POPULARITY
João Vitor Quina, Head Comercial e de Vendas da Vivaz, marca MCMV do Grupo Cyrela, compartilha sua trajetória de 20 anos no mercado imobiliário, com um foco especial no segmento popular. Ele detalha sua jornada desde a Lopes até a criação da Vivaz, uma iniciativa da Cyrela para atuar no programa Minha Casa Minha Vida, e fala sobre os desafios e estratégias que levaram a Vivaz a ultrapassar a marca de 1 bilhão em vendas. Para Quina, "a casa própria não é só um sonho, é um projeto de vida", e essa visão permeia a forma como ele e sua equipe trabalham para transformar a realidade de milhares de famílias. Ao longo da conversa, ele destaca a importância da educação do cliente e do uso de dados para otimizar processos de vendas, além de falar sobre a adaptação da empresa ao uso de tecnologia, como a digitalização de processos durante a pandemia. Quina também enfatiza o impacto social das iniciativas da Vivaz, que não só reduzem desigualdades habitacionais, mas também promovem o acesso de classes populares a regiões centrais, melhorando sua qualidade de vida. Ele ainda aborda o legado de Elie Horn, fundador da Cyrela, e como sua ética e visão de responsabilidade social continuam a inspirar o trabalho da Vivaz. _____ Conheça as soluções Loft Mais Negócio: https://bit.ly/loftmaisnegocios _____ Corretor de imóveis, a Plano&Plano tem um convite para você. Venha trabalhar em uma das Houses Plano&Plano: >> https://bit.ly/corretor23 _____ Missão Alto Padrão & Luxo - a principal imersão em imóveis de alto padrão de luxo do país. Inscrições abertas: >> https://www.missaoaltopadrao.com.br _____ Siga o @vempramesapodcast e @sergiolanger no instagram. _____ Acompanhe o Vem pra mesa no YouTube: >> https://www.youtube.com/sergiolanger
O Boletim Portas Abertas é o seu resumo diário do que é destaque na imprensa sobre o mercado imobiliário. Fique bem informado em menos de 10 minutos. Novos boletins de segunda a sexta-feira, às 18h. Inscreva-se em nossa newsletter e em nossa comunidade no WhatsApp: https://bit.ly/3UNUjYW
O Boletim Portas Abertas é o seu resumo diário do que é destaque na imprensa sobre o mercado imobiliário. Fique bem informado em menos de 10 minutos. Novos boletins de segunda a sexta-feira, às 18h. Inscreva-se em nossa newsletter e em nossa comunidade no WhatsApp: https://bit.ly/3UNUjYW
O Boletim Portas Abertas é o seu resumo diário do que é destaque na imprensa sobre o mercado imobiliário. Fique bem informado em 10 minutos. Novos boletins de segunda a sexta-feira, às 18h. Inscreva-se em nossa newsletter e em nossa comunidade no WhatsApp: https://bit.ly/3UNUjYW
Virando a Chave - O podcast que impulsiona a comunidade de corretores
O maior programa da história do Virando a Chave! rs Sim, foi um episódio comprido (por isso dividimos em duas partes), mas sabemos da relevância e importância de olhar o segmento econômico com mais atenção. Cláudio Bidarra (@bidarracorretor) e Valdomiro Garrah (@garrah.valdomiro), referências no segmento econômico, mostraram que trilhar esse caminho tem seus obstáculos e tentações, mas pode ser muito rentável.
Virando a Chave - O podcast que impulsiona a comunidade de corretores
Primeiro você começa vendendo Minha Casa, Minha Vida (MCMV) e depois vai para o alto padrão, certo? errado! É possível ser bem sucedido (e muito), trabalhando com imóvel econômico, sabia? Neste episódio, os mestres do segmento econômico, Cláudio Bidarra e Valdomiro Garrah, deram dicas valiosas que vão te poupar anos de aprendizado.
No podcast ‘Notícia No Seu Tempo', confira em áudio as principais notícias da edição impressa do jornal ‘O Estado de S.Paulo' desta segunda-feira (22/04/2024): Ajustes feitos no Minha Casa, Minha Vida (MCMV) turbinaram o programa, que registrou aumento de 52% no número de unidades negociadas no primeiro trimestre, em comparação com 2023. As contratações consumiram R$ 30 bilhões do Fundo de Garantia do Tempo de Serviço (FGTS), mais do que o dobro do liberado entre janeiro e março do ano passado. Se continuar nesse ritmo, o MCMV precisará de acréscimo calculado entre R$ 25 bilhões e R$ 30 bilhões, sob risco de ter novos financiamentos congelados. Desde a metade de 2023, houve aumento do subsídio concedido às famílias, corte dos juros para financiamentos feitos por pessoas de baixa renda e elevação do teto do preço dos imóveis, permitindo que mais moradias fossem enquadradas no programa. O Ministério das Cidades sinalizou que deve reajustar o orçamento do MCMV. E mais: Economia: Haddad vai tentar barrar ‘pauta-bomba' Política: Bolsonaro elogia Musk e terceiriza ataques a Moraes em ato no Rio Metrópole: Vale do Tapajós, no Pará, vê avanço do narcogarimpo Internacional: Bombardeio de Israel em Rafah mata 18 pessoas em meio à ameaça de invasãoSee omnystudio.com/listener for privacy information.
Bernard Appy afirma que a decisão sobre o que será enviado para o Congresso no âmbito da reforma do imposto de renda será política. Governo avalia corte de imposto sobre produtos da chamada linha branca a pedido do Presidente Lula. Segundo o Valor, emenda ao projeto do novo arcabouço fiscal inclui a privatização de empresas estatais entre as ações que o governo federal pode tomar para equilibrar as contas públicas. Lula decidiu criar um grupo para reformulação da Funasa, sob pressão do Centrão e resistência da Casa Civil. Presidente Lula vetou a compra de energia solar excedente na medida provisória que recria MCMV. No cenário internacional, PPI na Alemanha bem acima do esperado na comparação mensal. No Japão, produção industrial de maio registra desempenho pior do que o esperado. Podcast Direto ao Ponto do Banco Modal com as principais notícias de Brasil e Internacional ao longo do overnight. Por Rafael Rondinelli, economista do Banco Modal.
Renato de Souza Correia é novo presidente da CBIC, a Câmera Brasileira da Indústria da Construção, entidade representativa do setor no Brasil. Nesse episódio, ele compartilha seus planos e prioridades para a entidade e para o setor, e comenta assuntos como a reforma tributária, déficit habitacional, funding, MCMV o aumento da participação e importância na economia.
00:00 Minha Casa Minha Vida (MCMV) Tem Novas Regras 00:29 Quem Vai Se Beneficiar Do Novo Minha Casa Minha Vida (MCMV) 01:02 Minha Casa Minha Vida vs Programa Casa Verde E Amarela 01:42 Como Funciona O Minha Casa Minha Vida (MCMV) 03:08 Quanto É O Subsídio (Desconto) Do Minha Casa Minha Vida? 03:55 Faixa 1, Faixa 2, Faixa 3 Do Minha Casa Minha Vida 04:24 Minha Casa Minha Vida Para Quem Ganha Até R$ 12 Mil Por Mês 05:00 Benefícios Para A Faixa 1, Faixa 2, Faixa 3 Do MCMV 05:55 Taxa De Juros Do Minha Casa Minha Vida Em 2023 07:07 Valor Do Imóvel Do Minha Casa Minha Vida Em 2023 08:32 Quem Vai Se Beneficiar Com O Minha Casa Minha Vida
No Morning Call STPK de hoje Henrique Esteter destaca a abertura positiva dos índices futuros norte-americanos, após a compra do Silicon Valley Bank. Na mesma direção, o petróleo, minério de ferro e o bitcoin também avançam nesta manhã. Dentre as principais notícias, as atenções se voltaram para: Adiamento de viagem de Lula à China pode antecipar anúncio do arcabouço fiscal para esta semana; Nos EUA, First Citizens fecha compra do Silicon Valley Bank (SVB); Governo estuda aumentar subsídio e zerar entrada para baixa renda no Minha Casa, Minha Vida.
Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2022.10.27.513735v1?rss=1 Authors: Petersen, J. D., Mekhedov, E., Kaur, S., Roberts, D. D., Zimmerberg, J. Abstract: Extracellular vesicles (EVs) released by resting endothelial cells support vascular homeostasis. To better understand endothelial cell EV biogenesis, we examined cultured human umbilical vein endothelial cells (HUVECs) prepared by rapid freezing, freeze-substitution, and serial thin section electron microscopy. Thin sections of HUVECs revealed clusters of membrane protrusions on the otherwise smooth cell surface. The protrusions contained membrane-bound organelles, including multivesicular bodies (MVBs), and appeared to be on the verge of pinching off to form microvesicles. Beyond cell peripheries, membrane-bound vesicles with internal MVBs were observed, and serial sections confirmed that they were not connected to cells. These observations are consistent with the notion that these multi-compartmented microvesicles (MCMVs) pinch-off from protrusions. Remarkably, omega figures formed by fusion of MVBs with the MCMV limiting membrane were directly observed, apparently caught in the act of releasing exosomes from the MCMV. In summary, MCMVs are a novel form of EV that bud from membrane protrusions on the HUVEC surface, contain MVBs and release exosomes. These observations suggest that exosomes can be harbored within and released from transiting microvesicles after departure from the parent cell, constituting a new site of exosome biogenesis occurring from endothelial and potentially additional cell types. Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC
Quais são as principais diferencas entre os Programas Casa Verde e Amarela e o MCMV
#010-Today we take a look at gene therapy and the possibilities for longevity with someone who is not only an expert in the field but who has also tested the longevity gene therapy on herself. Elizabeth Parrish is an entrepreneur and founder and CEO of Bio-Viva Sciences. She is a graduate of the University of Washington. Preprint: Telomerase reverse transcriptase (TERT) and follistatin (FST). Mouse cytomegalovirus (MCMV) carrying exogenous TERT or FST (MCMVTERT or MCMVFST) extended median lifespan by 41.4% and 32.5%, respectively. First report of CMV being used successfully as both an intranasal and injectable gene therapy system to extend longevity. Jaijyan, Dabbu Kumar, Anca Selariu, Ruth Cruz-Cosme, Mingming Tong, Shaomin Yang, George Church, David Kekich, et al. “New Intranasal and Injectable Gene Therapy for Healthy Life Extension.” Preprint. Cell Biology, June 26, 2021. https://doi.org/10.1101/2021.06.26.449305.https://www.biorxiv.org/content/10.1101/2021.06.26.449305v1.full.pdf https://bioviva-science.com/*** SUBSCRIBE TO ROBERT LUFKIN MD YOUTUBE CHANNEL HERE *** https://www.youtube.com/channel/UC2w2...*** CONNECT WITH ROBERT LUFKIN MD ON SOCIAL MEDIA ***Web: https://robertlufkinmd.com/Twitter:https://twitter.com/robertlufkinmdLinkedIn: https://www.linkedin.com/in/robertluf...*** THINGS I ACTUALLY USE FOR MY OWN HEALTH AND LONGEVITY *** [ROBERT LUFKIN MD AMAZON INFLUENCER STOREFRONT] https://www.amazon.com/shop/robertluf...*** GOT A SUGGESTION FOR A SHOW? ***Contact us at: https://robertlufkinmd.com/contact*** SPONSORSHIPS & BRANDS ***We do work with sponsors and brands. If you are interested in working with us and you have a product or service that is of value to the health industry please contact us at: https://robertlufkinmd.com/contactNOTE: This is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have. Never disregard professional medical advice or delay in seeking it because of something you have seen here. Robert Lufkin MD may at any time and at its sole discretion change or replace the information available on this channel. To the extent permitted by mandatory law, Robert Lufkin MD shall not be liable for any direct, incidental, consequential, indirect or punitive damages arising out of access to or use of any content available on this channel, including viruses, regardless of the accuracy or completeness of any such content.Disclaimer: We are ambassadors or affiliates for many of the brands we reference on the channel. ------------------------------------------------------------------------#longevity #wellness #antiaging #MR #lifestylemedicine #younger #artificial intelligence #biohacking #RobertLufkinMDSupport the show (https://robert-lufkin.mykajabi.com/membership)
On today's episode, Dylan opens the MCU up into the new and improved MCMV. He re-ranks his top MCU projects with the addition of Falcon and the Winter Soldier, Black Widow, and Loki. Where is the trailer for No Way Home?? Will we see Venom in Morbius? Will Loki ever get to see his friend Mobius again? Find out more on Refill & Chill. --- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app Support this podcast: https://anchor.fm/refillandchill/support
Como gerenciar e controlar a construção de obras de edifícios residenciais? Nosso #EP06 traz à mesa a Joyce Costa - Gestora de Planejamento e Controle de Custos de uma grande Construtora. Ela nos conta os indicadores e métodos construtivos mais comuns na Empresa que trabalha. Além disso, apresenta os principais desafios de obras de MCMV.
O governo federal publicou, no dia 31/7, novas regras de acesso às unidades habitacionais do programa Minha Casa Minha Vida Faixa 1, que na verdade foi interrompido e não será retomado. É sobre isso que o episódio #21 do A Cidade é Nossa, produzido por Raquel Rolnik, Amanda Mazzei e LabCidade fala.
O Imovelweb, convidou Gil Vasconcelos, Diretora de incorporação da empresa KAZZAS, do grupo KALLAS, Tiago Galdino CFO do IMOVELWEB e Tatiana Guelfi, Gerente nacional de novos do grupo Imovelweb, para bater um papo com nosso CEO, Leonardo Paz, sobre as inovações do mercado para o Segmento econômico, de como a era digital auxilia as vendas e iniciativas para as áreas comerciais, e também, sobre os reflexos dos Incentivos governamentais ao programa, trazendo juros baixos e mais linhas de créditos para o financiamento, como iniciativas para alavancar o mercado.
Bruno Cameschi criador do Instablog @corretordadepressao Analista de Sistemas de Formação e Corretor de Imóveis por profissão; já atuou no mercado imobiliário em duas ocasiões e na segunda veio pra ficar e está desde 2015 ajudando, centenas de famílias a adquirirem o seu primeiro Imóvel através do mercado MCMV. Já atuou como gestor de equipes, sócio proprietário de imobiliária e correspondente bancário e depois de uma reviravolta em sua Vida profissional criou o Case @corretordadepressao onde leva informação com uma pitada de Humor, cursos na área de corretagem e assessora corretores de várias regiões do Brasil a como engajar de uma maneira simples com seus clientes.
Neste episódio o Head de Negócios do Quero Meu Apê, Gustavo Motta conversa com Sergio Paulo, diretor comercial da MRV nas regionais da Grande São Paulo e Vale do Paraíba. Um bate papo muito rico sobre produtos, tecnologias, MCMV e mercado imobiliário. Ouça e compartilhe! OUÇA NO SPOTFY: https://open.spotify.com/show/0Ax7jlkAW9NbBy2DNvvfqv Acesse: https://www.mrv.com.br/ Saiba mais: TODA QUARTA ÀS 15H30 AULA AO VIVO PARA CORRETORES DE IMÓVEIS - https://materiais.unicpropaganda.com.br/live-quero-meu-ape Siga: @_queromeuape
O programa MCMV representa mais de 70% das vendas de produtos imobiliários no país, mas quais serão os próximos passos deste programa para 2020? Corretores e empresários poderão continuar apostando no MCMV? Neste episódio, Sylvia Bianco responde essas perguntas e mostra como o mercado crescerá cada vez mais com ele. | Envie sua participação através do e-mail: imobicast@grupozap.com
Nesta modalidade, existem faixas de renda contempladas. São elas: Famílias com renda de até R$ 2.600,00: Faixa 1,5: Você pode adquirir um imóvel cujo empreendimento é financiado pela Caixa com taxas de juros de apenas 4,5% ao ano e até 30 anos para pagar e subsídios de até 36.945,00 mil reais. Famílias com renda de até R$ 4.000,00: FAIXA 2: Se sua família tem renda bruta de até R$ 4.000,00, você se encaixa nesta faixa do Programa Minha Casa Minha Vida e pode ter subsídios de até R$ 23.200,00. LEMBRANDO QUE CADA REGIÃO TEM O SEU VALOR DE SUBSIDIO.
Instagram: Instagram.com/capimoveis_ e Instagram.com/maiketerres Facebook: fb.com/corretoresdealtaperformance Qual é a melhor? A resposta é: Depende! Vamos entender melhor como elas funcionam na prática, SAC significa sistema de amortização constante é o modelo decrescente de parcela, ou seja, ela começa num valor maior e vai diminuindo ano após ano. Essa tabela é preferida por quem acha que consegue pagar uma parcela maior hoje do que vai poder pagar no futuro. Nesse sistema o juros total do valor financiado é distribuído de forma onde sejam nas primeiras parcelas a maior incidência do juros. Já o sistema PRICE é a forma de amortização onde a parcela é linear, onde o juros total do valor financiado é distribuído igualmente entre todas as parcelas, então essa tabela é preferida principalmente pra quem tem uma renda menor e pra quem acha que vai ter uma evolução financeira ao longo da carreira, o que normalmente acontece, pois se tratando de um financiamento de longo prazo que é o MCMV, que de praxe é financiado em 30 anos, é impossível que o um trabalhador fique os 30 anos recebendo o mesmo valor de renda, então a parcela que hoje compromete 30% da renda dele, amanhã esse percentual vai cair, mas a parcela se mantém na mesma linearidade. Então qual delas é mais vantajosa? Depende, depende da conjuntura financeira do cliente. Matematicamente falando, as duas formas de pagamento são idênticas, elas se equivalem. Só o teu cliente vai dizer qual é mais atrativa pra ele, mas é tua função saber explicar.
Instagram: Instagram.com/capimoveis_ e Instagram.com/maiketerres Facebook: fb.com/corretoresdealtaperformance Pra entender melhor como funcionam as taxas de juros do MCMV, a gente precisa como o programa funciona, basicamente é assim: Se a renda do cliente é maior, o governo entende que ele deve ter uma taxa de juros maior, portanto, deve pagar mais caro, simplesmente porque ele pode. Então quem tem uma renda menor, deve pagar menos pelo financiamento. Eu concordo com essa política, não é justo um trabalhador com renda mensal de 2 mil reais pagar o mesmo que um trabalhador com renda de 6 mil reais. Então vamos lá: Primeira regra: se o trabalhador já contribuiu pelo menos 3 anos em regime CLT, ou seja, se ele trabalhou pelo menos 3 anos de carteira assinada ao longo da vida, ele tem direito a taxa redutora, que é um desconto de meio por cento na taxa de juros. Ele tem direito a isso, porque o recurso do MCMV vem do FGTS, ou seja, o valor que os empregadores depositam em benefício ao empregado no brasil inteiro, fica retido e esse valor é usado pra financiar o MCMV, então quem tem esse tempo de contribuição, é beneficiado. Beleza, a gente já entendeu que quem trabalha de carteira assinada há pelo menos 3 anos tem esse desconto, agora vamos entender como essa taxa de juros aumenta em relação a renda: Vou citar agora as alterações. Até R$ 2.600,00 a taxa de juros aplicada é 5,5% ao ano (lembrando que essa é a taxa base, se tiver os 3 anos sob regime CLT, a taxa fica em 5% ao ano, tendo aquele desconto de meio por cento que eu citei agora pouco) De R$ 2.600,01 até R$ 3.000,00 a taxa de juros aplicada é 6% ao ano. de R$ 3.000,01 até R$ 4.000,00 a taxa de juros aplicada é de 7% ao ano. De R$ 4.000,01 até R$ 7.000,00 a taxa de juros aplicada é de 8,16% ao ano Volto a frisar, todas essas taxas, são as taxas base, se o cliente tiver os 3 anos de carteira assinada ao longo da vida, ele tem meio por cento de desconto em cada uma delas.
