Podcasts about parametrisierung

  • 12PODCASTS
  • 14EPISODES
  • 49mAVG DURATION
  • ?INFREQUENT EPISODES
  • Oct 16, 2023LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about parametrisierung

Latest podcast episodes about parametrisierung

Wissensnachrichten - Deutschlandfunk Nova
Menstruation, Radfahren, Junkfood

Wissensnachrichten - Deutschlandfunk Nova

Play Episode Listen Later Oct 16, 2023 6:25


Die Themen in den Wissensnachrichten: +++ Hormone während des Zyklus wirken direkt aufs Gehirn +++ Warum Menschen Radfahren oder nicht, hat viele Gründe +++ Junkfood macht wohl ähnlich süchtig wie manche Drogen +++**********Weiterführende Quellen zu dieser Folge:Ultra-high-field 7T MRI reveals changes in human medial temporal lobe volume in female adults during menstrual cycle, nature mental health, 05.10.2023Behavioral and brain responses to verbal stimuli reveal transient periods of cognitive integration of the external world during sleep, Nature Neuroscience, 12.10.2023ModelRad : Die Modellierung des Radverkehrs – Einflussfaktoren und Parametrisierung, Frankfurt UAS, September 2023Social, clinical, and policy implications of ultra-processed food addiction, BMJ, 09.10.2023Topping the charts: September 2023 was Earth's warmest September in 174-year record, NOAA, 13.10.2023Organizational Structure and Pricing: Evidence from a Large U.S. Airline, The Quarterly Journal of Economics, 27.09.2023**********Ihr könnt uns auch auf diesen Kanälen folgen: Tiktok und Instagram.

Luxxamed frequenz-spezifische Mikrostromtherapie
Mikrostrom ist eine veraltete Technologie

Luxxamed frequenz-spezifische Mikrostromtherapie

Play Episode Listen Later Feb 23, 2023 22:03


Frei nach dem bekannten Zitat: „Le roi est mort, vive le roi" (französisch für „Der König ist tot, lang lebe der König“) – geht es in diesem Podcast nicht um den König, sondern die Technologie der Mikrostromtherapie. Darüber haben wir mit dem Biophysiker Dr. Thorsten Stüker gesprochen und gleichzeitig mit einigen Mythen aufgeräumt, dass Mikrostromgeräte eine veraltete Technologie seien. In Deutschland wird die Mikrostromtherapie seit dem Jahr 2000 erfolgreich im Profisport und in der Therapie akuter und chronischer Beschwerden eingesetzt. Seitdem hat sich die Technik enorm weiterentwickelt. Vom Einsatz modernster Leistungselektronik bis hin zur Nutzung künstlicher Intelligenz (KI) zur individuellen und präzisen Parametrisierung von Strom, Spannung, Polarität und Frequenz. YouTube-Video: https://youtu.be/K6YILaaPLXI Weitere Informationen: https://www.luxxamed.de/2023/02/23/mikrostrom-veraltete-technologie/

programmier.bar – der Podcast für App- und Webentwicklung
Folge 77 - Apache Kafka mit Michael Noll

programmier.bar – der Podcast für App- und Webentwicklung

Play Episode Listen Later Dec 17, 2020 75:07


Apache Kafka ist im Grunde wie das Zentrale Nervensystem, wenn es um Serverarchitekturen geht. Die Eventstreaming-Plattform wird in der Verarbeitung von Datenströmen genutzt und ist omnipräsent, um kontinuierlichen Datenfluss und seine Interpretation zu erlauben. Wenn unser Gast Michael Noll seinen Kindern erklärt was Kafka ist, dann sagt er: “Du nutzt Kafka immer dann, wenn du dein Smartphone benutzt!” Michael ist Principal Technologist bei Confluent, einer Firma, die für die ursprüngliche Entwicklung und heutige Weiterentwicklung von Kafka verantwortlich ist. Er beantwortet uns grundlegende Fragen nach Begriffen wie Broker, Client und Topics, erklärt aber auch wie diese Elemente zusammenhängen. Warum die Plattform unter der Motorhaube wie ein großer Commitlog aufgebaut ist, und was in diesem Zusammenhang der Unterschied zwischen Streams und Tables ist, erfahren wir in dieser Folge. Über Michael könnt ihr mehr auf seiner Webseite und seinem Twitter-Profil erfahren. Picks of the Day Michael: Hier schreibt Michael selbst über die in dieser Folge angesprochenen Streams und Tables von Kafka. Weiterführende Informationen zum Thema erhaltet ihr auf der Blog-Serie "What Every Software Engineer Should Know about Apache Kafka: Events, Streams, Tables, Storage, Processing, And More" von Michael. In diesem Artikel erfahrt ihr, warum jeder Softwareengineer wissen sollte, was ein Commitlog ist. Jojo: So ermöglichen Dart Defines die dynamische Parametrisierung des Builds in allen Teilen eines Flutter Projekts. Fabi: Tim, unser neuer Kollege bei Lotum, hat im wöchentlichen CoP-Meeting ein Tool vorgestellt, das Fabi bereits in dieser Woche Zeit erspart hat: Quokka.js, ein Produktivitätstool für JavaScript- und TypeScript-Prototyping. Schreibt uns! Schickt uns eure Themenwünsche und euer Feedback.podcast@programmier.bar Folgt uns! Bleibt auf dem Laufenden über zukünftige Folgen und virtuelle Meetups und beteiligt euch an Community-Diskussionen. Twitter Instagram Facebook Meetup YouTube Musik: Hanimo

Luxxamed frequenz-spezifische Mikrostromtherapie
FSM – Frequenz-Spezifischer-Mikrostrom in der Luxxamed-Anwendung

