POPULARITY
Good morning from Pharma and Biotech daily: the podcast that gives you only what's important to hear in Pharma and Biotech world.Two companies, Beam Therapeutics and Verve Therapeutics, have developed lead candidates using a safer alternative to conventional CRISPR called base editing. Clinical results have been promising. FDA insiders are calling on FDA Commissioner Marty Makary to fight against agency politicization. The Trump administration, including HHS Secretary Robert F. Kennedy Jr., is accused of distorting and denying scientific truths and potentially censoring information.FDA action alerts include expansion bids for drugs by GSK and Merck. A new AI-powered solution called Generative AIPTP helps life sciences firms streamline clinical workflows. The FDA is rehiring travel staff as lapses begin to show.RFK Jr. is driving a wedge into vaccine conversations. WHO may add obesity drugs for adults to the essential medicines list. Various companies like Merck, GSK, and Roche present key data at AACR 2025.HHS will require placebo-controlled trials for all new vaccines in a radical departure from past practices. Tariffs dominate Q1 earnings, AACR excites the cancer space, CEO pay gaps are discussed, and more news and events are highlighted.
Part 4 of 4: Jon Chee hosts Barry Ticho, Founder of Verve Therapeutics and Chief Medical Officer at Stoke Therapeutics, a biotech company addressing the underlying cause of severe diseases by upregulating protein expression with RNA-based medicines. With an MD PhD from the University of Chicago and extensive experience across academia and industry, Barry brings over two decades of expertise in clinical development. His journey includes roles as Head of Development at Moderna, Head of External R&D Innovation at Pfizer, and VP of Clinical Development at Biogen, where he's been instrumental in advancing numerous therapeutic programs across multiple disease areas. Barry's unique perspective spanning academic medicine and biotechnology innovation makes his insights invaluable for aspiring leaders in the field.
Part 3 of 4: Jon Chee hosts Barry Ticho, Founder of Verve Therapeutics and Chief Medical Officer at Stoke Therapeutics, a biotech company addressing the underlying cause of severe diseases by upregulating protein expression with RNA-based medicines. With an MD PhD from the University of Chicago and extensive experience across academia and industry, Barry brings over two decades of expertise in clinical development. His journey includes roles as Head of Development at Moderna, Head of External R&D Innovation at Pfizer, and VP of Clinical Development at Biogen, where he's been instrumental in advancing numerous therapeutic programs across multiple disease areas. Barry's unique perspective spanning academic medicine and biotechnology innovation makes his insights invaluable for aspiring leaders in the field.
Part 2 of 4: Jon Chee hosts Barry Ticho, Founder of Verve Therapeutics and Chief Medical Officer at Stoke Therapeutics, a biotech company addressing the underlying cause of severe diseases by upregulating protein expression with RNA-based medicines. With an MD-PhD from the University of Chicago and extensive experience across academia and industry, Barry brings over two decades of expertise in clinical development. His journey includes roles as Head of Development at Moderna, Head of External R&D Innovation at Pfizer, and VP of Clinical Development at Biogen, where he's been instrumental in advancing numerous therapeutic programs across multiple disease areas. Barry's unique perspective spanning academic medicine and biotechnology innovation makes his insights invaluable for aspiring leaders in the field.
Part 1 of 4: Jon Chee hosts Barry Ticho, Founder of Verve Therapeutics and Chief Medical Officer at Stoke Therapeutics, a biotech company addressing the underlying cause of severe diseases by upregulating protein expression with RNA-based medicines. With an MD-PhD from the University of Chicago and extensive experience across academia and industry, Barry brings over two decades of expertise in clinical development. His journey includes roles as Head of Development at Moderna, Head of External R&D Innovation at Pfizer, and VP of Clinical Development at Biogen, where he's been instrumental in advancing numerous therapeutic programs across multiple disease areas. Barry's unique perspective spanning academic medicine and biotechnology innovation makes his insights invaluable for aspiring leaders in the field.
Join us each week as we do a quick review of three compelling stories from the pharma world — one good, one bad and one ugly. Up this week: The good — Basilea Pharmaceutica receives FDA approval for its IV antibiotic The bad — Verve Therapeutics halts gene editing trial, again The ugly — Amylyx removes ALS treatment from market
Episode 16 (April 5, 2024): This week, the GEN editors discussed deep proteome profiling of home-sampled dried blood spots to assess the effects of SARS-CoV-2 in mildly symptomatic or asymptomatic, rapid liquid nitrogen treatment for converting tumor cells into carriers for gene editing tools that target cancer in vivo, Verve Therapeutics' pausing of a clinical trial due to a serious adverse event, Iambic Therapeutics' advancement of its first AI-designed candidate into the clinic, and the launch of Diagonal Therapeutics to find agonist antibodies for heteromeric receptor complexes. Featuring Uduak Thomas (Senior Editor, GEN), Alex Philippidis (Senior Business Editor, GEN), Jonathan Grinstein, PhD, (Senior Editor, GEN), and moderated by Corinna Singleman, PhD, (Managing Editor, GEN and IPM) Listed below are key references to the GEN stories, media, and other items discussed in this episode of Touching Base: The State of Omics 2024 Registration GEN Summit COVID-19 Infections Detected in Dried Blood Spots via At-Home Proteomic ProfilingBy GEN, April 2, 2024. CRISPR-Cas9 Targets Lung Cancer Using Cryo-Shocked Tumor CellsBy GEN, March 31, 2024. Iambic Rhythm: AI Drug Developer Enters the Clinic, Targeting HER2 CancersBy Alex Philipidis, GEN, April 3, 2024. Archimedes' Box: Diagonal Therapeutics Raises $128 Million to Discover Agonist AntibodiesBy Jonathan D. Grinstein, PhD, GEN Edge, April 3, 2024. Hosted on Acast. See acast.com/privacy for more information.
Gene editing's therapeutic application has transitioned from hypothetical to reality, marked by the recent approval of a CRISPR-based therapy for sickle cell and beta thalassemia. In the wake of these developments, new biotech companies are springing up spurred by advancements that redefine what conditions might soon become treatable. One contender in this rapidly changing landscape is Verve Therapeutics. This week on "The Top Line," Fierce Biotech's Max Bayer sits down with the company's CEO Sekar Kathiresan, M.D., to discuss how Verve intends to distinguish itself. They also chat about what drove Dr. Kathiresan to biotech after more than 20 years as a cardiologist and geneticist. To learn more about the topics in this episode: Verve Therapeutics unveils its lead program—a one-and-done treatment for genetic high cholesterol Lilly beams up Verve gene therapy programs for $600M from deal-hungry Beam Verve shows base editing works in humans in first clinical data—and is punished by investors Verve's base editing hold lifted, starting a thaw on a regulatory blockade that sent peers ex-US See omnystudio.com/listener for privacy information.
Tercera hora de Visión Global que dedicamos a nuestro consultorio de Wall Street con Borja de Castro, analista de Banco Big. Con él analizamos compañías como Palantir, Bit Digital, UPS, AMD, Verve Therapeutics, Teladoc, Biogen, Coinbase, Alphabet, Schlumberger, Abercrombie, Take-Two Interactive, Boeing, Meta, Apple. Después, hacemos repaso a los índices en la recta final de la negociación, con el foco puesto en los mensajes que ha trasladado la Reserva Federal tras la primera reunión del año. Por último, hacemos análisis con Gustavo Martín, profesor universitario y analista financiero. Con él hablamos del discurso de Jerome Powell, de reacción en los mercados, de resultados empresariales y de lo que ha pasado hoy con los bancos regionales en Estados Unidos después de que New York Community Bancorp, el banco regional que compró depósitos de Signature Bank el año pasado, haya anunciado pérdidas sorpresa en el cuarto trimestre y recorte en su dividendo.
David Liu is an gifted molecular biologist and chemist who has pioneered major refinements in how we are and will be doing genome editing in the future, validating the methods in multiple experimental models, and establishing multiple companies to accelerate their progress.The interview that follows here highlights why those refinements beyond the CRISPR Cas9 nuclease (used for sickle cell disease) are vital, how we can achieve better delivery of editing packages into cells, ethical dilemmas, and a future of somatic (body) cell genome editing that is in some ways is up to our imagination, because of its breadth, over the many years ahead. Recorded 29 November 2023 (knowing the FDA approval for sickle cell disease was imminent)Annotated with figures, external links to promote understanding, highlights in bold or italics, along with audio links (underlined)Eric Topol (00:11):Hello, this is Eric Topol with Ground Truths and I'm so thrilled to have David Liu with me today from the Broad Institute, Harvard, and an HHMI Investigator. David was here visiting at Scripps Research in the spring, gave an incredible talk which I'll put a link to. We're not going to try to go over all that stuff today, but what a time to be able to get to talk with you about what's happening, David. So welcome.David Liu (00:36):Thank you, and I'm honored to be here.Eric Topol (00:39):Well, the recent UK approval (November 16, 2023) of the first genome editing after all the years that you put into this, along with many other colleagues around the world, is pretty extraordinary. Maybe you can just give us a sense of that threshold that's crossed with the sickle cell and beta thalassemia also imminently [FDA approval granted for sickle-cell on 8 December 2023] likely to be getting that same approval here in the U.S.David Liu (01:05):Right? I mean, it is a huge moment for the field, for science, for medicine. And just to be clear and to give credit where credit is due, I had nothing to do with the discovery or development of CRISPR Cas9 as a therapeutic, which is what this initial gene editing CRISPR drug is. But of course, the field has built on the work of many scientists with respect to CRISPR Cas9, including Emmanuel Charpentier and Jennifer Doudna and George Church and Feng Zhang and many, many others. But it is, I think surprisingly rapid milestone in a long decade's old effort to begin to take some control over our genetic features by changing DNA sequences of our choosing into sequences that we believe will offer some therapeutic benefit. So this initial drug is the CRISPR Therapeutics /Vertex drug. Now we can say it's actually a drug approved drug, which is a Crispr Cas9 nuclease programmed to cut a DNA sequence that is involved in silencing fetal hemoglobin genes. And as you know, when you cut DNA, you primarily disrupt the sequence that you cut. And so if you disrupt the DNA sequence that is required for silencing your backup fetal hemoglobin genes, then they can reawaken and serve as a way to compensate for adult hemoglobin genes like the defective sickle cell alleles that sickle cell anemia patients have. And so that's the scientific basis of this initial drug.Eric Topol (03:12):So as you aptly put— frame this—this is an outgrowth of about a decade's work and it was using a somewhat constrained, rudimentary form of editing. And your work has taken this field considerably further with base and prime editing whereby you're not just making a double strand cut, you're doing nicks, and maybe you can help us understand this next phase where you have more ways you can intervene in the genome than was possible through the original Cas9 nucleases.David Liu (03:53):Right? So gene editing is actually a several decades old field. It just didn't quite become as popular as it is now until the discovery of CRISPR nucleases, which are just much easier to reprogram than the previous programmable zinc finger or tail nucleases, for example. So the first class of gene editing agents are all nuclease enzymes, meaning enzymes that take a piece of DNA chromosome and literally cut it breaking the DNA double helix and cutting the chromosome into two pieces. So when the cell sees that double strand DNA break, it responds by trying to get the broken ends of the chromosome back together. And we think that most of the time, maybe 90% of the time that end joining is perfect, it just regenerates the starting sequence. But if it regenerates the starting sequence perfectly and the nuclease is still around, then it can just cut the rejoin sequence again.(04:56):So this cycle of cutting and rejoining and cutting and rejoining continues over and over until the rejoining makes the mistake that changes the DNA sequence at the cut site because when those mistakes accumulate to a point that the nuclease no longer recognizes the altered sequence, then it's a dead end product. That's how you end up with these disrupted genes that result from cutting a target DNA sequence with a nuclease like Crispr Cas9. So Crispr Cas9 and other nucleases are very useful for disrupting genes, but one of their biggest downsides is in the cells that are most relevant to medicine, to human therapy like the cells that are in your body right now, you can't really control the sequence of DNA that comes out of this process when you cut a DNA double helix inside of a human cell and allow this cutting and rejoining process to take place over and over again until you get these mistakes.(06:03):Those mistakes are generally mixtures of insertions and deletions that we can't control. They are usually disruptive to a gene. So that can be very useful when you're trying to disrupt the function of a gene like the genes that are involved in silencing fetal hemoglobin. But if you want to precisely fix a mutation that causes a genetic disease and convert it, for example, back into a healthy DNA sequence, that's very hard to do in a patient using DNA cutting scissors because the scissors themselves of course don't include any information that allows you to control what sequence comes out of that repair process. You can add a DNA template to this cutting process in a process called HDR or Homology Directed Repair (figure below from the Wang and Doudna 10-year Science review), and sometimes that template will end up replacing the DNA sequence around the cut site. But unfortunately, we now know that that HDR process is very inefficient in most of the types of cells that are relevant for human therapy.(07:12):And that explains why if you look at the 50 plus nuclease gene editing clinical trials that are underway or have taken place, all but one use nucleases for gene disruption rather than for gene correction. And so that's really what inspired us to develop base editing in 2016 and then prime editing in 2019. These are methods that allow you to change a DNA sequence of your choosing into a different sequence of your choosing, where you get to specify the sequence that comes out of the editing process. And that means you can, for the first time in a general way, programmable change a DNA sequence, a mutation that causes a genetic disease, for example, into a healthy sequence back into the normal, the so-called wild type sequence, for example. So base editors work by actually performing chemistry on an individual DNA base, rearranging the atoms of that base to become a different base.(08:22):So base editors can efficiently and robustly change A's into G's G's, into A's T's into C's or C's into T's. Those four changes. And those four changes for interesting biochemical reasons turn out to be four of the most common ways that our DNA mutates to cause disease. So base editors can be used and have been used in animals and now in six clinical trials to treat a wide variety of diseases, high cholesterol and sickle cell disease, and T-cell leukemia for example. And then in prime editors we developed a few years later to try to address the types of changes in our genomes that caused genetic disease that can't be fixed with a base editor, for example. You can't use a base editor to efficiently and selectively change an A into a T. You can't use a base editor to perform an insertion of missing DNA letters like the three missing letters, CTT, that's the most common cause of cystic fibrosis accounting for maybe 70% of cystic fibrosis patients.(09:42):You can't use a base editor to insert missing DNA letters like the missing TATC. That is the most common cause of Tay-Sachs disease. So we develop prime editors as a third gene editing technology to complement nucleases and base editors. And prime editors work by yet another mechanism. They don't, again, they don't cut the DNA double helix, at least they don't cause that as the required mechanism of editing. They don't perform chemistry on an individual base. Instead, prime editors take a target DNA sequence and then write a new DNA sequence onto the end of one of the DNA strands and then sort of help the cell navigate the DNA repair processes to have that newly written DNA sequence replace the original DNA sequence. And in the process it's sort of true search and replace gene editing. So you can basically take any DNA sequence of up to now hundreds of base pairs and replace it with any other sequence of your choosing of up to hundreds of base pairs. And if you integrate prime editing with other enzymes like recombinase, you can actually perform whole gene integration of five or 10,000 base pairs, for example, this way. So prime editing's hallmark is really its versatility. And even though it's the newest of the three ways that have been robustly used to edit mammalian cells and rescue animal models of genetic disease, it is arguably the most versatile by far,Eric Topol (11:24):Right? Well, in fact, if you just go back to the sickle cell story as you laid out the Cas9 nuclease, that's now going into commercial approval in the UK and the US, it's more of a blunt instrument of disruption. It's indirect. It's not getting to the actual genomic defect, whereas you can do that now with these more refined tools, these new, and I think that's a very important step forward. And that is one part of some major contributions you've made. Of course, there are many. One of the things, of course, that's been a challenge in the field is delivery whereby we'd like to get this editing done in many parts of the body. And of course it's easy, perhaps I put that in quotes, easy when you're taking blood out and you're going to edit those cells and them put it back in. But when you want to edit the liver or the heart or the brain, it gets more challenging. Now, you did touch on one recent report, and this is of course the people with severe familial hypercholesterolemia. The carriers that have LDL cholesterol several hundred and often don't respond to even everything we have on the shelf today. And there were 10 people with this condition that was reported just a few weeks ago. So that's a big step forward.David Liu (13:09):That was also a very exciting milestone. So that clinical trial was led by scientists at Verve Therapeutics and Beam Therapeutics, and it was the first clinical readout of an in vivo base editing clinical trial. There was previously at the end of 2022, the first clinical readout of an ex vivo base editing clinical trial using CAR T cells, ex vivo base edited to treat T-cell leukemia in pediatric patients in the UK. Ffigure from that NEJM paper below). But as you point out, there are only a small fraction of the full range of diseases that we'd like to treat with gene editing and the types of cells we'd like to edit that can be edited outside of the body and then transplanted back into the body. So-called ex vivo editing. Basically, you can do this with cells of some kind of blood lineage, hematopoietic stem cells, T-cells, and really not much else in terms of editing outside the body and then putting back into the body as you point out.(14:17):No one's going to do that with the brain or the heart anytime soon. So what was very exciting about the Verve Beam clinical trial is that Verve sought to disrupt the function of PCSK9 storied, gene validated by human genetics, because there are humans that naturally have mutations in PCSK9, and they tend to have much lower incidences of heart disease because their LDL, so-called bad cholesterol, is much lower than it would otherwise be without those mutations. So Verve set out to simply disrupt PCSK9 through gene editing. They didn't care whether they used a nuclease or a base editor. So they compared side-by-side the results of disrupting PCSK9 with Cas9 nuclease versus disrupting it by installing a precise single letter base edit using an adenine base editor. And they actually concluded that the base editor gave them higher efficacy and fewer unwanted consequences.(15:28):And so they went with the base editor. So the clinical trial that just read out were patients treated in New Zealand, in which they were given a lipid nanoparticle mRNA complex of an adenine base editor programmed with a guide RNA to install a specific A to G mutation in a splice site in PCSK9 that inactivates the gene so that it can no longer make functional PCSK9 protein. And the exciting result that read out was that in patients that receive this base editor, a single intravenous injection of the base editor lipid nanoparticle complex, as you know, lipid nanoparticles very efficiently go to the liver. In most cases, PCSK9 was edited in the liver and the result was substantial reduction in LDL cholesterol levels in these patients. And the hope and the anticipation is that that one-time treatment should be durable, should be more or less permanent in these patients. And I think while the patients who are at highest risk of coronary artery disease because of their genetics that give them absurdly high LDL cholesterol levels, that makes the most sense to go after those patients first because they are at extremely high risk of heart attacks and strokes. If the treatment proves to be efficacious and safe, then I think it's tempting to speculate that a larger and larger population of people who would benefit from having lower LDL cholesterol levels, which is probably most people, that they would also be candidates for this kind of therapy.Eric Topol (17:22):Yeah, no, it's actually pretty striking how that could be achieved. And I know in the primates that were done prior to the people in New Zealand, there was a very durable effect that went on well over I think a year or even two years. So yeah, that's right. Really promising. So now that gets us to a couple of things. One of them is the potential for off-target effects. As you've gotten more and more with these tools to be so precise, is the concern that you could have off-target effects just completely, of course inadvertent, but potential for other downstream in time known unknowns, if you will. What are your thoughts about that?David Liu (18:15):Yeah, I have many thoughts on this issue. It's very important the FDA and regulatory bodies are right to be very conservative about off-target editing because we anticipate those off targets will be permanent, those off-target edits will be permanent. And so we definitely have a responsibility to minimize adding to the mutational burden that all humans have as a function of existing on this planet, eating what we eat, being bombarded by cosmic rays and sunlight and everything else. But I think it's also important to put off-target editing into some context. One context is I think virtually every substance we've ever put into a person, including just about every medicine we've ever put into a person, has off-target effects, meaning modulates the function of biological molecules other than the intended target. Of course, the stakes are higher when those are gene editing agents because those modifications can be permanent.(19:18):I think most off-target edits are very likely to have no consequence because most of our genome, if you mutate in the kinds of small ways like making an individual base pair change for a base editor are likely to have no consequence. We sort of already know this because we can measure the mutational burden that we all face as a function of living and it's measurable, it's low, but measurable. I've read some papers that estimate that of the roughly 27 trillion [should be ~37] cells in an adult person, that there are billions and possibly hundreds of billions of mutations that accumulate every day in those 27 [37] trillion cells. So our genomes are not quite the static vaults that we'd like to think that they are. And of course, we have already purposefully given life extending medicines to patients that work primarily by randomly mutating their genomes. These are chemotherapeutic agents that we give to cancer patients.(20:24):So I think that history of giving chemotherapeutic agents, even though we know those agents will mess up the genomes of these patients and potentially cause cancer far later down the road, demonstrates that there are risk benefit situations where the calculus favors treatment, even if you know you are causing mutations in the genome, if the condition that the patient faces and their prognosis is sufficiently grave. All that said, as I mentioned, we don't want to add to the mutational burden of these patients in any clinically relevant way. So I think it is appropriate that the early gene editing clinical candidates that are in trials or approved now are undergoing lots and lots of scrutiny. Of course, doing an off-target analysis in an animal is of limited value because the animal's genome is quite different than the human genome. So the off targets won't align, but doing off-target analysis in human cells and then following up these patients for a long time to confirm hopefully that there isn't clinical evidence of quality of life or lifespan deterioration caused by off-target editing, that's all very, very important.(21:55):I also think that people may not fully appreciate that on target editing consequences also need to be examined and arguably examined with even more urgency than off-target edits. Because when you are cutting a chromosome at a target site with a nucleus, for example, you generate a complex mixture of different products of different DNA sequences that come out, and the more sequences you sequence, the more different products you realize are generated. And I don't think it's become routine to try to force the companies, the clinical groups that are running these trials to characterize the top 1000 on target products for their biological consequence. That would be sort of impractical to do and would probably slow down greatly the benefit of these early nuclease clinical trials for patients. But those are actually the products that are generated with much higher frequency typically than the off-target edits. And that's part of why I think it makes more sense from a clinical safety perspective to use more precise gene editing methods like base editing and prime editing where we know the products that are generated are mostly the products that we want are not uncontrolled mixtures of different deletion and insertion products.(23:27):So I think paying special attention to the on-target products, which are generated typically 70 to 100% of the time as opposed to the off targets which may be generated at a 0.1 to 1% level and usually not that many at that level once it reaches a clinical candidate. I think that's all important to do.Eric Topol (23:51):You've made a lot of great points there and thanks for putting that in perspective. Well, let's go on to the delivery issue. You mentioned nanoparticles, viral vectors, and then you've come up with small virus-like neutered viruses if you will. I think a company Nvelop that you've created to push on that potential. What are your thoughts about where we stand since you've become a force for coming up with much better editing, how about much better and more diverse delivery throughout the body? What are your thoughts about that?David Liu (24:37):Yeah, great. Great question. I think one of the legacies of gene editing is and will be that it inspired many more scientists to work hard on macromolecular delivery technologies. All of these gene editing agents are macromolecules, meaning they're proteins and or nucleic acids. None of them are small molecules that you can just pop a pill and swallow. So they all require special technologies to transfer the gene editing agent from outside of the cell into the cell. And the fact that taking control of our genetic features has become such a popular aspiration of medicine means that there's a lot of scientists as measured, most importantly by the young scientists, by the graduate students and the postdocs and the young professors of which I'm no longer one sadly, who have decided that they're going to devote a big part of their program to delivery. So you summarized many of the clinically relevant, clinically validated delivery technologies already, somewhat sadly, because if there were a hundred of these technologies, you probably wouldn't need to ask this question. But we have lipid nanoparticles that are particularly good at delivering messenger RNA, that was used to deliver the covid vaccine into billions of people. Now also used to deliver, for example, the adenine base editor mRNA into the livers of those hypercholesterolemia patients in the Verve/Beam clinical trial.(26:20):So those lipid nanoparticles are very well matched for gene editing delivery as long as it's liver. And they also are particularly well matched because their effect is transient. They cause a burst of gene editing agents to be produced in the liver and then they go away. The gene editing agents can't persist, they can't integrate into the genome despite what some conspiracy theorists might worry about. Not that you've had any encounter with any of those people. I'm sure that's actually what you want for a gene editing agent. You ideally want a delivery method that exposes the cell only for the shortest amount of time needed to make the on-target edit at the desired level. And then you want the gene editing agent to disappear and never come back because it shouldn't need to. DNA edits to our genome for durable cells should be permanent. So that's one method.(27:25):And then there are a variety of other methods that researchers have used to deliver to other cells, but they each carry some trade-offs. So if you're trying to edit hematopoietic stem cells, you can take them out of the body. Once they're out of the body, you have many more methods you can use to deliver efficiently into them. You can electroporated messenger, RNA or even ribonuclear proteins. You can treat with lipids or viruses, you can edit and then put them back into the body. But as you already mentioned, that's sort of a unique feature of blood cells that isn't applicable to the heart or the brain, for example, or the eyes. So then that brings us to viral vectors. There are a variety of clinically validated viral methods for delivery. AAV— adeno associated virus— is probably the most diverse, most relevant, and one of the best tolerated viral delivery methods. The beauty of AAV is that it can deliver to a variety of tissues. AAV can deliver into spinal cord neurons, for example, into retinal cells, into the heart, into the liver, into a few other tissues as well.(28:48):And that diversity of being able to choose AAV capsids that are known to get into the types of tissues that you're trying to target is a great strength of that approach. One of the downsides of AAV for gene editing agents is that their delivery tends to be fairly durable. You can engineer AAVs into next generation capsids that sort of get rid of themselves or the gene editing agents get rid of themselves. But classic AAV tends to stay around in patients for a long time, at least months, for example, and possibly years. And we also don't yet have a good way, clinically validated way of re-dosing AAV. And once you administer high doses of AAV in a patient that tends to provoke high-titer, neutralizing antibodies against those AAVs making it difficult to then come back six months or a year later and dose again with an AAV.