Instagram: Instagram.com/capimoveis_ e Instagram.com/maiketerres Facebook: fb.com/corretoresdealtaperformance Existem 3 faixas no programa habitacional do governo, faixa 1 que é a faixa destinada ao auxílio social que a prefeitura presta pro município, onde o corretor de imóveis não tem atuação, porque essas casas não podem ser comercializadas. E como a gente não pode vender essas casas, não entraremos em detalhes na Faixa 1. Para classificação na Faixa 1,5, 2 e 3 são levados em consideração alguns aspectos. Valor do imóvel e perfil financeiro do cliente. Para FAIXA 1,5 na região metropolitana, o imóvel pode custar até 128 mil reais. Em Porto Alegre até 133 mil reais. Além de ser a compra do primeiro imóvel, o cliente precisa ganhar até no máximo R$ 2.600,00 por mês de renda bruta, nessa Faixa a taxa de juros é 4,5% ao ano e o subsídio pode chegar até 36.945 na região metropolitana e 42.220,00 em Porto Alegre. Para FAIXA 2 E 3 na região metropolitana, o imóvel pode custar até 190 mil reais, em Porto Alegre o valor do imóvel pode chegar até 215 mil reais. Essa faixa do programa é pra todos aqueles que ganham até 7 mil reais ao mês, e a taxa de juros e o subsídio vão variar de acordo com a renda. A taxa de juros vai de 5 até 7,66% ao ano. E é a menor da taxa de juros do mercado imobiliário brasileiro. O subsídio pode chegar até 23.200 reais na região metropolitana e em Porto Alegre pode chegar a 26.365 reais.
Com apenas 5 anos no mercado imobiliário Yasmin Andrade se apaixonou pelo segmento econômico e se tornou rapidamente uma corretora de imóveis especialista no segmento do Minha Casa Minha Vida. Natural de Aracaju, Yasmin pretende transformar o atendimento do MCMV trabalhando sempre com muita transparência e passando confiança para os seus clientes.
17- LeiautCast - Como Levantar Dinheiro E Alavancar Recursos Sem Dar Entrada (MCMV) by Diego Carielo
Victor Souza Gomes, diretor da Souza Gomes Imóveis, tira dúvidas dos moradores de Juiz de Fora sobre o mercado imobiliário na Rádio Cidade FM. Dessa vez o tema é "Se eu vender um imóvel financiado pelo Minha Casa Minha Vida, eu consigo comprar outro também pelo MCMV?". Ouça agora e não deixe de seguir a playlist para acompanhar as novidades! www.souzagomes.com.br
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 16/19
Wed, 16 Oct 2013 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/17709/ https://edoc.ub.uni-muenchen.de/17709/1/Pogoda_Madlen.pdf Pogoda, Madlen ddc:610, ddc:
Background: The MCMV major immediate early promoter/enhancer (MIEP) is a bidirectional promoter that drives the expression of the three immediate early viral genes, namely ie1, ie2 and ie3. The regulation of their expression is intensively studied, but still incompletely understood. Methods: We constructed a reporter MCMV, (MCMV-MIEPr) expressing YFP and tdTomato under the control of the MIEP as proxies of ie1 and ie2, respectively. Moreover, we generated a liver sinusoidal endothelial cell line (LSEC-uniLT) where cycling is dependent on doxycycline. We used these novel tools to study the kinetics of MIEP-driven gene expression in the context of infection and at the single cell level by flow cytometry and by live imaging of proliferating and G(0)-arrested cells. Results: MCMV replicated to higher titers in G(0)-arrested LSEC, and cycling cells showed less cytopathic effect or YFP and tdTomato expression at 5 days post infection. In the first 24 h post infection, however, there was no difference in MIEP activity in cycling or G(0)-arrested cells, although we could observe different profiles of MIEP gene expression in different cell types, like LSECs, fibroblasts or macrophages. We monitored infected LSEC-uniLT in G(0) by time lapse microscopy over five days and noticed that most cells survived infection for at least 96 h, arguing that quick lysis of infected cells could not account for the spread of the virus. Interestingly, we noticed a strong correlation between the ratio of median YFP and tdTomato expression and length of survival of infected cells. Conclusion: By means of our newly developed genetic tools, we showed that the expression pattern of MCMV IE1 and IE2 genes differs between macrophages, endothelial cells and fibroblasts. Substantial and cell-cycle independent differences in the ie1 and ie2 transcription could also be observed within individual cells of the same population, and marked ie2 gene expression was associated with longer survival of the infected cells.
During viral infections cellular gene expression is subject to rapid alterations induced by both viral and antiviral mechanisms. In this study, we applied metabolic labeling of newly transcribed RNA with 4-thiouridine (4sU-tagging) to dissect the real-time kinetics of cellular and viral transcriptional activity during lytic murine cytomegalovirus (MCMV) infection. Microarray profiling on newly transcribed RNA obtained at different times during the first six hours of MCMV infection revealed discrete functional clusters of cellular genes regulated with distinct kinetics at surprising temporal resolution. Immediately upon virus entry, a cluster of NF-κB- and interferon-regulated genes was induced. Rapid viral counter-regulation of this coincided with a very transient DNA-damage response, followed by a delayed ER-stress response. Rapid counter-regulation of all three clusters indicated the involvement of novel viral regulators targeting these pathways. In addition, down-regulation of two clusters involved in cell-differentiation (rapid repression) and cell-cycle (delayed repression) was observed. Promoter analysis revealed all five clusters to be associated with distinct transcription factors, of which NF-κB and c-Myc were validated to precisely match the respective transcriptional changes observed in newly transcribed RNA. 4sU-tagging also allowed us to study the real-time kinetics of viral gene expression in the absence of any interfering virion-associated-RNA. Both qRT-PCR and next-generation sequencing demonstrated a sharp peak of viral gene expression during the first two hours of infection including transcription of immediate-early, early and even well characterized late genes. Interestingly, this was subject to rapid gene silencing by 5-6 hours post infection. Despite the rapid increase in viral DNA load during viral DNA replication, transcriptional activity of some viral genes remained remarkably constant until late-stage infection, or was subject to further continuous decline. In summary, this study pioneers real-time transcriptional analysis during a lytic herpesvirus infection and highlights numerous novel regulatory aspects of virus-host-cell interaction.
Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3'-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3'-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3'-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo.
Fluorescent tagging of viral particles by genetic means enables the study of virus dynamics in living cells. However, the study of beta-herpesvirus entry and morphogenesis by this method is currently limited. This is due to the lack of replication competent, capsid-tagged fluorescent viruses. Here, we report on viable recombinant MCMVs carrying ectopic insertions of the small capsid protein (SCP) fused to fluorescent proteins (FPs). The FPs were inserted into an internal position which allowed the production of viable, fluorescently labeled cytomegaloviruses, which replicated with wild type kinetics in cell culture. Fluorescent particles were readily detectable by several methods. Moreover, in a spread assay, labeled capsids accumulated around the nucleus of the newly infected cells without any detectable viral gene expression suggesting normal entry and particle trafficking. These recombinants were used to record particle dynamics by live-cell microscopy during MCMV egress with high spatial as well as temporal resolution. From the resulting tracks we obtained not only mean track velocities but also their mean square displacements and diffusion coefficients. With this key information, we were able to describe particle behavior at high detail and discriminate between particle tracks exhibiting directed movement and tracks in which particles exhibited free or anomalous diffusion.
The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system.
Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC- and non-EC-derived virus originating from infected Tie2-cre(+) heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre(+) transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-derived virus from infected Tie2-cre(+) recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination.