Luxxamed frequenz-spezifische Mikrostromtherapie

Play Episode Listen Later Nov 29, 2020 28:09


Frequenz-Spezifischer-Mikrostrom? Gibt es auch unspezifischen Mikrostrom und was ist eigentlich FSM (Frequency-Specific-Microcurrent)? Die Mikrostromtherapie ist nicht zu vergleichen mit der galvanischen Gleichstromtherapie. Frequenzen im Bereich von 0,1 Hz bis 1000 Hz werden seit vielen Jahren in der Therapie mit Mikrostrom eingesetzt. In den letzten zehn Jahren kamen Frequenzen von 10 kHz oder auch bis zu 20 kHz hinzu. Aus dieser Perspektive lässt sich sagen, es gibt eigentlich gar keinen ‚unspezifischen‘ Mikrostrom. Was ist nun also Frequenz-Spezifischer-Mikrostrom? Geprägt wurde dieser Begriff in den USA durch Dr. Caroly McMakin, welche durch zahlreiche Studien, Bücher und wissenschaftliche Veröffentlichungen damit einen weltweiten Bekanntheitsgrad bekam. In Deutschland hat der Arzt Dr. med. Wolfgang Bauermeister, bekannt durch die Triggerosteopraktik, im Jahr 2007 die FSM mit dem Clinic-Master professional umgesetzt und dort Frequenzkombinationen aus Gewebe und Zustand kombiniert. „Der Körper – ein Symphonieorchester. Körperzellen sind aus Atomen aufgebaut, die sich in ständiger Bewegung – Schwingung – befinden. Diese Schwingungen haben für jedes Gewebe eine charakteristische Frequenz. Dr. Bauermeister arbeitet mit über 200 Organ- und 150 Zustandsfrequenzen und kombiniert diese zu einem Frequenzpaar. Daraus ergeben sich tausende von Kombinationsmöglichkeiten, da jedes Organ oder Gewebe eine Vielzahl von Zuständen haben kann.“ (Bauermeister, 2009) Die Luxxamed-Therapie hingegen, nutzt Frequenzbänder in einem kybernetischen Verfahren, mit der Messung von Impedanz, Auf- und Entladung des Gewebes um daraus einen Rückschluss und eine Parametrisierung sowie Individualisierung der Therapie durchzuführen. Auch hier kommen spezifische Frequenzen zum Tragen, jedoch werden auch weitere Parameter des Mikrostroms individuell angepasst und genutzt. Wegen der großen Nachfrage unsere Kunden in Deutschland, Italien und Asien haben wir nun für den HD2000+ ein Software-Tool implementiert, mit dem die FSM (Frequenz-Spezifische-Therapie) vgl. McMakin, in Reinkultur umgesetzt werden kann. Programme können über ein Apple iPad einfach und schnell erstellt werden und das auf vier galvanisch getrennte Kanäle aufgeteilt. Diese können, nach Bedarf, gespeichert und editiert werden durch den Anwender. https://www.luxxamed.de/2020/11/29/frequenz-spezifischer-mikrostrom-fsm/

Max und die SupplyChainHelden Podcast
This is how we do it (Teil 2) - Einkaufsmanagement bei Ludwig Meister

Max und die SupplyChainHelden Podcast

Play Episode Listen Later Jul 24, 2020 26:38


In diesem Podcast spricht Max Meister mit Florian Ostendarp darüber, wie der Einkauf bei Ludwig Meister organisiert ist, welche Rolle er im Unternehmen hat und vor allem auf welchem Stand die Automatisierung und Digitalisierung ist. U.a. behandeln sie die Analyse, Parametrisierung und Digitalisierung der Bestellungen. Diese Folge ist für Dich interessant, wenn Du wissen willst, wie wir einkaufen, welchen Kundennutzen wir generieren und wie die weiteren Entwicklungsschritte auf dem Weg zu einem weitestgehend automatisierten Einkauf sind. Viel Freude beim Hören.

LMU Rechenmethoden 2013/14
26. Oberflächen- und Fluß-Integrale

LMU Rechenmethoden 2013/14

Play Episode Listen Later Mar 13, 2018 93:37


Flächen-Parametrisierung; gerichtetes Flächenelement; Flächenintegral. Bsp: Kugel, Gebirge, Rotationsfläche. Fluss von E- und B-Feld