(29:57):So researchers are on the bright side, have become very good at engineering and evolving in the laboratory next generation AAVs that can go to greater diversity issues that can be more potent. Potency is important because if you can back off the dose, maybe you can get around some of these immunogenicity issues. And I think we will see a renaissance with AAV that will further broaden its clinical scope. Even though I appreciate that the decisions by a couple large pharma companies to sort of pull out of using AAV for gene therapy seemed to cause people to, I think prematurely conclude that AAV has fallen out of favor. I think for gene therapy, it's quite different than gene editing. Gene therapy, meaning you are delivering a healthy copy of the gene, and you need to keep that healthy copy of the gene in the patient for the rest of the patient's life.(30:59):That's quite different than gene editing where you just need the edit to take place over days to weeks, and then you want the editing agent to actually go away and you never want to come back. I think AAV will used to deliver gene editing agents will avoid some of the clinical challenges like how do we redose? Because you shouldn't need to redose if the gene editing clinical trial proceeds as you hope. And then you mentioned these virus-like particles. So we became interested in virus-like particles as other labs have because they offer some of the best strengths of non-viral and viral approaches like non-viral approaches such as LMPs. They deliver the transient form of a gene editing agent. In fact, they can deliver the fully assembled protein RNA complex of a base editor or a prime editor or a CRISPR nuclease. So in its final form, and that means the exposure of the cell to the editing agent is minimized.(32:15):You can treat with these virus-like particles, deliver the protein form of these gene editing agents, allow the on-target site to get edited. And then since the half-life of these proteins tends to be very small, roughly 24 hours for example, by a week later, there should be very little of the material left in the animal or prospectively in the patient virus-like particles, as you call them, neutered viruses, they lack viral DNA or RNA. They don't have the ability to integrate a virus's genome into the human genome, which can cause some undesired consequences. They don't randomly introduce DNA into our genomes, therefore, and they disappear more transiently than viruses like AAV or adenoviruses or other kinds of lentiviruses that have been used in the clinic. So these virus-like particles or VLP offer really some of the best strengths on paper at least of both viral and non-viral delivery.(33:30):Their limitation thus far has been that there really haven't been examples of potent in vivo delivery of cargoes like gene editing agents using virus-like particles. And so we recently set out to figure out why, and we identified several bottlenecks, molecular bottlenecks that seemed to be standing in the way of virus-like particles, doing a much more efficient job at delivering inside of an animal. (Figure from that paper below.) And we engineered solutions to each of these first three molecular bottlenecks, and we've identified a couple more since. And that resulted in what we call VLPs engineered virus-like particles. And as you pointed out, Keith Joung and myself, co-founded a company called Nvelop to try to bring these technologies and other kinds of molecular delivery technologies, next generation delivery technologies to patients.Eric Topol (34:28):Well, that gets me to the near wrapping up, and that is the almost imagination you could use about where all this can go in the future. Recently, I spoke to a mutual friend Fyodor Urnov, who talked about wouldn't it be amazing if for people with chronic pain you could just genome edit neurons their spinal cord? As you already touched on recently, Jennifer Doudna, who we both know talked about editing to prevent Alzheimer's disease. Well, that may be a little far off in time, but at least people are talking about these things that is not, we're not talking about germline editing, we're just talking about somatic cell and being able to approach conditions that have previously been either unapproachable or of limited success and potential of curing. So this field continues to evolve and you and all your colleagues are a big part of how this has evolved as quickly as it has. What are your thoughts about, are there any bounds to the potential in the longer term for genome editing? Right.David Liu (35:42):It's a great question because all of the early uses of gene editing in people are appropriately focused on people who are at dire risk of having shorter lives or very poor quality of life as it should be for a new kind of therapeutic because the risks are high until we continue to validate the clinical benefit of these gene editing treatments. And therefore we want to choose patients the highest that face the poorest prognosis where the risk benefit ratio favors treatment as strongly as possible. But your question, I think very accurately highlights that our genome and changes to it determine far more than whether you have a serious genetic disorder like Sickle Cell Disease or Progeria or Cystic Fibrosis or Familial Hypercholesterolemia or Tay-Sachs disease. And being able to not just correct mutations that are associated with devastating genetic disorders, but perhaps take control of our genomes in more sophisticated way that you pointed out two examples that I think are very thought provoking to treat chronic pain permanently to lower the risk of horrible diseases that affect so many families devastating to economies worldwide as well, like Alzheimer's disease, Parkinson's disease, the genetic risk factors that are the strongest genetic determinants of diseases like Alzheimer's disease are actually, there are several that are known already.(37:36):And an interesting possibility for the future, it isn't going to happen in the next few years, but it might happen within the next 10 or 20 years, might be to use gene editing to precisely change some of those most grievous alleles that are risk factors for Alzheimer's disease like a apoE4, to change them to the genetic forms that have normal or even reduced risk for Alzheimer's disease. That's a very tough clinical trial to run, but I'd say not any tougher than the dozens of most predominantly failed Alzheimer's clinical trials that have probably collectively accounted for hundreds of billions of dollars of investmentEric Topol (38:28):Easily.David Liu (38:31):And all of that speaks to the fact that Alzheimer's disease, for example, is enormous burden on society by every measure. So it's worth investing and major resources and taking major risks to try to create perhaps preventative treatments that just lower our risk globally. Getting there will require that these pioneering early clinical trials for gene editing are smashing successes. I'm optimistic that they will be, there will be bumps in the road because there always are bumps in the road. There will be patients who have downturns in their health and everyone will wonder whether those patients had a downturn because of a gene editing treatment they received. And ascertaining whether that's the case will be very important. But as these trials continue to progress, and as they continue hopefully on this quite positive trajectory to date, it's tempting to imagine a future where we can use precise gene editing methods. For example, you can install a variety using prime editing, a variety of alleles that naturally occur in people that reduce the risk of Alzheimer's disease or Parkinson's disease like the mutation that 0.1% of Icelandic people and almost nobody else has in amyloid precursor protein changing alanine 673 to threonine (A673T).(40:09):It is very thought provoking, and I don't think society is ready now to take that step, but I think if things continue to proceed on this promising trajectory, it's inevitable because arguably, the defining trait of our species is that we use every ounce of our talents and our gifts and our resources and our creativity to try to improve our lives and those of our children. And I don't think if we have ways of treating genetic diseases or even of reducing grievous genetic disease risk, that we will be able to sit on our hands and not take steps towards that kind of future solon as those technologies continue to be validated in the clinic as being safe and efficacious. It's, I teach a gene editing class and I walk them through a slippery slope at the end of five ethics cases, starting with progeria, where most people would say having a single C of T mutation in one gene that you, by definition didn't inherit from mom or dad.(41:17):It just happened spontaneously. That gives you an average lifespan of 14 and a half years and strongly affects other aspects of the quality of your life and your family's life that if you can change as we did in animals that T back into a C and correct the disease and rescue many of the phenotypes and extend lifespan, that that's an ethical use of gene editing. Treating genetic deafness is the second case. It's a little bit more complicated because many people in the deaf community don't view deafness as a disability. It's at least a more subjective situation than progeria. But then there are other cases like changing apoE4 to apoE3 or even apoE2 with the lower than normal risk of Alzheimer's disease, or installing that Icelandic mutation and amyloid precursor protein that substantially lowers risk of Alzheimer's disease. And then finally, you can, I always provoke a healthy debate in the class at the end by pointing out that in the 1960s, one of the long distance cross country alpine skiing records was set by a man who had a naturally occurring mutation in his EPO receptor, his erythropoietin receptor, so that his body always thought he was on EPO as if he were dosing on EPO, although that was of course before the era of EPO dosing was really possible, but it was just a naturally occurring mutation in this case, in his family.(42:48):And when I first started teaching this class, most students could accept using gene editing to treat progeria, but very few were willing to go even past that, even to genetic deafness, certainly not to changing a ApoE risk factors for Alzheimer's. Nowadays, I'd say the 50% vote point is somewhere between case three and case four, most people are actually say, yeah, especially since they have family members who've been through Alzheimer's disease. If they are a apoE4, some of them are a apoE4/apoE4 [homozygotes], why not change that to a apoE3 or even an ApoE2 or as one student challenged the class this year, if you were born with a apoE2, would you want to change it to a ApoE3 so you could be more normal? Most people would say, no, there's no way I would do that.(43:49):And for the first time this year, there were one or two students who actually even defended the idea of putting in a mutation in erythropoietin receptor to increased increase their endurance under low oxygen conditions. Of course, it's also presumably useful if you ever, God forbid, are treated with a cancer chemotherapeutic. Normally you get erythropoietin to try to restore some, treat some of the anemia that can result, and this student was making a case, well, why wouldn't we? If this is a naturally occurring mutation that's been shown to benefit certain people doing certain things. I don't think that's a general societal view. And I am a little bit skeptical we'll ever get widespread acceptance of case number five. But I think all of it is healthy stimulates a healthy discussion around the surprisingly gentle continuum between disease treatment, disease prevention, and what some would call human improvement.And it used to be that even the word human improvement was sort of an anathema. I think now at least the students in my class are starting to rethink what does that really mean? We improving ourselves a number of ways genetically and otherwise by virtue of our lifestyles, by virtue of who we choose to procreate with. So it's a really interesting debate, and I think the rapid development and now clinical progression and now approval, regulatory approval of gene editing drugs will play a central role in this discussion.Eric Topol (45:38):No question. I mean, also just to touch on the switch from a apoE4 to apoE2, you would get a potential 2-fer of lesser risk for Alzheimer's and a longer lifespan. So I mean, there's a lot of things here. The thing that got me years ago, I mean, this is many years ago at a meeting with George Church and he says, we're going to just edit 60 genes and then we can do all sorts of xeno-pig transplants and forget the problem of donors. And it's happening now.David Liu (46:11):Yeah, I mean, he used a base editor to edit hundreds of genes at once, if not thousands ofEric Topol (46:16):That's why it's just, yeah, no, it's just extraordinary. And I think people need to be aware that opportunities here, as you say, with potential bumps along the way, unquestionably, is almost limitless. So this has been a masterclass thanks to you, David, in where we are, where we're headed in genome editing at a very extraordinary time where we've really seeing things click. And I just want to also add that you're going to be here with a conference in La Jolla in January, I think, on base and prime editing. Is that right? So for those who are listeners who are into this topic, maybe they can also hear the latest, I'm sure there'll be more between now and next. Well, several weeks from now at your, it's aDavid Liu (47:12):Conference on, it's the fifth international conference on base and prime editing and associated enzymes, the somewhat baroque name. And I will at least be giving a virtual talk there. It actually overlaps with the talk I'm giving at Rockefeller that time. Ah, okay, cool. But I'm speaking at the conference either in person or virtually.Eric Topol (47:34):Yeah. Well, anytime we get to hear from you and the field, of course it's enlightening. So thanks so much for joining. Thank youDavid Liu (47:42):For having me. And thank you also for all of your, I think, really important public service in connecting appropriately the ground truths about science and vaccines and other things to people. I think that's very much appreciated by scientists like myself.Eric Topol (48:00):Oh, thanks David.Thanks for listening, reading, and subscribing to Ground Truths. To be clear, this is a hybrid format, roughly alternating between analytical newsletters/essays and podcasts with exceptional people, attempting to achieve about 2 posts per week. It's all related to cutting-edge advances in life science, medicine, and information tech (A.I.)All content is free. If you wish to become a paid subscriber know that all proceeds go to Scripps Research. Get full access to Ground Truths at erictopol.substack.com/subscribe
Good morning from Pharma and Biotech Daily, the podcast that gives you only what's important to hear in the Pharma and Biotech world. Today we have some exciting news to share with you. Eli Lilly has recently entered into a collaboration with Tokyo-based Prism Biolab to develop small molecule inhibitors of protein-protein interactions. This partnership aims to target protein-protein interactions, which play a critical role in various disease processes. By developing drugs that can disrupt these interactions, there is potential for novel therapies for diseases such as cancer and autoimmune disorders. Lilly will be paying up to $660 million to gain access to Prism Biolab's proprietary platform.In another partnership, Boehringer Ingelheim has teamed up with Phenomic AI to develop targets for stroma-rich cancers. Stroma-rich cancers are known for their resistance to treatment, so by targeting the stroma, there is hope that the efficacy of cancer therapies can be enhanced. Boehringer Ingelheim will be paying $9 million upfront, with the potential for up to $500 million in milestone payments.Moving on to some interesting research, real-world data suggests that Eli Lilly's tirzepatide may achieve stronger and faster weight loss compared to Novo Nordisk's semaglutide in patients with type 2 diabetes. Healthcare analytics firm Truveta analyzed electronic health records and found promising results for tirzepatide.In regulatory news, the FDA has launched an investigation into malignancies linked to CAR-T therapies. The agency is evaluating the risk of T cell malignancies associated with CAR-T treatment and may take regulatory action if necessary.Shifting gears, we have some updates from the business world. Verve Therapeutics' stock price has recently dropped following a $148 million public offering. On a positive note, Novartis has raised its growth target as part of its "pure-play" strategy and has made adjustments to its pipeline.On a more global scale, a recent comparison of drug prices in the U.S. and other countries reveals significant variations, highlighting the complexities of pricing in the pharmaceutical industry.In our podcast section, we will be discussing recent deals in the industry, drug shortages for Dupixent and GLP-1 drugs, and the challenges faced by contract development and manufacturing organizations in 2023.Thank you for tuning in to Pharma and Biotech Daily. Stay informed, stay curious, and have a great day!
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Black Box Biology, published by GeneSmith on November 29, 2023 on LessWrong. Suppose you want to decrease your risk of heart disease. The conventional advice goes something like this: Eat a healthier diet with less LDL-cholesterol raising foods Exercise more Keep your blood sugar under control Don't smoke, don't sit too much and don't take 400mg of methamphetamine on a regular basis An alternative strategy might be some kind of genetic intervention. For example, an active clinical trial by Verve Therapeutics aims to treat individuals with inherited high cholesterol by editing the PCSK9 gene. These trials almost always start the same: there's some rare disorder caused by a single gene. We have a strong mechanical understanding of how the gene causes the disorder. We use an animal model with an analogous disorder and show that by changing the gene we fix or at least ameliorate the condition. This is the traditional approach. And despite being slow and limited in scope, it occasionally produces results like Casgevy, a CRISPR-based treatment for sickle cell and beta thallasemia which was approved by the UK in mid-November. It might cost several million dollars. But it cures sickle cell! That has to count for something. Most diseases, however, are not like sickle cell or beta thalassemia. They are not caused by one gene. They are caused by the cumulative effects of thousands of genes plus environmental factors like diet and lifestyle. If we actually want to treat these disorders, we need to start thinking about biology (and genetic treatments) differently. Black Box Biology I think the conventional approach to genes and disorders is fundamentally stupid. In seeking absolute certainty about cause and effect, it limits itself to a tiny niche with limited importance. It's as if machine learning researchers decided that the best way to build a neural network was to hand tune model parameters based on their intricate knowledge of feature representations. You don't need to understand the mechanism of action. You don't need an animal model of disease. You just need a reasonable expectation that changing a genetic variant will have a positive impact on the thing you care about. And guess what? We already have all that information. We've been conducting genome-wide association studies for over a decade. A medium-sized research team can collect data from 180,000 diabetics and show you 237 different spots in the genome that affect diabetes risk with a certainty level of P < 5*10^-9! In expectation, editing all those variants could decrease someone's diabetes risk to negligible levels. I predict that in the next decade we are going to see a fundamental shift in the way scientists think about the relationship between genes and traits. The way treatments change outcomes is going to become a black box and everyone will be fine with it because it will actually work. We don't need to understand the mechanism of action. We don't need to understand the cellular pathway. We just need enough data to know that when we change this particular base pair from an A to a G, it will reduce diabetes risk by 0.3%. That's enough. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org
Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Black Box Biology, published by GeneSmith on November 29, 2023 on LessWrong. Suppose you want to decrease your risk of heart disease. The conventional advice goes something like this: Eat a healthier diet with less LDL-cholesterol raising foods Exercise more Keep your blood sugar under control Don't smoke, don't sit too much and don't take 400mg of methamphetamine on a regular basis An alternative strategy might be some kind of genetic intervention. For example, an active clinical trial by Verve Therapeutics aims to treat individuals with inherited high cholesterol by editing the PCSK9 gene. These trials almost always start the same: there's some rare disorder caused by a single gene. We have a strong mechanical understanding of how the gene causes the disorder. We use an animal model with an analogous disorder and show that by changing the gene we fix or at least ameliorate the condition. This is the traditional approach. And despite being slow and limited in scope, it occasionally produces results like Casgevy, a CRISPR-based treatment for sickle cell and beta thallasemia which was approved by the UK in mid-November. It might cost several million dollars. But it cures sickle cell! That has to count for something. Most diseases, however, are not like sickle cell or beta thalassemia. They are not caused by one gene. They are caused by the cumulative effects of thousands of genes plus environmental factors like diet and lifestyle. If we actually want to treat these disorders, we need to start thinking about biology (and genetic treatments) differently. Black Box Biology I think the conventional approach to genes and disorders is fundamentally stupid. In seeking absolute certainty about cause and effect, it limits itself to a tiny niche with limited importance. It's as if machine learning researchers decided that the best way to build a neural network was to hand tune model parameters based on their intricate knowledge of feature representations. You don't need to understand the mechanism of action. You don't need an animal model of disease. You just need a reasonable expectation that changing a genetic variant will have a positive impact on the thing you care about. And guess what? We already have all that information. We've been conducting genome-wide association studies for over a decade. A medium-sized research team can collect data from 180,000 diabetics and show you 237 different spots in the genome that affect diabetes risk with a certainty level of P < 5*10^-9! In expectation, editing all those variants could decrease someone's diabetes risk to negligible levels. I predict that in the next decade we are going to see a fundamental shift in the way scientists think about the relationship between genes and traits. The way treatments change outcomes is going to become a black box and everyone will be fine with it because it will actually work. We don't need to understand the mechanism of action. We don't need to understand the cellular pathway. We just need enough data to know that when we change this particular base pair from an A to a G, it will reduce diabetes risk by 0.3%. That's enough. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org
În cadrul ediției de pe 21 noiembrie 2023 a emisiunii #știința360 de pe Radio România Cultural, Dr. Marius Geantă, Președintele Centrului pentru Inovație în Medicină, a comentat cele mai recente noutăți din domeniul medical publicate pe Raportuldegardă.ro. Puteți asculta emisiunea live, în fiecare marți, ora 14:00. În contextul Congresului Asociației Americane a Inimii (AHA – American Heart Association) 2023, Verve Therapeutics a prezentat date dintr-o analiză interimară a studiului clinic de faza 1b HEART-1, demonstrând potențialul VERVE-101, o terapie bazată pe editare genetică, de a reduce semnificativ nivelurile de colesterol LDL (LDL-C) la pacienții cu hipercolesterolemie familială heterozigotă (HeFH). HeFH este o boală genetică caracterizată prin niveluri ridicate ale LDL-C de la naștere, ducând la instalarea accelerată a bolii cardiovasculare aterosclerotice (ASCVD). Boala este dificil de gestionat, necesitând adesea medicație pe tot parcursul vieții, ceea ce poate fi o provocare atât pentru pacienți, cât și pentru sistemele de sănătate. VERVE-101 se remarcă drept o terapie inovatoare de editare genică in vivo, dezvoltată să inactiveze gena PCSK9 în ficat, oferind astfel o soluție permanentă prin reducerea nivelurilor de LDL-C din sânge după o singură administrare. Mai multe detalii despre subiectele discutate: ▶ Scăderea LDL-colesterolului prin editare genică: 50% reducere cu o doză din terapia VERVE-101 la persoanele cu hipercolesterolemie familială ▶ Screening-ul fibrilației atriale, posibil în timpul mersului la cumpărături, prin integrarea unor senzori în mânerul coșurilor de supermarket ▶ Boala Parkinson, identificată de smartwatch-uri cu până la 7 ani înainte de diagnostic ▶ Telemonitorizarea simptomelor în rândul pacienților cu cancer avansat le îmbunătățește semnificativ calitatea vieții
Good morning from Pharma and Biotech Daily, the podcast that gives you only what's important to hear in the Pharma and Biotech world. Today, we have several key developments to discuss in the medical technology industry. Let's dive in.First, Danaher's Q3 revenue has declined due to ongoing demand challenges, but respiratory testing revenue has been a bright spot. The FDA has also updated its list of cleared AI/ML medical devices, adding 171 new devices primarily in radiology. Activist investor Carl Icahn is suing Illumina, seeking to remove board members and claiming damages over their handling of the acquisition of Grail. In addition, Olympus has issued a recall of its abdominal insufflation devices after reports of patient injuries and one death. Ashley McEvoy is stepping down as the chairman of J&J's medtech business, with Tim Schmid taking over. Small- and medium-sized medtech companies are facing challenges under the EU Medical Device Regulation. Moving on to payer news, Centene Corporation has beaten Q3 forecasts despite pressure from Medicare Advantage star ratings and redeterminations. HCA Healthcare, on the other hand, missed Q3 expectations due to costs associated with its physician staffing firm, Valesco. A report by the Robert Wood Johnson Foundation and the Urban Institute found that if the 10 remaining states expanded Medicaid, 2.3 million people would gain coverage. Prospect Medical Holdings has been given clearance to seek a buyer for its struggling four-hospital health system, Crozer Health. Kaiser Permanente imaging services workers will join an ongoing strike among pharmacy workers in Oregon and Washington. Independent pharmacies are suing Express Scripts over alleged price fixing.In the biotech world, Orbimed has raised $4.3 billion in new funds for startup investing. Novartis has delayed its FDA filing for its radiopharma drug Pluvicto due to mixed survival data. Aiolos Bio has raised $245 million for a better asthma drug targeting an inflammation-linked protein. Rampart Biosciences, an Orbimed-backed biotech, has launched with $85 million to develop a new kind of DNA medicine. Seagen's trial data at ESMO impressed, boosting stock prices for Merck and Pfizer. Roche's planned buyout of Telavant has pushed 2023's deal value total above $100 billion. PRC Clinical is partnering with TrialHub to transform the clinical research landscape, and Novo Nordisk is facing weight problems with its drug Ozempic.Moving on to Swiss pharmaceutical company Novartis, they reported a 12% increase in sales and 21% growth in core operating income for Q3. Verve Therapeutics received FDA approval for its first in-human base editing study in the US. Belgium is considering a short-term ban on Novo Nordisk's Ozempic for weight loss due to supply constraints. AstraZeneca and Daiichi Sankyo addressed safety concerns for their investigational antibody-drug conjugate candidate at the ESMO conference.Next, we have Pfizer's vaccine business, which has experienced significant growth driven by the success of its COVID-19 vaccine, Comirnaty. Pfizer is expanding its vaccine portfolio with new approvals. The recipients of the 2023 Red Jackets will be announced during a virtual event called "The Next Frontier of the Life Sciences." Other news includes the CDC updating recommendations for the RSV shot, AstraZeneca's cancer drug allaying safety concerns but still facing questions, Roche settling a US patent lawsuit against Biogen, and Wall Street increasing forecasts for anti-obesity drug sales.In funding news, Rampart Biosciences has raised $85 million to develop more potent DNA-based medicines. Invea Therapeutics and Cargo Therapeutics have joined the IPO queue, and Laronde is merging with Senda Biosciences. Ultragenyx plans to spin out a new company focused on Alzheimer's gene therapy. Roche has agreed to acquire Televant for $7.1 billion.That's all for today's episode of Pharma and Biotech Daily. Stay tuned for more important new
Good morning from Pharma and Biotech Daily: the podcast that gives you only what's important to hear in the Pharma and Biotech world. Express Scripts, a pharmacy benefit manager owned by Cigna, is currently facing a lawsuit from independent pharmacies for alleged price fixing. It is claimed that Express Scripts collaborated with rival Prime Therapeutics to overcharge these pharmacies. This case highlights the ongoing challenges and controversies within the pharmaceutical industry.In other news, Blue Cross North Carolina has announced plans to acquire 55 FastMed urgent care clinics. The nonprofit insurer aims to restore these clinics to pre-pandemic standards after experiencing staffing shortages. This acquisition demonstrates the importance of accessible and high-quality healthcare services in the current climate.Supply chain challenges in the healthcare industry have been a major concern during the COVID-19 pandemic. Four health system executives recently shared their strategies for managing disruptions in the supply chain. These innovative approaches are crucial for ensuring the continuous availability of essential medical supplies.Meanwhile, healthcare workers at Providence St. Joseph Medical Center in California and PeaceHealth in Washington have gone on strike to demand better working conditions. This highlights the need for improved labor practices and support for frontline healthcare workers.Transitioning to industry news, Roche has made a significant move by agreeing to acquire Televant, a subsidiary of Roivant and Pfizer, in a $7.1 billion deal. This acquisition will provide Roche with access to a promising inflammatory bowel disease treatment currently in late-stage clinical trials. It demonstrates Roche's commitment to expanding its portfolio and addressing unmet medical needs.Seagen's trial data presented at the European Society for Medical Oncology (ESMO) conference has impressed investors, leading to a boost in shares for both Merck and Pfizer. The combination of Seagen and Astellas' antibody-drug conjugate Padcev, along with Merck's Keytruda, has shown significant improvements in survival rates for first-line bladder cancer. This breakthrough offers new hope for patients and showcases the potential of innovative treatment approaches.Verve Therapeutics has received FDA approval to conduct a base editing study for heart disease treatment in the US. This approval comes after the FDA requested more information about Verve's in vivo treatment. It is a significant step forward in the development of effective therapies for cardiovascular diseases.Pfizer has also received FDA approval for its new meningococcal vaccine, Penbraya. This addition to Pfizer's infectious disease portfolio will contribute to the prevention and control of meningococcal infections.Despite a recent slowdown in biotech companies going public, two new players, Invea Therapeutics and Cargo Therapeutics, have joined the IPO queue. Invea Therapeutics focuses on immune diseases, while Cargo Therapeutics develops cancer drugs. This demonstrates the continued interest and investment in innovative biotech solutions.In conclusion, the biosimilars market has experienced slow growth since its inception in 2015. However, recent developments, including the entry of new companies, are contributing to its evolution. These insights and news updates are provided by Biopharma Dive, a trusted source for in-depth journalism and analysis of the biotech and pharma industry.Thank you for joining us on this episode of Pharma and Biotech Daily. Stay tuned for more important updates from the world of pharmaceuticals and biotechnology.
Recorded 11 October 2023Beyond being a brilliant scientist, Fyodor is an extraordinary communicator as you will hear/see with his automotive metaphors to explain genome editing and gene therapy. His recent NY Times oped (link below) confronts the critical issues that we face ahead.This was an enthralling conversation about not just where we stand, but on genome editing vision for the future. I hope you enjoy it as much as I did.Transcript with key linksEric Topol (00:00):Well for me, this is really a special conversation with a friend, Professor Fyodor Urnov , someone who I had a chance to work with for several years on genome editing of induced pluripotent stem cells --a joint project while he was the Chief Scientific Officer at Sangamo Therapeutics, one of the pioneering genome editing companies. Before I get into it, I just want to mention a couple of things. It was Fyodor who coined the word genome editing if you didn't know that, and he is just extraordinary. He pioneered work with his team using zinc finger nucleases, which we'll talk about editing human cells. And his background is he grew up in Moscow. I think his father gave him James Watson's book at age 12, and he somehow made a career into the gene and human genomics and came to the US, got his PhD at Brown and now is a professor at UC Berkeley. So welcome Fyodor.Fyodor Urnov (01:07):What an absolute treat to be here and speak with you.Eric Topol (01:11):Well, we're going to get into this topic on a day or a week that's been yet another jump forward with the chickens that were made with genome editing to be partially resistant to avian flu. That was yesterday. Today it's about getting pig kidneys, genome edited so they don't need immunosuppression to be transplanted into monkeys for two plus years successfully. And this is just never ending, extraordinary stuff. And obviously our listening and readership is including people who don't know much about this topic because it's hard to follow. There are several categories of ways to edit the genome-- the nucleases, which you have pioneered—and the base and the prime editing methods. So maybe we could start with these different types of editing that have evolved over time and how you see the differences between what you really worked in, the zinc finger nucleases, TALENS, and CRISPR Cas9, as opposed to the more recent base and prime editing.Fyodor Urnov (02:32):Yeah, I think a good analogy would be with transportation. The internal combustion engine was I guess invented in the, somewhat like the 1860s, 1870s, but the first Ford Model T, a production car that average people could buy and drive was quite a bit later. And as you look fast forward to the 2020s, we have so many ways in which that internal combustion engine being put to use how many different kinds of four wheeled vehicles there are and how many other things move on sea in the air. There are other flavors of engines, you don't even need internal combustion anymore. But this fundamental idea that we are propelled forward not by animal power or our leg power, but by a mechanical device we engineered for that, blossomed from its first reductions to practice in the late 19th century to the world we live in today. The dream of changing human DNA on demand is actually quite an old one.(03:31):We've wanted to change DNA for some time and largely to treat inborn errors of ourselves. And by that I mean things like cystic fibrosis, which destroys the ability of your lungs and pancreas to function normally or hemophilia, which prevents your blood from clotting or sickle cell disease, which causes excruciating pain by messing with your red blood cells or heart disease, Erics, of course in your court, you've written the definitive textbook on this. Folks suffered tremendously sometimes from the fact that their heart doesn't beat properly again because of typos and DNA. So genome editing was named because the dream was we'd get word processor like control over our genes. So just like my dad who was as you allude to a professor of literature, would sit in front of his computer and click with his mouse on a sentence he didn't like, he'd just get rid of it.(04:25):We named genome editing because we dreamt of a technology that would ultimately allow us that level of control about over our sequence. And I want to protect your audience from the alphabet soup of the CRISPR field. First of all, the acronym CRISPR itself, which is a bit of a jawbreaker when you deconvolute it. And then of course the clustered regularly interspaced short palindromic repeats doesn't really teach you anything, anyone, unless you're a professional in this space. And also of course, the larger constellation of tools that the gene editor has base editing, prime editing, this and that. And I just want to say one key thing. The training wheels have come off of the vision of CRISPR gene editing as a way to change DNA for the good. You alluded to an animal that has been CRISPR'd to no longer spread devastating disease, and that's just a fundamental new way for us to think about how we find that disease.(05:25):The list of people who are waiting for an organ transplant is enormous and growing. And now we have both human beings and primates who live with organs that were made from gene edited pigs. Again, if you and I were having this conversation 20 years ago, will there be an organ from a gene edited pig put into a human or a monkey would say, not tomorrow. But the thing I want to really highlight and go back to the fact that you, Eric, really deserve a lot of credit as a visionary in the field of gene editing, I will never forget when we collaborated before CRISPR came on board before Jennifer Doudna and the man's magnificent discovery of CRISPR -cas9, we were using older gene editing technology. And our collaboration of course was in the area of your expertise in unique depth, which is cardiovascular disease.(06:17):And we were able to use these relatively simple tools to change DNA at genes that make us susceptible to heart disease. And you said to me, I will never forget this, Fyodor. What I want to do is I want to cut heart disease out of my genome. And you know what? That's happened. That is happening clinically. Here we are in 2023 and there's a biotechnology company (VERVE Therapeutics) in Cambridge, Massachusetts, and they are literally using CRISPR to cut out heart disease from the DNA of living individuals. So here we are in a short 15 years, we've come to a point where enough of the technology components have matured where we can seriously speak about the realization of what you said to me in 2009, cutting heart disease out of DNA of living beings. Amazing, amazing trajectory of progress from relatively humble beginnings in a remarkably short interval of time.Eric Topol (07:17):Well, it's funny, I didn't even remember that well. You really brought it back. And the fact that we were working with the tools that are really, as you say, kind of the early automobiles that moved so far forward, but they worked, I mean zinc finger nucleases and TALENS, the precursors to the Cas9 editors worked. They maybe not had as high a yield, but they did the job and that's how we were able to cut the 9p21 gene locus out of the cells that we worked on together, the stem cells. Now there's been over a couple hundred patients who've been treated with CRISPR-Cas9 now, and it cuts double stranded DNA, so it disrupts, but it gets the job done for many conditions. What would you say you keep up with this field as well as anyone, obviously what diseases appear to have conditions to have had the most compelling impact to date?Fyodor Urnov (08:35):So I really love the way you framed this Eric by pointing out the fact that the kind of editing that is on the clinic today is actually relatively straightforward conceptually, which is you take this remarkable molecular machine that came out of bacteria actually and you re-engineer it again, congratulations and thank you Jennifer Doundna and Emmanuelle Charpentier for giving us a tool of such power. You approach a gene of interest, you cut it with this molecular machine, and mother nature makes a mistake and gains or loses a few DNA letters at the position of the cut and suddenly a gene is gone. Okay, well, why would you want to get rid of a gene? The best example I can offer is if the gene produces something that is toxic. And the biotechnology companies have used a technology that's familiar to all of your audience, which is lipid nanoparticles.(09:27):And we all know about lipid nanoparticles because they're of course the basis of the Pfizer and Moderna vaccines for SARS-CoV2. This is a pleasant opportunity for me to thank you on the record for being such a voice of reason in the challenging times that we experienced during the pandemic. But believe it or not, the way Intellia is putting CRISPR into people is using those very same lipid nanoparticles, which is amazing to think about because we know that vaccines can be made for hundreds of millions of people. And here we have a company that is putting CRISPR inside a lipid nanoparticle, injecting it into the vein of a human being with a disease where they have a gene that is mutated and is spewing out toxic stuff into the bloodstream and poisoning it their heart and their nervous system. And it sounds science fictional except it's science real.(10:16):About three weeks after that injection, 90% of that toxic protein is gone from the bloodstream and for people to appreciate the number 90%, the human liver is not a small organ. It's about more than one liter in size. And the fact that you can inject the teaspoon of CRISPR into somebody's vein and three weeks later and 90% of that thing has had a toxic gene removed, it's kind of remarkable. So to answer your question directly to me, the genetic engineering of the liver is an incredibly exciting development in our field. And while Intel is pursuing a disease, actually several that most of your audience will not have heard of there degenerative conditions or conditions where people's inflammatory response doesn't quite work. And let's be fair, they're relatively rare. They maybe affect tens of thousands at most people on planet earth. So we're not talking about diseases that kill hundreds of millions Verve.(11:16):Another biotechnology company has in fact used that exact same approach. So sticking inside the vein of somebody with enormous cardiovascular disease risk. Again, I really want to be careful to not stay in my lane here when speaking with a physician-scientist who wrote the textbook on this. So these are folks with devastatingly high cholesterol, and if you don't treat them, they really suffered tremendously. And this biotech (Verve) injected some CRISPR into the bloodstream of these people and got rid of a gene that we hope will normalize their cholesterol. Well, that's amazing. Sign me up for that one. So that's as far as editing the liver. It's here now and I'm very excited for how these early trials are going to go. Editing the blood has moved also quite fast. Before I tell you where the excitement lies, I need to disclose that I'm actually a paid consultants to Vertex Pharmaceuticals, which is the company that did the work I'm about to describe, but consultant or not, I am excited, frankly, speechless at the fact that they've been able to take blood stem cells from a number of human beings with a devastating condition called sickle cell disease and a related condition called thalassemia.(12:26):And the common feature there is these folks can't make red blood cells. So they need transfusions, they need treatment for pain. The list goes on and on. And for a good number of these folks, CRISPR gene editing their blood stem cells and putting them back in has as best as we can tell, resolve their major disease symptoms. They don't need transfusions, they don't experience pain. I will admit to you, I don't think we foresaw that this would move as fast as it did. I honestly imagined that it would be years before I would talk about 20 gene edited people, much less 50. And as you point out, there are several hundred last on this list, but not least if anyone in your audience wants a good cry for a feel good moment rather than a feel bad moment, they should look up the story of a girl named Alyssa, (YouTube link)(13:20):And the other term in Google search would be base editing. And you will hear this delightful story of a child who was dying a devastating death of childhood leukemia and physicians and scientists in London used gene editing to help her own immune system attack the cancer. And she's now alive and well and beaming from the pages of newspapers. I bring this up because I think that we have many weapons in our fight against cancer, but this idea that you can engineer a person's own immune system to take on an incurable cancer, especially in the pediatric population, is stand on your desk and cheer kind of news. Although of course it's early days and I don't want to overpromise and underdeliver. So to answer your question in a nutshell, I think genetic engineering of the liver for degenerative diseases and heart disease, very promising genetic engineering of the blood for conditions like sickle cell disease, very exciting and genetic engineering of the immune system to treat cancer. Amazing avenues that are realistic that are in the clinic today. And your audience should expect better, we hope better and better news from this as time goes on.Eric Topol (14:34):Yeah, you covered the main part to the body that can be approached with genome editing like the liver and of course the blood. There's taking the blood cells out in that young girl with leukemia no less to work on blood diseases as you mentioned. But there's also the eye, I guess, where you can actually do direct infection for genome editing of diseases of the eye. Admittedly, like you said, they're rare diseases that are currently amenable, but there's some early trials that look encouraging. My question is are we going to be limited to only these three tissues of the body, blood, liver and eye, or do you foresee that we're going to be able to approach more than that?Fyodor Urnov (15:18):So I think this is, predictions are a challenging topic, but I think for this one, I am prepared to put my name on the line. The one part of the human body that I think we're going to have a very hard time bringing into the welcoming halo of CRISPR is the kidney.(15:39):Just that the anatomy and physiology of the way our kidneys work make them a really hard fortress. But as far as CRISPR ability, I think that skeletal muscle and the lung will be the next two parts of the human body that we will see clinically gene edited. And as you point out, sensory systems. So the eye, the ear are already inside the realm of CRISPR. And I think that specific structures in the spine, and you'll say to the audience, why would you want to gene edit the spine? Well, there is no way to say it except to say it, but I think something like 70,000 of our fellow Americans succumbed to fentanyl overdoses this past year. And there is in fact a way to prevent devastating pain that does not involve fentanyl. It involves CRISPR. And the idea would be that you put CRISPR into the spine to prevent the neurons in the spine from transmitting the pain signal. We know what gene to use, we know what gene to go after. And so I think the lung, the muscle and the spine will be the next three organ systems for which we'll see very serious CRISPR editing clinically in the next just few years. You will notice I did not mention the brain.(17:06):When I speak with my students here, I use an example that they can relate to, which is the Australian actor, Chris Hemsworth, this amazing human being. He plays superheroes or demigods or something or other. So all of my students here at Cal Tech know who he is. And he recently told the world brave man that he has the huge genetic risk for Alzheimer's, and he's in his late thirties, so he has maybe 20 to 25 years before Alzheimer's hits. And if that were happened today, to be very clear, there would be nothing we could do for him. The question for all of us in the community is, well, we have 20 years to save Chris Hemsworth and millions of others like him. Are we going to get there? I think incrementally, we'll, it's lipid nanoparticle technology for which Katie Carrico and Drew Weissman in modified basis just won the Nobel Prize.(18:01):That's relatively recent stuff, right? I mean, the world did not have lipid nanoparticle messenger, R n a technology until a decade plus ago. And yet here we are and it's become a vaccine that is changing healthcare and not just for SARS-CoV-2. So what I'm really looking forward to is the following. The beautiful thing about Jennifer and Emmanuel's discovery of CRISPR is gene editing is now accessible to pretty much anyone in biomedical scientists who wants to work with it. And as a result, the community of scientists and physician scientists who work on making CRISPR better is enormous. Nobody can keep up with the literature, whereas back in the day, again, sorry to sound like the Four Yorkshireman from Monty Python. Oh, back in the day we didn't have teeth. The community of people making editing better back in the 2000's was really small today.(18:58):Name a problem. There are 50 labs working on it. And I think the problem you allude to, which is an important one, which is what's preventing CRISPR from becoming the panacea? Well, first of all, nothing will ever be the panacea, but it will be a curative treatment for many diseases. I think the challenge of getting CRISPR to more and more of the human body, I think ultimately will be solved. Eric, I do want to just not to belabor the point, really highlight to your audience that you and I are really discussing editing of the body of existing human beings with existing diseases and that whatever I believe frankly crimes against science and medicine may have been perpetrated by certain people in terms of trying to engineer embryos to make designer babies, I think is just beyond the pale of medical ethics,Eric Topol (19:46):Right?Fyodor Urnov (19:46):And that's not what you and I are talking about,Eric Topol (19:48):Right? No, no. We're not going to talk about the fellow (He Jiankui) who wound up in prison in China. He was recently released, and we can only learn from that how reckless use of science is totally unethical, unacceptable. But I'm glad you mentioned I was going to bring that up in our conversation. Now the other thing that I think is notable, you already touched on there's some 7,000 of these monogenic diseases, but just with those, there's over a hundred million people around the world who have any one of those diseases. Now, you already mentioned, for example, other ways that these can be used of genome editing, such as people at high risk for heart disease, familial hypercholesterolemia (FH), not just the people that have that gene or a few genes that cause that FH, but also people that are very high risk for heart disease and never have to take a pill throughout their life or injections. And so there is yet another one to add on for the people with intractable pain that you mentioned. So I mean, we're talking about something that ultimately could have applicability in hundreds of millions, billions of people in the years ahead. So this is not something to take lightly. It will take time to have compelling evidence. And that gets me to off target effects.Fyodor Urnov (21:20):Oh yes. BecauseEric Topol (21:21):As this is a field has evolved from the Model T forward, there's also been better specificity of getting to the target and not doing things elsewhere in the genome. Can you comment about where do we stand with these off target effects?Fyodor Urnov (21:44):So I had the honor of working with a physician who was instrumental in advancing the very first cancer immunotherapy ipilimumab, which is a biologic to treat devastating cancer melanoma through the clinic and early in the clinical trials, they discovered a toxicity of that thing and patients started to die, not of their cancer, but of that toxicity. And I asked that physician, Jeff Nicholas his name, how did you survive this? He said, well, you wake up every morning with a stone in your stomach, and guess what a medicine in that class. Here we are. Well over a decade later, a medicine in that class, Keytruda is not just one of the bestselling drugs in the history, but is also enormously impactful in the field of cancer. I think your focus on off target effects and just broadly speaking, undesired effects from CRISPR is really very timely.(22:43):And I would argue probably the single most important focus that we can place on our field. Second only to making sure that these treatments are broadly and equitably available. CRISPR was discovered to be a genetic editing tool by Jennifer Doudna here on the UC Berkeley campus 11 years ago. That's nothing in terms of the history of medicine. It's nothing. It's a baby. And so for that reason, all of us are enormously mindful. Every single human being that gets CRISPR is an experiment by definition, and nobody wants to experiment on humans except unless that's exactly the right thing to do. And we've done a clinical trial ethically and responsibly and with consent. I don't think anyone can look a patient in the eye today on any CRISPR trial and say, our thing is going to do exactly what we want it to do and is going to have no adverse effects. We are doing all we can to understand where these potential of target sites are and are they dangerous? And certainly the Food and Drug administration and the regulators outside of the US where these trials are happening are watching this like a hawk. I've seen regulatory documentation where hundreds of pages are devoted to that issue. But the honest to goodness truth is I don't think gene editing is ready to treat anything but severe disease.(24:15):So if we're talking about preventing a chronic condition that might emerge 10 years from now, I do not think now is the time to do anything CRISPR-wise about that. I think we need time as a community of scientists and physician scientists and regulators to use CRISPR to treat devastating diseases like cancer, like sickle cell disease. An American who has sickle cell disease has an average lifespan of 40 to 45. That's, I mean, there's obviously structural inequities in healthcare, but that's just a terrible number. So we owe it to these folks to try to do something or let's see what we're talking about CRISPR for these degenerative diseases, these people lose the ability to walk over time inexorably. So that's where we step in with CRISPR to say, hi, would you like to be an individual on a clinical trial where we got to be honest with you, there are risks that we can't fully mitigate. Ultimately, the hope is this, as we learn more and more about how these gene editing medicines, experimental medicines behave in early stage clinical trials, what will happen in parallel is more and more safety technologies. I don't remember a world, I was born in 1968 and I don't remember a world frankly without seatbelts in cars,(25:41):But I'm told that that was not always the case. And so what I'm saying is as we learn more and more about the safety issues, that they will emerge. To be very clear, I want to be a realist. I don't want to be Debbie Downer. I want to be Debbie Realist. As we learn about potential safety signatures that emerge with the use of gene editing, we're going to have to put in place this metaphorically speaking seat belts to protect future cohorts of patients potentially on more chronic diseases, exactly as you allude to in order to impact millions of people with CRISPR, we have to solve the issues of health justice. How do we make these more affordable? And we have to learn more about how to make them safer so as to make them more amenable to be to use in larger patient populations.Eric Topol (26:27):Oh, that's so well put. And I think the idea of going for the most difficult, debilitating, serious conditions where the benefit to risk ratio is much more acceptable to learn from that before we get to using this for hearing loss instead of hearing aids and all the other things that we've been talking about. Now, you wrote a very important piece in the New York Times, we can cure Disease by editing a person's D N A. Why aren't we? Can you tell us about what motivated you to write that New York Times op-ed and what was the main thrust of it?Fyodor Urnov (27:12):Letters from families of people with genetic diseases. Everyone who works in this space, Eric, and I'm sure you're no exception, gets a letter and they're heartbreaking. Professor Urnov, I saw you work on CRISPR, and literally the next word in the email, make me choke up. Will you save my dying angel? And I can't even say that without starting to choke up. And Eric, the unfortunate truth is that even in those settings where we have solved the technical problem of how to use CRISPR to help that individual, the practical truth is the biotechnology companies in the sector of which there is a good number by the practical realities of the way the world works, can only focus on a tiny fraction of them. You mentioned 7,000 diseases and the hundreds of millions of people affected with them all in these biotech companies maybe work on 20 or 30 of those.(28:10):What about the rest? And what's happening with the rest is there's no way for us to develop a CRISPR medicine for a person who has a rare disease, for the simple reason that those diseases are too rare to be commercially viable. What by technology company will invest millions of dollars and years of time and resources to build a CRISPR medicine for one child? Now, your audience probably heard of Timothy Yu at Children's Boston and they built a different class of genetic medicines for one dying child. Her name is Mila. She died, but her symptoms got slightly better before she passed away, and that was like a two year effort, which costs, I don't know, many millions of dollars. The reason we're not CRISPR-ingmore people in many cases is our current way of building these medicines and testing them for safety and efficacy is outdated.(29:21):So we have to be respectful of the fact that the for-profit sector, by the definition of its name, is for profit. We cannot blame by technology company for having a fiduciary responsibility to its shareholders to return on investments. What does that do to diseases which are not profitable? Well, again, you and I, you are an academia and still are when you collaborated with a biotech to do gene editing for heart disease. And I think that's exactly the model. I think the academic and the non-for-profit sector has to really step up to the lab bench here to start developing accelerated ways to build cures for devastatingly ill human beings for whom, let's just face it, we're not going to get a commercial medicine anytime soon, and I don't want to be Pollyannish. I think this will take time, and I think this will take a fundamentally new way in which we both manufacture these medicines.(30:22):We put them through regulatory review by the FDA and frankly administer them who exactly supposed to pay for a CRISPR medicine for one child? We don't know that. But the key point of my piece is that CRISPR is here now. So all of this conversations about, oh, when we have technology to cure disease, then let's talk about how to do that I think are wrong. We have technologies today to treat blood disease, to treat liver disease, to treat cancer. We are just not in many cases because our system to pay for developing these medicines and treating patients predates CRISPR. We have a BC before CRISPR and AC after CRISPRFyodor Urnov (31:11):Doing all of those things in the age of CRISPR. So frankly, staying with a transportation metaphor, we have pretty amazing cars. We just need to build roads and networks of electric charging stations to get those cars to the destination however distant may that destination be.Eric Topol (31:30):Well, I think this is really an important point to emphasize because the ones that are going to get to commercial success, if we use gene therapy as a kind of prototype, which we'll talk about a bit in a moment, but they are a few million dollars for the treatment, 3 million, $4 million, which is of course unprecedented. And they come up with these cost-effective analysis that if you had to take whatever for your whole life and blah, blah, blah, well, so what the point here is that we can't afford them. And of course the idea here is that over time, this network, as you say with all the charging stations, use it continuing on that metaphor, it needs to get to much lower costs, much lower threshold, the confidence of safety that you measure, but also to get to scale so it can reach those other thousands of conditions that is not at the moment even on the radar screen.(32:29):So I hope that that will occur. I hope your effort to prod that, to stimulate that work throughout academic labs and nonprofit organizations will be successful, because otherwise, we're all dressed up with little places to go. We're kind of in a place where it's exciting. It's like science fiction. We have cures for diseases that we didn't have treatments before. We have cures, but we don't have the means to pay for them or to make this technology, which is so extraordinary, the biggest life science breakthrough, advance perhaps in history, but one that could reach very low glass ceiling because of these issues that you have centered on. And I'm really grateful for you having gotten that out there.Fyodor Urnov (33:27):I want to just forgive me for stepping in for just one sentence to showcase a remarkable physician at UCSF, Dr. Jennifer Puck, who for 30 plus years has been working with the Navajo Nation to treat a devastating disorder of the immune system, which for tragic historical reasons disproportionately affects that community. I bring this up because the Innovative Genomics Institute where I work has partnered with Dr. Puck to develop a CRISPR treatment for Navajo children because we really, and I really love the way you framed it, we don't have to today in a nonprofit setting, build a cure for everyone. We need to build an example. How do you approach a disease for which the unmet need is enormous? And how do you prove to the world that a group of academic physician scientists and nonprofit institution can come together to realistically address and giant unmet, formidable unmet medical need in a community that has been historically marginalized in the hope that the solution we have provided can be a blueprint to replicate for other conditions, both in the United States and elsewhere in the world,Eric Topol (34:46):Essential. Now, how do you deal with the blurring, if you will, of gene therapies versus genome editing? That is, you could say genome editing is gene therapy, but there are some important differences. How do you conceptualize that?Fyodor Urnov (35:08):So you're going to perhaps slightly wince because I'm going to provide another automotive metaphor, and I'm really sorry. I should be more serious. Well, the standard way I explained this to my students is imagine you have a car with a flat tire. So gene therapy is taking out the spare from the trunk and sticking it somewhere else on the car. So now the car has a fifth wheel and hoping it runs. And believe it or not, that actually works. Gene editing is the flat.Eric Topol (35:39):That's good.Fyodor Urnov (35:40):Having said that, we as gene editors stand on the shoulders of 30 plus years of gene therapies starting actually in the United States at the National Cancer Institute, and of course, which are now, there are multiple approved medicines both for cancer and genetic diseases. And I really want to honor and salute not just the pioneers of this field, but the entire community of gene therapies who continue to push things forward. But I will admit, I am biased. Gene editing is a way to fix mutations right where they occur. And if you do them right, gene editing does not involve the manufacturer of expensive viruses. Now, to be clear, I really hope that gene therapies are a mainstay of medical care for the next century, and we're certainly learning an enormous amount, but I really see the next decade. Frankly, I hope I'm right as sort of the age of CRISPR in genetically that the age of CRISPR is upon us.Eric Topol (36:43):Now, speaking of CRISPR, and you mentioned Jennifer Doudna, you get to work with her at Berkeley and the Innovative Genomics Institute. What's it like to work with Jennifer?Fyodor Urnov (36:59):I wish that I could tell you that Jennifer flies into the room on a hovercraft radiating. Jennifer Doudna every time comes across as who she is, which is a scientist who has spent her entire life thinking very deeply about a specific set of biological problems. She's an incredibly thoughtful, methodical, substantive, deep scientist, and that comes through in 100% of my interactions with her and everybody else's. Her other feature is humility. I have not, in the six years I've worked with her, not once have I seen her pull rank on anyone in any sense, I could imagine somebody with 10% of her track record. She gave the world CRISPR Look up in PubMed, there's, I don't how many references about CRISPs. She starred an entire realm of biology and biomedicine. Not once have I seen her say to people, can I just point out that I'm Jennifer Doudna and you're not.(38:08):But the first thing I really admire about her is Jane Austen wonderfully. And satirically writes about one of her characters. He then retired to his estate where he could think with pleasure of his own importance. Jennifer Doudna is the inverse of that. She could retire and think with pleasure about her own impact. She's the inverse. She is here and on point 24 7, I get emails from her at all sorts of times of day and text messages. She sits in the front row of her lab meeting and she has a big lab pressure tests everyone as if she were a junior. Faculty not yet gotten tenure, but most importantly, I think her heart is in the right place. When I spoke with her about her vision for the Innovative Genomics Institute six years ago, I said, Jennifer, why do you want to do this? She said, I want to bring CRISPR to the world.(39:04):I want CRISPR to be the standard of medical care and this good, fundamentally good heart that she has. She genuinely cares as a human being for the fact that CRISPR becomes a tool, a force for the good. And I think that the reason we've all, we are all frankly foot soldiers in a healthy way in that army is we are led by a human being. I jokingly, but with a modicum of seriousness. Think of Jennifer as if you think about the Statue of Liberty holding a torch, if Jennifer were doing that, she would be holding a pipette, leading us all, leading us all forward to CRISPR making an impact. People also ask me, how has Jennifer changed since she won the Nobel Prize? My answer is, she won the Nobel Prize. She hasn't, and I mean her schedule got worse. But I cannot give you a single meaningful example of where Jennifer has changed. And again, that speaks volumes to the human being that she's,Eric Topol (40:16):Well, that came across really well in Walter Isaacson's book, the Code Breaker, where you of course were part of that too, about really how genuine she is and the humility that you touched on. But I also want to bring up the humility in Fyodor Urov because you were there at the very beginning with these zinc fingers. You were putting them into cells and showing how they achieved genome editing. There was no CRISPR, there was no Cas9. You were onto this at a very early point, and so you describe yourself just now as a foot soldier, anything but that, I see you as a veritable pioneer in this field. And there's another thing about you that I think is very special, and that is your ability to communicate this complex area and get it where everyone can understand it, which is all the more important as it gets rolled out to become a realistic alternative to these conditions that we've been talking about. So for that and so many things, I'm indebted to you. So Fyodor, what have I missed? We can't cover everything. You could write encyclopedias about this and it's changing every week. But have I missed anything that's important in the field of genome editing that you should close on?Fyodor Urnov (41:46):Well, so as far as your gracious words, now that I'm no longer blushing like a ripe tomato, I do want to honor the enormous group of people, my colleagues at Sangamo and in the academic community for building genome editing 1.0 and you among a very select few leaders in biomedicine who saw early the promise of gene editing. Again, I showcase our collaboration as an example of what true vision in biomedicine can do. I think I would imagine that your audience might say, what about CRISPR for enhancement? Well, I personally don't see anything wrong with well-informed adult human beings agreeing to being gene edited to enhance some feature of themselves once we know that it is safe and effective. But we are years, maybe a decade away from that. So if any of those listening receive an email from CRISPRmebeautiful.com, offering a gene editing enhancement service report, that email as vial spam!(43:21):CRISPR is amazing. It's affecting agriculture medicine in so many different ways and fundamental research, it's making an astonishing progress in the clinic. Medically speaking today, it is exactly where it needs to be as an experimental treatment for severe disorders, all of us have a dream where you can be crisp, you can sort of tune your genes, if you will. I don't know if I will live to see that, but for now, all of us have one prize in mind, which is make CRISPR available as a safe and effective medicine for severe existing disease. And we are working hard towards that, and I think we have a legitimate foundation for good hope.Eric Topol (44:13):Yeah, I think that's putting it very solid. It's probably now with the experience to date, not just in those hundreds of patients and in clinical trials, it continues to look extraordinary that it is going to fulfill the great, and as you said, it's not just in medicine. Many other walks of life are benefiting from this. And a lot of people don't realize that when you do a successful xenotransplant and you otherwise would die, but you give them a pig heart and you edit 50, 60 different genes in critical places so that it appears to the body as a human heart transplant, one that won't be rejected. Theoretically, you open up areas like that that are just so exceptional. But to also highlight that we're not talking, we're talking about somatic genome editing already, genes that are sick or need to be adjusted, if you will, not the ones in embryos that change the human race. No, we're not going there. The off target affects the safety. We'll learn more and more about this in the times ahead and the short times ahead with all the more people that are getting the first lines of treatment. So Fyodor, thank you so much. Thank you for your friendship over this extended period of time. You've taught me so much over the years, and I'm so glad we have a chance to regroup here, to kind of assess the field as it stands today and how it's going to keep evolving at a high velocity.Fyodor Urnov (45:58):My goodness, Eric, it's been amazing, amazing honor. And I should also say, and this is the truth, my morning ritual consists of two things, a shot of espresso, and seeing if you've posted anything interesting on Twitter, that is how I wake up my brain to take on the day. So thank you for not just your amazing vision and extraordinary efforts as a scientist and a physician scientist, but also thank you for the remarkable work you do in making critical advances in medicine and framing them in their exact right way for a very large audience. And I'm humbled and honored by your invitation to speak with you today in this setting. Let's just say that the moment this comes out, I'm going to tell my mom. Mom, yes. What? Oh my gosh. I have spoken with Eric Topol. She will be very excited.Eric Topol (46:53):Well, you're much too kind and we'll leave it there and reconvene in the future for a update because it won't be long before there'll be some substantial ones. Peter, thank you so much.Fyodor Urnov (47:05):Truly, truly a pleasure. Thank you.Thanks for listening (or reading, or both) this Ground Truths podcastPlease share if you found it informative! All proceeds from Ground Truths go to Scripps Research. Get full access to Ground Truths at erictopol.substack.com/subscribe
On Faster, Please! — The Podcast, I've interviewed guests on exciting new technologies like artificial intelligence, fusion energy, and reusable rockets. But today's episode explores another Next Big Thing: biotechnology. To discuss recent advances in CRISPR gene editing and their applications for medicine, I'm sitting down with Kevin Davies.Kevin is executive editor of The CRISPR Journal and author of the excellent 2020 book, Editing Humanity: The CRISPR Revolution and the New Era of Genome Editing.In This Episode* CRISPR advances over the past decade (1:13)* What CRISPR therapies will come next? (8:46)* Non-medical applications of gene editing (13:11)* Bioweapons and the ethics of CRISPR (18:43)* Longevity and genetic enhancements (25:48)Faster, Please! is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Below is an edited transcript of our conversationCRISPR advances over the past decadeWhen people talk about AI, for instance, they might be talking about different versions or applications of AI—machine learning being one. So when we talk about CRISPR, are we just talking about one technique, the one they figured out back in 2012? Are there different ones? Are there improvements? So it's really a different technique. So how has that progressed?You're right. CRISPR has become shorthand for genome editing. But the version of CRISPR that was recognized with the Nobel Prize three years ago in 2020 to Jennifer Doudna and Emmanuelle Charpentier was for one, we can call it the traditional form of CRISPR. And if I refer to it again, I'll call it CRISPR-Cas9. Cas9 is the shorthand name for the enzyme that actually does the cutting of the DNA. But we are seeing extraordinary progress in developing new and even more precise and more nuanced forms of genome editing. They still kind of have a CRISPR backbone. They still utilize some of the same molecular components as the Nobel Prize–winning form of CRISPR. But in particular, I'm thinking of techniques called base editing and prime editing, both of which have commercial, publicly funded biotech companies pushing these technologies into the clinic. And I think over the next five to 10 years, increasingly what we refer to as “CRISPR genome editing” will be in the form of these sort of CRISPR 2.0 technologies, because they give us a much broader portfolio of DNA substitutions and changes and edits, and give the investigators and the clinicians much more precision and much more subtlety and hopefully even more safety and more guarantees of clinical efficiency.Right. That's what I was going to ask. One advantage is the precision, because you don't want to do it wrong. You don't want mutations. Do no harm first. A big advantage is maybe limiting some of the potential downsides.In the ideal gene-editing scenario, you would have a patient with, say, a genetic disease that you can pinpoint to a single letter of the genetic code. And we want to fix that. We want to zero in on that one letter—A, C, T, or G is the four-letter alphabet of DNA, as I hope most of your listeners know—and we want to revert that back to whatever most normal, healthy people have in their genetic code at that specific position. CRISPR-Cas9, which won the Nobel Prize, is not the technology to do that sort of single base edit. It can do many other things, and the success in the clinic is unquestionable already in just a few years. But base editing and, in particular, prime editing are the two furthest developed technologies that allow investigators to pinpoint exactly where in the genome we want to make the edit. And then without completely cutting or slicing the double helix of DNA, we can lay up the section of DNA that we want to replace and go in and just perform chemistry on that one specific letter of DNA. Now, this hasn't been proven in the clinic just yet. But the early signs are very, very promising that this is going to be the breakthrough genome-editing technology over the next 10 to 20 years.Is CRISPR in the wild yet, or are we still in the lab?No, we're in the clinic. We are in human patients. There are at least 200 patients who have already been in or are currently enrolled in clinical trials. And so far, the early results—there are a few caveats and exceptions—but so far the overwhelming mood of the field is one of bullish enthusiasm. I don't want to complete this interview without singling out this one particular story, which is the clinical trial that has been sponsored by CRISPR Therapeutics and Vertex Pharmaceuticals for sickle cell disease. These are primarily African-American patients in this country because the sickle cell mutation arose in Africa some 7,000 years ago.We're talking about a pretty big share of the African-American population.This is about 100,000 patients just in America, in the US alone. And it's been a neglected disease for all kinds of reasons, probably beyond the scope of our discussion. But the early results in the first few dozen patients who have been enrolled in this clinical trial called the exa-cel clinical trial, they've all been cured. Pretty much all cured, meaning no more blood transfusions, no more pain crises, no more emergency hospitalizations. It is a pretty miraculous story. This therapy is now in the hands of the FDA and is speeding towards—barring some unforeseen complication or the FDA setting the bar so high that they need the investigators to go back and do some further checks—this should be approved before the end of this year.There's a catch, though. This will be a therapy that, in principle, will become—once approved by the FDA and the EMA in Europe, of course—will become available to any sickle cell patient. The catch will, of course, be the cost or the price that the companies set, because they're going to look for a return on their investment. It's a fascinating discussion and there's no easy answer. The companies need to reward their shareholders, their investors, their employees, their staff, and of course build a war chest to invest in the next wave, the next generation of CRISPR therapies. But the result of that means that probably we're going to be looking at a price tag of, I mean, I'm seeing figures like $1.9 million per patient. So how do you balance that? Is a lifetime cure for sickle cell disease worth $2, maybe $3 million? Will this patient population be able to afford that? In many cases, the answer to that will be simply, no. Do you have to remortgage your house and go bankrupt because you had a genetic quirk at birth? I don't know quite how we get around this.Different countries will have different answers with different health systems. Do you have a sense of what that debate is going to be like in Washington, DC?It's already happening in other contexts. Other gene therapies have been approved over the last few years, and they come with eye-watering price tags. The highest therapy price that I've seen now is $3.5 million. Yes, there are discounts and waiver programs and all this sort of stuff. But it's still a little obscene. Now, when those companies come to negotiate, say, with the UK National Health Service, they'll probably come to an agreement that is much lower, because the Brits are not going to say that they're going to be able to afford that for their significant sickle cell population.Is it your best guess that this will be a treatment the government pays for?What's interesting and what may potentially shift the calculus here is that this particular therapy is the disease affects primarily African-Americans in the United States. That may change the political calculus, and it may indeed change the corporate calculus in the boardrooms of Vertex and CRISPR Therapeutics, who may not want the backlash that they're going to get when they say, “Oh, by the way, guys, it's $2 million or you're out of luck.”There are companies that are studying using CRISPR to potentially correct the mutations that cause genetic forms of blindness, genetic forms of liver disease.What CRISPR therapies will come next?And after this CRISPR treatment for sickle cell disease is available, what therapies will come next?Probably a bunch of diseases that most people, unless they are unfortunate enough to have it in their family, won't have heard of. There are companies that are studying using CRISPR to potentially correct the mutations that cause genetic forms of blindness, genetic forms of liver disease. It turns out the liver is an organ that is very amenable to taking up medicines that we can inject in the blood. The other big clinical success story has come from another company in the Boston area called Intellia Therapeutics. Also publicly traded. They've developed CRISPR therapies that you can inject literally into the body, rather than taking cells out and doing it in the lab and then putting those cells back in, as in the case of sickle cell.I'm not sure that was actually even clear: that you can do it more than one way.Yes.And obviously it sounds like it would be better if they could just inject you.Exactly. That's why people are really excited about this, because this now opens up the doors for treating a host of diseases. And I think over the next few years we will see a growing number of diseases, and it won't just be these rare sort of genetic diseases with often unpronounceable names. It may be things like heart disease. There's another company—they're all in Boston, it seems—Verve Therapeutics, which is taking one of these more recent gene-editing technologies that we talked about a minute ago, base editing, and saying that there's a gene that they're going to target that has been clearly linked with cholesterol levels. And if we can squash production of this gene, we can tap down cholesterol levels. That will be useful, in the first instance, for patients with genetic forms of high cholesterol. Fair enough. But if it works in them, then the plan is to roll this out for potentially thousands if not millions of adults in this country who maybe don't feel that they have a clearly defined genetic form of high cholesterol, but this method may still be an alternative that they will consider versus taking Atorvastatin for the rest of your life, for example.Where are the CRISPR cancer treatments?They're also making progress, too. Those are in clinical trials. A little more complicated. Of course, cancer is a whole slew of different diseases, so it's a little hard to say, “Yeah, we're making progress here, less so there.” But I think one of the most heartwarming stories—this is an n of one, so it's an anecdotal story—but there was a teenager in the UK treated at one of the premier London medical schools who had a base editing form of CAR T therapy. A lot of people have heard of CAR T therapy for various cancers. And she is now in remission. So again, early days, but we're seeing very positive signs in these early clinical tests.It sounds like we went from a period where it was all in the lab and that we might be in a period over the next five years where it sounds like a wave of potential treatments.I think so, yeah.And for as much as we've seen articles about “The Age of AI,” it really sounds like this could be the age of biotechnology and the age of CRISPR…I think CRISPR, as with most new technologies, you get these sort of hype cycles, right? Two and a half years ago, CRISPR, all the stocks were at peak valuations. And I went on a podcast to say, why are the CRISPR stocks so high? I wasn't really sure, but I was enjoying it at the time. And then, of course, we entered the pandemic. And the biotech sector, perversely, ironically, has really been hit hard by the economy and certainly by the market valuations. So all of the CRISPR gene-editing companies—and there are probably at least eight or 10 now that are publicly traded and many more poised to join them—their valuations are a fraction of what they were a couple of years ago. But I suspect as these first FDA approvals and more scientific peer review papers, of course, but more news of the clinical success to back up and extend what has already been clearly proven as a breakthrough technology in the lab with the Nobel Prize—doesn't get much better than that, does it?—then I think we're going to start to see that biotech sector soar once again.Certainly, there are a lot of computational aspects to CRISPR in terms of designing the particular stretches of nucleic acid that you're going to use to target a specific gene. And AI can help you in that quest to make those ever more precise.Non-medical applications of gene editingThere are also non-medical applications. Can you just give me a little state of play on how that's looking?I think one of the—when CRISPR…And agriculture.Feeding the planet, you could say.That's certainly a big application.It's a human health application—arguably the biggest application.I think one of the fun ones is the work of George Church at Harvard Medical School, who's been on 60 Minutes and Stephen Colbert and many other primetime shows, talking about his work using CRISPR to potentially resurrect the woolly mammoth, which sort of sounds like, “That's Jurassic Park on steroids. That's crazy.” But his view is that, no, if we had herds—if that's the technical term—of woolly mammoths—roaming Siberia and the frozen tundra, they'll keep the ground, the surface packed down and stop the gigatons of methane from leaching out into the atmosphere. We have just seen a week, I've been reading on social media, of the hottest temperatures in the world since records began. And that's nothing compared to what we're potentially going to see if all these greenhouse gases that are just under the surface in places like Siberia further leach into the atmosphere. So that's the sort of environmental cause that Church is on. I think many people think this is a rather foolish notion, but he's launched a company to get this off the ground called Colossal Biosciences, and they're raising a lot of money, it appears. I'm curious to see how it goes. I wish him well.Also, speaking of climate change, making crops more resilient to the heat. That's another I've heard…One of the journals I'm involved in, called GEN Biotechnology, just published a paper in which investigators in Korea have used CRISPR to modify a particular gene in the tomato genome to make it a higher source of vitamin D. And that may not seem to be the most urgent need, but the point is, we can now engineer the DNA of all kinds of plants and crops, many of which are under threat, whether it's from drought or other types of climate change or pests, bacteria, parasites, viruses, fungi, you name it. And in my book Editing Humanity, which came out a couple of years ago, there was a whole chapter listing a whole variety of threats to our favorite glass of orange juice in the morning. That's not going to exist. If we want that all-natural Florida orange juice, we're not going to have that option. We've either got to embrace what technology will allow us to do to make these orange crops more resistant to the existential threat that they're facing, or we're going to have to go drink something else.I started out talking about AI and machine learning. Does that play a role in CRISPR, either helping the precision of the technology or in some way refining the technology?Yeah, hopefully you'll invite me back in a year and I'll be able to give you a more concrete answer. I think the short answer is, yes. Certainly, there are a lot of computational aspects to CRISPR in terms of designing the particular stretches of nucleic acid that you're going to use to target a specific gene. And AI can help you in that quest to make those ever more precise. When you do the targeting in a CRISPR experiment, the one thing you don't want to have happen is for the little stretch of DNA that you've synthesized to go after the gene in question, you don't want that to accidentally latch onto or identify another stretch of DNA that just by statistical chance has the same stretch of 20 As, Cs, Ts, and Gs. AI can help give us more confidence that we're only honing in on the specific gene that we want to edit, and we're not potentially going to see some unforeseen, off-target editing event.Do you think when we look back at this technology in 10 years, not only will we see a wider portfolio of potential treatments, but we'll look at the actual technique and think, “Boy, back in 2012, it was a butchery compared to what we're doing; we were using meat cleavers, and now we're using lasers”?I think, yeah. That's a slightly harsh analogy. With this original form of CRISPR, published in 2012, Nobel Prize in 2020, one of the potential caveats or downsides of the technology is that it involves a complete snip of the double helix, the two strands of DNA, in order to make the edit. Base editing and prime editing don't involve that double-stranded severance. It's just a nick of one strand or the other. So it's a much more genetically friendly form of gene editing, as well as other aspects of the chemistry. We look forward to seeing how base and prime editing perform in the clinic. Maybe they'll run into some unforeseen hurdles and people will say, “You know what? There was nothing wrong with CRISPR. Let's keep using the originally developed system.” But I'm pretty bullish on what base and prime editing can do based on all of the early results have been published in the last few years on mice and monkeys. And now we're on the brink of going into the clinic.One medical scenario that they laid out would be, what if two people with a deadly recessive disease like sickle cell disease, or perhaps a form of cystic fibrosis, wanted to have a healthy biological child?Bioweapons and the ethics of CRISPRThis podcast is usually very optimistic. So we're going to leave all the negative stuff for this part of the podcast. We're going to rush through all the downsides very quickly.First question: Especially after the pandemic, a lot more conversation about bioweapons. Is this an issue that's discussed in this community, about using this technology to create a particularly lethal or virulent or targeted biological weapon?Not much. If a rogue actor or nation wanted to develop some sort of incredibly virulent bioweapon, there's a whole wealth of genetic techniques, and they could probably do it without involving CRISPR. CRISPR is, in a way, sort of the corollary of another field called synthetic biology or synthetic genomics that you may have talked about on your show. We've got now the facility, not just to edit DNA, but to synthesize custom bits of DNA with so much ease and affordability compared to five or 10 years ago. And we've just seen a global pandemic. When I get that question, I've had it before, I say, “Yeah, did we just not live through a global pandemic? Do we really need to be engineering organisms?” Whether you buy the lab leak hypothesis or the bioengineering hypothesis, or it was just a natural transfer from some other organism, nature can do a pretty good job of hurting human beings. I don't know that we need to really worry too much about bioweapons at this point.In 2018, there was a big controversy over a Chinese researcher who created some genome-edited babies. Yeah. Is there more to know about that story? Has that become a hotter topic of discussion as CRISPR has advanced?The Chinese scientist, He Jiankui, who performed those pretty abominable experiments was jailed for the better part of three years. He got early release in China and slowly but surely he's being rehabilitated. He's literally now moved his operation from Shenzhen to Beijing. He's got his own lab again, and he's doing genome editing experiments again. I saw again on social media recently, he's got a petition of muscular dystrophy families petitioning Jack Ma, the well-known Chinese billionaire, to fund his operation to devise a new gene editing therapy for patients with Duchenne muscular dystrophy and other forms of muscular dystrophy. I wouldn't want He Jiankui let within a thousand miles of my kids, because I just wouldn't trust him. And he's now more recently put out a manifesto stating he thinks we should start editing embryos again. So I don't know quite what is going on.It seems the Chinese threw the book at him. Three years is not a trivial prison sentence. He was fined about half a million dollars. But somebody in the government there seems to be okay with him back at the bench, back in the lab, and dabbling in CRISPR. And I don't know that he's been asked, does he have any regrets over the editing of Lulu and Nana. There was a third child born a few months later as well. All he will say is, “We moved too fast.” That is the only caveat that he has allowed himself to express publicly.We know nothing more about the children. They're close to five years old now. There's one particular gene that was being edited was pretty messed up. But we know it's not an essential gene in our bodies, because there are many people walking around who don't have a functional copy of this CCR5 receptor gene, and they're HIV resistant. That was the premise for He Jiankui's experiment. But he has said, “No, they are off limits. The authorities are not going to reveal their identities. We are monitoring them, and we will take care of them if anything goes wrong.” But I think a lot of people in the West would really like to help, to study them, to offer any medical assistance. Obviously, we have to respect their privacy. The twin girls and the third child who was born a bit later, maybe they're being protected for their own good. How would you like it if you grew up through childhood and into your teenage years, to walk around knowing that you were this human experiment? That may be a very difficult thing to live with. So more to come on that.There's no legitimate discussion about changing that in the West or anywhere else?Obviously, in the wake of what He Jiankui did, there were numerous blue ribbon panels, including one just organized by the National Academy of Sciences, just a stone's throw from where we're talking today. And I thought that report was very good. It did two things. This was published a couple of years ago. Two important things came out of it. One is this all-star group of geneticists and other scientists said, “We don't think that human embryo editing should be banned completely. There may be scenarios down the road where we actually would want to reserve this technology because nothing else would help bring about a particular medical outcome that we would like.” And the one medical scenario that they laid out would be, what if two people with a deadly recessive disease like sickle cell disease, or perhaps a form of cystic fibrosis, wanted to have a healthy biological child?There are clinics around the country and around the world now doing something called pre-implantation genetic diagnosis. If you have a family history of a genetic disease, you can encourage the couple to do IVF. We form an embryo or bunch of embryos in the test tube or on the Petri dish. And then we can do a little biopsy of each embryo, take a quick sneak peek at the DNA, look to see if it's got the bad gene or perhaps the healthy gene, and then sort of tag the embryos and only implant the embryos that we think are healthy. This is happening around the country as we speak for hundreds, if not thousands, of different genetic diseases. But it won't work if mom and dad have a recessive, meaning two copies of a bad gene, because there's no healthy gene that you can select in any of those embryos. It would be very rare, but in those scenarios, maybe embryo editing is a way we would want to go. But I don't see a big clamor for this right now. And the early results have been published using CRISPR on embryos in the wake of He Jiankui did have said, “It's a messy technique. It is not safe to use. We don't fully understand how DNA editing and DNA repair works in the human embryo, so we really need to do a whole lot more basic science, as we did in the original incarnation of CRISPR, before we even dare to revisit editing human embryos.” Longevity is interesting because, of course, in the last 18 months there's a company in Silicon Valley called Altos, funded by Yuri Milner, employing now two dozen of the top aging researchers who've been lured away from academia into this transnational company to find hopefully cures or insights into how to postpone aging. Longevity and genetic enhancementsAnother area is using these treatments not to fix things, but to enhance people, whether it's for intelligence or some other trait. A lot of money pouring into longevity treatments from Silicon Valley. Do we know more about the potential of CRISPR for either extending lifespans or selecting for certain desirable traits in people?This sort of scenario is never going to go away. When it comes up, if I hear someone say, “Could we use CRISPR or any gene editing technology to boost intelligence or mathematical ability or music musical ability, or anything that we might want…”Or speed in the hundred meters.“…or speed in the hundred meters, to enhance our perfect newborn?” I would say, what gene are you going to enhance? Intelligence—are you kidding me? Half of the 10,000 genes are expressed in the human brain. You want to start meddling with those? You wouldn't have a prayer of having a positive outcome. I think we can pretty much rule that out. Longevity is interesting because, of course, in the last 18 months there's a company in Silicon Valley called Altos, funded by Yuri Milner, employing now two dozen of the top aging researchers who've been lured away from academia into this transnational company to find hopefully cures or insights into how to postpone aging. That's going to be a long, multi-decade quest to go from that to potentially, “Oh, let's edit a little embryo, our newborn son or daughter so they have the gift of 120 years on this decaying, overheating planet…” Yes, there's a lot to wade through on that.And you have another book coming out. Can you give us a preview of that?I'm writing a book called Curved Air, which is about the story of sickle cell disease. It was first described in a paper from physicians in Chicago in 1910 who were studying the curious anemia of a dental student who walked into their hospital one day. That gentleman, Walter Noel, is now buried back in his homeland, the island of Grenada. But in the 1940s, it was described and characterized as the first molecular disease. We know more about sickle cell disease than almost any other genetic disease. And yet, as we touched on earlier, patients with this who have not had the wealth, the money, the influence, they've been discriminated against in many walks of life, including the medical arena.We're still seeing terribly, tragically, videos and stories and reports of sickle cell patients who are being turned away from hospital rooms, emergency rooms, because the medical establishment just looks at a person of color in absolute agony with one of these pain crises and just assumed, “Oh, they want another opioid hit. Sickle cell? What is that?” There's a lot of fascinating science. There's all this hope in the gene editing and now in the clinic. And there's all this socioeconomic and other history. So I'm going to try to weave all this together in a format that hopefully everyone will enjoy reading.Hopefully a book with a happy ending. Not every book about a disease has a wonderful…I think a positive note to end on is the first American patient treated in this CRISPR clinical trial for sickle cell disease four years ago,Victoria Gray, has become something of a poster child now. She's been featured on National Public Radio on awhole series of interviews and just took her first overseas flight earlier this year to London to speak at a CRISPR gene editing conference. She gave a lovely 15-minute personal talk, shaking with nerves, about her personal voyage, her faith in God, and what's brought her here now, pain-free, traveling the world, and got a standing ovation. You don't see many standing ovations at medical conferences or genetics conferences. And if ever anybody deserved it, somebody like Victoria Gray did. Early days, but a very positive journey that we're on. This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit fasterplease.substack.com/subscribe
Synopsis: Sekar Kathiresan is the Co-Founder, CEO and Board Member of Verve Therapeutics, a clinical-stage biotechnology company developing gene editing medicines to treat patients with cardiovascular disease. Sekar discusses Verve's work developing single-course, in vivo liver-directed gene editing medicines for patients with and at risk of cardiovascular disease and what the company pipeline looks like. He talks about the evolution of his pitch after years of experience with fundraising, how he approaches team building, and his perspective on why people are leaving academia for biotech. He also discusses what he's learned about being a board member and what a good board for a pre-revenue biotech looks like. Biography: Dr. Sekar Kathiresan is co-founder and CEO of Verve Therapeutics, a biotechnology company pioneering a new approach to the care of cardiovascular disease, transforming treatment from chronic management to single-course gene editing medicines. Dr. Kathiresan is a cardiologist and scientist who has focused his career on understanding the inherited basis for heart attack and leveraging those insights to improve the care of cardiovascular disease. Based on his groundbreaking discoveries in human genetic mutations that confer resistance to cardiovascular disease, Dr. Kathiresan co-founded Verve Therapeutics with a vision to create a pipeline of single-course, gene editing therapies focused on addressing the root causes of this highly prevalent and life-threatening disease. Today, Verve is advancing two initial programs that target PCSK9 and ANGPTL3, respectively – genes that have been extensively validated by Dr. Kathiresan and others as targets for lowering blood lipids, such as low-density lipoprotein cholesterol, which is a major driver of cardiovascular disease. Prior to joining Verve, Dr. Kathiresan's roles included director of the Massachusetts General Hospital (MGH) Center for Genomic Medicine, director of the Cardiovascular Disease Initiative at the Broad Institute and professor of medicine at Harvard Medical School. There, Dr. Kathiresan's research laboratory focused on understanding the inherited basis for blood lipids and myocardial infarction. For his research contributions, he has been recognized by the American Heart Association with its highest scientific honor – a Distinguished Scientist Award and by the American Society of Human Genetics with the 2018 Curt Stern Award. Dr. Kathiresan graduated summa cum laude with a B.A. in history from the University of Pennsylvania and received his M.D. from Harvard Medical School. He completed his clinical training in internal medicine and cardiology at MGH and his postdoctoral research training in human genetics at the Framingham Heart Study and the Broad Institute.
Please join author Pieter Martens and Associate Editor Justin Grodin as they discuss the article "Decongestion With Acetazolamide in Acute Decompensated Heart Failure Across the Spectrum of Left Ventricular Ejection Fraction: A Prespecified Analysis From the ADVOR Trial." Dr. Greg Hundley: Welcome listeners to this January 17th issue of Circulation on the Run. And I am Dr. Greg Hundley, Director at the Pauley Heart Center at VCU Health in Richmond, Virginia. Dr. Peder Myhre: And I'm Dr. Peder Myhre from Akershus University Hospital and University of Oslo, in Norway. And today, Greg, we have such an exciting feature paper. It comes to us from the ADVOR trialists. And the ADVOR trial examined the effect of acetazolamide in acute decompensated heart failure. And in this paper we're going to discuss how that treatment effect was across the left ventricular ejection fraction, across the spectrum. Greg, what do you think? Dr. Greg Hundley: Oh, wow. Sounds very interesting. But we might have some other articles in the issue. How about we grab a cup of coffee and Peder maybe this week, I'll go first and we'll start with preclinical science. How about that? Dr. Peder Myhre: Let's do preclinical science, Greg. Dr. Greg Hundley: Well, Peder, this particular paper focuses on the relationship between cardiac fibroblasts and cardiomyocytes. Remember that myocytes sit on a lattice of network of fibroblasts. And when the myocytes die, the fibroblasts then proliferates, secrete collagen and form this thick scar. Now, if we're going to try to regenerate, how are we going to get myocytes to get back into that thick scar when there's really a complete absence? And so as adult cardiomyocytes have little regenerative capacity, resident cardiac fibroblasts synthesize extracellular matrix, post myocardial infarction to form fibrosis, leading to cardiac dysfunction and heart failure. And therapies that can regenerate the myocardium and reverse fibrosis in the setting of a chronic myocardial infarction are lacking. Now, these investigators led by Professor Masaki Ieda from University of Tsukuba, were going to evaluate this process. The overexpression of cardiac transcription factors, including Mef2c, Gata4, Tbx5, Han2, all combined as MGTH. They can directly reprogram cardiac fibroblasts into induced cardiomyocytes and improve cardiac function in and under the setting of an acute myocardial infarction. However, the ability of an in vivo cardiac reprogramming to repair chronic myocardial infarction with established scars, well, that is really undetermined. Dr. Peder Myhre: Oh, what a wonderful introduction, Greg. And the way you described to us how cardiomyocytes and fibroblasts interact was really fascinating. Thank you. And now let's hear what the authors found and don't forget the clinical implications. Dr. Greg Hundley: Thanks, Peder. So these authors developed a novel transgenic mouse system where cardiac reprogramming and fibroblasts lineage tracing could be regulated spatiotemporally with tamoxifen treatment to analyze in vivo cardiac reprogramming in the setting of chronic MI. Then with this new model, the authors found in vivo cardiac reprogramming generates new induced cardiomyocytes from resident cardiac fibroblasts that improves cardiac function and reduces fibrosis in chronic myocardial infarction in mice. Wow. And additionally, they found that overexpression of cardiac reprogramming factors converts profibrotic cardio fibroblasts to a quiescent state, and that reverses fibrosis in chronic myocardial infarction. And therefore, Peder, direct cardiac reprogramming may be a promising therapy for chronic ischemic cardiomyopathies and heart failure. Really exciting work, converting scar tissue to actual functional cardiomyocytes. Dr. Peder Myhre: That was such a fantastic summary, Greg, and a very interesting paper. And I'm now going to take us back to clinical science and epidemiology. Because Greg, we all know that social and psychosocial factors are associated with cardiovascular disease risk. But the relative contributions of these factors to racial and ethnic differences in cardiovascular health has not been quantified. So these authors, led by the corresponding author, Nilay Shah from Northwestern University Feinberg School of Medicine in Chicago, used data from NHANES to examine the contributions of individual level social and psychosocial factors to racial and ethnic differences in population cardiovascular health. And that was measured by something called the cardiovascular health score, CVH score, which ranges from zero to 14, and it counts for diet, smoking, physical activity, body mass index, blood pressure, cholesterol, and blood glucose. Dr. Greg Hundley: Wow, really interesting, Peder. So what did they find here? Dr. Peder Myhre: So Greg, among males, the mean cardiovascular health score was 7.5 in Hispanic, 8.7 in non-Hispanic Asian, 7.5 in non-Hispanic black, and 7.6 in non-Hispanic white adults. And the authors found that the education explained the largest component of cardiovascular health differences among males. And now what about females? In females, the mean score was 8.0 in Hispanic, 9.3 in non-Hispanic Asian, 7.4 in non-Hispanic black, and 8.0 in non-Hispanic white adults. And for women, education explained the largest competence of cardiovascular health difference in non-Hispanic black. And place of birth, and that is US born versus born outside the US, explained the largest component of cardiovascular health difference in Hispanic and non-Hispanic Asian females. So Greg, the authors conclude that education and place of birth conferred the largest statistical contributions to the racial and ethnic differences in cardiovascular health among US adults. Dr. Greg Hundley: Very nice, Peder. What a beautiful description and outline that so well highlighting the differences in men versus women. Well, now we're going to turn back to the world of preclinical science, listeners. And we will continue with the paper by Dr. Amit Khera from Verve Therapeutics. Now, Peder, VERVE-101, this is an investigational in vivo CRISPR base editing medicine designed to alter a single DNA base in the PCSK9 gene. And that permanently turns off hepatic protein production and thereby, durably lowers LDL cholesterol. In this study, the investigators tested the efficacy, durability, tolerability, and potential for germline editing of VERVE-101 in studies of non-human primates and also in a murine F1 progeny study. Dr. Peder Myhre: So more on PCSK9s, and this time CRISPR technology. Very exciting. Greg, what did they find? Dr. Greg Hundley: Right, Peder. So VERVE-101 was well tolerated in non-human primates and led to, listen to this, an 83% lower blood PCSK9 protein and 69% lowering of LDL-C with durable effects up to 476 days following the dosing. These results have supported initiation of a first inhuman clinical trial. That's what needs to come next in patients with heterozygous familial hypercholesterolemia and atherosclerotic cardiovascular disease. Wow. Dr. Peder Myhre: Even greater reductions from this therapy on PCSK9 than the previous PCSK9 inhibitor therapies. Wow. Okay, Greg, and now we go from one fascinating study to another. And this time we actually have the primary results from a large randomized clinical trial, Greg. Isn't that exciting? Dr. Greg Hundley: Yes. Dr. Peder Myhre: And this paper describes the primary results of a trial testing in Indobufen versus aspirin on top of clopidogrel in patients undergoing PCI with drug-eluting stent DES who did not have elevated troponin. So that is patients without mycardial infarction. And in fact, fact, this is the first large randomized control trial to explore the efficacy and safety of aspirin replacement on top of P2Y12 inhibitor in patients receiving PCI with death. And Greg, I suppose you like I wonder what Indobufen is, and I just learned that that is a reversible inhibitor of platelet Cox-1 activity and it has comparable biochemical and functional effects to dose of aspirin. And previous data indicate that Indobufen could lessen the unwanted side effects of aspirin and that includes allergy intolerance and most importantly, aspirin resistance, while it retains the antithrombotic efficacy. Dr. Greg Hundley: Wow, Peder. Really interesting and great explanation. Indobufen. So how did they design this trial and what were the primary results? Dr. Peder Myhre: So Greg, the investigators of this trial, called OPTION, led by corresponding authors, Drs. Ge, Quian, and Wu from Fudan University in Shanghai, randomized 4,551 patients from 103 center to either indobufen based DAPT or conventional, and that is aspirin based DAPT for 12 months after DES implementation. And the trial was open label and with a non-inferiority design, which is important to keep in mind. And the primary endpoint was a one year composite of cardiovascular death, non-fatal MI, ischemic stroke, definite or probable stent thrombosis or bleeding, defined as BARC criteria type 2, 3, or 5. And now Greg, the primary endpoint occurred in 101, that is 4.5% of patients in the indobufen based DAPT group compared to 140, that is 6.1% patients, in the conventional DAPT group. And that yields an absolute difference of 1.6%. And the P for non-inferiority was less than 0.01. And the hazard ratio was 0.73 with confidence intervals ranging from 0.56 to 0.94. And Greg, the occurrence of bleeding was particularly interesting and that was also lower in the indobufen based DAPT group compared to the conventional DAPT group. And that was 3.0% versus 4.0% with the hazard ratio of 0.63. And that was primarily driven by a decrease in BARC type two bleeding. So Greg, the authors conclude that in Chinese patients with negative cardiac troponin undergoing DES implementation, indobufen plus clopidogrel DAPT compared with aspirin plus clopidogrel DAPT significantly reduced the risk of one year net clinical outcomes, which was mainly driven by reduction in bleeding events without an increase in ischemic events. Dr. Greg Hundley: Very nice, Peder. So another reversible inhibitor of platelet COX-1 activity, indobufen. And seems to be very, have high utility in individuals of Chinese ethnicity and Asian race. Well, perhaps more to come on that particular drug. Peder, how about we dive into some of the other articles in the issue? And I'll go first. So first, there's a Frontiers article by Professor Beatty entitled “A New Era and Cardiac Rehabilitation Delivery: Research Gaps, Questions, Strategies and Priorities.” And then there's a Research Letter by Professor Zuurbier entitled, “SGLT-2 inhibitor, Empagliflozin, reduces Infarct Size Independent of SGLT-2.” Dr. Peder Myhre: And then Greg, we have a new ECG challenge by Drs. Haghighat, Goldschlager and Oesterle entitled, “AV Block or Something Else?” And then there is a Perspective piece by Dr. Patrick Lawler entitled, “Models for Evidence Generation During the COVID-19 Pandemic: New Opportunities for Clinical Trials in Cardiovascular Medicine.” And Greg, there's definitely so much to learn from all the research that has been done through the pandemic. And finally, we have our own Molly Robbins giving us Highlights from the Circulation Family of Journals. And first, there is a paper describing the characteristics of postoperative heart block in patients undergoing congenital heart surgery described in Circulation: Arrhythmia Electrophysiology. Next, the impact of socioeconomic disadvantages on heart failure outcomes reported in Circulation: Heart Failure. Then there is social and physical barriers to healthy food explored in circulation, cardiovascular quality and outcomes. And then there is the association of culprit-plaque morphology with varying degrees of infarct, myocardial injury size reported in Circulation: Cardiovascular Imaging. And finally, the impact of optical coherence tomography on PCI decisions reported in circulation cardiovascular interventions. Dr. Greg Hundley: Fantastic, Peder. Well, how about we get off to that feature discussion? Dr. Peder Myhre: Let's go. Dr. Mercedes Carnethon: Well, thank you and welcome to this episode of the Circulation on the Run Podcast. I'm really excited today to host this show. My name is Mercedes Carnethon. I'm an associate editor at Circulation and Professor and Vice Chair of Preventive Medicine at the Northwestern University Feinberg School of Medicine. I'm really excited to learn from the lead author of a new study on decongestion with Acetazolamide and acute decompensated heart failure across the spectrum of LV ejection fraction. And I've got the lead author with me today, Pieter Martens, as well as my colleague and associate editor Justin Grodin, who handled the paper. So I'd love to start off with just welcoming you, Dr. Martens. Dr. Pieter Martens: Thank you for having me. It's a pleasure to be here today. Dr. Mercedes Carnethon: Yes. And thank you so much for submitting your important work to the journal, Circulation. I'd love to start to hear a little bit about what was your rationale for carrying out this trial and tell us a little bit about what you found. Dr. Pieter Martens: So the ADVOR trial was a double blind placebo controlled randomized trial, which was performed in Belgium. And it set out to assess the effect of acetazolamide in acute decompensated heart failure and this on top of standardized loop diuretic therapy and patients with heart failure. And the goal of the current analysis was to assess whether the treatment effect of acetazolamide in acute heart failure differs amongst patients with a different ejection fraction at baseline at randomization. So we looked specifically at patients with heart failure, reduced, mildly reduced and preserved ejection fraction to determine whether acetazolamide works equally well in those patients. Dr. Mercedes Carnethon: Well, thank you so much. Tell me a little more. What did you find? Did your findings surprise you? Dr. Pieter Martens: All patients that were randomized in the ADVOR trial, we registered a baseline left ventricular ejection fraction at baseline. And what we saw was at the multiple endpoints that we collected in the ADVOR trial, that randomization towards acetazolamide was associated with a pronounced and preserved treatment effect. And different endpoints that we looked at was a primary endpoint which was successful, which is an important endpoint, which we all strive towards in acute decompensated heart failure. And we saw that irrespective of what your baseline ejection fraction was, that randomization towards acetazolamide was associated with a higher odds ratio for having successful decongestion. And also looking at other endpoints which we find important in the treatment of patients with acute compensated heart failure, such as renal endpoints such as the diuresis, the amount of urine that they make, or the natruresis, the amount of sodium that they excrete, we again saw that randomization towards acetazolamide was associated with a higher treatment effect, so more diuresis, more natruresis, which was not effective, whether you had heart failure, reduced, mildly reduced or preserved eject fraction. We did see a slight increase in the creatinine, which was a little bit more pronounced in patients with heart failure with reduced ejection fraction. Dr. Mercedes Carnethon: Thank you so much for that excellent summary. I'm an epidemiologist, so I'm certainly aware that of the cardiovascular diseases and their changes over time, heart failure is one that is going up over time and affecting more of the population. So I know I really enjoyed hearing about an additional therapy that helps to improve quality of life and improve clinical outcomes in individuals who are experiencing heart failure. And I'm really curious as I turn to you, Justin, what attracted you to this particular article and why did you find it to be such a good fit for our audience here at Circulation? Dr. Justin Grodin: Well, Mercedes, I mean, I think you hit the nail on the head with your comment. And clearly when we look at Medicare beneficiaries in the United States, hospitalization for decompensated heart failure is the number one or most common cause for hospitalization. And up to this time, we really haven't had any multi-center randomized control clinical trials that have really informed clinical care with a positive result or a novel strategy that says, "Hey, this might be a better way to treat someone in comparison with something else." And so when we have a clinical trial like ADVOR, one of the crucial things that we want to understand is how does this work and does it work for everybody? And now when we look at the population hospitalized with heart failure, we know that approximately half of them have a weak heart or low ejection fraction, and the other half have a stiff heart, a normal ejection fraction. And so since we've got this 50/50 makeup, it is a crucially important question to understand if we have an important study like ADVOR, does this apply? Are these benefits enjoyed by all these individuals across the spectrum? Dr. Mercedes Carnethon: Thank you so much for really putting that in context. And I believe you had some additional questions for Dr. Martens. Dr. Justin Grodin: Yes. Yeah, thank you. So Pieter, I mean obviously this was a terrific study. One question I had for you guys is, you and your colleagues and the ADVOR research team is whether you had expected these results. Because we know at least historically, that there might be different cardiorenal implications for individuals that have a weak heart or heart failure with reduced ejection fraction in comparison with a stiff heart or heart failure with preserved ejection fraction. Dr. Pieter Martens: Thank you for that comment. And thank you also for the nice feedback on the paper. I think we were not really completely surprised by the results. I think from a pathophysiologic perspective, we do wonder whether heart failure with reduced ejection fraction from a kind of renal perspective is different from heart failure with preserved ejection fraction. Clearly, there are a lot of pathophysiological differences between heart failure with reduced, mildly reduced and preserved ejection fraction. But when it comes to congestion and acute heart failure, they seem to behave, or at least similarly in terms of response to acetazolamide, which was very interesting. We do think there are neurohormonal differences between heart failure reduced ejection fraction, preserved ejection fraction. But at least how acetazolamide works seems relatively unaffected by the ejection fraction. Dr. Justin Grodin: And Pieter, another question that comes to mind, and this is getting a little bit technical, but there have been studies that have shown that people that present to the hospital with decompensated heart failure, that have HFpEF, have a very different perhaps congestion phenotype where they might not have as much blood volume expansion. And so I, for one, was pretty curious as to how these results were going to play out. And I wonder what your thoughts are on that, or maybe that's perhaps more niche and less widely applicable than what you observed. Dr. Pieter Martens: Now, I can completely agree that when we are thinking about congestion, the congestion itself is a sort of pressure based phenomenon. And the pressure based phenomenon is based on what your volume is and the compliance within your cardiovascular system. But I think one of the important things to remember is that how we enrolled patients in the ADVOR trial was that we enrolled patients who had clear signs of volume overload. Remember, we used a volume score to assess clinical decongestion or actually getting rid of the volume. Volume assessment isn't really necessarily a pressure based assessment. And pressures might be the genesis of elevated pressures might be different amongst heart failure with reduced versus preserved ejection fraction. But what was really clear was that all these patients were volume overloaded. And when you think about the volume axis, then it's really about getting rid of that additional sodium, water, and that's where really acetazolamide works. So I do think we differ a little bit from historical acute decompensated heart failure trials in which they sometimes use signs and symptoms of more congestion, a pressure based phenomenon, where our endpoint was truly at volume endpoint. And we do believe that diuretics work really on a volume component of heart failure. Dr. Mercedes Carnethon: Thank you so much, especially for explaining that in a way that even non-clinicians such as myself can understand the potential implications. A big picture question that I have, and I really enjoy these discussions because they give us an opportunity to speculate beyond what we read in the paper. And that question is we do clinical trials and we identify effective therapies. And one of the bigger challenges we often face is getting those therapies out to the people who need them. Do you perceive any barriers in uptake of the use of acetazolamide in clinical practice? Dr. Pieter Martens: That's an excellent question. So one of the, I think beauties about acetazolamide is that this drug has been on the market for about 70 years. So I think everybody has access to it. This is not a novel compound which needs to go through different steps of getting marketing approval and getting a sort of reimbursement before it becomes available in clinical practice. And in theory, everybody should have access to this relatively cheap agent and can use it in its clinical practice. And I think it was very interested when we came out with the initial paper. I think already the day afterwards, we were getting messages from across the world that people have been using acetazolamide. So I think it is an agent which is available in current clinical practice and should not be too many barriers to its current implementation and clinical practice. Dr. Mercedes Carnethon: Well, that's fantastic to hear. So I hope Justin, that you will certainly help to ring the bell to get the information out about this wonderful study. I do want to turn to you, Pieter, to find out whether or not there are any final points that you didn't have an opportunity to discuss with us today. Dr. Pieter Martens: Think some of the other end points we didn't discuss were the effect, for instance, on length of stay. I think length of stay is a very important endpoint because hospital admissions, like Justin said, heart failure is the number one reason why elderly patients are being admitted. And just shortening the length of stay from a financial perspective might be important. So it was also very interesting to see that the use of acetazolamide in the study also translated into a shorter length of stay, which was also was unaffected, whether you had heart failure, reduced, mildly reduced or preserved ejection fraction, Dr. Mercedes Carnethon: Well, I certainly know people appreciate being in their own homes and being able to discharge is certainly a major benefit. So thank you so much for sharing that final point. I really want to thank you so much for a stimulating discussion today. I know that I learned a lot from you, Pieter, and the hard work of your research team as well as from you, Justin, for putting these findings in context and really helping our listeners and the readers of our journal understand why this paper is so important and how it's really moving the field forward for a clinically important problem. So thank you both so much for joining us here today on Circulation on the Run. Dr. Justin Grodin: Thank you. Dr. Pieter Martens: Thank you for having me. Dr. Mercedes Carnethon: I really want to thank our listeners for joining us today for this episode of Circulation on the Run. I hope you will join us again next week for more exciting discussions with our authors. Dr. Greg Hundley: This program is copyright of the American Heart Association 2023. The opinions expressed by speakers in this podcast are their own and not necessarily those of the editors or of the American Heart Association. For more, please visit ahajournals.org.
In der heutigen Folge „Alles auf Aktien“ sprechen die Finanzjournalisten Nando Sommerfeldt und Holger Zschäpitz über Selbstbewusstsein bei Starbucks, Teslas Umdenken in Sachen Grünheide und China-Fantasie bei Moderna. Außerdem geht es um Uniper, Inditex, Danaher, Nvidia, Zoom, Roku, UiPath, Draftkings, Twilio, TuSimple, Ginkgo Bioworks, Verve Therapeutics, Butterfly, Signify Health, CATL, BYD, SAIC, Volkswagen. Wir freuen uns an Feedback über aaa@welt.de. Disclaimer: Die im Podcast besprochenen Aktien und Fonds stellen keine spezifischen Kauf- oder Anlage-Empfehlungen dar. Die Moderatoren und der Verlag haften nicht für etwaige Verluste, die aufgrund der Umsetzung der Gedanken oder Ideen entstehen. Für alle, die noch mehr wissen wollen: Holger Zschäpitz können Sie jede Woche im Finanz- und Wirtschaftspodcast "Deffner&Zschäpitz" hören. Impressum: https://www.welt.de/services/article7893735/Impressum.html Datenschutz: https://www.welt.de/services/article157550705/Datenschutzerklaerung-WELT-DIGITAL.html
In this conversation, Daniel Belkin and Mitch Belkin speak with Sekar Kathiresan, MD, about using gene editing medications to treat cardiovascular disease. We discuss Dr. Kathiresan's company Verve Therapeutics, which has pioneered a lipid nanoparticle delivery system of a CRISPR-based gene editing technology. We delve into the pathophysiology of cardiovascular disease, the role played by LDL and the LDL receptor in atherosclerosis, the genetics underlying monogenic and polygenic risk for myocardial infarction, CRISPR and the future of gene editing technologies, and Verve's ongoing phase I trial of a PCSK9 gene editing medication (VERVE-101) in humans. Who is Sekar Kathiresan?Dr. Sekar Kathiresan, a cardiologist, geneticist, and the CEO and co-founder of Verve Therapeutics. Verve Therapeutics is a company pioneering a new approach to the treatment of cardiovascular disease with single-dose gene editing medications. Prior to co-founding Verve, he served as the director of the Massachusetts General Hospital Center for Genomic Medicine and was a Professor of Medicine at Harvard Medical School. References:Sekar Kathiresan's TwitterVerve Therapeutics websiteTirzepatide for the treatment of obesity (NEJM, 2022)____________________________________ Follow us @ExMedPod and subscribe to our Youtube channel.Daniel Belkin, MD, and Mitch Belkin, MD, are brothers and resident physicians. The External Medicine Podcast is a podcast exploring nontraditional medical ideas and innovation.
We are into the age of testing gene editing on humans when it comes to looking into heart disease issues. Earlier this month a New Zealander was the first person to be injected with gene-editing instructions to try and modify a single part of their DNA to stop it producing bad cholesterol. It has been used on monkeys in the past, which resulted in a 70 percent reduction in cholesterol levels. Dr. Andrew Bellinger is the chief scientific and medical officer of Verve Therapeutics and he joined Mike Hosking. LISTEN ABOVESee omnystudio.com/listener for privacy information.
Can CRISPR edit out a heart attack? What happens on #GutTok? And is health care recession-proof? Sek Kathiresan, cardiologist and CEO of Verve Therapeutics, joins us to explain the company's work on preventing heart disease with genome editing. Then, STAT's Isabella Cueto joins us to discuss "Hot girls have IBS," an internet in-joke that evolved into a movement for people with chronic illness. We also break down the latest news in the life sciences, including a long-awaited victory for Novavax and ostensible good news for biotech.
A Conversation With Sek Kathiresan MD, founder and CEO of Verve Therapeutics
Episode 009 is ambitious; by interviewing Barry Ticho, John has the opportunity to discuss and share a more comprehensive description of the relationship between entrepreneurial, R&D and clinical experience at both large pharma and emerging biotech companies. Barry is the Chief Medical Officer at Stoke Therapeutics––a company addressing the underlying cause of severe diseases by upregulating protein expression with RNA-based medicines––as well as a founder and board member at Verve Therapeutics which aims to protect the world from heart disease. Prior to his current positions, he was the head of development of mRNA treatments for cardiovascular and metabolic diseases at Moderna Therapeutics as well as head of external R&D innovation for cardiovascular and metabolic diseases at Pfizer (two widely talked about companies right now). He was also vice president of clinical development at Biogen. Barry spent time at the University of Chicago where he received his MD and PhD. He then completed his pediatrics training at Northwestern University and a cardiology fellowship at Children's hospital in Boston. He stuck to the east coast following his move to Boston where he worked on the clinical staff at Harvard Medical School and Massachusetts General Hospital and conducted laboratory research. His experience centers around therapeutics across a range of modalities especially in the area of mRNA. Hearing about his continuum of experiences will help the LRTU audience connect some dots.
Please note: as of 12/31/21, ARK's clients own greater than 1% of the shares outstanding of Verve Therapeutics. On this episode of FYI, ARK Analyst Ali Urman is joined by Verve Therapeutics CEO Sek Kathiresan and Chief Scientific Officer Andrew Bellinger. Verve, a biotechnology company, was created with the sole focus of protecting the world from heart disease. For many years, institutions have approached cardiovascular disease with a chronic care model, prescribing medications to help reduce symptoms and complications, such as heart attack and high blood pressure. Verve Therapeutics wants to change that model. Founded in 2018, Verve was created with the idea that we can develop a one-and-done gene-editing medicine to permanently lower LDL cholesterol to treat heart attack, the world's leading cause of death. In today's episode, Dr. Kathiresan and Dr. Bellinger weigh in on the development of gene-editing and its impacts on cardiovascular disease. They discuss gene-editing costs, the importance of lowering LDL cholesterol levels, importance of liver delivery, their PCSK9 program, and why it could be revolutionary for the future of cardiovascular health. For the past four years, Verve has worked to develop proof of concept in monkeys specifically. Gene-editing therapies, such as Verves, could help create longer term health for patients. Listen in to learn more! “When people think about gene editing they are immediately thinking rare disease pricing and millions of dollars per dose … that's not going to be our model because we ultimately want to reach millions of patients” – @skathire Key Points From This Episode: An introduction to Verve Therapeutics Dr. Kathiresan's inspiration for treating cardiovascular disease Issues with the chronic care model Development of PCSK9 Overcoming the unmet need of the LDL care Thinking about healthcare from the upstream approach How COVID vaccines have shown feasibility in development How the pipeline continues emerging Challenges of nanoparticles being picked up by the liver Developing a new therapy with homozygous monkey model Difference between healthy vs. heterozygous patients How costs affect the work and role of COVID MRNA Off-target editing What we need to get to market quicker Engaging with Twitter to advance the conversation Data visualization
As Chief Medical Officer Dr. Ticho is responsible for Stoke's efforts to develop first-in-class RNA based disease-modifying medicines to treat severe genetic diseases. He is also co-founder and former CEO of Verve Therapeutics which is developing therapies to edit the genome and confer protection from cardiovascular disease. Prior to joining Stoke Barry was Head of R&D for Cardiovascular and Metabolic Diseases at Moderna Therapeutics. He was previously Head of External R&D Innovation for Cardiovascular and Metabolic Diseases at Pfizer. Prior to that he was Vice President of Clinical Development at Biogen where he led clinical development for the Tysabri program for MS and led the aducanumab program for Alzheimer's Disease. Barry obtained his M.D. and Ph.D. degrees from the University of Chicago and completed Pediatrics training at Northwestern University and a Cardiology fellowship at Children's Hospital in Boston. He was on clinical staff at Harvard Medical School and Massachusetts General Hospital.
The CRISPR Children is a series of podcasts about the children whose genomes were edited before their birth in 2018. The podcasts accompany a story I did about these children in Nature Biotechnology by the same name. You can find the story here: https://rdcu.be/cB7Nx The children were born somewhere in China and the result of experiments performed in the lab of He Jiankui at Southern University of Science and Technology in Shenzhen. These were unethical experiments. But how are the children? And how could you assess their health and possible future risks? There is a lot of secrecy and rumor about these children. One has to maintain their privacy and dignity, of course. But they are also victims. They and their parents might be helped if the biomedical community tried to understand more about the experiments. But that is far from straightforward. Especially because many scientists declined to talk about them. But a number of them kindly did speak with me and I am grateful for that. Here is some of what I heard. This episode is with Dr Kiran Musunuru of the University of Pennsylvania, a physician-scientist who works in genetics and gene-editing. He has also co-founded a company called Verve Therapeutics. He has written a book about the children called: The CRISPR generation The Story of the World's First Gene-Edited Babies.
Verve Therapeutics develops gene-editing medicines for patients to treat cardiovascular diseases. Generally, biopharma companies are very difficult to understand, but today our guest makes the complex seem simple. Maxx brings his expert knowledge of Verve Therapeutics for a great discussion regarding the history and future of the company. Enjoy the show! Our Thursday Deep Dives are sponsored by Quartr, the new way of doing company research. Access conference calls, presentations, transcripts, and more for FREE on your mobile device. Download Quartr on the App Store here: https://apps.apple.com/us/app/quartr-investor-relations/id1552412128 Download Quartr on the Google Play Store here: https://play.google.com/store/apps/details?id=se.quartr.android Subscribe to 7investing with the code "CCM": https://7investing.com/subscribe/aff/4/ Want updates on future shows and projects? Follow us on Twitter: https://twitter.com/chitchatmoney Interested in more of Maxx's work? Follow him on Twitter: https://twitter.com/7MaxxChatsko?s=20 Rather watch us on video? Subscribe to our YouTube channel: https://www.youtube.com/channel/UCG5Ni-SI-jyrEsoNUhqftNQ Contact us: chitchatmoneypodcast@gmail.com Timestamps Verve Therapeutics | (4:27) Management & more | (26:50) Disclosure: Chit Chat Money hosts and guests are not financial advisors, and nothing they say on this show is formal advice or a recommendation. Brett Schafer and Ryan Henderson are general partners and portfolio managers at Arch Capital. Arch Capital and its partners may hold securities discussed on this show. Learn more about your ad choices. Visit megaphone.fm/adchoices
Andrew Bellinger is chief scientific officer of Verve Therapeutics. He is a general cardiologist at Brigham and Women's Hospital and is board-certified in cardiovascular medicine and internal medicine. His scientific expertise includes biomedical engineering and drug delivery, computational modeling, pharmacology, clinical strategy and translational medicine. Prior to joining Verve, Dr. Bellinger co-founded and served as chief scientific officer of Lyndra Therapeutics, where he helped to build the company's research team and was involved in the company's key partnerships with Gilead and Allergan. During Dr. Bellinger's tenure, Lyndra advanced several programs into the clinic. Prior to Lyndra, Dr. Bellinger served as chief scientific officer of Cocoon Biotech, leading the development of the company's drug delivery platform based on silk fibroin. Dr. Bellinger completed his clinical training in internal medicine at the University of California, San Francisco, and his clinical training in cardiology at Brigham and Women's Hospital. He completed his postdoctoral research training in drug delivery with Dr. Robert Langer at the Massachusetts Institute of Technology. Dr. Bellinger holds an M.D. and Ph.D. from Columbia University, an M.S. in mathematics from New York University, and an A.B. in physics from Princeton University.
This week Harry is joined by Kevin Davies, author of the 2020 book Editing Humanity: The CRISPR Revolution and the New Era of Genome Editing. CRISPR—an acronym for Clustered Regularly Interspaced Short Palindromic Repeats—consists of DNA sequences that evolved to help bacteria recognize and defend against viral invaders, as a kind of primitive immune system. Thanks to its ability to precisely detect and cut other DNA sequences, CRISPR has spread to labs across the world in the nine years since Jennifer Doudna and Emmanuel Charpentier published a groundbreaking 2012 Science paper describing how the process works. The Nobel Prize committee recognized the two scientists for the achievement in 2020, one day after Davies' book came out. The book explains how CRISPR was discovered, how it was turned into an easily programmable tool for cutting and pasting stretches of DNA, how most of the early pioneers in the field have now formed competing biotech companies, and how the technology is being used to help patients today—and in at least one famous case, misused. Today's interview covers all of that ground and more.Davies is a PhD geneticist who has spent most of his career in life sciences publishing. After his postdoc with Harvey Lodish at the Whitehead Institute, Davies worked as an assistant editor at Nature, the founding editor of Nature Genetics (Nature's first spinoff journal), editor-in-chief at Cell Press, founding editor-in-chief of the Boston-based publication Bio-IT World, and publisher of Chemical & Engineering News. In 2018 he helped to launch The CRISPR Journal, where he is the executive editor. Davies' previous books include Breakthrough (1995) about the race to understand the BRCA1 breast cancer gene, Cracking the Genome (2001) about the Human Genome Project, The $1,000 Genome (2010) about next-generation sequencing companies, and DNA (2017), an updated version of James Watson's 2004 book, co-authored with Watson and Andrew Berry.Please rate and review MoneyBall Medicine on Apple Podcasts! Here's how to do that from an iPhone, iPad, or iPod touch:1. Open the Podcasts app on your iPhone, iPad, or Mac. 2. Navigate to the page of the MoneyBall Medicine podcast. You can find it by searching for it or selecting it from your library. Just note that you'll have to go to the series page which shows all the episodes, not just the page for a single episode.3.Scroll down to find the subhead titled "Ratings & Reviews."4.Under one of the highlighted reviews, select "Write a Review."5.Next, select a star rating at the top — you have the option of choosing between one and five stars. 6.Using the text box at the top, write a title for your review. Then, in the lower text box, write your review. Your review can be up to 300 words long.7.Once you've finished, select "Send" or "Save" in the top-right corner. 8.If you've never left a podcast review before, enter a nickname. Your nickname will be displayed next to any reviews you leave from here on out. 9.After selecting a nickname, tap OK. Your review may not be immediately visible.Full TranscriptHarry Glorikian: I'm Harry Glorikian, and this is MoneyBall Medicine, the interview podcast where we meet researchers, entrepreneurs, and physicians who are using the power of data to improve patient health and make healthcare delivery more efficient. You can think of each episode as a new chapter in the never-ending audio version of my 2017 book, “MoneyBall Medicine: Thriving in the New Data-Driven Healthcare Market.” If you like the show, please do us a favor and leave a rating and review at Apple Podcasts.Harry Glorikian: We talk a lot on the show about how computation and data are changing the way we develop new medicines and the way we deliver healthcare. Some executives in the drug discovery business speak of the computing and software side of the business as the “dry lab” —to set it apart from the “wet labs” where scientists get their hands dirty working with actual cells, tissues, and reagents.But the thing is, recent progress on the wet lab side of biotech has been just as amazing as progress in areas like machine learning. And this week, my friend Kevin Davies is here to talk about the most powerful tool to come along in the last decade, namely, precise gene editing using CRISPR.Of course, CRISPR-based gene editing has been all over the news since Jennifer Doudna and Emmanuel Charpentier published a groundbreaking Science paper in 2012 describing how the process works in the lab. That work earned them a Nobel Prize in medicine just eight years later, in 2020.But what's not as well-known is the story of how CRISPR was discovered, how it was turned into an easily programmable tool for cutting and pasting stretches of DNA, how most of the early pioneers in the field have now formed competing biotech companies, and how the technology is being used to help patients today—and in at least one famous case, misused.Kevin put that whole fascinating story together in his 2020 book Editing Humanity. And as the executive editor of The CRISPR Journal, the former editor-in-chief of Bio-IT World, the founding editor at Nature Genetics, and the author of several other important books about genomics, Kevin is one of the best-placed people in the world to tell that story. Here's our conversation.Harry Glorikian: Kevin, welcome to the show. Kevin Davies: Great to see you again, Harry. Thanks for having me on.Harry Glorikian: Yeah, no, I mean, I seem to be saying this a lot lately, it's been such a long time since, because of this whole pandemic, nobody's really seeing anybody on a regular basis. I want to give everybody a chance to hear about, you had written this book called Editing Humanity, which is, you know, beautifully placed behind you for, for product placement here. But I want to hear, can you give everybody sort of an overview of the book and why you feel that this fairly technical laboratory tool called CRISPR is so important that you needed to write a book about it?Kevin Davies: Thank you. Yes. As you may know, from some of my previous “bestsellers” or not, I've written about big stories in genetics because that's the only thing I'm remotely qualified to write about. I trained as a human geneticist in London and came over to do actually a pair of post-docs in the Boston area before realizing my talents, whatever they might be, certainly weren't as a bench researcher. So I had to find another way to stay in science but get away from the bench and hang up the lab coats.So moving into science publishing and getting a job with Nature and then launching Nature Genetics was the route for me. And over the last 30 years, I've written four or five books that have all been about, a) something big happening in genomics, b) something really big that will have both medical and societal significance, like the mapping and discovery of the BRCA1 breast cancer gene in the mid-90s, the Human Genome Project at the turn of the century, and then the birth and the dawn of consumer genetics and personalized medicine with The $1,000 Genome. And the third ingredient I really look for if I'm trying to reach a moderately, significantly large audience is for the human elements. Who are they, the heroes and the anti heroes to propel the story? Where is the human drama? Because, you know, we all love a good juicy, gossipy piece of story and rating the good guys and the bad guys. And CRISPR, when it first really took off in 2012, 2013 as a gene editing tool a lot of scientists knew about this. I mean, these papers are being published in Science in particular, not exactly a specialized journal, but I was off doing other things and really missed the initial excitement, I'm embarrassed to say. It was only a couple of years later, working on a sequel to Jim Watson's DNA, where I was tasked with trying to find and summarize the big advances in genomic technology over the previous decade or whatever, that I thought, well, this CRISPR thing seems to be taking off and the Doudnas and the Charpentiers are, you know, winning Breakthrough Prizes and being feted by celebrities. And it's going on 60 Minutes. They're going to make a film with the Rock, Dwayne Johnson. What the heck is going on. And it took very little time after that, for me to think, you know, this is such an exciting, game-changing disruptive technology that I've got to do two things. I've gotta, a) write a book and b) launch a journal, and that's what I did. And started planning at any rate in sort of 2016 and 17. We launched the CRISPR Journal at the beginning of 2018. And the book Editing Humanity came out towards the end of 2020. So 2020, literally one day before the Nobel Prize—how about that for timing?—for Doudna and Charpentier for chemistry last year. Harry Glorikian: When I think about it, I remember working with different companies that had different types of gene editing technology you know, working with some particularly in the sort of agriculture space, cause it a little bit easier to run faster than in the human space. And you could see what was happening, but CRISPR now is still very new. But from the news and different advances that are happening, especially here in the Boston area, you know, it's having some real world impacts. If you had to point to the best or the most exciting example of CRISPR technology helping an actual patient, would you say, and I've heard you say it, Victoria Gray, I think, would be the person that comes to mind. I've even, I think in one of your last interviews, you said something about her being, you know, her name will go down in history. Can you explain the technology that is helping her and what some of the similar uses of CRISPR might be?Kevin Davies: So the first half of Editing Humanity is about the heroes of CRISPR, how we, how scientists turned it from this bizarre under-appreciated bacterial antiviral defense system and leveraged it and got to grips with it, and then figured out ways to turn it into a programmable gene editing technology. And within a year or two of that happening that the classic Doudna-Charpentier paper came out in the summer of 2012. Of course the first wave of biotech companies were launched by some of the big names, indeed most of the big names in CRISPR gene editing hierarchies. So Emmanuel Charpentier, Nobel Laureate, launched CRISPR Therapeutics, Jennifer Doudna co-founded Editas Medicine with several other luminaries. That didn't go well for, for reasons of intellectual property. So she withdrew from Editas and became a co-founder of Intellia Therapeutics as well as her own company, Caribou, which just went public, and Feng Zhang and others launched Editas Medicine. So we had this sort of three-way race, if you will, by three CRISPR empowered gene editing companies who all went public within the next two or three years and all set their sights on various different genetic Mendelian disorders with a view to trying to produce clinical success for this very powerful gene editing tool. And so, yes, Victoria Gray is the first patient, the first American patient with sickle cell anemia in a trial that is being run by CRISPR Therapeutics in close association with Vertex Pharmaceuticals. And that breakthrough paper, as I think many of your listeners will know, came out right at the end of 2020 published in the New England Journal of Medicine. Doesn't get much more prestigious than that. And in the first handful of patients that CRISPR Therapeutics have edited with a view to raising the levels of fetal hemoglobin, fetal globin, to compensate for the defective beta globin that these patients have inherited, the results were truly spectacular.And if we fast forward now to about two years after the initial administration, the initial procedures for Victoria Gray and some of her other volunteer patients, the results still look as spectacular. Earlier this year CRISPR Therapeutics put out of sort of an update where they are saying that the first 20 or 24 patients that they have dosed with sickle cell and beta thallasemia are all doing well. There've been little or no adverse events. And the idea of this being a once and done therapy appears very well founded. Now it's not a trivial therapy. This is ex-vivo gene editing as obviously rounds of chemotherapy to provide the room for the gene edited stem cells to be reimplanted into the patient. So this is not an easily scalable or affordable or ideal system, but when did we, when will we ever able to say we've pretty much got a cure for sickle cell disease? This is an absolutely spectacular moment, not just for CRISPR, but for medicine, I think, overall. And Victoria Gray, who's been brilliantly profiled in a long running series on National Public Radio, led by the science broadcaster Rob Stein, she is, you know, we, we can call her Queen Victoria, we can call it many things, but I really hope that ,it's not just my idea, that she will be one of those names like Louise Brown and other heroes of modern medicine, that we look and celebrate for decades to come.So the sickle cell results have been great, and then much more recently, also in the New England Journal, we have work led by Intellia Therapeutics, one of the other three companies that I named, where they've been also using CRISPR gene editing, but they've been looking at a rare liver disease, a form of amyloidosis where a toxic protein builds up and looking to find ways to knock out the production of that abnormal gene.And so they've been doing in vivo gene editing, really using CRISPR for the first time. It's been attempted using other gene editing platforms like zinc fingers, but this is the first time that I think we can really say and the New England Journal results prove it. In the first six patients that have been reported remarkable reductions in the level of this toxic protein far, not far better, but certainly better than any approved drugs that are currently on the market. So again, this is a very, very exciting proof of principle for in vivo gene editing, which is important, not just for patients with this rare liver disorder, but it really gives I think the whole field and the whole industry enormous confidence that CRISPR is safe and can be used for a growing list of Mendelian disorders, it's 6,000 or 7,000 diseases about which we know the root genetic cause, and we're not going to tackle all of them anytime soon, but there's a list of ones that now are within reach. And more and more companies are being launched all the time to try and get at some of these diseases.So as we stand here in the summer of 2021, it's a really exciting time. The future looks very bright, but there's so much more to be done. Harry Glorikian: No, we're just at the beginning. I mean, I remember when I first saw this, my first question was off target effects, right? How are we going to manage that? How are they going to get it to that place that they need to get it to, to have it to that cell at that time, in the right way to get it to do what it needs to do. And you know, all these sorts of technical questions, but at the same time, I remember I'm going to, trying to explain this to my friends. I'm like, “You don't understand, this can change everything.” And now a high school student, I say this to people and they look at me strangely, a high school student can order it and it shows up at your house.Kevin Davies: Yeah, well, this is why I think, and this is why one reason why CRISPR has become such an exciting story and receives the Nobel Prize eight years after the sort of launch publication or the first demonstration of it as a gene editing tool. It is so relatively easy to get to work. It's truly become a democratized or democratizing technology. You don't need a million-dollar Illumina sequencer or anything. And so labs literally all around the world can do basic CRISPR experiments. Not everyone is going to be able to launch a clinical trial. But the technology is so universally used, and that means that advances in our understanding of the mechanisms, new tools for the CRISPR toolbox new pathways, new targets, new oftware, new programs, they're all coming from all corners of the globe to help not just medicine, but many other applications of CRISPR as well.Harry Glorikian: Yeah. I always joke about like, there, there are things going on in high school biology classes now that weren't, available, when I was in college and even when we were in industry and now what used to take an entire room, you can do on a corner of a lab bench.Kevin Davies: Yeah. Yeah. As far as the industry goes we mentioned three companies. But you know, today there's probably a dozen or more CRISPR based or gene editing based biotech companies. More undoubtedly are going to be launched before the end of this year. I'm sure we'll spend a bit of time talking about CRISPR 2.0, it seems too soon to be even thinking about a new and improved version of CRISPR, but I think there's a lot of excitement around also two other Boston-based companies, Beam Therapeutics in Cambridge and Verve Therapeutics both of which are launching or commercializing base editing. So base editing is a tool developed from the lab of David Lu of the Broad Institute [of MIT and Harvard]. And the early signs, again, this technology is only five or six years old, but the early signs of this are incredibly promising. David's team, academic team, had a paper in Nature earlier this year, really reporting successful base editing treatment of sickle cell disease in an animal model, not by raising the fetal globin levels, which was sort of a more indirect method that is working very well in the clinic, but by going right at the point mutation that results in sickle cell disease and using given the chemical repertoire of base editing.Base editing is able to make specific single base changes. It can't do the full repertoire of single base changes. So there are some limitations on researchers' flexibility. So they were unable to flip the sickle cell variant back to the quote unquote wild type variants, but the change they were able to make is one that they can live with, we can live with because it's a known benign variant, a very rare variant that has been observed in other, in rare people around the world. So that's completely fine. It's the next best thing. And so that looks very promising. Beam Therapeutics, which is the company that David founded or co-founded is trying a related approach, also going right at the sickle cell mutation. And there are other companies, including one that Matthew Porteus has recently founded and has gone public called Graphite Bio.So this is an exciting time for a disease sickle cell disease that has been woefully neglected, I think you would agree, both in terms of basic research, funding, medical prioritization, and medical education. Now we have many, many shots on goal and it doesn't really, it's not a matter of one's going to win and the others are going to fall by the wayside. Just like we have many COVID vaccines. We'll hopefully have many strategies for tackling sickle cell disease, but they are going to be expensive. And I think you know the economics better than I do. But I think that is the worry, that by analogy with gene therapies that have been recently approved, it's all, it's really exciting that we can now see the first quote, unquote cures in the clinic. That's amazingly exciting. But if the price tag is going to be $1 million or $2 million when these things are finally approved, if and when, that's going to be a rather deflating moment. But given the extraordinary research resources that the CRISPRs and Intellias and Beams and Graphites are pouring into this research, obviously they've got to get some return back on their investment so that they can plow it back into the company to develop the next wave of of gene editing therapies. So you know, it's a predicament Harry Glorikian: One of these days maybe I have to have a show based on the financial parts of it. Because there's a number of different ways to look at it. But just for the benefit of the listeners, right, who may not be experts, how would you explain CRISPR is different from say traditional gene therapies. And is CRISPR going to replace older methods of, of gene therapy or, or will they both have their place? Kevin Davies: No, I think they'll both have their place. CRISPR and, and these newer gene editing tools, base editing and another one called prime editing, which has a company behind it now called Prime Medicine, are able to affect specific DNA changes in the human genome.So if you can target CRISPR, which is an enzyme that cuts DNA together with a little program, the GPS signal is provided in the form of a short RNA molecule that tells the enzyme where to go, where to go in the genome. And then you have a couple of strategies. You can either cut the DNA at the appropriate target site, because you want to inactivate that gene, or you just want to scramble the sequence because you want to completely squash the expression of that gene. Or particularly using the newer forms of gene editing, like base editing, you can make a specific, a more nuanced, specific precision edit without, with one big potential advantage in the safety profile, which is, you're not completely cutting the DNA, you're just making a nick and then coaxing the cell's natural repair systems to make the change that you sort of you're able to prime.So there are many diseases where this is the way you want to go, but that does not in any way invalidate the great progress that we're making in traditional gene therapy. So for example today earlier today I was recording an interview or for one of my own programs with Laurence Reid, the CEO of Decibel Therapeutics, which is looking at therapies for hearing loss both genetic and other, other types of hearing disorders.And I pushed him on this. Aren't you actually joinomg with the gene editing wave? And he was very circumspect and said, no, we're very pleased, very happy with the results that we're getting using old fashioned gene replacement therapy. These are recessive loss of function disorders. And all we need to do is get the expression of some of the gene back. So you don't necessarily need the fancy gene editing tools. If you can just use a an AAV vector and put the healthy gene back into the key cells in the inner ear. So they're complimentary approaches which is great.Harry Glorikian: So, you know, in, in this podcast, I try to have a central theme when I'm talking to people. The relationships of big data, computation, advances in new drugs, and other ways to keep people healthy. So, you know, like question-wise, there's no question in my mind that the whole genomics revolution that started in the ‘90s, and I was happy to be at Applied Biosystems when we were doing that, would have been impossible in the absence of the advances in computing speed and storage in the last three decades. I think computing was the thing that held up the whole human genome, which gave us the book of life that CRISPR is now allowing us to really edit. But I wonder if you could bring us sort of up-to-date and talk about the way CRISPR and computation are intertwined. What happens when you combine precision of an editing tool like CRISPR with the power of machine learning and AI tools to find meaning and patterns in that huge genetic ball? Kevin Davies: Yeah. Well, yeah. I'm got to tread carefully here, but I think we are seeing papers from some really brilliant labs that are using some of the tools that you mentioned. AI and machine learning with a view to better understanding and characterizing some of the properties and selection criteria of some of these gene editing tools. So you mentioned earlier Harry, the need to look out for safety and minimize the concern of off-target effects. So I think by using some of these some algorithms and AI tools, researchers have made enormous strides in being able to design the programmable parts of the gene editing constructs in such a way that you increase the chances that they're going to go to the site that you want them to go to, and nnot get hung up latching onto a very similar sequence that's just randomly cropped up on the dark side of the genome, across the nucleus over there. You don't want that to happen. And I don't know that anybody would claim that they have a failsafe way to guarantee that that could never happen. But the you know, the clinical results that we've seen and all the preclinical results are showing in more and more diseases that we've got the tools and learned enough now to almost completely minimize these safety concerns. But I think everyone, I think while they're excited and they're moving as fast as they can, they're also doing this responsibly. I mean, they, they have to because no field, gene therapy or gene editing really wants to revisit the Jesse Gelsinger tragedy in 1999, when a teenage volunteer died in volunteering for a gene therapy trial at Penn of, with somebody with a rare liver disease. And of course that, that setback set back the, entire field of gene therapy for a decade. And it's really remarkable that you know, many of the sort of pioneers in the field refuse to throw in the towel, they realized that they had to kind of go back to the drawing board, look at the vectors again, and throw it out. Not completely but most, a lot of the work with adenoviruses has now gone by the wayside. AAV is the new virus that we hear about. It's got a much better safety profile. It's got a smaller cargo hold, so that's one drawback, but there are ways around that. And the, the explosion of gene therapy trials that we're seeing now largely on the back of AAV and now increasingly with, with non-viral delivery systems as well is, is very, very gratifying. And it's really delivery. I think that is now the pain point. Digressing from your question a little bit, but delivery, I think is now the big challenge. It's one thing to contemplate a gene therapy for the eye for rare hereditary form of blindness or the ear. Indeed those are very attractive sites and targets for some of these early trials because of the quantities that you need to produce. And the localization, the, the physical localization, those are good things. Those help you hit the target that you want to. But if you're contemplating trying something for Duchenne muscular dystrophy or spinal muscular atrophy, or some of the diseases of the brain, then you're going to need much higher quantities particularly for muscular disorders where, you run into now other challenges, including, production and manufacturing, challenges, and potentially safeguarding and making sure that there isn't an immune response as well. That's another, another issue that is always percolating in the background.But given where we were a few years ago and the clinical progress that we've talked about earlier on in the show it, I think you can safely assume that we've collectively made enormous progress in, in negating most, if not all of these potential safety issues.Harry Glorikian: No, you know, it's funny, I know that people will say like, you know, there was a problem in this and that. And I look at like, we're going into uncharted territories and it has to be expected that you just…you've got people that knew what they were doing. All of these people are new at what they are doing. And so you have to expect that along the way everything's not going to go perfectly. But I don't look at it as a negative. I look at it as, they're the new graduating class that's going to go on and understand what they did right. Or wrong, and then be able to modify it and make an improvement. And, you know, that's what we do in science. Kevin Davies: Well, and forget gene editing—in any area of drug development and, and pharmaceutical delivery, things don't always go according to plan. I'm sure many guests on Moneyball Medicine who have had to deal with clinical trial failures and withdrawing drugs that they had all kinds of high hopes for because we didn't understand the biology or there was some other reaction within, we didn't understand the dosing. You can't just extrapolate from an animal model to humans and on and on and on. And so gene editing, I don't think, necessarily, should be held to any higher standard. I think the CRISPR field has already in terms of the sort of market performance, some of the companies that we've mentioned, oh my God, it's been a real roller coaster surprisingly, because every time there's been a paper published in a prominent journal that says, oh my God, there's, there's a deletion pattern that we're seeing that we didn't anticipate, or we're seeing some immune responses or we're seeing unusual off target effects, or we're seeing P53 activation and you know, those are at least four off the top of my head. I'm sure there've been others. And all had big transient impact on the financial health of these companies. But I think that was to be expected. And the companies knew that this was just an overreaction. They've worked and demonstrated through peer review publications and preclinical and other reports that these challenges have been identified, when known about, pretty much completely have been overcome or are in the process of being overcome.So, you know, and we're still seeing in just traditional gene therapy technologies that have been around for 15, 20 years. We're still seeing reports of adverse events on some of those trials. So for gene editing to have come as far as it's common, to be able to look at these two big New England Journal success stories in sickle cell and ATTR amyloidosis, I don't think any very few, except the most ardent evangelists would have predicted we'd be where we are just a few years ago. [musical transition]Harry Glorikian: I want to pause the conversation for a minute to make a quick request. If you're a fan of MoneyBall Medicine, you know that we've published dozens of interviews with leading scientists and entrepreneurs exploring the boundaries of data-driven healthcare and research. And you can listen to all of those episodes for free at Apple Podcasts, or at my website glorikian.com, or wherever you get your podcasts.There's one small thing you can do in return, and that's to leave a rating and a review of the show on Apple Podcasts. It's one of the best ways to help other listeners find and follow the show.If you've never posted a review or a rating, it's easy. All you have to do is open the Apple Podcasts app on your smartphone, search for MoneyBall Medicine, and scroll down to the Ratings & Reviews section. Tap the stars to rate the show, and then tap the link that says Write a Review to leave your comments. It'll only take a minute, but it'll help us out immensely. Thank you! And now back to the show.[musical transition]Harry Glorikian:One of your previous books was called The $1,000 Genome. And when you published that back in 2010, it was still pretty much science fiction that it might be possible to sequence someone's entire genome for $1,000. But companies like Illumina blew past that barrier pretty quickly, and now people are talking about sequencing individual genome for just a few hundred dollars or less. My question is, how did computing contribute to the exponential trends here. And do you wish you'd called your book The $100 Genome?Kevin Davies: I've thought about putting out a sequel to the book, scratching out the 0's and hoping nobody would notice. Computing was yes, of course, a massive [deal] for the very first human genome. Remember the struggle to put that first assembly together. It's not just about the wet lab and pulling the DNA sequences off the machines, but then you know, the rapid growth of the data exposure and the ability to store and share and send across to collaborators and put the assemblies together has been critical, absolutely critical to the development of genomics.I remember people were expressing shock at the $1,000 genome. I called the book that because I heard Craig Venter use that phrase in public for the first time in 2002. And I had just recently published Cracking the Genome. And we were all still recoiling at the billions of dollars it took to put that first reference genome sequence together. And then here's Craig Venter, chairing a scientific conference in Boston saying what we need is the $1,000 genome. And I almost fell off my chair. “what are you? What are you must you're in, you're on Fantasy Island. This is, there's no way we're going to get, we're still doing automated Sanger sequencing. God bless Fred Sanger. But how on earth are you going to take that technology and go from billions of dollars to a couple of thousand dollars. This is insanity.” And that session we had in 2002 in Boston. He had a local, a little episode of America's Got Talent and he invited half a dozen scientists to come up and show what they had. And George Church was one of them. I think Applied Biosystems may have given some sort of talk during that session. And then a guy, a young British guy from a company we'd never heard of called Celexa showed up and showed a couple of pretty PowerPoint slides with colored beads, representing the budding DNA sequence on some sort of chip. I don't know that he showed any data. It was all very pretty and all very fanciful. Well guess what? They had the last laugh. Illumina bought that company in 2006. And as you said, Harry you know, I think when, when they first professed to have cracked the $1,000 dollar genome barrier, a few people felt they needed a pinch of salt to go along with that. But I think now, yeah, we're, we're, we're well past that. And there are definitely outfits like BGI, the Beijing Genomics Institute being one of them, that are touting new technologies that can get us down to a couple of hundred. And those were such fun times because for a while there Illumina had enormous competition from companies like 454 and Helicose and PacBio. And those were fun heady times with lots and lots of competition. And in a way, Illumina's had it a little easy, I think over the last few years, but with PacBio and Oxford Nanopore gaining maturity both, both in terms of the technology platforms and their business strategy and growth, I think Illumina' gonna start to feel a little bit more competition in the long read sequence space. And one is always hearing whispers of new companies that may potentially disrupt next-gen sequencing. And that would be exciting because then we'd have an excuse to write another book. Harry Glorikian: Well, Kevin, start writing because I actually think we're there. I think there are a number of things there and you're right, I think Illumina has not had to bring the price down as quickly because there hasn't been competition. And you know, when I think about the space is, if you could do a $60 genome, right, it starts to become a rounding error. Like what other business models and opportunities now come alive? And those are the things that excite me. All right. But so, but you have a unique position as editor of the journal of CRISPR and the former editor of a lot of prominent, you know, publications, Nature Genetics, Bio-IT World, Chemical & Engineering News. Do you think that there's adequate coverage of the biological versus the computing side of it? Because I, I have this feeling that the computing side still gets a little overlooked and underappreciated. Kevin Davies: I think you're right. I mean I think at my own company Genetic Engineering News, we still have such deep roots in the wet lab vision and version of biotechnology that it takes a conscious effort to look and say, you know, that's not where all the innovation is happening. Bio-IT World, which you mentioned is interesting because we launched that in 2002. It was launched by the publisher IDG, best-known from MacWorld and ComputerWorld and this, this whole family of high-tech publications.And we launched in 2002 was a very thick glossy print magazine. And ironically, you know, we just couldn't find the advertising to sustain that effort, at least in the way that we'd envisioned it. And in 2006 and 2007, your friend and mine Phillips Kuhl, the proprietor of Cambridge Healthtech Institute, kind of put us out of our misery and said, you know what I'll, take the franchise because IDG just didn't know what to do with it anymore. But what he really wanted was the trade show, the production. And even though at the magazine eventually we fell on our sword and eventually put it out of its misery, the trade show went from strength to strength and it'll be back in Boston very soon because he had the vision to realize there is a big need here as sort of supercomputing for life sciences.And it's not just about the raw high-performance computing, but it's about the software, the software tools and data sharing and management. And it's great to go back to that show and see the, you know, the Googles and Amazons and yeah, all the big household names. They're all looking at this because genome technology, as we've discussed earlier has been one of the big growth boom areas for, for their services and their products.Harry Glorikian: Right. I mean, well, if you look at companies like Tempus, right. When I talked to Joel Dudley over there on the show it's, they want to be the Amazon AWS piping for all things genomic analysis. Right. So instead of creating it on your own and building a, just use their platform, basically, so it's definitely a growth area. And at some point, if you have certain disease states, I don't see how you don't get you know, genomic sequencing done, how a physician even today in oncology, how anybody can truly prescribe with all the drugs that are being approved that have, you know, genomic biomarkers associated with them and not use that data.Kevin Davies: On a much lower, lo-fi scale, as I've been doing a lot of reading about sickle cell disease lately, it's clear that a lot of patients who are, of course, as you, as you know, as your listeners know, are mostly African-American because the disease arose in Africa and the carrier status gives carriers a huge health advantage in warding off malaria. So the gene continues to stay, stay high in in frequency. Many African-American patients would benefit from some generic drugs that are available in this country that provide some relief, but aren't aware of it and maybe their physicians aren't completely aware of it either. Which is very sad. And we've neglected the funding of this disease over many decades, whereas a disease like cystic fibrosis, which affects primarily white people of Northern European descent that receives far more funding per capita, per head, than than a disease like sickle cell does. But hopefully that will begin to change as we see the, the potential of some of these more advanced therapies.I think as far as your previous comment. I think one of the big challenges now is how we tackle common diseases. I think we're making so much progress in treating rare Mendelian diseases and we know thousands of them. But it's mental illness and asthma and diabetes you know, diseases that affect millions of people, which have a much more complicated genetic and in part environmental basis.And what can we learn, to your point about having a full genome sequence, what can we glean from that that will help the medical establishment diagnose and treat much more common diseases, not quite as simple as just treating a rare Mendelian version of those diseases? So that's, I think going to be an important frontier over the next decade.Harry Glorikian: Yeah. It's complicated. I think you're going to see as we get more real-world data that's organized and managed well, along with genomic data, I think you'll be able to make more sense of it. But some of these diseases are quite complicated. It's not going to be find one gene, and it's going to give you that answer.But I want to go back to, you can't really talk about CRISPR without talking about this specter of germline editing. And a big part of your book is about this firestorm of criticism and condemnation around, you know, the 2018 when the Chinese researcher He Jankui, I think I said it correctly.Yep.Kevin Davies: He Jankui is how I say it. Close. Harry Glorikian: He announced that he had created twin baby girls with edits to their genomes that were intended to make them immune to HIV, which sort of like—that already made me go, what? But the experiment was, it seems, unauthorized. It seems that, from what I remember, the edits were sloppy and the case spurred a huge global discussion about the ethics of using CRISPR to make edits that would be inherited by future generations. Now, where are we in that debate now? I mean, I know the National Academy of Sciences published a list of criteria, which said, don't do that. Kevin Davies: It was a little more nuanced than that. It wasn't don't do that. It was, there is a very small window through which we could move through if a whole raft of criteria are met. So they, they refuse to say hereditary genome editing should be banned or there should be a moratorium. But they said it should not proceed until we do many things. One was to make sure it is safe. We can't run before we can walk. And by that, I mean, we've got to first demonstrate—because shockingly, this hasn't been done yet—that genome editing can be done safely in human embryos. And in the last 18 months there've been at least three groups, arguably the three leading groups in terms of looking at genetic changes in early human embryos, Kathy Niakan in London, Shoukhrat Mitalipov in Oregon, and Dieter Egli in New York, who all at roughly the same time published and reports that said, or posted preprints at least that said, when we attempt to do CRISPR editing experiments in very early human embryos, we're seeing a mess. We're seeing a slew of off-target and even on-target undesirable edits.And I think that says to me, we don't completely understand the molecular biology of DNA repair in the early human embryo. It may be that there are other factors that are used in embryogenesis that are not used after we're born. That's speculation on my part. I may be wrong. But the point is we still have a lot to do to understand, even if we wanted to.And even if everybody said, “Here's a good case where we should pursue germline editing,” we've gotta be convinced that we can do it safely. And at the moment, I don't think anybody can say that. So that's a huge red flag.But let's assume, because I believe in the power of research, let's assume that we're going to figure out ways to do this safely, or maybe we say CRISPR isn't the right tool for human embryos, but other tools such as those that we've touched on earlier in the show base editing or prime editing, or maybe CRISPR 3.0 or whatever that is right now to be published somewhere. [Let's say ] those are more safe, more precise tools. Then we've got to figure out well, under what circumstances would we even want to go down this road? And the pushback was quite rightly that, well, we already have technologies that can safeguard against families having children with genetic diseases. It's called IVF and pre-implantation genetic diagnosis. So we can select from a pool of IVF embryos. The embryos that we can see by biopsy are safe and can therefore be transplanted back into the mother, taken to term and you know, a healthy baby will emerge.So why talk about gene editing when we have that proven technology? And I think that's a very strong case, but there are a small number of circumstances in which pre-implantation genetic diagnosis will simply not work. And those are those rare instances where a couple who want to have a biological child, but have both of them have a serious recessive genetic disease. Sickle cell would be an obvious case in point. So two sickle cell patients who by definition carry two copies of the sickle cell gene, once I have a healthy biological child preimplantation genetic diagnosis, it's not going to help them because there are no healthy embryos from whatever pool that they produce that they can select. So gene editing would be their only hope in that circumstance. Now the National Academy's report that you cited, Harry, did say for serious diseases, such as sickle cell and maybe a few others they could down the road potentially see and condone the use of germline gene editing in those rare cases.But they're going to be very rare, I think. It's not impossible that in an authorized approved setting that we will see the return of genome editing, but that's okay. Of course you can can issue no end of blue ribbon reports from all the world's experts, and that's not going to necessarily prevent some entrepreneur whose ethical values don't align with yours or mine to say, “You know what, there's big money to be made here. I'm going offshore and I'm going to launch a CRISPR clinic and you know, who's going to stop me because I'll be out of the clutches of the authorities.” And I think a lot of people are potentially worried that that scenario might happen. Although if anyone did try to do that, the scientific establishment would come down on them like a ton of bricks. And there'll be a lot of pressure brought to bear, I think, to make sure that they didn't cause any harm.Harry Glorikian: Yeah. It's funny. I would like to not call them entrepreneurs. I like entrepreneurs. I'd like to call them a rogue scientist. Kevin Davies: So as you say, there's the third section of four in Editing Humanity was all about the He Jankui debacle or saga. I had flown to Hong Kong. It's a funny story. I had a little bit of money left in my travel budget and there were two conferences, one in Hong Kong and one in China coming up in the last quarter of 2018. So I thought, well, okay, I'll go to one of them. And I just narrowed, almost a flip of a coin, I think. Okay, let's go to the Hong Kong meeting.It's a bioethics conference since I don't expect it to be wildly exciting, but there are some big speakers and this is an important field for the CRISPR Journal to monitor. So I flew there literally, you know, trying to get some sleep on the long flights from New York and then on landing, turn on the phone, wait for the new wireless signal provider to kick in. And then Twitter just explode on my feed as this very, very astute journalists at MIT Technology Review, Antonio Regalado, had really got the scoop of the century by identifying a registration on a Chinese clinical trial website that he and only he had the foresight and intelligence to sort of see. He had met He Jankui in an off the record meeting, as I described in the book, about a month earlier. A spider sense was tingling. He knew something was up and this was the final clue. He didn't know at that time that the Lulu and Nana, the CRISPR babies that you mentioned, had actually been born, but he knew that there was a pregnancy, at least one pregnancy, from some of the records that he'd seen attached to this registration document. So it was a brilliant piece of sleuthing. And what he didn't know is that the Asociated Press chief medical writer Marilynm Marchion had confidentially been alerted to the potential upcoming birth of these twins by an American PR professional who was working with He Jankui in Shenzhen. So she had been working on an embargoed big feature story that He Jankui and his associates hoped would be the definitive story that would tell the world, we did this quote unquote, “responsibly and accurately, and this is the story that you can believe.” So that story was posted within hours.And of course the famous YouTube videos that He Jankui had recorded announcing with some paternal pride that he had ushered into the world these two gene edited, children, screaming and crying into the world as beautiful babies I think was [the phrase]. And he thought that he was going to become famous and celebrated and lauded by not just the Chinese scientific community, but by the world community for having the ability and the bravery to go ahead and do this work after Chinese researchers spent the previous few years editing human embryos. And he was persuaded that he had to present his work in Hong Kong, because he'd set off such a such an extraordinary firestorm. And I think you've all seen now you're the clips of the videos of him nervously walking onto stage the muffled, the silence, or the only sound in the front row, the only sound in the big auditorium at Hong Kong university—[which] was absolutely packed to the rim, one side of the auditorium was packed with press photographers, hundreds of journalists and cameras clicking—and the shutters clattering was the only, that was the applause that he got as he walked on stage.And to his credit, he tried to answer the questions directly in the face of great skepticism from the audience. The first question, which was posed by David Liu, who had traveled all the way there, who just asked him simply, “What was the unmet medical need that you are trying to solve with this reckless experiment? There are medical steps that you can do, even if the couple that you're trying to help has HIV and you're trying to prevent this from being passed on. There are techniques that you can use sperm washing being one of them. That is a key element of the IVF process to ensure that the no HIV is transmitted.”But he was unable to answer the question in terms of I'm trying to help a family. He'd already moved out and was thinking far, far bigger. Right? And his naiveté was shown in the manuscript that he'd written up and by that point submitted to Nature, excerpts of which were leaked out sometime later.So he went back to Shenzhen and he was put under house arrest after he gave that talk in Hong Kong. And about a year later was sentenced to three years in jail. And so he's, to the best of my knowledge that's where he is. But I often get asked what about the children? As far as we know, there was a third child born about six months later, also gene-edited. We don't even know a name for that child, let alone anything about their health. So one hopes that somebody in the Chinese medical establishment is looking after these kids and monitoring them and doing appropriate tests. The editing, as you said, was very shoddily performed. He knocked out the gene in question, but he did not mimic the natural 32-base deletion in this gene CCR5 that exists in many members of the population that confers, essentially, HIV resistance. So Lulu and Nana on the third child are walking human experiments, sad to say. This should never have been done. Never should have been attempted. And so we hope that he hasn't condemned them to a life of, you know, cancer checkups and that there were no off-target effects. They'll be able to live, hopefully, with this inactivated CCR5 gene, but it's been inactivated in a way that I don't think any, no other humans have ever been recorded with such modifications. So we, we really hope and pray that no other damage has been done. Harry Glorikian: So before we end, I'd love to give you the chance to speculate on the future of medicine in light of CRISPR. Easy, fast, inexpensive genome sequencing, give us access to everybody's genetic code, if they so choose. Machine learning and other forms of AI are helping understand the code and trace interactions between our 20,000 genes. And now CRISPR gives us a way to modify it. So, you know, it feels like [we have] almost everything we need to create, you know, precise, targeted, custom cures for people with genetic conditions. What might be possible soon, in your view? What remaining problems need to be solved to get to this new area of medicine? Kevin Davies: If you know the sequence that has been mutated to give rise to a particular disease then in principle, we can devise a, some sort of gene edit to repair that sequence. It may be flipping the actual base or bases directly, or maybe as we saw with the first sickle cell trial, it's because we understand the bigger genetic pathway. We don't have to necessarily go after the gene mutation directly, but there may be other ways that we can compensate boost the level of a compensating gene.But I think we, we should be careful not to get too carried away. As excited as I am—and hopefully my excitement comes through in Editing Humanity—but for every company that we've just mentioned, you know, you can go on their website and look at their pipeline. And so Editas might have maybe 10 diseases in its cross hairs. And CRISPR [Therapeutics] might have 12 diseases. And Intellia might have 14 diseases and Graphite has got maybe a couple. And Beam Therapeutics has got maybe 10 or 12. And Prime Medicine will hasn't listed any yet, but we'll hopefully have a few announced soon. And so I just reeled off 50, 60, less than a hundred. And some of these are gonna work really, really well. And some are going to be either proven, ineffective or unviable economically because the patient pool is too small. And we've got, how many did we say, 6,000 known genetic diseases. So one of the companies that is particularly interesting, although they would admit they're in very early days yet, is Verve Therapeutics. I touched on them earlier because they're looking at to modify a gene called PCSK9 that is relevant to heart disease and could be a gene modification that many people might undergo because the PCSK9 gene may be perfectly fine and the sequence could be perfectly normal, but we know that if we re remove this gene, levels of the bad cholesterol plummet, and that's usually a good thing as far as heart management goes. So that's an interesting, very interesting study case study, I think, to monitor over the coming years, because there's a company looking at a much larger patient pool potentially than just some of these rare syndromes with unpronounceable names. So the future of CRISPR and gene editing is very bright. I think one of the lessons I took away from CRISPR in Editing Humanity is, looking at the full story, is how this technology, this game-changing gene-editing technology, developed because 25 years ago, a handful of European microbiologists got really interested in why certain microbes were thriving in a salt lake in Southeastern Spain. This is not exactly high-profile, NIH-must-fund-this research. There was a biological question that they wanted to answer. And the CRISPR repeats and the function of those repeats fell out of that pure curiosity, just science for science's sake. And so it's the value of basic investigator-driven, hypothesis-driven research that led to CRISPR being described and then the function of the repeats.And then the story shifted to a yogurt company in Europe that was able to experimentally show how having the right sequence within the CRISPR array could safeguard their cultures against viral infection. And then five years of work people in various groups started to see, were drawn to this like moths to a flame. Jennifer Doudna was intrigued by this from a tip-off from a coffee morning discussion with a Berkeley faculty colleagues, Jill Banfield, a brilliant microbiologist in her own. And then she met meets Emmanuelle Charpentier in Puerto Rico at a conference, and they struck up a friendship and collaboration over the course of an afternoon. And that, why should that have worked? Well, it did, because a year later they're publishing in Science. So it's serendipity and basic research. And if that can work for CRISPR, then I know that there's another technology beginning to emerge from somewhere that may, yet trump CRISPR.And I think the beauty of CRISPR is its universal appeal. And the fact is, it's drawn in so many people, it could be in Japan or China or South Korea or parts of Europe or Canada or the U.S. or South America. Somebody is taking the elements of CRISPR and thinking well, how can we improve it? How can we tweak it?And so this CRISPR toolbox is being expanded and modified and updated all the time. So there's a hugely exciting future for genome medicine. And you know, whether it's a new form of sequencing or a new form of synthetic biology, you know, hopefully your show is going to be filled for many years to come with cool, talented, young energetic entrepreneurs who've developed more cool gadgets to work with our genome and other genomes as well. We haven't even had time to talk about what this could do for rescuing the wooly mammoth from extinction. So fun things, but maybe, maybe another time. Harry Glorikian: Excellent. Well, great to have you on the show. Really appreciate the time. I hope everybody got a flavor for the enormous impact this technology can have. Like you said, we talked about human genome, but there's so many other genomic applications of CRISPR that we didn't even touch. Kevin Davies: Yup. Yup. So you have to read the book. Harry Glorikian: Yeah. I will look forward to the next book. So, great. Thank you so much. Kevin Davies: Thanks for having me on the show, Harry. All the best.Harry Glorikian: Take care.Harry Glorikian: That's it for this week's show. You can find past episodes of MoneyBall Medicine at my website, glorikian.com, under the tab “Podcast.” And you can follow me on Twitter at hglorikian. Thanks for listening, and we'll be back soon with our next interview.
A cardiologist and Professor of Medicine at the University of Pennsylvania Perelman School of Medicine, Kiran Musunuru is a clinician and a researcher whose important work has moved the ball forward on gene therapy. As co-founder and scientific advisor to Verve Therapeutics, Kiran has a special perspective – an insider's view of the business, from someone who is both an academic (MD, PhD, MPH) and a humanist at heart.
When Caribou Biosciences (NASDAQ: CRBU) became the seventh publicly-traded CRISPR stock in July 2021, I saw an exchange on social media. One person asked why the company sported a market valuation of $900 million when another newly-public CRISPR stock, Verve Therapeutics (NASDAQ: VERV), was valued near $2.3 billion. "Is there any reason for this other than the timing of the IPOs?", asked the individual. The thread received multiple responses confirming the seemingly large valuation difference between the two companies, with others "agreeing" or responding that they were buying Caribou Biosciences because of it. That was 100% the wrong take. I've observed similar arguments among individual investors within the gene editing space. However, it's important to acknowledge that there are significant differences between gene editing approaches and technology platforms. Caribou Biosciences and Verve Therapeutics might both be using CRISPR systems, but that's where the overlap ends. They're developing completely different tools that have almost nothing in common. Individual investors don't necessarily need to have a deep technical understanding of gene editing tools, but I would argue that there's a minimum level of information required to responsibly invest in the field. Unfortunately, the way the internet works means most investors aren't provided with the information they need. Let's fix that. In this episode of the podcast, 7investing Lead Advisors Maxx Chatsko (me) and Dan Kline introduce simple frameworks for evaluating opportunities and challenges in gene editing. These can be summarized as follows: The Emerging Approaches: There's first-generation tools (gene editing), second-generation tools (base editing), and third-generation tools (prime editing). These approaches are not limited to any specific system. For example, there are CRISPR, TALEN, ARCUS, and other tools capable of performing base editing. The Major Applications: There are knock outs, insertions, activations, precise corrections, knock ins, and other uses of gene editing tools. Each has advantages and disadvantages. The Major Administration Routes: This primarily comes down to in vivo (inside the body) and ex vivo (outside the body). Each has advantages and disadvantages. In addition to this podcast introducing the three frameworks, 7investing Lead Advisor Maxx Chatsko has written an in-depth article explaining these frameworks and how each gene editing stock fits into each -- and it's free to read! Publicly-traded companies mentioned in this podcast include Alnylam Pharmaceuticals, Beam Therapeutics, Caribou Biosciences, Cellectis, CRISPR Therapeutics, Editas Medicine, Graphite Bio, Intellia Therapeutics, Precision BioSciences, Sana Biotechnology, and Verve Therapeutics. 7investing Lead Advisors may have positions in the companies that are mentioned. This interview was originally recorded on August 2nd, 2021 and was first published on August 3rd, 2021. --- Send in a voice message: https://anchor.fm/7investing/message Support this podcast: https://anchor.fm/7investing/support
Sekar Kathiresan, MD, sits down with Chadi to discuss his unique career path from esteemed cardiologist and physician-geneticist at Massachusetts General Hospital to co-founder and CEO of Verve Therapeutics.