During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
The M94 gene of murine cytomegalovirus (MCMV) is one of the about 40 core genes of the subfamily of β-Herpesvirinae with unknown function. MCMV is utilised as an in vivo model for studying human cytomegalovirus (HCMV) due to the strict species specifity of HCMV and major homologies to MCMV. HCMV is an important human pathogen with worldwide distribution. Although infection of the immune competent host is usually clinically silent, infection of the foetus and the newborn causes severe organ damage and infection of immunocompromised patients induces life-threatening disease. M94 has not been studied intensely as a single gene before, but studies on its homologues in other Herpesviridae demonstrated expression as true late gene, presence in the virion, interaction of UL94 and UL99 in HCMV and capsid binding in α-Herpesvirinae. While UL94 in HCMV is essential, M94 homologues in α-Herpesvirinae are not essential, indicating an essential function of M94 conserved in β-Herpesvirinae but lost in α-Herpesvirinae. For the identification of this essential function, a library of random mutants was generated by a modified Tn7 transposon mutagenesis. The modifications in the transposon mutagenesis produced a library of high diversity and wide coverage containing 32,000 primary clones including stop and insertion mutants. The analysis of 613 clones by sequencing resulted in 399 unique mutants containing a correct 15 base pair (bp) insertion in M94. 116 stop and insertion mutants were individually reinserted into the viral genome and studied in the viral context. The primary analysis showed the ability of certain mutants to complement the M94 deletion, thereby identifying the essential regions in the M94 protein. Secondly, the M94 mutants were re-inserted as second gene and analysed for their inhibitory capacity of the M94 wild type (wt) functions to identify dominant negative (DN) mutants. The inhibitory mutants found were then verified as DN mutants by regulated expression in the virus context and by analysis of their specific phenotype induced by overexpression. Further analysis of the DN mutant in comparison to a M94 deletion mutant revealed no effect of M94 in viral cleavage-packaging, despite previous publications. Additional analysis showed a block in secondary envelopment for both the DN mutant and the deletion mutant and the determination of the spread deficient phenotype of the M94 deletion virus. Altogether these results constitute a new model for secondary envelopment in β-Herpesvirinae.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Herpesvirus infections are usually asymptomatic or associated with mild symptoms. Fatal diseases are seen in immune suppressed and immune incompetent individuals. Although herpesviruses are of emerging medical importance nowadays an infection only can be controlled by chemotherapeutics, which target viral DNA replication and cause negative side effects. Essential steps of herpesvirus morphogenesis might indicate new targets for interference. The export of the 110 nm large herpesvirus nucleocapsid from the cell nucleus is a logistic problem, because such a cargo exceeds the size tolerated by the nuclear pore complex. Two conserved herpes simplex virus 1 proteins, UL31 and UL34, form a complex at the inner nuclear membrane and govern nuclear egress of herpesvirus nucleocapsids. In mouse cytomegalovirus (MCMV), a member of the beta-herpesvirus subfamily, the homologous proteins M53/p38 and M50/p35 form the nuclear egress complex (NEC). The interaction of these proteins is essential for the virus and might serve as a potential drug target. Here we describe a saturating random mutagenesis procedure for the UL31 homologue M53/p38. From a total of 498 individual mutants 72 were reinserted into the genome to test virus complementation. The analysis revealed that the N- terminus of M53/p38 provides the nuclear localization signal (NLS). The M53/p38 binding site for the NEC partner M50/p35 was located to aa 112-137. No single aa exchange for alanine could destroy NEC formation but virus attenuation revealed a major role for the aa K128, Y129, and L130. Further, the lethal phenotype of several insertion and stop mutants indicated the functional importance of the C-terminus of the protein, which might serve to construct dominant negative mutants. The interference of herpesvirus proteins with unknown cellular functions is of emerging interest. MCMV nucleocapsid formation is followed by a complex process of nucleocapsid transitions through cellular membrane barriers. The re-organization of the nuclear architecture by viral proteins probably involves the interaction with host cell proteins. Here, we found that the NEC of MCMV interacts with an important inner nuclear membrane protein complex, the lamin B receptor, which controls nuclear membrane stability. Thus, herpesviruses might target major cellular principles that govern nuclear integrity.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Human cytomegalovirus is a ubiquitous human pathogen, causing disease in the immunocompromised host. Most of its ORFs have not been well studied due to a limited host range and slow growth of HCMV in cultured cells. MCMV, a natural pathogen isolated from mice, constitutes the most amenable animal model for human β-herpesviruses. To date most of its approximately 200 genes have an unknown function. For the analysis of these genes straightforward mutagenesis methods are necessary. With the cloning of herpesviruses as an infectious bacterial artificial chromosome a novel approach of mutagenesis has been established. Herpesviruses are now accessible to the tools of bacterial genetics. Since then site-directed mutagenesis by homologous recombination using linear DNA fragments and random transposon BAC mutagenesis have been introduced to delineate the functions of viral ORFs. The purpose of this work was to analyze two members of the US 22 gene homolog family, genes m139 and m142, with site-directed mutagenesis. Members of this family are conserved in all herpesviruses and mostly have unknown functions. Transposon mutants showed a macrophage phenotype for m139, whereas m142 was possibly essential for viral replication. Genes m139-m141 and m142-m143 have complex transcriptional regions and have 3´-coterminal transcripts. The insertion of a 3-kb large transposon could destabilize the upstream transcripts. Site-directed mutants of genes m139 and m142, where only the start codon is deleted, should not influence transcript stability and permit confirmation of the results obtained with transposon mutagenesis. Targeted mutants of MCMV BAC were constructed for ORF m139 (ΔATG-m139) and m142 (ΔATG-m142, ΔATG-m142/FRT) by homologous recombination using linear DNA fragments. Mutant ΔATG-m139 showed attenuated growth in peritoneal macrophages. This mutant, with the first two ATGs deleted, expressed a truncated protein of 61 kDa. Gene m139 seems to act in cooperation with genes m140 and m141 on the protein level. The site-directed MCMV BAC mutant of ORF m142 on the other hand could not reconstitute viral progeny in eukaryotic cells. The ORF of m142 was inserted an ectopic position and viral progeny was reconstituted with this revertant. Thus, it was shown that gene m142 is essential for viral replication. Further analysis of nonessential and essential genes of cytomegalovirus will be needed to understand CMV viral pathology and to develop vaccines for herpesvirus infection and vectors for gene therapy.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Herpesviruses cause highly prevalent infections associated with usually mild symptoms resulting in life long latency. However, they can provoke fatal disease in susceptible individuals such as immunocompromised patients either in the context of primary infection or after reactivation from latency. Despite of their emerging medical importance, herpesvirus infections can so far only be controlled by antiviral therapy targeting viral DNA replication, accompanied with side effects and occurrence of resistant strains. In this work, a novel platform for drug discovery was established that is based on a protein complementation assay (PCA), which can be used to study viral protein-protein interactions in a simple cell based assay. In a PCA two inactive fragments of a reporter enzyme are fused to two interacting proteins. Interaction of the proteins leads to proximity of the enzyme fragments, followed by reconstitution of the reporter enzyme activity. Members of the UL34 and UL31 families are conserved herpesvirus proteins. They interact with one another forming the nuclear egress complex (NEC), which is essential for the export of viral capsids from the cell nucleus. This crucial protein-protein interaction might serve as a potential drug target for anti-herpesvirus chemotherapy. In this work the mutual binding sites of the two proteins were localized and studied for their conservation. A PCA was established for M50 and M53 – the NEC proteins of the murine cytomegalovirus (MCMV) - by fusion of the N- and C-terminal part of the TEM-1 ß-lactamase of E. coli. The assay was validated and applied to representative members of the three herpesvirus subfamilies. Cross-complementation assays showed that partners derived from the same subfamily can replace each other in the PCA, however, homologues from different subfamilies can not. This cross-complementation reflects the in vivo situation: the human cytomegalovirus (HCMV), but not the HSV-1 or PrV homologues are able to rescue the M50 or M53 null phenotype in the viral context of MCMV. The lack of complementation between the subfamilies is due to their diverged binding sites, which are located in all cases within the first conserved region of the UL31 family proteins. The study of the binding site in UL34 family members revealed a bipartite binding motif. With the aim of a future high-throughput inhibitor screen an in vitro NEC-PCA was established using purified fusion proteins of HCMV.