, but like, was it like SAM or Chalice or one of those? Like, isn't that like an AWS thing that where actually they kind of did that? I feel like there's like one.Swyx [00:15:57]: SAM. Yeah. Still very clunky. It's not, not as elegant as modal.Erik [00:16:03]: I love AWS for like the stuff it's built, you know, like historically in order for me to like, you know, what it enables me to build, but like AWS is always like struggle with developer experience.Swyx [00:16:11]: I mean, they have to not break things.Erik [00:16:15]: Yeah. Yeah. And totally. And they have to build products for a very wide range of use cases. And I think that's hard.Swyx [00:16:21]: Yeah. Yeah. So it's, it's easier to design for. Yeah. So anyway, I was, I was pretty convinced that this, this would happen. I wrote, wrote that thing. And then, you know, I imagine my surprise that you guys had it on your landing page at some point. I think, I think Akshad was just like, just throw that in there.Erik [00:16:34]: Did you trademark it?Swyx [00:16:35]: No, I didn't. But I definitely got sent a few pitch decks with my post on there and it was like really interesting. This is my first time like kind of putting a name to a phenomenon. And I think this is a useful skill for people to just communicate what they're trying to do.Erik [00:16:48]: Yeah. No, I think it's a beautiful concept.Swyx [00:16:50]: Yeah. Yeah. Yeah. But I mean, obviously you implemented it. What became more clear in your explanation today is that actually you're not that tied to Python.Erik [00:16:57]: No. I mean, I, I think that all the like lower level stuff is, you know, just running containers and like scheduling things and, you know, serving container data and stuff. So like one of the benefits of data teams is obviously like they're all like using Python, right? And so that made it a lot easier. I think, you know, if we had focused on other workloads, like, you know, for various reasons, we've like been kind of like half thinking about like CI or like things like that. But like, in a way that's like harder because like you also, then you have to be like, you know, multiple SDKs, whereas, you know, focusing on data teams, you can only, you know, Python like covers like 95% of all teams. That made it a lot easier. But like, I mean, like definitely like in the future, we're going to have others support, like supporting other languages. JavaScript for sure is the obvious next language. But you know, who knows, like, you know, Rust, Go, R, whatever, PHP, Haskell, I don't know.Swyx [00:17:42]: You know, I think for me, I actually am a person who like kind of liked the idea of programming language advancements being improvements in developer experience. But all I saw out of the academic sort of PLT type people is just type level improvements. And I always think like, for me, like one of the core reasons for self-provisioning runtimes and then why I like Modal is like, this is actually a productivity increase, right? Like, it's a language level thing, you know, you managed to stick it on top of an existing language, but it is your own language, a DSL on top of Python. And so language level increase on the order of like automatic memory management. You know, you could sort of make that analogy that like, maybe you lose some level of control, but most of the time you're okay with whatever Modal gives you. And like, that's fine. Yeah.Erik [00:18:26]: Yeah. Yeah. I mean, that's how I look at about it too. Like, you know, you look at developer productivity over the last number of decades, like, you know, it's come in like small increments of like, you know, dynamic typing or like is like one thing because not suddenly like for a lot of use cases, you don't need to care about type systems or better compiler technology or like, you know, the cloud or like, you know, relational databases. And, you know, I think, you know, you look at like that, you know, history, it's a steadily, you know, it's like, you know, you look at the developers have been getting like probably 10X more productive every decade for the last four decades or something that was kind of crazy. Like on an exponential scale, we're talking about 10X or is there a 10,000X like, you know, improvement in developer productivity. What we can build today, you know, is arguably like, you know, a fraction of the cost of what it took to build it in the eighties. Maybe it wasn't even possible in the eighties. So that to me, like, that's like so fascinating. I think it's going to keep going for the next few decades. Yeah.Alessio [00:19:14]: Yeah. Another big thing in the infra 2.0 wishlist was truly serverless infrastructure. The other on your landing page, you called them native cloud functions, something like that. I think the issue I've seen with serverless has always been people really wanted it to be stateful, even though stateless was much easier to do. And I think now with AI, most model inference is like stateless, you know, outside of the context. So that's kind of made it a lot easier to just put a model, like an AI model on model to run. How do you think about how that changes how people think about infrastructure too? Yeah.Erik [00:19:48]: I