Modellansatz
Lokale Turbulenzen

Modellansatz

Play Episode Listen Later Sep 27, 2017 84:56


Nikki Vercauteren erforscht an der Freien Universität Berlin die mehrskalige Analyse von atmosphärischen Prozessen und traf sich mit Sebastian Ritterbusch in der Urania Berlin, um über ihre Forschung und ihre Experimente auf Gletschern zu sprechen. Zum Zeitpunkt der Aufnahme fand in der Urania das Banff Mountain Film Festival, des Banff Centre for Arts and Creativity aus Kanada, statt. Auf dem Campus des Banff Centre befindet sich auch die Banff International Research Station (BIRS), ein Forschungsinstitut und Tagungsort nach Vorbild des Mathematischen Forschungsinstituts Oberwolfach, das sich der mathematischen Forschung und internationalen Zusammenarbeit verschrieben hat, und welches Nikki Vercauteren Anfang des Jahres zu einem Workshop besuchen konnte. Das Forschungsgebiet der Meteorologie umfasst viele Phänomene, von denen einige durch Fluiddynamik beschrieben werden können. Dabei geht es um eine große Menge von Skalen, von der globalen Perspektive, über kontinentale Skalen zur Mesoskala im Wetterbericht und der Mikroskala zu lokalen Phänomenen. Die Skalen bilden sich auch in den Berechnungsmodellen für die Wettervorhersage wieder. Das Europäische Zentrum für mittelfristige Wettervorhersage (EZMW) betrachtet die globale Perspektive mit Hilfe von Ensemblevorhersagen. Von dort verfeinert das aus dem lokalen Modell des Deutschen Wetterdienstes (DWD) entstandene COSMO Modell die Vorhersage auf die europäische und schließlich nationale Ebenen. Hier geht es um die sehr lokale Analyse von Windgeschwindigkeiten, die bis zu 20mal pro Sekunde gemessen werden und damit die Analyse von lokalen Turbulenzen bis zum natürlichem Infraschall ermöglichen. Die Erfassung erfolgt mit Ultraschallanemometer bzw. ultrasonic anemometers, wo bei manchen Typen durch die Erfassung des Doppler-Effekts bewegter Staubteilchen die Bewegungsgeschwindigkeit der Luft durch mehrere Sensoren räumlich bestimmt wird. Teilweise werden auch Laser-Anemometer eingesetzt. Im Rahmen ihrer Promotion in Umweltwissenschaften an der École Polytechnique Fédérale de Lausanne (EPFL) bekam Sie die Gelegenheit selbst vor Ort eine Messanlage auf einem Gletscher mit aufzubauen und in Stand zu halten. Der See- und Landwind sind typische Phänomene in der mikroskaligen Meteorologie, die Nikki Vercauteren zu ihrer Promotion am Genfersee zur Analyse von turbulenten Strömungen von Wasserdampf untersucht hat. Mit mehreren Laser-Doppler-Anemometern in einer Gitter-Aufstellung konnte sie so die Parametrisierung einer Large Eddy Simulation dadurch testen, in dem sie die im Modell angesetzte Energie in den kleinen Skalen mit den tatsächlichen Messungen vergleichen konnte. Kernpunkt der Betrachtung ist dabei das Problem des Turbulenzmodells: Als Verwirbelung in allen Skalen mit teilweise chaotischem Verhalten ist sie nicht vorhersagbar und kaum vollständig mathematisch beschreibbar. Sie spielt aber wegen der wichtigen Eigenschaften der Vermischung und Energietransfers eine elementare Rolle im Gesamtsystem. Glücklicherweise haben Turbulenzen beobachtete statistische und gemittelte Eigenschaften, die modelliert und damit im gewissen Rahmen und diesem Sinne mit Hilfe verschiedener Modelle durch identifizierte Parameter simuliert werden können. Besonderes Augenmerk liegt dabei auf der Betrachtung der Grenzschicht über dem Erdboden, die zum einen durch die Sonneneinstrahlung besonders durch die Aufwärmung und Abkühlung der Erdoberfläche beinflusst wird und gleichzeitig den Bereich beschreibt, wo das bewegte Fluid Luft auf die stehenden Erde reagiert. Eine meteorologische Eigenschaft der unteren Grenzschicht ist das theoretische logarithmische Windprofil, das aber bei Sonneneinstrahlung oder Nachts durch Verformung der Turbulenzen Korrekturterme erforderlich macht. In einer Temperaturinversion wird die Grenzschicht stabiler und es bildet sich weniger Turbulenz aus, wodurch sich Schadstoffe auch weniger verteilen können. In diesen Wetterlagen kann sich durch den fehlenden Luftaustausch im Stadtgebiet leichter Smog bilden. Entgegen der Theorie kann es interessanterweise trotz stabiler Schichtung zu Turbulenzen kommen: Ein Grund dafür sind Erhebungen und Senken des Bodens, die Luftpakete beeinflussen und damit lokale Turbulenzen erzeugen können. Eine besondere Fragestellung ist hier die Frage nach der Intermittenz, wann ein stabiles dynamisches System chaotisch werden kann und umgekehrt. Ein anschauliches Beispiel von Intermittenz ist das Doppelpendel, das von einem sehr stabilen Verhalten plötzlich in chaotisches Verhalten umschwenken kann und umgekehrt: Trajektorie eines DoppelpendelsCC-BY-SA 100 Miezekatzen Leider ist bisher die Intermittenz in der Wettervorhersage nicht alleine aus der Theorie zu berechnen, jedoch kann man die Richardson-Zahl bestimmen, die den Temperaturgradienten in Verhältnis zur Windscherung stellt. Dieses Verhältnis kann man auch als Verhältnis der Energieverteilung zwischen kinetischer Bewegungsenergie und potentieller Wärmeenergie sehen und daraus Schlüsse auf die zu erwartende Turbulenz ziehen. Als ein dynamisches System sollten wir ähnlich wie beim Räuber-Beute Modell eine gegenseitige Beeinflussung der Parameter erkennen. Es sollte hier aus der Theorie auch eine kritische Zahl geben, ab der Intermittenz zu erwarten ist, doch die Messungen zeigen ein anderes Ergebnis: Gerade nachts bei wenig Turbulenz entstehen Zustände, die bisher nicht aus der Theorie zu erwarten sind. Das ist ein Problem für die nächtliche Wettervorhersage. In allgemeinen Strömungssimulationen sind es oft gerade die laminaren Strömungen, die besonders gut simulierbar und vorhersagbar sind. In der Wettervorhersage sind jedoch genau diese Strömungen ein Problem, da die Annahmen von Turbulenzmodellen nicht mehr stimmen, und beispielsweise die Theorie für das logarithmische Windprofil nicht mehr erfüllt ist. Diese Erkenntnisse führen auf einen neuen Ansatz, wie kleinskalige Phänomene in der Wettervorhersage berücksichtigt werden können: Die zentrale Frage, wie die in früheren Modellen fehlende Dissipation hinzugefügt werden kann, wird abhängig von der beobachteten Intermittenz mit einem statistischen Modell als stochastischen Prozess beantwortet. Dieser Ansatz erscheint besonders erfolgsversprechend, wenn man einen (nur) statistischen Zusammenhang zwischen der Intermittenz und der erforderlichen Dissipation aus den Beobachtungen nachweisen kann. Tatsächlich konnte durch statistisches Clustering und Wavelet-Analyse erstmalig nachgewiesen werden, dass im bisher gut verstanden geglaubten so genannten stark stabilen Regime es mehrere Zustände geben kann, die sich unterschiedlich verhalten. Für die Entwicklung der Wavelet-Transformation erhielt Yves Meyer den 2017 den Abelpreis. Im Gegensatz zur Fourier-Transformation berücksichtig die Wavelet-Transformation z.B. mit dem Haar-Wavelet die von der Frequenz abhängige zeitliche Auflösung von Ereignissen. So können Ereignisse mit hohen Frequenzen zeitlich viel genauer aufgelöst werden als Ereignisse mit tiefen Frequenzen. Das von Illia Horenko vorgeschlagene FEM-BV-VARX Verfahren kann nun mit den Erkenntnissen angewendet werden, in dem die verschiedenen Regimes als stochastische Modelle berücksichtigt und durch beobachtete bzw. simulierte externe Einflüsse gesteuert werden können. Darüber hinaus konnten weitere interessante Zusammenhänge durch die Analyse festgestellt werden: So scheinen im stabilen Regime langsame Wellenphänomene über mehrere Skalen hinweg getrennt zeitliche schnelle und lokale Turbulenzen auszulösen. Andere Phänomene verlaufen mit stärkeren Übergängen zwischen den Skalen. Aus der Mathematik ist Nikki Vercauteren über die Anwendungen in der Physik, Meteorologie und Geographie nun wieder zurück in ein mathematisches Institut zurückgekehrt, um die mathematischen Verfahren weiter zu entwickeln. Literatur und weiterführende Informationen N. Vercauteren, L. Mahrt, R. Klein: Investigation of interactions between scales of motion in the stable boundary layer, Quarterly Journal of the Royal Meteorological Society 142.699: 2424-2433, 2016. I. Horenko: On the identification of nonstationary factor models and their application to atmospheric data analysis, Journal of the Atmospheric Sciences 67.5: 1559-1574, 2010. L. Mahrt: Turbulence and Local Circulations Cesar Observatory, Cabauw site for meteorological research. Podcasts S. Hemri: Ensemblevorhersagen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 96, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. I. Waltschläger: Windsimulationen im Stadtgebiet, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 14, Fakultät für Mathematik, Karlsruhe Institut für Technologie (KIT), 2014. L. Wege: Schwebestaub und Wassertröpfchen. Wie Wolken Wetter machen. Folge 5 im KIT.audio Forschungspodcast des Karlsruher Instituts für Technologie, 2017. M. Wendisch: Meteorologie, omegatau Podcast von Markus Voelter, Nora Ludewig, Episode 037, 2010. R. Heise, K. Ohlmann, J. Hacker: Das Mountain Wave Project, omegatau Podcast von Markus Voelter, Nora Ludewig, Episode 042, 2010. B. Marzeion: Gletscher, Podcast Zeit für Wissenschaft von Melanie Bartos, Universität Innsbruck, 2015. B. Weinzierl: Die Atmosphäre, Raumzeit Podcast von Tim Pritlove, Metaebene Personal Media, 2011.