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Das humane Zytomegalievirus (HCMV) ist ein speziesspezifisches, humanpathogenes Herpesvirus. Ein etabliertes System zur Untersuchung der CMV-Infektion in vivo ist das murine Zytomegalievirus (MCMV). Das 230 kb große Genom von MCMV liegt seit kurzem als bakterielles artifizielles Chromosom (BAC) kloniert vor. Damit eröffnen sich neue Strategien für gentechnologische Untersuchungen, die Gegenstand dieser Dissertation sind: Mit homologer Rekombination in E. coli und mit Transposonmutagenese wurden Insertionsmutanten und Deletionsmutanten des MCMV hergestellt und in NIH 3T3 Fibroblasten in vitro sowie BALB/c Mäusen in vivo charakterisiert. Insertionsmutanten: Zwei verschiedene sezernierbare und quantitativ nachweisbare Markergene (HBsAg; SEAP) wurden jeweils so in das MCMV-Genom inseriert, dass sie im Rahmen einer Infektion in vitro wie auch in vivo zur Expression kommen. Im Versuchstier korrelierte die Menge der in das Serum sezernierten Marker hochgradig mit mit den Virustitern in Milz und Leber. Die Markersekrtetion wurde mit einer hierfür neu etablierten quantitativen PCR-Methode (TaqMan™) bezüglich der Sensitivität verglichen. Bei immunkompetenten Mäusen war SEAP – vor der PCR und der Virusbestimmung - das empfindlichste Nachweisverfahren. Die entwickelten Methoden erlauben erstmals die longitudinale Beobachtung einer MCMV-Infektion in ein- und- demselben Versuchstier. Deletionsmutanten: Das Wachstumsverhalten von 576 MCMV-Transposon-Mutanten in Fibroblasten wurde analysiert. Identifiziert wurden 19 Mutanten mit wachstumsdefizitären Phänotypen, denen Veränderungen von sechs offenen Leserahmen (ORF) zugrunde lagen. Eine Trunkierung eines dieser bisher nicht näher definierten, offensichtlich nicht essentielle Gene, bewirkt ein signifikantes, quantifizierbares Wachstumsdefizit. Mit Hilfe von elektronen-mikroskopischen Aufnahmen konnte gezeigt werden, dass bei MCMV die Destruktion des Leserahmens M76 ein Exportdefizit aus dem Zellkern zur Folge hat.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Aufgrund der Zunahme an Organ- und Knochenmarkstransplantationen und der damit verbundenen Immunsuppression bzw. immunsuppressiven Therapie sowie der zunehmenden Zahl an AIDS-Patienten ist das Zytomegalovirus (CMV) als Pathogen in den letzten zwanzig Jahren trotz der Einführung wirksamer antiviraler Medikamente bis heute von großer klinischer Bedeutung. Während bei immunkompetenten Personen eine primäre CMV-Infektion durch das Immunsystem kontrolliert werden kann, führt eine Primärinfektion oder eine Reaktivierung einer latenten CMV-Infektion in immunsupprimierten Patienten zu lebensbedrohlichen Komplikationen. Die Pathogenese einer CMV-Infektion wird entscheidend von der Qualität der antiviralen Immunantwort des Wirtes beeinflusst und Kenntnisse über die Interaktion von CMV mit dem Immunsystem sind für die Prophylaxe und Behandlung einer CMV-Infektion von großer Bedeutung. Dendritische Zellen (DCs) sind die wichtigsten Antigen-präsentierenden Zellen des Immunsystems und spielen bei der Initiierung einer antiviralen Immunantwort eine zentrale Rolle. Die Stimulation von naiven T-Zellen durch DCs und die Auslösung einer zytotoxischen T-Lymphozyten-Antwort trägt entscheidend zur Eliminierung von viral-infizierten Zellen bei. Die Interaktion des Zytomegalovirus mit dendritischen Zellen gibt dem Virus eine Möglichkeit, seine Eliminierung durch das Immunsystem des Wirtes entscheidend zu beeinflussen. Zur Identifikation von Zielzellen für latente und lytische Infektionen durch MCMV und zur Untersuchung der Auswirkungen einer MCMV-Infektion auf den Phänotyp und die Funktion der Zellen wurde die murine hämatopoetische Stammzelllinie FDCP-Mix als Modellsystem verwendet. Definierte Differenzierungsstadien der Zellen entlang der dendritischen Reihe wurden hierzu mit einer GFP-exprimierenden MCMV-Mutante infiziert. Während undifferenzierte FDCP-Mix-Zellen und von FDCP-Mix-Zellen abgeleitete reife DCs nicht produktiv infizierbar waren, setzten unreife DCs infektiöse Virusnachkommen frei. In reifen DCs wurden nur virale Proteine der sehr frühen und frühen Phase der viralen Genexpression synthetisiert, während späte Genprodukte nicht nachgewiesen werden konnten. Die Infektion unreifer und reifer DCs resultierte anfänglich in deren Aktivierung, erkennbar an der vorübergehend verstärkten Expression der Oberflächenmoleküle CD80, CD86, CD40, MHC-Klasse-I und Klasse-II. Die verstärkte Expression der MHC- und ko-stimulatorischen Moleküle auf reifen DCs einige Stunden nach Infektion spiegelte sich in einer gesteigerten Stimulation naiver autologer T-Zellen durch infizierte DCs wider. In der späten Phase der Infektion war die Aktivierung von autologen T-Zellen beeinträchtigt. Dies korrelierte mit der reduzierten Oberflächenexpression der MHC- und ko-stimulatorischen Moleküle auf infizierten reifen DCs. Allogene T-Zellen konnten durch MCMV-infizierte DCs weder in der frühen noch in der späten Phase der Infektion stimuliert werden. Diese Ergebnisse sprechen dafür, dass DCs im Laufe einer MCMV-Infektion mehrere Rollen spielen: (1) unreife DCs produzieren MCMV-Nachkommen und können so zur Verbreitung des Virus im Wirt beitragen; (2) in einem frühen Stadium der Infektion aktivieren DCs naive T-Zellen und initiieren damit eine antivirale Immunantwort, die einer Ausbreitung der viralen Infektion entgegenwirkt. (3) Zu einem späteren Zeitpunkt der Infektion ist die Stimulation der T-Zell-Proliferation durch MCMV-infizierte DCs beeinträchtigt. Dies ist einer der Mechanismen, welche die Persistenz des Virus in seinem Wirt ermöglichen. Unabhängig vom Zeitpunkt der Infektion ist bei der allogenen Transplantation die Induktion der T-Zell-Antwort immer beeinträchtigt. Die Unfähigkeit der CMV-infizierten DCs, naive allogene T-Zellen zu stimulieren, trägt so zu einer reduzierten antiviralen Kontrolle bei, was CMV-verbundene Krankheiten nach allogenen Knochenmarkstransplantationen begünstigt und gravierende gesundheitliche Probleme zur Folge hat.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Zytomegalievirus der Maus (MCMV) zählt zur Familie der Herpesviridae und hat verschiedene Strategien entwickelt, um dem Immunsystem des Wirts zu entgehen. Einer dieser Mechanismen beeinflusst die Antigenpräsentation durch MHC-Klasse-I-Moleküle und wird durch das virale Genprodukt von m152 vermittelt. Dieses kodiert für ein Glykoprotein von 40 kDa Größe und wird in dieser Arbeit m152/gp40 genannt. M152/gp40 blockiert den Transport von MHC-Klasse-I-Molekülen zur Zelloberfläche und erkennt nur Moleküle der Maus, nicht aber des Menschen. Diese speziesspezifische Erkennung von MHC-Klasse-IMolekülen ist bisher nur für m152/gp40 bekannt und es wurden daher in der vorliegenden Arbeit Eigenschaften von MHC-Klasse-I-Molekülen untersucht, welche diese Speziesspezifität begründen. Es konnte gezeigt werden, dass die Spezies des gebundenen ß2- Mikroglobulins, sowie die Anzahl der Glykosylierungen der schweren Kette keinen Einfluss auf die Erkennung von MHC-Klasse-I-Antigenen durch m152/gp40 haben. Die Eigenschaft von m152/gp40, MHC-Klasse-I-Moleküle des Menschen nicht zurückzuhalten, wurde genutzt, um mit Hilfe chimärer MHC-Klasse-I-Moleküle den Bereich, der von m152/gp40 erkannt wird, einzugrenzen. Dieser liegt hauptsächlich in der a1-Domäne, weil die a2- Domäne nur eine schwache Retention bewirkt. Zwar können MHC-Klasse-I-Moleküle, die nur den luminalen Bereich umfassen, von m152/gp40 zurückgehalten werden, doch akkumulieren diese im ER und nicht im „ER-Golgi intermediate compartment“ (ERGIC) / cis-Golgi, wie Wildtyp-H-2Kb. Es wird diskutiert, ob dies ein Hinweis auf einen aktiven Transportmechanismus von MHC-Klasse-I-Molekülen aus dem ER ins ERGIC ist. Neben der Untersuchung der Funktion von m152/gp40 aufgrund der Expression des Gens allein, wurde der Einfluss der drei viralen Genprodukte von m04, m06 und m152 auf die MHC-Klasse-I-Oberflächenexpression mit Hilfe von MCMV-Deletionsmutanten untersucht. Anhand der Analyse der Oberflächenexpression verschiedener MHC-Klasse-I-Allele nach Infektion mit Wildtyp-MCMV oder MCMV-Mutanten konnte gezeigt werden, dass in MCMV nur m06/gp48 und m152/gp40 die Oberflächenexpression von MHC-Klasse-IMolekülen reduzieren. Von den untersuchten Allelen werden H-2Kb und H-2Kk nur schwach zurückgehalten. Es wurde gezeigt, dass dies auf die Funktion von m04/gp34 zurückzuführen ist, wobei m04/gp34 generell die Funktion von m152/gp40 und kaum die Funktion von m06/gp48 behindert. Für weitere Allele konnte gezeigt werden, dass diese unterschiedlich stark von den einzelnen viralen Proteinen zurückgehalten werden. So wird H-2Dd nur von m06/gp48 und m152/gp40 gemeinsam gut zurückgehalten, wohingegen H-2Db von m152/gp40 alleine gut zurückgehalten wird. Eine mögliche Rolle der unterschiedlichen Oberflächenexpression von MHC-Klasse-I-Allelen nach MCMV-Infektion für die Inhibition von NK-Zellen wird diskutiert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Cytomegaloviren, die, wie alle Herpesviren, persistente Infektionen in ihren Wirten etablieren, haben Mechanismen entwickelt, um einer Elimination durch das Immunsystem zu entgehen. Alle bisher untersuchten Herpesviren interferieren mit der MHC-Klasse-I-restringierten Antigenpräsentation. Murines Cytomegalovirus verfügt neben der m152-vermittelten Retention von MHC-Klasse-I-Molekülen im ERGIC/cis-Golgi über weitere Mechanismen, den Transport von MHC-Klasse-I-Molekülen an die Plasmamembran zu verhindern (Thäle et al., 1995; Ziegler et al., 1997). In der vorliegenden Arbeit konnte das MCMV Glykoprotein gp48, welches durch das in der early Phase der Infektion exprimierte Gen m06 kodiert wird, als weiteres MHC-Klasse-I-reaktives Protein identifiziert werden. Zellen, die das Gen m06 stabil exprimieren, weisen eine stark verminderte Oberflächenexpression von MHC-Klasse-I-Molekülen auf, und sind dadurch in ihrer Fähigkeit, Peptide gegenüber CD8+ cytotoxischen T-Zellen zu präsentieren, beschränkt. Das Typ I Transmembranprotein gp48 bindet im Endoplasmatischen Retikulum (ER) an neu-synthetisierte b2-Mikroglobulin-assoziierte MHC-Klasse-I-Moleküle, wobei eine Peptidbeladung der Komplexe nicht erforderlich ist. Die gp48/MHC-Klasse-I-Komplexe verlassen das ER und werden durch den Golgi-Apparat in ein Lamp-1+ Kompartment, höchst wahrscheinlich in die Lysosomen, transportiert und dort rasch abgebaut. Die Degradation ist sensitiv gegenüber verschiedenen endosomalen/lysosomalen Inhibitoren. Eine Hemmung führt zur Akkumulation von komplex glykosylierten MHC-Klasse-I- und gp48 Molekülen, die sich resistent gegenüber Endoglykosidase H verhalten. Gp48 Moleküle, welche nicht mit MHC-Klasse-I-Komplexen assoziiert sind, werden nicht in die Lysosomen transportiert, sondern durch das Proteasom abgebaut. Das virale Glykoprotein gp48 kann in eine MHC-Klasse-I-bindende Domäne und eine Transportdomäne unterteilt werden. Der gerichtete Transport der MHC-Klasse-I/gp48- Komplexe in die Lysosomen wird durch ein di-Leucin-Motiv im cytoplasmatischen Anteil von gp48 vermittelt. Eine Deletion des gesamten cytoplasmatischen Anteils bzw. eine Mutation des Membran-proximalen di-Leucin-Motivs führt zur Wiederherstellung der MHC-Klasse-I Oberflächenexpression, ohne die gp48/MHC-Klasse-I-Assoziation zu beeinflussen. Für die Bindung von gp48 an MHC-Klasse-I-Moleküle ist die luminale Domäne ausreichend, sofern diese in membranverankerter Form vorliegt. Die direkte Bindung an MHC-Klasse-I-Moleküle über die luminale Domäne von MCMV gp48 und der gerichtete Transport, vermittelt über ein di-Leucin-Motiv im cytoplasmatischen Anteil von gp48, stellt einen neuartigen viralen Immunevasionsmechanismus dar, die MHC-Klasse-Irestringierte Antigenpräsentation zu verhindern.