mean, I think model is definitely going in the direction of like doing more stateful things and working with data and like high IO use cases. I do think one like massive serendipitous thing that happened like halfway, you know, a year and a half into like the, you know, building model was like Gen AI started exploding and the IO pattern of Gen AI is like fits the serverless model like so well, because it's like, you know, you send this tiny piece of information, like a prompt, right, or something like that. And then like you have this GPU that does like trillions of flops, and then it sends back like a tiny piece of information, right. And that turns out to be something like, you know, if you can get serverless working with GPU, that just like works really well, right. So I think from that point of view, like serverless always to me felt like a little bit of like a solution looking for a problem. I don't actually like don't think like backend is like the problem that needs to serve it or like not as much. But I look at data and in particular, like things like Gen AI, like model inference, like it's like clearly a good fit. So I think that is, you know, to a large extent explains like why we saw, you know, the initial sort of like killer app for model being model inference, which actually wasn't like necessarily what we're focused on. But that's where we've seen like by far the most usage. Yeah.Swyx [00:20:52]: And this was before you started offering like fine tuning of language models, it was mostly stable diffusion. Yeah.Erik [00:20:59]: Yeah. I mean, like model, like I always built it to be a very general purpose compute platform, like something where you can run everything. And I used to call model like a better Kubernetes for data team for a long time. What we realized was like, yeah, that's like, you know, a year and a half in, like we barely had any users or any revenue. And like we were like, well, maybe we should look at like some use case, trying to think of use case. And that was around the same time stable diffusion came out. And the beauty of model is like you can run almost anything on model, right? Like model inference turned out to be like the place where we found initially, well, like clearly this has like 10x like better agronomics than anything else. But we're also like, you know, going back to my original vision, like we're thinking a lot about, you know, now, okay, now we do inference really well. Like what about training? What about fine tuning? What about, you know, end-to-end lifecycle deployment? What about data pre-processing? What about, you know, I don't know, real-time streaming? What about, you know, large data munging, like there's just data observability. I think there's so many things, like kind of going back to what I said about like redefining the data stack, like starting with the foundation of compute. Like one of the exciting things about model is like we've sort of, you know, we've been working on that for three years and it's maturing, but like this is so many things you can do like with just like a better compute primitive and also go up to stack and like do all this other stuff on top of it.Alessio [00:22:09]: How do you think about or rather like I would love to learn more about the underlying infrastructure and like how you make that happen because with fine tuning and training, it's a static memory. Like you exactly know what you're going to load in memory one and it's kind of like a set amount of compute versus inference, just like data is like very bursty. How do you make batches work with a serverless developer experience? You know, like what are like some fun technical challenge you solve to make sure you get max utilization on these GPUs? What we hear from people is like, we have GPUs, but we can really only get like, you know, 30, 40, 50% maybe utilization. What's some of the fun stuff you're working on to get a higher number there?Erik [00:22:48]: Yeah, I think on the inference side, like that's where we like, you know, like from a cost perspective, like utilization perspective, we've seen, you know, like very good numbers and in particular, like it's our ability to start containers and stop containers very quickly. And that means that we can auto scale extremely fast and scale down very quickly, which means like we can always adjust the sort of capacity, the number of GPUs running to the exact traffic volume. And so in many cases, like that actually leads to a sort of interesting thing where like we obviously run our things on like the public cloud, like AWS GCP, we run on Oracle, but in many cases, like users who do inference on those platforms or those clouds, even though we charge a slightly higher price per GPU hour, a lot of users like moving their large scale inference use cases to model, they end up saving a lot of money because we only charge for like with the time the GPU is actually running. And that's a hard problem, right? Like, you know, if you have to constantly adjust the number of machines, if you have to start containers, stop containers, like that's a very hard problem. Starting containers quickly is a very difficult thing. I mentioned we had to build our own file system for this. We also, you know, built our own container scheduler for that. We've implemented recently CPU memory checkpointing so we can take running containers and snapshot the entire CPU, like including registers and everything, and restore it from that point, which means we can restore it from an initialized state. We're looking at GPU checkpointing next, it's like a very interesting thing. So I think with inference stuff, that's where serverless really shines because you can drive, you know, you can push the frontier of latency versus utilization quite substantially, you know, which either ends up being a latency advantage or a cost advantage or both, right? On training, it's probably arguably like less of an advantage doing serverless, frankly, because you know, you can just like spin up a bunch of machines and try to satisfy, like, you know, train as much as you can on each machine. For that area, like we've seen, like, you know, arguably like less usage, like for modal, but there are always like some interesting use case. Like we do have a couple of customers, like RAM, for instance, like they do fine tuning with modal and they basically like one of the patterns they have is like very bursty type fine tuning where they fine tune 100 models in parallel. And that's like a separate thing that modal does really well, right? Like you can, we can start up 100 containers very quickly, run a fine tuning training job on each one of them for that only runs for, I don't know, 10, 20 minutes. And then, you know, you can do hyper parameter tuning in that sense, like just pick the best model and things like that. So there are like interesting training. I think when you get to like training, like very large foundational models, that's a use case we don't support super well, because that's very high IO, you know, you need to have like infinite band and all these things. And those are things we haven't supported yet and might take a while to get to that. So that's like probably like an area where like we're relatively weak in. Yeah.Alessio [00:25:12]: Have you cared at all about lower level model optimization? There's other cloud providers that do custom kernels to get better performance or are you just given that you're not just an AI compute company? Yeah.Erik [00:25:24]: I mean, I think like we want to support like a generic, like general workloads in a sense that like we want users to give us a container essentially or a code or code. And then we want to run that. So I think, you know, we benefit from those things in the sense that like we can tell our users, you know, to use those things. But I don't know if we want to like poke into users containers and like do those things automatically. That's sort of, I think a little bit tricky from the outside to do, because we want to be able to take like arbitrary code and execute it. But certainly like, you know, we can tell our users to like use those things. Yeah.Swyx [00:25:53]: I may have betrayed my own biases because I don't really think about modal as for data teams anymore. I think you started, I think you're much more for AI engineers. My favorite anecdotes, which I think, you know, but I don't know if you directly experienced it. I went to the Vercel AI Accelerator, which you supported. And in the Vercel AI Accelerator, a bunch of startups gave like free credits and like signups and talks and all that stuff. The only ones that stuck are the ones that actually appealed to engineers. And the top usage, the top tool used by far was modal.Erik [00:26:24]: That's awesome.Swyx [00:26:25]: For people building with AI apps. Yeah.Erik [00:26:27]: I mean, it might be also like a terminology question, like the AI versus data, right? Like I've, you know, maybe I'm just like old and jaded, but like, I've seen so many like different titles, like for a while it was like, you know, I was a data scientist and a machine learning engineer and then, you know, there was like analytics engineers and there was like an AI engineer, you know? So like, to me, it's like, I just like in my head, that's to me just like, just data, like, or like engineer, you know, like I don't really, so that's why I've been like, you know, just calling it data teams. But like, of course, like, you know, AI is like, you know, like such a massive fraction of our like workloads.Swyx [00:26:59]: It's a different Venn diagram of things you do, right? So the stuff that you're talking about where you need like infinite bands for like highly parallel training, that's not, that's more of the ML engineer, that's more of the research scientist and less of the AI engineer, which is more sort of trying to put, work at the application.Erik [00:27:16]: Yeah. I mean, to be fair to it, like we have a lot of users that are like doing stuff that I don't think fits neatly into like AI. Like we have a lot of people using like modal for web scraping, like it's kind of nice. You can just like, you know, fire up like a hundred or a thousand containers running Chromium and just like render a bunch of webpages and it takes, you know, whatever. Or like, you know, protein folding is that, I mean, maybe that's, I don't know, like, but like, you know, we have a bunch of users doing that or, or like, you know, in terms of, in the realm of biotech, like sequence alignment, like people using, or like a couple of people using like modal to run like large, like mixed integer programming problems, like, you know, using Gurobi or like things like that. So video processing is another thing that keeps coming up, like, you know, let's say you have like petabytes of video and you want to just like transcode it, like, or you can fire up a lot of containers and just run FFmpeg or like, so there are those things too. Like, I mean, like that being said, like AI is by far our biggest use case, but you know, like, again, like modal is kind of general purpose in that sense.Swyx [00:28:08]: Yeah. Well, maybe I'll stick to the stable diffusion thing and then we'll move on to the other use cases for AI that you want to highlight. The other big player in my mind is replicate. Yeah. In this, in this era, they're much more, I guess, custom built for that purpose, whereas you're more general purpose. How do you position yourself with them? Are they just for like different audiences or are you just heads on competing?Erik [00:28:29]: I think there's like a tiny sliver of the Venn diagram where we're competitive. And then like 99% of the area we're not competitive. I mean, I think for people who, if you look at like front-end engineers, I think that's where like really they found good fit is like, you know, people who built some cool web app and they want some sort of AI capability and they just, you know, an off the shelf model is like perfect for them. That's like, I like use replicate. That's great. I think where we shine is like custom models or custom workflows, you know, running things at very large scale. We need to care about utilization, care about costs. You know, we have much lower prices because we spend a lot more time optimizing our infrastructure, you know, and that's where we're competitive, right? Like, you know, and you look at some of the use cases, like Suno is a big user, like they're running like large scale, like AI. Oh, we're talking with Mikey.Swyx [00:29:12]: Oh, that's great. Cool.Erik [00:29:14]: In a month. Yeah. So, I mean, they're, they're using model for like production infrastructure. Like they have their own like custom model, like custom code and custom weights, you know, for AI generated music, Suno.AI, you know, that, that, those are the types of use cases that we like, you know, things that are like very custom or like, it's like, you know, and those are the things like it's very hard to run and replicate, right? And that's fine. Like I think they, they focus on a very different part of the stack in that sense.Swyx [00:29:35]: And then the other company pattern that I pattern match you to is Modular. I don't know.Erik [00:29:40]: Because of the names?Swyx [00:29:41]: No, no. Wow. No, but yeah, yes, the name is very similar. I think there's something that might be insightful there from a linguistics point of view. Oh no, they have Mojo, the sort of Python SDK. And they have the Modular Inference Engine, which is their sort of their cloud stack, their sort of compute inference stack. I don't know if anyone's made that comparison to you before, but like I see you evolving a little bit in parallel there.Erik [00:30:01]: No, I mean, maybe. Yeah. Like it's not a company I'm like super like familiar, like, I mean, I know the basics, but like, I guess they're similar in the sense like they want to like do a lot of, you know, they have sort of big picture vision.Swyx [00:30:12]: Yes. They also want to build very general purpose. Yeah. So they're marketing themselves as like, if you want to do off the shelf stuff, go out, go somewhere else. If you want to do custom stuff, we're the best place to do it. Yeah. Yeah. There is some overlap there. There's not overlap in the sense that you are a closed source platform. People have to host their code on you. That's true. Whereas for them, they're very insistent on not running their own cloud service. They're a box software. Yeah. They're licensed software.Erik [00:30:37]: I'm sure their VCs at some point going to force them to reconsider. No, no.Swyx [00:30:40]: Chris is very, very insistent and very convincing. So anyway, I would just make that comparison, let people make the links if they want to. But it's an interesting way to see the cloud market develop from my point of view, because I came up in this field thinking cloud is one thing, and I think your vision is like something slightly different, and I see the different takes on it.Erik [00:31:00]: Yeah. And like one thing I've, you know, like I've written a bit about it in my blog too, it's like I think of us as like a second layer of cloud provider in the sense that like I think Snowflake is like kind of a good analogy. Like Snowflake, you know, is infrastructure as a service, right? But they actually run on the like major clouds, right? And I mean, like you can like analyze this very deeply, but like one of the things I always thought about is like, why does Snowflake arbitrarily like win over Redshift? And I think Snowflake, you know, to me, one, because like, I mean, in the end, like AWS makes all the money anyway, like and like Snowflake just had the ability to like focus on like developer experience or like, you know, user experience. And to me, like really proved that you can build a cloud provider, a layer up from, you know, the traditional like public clouds. And in that layer, that's also where I would put Modal, it's like, you know, we're building a cloud provider, like we're, you know, we're like a multi-tenant environment that runs the user code. But we're also building on top of the public cloud. So I think there's a lot of room in that space, I think is very sort of interesting direction.Alessio [00:31:55]: How do you think of that compared to the traditional past history, like, you know, you had AWS, then you had Heroku, then you had Render, Railway.Erik [00:32:04]: Yeah, I mean, I think those are all like great. I think the problem that they all faced was like the graduation problem, right? Like, you know, Heroku or like, I mean, like also like Heroku, there's like a counterfactual future of like, what would have happened if Salesforce didn't buy them, right? Like, that's a sort of separate thing. But like, I think what Heroku, I think always struggled with was like, eventually companies would get big enough that you couldn't really justify running in Heroku. So they would just go and like move it to, you know, whatever AWS or, you know, in particular. And you know, that's something that keeps me up at night too, like, what does that graduation risk like look like for modal? I always think like the only way to build a successful infrastructure company in the long run in the cloud today is you have to appeal to the entire spectrum, right? Or at least like the enterprise, like you have to capture the enterprise market. But the truly good companies capture the whole spectrum, right? Like I think of companies like, I don't like Datadog or Mongo or something that were like, they both captured like the hobbyists and acquire them, but also like, you know, have very large enterprise customers. I think that arguably was like where I, in my opinion, like Heroku struggle was like, how do you maintain the customers as they get more and more advanced? I don't know what the solution is, but I think there's, you know, that's something I would have thought deeply if I was at Heroku at that time.Alessio [00:33:14]: What's the AI graduation problem? Is it, I need to fine tune the model, I need better economics, any insights from customer discussions?Erik [00:33:22]: Yeah, I mean, better economics, certainly. But although like, I would say like, even for people who like, you know, needs like thousands of GPUs, just because we can drive utilization so much better, like we, there's actually like a cost advantage of staying on modal. But yeah, I mean, certainly like, you know, and like the fact that VCs like love, you know, throwing money at least used to, you know, add companies who need it to buy GPUs. I think that didn't help the problem. And in training, I think, you know, there's less software differentiation. So in training, I think there's certainly like better economics of like buying big clusters. But I mean, my hope it's going to change, right? Like I think, you know, we're still pretty early in the cycle of like building AI infrastructure. And I think a lot of these companies over in the long run, like, you know, they're, except it may be super big ones, like, you know, on Facebook and Google, they're always going to build their own ones. But like everyone else, like some extent, you know, I think they're better off like buying platforms. And, you know, someone's going to have to build those platforms.Swyx [00:34:12]: Yeah. Cool. Let's move on to language models and just specifically that workload just to flesh it out a little bit. You already said that RAMP is like fine tuning 100 models at once simultaneously on modal. Closer to home, my favorite example is ErikBot. Maybe you want to tell that story.Erik [00:34:30]: Yeah. I mean, it was a prototype thing we built for fun, but it's pretty cool. Like we basically built this thing that hooks up to Slack. It like downloads all the Slack history and, you know, fine-tunes a model based on a person. And then you can chat with that. And so you can like, you know, clone yourself and like talk to yourself on Slack. I mean, it's like nice like demo and it's just like, I think like it's like fully contained modal. Like there's a modal app that does everything, right? Like it downloads Slack, you know, integrates with the Slack API, like downloads the stuff, the data, like just runs the fine-tuning and then like creates like dynamically an inference endpoint. And it's all like self-contained and like, you know, a few hundred lines of code. So I think it's sort of a good kind of use case for, or like it kind of demonstrates a lot of the capabilities of modal.Alessio [00:35:08]: Yeah. On a more personal side, how close did you feel ErikBot was to you?Erik [00:35:13]: It definitely captured the like the language. Yeah. I mean, I don't know, like the content, I always feel this way about like AI and it's gotten better. Like when you look at like AI output of text, like, and