stand system mit arts creativity berlin journal als dabei dar rolle workshop promotion campus entwicklung hilfe energie beispiel ort schl universit bereich analyse rahmen verh prozess sinne luft perspektive menge zusammenarbeit zusammenhang verhalten erde aufnahme wissenschaft technologie ereignisse str tats gelegenheit institut forschung ansatz vorbild regime zahl theorie modell eigenschaften kanada zentrum literatur ebenen zusammenh aufl typen einfl erkenntnissen verfahren ereignissen zust abk modelle betrachtung sekunde experimente physik prozessen beobachtungen anwendungen eigenschaft mathematik innsbruck im gegensatz nachts smog modellen aufw regimes ein grund frequenz parameter teilweise lokale annahmen fragestellung turbulenzen entgegen fakult sensoren atmospheric science vorhersage beeinflussung gletscher frequenzen heise erfassung senken schadstoffe zum zeitpunkt messungen clustering erdboden geographie freien universit banff centre meteorologie wetterbericht urania wettervorhersage quarterly journal forschungsinstitut bodens erdoberfl besonderes augenmerk stadtgebiet erhebungen das europ karlsruher institut vermischung dieser ansatz gletschern sonneneinstrahlung genfer see podcast zeit der see dissipation diese erkenntnisse tim pritlove wasserdampf lausanne epfl wassertr wetterlagen technologie kit skalen kernpunkt polytechnique f gesamtsystem infraschall banff mountain film festival royal meteorological society karlsruher instituts turbulenz energieverteilung die erfassung tagungsort verformung schichtung bewegungsenergie parametrisierung staubteilchen luftaustausch markus voelter sebastian ritterbusch windscherung grenzschicht das forschungsgebiet modellansatz podcast nora ludewig metaebene personal media
Modellansatz
Minimalflächen

Modellansatz

Play Episode Listen Later Dec 14, 2016 58:50


Lorenz Schwachhöfer ist seit 2003 Professor für Mathematik an der TU Dortmund. Gudrun kennt ihn aus ihrer Zeit als als Hochuldozentin dort (2004-2008). Seinen kurzen Gastaufenthalt in der AG von Prof. Tuschmann in Karlsruhe wollten die beiden ausnutzen, um ein Podcast-Gespräch zu führen. Das Forschungsgebiet von Lorenz Schwachhöfer gehört zur Differentialgeometrie. Deshalb dreht sich ihr Gespräch um zentrale Begriffe in diesem mathematischen Gebiet zwischen Geometrie und Analysis: Die Krümmung und das Finden von Minimalflächen. Der Begriff Krümmung kommt in unserer Alltagssprache vor. Die Mathematik muss das Konzept von "gekrümmt sein" nur klar fassen, um damit präzise arbeiten zu können. Die zentrale Eigenschaft, die durch das Wort beschrieben wird, ist wie sehr sich eine Fläche von einer Ebene unterscheidet. Oder auch wie stark sich eine Kurve von einer Geraden unterscheidet. Eine Ebene (bzw.eine Gerade) ist nicht gekrümmt. Mathematisch ausgedrückt haben sie deshalb die Krümmung 0. Wenn man nun untersuchen - und mit einer Zahl ausdrücken - möchte, wie sehr sich z.B. eine Kurve in jedem Punkt von eine Gerade unterscheidet, verwendet man folgenden Trick: Man definiert einen Parameter - z.B. die Bogenlänge - und stellt die Kurve als Funktion dieses Parameters dar. Dann berechnet man die Änderung des Richtungsvektors der Kurve in jedem Punkt. D.h. man braucht die zweite Ableitung nach dem Parameter in dem Punkt. Das Ergebnis für einen Kreis mit Radius r lautet dann: Er hat überall die Krümmung 1/r. Daran sieht man auch, dass kleine Kreise sehr stark gekrümmt sind während sehr große Kreise eine so kleine Krümmung haben, dass man sie fast nicht von einer Geraden unterscheiden kann. Auch die Erdoberfläche wirkt lokal wie eine Ebene, denn in der mit unseren Augen wahrgenommenen Umgebung ist ihre Krümmung klein. Was für Kurven recht anschaulich zu definieren geht, ist für Flächen im dreidimensionalen Raum nicht ganz so klar. Das einzig klare ist, dass für jede Art Krümmung, die man mathematisch definiert, jede Ebene in jedem Punkt die Krümmung 0 haben muss. Wenn man die Idee der Parametrisierung auf Flächen überträgt, geht das im Prinzip auch, wenn man zwei Parameter einführt und Krümmung auf eine bestimmte Richtung im Punkt auf der Fläche entlang bezieht. Beim Zylinder kann man sich gut vorstellen, wie das Ergebnis aussieht: Es gibt die Richtung entlang der Kreislinie des Querschnitts. Diese Kurve ist ein Kreis und hat die Krümmung 1/r. Läuft man dazu im rechten Winkel auf der Zylinderhülle, folgt man einer Gerade (d.h. Krümmung in diese Richtung ist 0). Alle anderen Wege auf der Zylinderoberfläche liegen in Bezug auf die Krümmung zwischen diesen beiden Werten 1/r und 0. Tatsächlich kann man auch für allgemeine Flächen zeigen, dass man in jedem Punkt eine Zerlegung in zwei solche "Haupt"-Richtungen findet, für die maximale bzw. minimale Krümmungswerte gelten (und die senkrecht zueinander sind). Alle anderen Richtungen lassen sich daraus linear zusammensetzen. Die Kugeloberfläche hat z.B. eine hohe Symmetrie und verhält sich in allen Richtungen gleich. Alle Wege auf der Kugeloberfläche sind lokal Teile von Kreisen. Man kann sich hier auch überlegen, was tangential bedeutet, indem man in einem Punkt auf der Oberfläche eine Ebene anschmiegt. Die Richtung senkrecht auf dieser tangentialen Ebene ist die Normalenrichtung auf dem Punkt der Kugeloberfläche an dem die Tangentialebene anliegt. Tatsächlich gibt es für Flächen aber mehr als einen sinnvollen Krümmungsbegriff. Man kann z.B. einen Zylinder sehr schön in Papier "einwickeln". Bei einer Kugel geht das nicht - es bleibt immer Papier übrig, das man wegfalten muss. Wenn man einen Kühlturm einpacken möchte, reicht das Papier nicht für die nach innen einbuchtende Oberfläche. Die Eigenschaft, die wir mir dem Einwickeln veranschaulicht haben, wird mit dem Begriff der Gaußkrümmung ausgedrückt. Um sie zu berechnen, kann man in einem Punkt die oben definierten Richtungsskrümmungen anschauen. Maximal- und Minimalwerte werden für senkrecht aufeinander stehende Richtungen realisiert. Das Produkt der beiden extremen Krümmungen ergibt dann die Gaußkrümmung. In unserem Beispiel mit dem Zylinder ist die Gaußkrümmung also 0 mal 1/r = 0. Das ist aber tatsächlich ganz unabhängig von der Richtungskrümmung untersuchbar, weil es sich durch Längen- bzw. Flächenverhältnisse in der Fläche bestimmen lässt. Genauer gesagt: Wenn man auf der Kugel um einen Punkt einen Kreis auf der Kugeloberfläche zieht (d.h. seine Punkte liegen auf der Kugeloberfläche und haben alle den Abstand r vom gewählten Punkt), hat dieses Objekt einen kleineren Flächeninhalt als ein ebener Kreis mit dem gleichen Radius. Deshalb sagt man: Die Kugel hat positive Gaußkrümmung. Bei negativer Gaußkrümmung ist der Flächeninhalt auf der Oberfläche größer als in der Ebene. Das trifft für den Kühlturm zu. Diese Eigenschaft lässt sich innerhalb der Fläche untersuchen. Man braucht gar keine Einbettung in einen umgebenden Raum. Das ist zunächst sehr überraschend. Es ist aber unbedingt nötig für Anwendungen in der Astrophysik, wo die Raumzeit wegen der Gravitation gekrümmt ist (d.h. sie ist kein euklidischer Raum). Es hat aber niemand ein Bild, in welche höhere Dimension man die Raumzeit einbetten sollte, um dann mit der Krümmung in Bezug auf diesen Raum zu arbeiten. Neben den beiden schon diskutierten Begriffen kann man auch mit der mittleren Krümmung arbeiten. Sie ist definiert als Mittelwert aller Richtungskrümmungen. Man kannn aber zeigen, dass dies stets das arithmetische Mittel zwischen minimaler und maximaler Krümmung ist. Dies hat auch eine physikalische Interpretation - z.B. als Flächenspannung für eine Membran, die eingespannt ist. Die Membran versucht, einen möglichst geringen Flächeninhalt - eine sogenannte Minimalfläche - zu realisieren, weil dies dem minimalen Energieaufwand entspricht. Spannungsfreie Flächen sind sehr stabil und deshalb für Architekten interessant. Im Schülerlabor Mathematik kann man mit Seifenhäuten selbst ausprobieren, welche Flächen sich hier für unterschiedliche Randkurven herausbilden. Z.B. wurde die Dachkonstruktion des ehemaligen Olympiastadions in München aus Minimalflächen konstruiert, die mit Seifenhäuten gefunden, fotographiert und nachgebaut wurden.. Mathematisch sprechen wir vom Plateau-Problem. Die Frage ist dabei: Hat jede geschlossene Kurve mindestens eine zugehörige Minimalfläche? Heute wissen wir, dass die Antwort - unter sehr geringen Regularitätsforderungen an die Kurve - fast immer ja ist. Sehr verblüffendend ist in diesem Zusammenhang auch der Satz von Gauß/Bonnet. Er sagt, dass das Integral über die Gaußkrümmung jeder in sich selbst geschlossenen Fläche ein ganzzahliges Vielfaches von 2π ist. Dieser Faktor heißt dann Euler-Charakteristik und hängt nur von der Topologie (grob gesprochen der Zahl der Löcher im Gebiet) ab. Beim Torus ist sie 0 und für die Kugeloberfläche 2. Interessant ist in diesem Zusammenhang auch die Behandlung von nicht glatten Kurven bzw. Flächen mit Ecken und Kanten. An den Kanten ist das Konzept der Gaußkrümmung noch recht einfach übertragbar. Der betrachtete Kreis auf der Oberfläche klappt sich dabei um die Kante herum. An den Ecken geht das nicht so einfach, sondern führt auf komplexere Gebilde. Wenn man sich aber z.B. einen Würfel ansieht, hat dieser fast überall die Krümmung 0. Trotzdem ist er (topologisch gesehen) einer Kugel viel ähnlicher als einer Ebene. Hier kann man den Begriff der Gaußkrümmung richtig für Polyeder mit Kanten und Ecken verallgemeinern und der Satz von Gauß/Bonnet überträgt sich sinngemäß auf Polyeder. Das Integral wird zur Summe über die Polyederflächen und wir erhalten den wohlbekannten Polyedersatz: Euler-Charakteristik mal Anzahl der Flächen - Anzahl der Kanten + Anzahl der Ecken = 2 Der Polyedersatz ist eigentlich ein kombinatorisches Ergebnis. Trotzdem zeigt sich hier, dass die topologischen Eigenschaften intrinsisch mit der Krümmung zusammenhängen, was sehr überraschend, aber auch sehr ästhetisch zwei einander sehr fremde Teilgebiete der Mathematik zusammenführt. Lorenz Schwachhöfer hat in Darmstadt und in New Orleans Mathematik studiert und nach seiner Promotion 1992 (in Philadelphia) u.a. wissenschaftlich Station gemacht an der Washington Universität (in St. Louis), dem Max Planck Institut für Mathematik in Bonn, der Universität in Leipzig (dort Habilitation) und an der Université Libre in Brüssel. Literatur und weiterführende Informationen J-H. Eschenburg & J. Jost: Differentialgeometrie und Minimalflächen. Springer Verlag, 3. Auflage, 2014. T. Matiasek: Seifenhäute und Minimalflächen: Natur, Geometrie und Architektur. VDM Verlag Dr. Müller, 2010 Wolfgang Kühnel: Differentialgeometrie: Kurven - Flächen - Mannigfaltigkeiten, Springer Verlag, 2013. Manfredo doCarmo, Differentialgeometrie von Kurven und Flächen, Vieweg+Teubner Verlag, 1993. Christian Bär, Elementare Differentialgeometrie, deGruyter, 2017. Video Seifenhäute (engl.) Podcasts P. Schwer: Metrische Geometrie. Gespräch mit G. Thäter im Modellansatz Podcast, Folge 102, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/metrische-geometrie L. Mirlina, F. Dehnen: Qwirkle-Gruppe. Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 76, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/qwirkle-gruppe

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Quantenklassische Hybridbeschreibung von Solvatisierungseffekten

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05

Play Episode Listen Later May 3, 2016


Eine aussagekräftige theoretische Beschreibung des Infrarot (IR)-Schwingungsspektrums eines Biomoleküls in seiner nativen Umgebung durch Molekulardynamik (MD)-Simulationen benötigt hinreichend genaue Modelle sowohl für das Biomolekül, als auch für das umgebende Lösungsmittel. Die quantenmechanische Dichtefunktionaltheorie (DFT) stellt solche genauen Modelle zur Verfügung, zieht aber hohen Rechenaufwand nach sich. Daher ist dieser Ansatz nicht zur Simulation der MD ausgedehnter Biomolekül-Lösungsmittel-Komplexe einsetzbar. Solche Systeme können effizient mit polarisierbaren molekülmechanischen (PMM) Kraftfeldern behandelt werden, die jedoch nicht die zur Berechnung von IR-Spektren nötige Genauigkeit liefern. Einen Ausweg aus dem skizzierten Dilemma bieten Hybridverfahren, die einen relevanten Teil eines Simulationssystems mit DFT, und die ausgedehnte Lösungsmittelumgebung mit einem (P)MM-Kraftfeld beschreiben. Im Rahmen dieser Arbeit wird, ausgehend von einer DFT/MM-Hybridmethode [Eichinger et al., J. Chem. Phys. 110, 10452-10467 (1999)], ein genaues und hocheffizientes DFT/PMM-Rechenverfahren entwickelt, das der wissenschaftlichen Ọ̈ffentlichkeit nun in Form des auf Großrechnern einsetzbaren Programmpakets IPHIGENIE/CPMD zur Verfügung steht. Die neue DFT/PMM-Methode fußt auf der optimalen Integration des DFT-Fragments in die "schnelle strukturadaptierte Multipolmethode" (SAMM) zur effizienten approximativen Berechnung der Wechselwirkungen zwischen den mit gitterbasierter DFT bzw. mit PMM beschriebenen Subsystemen. Dies erlaubt stabile Hamilton'sche MD-Simulationen sowie die Steigerung der Performanz (d.h. dem Produkt aus Genauigkeit und Recheneffizienz) um mehr als eine Größenordnung. Die eingeführte explizite Modellierung der elektronischen Polarisierbarkeit im PMM-Subsystem durch induzierbare Gauß'sche Dipole ermöglicht die Verwendung wesentlich genauerer PMM-Lösungsmittelmodelle. Ein effizientes Abtastens von Peptidkonformationen mit DFT/ PMM-MD kann mit einer generalisierten Ensemblemethode erfolgen. Durch die Entwicklung eines Gauß'schen polarisierbaren Sechspunktmodells (GP6P) für Wasser und die Parametrisierung der Modellpotentiale für van der Waals-Wechselwirkungen zwischen GP6P-Molekülen und der Amidgruppe (AG) von N-Methyl-Acetamid (NMA) wird ein DFT/PMM-Modell für (Poly-)Peptide und Proteine in wässriger Lösung konstruiert. Das neue GP6P-Modell kann die Eigenschaften von flüssigem Wasser mit guter Qualität beschreiben. Ferner können die mit DFT/PMM-MD berechneten IR-Spektren eines in GP6P gelösten DFT-Modells von NMA die experimentelle Evidenz mit hervorragender Genauigkeit reproduzieren. Somit ist nun ein hocheffizientes und ausgereiftes DFT/PMM-MD-Verfahren zur genauen Berechnung der Konformationslandschaften und IR-Schwingungsspektren von in Wasser gelösten Proteinen verfügbar.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Der Beitrag der Luftfahrt am gesamten anthropogenen Strahlungsantrieb beträgt 3-8 %. Mit steigendem Luftverkehrsaufkommen um etwa 5 % jährlich wächst dieser Beitrag stetig an. Kondensstreifenzirren machen den größten Anteil an der Klimawirkung des Luftverkehrs aus. Die Ergebnisse der bisherigen Studien sind aber noch mit großen Unsicherheiten versehen. Mit dem Ziel einer realistischeren Darstellung von Kondensstreifenzirren und genaueren Validierungsmöglichkeiten der Kondensstreifenzirren-Parametrisierung im Klimamodell wird in dieser Arbeit die Parametrisierung der mikrophysikalischen und optischen Eigenschaften von Kondensstreifenzirren, welche einen großen Einfluss auf deren Klimawirksamkeit haben, verbessert. Als Vorarbeit musste das im Klimamodell ECHAM5 verwendete Zwei-Momenten-Schema für natürliche Wolken in Bezug auf die Konsistenz der Mikrophysik mit einem fraktionellen Bedeckungsgradschema modifiziert werden. Zudem wurde die Nukleationsparametrisierung um den Einfluss durch präexistierendes Eis erweitert. Die für ECHAM4 entwickelte Kondensstreifenzirren-Parametrisierung wurde in ECHAM5 übertragen und um das Zwei- Momenten-Schema erweitert. Neben dem Eiswassergehalt wird damit auch die Eispartikelanzahldichte im Modell prognostiziert. Folglich kann die mittlere Eispartikelgröße bestimmt werden. Es stellte sich heraus, dass genaue Informationen über die Ausdehnung des Volumens der Kondensstreifenzirren wichtig für die Darstellung der mikrophysikalischen und optischen Eigenschaften der Kondensstreifenzirren sind. Der Einfluss von Diffusion und Sedimentation auf die Vergrößerung des Volumens der Kondensstreifenzirren wurde im Modell parametrisiert. Das Ergebnis zeigt eine ähnliche globale Verteilung der Kondensstreifenzirren wie in der Studie mit ECHAM4. Die Bedeckungsgrade sind jedoch höher, zeigen aber im Vergleich mit Satellitendaten gute Übereinstimmungen. Die optische Dicke orientiert sich einerseits an der Höhe des Eiswassergehalts. Beide zeigen Maxima in den Tropen, wo die Menge des kondensierbaren Wasserdampfs hoch ist. Andererseits orientiert sich die globale Verteilung der mikrophysikalischen und optischen Eigenschaften, anders als in früheren Studien, stark an der Flugverkehrsdichte. Durch häufige Bildung von Eispartikeln in den Hauptfluggebieten bleibt die Eispartikelanzahldichte groß und die mittlere Partikelgröße klein. Folglich ist die optische Dicke in diesen Gebieten durch die Berücksichtigung der Eispartikelanzahldichte höher als in früheren Studien. Wenn man, wie in früheren Studien, das Strahlungschema mit einer Beschränkung auf größere Eispartikel anwendet, ist der Strahlungsantrieb mit 29 mW/m2 im Vergleich zur vorangegangenen Studie in ECHAM4 etwas geringer. Emittierte Rußpartikel aus den Flugzeugtriebwerken stellen eine dominierende Quelle der Eispartikel in Kondensstreifenzirren dar. Die erweiterte Parametrisierung von Kondensstreifenzirren im Modell ist Voraussetzung für eine Studie über den Einfluss einer Rußemissionsänderung auf den Strahlungsantrieb von Kondensstreifenzirren. Bei einer angenommenen Reduzierung der initialen Eispartikelanzahldichte um 80 % werden die Eispartikel größer und die optische Dicke kleiner. Der Bedeckungsgrad der sichtbaren Kondensstreifenzirren veringert sich um mehr als die Hälfte, jedoch wurde die Vermutung, dass sich die Lebensdauer der Kondensstreifenzirren durch die Bildung größerer Eispartikel verkürzt, nicht bestätigt.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Parametrisierung unbekannter Zahnoberflächen mittels des biogenerischen Zahnmodells

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19

Play Episode Listen Later Mar 7, 2007


Längenmessungen und deskriptive Charakterisierungen waren bisher die einzigen Anhaltspunkte zur Beschreibung der Kauflächenmorphologie. Für computergestützte Verfahren in der Zahnmedizin ist dies für die Erstellung eines Datensatzes nicht ausreichend. In der Literatur existieren hierzu bisher keine Lösungsansätze. In dieser Arbeit wurde in einem ersten Schritt eine Zahnbibliothek aus unversehrten Kauflächen aufgebaut. Mit Hilfe dieser Zahndatenbank wurde ein mathematisches Modell (Mehl 2002), das einen bestimmten Zahntypus anhand weniger Parameter unter Berücksichtigung funktioneller und biologisch relevanter Strukturen mathematisch beschreiben kann, erstellt. Dieses biogenerische Zahnmodell wurde an verschiedenen, der Zahnbibliothek unbekannten, Zähnen getestet. Die Ergebnisse zeigen, dass in allen Fällen eine vollautomatische Anpassung möglich war. Die Genauigkeiten der Anpassungen lagen bei etwa 87 μm. Des Weiteren wurden verschiedene Einflussgrößen auf das mathematische Modell untersucht. Dabei konnten keine allgemeingültigen Werte gefunden werden, die in jedem Falle die besten Ergebnisse liefern. Die Bandbreite der entsprechenden Werte konnte jedoch eingegrenzt werden. Die visuelle Auswertung und der metrische Vergleich der Anpassungen verdeutlichen die große Flexibilität des biogenerischen Zahnmodells. In einem weiteren Schritt wurden die Bibliothekskauflächen untereinander verglichen. Der Durchschnittswert für die mittlere Abweichung von dem rechten und dem linken ersten Molaren jeweils eines Probanden beträgt 119 µm im Unterkiefer und 126 µm im Oberkiefer. Bei dem Vergleich von ersten Molaren unterschiedlicher Probanden ergibt sich ein Wert von 276 µm im Unterkiefer und 340 µm im Oberkiefer. In einer Dritten Versuchsanordnung wurden sieben Prothesenzähne mittels biogenerischen Zahnmodells auf ihre „Natürlichkeit“ getestet. Vier Zähne konnten als eher natürliche Durchschnittszähne klassifiziert werden. Zwei Zähne wurden als nicht repräsentative Durchschnittszähne eingestuft. Ein Zahn konnte auf Grund seines starken Abrasionsgrades nicht eingeordnet werden. Insgesamt besteht mit Hilfe des biogenerischen Zahnmodells die Möglichkeit, Kauflächen vollautomatisch unter Berücksichtigung biologischer und funktio¬neller Kriterien zu rekonstruieren. Inwieweit dies bei Zähnen gelingt, die einen großem Substanzverlust erfahren haben, beispielsweise durch Inlay-/Onlaypräperation, müssen weiter Studien zeigen. Auch scheint die Frage interessant, ob es möglich ist, von noch erhaltenen Zähnen Rückschlüsse auf bereits zerstörte Zähne zu erhalten.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Numerical Simulations of low-level convergence Lines over north-eastern Australia

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Jul 28, 2006


Im Gebiet des Carpentaria Golfes im Norden Australiens entstehen regelmäßig mesoskalige Konvergenzlinien in der unteren Troposphäre. Diese produzieren gegen Ende der Trockenzeit oft spektakulären Wolkenlinien, die auf Satellitenbildern zu sehen sind und je nach ihren Eigenschaften ''Morning Glory'' oder ''North Australian Cloud Line'' (NACL) genannt werden. Morning Glories sind glatte Wellenwolken während NACLs konvektive Wolkenlinien sind. Sie stehen unter dem Verdacht, später im Jahr, während der Australische Sommermonsun ruht, eine Reihe von Unwettern auszulösen, die ein bedeutendes Vorhersageproblem für diese Region darstellen. Des Weiteren stellt die einhergehende bodennahe Windscherung eine große Gefahr für tieffliegende Flugzeuge dar. Um die Entstehung dieser Konvergenzlinien mit bis dahin einmaliger Genauigkeit zu dokumentieren, wurde im Herbst 2002 die internationale Meßkampagne GLEX (Gulf Lines Experiment) durchgeführt. Das mesoskalige Modell der Pennsylvania State University und des National Center for Atmospheric Research, MM5, wird in dieser Arbeit für eine Untersuchung dieser Linien benutzt. Da die Linien intrinsisch nicht hydrostatisch sind, sollte das MM5 bei der geforderten hohen horizontalen Auflösung als nichthydrostisches Modell in Vorhersage und Modellierung den für frühere Studien verwendeten hydrostatisch balancierten Modellen überlegen sein. Den zunächst vorgestellten Fallstudien gingen Sensitivitätsstudien bezüglich der Grenzschichtparameterisierung und der Bodenfeuchte voraus, die aber aus Gründen der Lesbarkeit erst später beschrieben werden. Im Rahmen der Fallstudien werden Modellergebnisse mit Ergebnissen aus der Meßkampagne und verfügbaren Satellitenbildern verglichen, sowie weitere Charakteristika der sich bildenden Linien untersucht. Das Modell kann in der gewählten Konfiguration die Konvergenzlinien in noch nie da gewesener Detailliertheit reproduzieren und die Ergebnisse stimmen gut mit den Beobachtungen überein. Weitere Ergebnisse dieser Studie bestätigen früher aufgestellte Theorien, nach denen das nordöstliche Morning Glory und die NACL in Folge eines Zusammenstoßes zweier Seebriesen über der Kap York Halbinsel entstehen. Zum ersten Mal hat ein Modell zwei getrennte Konvergenzlinien produziert, die dem nordöstlichen Morning Glory und der NACL entsprechen. Als Trennungsmechanismus beider sich aus der Ostküstenseebriese entwickelnden Konvergenzlinien wird hier zunächst die Geometrie der Ostküste vorgeschlagen, die auf dem Breitengrad, auf dem die Trennung im allgemeinen erfolgt, einen ausgeprägten Knick aufweist. Für die Entstehung des südlichen Morning Glorys wird eine erst kürzlich aufgestellte Theorie bestätigt, in der die Kollision der südlichen Seebriese mit einer sich von Süden her nähernden Front als Mechanismus angenommen wird. Diese Front formiert sich am Abend entlang einer Troglinie, die ein klimatisches Merkmal Queenslands ist. In einigen der Fälle wurden Trockenlinien beobachtet, die auf das südliche Morning Glory folgten. Auch diese stimmen im Modell gut mit den Beobachtungen überein. Eines der seltener beobachteten südöstlichen Morning Glories kann leider nicht vom Modell reproduziert werden. Als Ursache wird vermutet, daß eine Troglinie im datenarmen Gebiet südlich des Golfs von Carpentaria nicht korrekt in den Anfangsbedingungen positioniert ist. Eine Untersuchung der Strömung hinter den Konvergenzlinien zeigt, daß Morning Glories Wellenphänomene sind. NACLs hingegen behalten den Dichteströmungscharakter der Seebriese bei. Eine Sensitivitätstudie bezüglich der Grenzschichtparameterisierung wird durchgeführt, weil sich die hier untersuchten Phänomene in der planetaren Grenzschicht abspielen. Eine Gruppe von Parametrisierungen stellt sich anderen als überlegen heraus und als Grund für diese guten Ergebnisse wird die Berücksichtigung der großräumigen Gradienten identifiziert, die in den schlechter abschneidenden Parametrisierungen fehlt. Als beste Parametrisierung wird das MRF Schema für alle weiteren Simulationen ausgewählt. Eine Untersuchung der Sensitivität der Ergebnisse bezüglich der Bodenfeuchte zeigt, daß die Seebriesen um so schneller landeinwärts strömen, je trockener die Bodenverhältnisse sind. Die Erklärung hierfür ist, daß ein größerer Teil der eingehenden solaren Strahlung als fühlbare Wärme an die Atmosphäre abgegeben wird und so die Seebriesenzirkulation antreibt. Daraus resultiert, daß Morning-Glory Konvergenzlinien sowohl intensiver sind, als auch die Fortpflanzungsgeschwindigkeit größer ist wenn die Bodenfeuchte abnimmt. Ein solcher Zusammenhang konnte für die NACLs nicht bestimmt werden. Eine optimale Bodenfeuchte, mit der die Modellergebnisse am besten mit den Beobachtungen übereinstimmen, kann leider nicht ermittelt werden, da geeignete Methoden hierfür nicht zur Verfügung stehen. Die Güte der Ergebnisse bezogen auf die Bodendruck an den einzelnen Stationen des Experiments nimmt jedoch mit abnehmender Bodenfeuchte zu. Da aber die geringst möglichen Werte unrealistisch sind beziehungsweise keinen physikalischen Sinn haben und keine Meßdaten vorhanden sind, wird für alle weiteren Simulationen ein Wert für die Bodenfeuchte gewählt, wie er vom Australischen Wetterdienst benutzt wird. Um einige der aufgezeigten Zusammenhänge noch gründlicher zu untersuchen, wurden noch einige Modellexperimente mit modifizierter Orographie durchgeführt. Diese zeigen, daß weder Morning Glories noch NACLs entstehen, wenn keine Seebriese vom Golf von Carpentaria landeinwärts strömt und mit der Ostküstenseebriese beziehungsweise der sich von Süden her nähernden Kaltfront kollidiert. Ein systematischer Zusammenhang zwischen Höhe der Orographie und der Intensität oder der Geschwindigkeit der sich bildenden Konvergenzlinien kann nicht festgestellt werden. Die im Rahmen der Fallstudie aufgestellte Hypothese für die Trennungsursache von NACL und nordöstlichem Morning Glory kann nicht bestätigt werden und die horizontale Windscherung über der Kap York Halbinsel wird stattdessen als Ursache vorgeschlagen. Diese Hypothese wird durch die Ergebnisse eines Experiments mit uniformer Strömung in westlicher Richtung bestätigt. In diesem Experiment bildet sich nur eine Konvergenzlinie, die dem nordöstlichen Morning Glory entspricht und weit in das Gebiet hineinragt, in dem sich die NACL normalerweise befindet. Am zweiten Tag dieser Simulation entwickelt sich eine horizontale Windscherung, in der sich zwei unabhängige Konvergenzlinien bilden, die dem nordöstlichen Morning Glory und der NACL entsprechen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Konformationsdynamik lichtschaltbarer Peptide: Molekulardynamiksimulationen und datengetriebene Modellbildung

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jun 16, 2004


Die Faltung und die Funktionsdynamik von Proteinen basieren auf schnellen Prozessen, die zum Teil im Zeitbereich der Pikosekunden bis Nanosekunden ablaufen. Zur Untersuchung dieser Dynamiken und der mit ihnen verbundenen strukturellen Änderungen werden häufig Molekulardynamik (MD)-Simulationen eingesetzt, die auf empirisch parametrisierten molekularmechanischen (MM) Kraftfeldern basieren. Die vorliegenden Arbeit stellt einen Ansatz zur Validierung solcher MM-Kraftfelder vor, der darin besteht, die Relaxationsdynamik kleiner lichtschaltbarer Modellpeptide zu simulieren und die dabei auftretenden Kinetiken mit Ergebnissen der Femtosekunden-Spektroskopie zu vergleichen. Erste Simulationen dieser Art zeigen eine überraschende Übereinstimmung zwischen den simulierten und den gemessenen Kinetiken. Weitere Untersuchungen, bei denen einzelne Details des eingesetzten Kraftfelds variiert werden, lassen jedoch erkennen, dass diese Übereinstimmung auf einer zufälligen Kompensation von Fehlern beruht. Es wird gezeigt, dass die simulierten Kinetiken sehr empfindlich auf Änderungen am MM-Kraftfeld reagieren und damit als Maßstab für die Güte seiner Parametrisierung dienen können. Besonders die Modellierung des Lösungsmittels DMSO hat einen entscheidenden Einfluss auf die beobachteten Kinetiken, und zwar nicht nur auf die Kühlzeiten der Wärmedissipation, sondern auch auf die Relaxationsdynamik des Peptidteils der Modellsysteme. Als Vorarbeit für die Simulation der Modellpeptide wird ein flexibles und explizites DMSO-Modell aus ersten Prinzipien abgeleitet und dessen thermodynamische und strukturelle Eigenschaften mit denen existierender Modelle verglichen. Ferner wird das eingesetzte Kraftfeld um Parameter für den in die Modellpeptide integrierten Farbstoff Azobenzol erweitert und dessen lichtinduzierte Isomerisierungsreaktion modelliert. Darüber hinaus werden neuartige Methoden zur statistischen Auswertung von MD-Trajektorien vorgestellt, die dazu dienen, eine strukturelle Klassifikation der Peptidgeometrien zu ermöglichen. Mit Hilfe dieser Klassifikation kann ein vertiefter Einblick in die während der Relaxation der Modellpeptide auftretenden Konformationsübergänge gewonnen werden. Ferner ermöglichen es die statistischen Auswertungsverfahren, aus Langzeitsimulationen der Modellpeptide deren Gleichgewichtskonformationen zu bestimmen. Der Vergleich dieser Konformationen mit Daten der NMR"=Spektroskopie zeigt schließlich die Leistungsfähigkeit der Methode der MD-Simulation für die Vorhersage von Peptidstrukturen.

Mathematik, Informatik und Statistik - Open Access LMU - Teil 01/03
Das symmetrische konditionale Regressionsmodell - alternative Parametrisierung bei korrelierten binären Responsevariablen

Mathematik, Informatik und Statistik - Open Access LMU - Teil 01/03

Play Episode Listen Later Jan 1, 1996


Das hier vorgestellte spezifische Modell bietet mit dem dazugehörigen Schätzverfahren eine neue alternative Vorgehensweise für die regresive Analyse binärer korrelierter Zielgrößen. Das Schäatzverfahren für das an die Korrelation angepaßte Modell wird über den Modellvergleich mit loglinearen Modellen und einer auf Odds-Ratios basierenden Reparametrisierung hergeleitet. Dabei wird zwischen verschiedenen Spezialfällen in Abhängigkeit von der Art und Anzahl der Einflußgrößen unterschieden. Die neue Methode besitzt gegenüber anderen den Vorteil, neben der einfacheren Berechnung der Schätzungen zugleich die Adäquatheit des Modells zu prüfen. Der theoretischen Darstellung folgt die ausführliche Beschreibung des Verfahrens an zwei Datensätzen.