We have shown previously that the antiviral function of CD4+ T lymphocytes against murine cytomegalovirus (MCMV) is associated with the release of interferon- (IFN-). We now demonstrate that IFN- and tumour necrosis factor alpha (TNF-) display synergism in their antiviral activity. As little as 2 ng/ml of IFN- and TNF- reduced the virus yield by about three orders of magnitude. There was no effect on immediate early (IE) and early (E) gene expression as far as the candidate genes IE1, E1 and those encoding the major DNA-binding protein and the DNA polymerase were concerned. Late gene transcription, assayed by the candidate genes encoding glycoprotein B and the MCMV homologue of ICP 18.5, was blocked and MCMV DNA replication was found to be reduced but not halted. The most prominent finding of the cytokine effect, seen by electron microscopy, was an alteration of nucleocapsid formation. Altogether, the synergism is multifaceted and acts at more than one stage during viral morphogenesis. Because the cytokines clearly do not act at an early stage of infection we conclude that the mode of cytokine activity differs between alpha- and betaherpesviruses.
The sequence of the gene encoding glycoprotein H (gH) of murine cytomegalovirus (MCMV) strain Smith was determined and compared with the sequence of the gH of MCMV strain K181. Transcriptional analysis showed that gH is encoded by a large mRNA of 5.0 kb, which is synthesized late in infection. A recombinant vaccinia virus expressing the MCMV gH open reading frame was constructed (Vac-gH). Anti-MCMV serum precipitated a protein of 87K from Vac-gH-infected cells. Reactivity with a monoclonal antibody showed the identity of the MCMV gH with a 87K envelope glycoprotein described previously by Loh and Qualtiere. Immunization of mice with the Vac-gH recombinant gave rise to an anti-gH serum, which neutralized MCMV without complement in vitro.
An immediate-early protein of murine cytomegalovirus (MCMV), pp89, elicits an immunodominant and protective major histocompatibility complex (MHC) class I Ld-restricted CD8+ T-lymphocyte response. Remarkably, presentation of the naturally processed peptide of pp89, the nonapeptide YPHFMPTNL, is abolished during permissive MCMV infection in vitro. This defect in pp89 presentation is due to the expression of MCMV early gene functions that specifically block the transport of peptide-charged MHC class I complexes to the cell surface (M. Del Val, H. Hengel, H. Häcker, U. Hartlaub, T. Ruppert, P. Lucin, and U. H. Koszinowski, J. Exp. Med. 176:729-738, 1992). Here, we demonstrate that MCMV-specific CD8+ T lymphocytes can reconstitute pp89 presentation in a parakrine fashion. The lymphocytes mediate the restoration of antigen presentation by MCMV-infected cells by releasing gamma interferon (IFN-gamma). IFN-gamma has no effect on synthesis and stability of the viral antigen pp89 nor does it interfere with the expression of viral early genes and their inhibitory effect on MHC class I molecular maturation. IFN-gamma results in a 25-fold increase in the synthesis of MHC class I molecules and a similar increase in the abundance of pp89-derived peptide. Many of the MHC molecules remain retained by the viral effect, but a surplus of MHC molecules escapes the effect and provides the effective surface presentation of the peptide. Adoptive cell transfer studies demonstrate the IFN-gamma dependence of CD8+ T-lymphocyte function in vivo. Altogether, these data reconcile the paradoxical findings of an impaired pp89 presentation in vitro in parallel with pp89-specific CD8+ T-cell protection in vivo. The results also imply a role of IFN-gamma in the T-lymphocyte-mediated control of cytomegalovirus infection. The known propensity of cytomegalovirus to cause serious disease in the immunocompromised host is discussed in the light of these findings
Several herpesviruses, including cytomegalovirus, induce receptors for the Fc domain of murine immunoglobulin G (IgG) molecules. Viral genes coding for these receptors have been characterized only for alphaherpesviruses. In this report, we describe a new approach that led to the identification of an Fc receptor (FcR) of murine cytomegalovirus (MCMV). The Fc fragment of IgG precipitated glycoproteins (gp) of 86 to 88 and 105 kDa from MCMV-infected cells. Deglycosylation by endoglycosidase F resulted in a protein with a molecular mass of 64 kDa. Injection of complete MCMV DNA or of DNA fragments, and the subsequent testing of cytoplasmic binding of IgG by immunofluorescence microscopy, was used to search for the coding region in the MCMV genome. The gene was located in the HindIII J fragment, map units 0.838 to 0.846, where an open reading frame of 1,707 nucleotides predicts a gp of 569 amino acids with a calculated molecular mass of 65 kDa. The sequence of this gp is related to those of the gE proteins of herpes simplex virus type 1 and varicella-zoster virus. The defined length of the mRNA, 1,838 nucleotides, was in agreement with that of a 1.9-kb RNA expressed throughout the replication cycle, starting at the early stages of infection. Expression of the gene fcr1 by recombinant vaccinia virus resulted in the synthesis of gp86/88 and gp105, each with FcR properties, and the correct identification of the gene encoding the FcR was confirmed by the DNA injection method.
The proteasome is a 700-kD multisubunit enzyme complex with several proteolytically active sites. The enzyme complex is involved in both ubiquitin-dependent and -independent protein degradation and may contribute to the processing of antigens presented by major histocompatibility complex (MHC) class I molecules. Here we demonstrate that treatment of mouse fibroblast cells with 20 U interferon qr (IFN-y) for 3 d induces a change in the proteasome subunit composition and that the B-type subunit LMP2, which is encoded in the MHC class II region, is incorporated into the enzyme complex. This is paralleled by reduction of the homologous 6-subunit. IFN-3' stimulation results in a downregulation of the chymotrypsin-like Suc-LLVY-MCA peptide hydrolyzing activity of 20S proteasomes whereas the trypsin-like activity remains unaffected. When tested as a substrate a synthetic 25-mer polypeptide whose sequence covers the antigenic nonapeptide YPHFMPTNL of the MCMV pp89, 20S proteasomes of IFN-3'-induced cells exhibit altered chymotrypsin-like cleavage site preferences. In the absence of IFN-qr induction, the naturally processed nonamer peptide that is presented by MHC class.I molecules appears as a minor cleavage product. IFN-'y activation does not result in an increase of the final peptide but results in a different set of peptides. We hypothesize that these peptides represent precursor peptides that can be trimmed to final peptide size.
The nature of alloreactivity to MHC molecules has been enigmatic, primarily because of the observation that allogeneic responses are considerably stronger than syngeneic responses. To better determine the specificity potential of allogeneic responses, we have generated alloreactive CTL specific for exogenous, viral-derived peptide ligands. This approach allowed us to critically evaluate both the peptide- and MHC-specificity of these alloreactive T cells. Exploiting the accessibility of the H-2Ld class I molecule for exogenous peptide ligands, alloreactive CTL were generated that are specific for either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis virus (LCMV) peptides bound by Ld alloantigens. Peptide specificity was initially observed in bulk cultures of alloreactive CTL only when tested on peptide-sensitized T2.Ld target cells that have defective presentation of endogenous peptides. Subsequent cloning of bulk alloreactive CTL lines generated to MCMV yielded CTL clones that had exquisitely specific MCMV peptide recognition requirement. All of the MCMV/Ld alloreactive CTL clones were also exquisitely MHC-specific in that none of the CTL clones lysed targets expressing MCMV/Lq complexes, even though Lq differs from Ld by only six amino acid residues and Lq also binds the MCMV peptide. This observation clearly demonstrates that alloreactive CTL are capable of the same degree of specificity for target cell recognition as are syngeneic CTL in MHC-restricted responses.
Interferon gamma (IFN) represents an essential cytokine involved in murine cytomegalovirus (MCMV) clearance from the salivary gland and the control of horizontal transmission. Because IFN cannot be responsible for all cytokine effects during recovery from MCMV infection we have now tested the potential participation of tumour necrosis factor alpha (TNF) in the antiviral defence. Neutralization of endogenous TNF abolished the antiviral activity of CD4 T cells in immunocompetent as well as in CD8 subset-deficient mice. These data suggest that the antiviral effect of the CD4 subset requires the presence of at least two cytokines, namely IFN and TNF. Depletion of endogenous TNF in adoptive cell transfer recipients diminished the antiviral function of CD8 T lymphocytes suggesting that TNF also participates in CD8 T cell effector functions. Furthermore, endogenous cytokines were found to be required for survival after infection with lethal doses of MCMV, whereas immunotherapy with recombinant TNF and IFN could not limit virus replication in vivo. The results suggest that, similar to IFN, TNF is an integral part of the protective mechanisms involved in cytomegalovirus clearance.
The product of the ie 1 gene, the regulatory immediate early protein pp89 of murine cytomegalovirus (MCMV), interacts with core histones, which can mediate the association of pp89 with DNA. We report the capacity of pp89 to interact directly with DNA in the absence of cellular proteins. After separation of proteins by SDS–PAGe, pp89 bound ds- and ssDNA, with a preference for ssDNA. Binding to specific DNA sequences in the MCMV genome was not detected. The DNA-binding region of pp89 was located to amino acids 438 to 534 by analysis of deletion mutants expressed as -galactosidase or TrpE fusion proteins. This region is identical to the highly acidic C-terminal region spanning amino acids 424 to 532. The human cytomegalovirus IE1 protein, which contains a similar extended C-terminal acidic region, does not react with DNA under the same experimental conditions.