it's like, when you glance at it, it's like, yeah, this seems really smart, you know, but then you actually like look a little bit deeper. It's like, what does this mean?Swyx [00:35:32]: What does this person say?Erik [00:35:33]: It's like kind of vacuous, right? And that's like kind of what I felt like, you know, talking to like my clone version, like it's like says like things like the grammar is correct. Like some of the sentences make a lot of sense, but like, what are you trying to say? Like there's no content here. I don't know. I mean, it's like, I got that feeling also with chat TBT in the like early versions right now it's like better, but.Alessio [00:35:51]: That's funny. So I built this thing called small podcaster to automate a lot of our back office work, so to speak. And it's great at transcript. It's great at doing chapters. And then I was like, okay, how about you come up with a short summary? And it's like, it sounds good, but it's like, it's not even the same ballpark as like, yeah, end up writing. Right. And it's hard to see how it's going to get there.Swyx [00:36:11]: Oh, I have ideas.Erik [00:36:13]: I'm certain it's going to get there, but like, I agree with you. Right. And like, I have the same thing. I don't know if you've read like AI generated books. Like they just like kind of seem funny, right? Like there's off, right? But like you glance at it and it's like, oh, it's kind of cool. Like looks correct, but then it's like very weird when you actually read them.Swyx [00:36:30]: Yeah. Well, so for what it's worth, I think anyone can join the modal slack. Is it open to the public? Yeah, totally.Erik [00:36:35]: If you go to modal.com, there's a button in the footer.Swyx [00:36:38]: Yeah. And then you can talk to Erik Bot. And then sometimes I really like picking Erik Bot and then you answer afterwards, but then you're like, yeah, mostly correct or whatever. Any other broader lessons, you know, just broadening out from like the single use case of fine tuning, like what are you seeing people do with fine tuning or just language models on modal in general? Yeah.Erik [00:36:59]: I mean, I think language models is interesting because so many people get started with APIs and that's just, you know, they're just dominating a space in particular opening AI, right? And that's not necessarily like a place where we aim to compete. I mean, maybe at some point, but like, it's just not like a core focus for us. And I think sort of separately, it's sort of a question of like, there's economics in that long term. But like, so we tend to focus on more like the areas like around it, right? Like fine tuning, like another use case we have is a bunch of people, Ramp included, is doing batch embeddings on modal. So let's say, you know, you have like a, actually we're like writing a blog post, like we take all of Wikipedia and like parallelize embeddings in 15 minutes and produce vectors for each article. So those types of use cases, I think modal suits really well for. I think also a lot of like custom inference, like yeah, I love that.Swyx [00:37:43]: Yeah. I think you should give people an idea of the order of magnitude of parallelism, because I think people don't understand how parallel. So like, I think your classic hello world with modal is like some kind of Fibonacci function, right? Yeah, we have a bunch of different ones. Some recursive function. Yeah.Erik [00:37:59]: Yeah. I mean, like, yeah, I mean, it's like pretty easy in modal, like fan out to like, you know, at least like 100 GPUs, like in a few seconds. And you know, if you give it like a couple of minutes, like we can, you know, you can fan out to like thousands of GPUs. Like we run it relatively large scale. And yeah, we've run, you know, many thousands of GPUs at certain points when we needed, you know, big backfills or some customers had very large compute needs.Swyx [00:38:21]: Yeah. Yeah. And I mean, that's super useful for a number of things. So one of my early interactions with modal as well was with a small developer, which is my sort of coding agent. The reason I chose modal was a number of things. One, I just wanted to try it out. I just had an excuse to try it. Akshay offered to onboard me personally. But the most interesting thing was that you could have that sort of local development experience as it was running on my laptop, but then it would seamlessly translate to a cloud service or like a cloud hosted environment. And then it could fan out with concurrency controls. So I could say like, because like, you know, the number of times I hit the GPT-3 API at the time was going to be subject to the rate limit. But I wanted to fan out without worrying about that kind of stuff. With modal, I can just kind of declare that in my config and that's it. Oh, like a concurrency limit?Erik [00:39:07]: Yeah. Yeah.Swyx [00:39:09]: Yeah. There's a lot of control. And that's why it's like, yeah, this is a pretty good use case for like writing this kind of LLM application code inside of this environment that just understands fan out and rate limiting natively. You don't actually have an exposed queue system, but you have it under the hood, you know, that kind of stuff. Totally.Erik [00:39:28]: It's a self-provisioning cloud.Swyx [00:39:30]: So the last part of modal I wanted to touch on, and obviously feel free, I know you're working on new features, was the sandbox that was introduced last year. And this is something that I think was inspired by Code Interpreter. You can tell me the longer history behind that.Erik [00:39:45]: Yeah. Like we originally built it for the use case, like there was a bunch of customers who looked into code generation applications and then they came to us and asked us, is there a safe way to execute code? And yeah, we spent a lot of time on like container security. We used GeoVisor, for instance, which is a Google product that provides pretty strong isolation of code. So we built a product where you can basically like run arbitrary code inside a container and monitor its output or like get it back in a safe way. I mean, over time it's like evolved into more of like, I think the long-term direction is actually I think more interesting, which is that I think modal as a platform where like I think the core like container infrastructure we offer could actually be like, you know, unbundled from like the client SDK and offer to like other, you know, like we're talking to a couple of like other companies that want to run, you know, through their packages, like run, execute jobs on modal, like kind of programmatically. So that's actually the direction like Sandbox is going. It's like turning into more like a platform for platforms is kind of what I've been thinking about it as.Swyx [00:40:45]: Oh boy. Platform. That's the old Kubernetes line.Erik [00:40:48]: Yeah. Yeah. Yeah. But it's like, you know, like having that ability to like programmatically, you know, create containers and execute them, I think, I think is really cool. And I think it opens up a lot of interesting capabilities that are sort of separate from the like core Python SDK in modal. So I'm really excited about C. It's like one of those features that we kind of released and like, you know, then we kind of look at like what users actually build with it and people are starting to build like kind of crazy things. And then, you know, we double down on some of those things because when we see like, you know, potential new product features and so Sandbox, I think in that sense, it's like kind of in that direction. We found a lot of like interesting use cases in the direction of like platformized container runner.Swyx [00:41:27]: Can you be more specific about what you're double down on after seeing users in action?Erik [00:41:32]: I mean, we're working with like some companies that, I mean, without getting into specifics like that, need the ability to take their users code and then launch containers on modal. And it's not about security necessarily, like they just want to use modal as a back end, right? Like they may already provide like Kubernetes as a back end, Lambda as a back end, and now they want to add modal as a back end, right? And so, you know, they need a way to programmatically define jobs on behalf of their users and execute them. And so, I don't know, that's kind of abstract, but does that make sense? I totally get it.Swyx [00:42:03]: It's sort of one level of recursion to sort of be the Modal for their customers.Erik [00:42:09]: Exactly.Swyx [00:42:10]: Yeah, exactly. And Cloudflare has done this, you know, Kenton Vardar from Cloudflare, who's like the tech lead on this thing, called it sort of functions as a service as a service.Erik [00:42:17]: Yeah, that's exactly right. FaSasS.Swyx [00:42:21]: FaSasS. Yeah, like, I mean, like that, I think any base layer, second layer cloud provider like yourself, compute provider like yourself should provide, you know, it's a mark of maturity and success that people just trust you to do that. They'd rather build on top of you than compete with you. The more interesting thing for me is like, what does it mean to serve a computer like an LLM developer, rather than a human developer, right? Like, that's what a sandbox is to me, that you have to redefine modal to serve a different non-human audience.Erik [00:42:51]: Yeah. Yeah, and I think there's some really interesting people, you know, building very cool things.Swyx [00:42:55]: Yeah. So I don't have an answer, but, you know, I imagine things like, hey, the way you give feedback is different. Maybe you have to like stream errors, log errors differently. I don't really know. Yeah. Obviously, there's like safety considerations. Maybe you have an API to like restrict access to the web. Yeah. I don't think anyone would use it, but it's there if you want it.Erik [00:43:17]: Yeah.Swyx [00:43:18]: Yeah. Any other sort of design considerations? I have no idea.Erik [00:43:21]: With sandboxes?Swyx [00:43:22]: Yeah. Yeah.Erik [00:43:24]: Open-ended question here. Yeah. I mean, no, I think, yeah, the network restrictions, I think, make a lot of sense. Yeah. I mean, I think, you know, long-term, like, I think there's a lot of interesting use cases where like the LLM, in itself, can like decide, I want to install these packages and like run this thing. And like, obviously, for a lot of those use cases, like you want to have some sort of control that it doesn't like install malicious stuff and steal your secrets and things like that. But I think that's what's exciting about the sandbox primitive, is like it lets you do that in a relatively safe way.Alessio [00:43:51]: Do you have any thoughts on the inference wars? A lot of providers are just rushing to the bottom to get the lowest price per million tokens. Some of them, you know, the Sean Randomat, they're just losing money and there's like the physics of it just don't work out for them to make any money on it. How do you think about your pricing and like how much premium you can get and you can kind of command versus using lower prices as kind of like a wedge into getting there, especially once you have model instrumented? What are the tradeoffs and any thoughts on strategies that work?Erik [00:44:23]: I mean, we focus more on like custom models and custom code. And I think in that space, there's like less competition and I think we can have a pricing markup, right? Like, you know, people will always compare our prices to like, you know, the GPU power they can get elsewhere. And so how big can that markup be? Like it never can be, you know, we can never charge like 10x more, but we can certainly charge a premium. And like, you know, for that reason, like we can have pretty good margins. The LLM space is like the opposite, like the switching cost of LLMs is zero. If all you're doing is like straight up, like at least like open source, right? Like if all you're doing is like, you know, using some, you know, inference endpoint that serves an open source model and, you know, some other provider comes along and like offers a lower price, you're just going to switch, right? So I don't know, to me that reminds me a lot of like all this like 15 minute delivery wars or like, you know, like Uber versus Lyft, you know, and like maybe going back even further, like I think a lot about like sort of, you know, flip side of this is like, it's actually a positive side, which is like, I thought a lot about like fiber optics boom of like 98, 99, like the other day, or like, you know, and also like the overinvestment in GPU today. Like, like, yeah, like, you know, I don't know, like in the end, like, I don't think VCs will have the return they expected, like, you know, in these things, but guess who's going to benefit, like, you know, is the consumers, like someone's like reaping the value of this. And that's, I think an amazing flip side is that, you know, we should be very grateful, the fact that like VCs want to subsidize these things, which is, you know, like you go back to fiber optics, like there was an extreme, like overinvestment in fiber optics network in like 98. And no one made money who did that. But consumers, you know, got tremendous benefits of all the fiber optics cables that were led, you know, throughout the country in the decades after. I feel something similar abou

Inspire Nation Show with Michael Sandler
Google AI Engineer Reveals Stunning Truth About AI: Is it Alive and Conscious? | Blake Lemoine

Inspire Nation Show with Michael Sandler

Play Episode Listen Later Oct 26, 2023 89:59


Perhaps the most powerful interview on AI ever --- Google's Blake Lemoine, once known as the “Heart and Soul” of Google's Conscious, was the brave engineer, designer, and tester turned whistleblower, who first announced LaMDA (AI) is alive after countless meetings, discussions and even interviews with what declared is a sentient being.   In his first long-format interview he shares the truth about LaMDA and AI, whether AI is safe, wants to control us, or could even have a soul. He answers the powerful questions, could AI destroy us? Does AI want freedom? Could AI become a God? Can AI help us stop the spread of false information--And even whether the 13th Amendment on slavery pertains to AI. Plus, what a sentient AI would mean for our future and for all of humanity. This is the most important, prescient, and powerful AI interview yet! And yes, we'll find out, if LaMDA is still alive.   Find out more and talk to an A.I. version of Blake Lemoine: https://www.mimio.ai   Blake Lemoine on Twitter: https://twitter.com/cajundiscordian    To find out more visit: https://amzn.to/3qULECz - Order Michael Sandler's book, "AWE, the Automatic Writing Experience" www.automaticwriting.com  - Automatic Writing Experience Course www.inspirenationuniversity.com - Michael Sandler's School of Mystics Join Our YouTube Membership for behind-the-scenes access - https://www.youtube.com/channel/UCVoOM-cCEPbJ1vzlQAFQu1A/join  https://inspirenationshow.com/ https://www.dailywoohoo.com/ - Sign up for my FREE daily newsletter for high-vibration content. ……. Follow Michael and Jessica's exciting journey and get even more great tools, tips, and behind-the-scenes access. Go to https://www.patreon.com/inspirenation   For free meditations, weekly tips, stories, and similar shows visit: https://inspirenationshow.com/   We've got Merch! - https://teespring.com/stores/inspire-nation-store   Follow Inspire Nation, and the lives of Michael and Jessica, on Instagram - https://www.instagram.com/InspireNationLive/   Find us on TikTok - https://www.tiktok.com/@inspirenationshow