We have previously defined ie3 as a coding region located downstream of the ie1 gene which gives rise to a 2.75-kb immediate-early (IE) transcript. Here we describe the structural organization of the ie3 gene, the amino acid sequence of the gene product, and some of the functional properties of the protein. The 2.75-kb ie3 mRNA is generated by splicing and is composed of four exons. The first three exons, of 300, 111, and 191 nucleotides (nt), are shared with the ie1 mRNA and are spliced to exon 5, which is located downstream of the fourth exon used by the ie1 mRNA. Exon 5 starts 28 nt downstream of the 3' end of the ie1 mRNA and has a length of 1,701 nt. The IE3 protein contains 611 amino acids, the first 99 of which are shared with the ie1 product pp89. The IE3 protein expressed at IE times has a relative mobility of 88 kDa in gels, and a mobility shift to 90 kDa during the early phase is indicative of posttranslational modification. Sequence comparison reveals significant homology of the exon 5-encoded amino acid sequence with the respective sequence of UL 122, a component of the IE1-IE2 complex of human cytomegalovirus (HCMV). This homology is also apparent at the functional level. The IE3 protein is a strong transcriptional activator of the murine cytomegalovirus (MCMV) e1 promoter and shows an autoregulatory function by repression of the MCMV ie1/ie3 promoter. The high degree of conservation between the MCMV ie3 and HCMV IE2 genes and their products with regard to gene structure, amino acid sequence, and protein functions suggests that these genes play a comparable role in the transcriptional control of the two cytomegaloviruses.
Selective expression of murine cytomegalovirus (MCMV) immediate-early (IE) genes leads to the presentation by the major histocompatibility complex (MHC) class I molecule L a of a peptide derived from MCMV IE protein pp89 (Reddehase, M. J., J. B. Rothbard, and U. H. Koszinowski. 1989. Nature (Lond.). 337:651). Characterization of endogenous antigenic peptides identified the pp89 peptide as the nonapeptide msYPHFMFFNLt76 (del Val, M., H.-J. Schlicht, T. Ruppert, M. J. Reddehase, and U. H. Koszinowski. 1991. Cell. 66:1145). Subsequent expression of MCMV early genes prevents presentation of pp89 (del Val, M., K. Mfinch, M. J. Reddehase, and U. H. Koszinowski. 1989. Cell. 58:305). We report on the mechanism by which MCMV early genes interfere with antigen presentation. Expression of the IE promoter-driven bacterial gene lacZ by recombinant MCMV subjected antigen presentation of B-galactosidase to the same control and excluded antigen specificity. The La-dependent presence of naturally processed antigenic peptides also in nonpresenting cells located the inhibitory function subsequent to the step of antigen processing. The finding that during the E phase of MCMV gene expression the MHC class I heavy chain glycosylation remained in an Endo H-sensitive form suggested a block within the endoplasmic reticulum/c/s-Golgi compartment. The failure to present antigenic peptides was explained by a general retention of nascent assembled trimolecular MHC class I complexes. Accordingly, at later stages of infection a significant decrease of surface MHC class I expression was seen, whereas other membrane glycoproteins remained unaffected. Thus, MCMV E genes endow this virus with an effective immune evasion potential. These results also indicate that the formation of the trimolecular complex of MHC dass I heavy chain, ~2-microglobulin, and the finally trimmed peptide is completed before entering the medial-Golgi compartment.
In several herpesviruses the genes for the major DNA binding protein (MDBP), a putative assembly protein, the glycoprotein B (gB), and the viral DNA polymerase (pol) coliocate. In murine cytomegalovirus (MCMV), two members of this gene block, pol (Elliott, Clark, Jaquish, and Spector, 1991, Virology 185, 169-186) and gB (Rapp, Messerle, BOhler, Tannheimer, Keil, and Koszinowski, 1992, J. Virol., 66,4399-4406) have been characterized. Here the two other MCMV genes are characterized, the gene encoding the MDBP and the ICP18.5 homolog encoding a putative assembly protein. Like in human cytomegalovirus (HCMV) the genes order is pol, gB, ICP18.5, and MDBP. The 4.2-kb MDBP mRNA is expressed first in the early phase, whereas the 3.0-kb ICP18.5 mRNA is a late transcript. The open reading frame of the MDBP gene has the capacity of encoding a protein of 1191 amino acids with a predicted molecular mass of 131.7 kDa. The MCMV ICP18.5 ORF is translated into a polypeptide of 798 amino acids with a calculated molecular mass of 89.1 kDa. Comparison of the amino acid sequences of the predicted proteins of MCMV with the respective proteins of HCMV, Epstein-Barr virus (EBV), and herpes simplex virus type-1 (HSV-1) reveals a striking homology ranging from 72% (HCMV), 50% (EBV), to 45% (HSV-1) for the MDBP sequence and from 74% (HCMV), 51 % (EBV), to 49% (HSV-1) for the ICP18.5 sequence. These results establish the elose relationship of the two cytomegaloviruses, and underline the usefulness of the murine model for studies on the biology of the CMV infection.
The gene encoding glycoprotein B (gB) of murine cytomegalovirus (MCMV) strain Smith was identified, sequenced, and expressed by recombinant vaccinia virus. The gB gene was found adjacent to the polymerase gene, as it is in the genome of human cytomegalovirus (HCMV). The open reading frame consists of 2,784 nucleotides capable of encoding a protein of 928 amino acids. Comparison with gB homologs of other herpesviruses revealed a high degree of homology. The similarity between the MCMV gB and the HCMV gB is most prominent, since 45% of the amino acids are identical. In addition, all cysteine residues are at homologous positions, indicating a similar tertiary structure of the two proteins. In contrast to HCMV, the MCMV gB mRNA is a true late transcript. A recombinant vaccinia virus expressing the MCMV gB gene has been constructed (Vac-gB). Antibodies raised against the Vac-gB recombinant precipitated proteins of 130, 105, and 52 kDa from MCMV-infected cells. The identity of the MCMV gB with the major envelope glycoprotein of MCMV described by Loh et al. was shown (L. C. Loh, N. Balachandran, and L. F. Qualtiere, Virology 166:206-216, 1988). Immunization of mice with the Vac-gB recombinant gave rise to neutralizing antibodies.
Cytotoxic T cell responses to the murine Cytomegalovirus (MCMV) were elicited in BALB/c mice (H-2d) by infectious virus. Eight days after infection, MCMV-primed local lymph node T cells were either depleted for T cells expressing a V beta 8+ TCR or separated into V beta 8+ and V beta 8- subpopulations by a cell sorter using the mAb F23.1. T cells were then expanded in vitro under limiting dilution conditions in the presence of IL-2 and in the absence of viral Ag to avoid selection by Ag in vitro. Frequencies of CTL precursors specific for the Immediate- Early-Ag 1 of MCMV and restricted to H-2Ld were determined. L cells of the endogenous haplotype H-2k cotransfected with the genes for MCMV-IE 1 and H-2Ld were used as target cells. Detection of a CTL response required previous priming of the animals by infection in vivo (less than 1/10(6) for nonimmunized animals). In primed animals CTL precursors of this specificity and restriction were three to fivefold more frequent in the V beta 8+ population (1/9.900 to 1/22.300) than in the V beta 8- population (1/57.000 to 1/87.200). Control experiments showed that frequencies were not influenced by the treatment with the anti-V beta 8-antibody and the fluorescein-labeled anti-Ig itself. V beta 8+ and V beta 8- T cells did not reveal any frequency differences when several other responses were determined (TNP-specific self- restricted CTL precursor; Th cells specific for keyhole limpet hemocyanin or Listeria monocytogenes).
The immediate-early (IE) genes of murine cytomegalovirus (MCMV) are expressed in the absence of prior viral protein synthesis and regulate the transcription of MCMV early genes. The effect of MCMV IE genes on growth induction was studied. Different plasmids containing MCMV IE genes were microinjected into arrested NIH 3T3 mouse fibroblasts. Plasmids containing the ieI gene coding for the 89,000-Mr major IE protein pp89 were found to stimulate the expression of the c-fos protooncogene. Synthesis of pp89 and its transport to the nucleus appeared to be required for c-fos expression. DNA synthesis occurred in cells that were injected with MCMV IE genes and in neighboring cells that were not injected. The results suggest that the phosphoprotein pp89 stimulates cells to enter the cell cycle.
The nonstructural immediate-early protein pp89 of murine cytomegalovirus (MCMV) is the first viral protein synthesized after infection and has a regulatory function in viral gene expression. Despite its localization in the nucleus of infected cells, pp89 is also the dominant antigen recognized by MCMV-specific cytolytic T lymphocytes. The recombinant vaccinia virus MCMV-ieI-VAC, which expresses pp89, was used to study the capacity of this protein to induce protective immunity in BALB/c mice. Vaccination with MCMV-ieI-VAC induced a long-lasting immunity that protected mice against challenge with a lethal dose of MCMV but did not prevent infection and morbidity. In vivo depletion of CD8+ T lymphocytes before challenge completely abrogated the protective immunity. CD8+ T lymphocytes derived from MCMV-ieI-VAC-primed donors and adoptively transferred into sublethally irradiated and MCMV-infected recipients were found to limit viral replication in host tissues, whereas CD4+ T lymphocytes and pp89-specific antiserum had no protective effect. The data demonstrate for the first time that a single nonstructural viral protein can confer protection against a lethal cytolytic infection and that this immunity is entirely mediated by the CD8+ subpopulation of T lymphocytes.
The conditions that permit the interaction of immediate-early proteins of murine cytornegalovirus (MCMV) with DNA were studied. Chromatography of extracts from infected cells on MCMV DNA cellulose and calf thymus DNA cellulose showed that pp89, the regulatory major immediate-early protein, interacts with DNA and dissociates at salt concentrations between 0.3 and 0.6 M NaCl. pp76, a cleavage product of pp89, and additional minor ie1 proteins eluted already at low ionic strength. Cellular DNA-binding factors were required for association of pp89 with DNA. These factors were identified as core histones. Chromatography of IE proteins on histone-Sepharose in the absence of DNA revealed a high-binding affinity that was resistant to 2 M NaCl. These results suggest that pp89 has no direct DNA-binding activity. A role for an amino acid sequence homology in the N-terminal region of pp89 with histone H2B in the pp89-histone-DNA Interaction is discussed.
Cloned genomic fragments from the region (0.769 to 0.818 map units) coding for immediate-early (IE) transcripts of murine cytomegalovirus (MCMV) were used to analyze the physical organization of this region, the direction of transcription, and the proteins synthesized in vitro. Three IE transcription units could be identified. From IE coding region 1 (ie1; 0.781 to 0.796 map units) a dominant 2.75-kilobase (kb) RNA was transcribed from right to left on the prototype arrangement of the MCMV genome which directed the synthesis of an 89,000-molecular-weight polypeptide (89K polypeptide), the major IE protein. This phosphoprotein (pp89) has been shown to be active in the regulation of transcription. Upstream of ie1 and separated by the MCMV enhancer sequence was a second IE coding region, ie2, which was mapped at 0.803 to 0.817 map units. From ie2 a 1.75-kb RNA of moderate abundance was transcribed in the direction opposite to that of the ie1 RNA. After hybrid selection of the ie2 transcript, a 43,000-molecular-weight translation product was detected. A third coding region, ie3, was located directly downstream of ie1 (0.773 to 0.781 map units). The series of RNAs with low abundance, terminating in ie3, probably used the ie1 transcription start site and ranged from 1.0 to 5.1 kb in size. The 5.1-kb RNA apparently represents the nonspliced transcript from both coding regions ie1 and ie3. A 15K polypeptide was translated in vitro from RNA that was hybrid selected by ie3 sequences. Immunoprecipitation with monoclonal antibody revealed that 31K to 67K polypeptides were related to pp89. Some of these proteins were translated from RNAs that were smaller than 2.75 kb. Polypeptides related to pp89 were also synthesized in vivo. Because polypeptides unrelated to pp89 that were translated from RNA that was selected by ie2 and ie3 sequences were not immunoprecipitated by murine antisera, we assumed that the amount of these proteins synthesized in vivo during infection was probably very low
To confirm that immediate-early (IE) genes of murine cytomegalovirus (MCMV) give rise to antigens recognized by specific cytolytic T lymphocytes (CTL), a 10.8-kilobase fragment of MCMV DNA which is abundantly transcribed at IE times was transfected into L cells expressing the Ld class I major histocompatibility glycoprotein. The viral genome fragment contains sequences of the three IE transcription units of MCMV: ie1, ie2, and ie3. In the transfected cell lines, only the predominant 2.75-kilobase transcript of ie1 and its translation product pp89 could be detected. The transfectants were analyzed for membrane expression of an IE antigen by employing clone IE1, an IE-specific CTL clone, as the probe. Only cells that expressed both the MCMV IE gene(s) and the Ld gene were recognized by the CTL clone.
The murine immediate-early (IE) protein pp89 is a nonstructural virus- encoded phosphoprotein residing in the nucleus of infected cells, where it acts as transcriptional activator. Frequency analysis has shown that in BALB/c mice the majority of virus-specific CTL recognize IE antigens. The present study was performed to assess whether pp89 causes membrane antigen expression detected by IE-specific CTL. Site-directed mutagenesis has been used to delete the introns from gene ieI, encoding pp89, for subsequent integration of the continuous coding sequence into the vaccinia virus genome. After infection with the vaccinia recombinant, the authentic pp89 was expressed in cells that became susceptible to lysis by an IE-specific CTL clone. Priming of mice with the vaccinia recombinant sensitized polyclonal CTL that recognized MCMV- infected cells and transfected cells expressing pp89. Thus, a herpesviral IE polypeptide with essential function in viral transcriptional regulation can also serve as a dominant antigen for the specific CTL response of the host.
We have constructed target cells by cotransfection of the MHC gene Ld and fragments of murine cytomegalovirus (MCMV) DNA coding for nonstructural immediate-early (IE) proteins. Transfectants were tested by using CTL clone IE1 with specificity for an IE epitope presented in association with Ld. Data show that clone IE1 recognizes a product of the ie1 transcription unit of MCMV, and that its specificity is shared by approximately 25% of polyclonal IE-specific CTL. The results provide the first definite evidence that expression of a herpes virus IE gene encoding a regulatory protein gives rise to antigen expression detectable by specific CTL
We have shown in a murine model system for acute, lethal cytomegalovirus (CMV) disease in the immunocompromised natural host that control of virus multiplication in tissues, protection from virus-caused tissue destruction, and survival are mediated by virus-specific CD8+ CD4-T lymphocytes. Protection from a lethal course of disease did not result in a rapid establishment of virus latency, but led to a long-lasting, persistent state of infection. The CD8- CD4+ subset of T lymphocytes was not effective by itself in controlling murine CMV (MCMV) multiplication in tissue or essential for the protective function of the CD8+ CD4- effector cells. The antiviral efficacy of the purified CD8+ CD4- subset was not impaired by preincubation with fibroblasts that presented viral structural antigens, but was significantly reduced after depletion of effector cells specific for the nonstructural immediate-early antigens of MCMV, which are specified by the first among a multitude of viral genes expressed during MCMV replication in permissive cells. Thus, MCMV disease provides the first example of a role for nonstructural herpesvirus immediate-early antigens in protective immunity.
To study trans-activation of gene expression by murine cytomegalovirus (MCMV) immediate-early (IE) proteins, the IE coding region 1 (ie1), which encodes the 89,000-Mr IE phosphoprotein (pp89), was stably introduced into L cells. A cell line was selected and characterized that efficiently expressed the authentic viral protein. The pp89 that was constitutively expressed in L cells stimulated the expression of transfected recombinant constructs containing the bacterial chloramphenicol acetyltransferase (CAT) gene under the control of viral promoters. The regulatory function of the ie1 product was confirmed by transient expression assays in which MCMV IE genes were cotransfected into L cells together with recombinant constructs of the CAT gene. For CAT activation by the ie1 product, a promoter region was required, but there was no preferential activation of a herpes simplex virus type 1 delayed-early promoter. All plasmid constructs that contained the intact coding sequences for pp89 induced gene expression in trans. The MCMV enhancer region was not essential for the expression of a functional IE gene product, and testing of the cis-regulatory activity of the MCMV enhancer revealed a low activity in L cells. Another region transcribed at IE times of infection, IE coding region 2, was unable to induce CAT expression and also did not augment the functional activity of ie1 after cotransfection.
Long-term cytolytic T-lymphocyte (CTL) lines that are specific for distinct antigens associated with different phases of the replicative cycle of the murine cytomegalovirus (MCMV) were established by cloning of CTL lines derived from lymph nodes of latently infected BALB/c mice. Two CTL clones were characterized in detail. Both displayed the Lyt-2+, L3T4- surface phenotype, and the recognition of their respective target antigens was class I (DLd) major histocompatibility complex antigen restricted. Clone S1 was specific for a structural antigen of MCMV, and clone IE1 detected an MCMV-specified immediate-early (IE) membrane antigen. Clone IE1 retained lytic activity, antigen specificity, and self-restriction after prolonged propagation in the presence of recombinant human interleukin-2 without restimulation by antigen. This interleukin-2-dependent line of the clone IE1, line IE1-IL, can serve as a reference line for the definition of the antigenic determinant IE1 of an IE membrane antigen.
Two modes of assembly of murine cytomegalovirus (MCMV) were observed in cultured mouse embryo fïbroblasts, generating two morphologically different types of viral particles: monocapsid virions and multicapsid virions. The assembly of nucleocapsids appeared to be the same for both types of morphogenesis. Three successive stages of intranuclear capsid formation could be distinguished: capsids with electron-lucent cores, coreless capsids, and capsids with dense cores. Some of the capsids were enveloped at the inner nuclear membrane to form monocapsid virions, which were first detectable in the perinuclear cisterna. Other capsids left the nucleus via nuclear pores and usually entered cytoplasmic capsid aggregates that received an envelope by budding into extended cytoplasmic vacuoles, thereby forming multicapsid virions. Since the formation of multicapsid virions is not restricted to cell culture conditions and also occurs in vivo in immunosuppressed mice, multicapsid virions may play a role in the pathogenesis of cytomegalovirus infection.
Limiting dilution (LD) analysis with two modifications, the expansion and the restimulation LD assay, led to the detection and quantification of two distinct in vivo maturation stages within the lineage of virus- specific self-restricted CTL after infection of mice with the murine cytomegalovirus (MCMV). A low frequency set, representing an average of 15% of the specifically activated CTL-P in a draining lymph node, generated virus-specific lytic activity in the absence of antigen, solely under expansion conditions provided by growth and differentiation interleukins. These cells were considered to be active and were denoted antigen-independent or interleukin-receptive CTL-P (IL- CTL-P). A high frequency set required additional antigen in vitro to generate functionally active clones, and therefore the cells were termed antigen-dependent. Both sets are present in vivo simultaneously at the peak of the acute immune response and represent antigen- activated cells because their existence strictly depends on a preceding priming event. IL-CTL-P disappear quickly after acute infection and are absent during the memory state. It is proposed that the isolation of IL- CTL-P could serve to detect viral antigen expression during persistent and/or recurrent herpes virus infections.
Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome.