POPULARITY
Simply Wall St Market Insights for the week ending 25th May 2025.To read the full article:
This CME program provides information on best practices to manage children with lysosomal disorders who have been identified by newborn screening. WIth the wide range of symptoms and severities that present for these rare conditions, it is not always certain when the best time to start treatment is in these patients.Continuing Education InformationThis continuing education activity is provided by AffinityCE and the Lysosomal and Rare Disorders Research and Treatment Center (LDRTC). This activity provides continuing education credit for physicians. A statement of participation is available to other attendees.To obtain credit, visit https://checkrare.com/learning/p-transforming-clinical-outcomes-with-early-treatment-of-lysosomal-disorders/ Faculty and DisclosuresAffinityCE staff, LDRTC staff, planners, and reviewers, have no relevant financial relationships with ineligible companies to disclose. Faculty disclosures, listed below, will also be disclosed at the beginning of the Program.Ozlem Goker-Alpan MDFounder and CMO, Lysosomal & Rare Disorders Research & Treatment CentersDr. Goker-Alpan is on the Advisory Board/Consultant for Chiesi, Takeda, Sanofi, Prevail/Lilly, Sparks Therapeutics, Uniqure, Exegenesis, Astellas, Freeline, Team Sanfilippo. She receives grants/research support from Chiesi, Sanofi, Takeda, Prevail/Lilly, Spark Therapeutics, Amicus, Freeline, Sangamo, Cyclo, Odorsia, DMT, Homology, Protaliz. She is on the speaker bureau for Sanofi, Takeda, Amicus, ChiesiDavid F. Kronn MDAssociate Professor of Pathology and Pediatrics New York Medical CollegeDr. Kronn is on the Advisory Board for Sanofi. He is also on the speaker bureau for Sanofi. He receives research funding from Sanofi.Uma Ramaswami FRCPCH, MDRoyal Free London Hospitals & Genetics and Genomic Medicine, University College LondonDr. Ramaswami is on the Advisory Board for Amicus, Chiesi, Sanofi and Takeda. She receives research grants from Chiesi and Intabio.Liz Jalazo MDAssistant Professor of Pediatrics and GeneticsUniversity of North Carolina at Chapel HillDr. Jalazo is on the Advisory Board for Sanofi and Ionis. Lindsay Torrice MSN, CPNP-PC MDAssistant Professor of PediatricsUniversity of North Carolina at Chapel HillMs. Torrice has no financial relationships to disclose.Mitigation of Relevant Financial RelationshipsAffinityCE adheres to the ACCME's Standards for Integrity and Independence in Accredited Continuing Education. Any individuals in a position to control the content of a CME activity, including faculty, planners, reviewers, or others, are required to disclose all relevant financial relationships with ineligible companies. All relevant financial relationships for faculty were mitigated by the peer review of content by non-conflicted reviewers before the commencement of the activity.Learning ObjectivesAt the end of this activity, participants should be able to:• Cite the importance of early diagnosis and treatment of lysosomal storage disorders• List the guidelines for the early treatment of LDs and enhanced integration of newborn screening programs• Identify key research gaps and priorities and strengthen collaboration among researchers and healthcare professionals• List the educational resources and support programs for familiesPhysiciansThis activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of AffinityCE and the LDRTC. AffinityCE is accredited by the ACCME to provide continuing medical education for physicians.AffinityCE designates this enduring activity for a maximum of 1.0 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.Other ProfessionalsAll other healthcare professionals completing this continuing education activity will be issued a statement of participation indicating the number of hours of continuing education credit. This may be used for professional education CE credit. Please consult your accrediting organization or licensing board for their acceptance of this CE activity.Commercial SupportThis activity was supported by educational grants from Takeda, Sanofi, and Chiesi.Participation CostsThere is no cost to participate in this activity. CME InquiriesFor all CME policy-related inquiries, please contact us at ce@affinityced.com.Send customer support requests to cds_support+ldrtc@affinityced.com.
Treatable but not curable, endometriosis affects one in 10 women and girls of reproductive age. But it's not all that well understood and recognized, and can go undetected, leading to years of avoidable suffering and causing time away from school, work, and other activities. UConn Health is part of a collaboration with The Jackson Laboratory for Genomic Medicine and the state of Connecticut called EndoRISE, which seeks to raise awareness and advance research of endometriosis. Dr. Danielle Luciano, director of minimally invasive gynecological surgery at UConn Health, and Jasmina Kuljancic, EndoRISE program manager from JAX, help lead this effort. (Dr. Danielle Luciano, Jasmina Kuljancic, Chris DeFrancesco, March 2025, studio and technical support by Ethan Giorgetti and Ryan Bernat) EndoRISE https://www.ctendorise.org/ Dr. Danielle Luciano https://health.uconn.edu/find-a-provider/physician/Luciano-Danielle Endometriosis care at UConn Health https://health.uconn.edu/women/gynecology/endometriosis/ UConn Today: 'EndoRISE Launch Marks New Era in Endometriosis Research and Support' https://today.uconn.edu/2024/06/endorise-launch-marks-new-era-in-endometriosis-research-and-support/
For decades, we've been told that our DNA is a fixed blueprint—an unchangeable code that dictates our health and lifespan. But what if that's only half the story? Sharon Hausman-Cohen, a physician, researcher, and genomics expert at IntellxxDNA, joins Dave to reveal the cutting-edge science of genetic optimization—how understanding your DNA can unlock longer life, better brain function, and even protection from chronic disease. Forget the old-school genetic reports that left you with useless percentages. The new frontier of precision genomics goes beyond risk factors to actionable insights, showing you exactly how to turn on your body's most powerful longevity genes and turn off the pathways driving inflammation, cognitive decline, and disease. What You'll Learn in This Episode: • Why genetics alone don't determine your future—and how to use epigenetics to control your health • The truth about MTHFR, APOE4, and other “bad” genes—are they actually harming you? • How genetic reports can predict and eliminate brain fog, fatigue, and pain • The hidden genetic reasons behind ADHD, depression, and anxiety—and how to fix them • Why some people age faster—and the one longevity gene that determines your biological age • Cutting-edge breakthroughs in DNA-based biohacking—is it possible to edit your genes for peak performance? This is the future of personalized medicine. By understanding your own genetic blueprint, you can stop guessing and start making the precise changes that will optimize your energy, brainpower, and lifespan! ** Visit IntellxxDNA at https://intellxxdna.com/asprey/ When you go to the website to find a clinician please select “human upgrade/longevity” as the type of consult to get specialized biohacking clinicians! ** SPONSORS -Timeline | Head to https://www.timeline.com/dave to get 10% off your first order. -Leela Quantum Tech | Head to https://leelaq.com/DAVE for 10% off. Resources: • Dave Asprey's New Book - Heavily Meditated: https://daveasprey.com/heavily-meditated/ • IntellxxDNA Website: https://intellxxdna.com/asprey/ • 2025 Biohacking Conference: https://biohackingconference.com/2025 • Danger Coffee: https://dangercoffee.com • Dave Asprey's Website: https://daveasprey.com • Dave Asprey's Linktree: https://linktr.ee/daveasprey • Upgrade Collective – Join The Human Upgrade Podcast Live: https://www.ourupgradecollective.com • Own an Upgrade Labs: https://ownanupgradelabs.com • Upgrade Labs: https://upgradelabs.com • 40 Years of Zen – Neurofeedback Training for Advanced Cognitive Enhancement: https://40yearsofzen.com Timestamps: • 00:00 – Intro • 02:00 – The Role of Genetics in Longevity • 03:37 – Gene Variants & Cognitive Health • 05:58 – Epigenetics vs. Genetics • 08:21 – Genomics & Pain Management • 09:26 – Breakthroughs in Genetic Research • 12:33 – The Future of Genomic Medicine • 14:27 – How to Use Genomic Reports • 38:25 – Mitochondria & Longevity • 42:40 – BH4 & Mental Health • 43:42 – Folinic Acid & Brain Function • 44:37 – Genomics & Autism • 46:06 – Personalized Medicine • 56:00 – APOE4 & Alzheimer's Risk • 59:44 – Genetics & Heart Health • 01:04:54 – The Future of Precision Medicine • 01:20:23 – Conclusion & Next Steps See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
Dr. Ben Kleinstiver, whose lab is located at the Center for Genomic Medicine at Mass General Hospital, joins us to talk about programmable nucleases, genome editing, and the applications of this technology in the future of healthcare.
Physician Ash Alizadeh has seen the future of disease diagnosis and monitoring. It is coursing through every patient's veins. Traditionally, biopsies have required invasively gathering tissue – from a lung, a liver, or a fetus. Now it's possible to look for disease without surgery. The DNA is sitting there in the bloodstream, Alizadeh tells host Russ Altman, as they preview the age of liquid biopsies on this episode of Stanford Engineering's The Future of Everything podcast.Have a question for Russ? Send it our way in writing or via voice memo, and it might be featured on an upcoming episode. Please introduce yourself, let us know where you're listening from, and share your quest. You can send questions to thefutureofeverything@stanford.edu.Episode Reference Links:Stanford Profile: Ash A. Alizadeh, MD/PhDConnect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>> Twitter/X / Instagram / LinkedIn / FacebookChapters:(00:00:00) IntroductionRuss Altman introduces guest Ash Alizadeh, a faculty member at Stanford University in Oncology and Medicine.(00:03:39) What is a Liquid Biopsy?Accessing tissues non-invasively using bodily fluids.(00:04:31) Detecting Cancer with Liquid BiopsiesHow localized cancers can be detected through blood samples.(00:06:32) The Science Behind Cancer DNA DetectionThe differences between normal and cancer DNA(00:09:51) How Liquid Biopsy Technology WorksThe technologies behind detecting cancer-related DNA differences.(00:12:36) Advances in Liquid BiopsyNew detection approaches using non-mutant molecules and RNA.(00:14:10) RNA as a Real-Time Tumor MarkerHow RNA reveals active tumor processes and drug resistance.(00:15:55) Tracking Cancer ReccurenceUsing tumor-informed panels to monitor cancer recurrence.(00:16:28) Adapting to Tumor EvolutionWhy core mutations remain detectable despite cancer changes.(00:17:57) Stability of DNA, RNA, and MethylationComparing durability and reliability of different biomarkers.(00:20:49) Listener Question: Early Cancer DetectionDaniel Kim asks about pre-cancer detection and its potential impact.(00:24:44) Liquid Biopsy in ImmunotherapyUsing liquid biopsy to track and improve immune-based treatments.(00:27:35) Monitoring CAR T-Cell TherapyHow liquid biopsy helps assess immune cell expansion.(00:32:02) EPIC-Seq: Inferring RNA from DNAUsing DNA fragmentation to predict gene expression in tumors.(00:34:49) Targeting Tumor Support SystemsTreatment strategies disrupting the tumor microenvironment.(00:35:52) Conclusion Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
We're thrilled to share a special episode drop from one of our producers, Kira Dineen, and her flagship podcast, DNA Today! As a multi award winning genetics podcast with over 12 years of groundbreaking episodes, DNA Today explores the latest in genetics and genomics through expert interviews and engaging discussions. To celebrate the new year, this episode reflects back on the top genetics and genomics news stories during 2024. The top stories we chatted about are from the American Journal of Human Genetics' “Genomic medicine year in review: 2024” paper. Joining Kira Dineen for this discussion are two leaders in genomics: Dr. Bruce Gelb and Dr. Eric Green. In this reflective conversation, Kira Dineen, Dr. Bruce Gelb, and Dr. Eric Green discusses the significant developments in genetics and genomics over the past year, including the recent American Society of Human Genetics (ASHG) conference. They explore themes such as variable expressivity, the integration of genomics in human genetics, and the importance of diversity in genomic research. The discussion also highlights key publications in genomic medicine and the evolving landscape of genetic research, emphasizing the need for continued focus on prevention and the implications of polygenic risk scores. They converse about the evolving landscape of genomic medicine, highlighting key advancements in research, particularly in areas like hemochromatosis and CRISPR technology. They reflect on the rapid progress made in genomic sequencing, especially in newborns, and the transformative impact it has on healthcare, particularly in NICUs. The discussion emphasizes the importance of diverse studies and scalable solutions in genetic counseling, as well as the future potential of genomic medicine to save lives and improve health outcomes. Top 2024 Genomic Medicine Advancements Testing and managing iron overload after genetic screening-identified hemochromatosis Actionable genotypes and their association with lifespan in Iceland Impact of digitally enhanced genetic results disclosure in diverse families Chronic disease polygenic risk scores for clinical implementation in diverse US populations Skeletal Muscle Ryanodine Receptor 1 Variants and Malignant Hyperthermia Treating inherited retinal disease with gene-editing Validation of a clinical breast cancer risk assessment tool for all ancestries Broader access to clinical genome sequencing benefits diverse individuals with rare diseases Benefits for children with suspected cancer from routine whole-genome sequencing Clinical signatures of genetic epilepsies precede diagnosis in electronic medical records The Guests: Bruce D. Gelb, M.D. is the Director and Gogel Family Professor of the Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai. He is Professor of Pediatrics and of Genetics and Genomic Sciences. Dr. Gelb completed a pediatric residency and pediatric cardiology fellowship at Babies Hospital of Columbia-Presbyterian Medical Center and Texas Children's Hospital at the Baylor College of Medicine, respectively. He joined the faculty at Mount Sinai in 1991 after fellowship and has remained there since. He developed and now oversees an extensive program in genomics/gene discovery for congenital heart disease. Dr. Gelb has received the E. Mead Johnson Award from the Society for Pediatric Research and the Norman J. Siegel New Member Outstanding Science Award from the American Pediatric Society. He was elected to the American Society of Clinical Investigation and the National Academy of Medicine (formerly, the Institute of Medicine). Dr. Gelb is the President for the American Pediatric Society, Immediate Past President for the International Pediatric Research Foundation and Treasurer-Elect for the American Society of Human Genetics. In addition to his research, he co-directs the Cardiovascular Genetics Program at Mount Sinai. Dr. Eric Green is the director of the National Human Genome Research Institute (NHGRI) at the U.S. National Institutes of Health (NIH). As NHGRI director, Dr. Green leads the Institute's research programs and other initiatives. He has played an instrumental leadership role in developing many high-profile efforts relevant to genomics. Dr. Green received his B.S. degree in bacteriology from the University of Wisconsin - Madison in 1981, and his M.D. and Ph.D. degrees from Washington University in 1987. Coincidentally, 1987 was the same year that the word “genomics” was coined. Dr. Green's relationship with the Institute began long before his appointment as director. He served as the Institute's scientific director (2002 - 2009), chief of the NHGRI Genome Technology Branch (1996 - 2009) and founding director of the NIH Intramural Sequencing Center (1997 - 2009). Prior to that, he played an integral role in the Human Genome Project. Dr. Green is a founding editor of the journal Genome Research (1995 - present) and a series editor of Genome Analysis: A Laboratory Manual (1994 - 1998), both published by Cold Spring Harbor Laboratory Press. He is also co-editor of Annual Review of Genomics and Human Genetics (since 2005). Throughout his career, he has authored and co-authored over 385 scientific publications. Dr. Green is a recurring guest on DNA Today, and he might hold the title as the guest who has been on the show the most times! He was featured on Episode #182 when we chatted about the Human Genome Project and the recent completion of the human genome sequence -- from telomere to telomere. Dr. Green was a panelist on the PhenoTips Speaker Series installment that our host Kira Dineen moderated about population genomics in clinical practice, this was also released on the DNA Today podcast feed as Episode #260. He was also on the last couple years for our genetics wrapped 2022 (#214) and 2023 (#263). Be sure to subscribe to DNA Today wherever you get your podcasts to explore hundreds of episodes on topics ranging from genetic counseling to cutting-edge research in genomics. New episodes are released every Friday. In the meantime, you can binge over 300 other episodes on Apple Podcasts, Spotify, streaming on the website, or any other podcast player by searching, “DNA Today”. Episodes since 2021 are also recorded with video which you can watch on our YouTube channel, this includes some episodes recorded at NBC Universal Stamford Studios. DNA Today is hosted and produced by Kira Dineen. Our video lead is Amanda Andreoli. Our social media lead is Kajal Patel. Our Outreach Intern is Liv Davidson. And our logo Graphic Designer is Ashlyn Enokian, MS, CGC. See what else we are up to on Instagram, X (Twitter), Threads, LinkedIn, Facebook, YouTube and our website, DNAToday.com. Questions/inquiries can be sent to info@DNAtoday.com.
Joining us on Well Said is Dr. Jeff Boyd, Director and Professor of the Institute of Cancer Research at the Feinstein Institutes for Medical Research and Vice President, Chief Scientific Officer, and Director of the Center for Genomic Medicine at the Northwell Health Cancer Institute to talk about the basics of cancer, the role of […]
This episode went live on World Menopause Day.Menopause is an inevitable aspect of life for half of the global population, but one that requires far more study. New genomic insights could empower women with better reproductive choices and insights into likely future health.In this episode, I talk with Dr Stasa Stankovic. She has a PhD in Genomic Medicine from Cambridge University, and is on a mission to reshape the future of women's health by developing, and eventually commercialising, prediction tools and next generation therapeutics for female reproductive disorders.We discuss the complexities of female reproductive health, particularly focusing on ovarian ageing and menopause. We also explore the genetic factors influencing menopause timing, and the importance of understanding reproductive health beyond fertility.Stasa shares her collaborative work on large-scale genomics, using samples from the UK Biobank to conduct genome-wide association studies (GWAS). These have highlighted many genes associated with menopause and thus pave the way for potential new diagnostic techniques and therapeutic interventions to give women greater control of their reproductive health.Menopause affects every woman, but also indirectly impacts husbands, partners, colleagues and friends. The work Stasa and her colleagues are doing will have implications not just for women but for all of us.“We need to empower women with knowledge.” – Stasa Stankovic You'll hear about:01:37 - Stasa's area of research04:14 - Why the science behind menopause is so important07:36 - The ovarian reserve and what that means12:26 - Contributing factors to menopause17:24 - The key findings of the genome-wide association (GWAS) study21:21 - Getting the right targets for intervention27:05 - The challenge of finding animal models for menopause28:22 - Turning lab science into commercial science31:40 - Stasa on the choices that women have38:38 - Is gene intervention possible? Connect with Stasa:LinkedIn - https://www.linkedin.com/in/stasa-stankovic-93723a137/ OvartiX - https://ovartix.com/ Connect with me:LinkedIn: https://www.linkedin.com/in/markdavison100/ If you need any lab equipment:Grant Instruments: https://www.grantinstruments.com/ Grant Instruments on LinkedIn: https://www.linkedin.com/company/grant-instruments-cambridge-ltd/
In this episode of the Life Science Success Podcast, my guest is Dr. Zachary S. Brooks, a serial entrepreneur, #1 Best Selling Author, and founder of UGenome AI. Dr. Brooks brings a wealth of experience from his diverse background in technology startups, financial services, and digital authentication. As the founder of UGenome AI, he's at the forefront of developing innovative SaaS tools for genomic medicine. We'll explore his journey from studying bilingual decision-making to becoming a leader in the life sciences field, and discuss how his experiences as an international athlete and multilingual individual have shaped his approach to business and innovation. Dr. Brooks will share insights on the future of personalized medicine, the intersection of genomics and organ transplantation, and the challenges of bringing cutting-edge technology to market. We'll also delve into his work with World Transplant Athletes and his vision for improving healthcare outcomes for organ transplant recipients. This episode promises to be an inspiring and informative conversation about the exciting developments in genomic medicine and the power of entrepreneurship in the life sciences. 00:00 Introduction to Life Science Success Podcast 00:41 Sponsor Message from D3 Digital Media Marketing 01:23 Introducing Dr. Zachary S. Brooks 02:35 Dr. Zachary Brooks' Background and Journey 03:20 The Concept of Anticipated Regret 04:19 Academic and Professional Achievements 07:34 Life Sciences and Personal Health Journey 11:03 Founding Ugenome and Its Mission 13:22 Innovative Tools at UGenome 16:12 The How to Algorithm Series 19:34 World Transplant Athletes and Genomic Medicine 21:51 The Role of Athletics in Entrepreneurship 24:22 Reflecting on Athletic Lessons 27:18 Insights from Previous Startups 31:05 Innovative Projects at UGenome 34:34 Future Aspirations for UGenome 37:51 The Role of Multicultural Experience 41:53 Inspiration and Concerns 45:50 Excitement and Final Thoughts
Digital consent models, language barriers, and cultural differences are just a few factors that can exclude people from participating in genomic research. In this episode, our guests discuss these issues, and explore alternative methods such as in-person discussions and the use of trusted community figures to engage with their communities to increase awareness of genomic research. They also highlight the importance of communicating consent in ways that respect cultural dynamics, such as family involvement in decision-making. Our host, Naimah Callachand is joined by Maili Raven-Adams, researcher in bioethics and policy at Nuffield Council on Bioethics, Niharika Batra, Community Projects Manager at Southall Community Alliance and Trupti Patel, Policy Manager at Genomics England. "I think it is about finding language to involve people, and figure out how the benefits of them donating data can relate to them and their community" You can read the transcript below or download it here: https://www.genomicsengland.co.uk/assets/documents/Podcast-transcripts/How-can-we-ensure-equitable-access-to-genomic-medicine.docx Niharika: People are usually comfortable giving their data when they feel that there is transparency from the data collector, they're being completely transparent, they come with you with clear benefits, how it's going to benefit the community. And you are equally sort of agent of your own data and you feel involved in the research and you feel that you have power to give out your data and have control over the journey of that research. Naimah: My name is Naimah Callachand, and I'm the Head of Product Engagement and Growth at Genomics England. On today's episode, I'm joined by Maili Raven-Adams, researcher in bioethics and policy at Nuffield Council on Bioethics, Niharika Batra, Community Projects Manager for Southall Community Alliance, and Trupti Patel, Policy Manager at Genomics England. Today, we're going to be discussing some of the ethical, legal and social implications of genomics research for diverse communities, and how we might overcome them to address the challenge of diverse communities health needs. If you enjoy today's episode, we'd love your support, please like, share and rate us on wherever you listen to your podcasts. First of all, I'm going to ask each of our guests to briefly introduce themselves. Maili: I'm Maili Raven-Adams, I lead on work at the Nuffield Council on Bioethics to do with genomics. This has predominantly been looking at how to develop a best practice approach for genomics, and looking at the ethical implications of AI and genomics when they're used together in healthcare. Before here, I worked at the Global Alliance for Genomics and Health, where I developed policies related to diversity in datasets and genomic discrimination, so I have a particular interest in this area. Naimah: Niharika, can we come to you? Niharika: Hello, everyone, I'm Niharika Batra, I'm the Community Projects Manager at Southall Community Alliance. We are a charity based in Southall. Prior to joining the charity, I was working as a Youth Community Engagement Assistant in United Nations Development Programme in India, and I have a background in gender and development. I also bring with me lived experience of being a South Asian immigrant woman, and I'm really passionate about working with the immigrant communities in the UK. Naimah: It's lovely to have you. And Trupti, can we come to you? Trupti: Hi, I'm Trupti Patel, I'm a Policy Manager at Genomics England. I work primarily within the diverse data initiative and I lead the equity in health research workstream. My background is in responsible research and innovation, as well as co-production, and more ethical ways in which members of the public can shape the direction of scientific advancements. Naimah: So, first of all, Trupti, can we talk about the challenges around equity in data, and what this means for diverse groups in the context of genomics? Trupti: Yes, as I mentioned, I lead the equity in health research workstream. Now we talk very specifically about equity in health data. As Genomics England, we are a biobank, and we hold health data on individuals who have consented to be a part of genomic research. When we talk about equity, primarily we're talking about those of non-European ancestry, and there are very specific reasons as to why that is. So firstly, there's a wider issue about representativeness within health datasets more widely. We know that across all health data sets that are located within Global North countries, the data held within them tends to not be representative of their populations. And what I mean by that is that they tend to overrepresent those of European ancestry, and underrepresent anyone who is not of European ancestry. The consequences of this is that healthcare innovation might stand to leave these population groups behind. One of the other reasons that we talk about equity specifically, as opposed to things like equality, is that we're also aware that if we look at research on a global level, the majority of research funding is given out through grant bodies located in Global North countries. So we already know that research portfolios can actually be quite skewed towards population groups who live in those countries themselves. We know that there's a lack of financial investment as well within developing economies. So it's natural to assume that health innovation projects which address the needs of these communities are more likely to be conducted by researchers who are based in developing economies. However, their access to funding is very limited, and on top of that they tend to have much smaller life sciences sectors, so their access for private funding, as well as opportunities to collaborate with industry can actually be quite limited in itself as well. Another reason that we care about equity is that we actually know that there are some sub-populations that are very diverse within themselves. So a good example is the genetic diversity of Africa as a whole is much larger than those who live outside of Africa itself. And for that reason there tends to be a focus on actually oversampling from people who are of these ancestries. And another example being South East Asians as well. The final challenge when it comes to equity is that we also know that there has to be a need for medical innovation for these population groups, and a desire for people to actually buy this type of innovation. So there's a need for demand for these therapies and medications. Now if we already know that developing economies might be less likely to be able to afford these medications, then the demand will always be lower for these population groups. And therefore the demand for innovation might also be lower population groups. But as a country, because we would want to make sure that we're able to provide medication to everyone equally, we need to take an equitable approach. So one thing about the lack of diversity within datasets actually means that we can't always accurately predict whether or not someone does or doesn't have a condition. So we're still at the stage where accuracy is not as good for these population groups as it is for others, and it leads to things that we call false positives and false negatives. So where we think that someone does or doesn't have a condition, and in fact, they might or they might now. The incidence rates of that happening for anyone of non-European ancestry are higher. That's one of the tensions that we're playing with at the moment, especially when it comes to providing genomic healthcare via a healthcare service. Understanding people's cultural background and nuances I think is really important. For example, a lot of those cultural practices can actually play into whether or not someone decides to receive or not receive a form of healthcare. And it's also important to understand things like timing, so the decision around whether or not someone decides whether or not they're going to take a preventative medication might be based upon cultural timings around things like giving birth or something. Naimah: How can we ensure equitable access to genomic medicine for all of these communities? Maili: So I think we need to understand that there are several understandable reasons that people might not have been involved in genomic research to date. Efforts have been made to engage with different communities, but this has sort of been piecemeal and we need to see how that engagement can feed into research practices. So that people feel as if their information that they've given has been taken on board, and that those research practices have been co-developed, and they feel more willing to engage so that that representation can increase. There's also been examples where research has been actively untrustworthy in the past. You know, there's well known stories of Henrietta Lacks, whose cancer cells were taken without her consent, and then used to develop research. And there's different examples across the globe that kind of mirror that sort of exploitation. So we kind of need to take note of these, and understand why people aren't there, and then allow that to inform engagement practices. So that research practice can change over time and be more inclusive and encourage people to get involved and give good reason for them to get involved in that. Niharika: Also, to add on to what Trupti and Maili mentioned. First of all, why this data gap exists, why is there inequity in genomic data? It's because historically South Asian communities or the marginalised communities have been used to extract a lot of data, be it social research or medicine research. So when a researcher approached them or a data collector approaches them, they feel that they're just going to collect the data and there will be no feedback process, or it might not benefit the community. The communities do not understand what the clear benefits of these researches are. And in terms of genomics, when we talk about medicine research, historically these communities have been exploited. There has been information asymmetry, and we have observed a case in 1960s where in Coventry Punjabi women, or South Asian women, were given radioactive rotis, and they weren't even aware what they were consuming. And it was in the name of research. So there's always this hesitancy when it comes to medicine research. One way to tackle the problem of the data gap in genomic research is by co-production . So when you're approaching the communities, it sort of helps who is collecting the data, there is no skewed power dynamic involved. People are usually comfortable giving their data when they feel that there is transparency from the data collector, they are being completely transparent, they come with you with clear benefits, how it's going to benefit the community. And you are equally sort of agent of your own data, and you feel involved in the research, and you feel that you have power to give out your data and have control over the journey of that research. So it is also important how you frame the message when you're collecting the data. In our communities, the idea of sevā or Kismet is very embedded in the communities, which mean either giving out your services or your time for the benefit of the communities. So it's not just donation, but it's just spending more time or just working with the communities for a common or a collective benefit. So when the message is framed in such a manner that you are doing a sevā or you are helping your communities bridge the health inequalities and there might be a collective benefit for the communities, people are more motivated to give their data. But when the word donating data is used, then it puts a sort of emotional burden on the participant. So it all depends on the messaging, how you frame your messages when you're collecting the data, and it's important to be cognisant of the cultural sort of ideas. And this is something that can be used with South Asian communities, sevā and giving back to the communities. Maili: I was just going to say, I completely agree with that, like 100%, it's really important as well that the global majority don't feel pressurised into giving that data because of the language that's being used. You know, the global majority are not represented in these datasets, so it could be that the language used might put pressure on people to donate that data to fill that gap, but that's not the right language. I think it is about finding language to involve people, and figure out how the benefits of them donating data can relate to them and their community, so it just wanted to say that. And also, it's important when we're using language like genetic ancestry that those aren't conflated with things like race or ethnicity, which are social uses of that language. So I think this is just another area where it is really important to think about language and work with communities, to figure out what the right language to use it, and understand the benefits of using certain types of language. Naimah: And it just kind of highlights how many different nuances there is, and areas that need to be considered. Maili: Yes, I was just going to say, within that, we need to think about barriers to participation as well that might affect certain communities. You know, there might be some language barriers, to making sure that we've got translators, or there's investment in making sure that the resources are there to make the engagement and also the research accessible to people. There's things like people have lives, they have childcare, they have jobs, so making sure that they can donate data if they want to, at times that work for them and environments that work for them. And things like transport costs and that sort of thing might be covered by a research organisation, so that people are empowered to get involved, and there's not too many barriers to become involved if they want to be. I think that's really important to address as well. Naimah: Trupti, did you have something to add? Trupti: Yes, I was just going to say, I think it was really interesting that Niharika actually framed the benefit around community benefit. Because within the policy sphere, and actually even within wider conversations on data and health, people use frame benefit in terms of patient benefit specifically. And what we find is that when we engage with diverse communities, most of their concerns around harms are actually not harms necessarily to themselves specifically, but harms around their whole community. And I do wonder whether there needs to be a slight reframing in how we talk about benefit when it comes to genomics in particular. Because most people when they donate their data they know that it has consequences for those who are related to them. Naimah: So I wanted to talk about research governance as well. And in the context of history of medical racism, with medical innovation now heading towards personalised healthcare, what are they key considerations we should have when it comes to rules around access to data? Trupti: So, I mean, one of the rules that we have within our biobank, when it comes to access to data, is that we don't want it to lead to any discrimination, and we won't allow access for things, for research projects, that do lead to discrimination. However, we already know that there are lots of unintended consequences when it comes to research in general. And when it comes to medical research in particular, and thinking about genomics in particular, lots of communities are aware that because in the past there has been a lot of research outputs have been used in ways that actually don't benefit these communities, and actually have negative consequences for these community groups, it means that the barrier to encourage people to take part is actually quite high. When it comes to genomics in particular, obviously there's been a history of eugenics, and at the moment, that's quite a big area that lots of universities, especially in the UK, are going through eugenics inquiries. It has effects upon people's perceptions of genomics as an area, and whether or not people can be confident that those types of research won't be repeated, and the types of research that will happen will actually benefit them. I mean, there's a good example that one of the community members gave, not directly to do with genomics, but actually they knew that if you're first name is Mohammed, your car insurance is actually much higher, your premiums are much higher. And so they were concerned that if you were grouping people within genomic ancestries, or genetic ancestries, what consequences that has for them can be quite nuanced in the first instance. But in the long-term it would actually mean that people might be grouped within these ancestries and policies and things that are created as a consequence were quite concerning for them. Naimah: And Maili, I wonder if you could tell me how people might feel more comfortable in the ways in which their data is being used? Maili: I guess if there's transparent governance mechanisms in place and they can understand how their data is being protected, you know, that goes right through data access committees. There's one at Genomics England that as Trupti said reviews data. So if they can understand what sorts of considerations that committee are thinking about in respect to genetic discrimination, and they can understand that certain considerations have been taken into account when their data is being used, that's one thing. Another could be through consent processes. So there's different sorts of consent models that could be explored with communities to figure out which one they'd be more comfortable with. So broad consent I think is the one that's used at Genomics England at the moment. So that means that people give their consent once, and then that data can kind of be used for a broad range of purposes. But it's not always clear to people what those purposes are, or where that might be used over time. So there's different sorts of mechanisms that could be explored, like dynamic consent, where people are updated over time about what their data is being used for, and they can either opt out or opt in to those research practices. Or forms like things like granular consent, where when people give their consent there's different options of people that they'd be happy for their data to be shared with. So we know that people are less trusting of private companies, for example, so people might be able to say, “Yes, my data can be shared with nonprofit organisations or research organisations affiliated with universities or the government, but I don't want my data to be shared with private companies.” And that might make people feel more comfortable in donating their data, because they might feel like they have some more control over where that is ending up. And I think transparency there is really important, so people can understand when they give their data or they donate their data, they can understand what benefit might be coming from that. And that might encourage people to get involved as well. Trupti: I was just going to add to that comment about dynamic consent. So actually an interesting thing that Niharika mentioned earlier was this feeling that the people that we engage with actually really wanted a sense of control over their own data still. Obviously when you give broad consent, your giving your consent, as Maili said, to a wide range of research that will happen or can happen in the future. But interestingly, dynamic consent, I think culturally it is really valuable for some population groups, partly because it fits in very nicely with the idea that your biological data is actually a part of who you are. And that cultural philosophy can still exist within a lot of these communities that we're engaging with and a lot of these communities that we're trying to encourage to actually provide us with data. Do you ever think that there could be like a medium position, where it was actually dynamic withdrawal? Maili: Yes, I guess that is something that could be explored, and I think that's one of the models that sometimes is talked about in academia or in these sorts of forums. I think if people were dynamically kind of withdrawing, it might be interesting to understand why they're withdrawing and their reasons for that, so that research practice can change and take account of why people maybe no longer want to get involved in a certain type of research. And I know that's something that you've spoken about in your community engagement groups. Naimah: Niharika, do you have something you want to add? Niharika: Yes, so when we were engaging with our communities, we primarily engaged with Hindi speaking people from Indian origin, Punjabi speaking people from Indian origin, and Urdu speaking people from Indian origin, and we spoke to them about genomic research. We also spoke to them about the branches of genomic research and how their data could be used. So while their data could be used for innovation in pharmacogenomics, which seemed to be more palatable for the people as this is an extension for treatments they've already been using. For example, treatment for a chronic condition like hypertension or diabetes. Whereas they were quite reluctant when it came to their data being used for gene editing. So in Hindu religion, humans are considered the creation of Brahma, who is one of our main Gods. And similarly in Islam, humans are called (Islamic term), which means God's greatest creation. So when it comes to gene editing, some people believe that it means you are playing God, it means that you're tampering with the DNA, you're tampering with God's creation. So they were really reluctant in providing their data for an innovation that entails gene editing or genetic screening or gene therapy. And when it comes to consent, I know Genomics England takes a broad consent, and there's scope of dynamic consent. Where people are constantly engaged on where their data is being used, how their data is being used, which innovation their data is being used for, which research their data is being used for. And they have an opportunity to withdraw their data if they're uncomfortable with any aspect of research. Maili: I was just going to say something else about consent models. When we're thinking about different forms of consent, like dynamic consent, it's also important to consider the accessibility of those, lots of those models would rely on the internet and people having access to laptops or phones. And so when we're exploring those models, we need to make sure that people have access, and if they don't have access that there's other ways that that sort of consent model might be able to be replicated, or there is an alternative way, so that people aren't excluded through that. Naimah: Is there a question around language barriers as well with the consent models? Maili: Yes, when verbal consent is taking place, the same problems of language barriers are there within the online version. You know, how do you make sure that things that are translated, and translated well as well? Because genomics is a complicated area with lots of jargon and complex language. So how can we make sure that we translate that language in a way that's done, where the meaning is kind of translated as well. Trupti: The language thing was something that came up within some of our community workshops. And I think one of the things that really came out was that genomics research itself has so much technical language that often you simply cannot translate the word into other languages. And different ways in which you can convey information, so that you're still making sure that you're getting informed consent from participants I think is really important for these groups, beyond simply translating written material. Whether that's through analogies or visuals that convey information, I think that's quite an underexplored area actually, within research more generally, but as a starting point genomics. Naimah: And did any of those community groups identify any preferences for what way they wanted to be communicated with, for consent and things like that? Trupti: I mean, certainly having online consent was a huge barrier. So the idea that you log into a platform online in order to provide your consent to something wasn't something that people were that comfortable with. Especially since these participants are often very reluctant to take part in the first place, so you're almost creating a barrier to them as well, it's an extra thing that they have to do. They did feel that consent should really be in person. They also preferred the idea of being able to discuss genomics widely within less formal settings, so outside of healthcare settings, or outside of research settings. Because it meant that they felt that they were primed for the questions that they might have. One of the things that I was going to add is actually for genomics in particular, I mean, I mentioned before about when people decide whether or not they would like to consent to take part in genomic research.. They feel like they're not just consenting for themselves, they're also consenting for people within their network. And so these are people that they would consult probably as to whether or not they should or shouldn't take part. And so when you are making that decision and you're having those consenting conversations, whether that be within a research setting or a healthcare setting, it's important I think for people to understand that those decisions have been taken not just by an individual, they are actually reaching out to a much wider range of people within their own communities. Naimah: And is there something around that these decisions are often made with family members as well? Trupti: Yes. So in situations where there are people from some cultures who are much more likely to take part in cousin marriages, these particular populations have scientifically been shown to have much higher likelihood to develop genetic conditions. Now if that is the case, that can lead to a lot of stigmatisation, and it can proliferate a lot of discrimination that these population groups might be facing already. So I think that's something to be considerate of. And it might influence their decision making as to whether or not they or their family members should or shouldn't take part. Niharika: Yes, just to add onto what Trupti and Maili actually said, while language plays a very important role in terms of consent, how consent is being taken, it also depends on the setting. In our areas where we engage with communities, usually the consent, or consent regarding medical research or genomic research is taken via the GPs. And the GP services here in our areas are so overwhelmed at the moment, there are long waiting lists, like three months. And when people actually get through the waiting list and go to their GP, they're so done with the process of waiting that when their GPs ask them for consent, they just either feel that they need to succumb to the pressure of, okay, giving the consent. Because there's this skewed power dynamic over them as their white man or white doctor asking for the consent. But also, they don't know what exactly to do in that moment, they're very frustrating from the long waiting line. And they feel they're okay, they might need a little time to sort of cool down, go back home, look at the consent form, what is it about? And in South Asian settings usually the decision making is done in family setting, where you consult your families. And when we spoke to older South Asian women and asked them how would they give their data and why would they give data, they mentioned that they would give data because their children or husbands have advised them to do so. So yes, it's important to see the setting of where the consent is being taken, who is taking the consent, and if they have enough time to think about it and go back and give their consent. Also, it came up during the workshops that it helps if the consent is being taken by someone the communities already trust. So having accredited community champions seek the consent. So once they're trained, once they have enough knowledge about genomic research and how it can benefit their communities, they're able to better bridge the gap between the researchers or the research organisations and the communities. Maili: Yes, I completely agree. And I was just going to add that it's important that healthcare professionals are properly informed and open and aware of those different cultural or contextual dynamics within those consenting conversations. So that they can properly listen and understand where people are coming from and give that time. And I get that that's difficult in pressurised situations, where healthcare professionals are under a lot of time pressure. But that needs to really be built into that healthcare professional training over time so that carries on and people can talk about genomics in a really accessible way. And that carries through as well to genetic counsellors who give results to families, they need to be able to do that in the right sort of way. And they need to ask the right questions and understand the patient that they're talking with so that that information can be translated or got across in the best possible way. And that's even more important I think where there is a lack of diverse data that's informing research and informing healthcare outcomes. I think healthcare professionals should be transparent with patients about some of the accuracy of certain things or how different results might mean different things for different people. And it's really important that those conversations are had very openly and for that to happen, healthcare professionals also need to get the training to be able to do that. Naimah: Okay. So we're going to move on to talk a bit about developing countries. Niharika, I wanted to come to you for this question. Why would diverse communities benefit from research being more collaborative with developing countries? Niharika: So in recent times, we have witnessed growing diaspora in the UK. And when it comes to collaboration with developing countries, there's increased collaboration with these developing countries. It can be a win-win situation for both the countries, for example, there can be increased innovation for these developing countries in exchange of information. And at the same time, people in the developing countries, if they provide their data, they have the sense that they are helping their own communities who are living abroad. Naimah: You've touched on a few points already, but, Trupti, I wonder if you could talk about the considerations we should have when considering international partnerships? Trupti: Yes. So one of the things that Genomics England has tried to do in the past and is still trying to do is increase the number of international academics that can have access to our biobank. Now we already know that internationally, especially in developing economies, there's often a lack of data purely because the resource to do things like whole genome sequencing is so expensive. The resource to even have or host a biobank itself is so costly that the barrier to even developing the infrastructure is so high. So one way that we're looking to encourage innovation within those settings is actually to allow access through particular partnership agreements to academics who are based abroad. Now obviously that means that there's a benefit for them in terms of being able to do the research in the first place. But one of the things is that as a biobank we're also known for being a very highly secure biobank, compared to others. So that's something that as a data store people actually highly respect, and in particular, a lot of the data regulation within the UK is highly respected by other countries. One of the things that we have seen happening recently is that essentially some of our data security laws and data protection regulations are being reproduced in other countries as a way to ease working with research datasets across geographic political boundaries. When it came to engaging members of local primary communities they have three primary asks when it came to the international partnerships that we might be developing in the future. One of them was that at the very least there would be tiered pricing. If we ever came to a situation where we were charging for access to our data, that pricing should be tiered to address the fact that if you are someone based in a developing economy, your access to financial resource to do research is much lower. The second ask was that there'd be some way for us to foster collaborations. Now, whether that be led by an academic who is based abroad or an academic based in the UK was up for debate. It was more that those collaborations have to continue and have to be enabled in some capacity. And then the third thing that was a big ask was actually around IP sharing. So what happens to the financial benefits of doing this type of research? And also, more equitable basically knowledge sharing across these regions was what was asked. So what we're looking at in the near future is whether or not these principles could be used in order to guide some of our international partnerships' work. Naimah: And I think just on that point you raised about fostering collaborations, Maili, I wonder if you could comment on how we could foster collaborations between the researchers and the communities that they serve? Maili: Yes. I think here is when engagement is really important, and we need to get researchers and communities speaking to each other, to have some sort of meaningful dialogue that doesn't just happen once but is embedded into whole research practices. So there's many different opportunities to feed in and that practice is shaped based on the feedback the researchers receive. I think engagement is a really amazing thing, but it does need to be done well, and there needs to be clear outcomes from that engagement. So people need to feel that the information that they're giving and the time that they're giving is respected, and that those practices do change as a result of that. So I think we really need to make sure that engagement and practices are done well. And I was just going to say something on collaboration between different researchers. When researches are happening across borders, it's really important that that's done in a really equitable way, and that those conversations are had between different researchers to figure out what's going to work well. We need to avoid instances of things like helicopter science, and sometimes it's called other things. Where researchers for example from the UK would go into a developing country and undertake research and then leave, taking all the benefits with them and not sharing them. And that's something that we really need to avoid, especially in the UK, we don't want to exacerbate colonial pasts. And I think it's really important in this context that those benefits are shared with communities. And again, we can do that through engagement and understanding that relationship and making sure that collaboration really is collaboration, and that we can provide things that maybe others need or want in the right sort of way. Niharika: Just to reiterate our communities are still haunted by the colonial pasts. There's always this constant fear that our data might be misused, there might be data breaches and we won't be protected. And your DNA data contains a lot of personal information, so there's constant anxiety around your DNA or genetic data. So it's important that the researchers maintain utmost transparency. There's a constant focus on flattening the hierarchies, where you sort of bridge the power gap between the researchers and the communities. And it can be done through, again, as I mentioned before, having community champions on board who understand the communities better, who are constantly in touch with the communities. And they provide that sort of semi-formal settings, where they know that where they're in constant touch with the authorities or the GPs or NHS, but also at the same time have very good relationship with the communities. So this is something that should be taken into consideration. And then just be cognisant of the cultural values, and not have very imperial ideas when you sort of approach communities. Maili: I think this becomes even more important as genomics continues to evolve and new genomic techniques are developing. For example, with things like polygenic scores, where we can look at people's genomic data and predict how susceptible someone might be to developing a certain disease or trait or outcome, in relation to the rest of the population. Those are developing, and people are interested in them, but the data that they're based off again is that European genetic ancestry data, and therefore is not accurate or applicable to lots of communities. And it's not just genes that we need to be aware of, it's people's environments, and that data is really important to integrate with things like polygenic scores. I think we need to really address these issues now and make sure that as genomics develops that these things aren't perpetuated and existing health inequalities aren't continued to be exacerbated. Naimah: Okay, we'll wrap up there. Thank you to our guests, Maili Raven-Adams, Niharika Batra and Trupti Patel, for joining me today as we discussed the ethical, legal and social implications of genomics research for diverse communities. If you'd like to hear more like this, please subscribe to Behind the Genes on your favourite podcast app. Thank you for listening. I've been your host and producer, Naimah Callachand, and this podcast was edited by Bill Griffin at Ventoux Digital.
In this episode, Laura Dyrda interviews Dr. Paul Kruszka, Clinical Geneticist at Children's National Hospital in Washington, D.C. Dr. Kruszka shares insights into the latest advancements in genomic testing, the importance of early diagnosis for rare diseases, and the challenges in accessing advanced genetic testing. He also discusses the potential for reducing the diagnostic odyssey and the exciting future of genomic medicine.
In this episode, Laura Dyrda interviews Dr. Paul Kruszka, Clinical Geneticist at Children's National Hospital in Washington, D.C. Dr. Kruszka shares insights into the latest advancements in genomic testing, the importance of early diagnosis for rare diseases, and the challenges in accessing advanced genetic testing. He also discusses the potential for reducing the diagnostic odyssey and the exciting future of genomic medicine.
Pharmacogenomics plays a critical role in personalised medicine, as some adverse drug reactions are genetically determined. Adverse drugs reactions (ADRs) account for 6.5% of hospital admissions in the UK, and the application of pharmacogenomics to look at an individuals response to drugs can significantly enhance patient outcomes and safety. In this episode, our guests discuss how genomic testing can identify patients who will respond to medications and those who may have adverse reactions. We hear more about Genomics England's collaboration with the Medicines and Healthcare products Regulatory Agency in the Yellow Card Biobank and our guests discuss the challenges of implementing pharmacogenomics into the healthcare system. Our host Vivienne Parry, Head of Public Engagement at Genomics England, is joined by Anita Hanson, Research Matron and the Lead Research Nurse for clinical pharmacology at Liverpool University Hospitals NHS Foundation Trust, and Professor Bill Newman, Professor of translational genomic medicine at the Manchester Center for Genomic Medicine, and Professor Matt Brown, Chief Scientific Officer at Genomics England. "I think we're moving to a place where, rather than just doing that one test that might be relevant to one drug, we'd be able to do a test which at the same price would generate information that could be relevant at further points in your life if you were requiring different types of medicine. So, that information would then be available in your hospital record, in your GP record, that you could have access to it yourself. And then I think ultimately what we would really love to get to a point is where everybody across the whole population just has that information to hand when it's required, so that they're not waiting for the results of a genetic test, it's immediately within their healthcare record." To learn more about Jane's lived experience with Stevens-Johnson syndrome, visit The Academy of Medical Sciences' (AMS) YouTube channel. The story, co-produced by Areeba Hanif from AMS, provides an in-depth look at Jane's journey. You can watch the video via this link: https://www.youtube.com/watch?v=v4KJtDZJyaA Want to learn more about personalised medicine? Listen to our Genomics 101 episode where Professor Matt Brown explains what it is in less than 5 minutes: https://www.genomicsengland.co.uk/podcasts/genomics-101-what-is-personalised-medicine You can read the transcript below or download it here: https://www.genomicsengland.co.uk/assets/documents/Podcast-transcripts/Can-genomic-testing-prevent-adverse-drug-reactions.docx Vivienne: Hello and welcome to Behind the Genes. Bill: What we've seen is that the limited adoption so far in the UK and other countries has focused particularly on severe adverse drug reactions. They've been easier to identify and there's a clear relationship between some drugs and some genetic changes where that information is useful. So, a good example has been the recent adoption of pharmacogenetic testing for a gene called DPYD for patients undergoing cancer treatment, particularly breast and bowel cancer. And if you have an absence of the enzyme that that gene makes, if you're given that treatment, then you can end up on intensive care and die, so it's a really significant side effect. But as you say, the most common side effects aren't necessarily fatal, but they can have a huge impact upon people and on their wellbeing. Vivienne: My name's Vivienne Parry and I'm head of public engagement at Genomics England, and today we'll be discussing the critical role of pharmacogenomics in personalised medicine, highlighting its impact on how well medicines work, their safety, and on patient care. I'm joined today by Professor Bill Newman, professor of translational genomic medicine at the Manchester Centre for Genomic Medicine, Anita Hanson, research matron, a fabulous title, and lead research nurse for clinical pharmacology at the Liverpool University Hospital's NHS Foundation Trust, and Professor Matt Brown, chief scientific officer for Genomics England. And just remember, if you enjoy today's episode, we'd love your support, so please like, share and rate us on wherever you listen to your podcasts. So, first question to you, Bill, what is pharmacogenomics? Bill: Thanks Viv. I think there are lots of different definitions, but how I think of pharmacogenetics is by using genetic information to inform how we prescribe drugs, so that they can be safer and more effective. And we're talking about genetic changes that are passed down through families, so these are changes that are found in lots of individuals. We all carry changes in our genes that are important in how we transform and metabolise medicines, and how our bodies respond to them. Vivienne: Now, you said pharmacogenetics. Is it one of those medicine things like tomato, tomato, or is there a real difference between pharmacogenetics and pharmacogenomics? Bill: So, people, as you can imagine, do get quite irate about this sort of thing, and there are lots of people that would contest that there is a really big important difference. I suppose that pharmacogenetics is more when you're looking at single changes in a relatively small number of genes, whereas pharmacogenomics is a broader definition, which can involve looking at the whole genome, lots of genes, and also whether those genes are switched on or switched off, so the expression levels of those genes as well would encompass pharmacogenomics. But ultimately it's using genetic information to make drug prescription safer and more effective. Vivienne: So, we're going to call it pharmacogenomics and we're talking about everything, that's it, we'll go for it. So Matt, just explain if you would the link between pharmacogenomics and personalised medicine. And I know that you've done a big Genomics 101 episode about personalised medicine, but just very briefly, what's the link between the two? Matt: So, personalised medicine's about using the right dose of the right drug for the right individual. And so pharmacogenomics helps you with not only ensuring that you give a medication which doesn't cause problems for the person who receives it, so an adverse drug reaction, but also that they're actually getting the right dose. Of course, people's ability to metabolise, activate and respond to drugs genetically is often genetically determined, and so sometimes you need to adjust the dose up or down according to a person's genetic background. Vivienne: Now, one of the things that we've become very aware of is adverse drug reactions, and I think they account for something like six and a half percent of all hospital admissions in the UK, so it's absolutely huge. Is that genetically determined adverse drug reactions? Matt: So, the answer to that is we believe so. There's quite a bit of data to show that you can reduce the risk of people needing a hospital admission by screening genetic markers, and a lot of the very severe reactions that lead to people being admitted to hospital are very strongly genetically determined. So for example, there are HLA types that affect the risk of adverse drug reactions to commonly used medications for gout, for epilepsy, some HIV medications and so on, where in many health services around the world, including in England, there are already tests available to help prevent those leading to severe reactions. It's likely though that actually the tests we have available only represent a small fraction of the total preventable adverse drug reactions were we to have a formal pre-emptive pharmacogenomics screening programme. Vivienne: Now, I should say that not all adverse drug reactions are genetic in origin. I mean, I remember a rather nasty incident on the night when I got my exam results for my finals, and I'd actually had a big bee sting and I'd been prescribed antihistamines, and I went out and I drank rather a lot to celebrate, and oh my goodness me, I was rather ill [laughter]. So, you know, not all adverse drug reactions are genetic in origin. There are other things that interact as well, just to make that clear to people. Matt: Yes, I think that's more an interaction than an adverse drug reaction. In fact frankly, the most common adverse drug reaction in hospitals is probably through excess amounts of water, and that's not medically determined, that's the prescription. Vivienne: Let me now come to Anita. So, you talk to patients all the time about pharmacogenomics in your role. You've been very much involved in patient and public involvement groups at the Wolfson Centre for Personalised Medicine in Liverpool. What do patients think about pharmacogenomics? Is it something they welcome? Anita: I think they do welcome pharmacogenomics, especially so with some of the patients who've experienced some of the more serious, life threatening reactions. And so one of our patients has been doing some work with the Academy of Medical Sciences, and she presented to the Sir Colin Dollery lecture in 2022, and she shared her story of having an adverse drug reaction and the importance of pharmacogenomics, and the impact that pharmacogenomics can have on patient care. Vivienne: Now, I think that was Stevens-Johnson syndrome. We're going to hear in a moment from somebody who did experience Stevens-Johnson's, but just tell us briefly what that is. Anita: Stevens-Johnson syndrome is a potentially life threatening reaction that can be caused by a viral infection, but is more commonly caused by a medicine. There are certain groups of medicines that can cause this reaction, such as antibiotics or anticonvulsants, nonsteroidal anti-inflammatories, and also a drug called allopurinol, which is used to treat gout. Patients have really serious side effects to this condition, and they're often left with long-term health complications. The morbidity and mortality is considerable as well, and patients often spend a lot of time in hospital and take a long time to recover. Vivienne: And let's now hear from Jane Burns for someone with lived experience of that Stevens-Johnson syndrome. When Jane Burns was 19, the medicine she took for her epilepsy was changed. Jane: I remember waking up and feeling really hot, and I was hallucinating, so I was taken to the Royal Liverpool Hospital emergency department by my parents. When I reached A&E, I had a temperature of 40 degrees Celsius. I was given Piriton and paracetamol, and the dermatologist was contacted. My mum had taken my medication to hospital and explained the changeover process with my epilepsy medication. A decision was made to discontinue the Tegretol and I was kept in for observation. Quite rapidly, the rash was changing. Blisters were forming all over my body, my mouth was sore and my jaw ached. My temperature remained very high. It was at this point that Stevens-Johnson syndrome, or SJS, was diagnosed. Over the next few days, my condition deteriorated rapidly. The rash became deeper in colour. Some of the blisters had burst, but some got larger. I developed ulcers on my mouth and it was extremely painful. I started to lose my hair and my fingernails. As I had now lost 65 percent of my skin, a diagnosis of toxic epidermal necrolysis, or TEN, was made. Survivors of SJS TEN often suffer with long-term visible physical complications, but it is important to also be aware of the psychological effects, with some patients experiencing post-traumatic stress disorder. It's only as I get older that I realise how extremely lucky I am to have survived. Due to medical and nursing expertise, and the research being conducted at the time, my SJS was diagnosed quickly and the medication stopped. This undoubtedly saved my life. Vivienne: Now, you've been looking at the development of a passport in collaborating with the AMS and the MHRA. Tell me a bit more about that. Anita: Yes, we set up a patient group at the Wolfson Centre for Personalised Medicine approximately 12 years ago, and Professor Sir Munir Pirmohamed and I, we wanted to explore a little bit more about what was important to patients, really to complement all the scientific and clinical research activity within pharmacogenomics. And patients recognised that, alongside the pharmacogenomic testing, they recognised healthcare professionals didn't really have an awareness of such serious reactions like Stevens-Johnson syndrome, and so they said they would benefit from having a My SJS Passport, which is a booklet that can summarise all of the important information about their care post-discharge, and this can then be used to coordinate and manage their long-term healthcare problems post-discharge and beyond. And so this was designed by survivors for survivors, and it was then evaluated as part of my PhD, and the findings from the work suggest that the passport is like the patient's voice, and it really does kind of validate their diagnosis and raises awareness of SJS amongst healthcare professionals. So, really excellent findings from the research, and the patients think it's a wonderful benefit to them. Vivienne: So, it's a bit like a kind of paper version of the bracelet that you sometimes see people wearing that are on steroids, for instance. Anita: It is like that, and it's wonderful because it's a handheld source of valuable information that they can share with healthcare professionals. And this is particularly important if they're admitted in an emergency and they can't speak for themselves. And so the passport has all that valuable information, so that patients aren't prescribed that drug again, so it prevents them experiencing a serious adverse drug reaction again. Vivienne: So, Stevens-Johnson, Bill, is a really scary side effect, but what about the day to day benefits of pharmacogenomics for patients? Bill: So, what we've seen is that the limited adoption so far in the UK and other countries has focused particularly on severe adverse drug reactions. They've been easier to identify and there's a clear relationship between some drugs and some genetic changes where that information is useful. So a good example has been the recent adoption of pharmacogenetic testing for a gene called DPYD for patients undergoing cancer treatment, particularly breast and bowel cancer. And if you have an absence of the enzyme that that gene makes, if you're given that treatment, then you can end up on intensive care and die, so it's a really significant side effect. But as you say, the most common side effects aren't necessarily fatal, but they can have a huge impact upon people and on their wellbeing. And it's not just in terms of side effects. It's in terms of the effectiveness of the medicine. Because if a person is prescribed a medicine that doesn't or isn't going to work for them then it can take them longer to recover, to get onto the right medicine. That can have all sorts of detrimental effects. And so when we're thinking about introducing pharmacogenetics more broadly rather than just on a single drug or a single gene basis, we're thinking about that for common drugs like antidepressants, painkillers, statins, the drugs that GPs are often prescribing on a regular basis to a whole range of patients. Vivienne: So, to go back to you, Anita, we're really talking about dose here, aren't we, whether you need twice the dose or half the dose depending on how quickly your body metabolises that particular medicine. How do patients view that? Anita: Well, the patient in question who presented for the Academy of Medical Sciences, I mean, her take on this was, she thinks pharmacogenetics is wonderful because it will allow doctors and nurses to then prescribe the right drug, but also to adapt the dose accordingly to make sure that they get the best outcome, which provides the maximum benefit while also minimising any potential harm. And so from her perspective, that was one of the real benefits of pharmacogenomics. But she also highlighted about the benefits for future generations, the fear of her son taking the same medicine and experiencing the same reaction. And so I think her concerns were, if we have pharmacogenetic testing for a panel of medicines, as Bill mentioned then, then perhaps this would be fantastic for our children as they grow up, and we can identify and predict and prevent these type of reactions happening to future generations. Vivienne: And some of these drugs, Bill, are really very common indeed, something like codeine. Just tell us about codeine, ‘cos it's something – whenever I tell this to friends [laughter], they're always completely entranced by the idea that some people don't need nearly as much codeine as others. Bill: Yeah, so codeine is a drug that's very commonly used as a painkiller. To have its real effect, it needs to be converted in the body to a different drug called morphine, and that is done by an enzyme which is made by a gene called CYP2D6. And we all carry changes in CYP2D6, and the frequency of those variants, whether they make the gene work too much or whether they make it work too little, they vary enormously across the world, so that if you go to parts of Africa, about 30 percent of the population will make more of the CYP2D6, and so they will convert the codeine much more quickly, whereas if you go to the UK, maybe up to ten percent of the white population in the UK just won't be converting codeine to morphine at all, so they won't get any benefit from the drug. So at both ends, you have some people that don't respond and some people that respond a little bit too much so that they need either an alternative drug or they need a different dose. Vivienne: So, all those people who say, you know, “My headache hasn't been touched by this painkiller,” and we say, “What a wimp you're being,” actually, it's to do with genetics. Bill: Yeah, absolutely. There's a biological reason why people don't – not for everybody, but for a significant number of people, that's absolutely right, and we can be far more tailored in how we prescribe medication, and get people onto painkillers that work for them much more quickly. Vivienne: And that's so interesting that it varies by where you come from in the world, because that means we need to give particular attention – and I'm thinking, Anita, to working with patients from different community groups, to make sure that they understand the need for pharmacogenomics. Anita: I think that's really important, Vivienne, and I think we are now having discussions with the likes of Canada SJS awareness group, and also people have been in touch with me from South Africa because people have requested the passport now to be used in different countries, because they think it's a wonderful tool, and it's about raising awareness of pharmacogenomics and the potential benefits of that, and being able to share the tools that we've got to help patients once they've experienced a serious reaction. Vivienne: So, pharmacogenomics clearly is important in the prevention of adverse drug reactions, better and more accurate prescribing, reduced medicines wastage. Does this mean that it's also going to save money, Bill, for the NHS? Bill: Potentially. It should do if it's applied properly, but there's lots of work to make sure that not only are we using the right evidence and using the right types of tests in the laboratory, but we're getting the information to prescribers, so to GPs, to pharmacists, to hospital doctors, in a way that is understandable and meaningful, such that they can then act upon that information. So, the money will only be saved and then can be reused for healthcare if the whole process and the whole pathway works, and that information is used effectively. Vivienne: So, a lot of research to make sure that all of that is in place, and to demonstrate the potential cost savings. Bill: Yes. I mean, there are very nice studies that have been done already in parts of the world that have shown that the savings that could be accrued for applying pharmacogenetics across common conditions like depression, like in patients to prevent secondary types of strokes, are enormous. They run into hundreds of millions of pounds or dollars. But there is an initial investment that is required to make sure that we have the testing in place, that we have the digital pathways to move the information in place, and that there's the education and training, so that health professionals know how to use the information. But the potential is absolutely enormous. Vivienne: Matt, can I turn now to the yellow card. So, people will be very familiar with the yellow card system. So, if you have an adverse reaction, you can send a yellow card in – I mean, literally, it is a yellow card [laughter]. It does exactly what it says on the tin. You send a yellow card to the MHRA, and they note if there's been an adverse effect of a particular medicine. But Genomics England is teaming up with the MHRA to do something more with yellow cards, and we're also doing this with the Yellow Card Biobank. Tell us a bit more. Matt: So, yellow card's a great scheme that was set up decades ago, initially starting off, as you said, with literally yellow cards, but now actually most submissions actually come online. And it's important to note that submissions can come not just from healthcare providers, but majority of submissions actually come from patients themselves, and that people should feel free, if they feel they've had an adverse drug reaction, to report that themselves rather than necessarily depending on a medical practitioner or the healthcare provider to create that report. So, Genomics England is partnering with the MHRA in building what's called the Yellow Card Biobank, the goal of which is to identify genetic markers for adverse drug reactions earlier than has occurred in the past, so that we can then introduce genetic tests to prevent these adverse drug reactions much sooner than has occurred previously. So, what we're doing is basically at the moment we're doing a pilot, but the ultimate plan is that in future, patients who report a serious adverse drug reaction through the Yellow Card Biobank will be asked to provide a sample, a blood sample, that we then screen. We do a whole genome sequence on it, and then combine these with patients who've had like adverse drug reactions and identify genetic markers for that adverse drug reaction medication earlier, that can then be introduced into clinical practice earlier. And this should reduce by decades the amount of time between when adverse drug reactions first start occurring with medications and us then being able to translate that into a preventative mechanism. Vivienne: And will that scheme discover, do you think, new interactions that you didn't know about before? Or do you expect it to turn up what you already know about? Matt: No, I really think there's a lot of discovery that is yet to happen here. In particular, even for drugs that we know cause adverse drug reactions, mostly they've only been studied in people of European ancestry and often in East Asian ancestry, but in many other ancestries that are really important in the global population and in the UK population, like African ancestry and South Asian ancestries, we have very little data. And even within Africa, which is an area which is genetically diverse as the rest of the world put together, we really don't know what different ethnicities within Africa, actually what their genetic background is with regard to adverse drug reactions. The other thing I'd say is that there are a lot of new medications which have simply not been studied well enough. And lastly, that at the moment people are focused on adverse drug reactions being due to single genetic variants, when we know from the model of most human diseases that most human diseases are actually caused by combinations of genetic variants interacting with one another, so-called common disease type genetics, and that probably is similarly important with regard to pharmacogenomics as it is to overall human diseases. That is, it's far more common that these are actually due to common variants interacting with one another rather than the rare variants that we've been studying to date. Vivienne: So, it's a kind of cocktail effect, if you like. You know, you need lots of genes working together and that will produce a reaction that you may not have expected if you'd looked at a single gene alone. Matt: That's absolutely correct, and there's an increasing amount of evidence to show that that is the case with medications, but it's really very early days for research in that field. And the Yellow Card Biobank will be one of many approaches that will discover these genetic variants in years to come. Vivienne: Now, Matt's a research scientist. Bill, you're on the frontline in the NHS. How quickly can this sort of finding be translated into care for people in the NHS? Bill: So, really quickly is the simple answer to that, Viv. If we look at examples from a number of years ago, there's a drug called azathioprine that Matt has used lots in some of his patients. In rheumatology, it's used for patients with inflammatory bowel disease. And the first studies that showed that there was a gene that was relevant to having bad reactions to that drug came out in the 1980s, but it wasn't until well into this century, so probably 30-plus years later that we were routinely using that test in clinical medicine. So, there was an enormous lot of hesitancy about adopting that type of testing, and a bit of uncertainty. If you move forward to work that our colleague Munir Pirmohamed in Liverpool has done with colleagues in Australia like Simon Mallal around HIV medicine, there was this discovery that a drug called abacavir, that if you carried a particular genetic change, that you had a much higher risk of having a really severe reaction to that. The adoption from the initial discovery to routine, worldwide testing happened within four years. So, already we've seen a significant change in the appetite to move quickly to adopt this type of testing, and I see certainly within the NHS and within other health systems around the world, a real desire to adopt pharmacogenetics into routine clinical practice quickly and at scale, but also as part of a broader package of care, which doesn't just solely focus on genetics, but thinks about all the other parts that are important in how we respond to medication. So, making sure we're not on unusual combinations of drugs, or that we're taking our medicine at the right time and with food or not with food, and all of those other things that are really important. And if you link that to the pharmacogenetics, we're going to have a much safer, more effective medicines world. Vivienne: I think one of the joys of working at Genomics England is that you see some of this work really going into clinical practice very fast indeed. And I should say actually that the Wolfson Centre for Personalised Medicine, the PPI group that Anita looks after so well, they've been very important in recruiting people to Yellow Card Biobank. And if anyone's listening to this, Matt, and wants to be part of this, how do they get involved? Or is it simply through the yellow card? Matt: So at the moment, the Yellow Card Biobank is focusing on alopurinol. Vivienne: So, that's a medicine you take for gout. Matt: Which I use a lot in my rheumatology clinical practice. And direct acting oral anticoagulants, DOACs, which are used for vascular disease therapies and haemorrhage as a result of that. So, the contact details are available through the MHRA website, but I think more importantly, it's just that people be aware of the yellow card system itself, and that if they do experience adverse drug reactions, that they do actually complete a report form, ‘cos I think still actually a lot of adverse drug reactions go unreported. Vivienne: I'm forgetting of course that we see Matt all the time in the Genomics England office and we don't think that he has any other home [laughter] than Genomics England, but of course he still sees some patients in rheumatology clinic. So, I want to now look to the future. I mean, I'm, as you both know, a huge enthusiast for pharmacogenomics, ‘cos it's the thing that actually, when you talk to patients or just the general public, they just get it straight away. They can't think why, if you knew about pharmacogenomics, why you wouldn't want to do it. But it's not necessarily an easy thing to do. How can we move in the future, Bill, to a more proactive approach for pharmacogenomics testing? Where would we start? Bill: Yes, so I think we've built up really good confidence that pharmacogenetics is a good thing to be doing. Currently, we're doing that predominantly at the point when a patient needs a particular medicine. That's the time that you would think about doing a genetic test. And previously, that genetic test would only be relevant for that specific drug. I think we're moving to a place where, rather than just doing that one test that might be relevant to one drug, we'd be able to do a test which at the same price would generate information that could be relevant at further points in your life if you were requiring different types of medicine. So, that information would then be available in your hospital record, in your GP record, that you could have access to it yourself. And then I think ultimately what we would really love to get to a point is where everybody across the whole population just has that information to hand when it's required, so that they're not waiting for the results of a genetic test, it's immediately within their healthcare record. That's what we'd call pre-emptive pharmacogenetic testing, and I think that's the golden land that we want to reach. Vivienne: So for instance, I might have it on my NHS app, and when I go to a doctor and they prescribe something, I show my app to the GP, or something pops up on the GP's screen, or maybe it's something that pops up on the pharmacist's screen. Bill: I think that's right. I think that's what we're looking to get to that point. We know that colleagues in the Netherlands have made some great progress at developing pathways around that. There's a lot of public support for that. And pharmacists are very engaged in that. In the UK, the pharmacists, over the last few years, have really taken a very active role to really push forward this area of medicine, and this should be seen as something that is relevant to all people, and all health professionals should be engaged with it. Vivienne: And on a scale of one to ten, how difficult is it going to be to implement in the NHS? Bill: So, that's a difficult question. I think the first thing is identifying what the challenges are. So I have not given you a number, I've turned into a politician, not answered the question. So, I think what has happened over the last few years, and some of our work within the NHS Network of Excellence in pharmacogenetics and some of the other programmes of work that have been going on, is a really good, honest look at what it is we need to do to try to achieve pharmacogenetics implementation and routine use. I don't think the challenge is going to be predominantly in the laboratory. I think we've got phenomenal laboratories. I think we've got great people doing great genetic testing. I think the biggest challenges are going to be about how you present the data, and that data is accessible. And then ensuring that health professionals really feel that this is information that isn't getting in the way of their clinical practice, but really making a difference and enhancing it, and of benefit both to the healthcare system but more importantly to the patients. Vivienne: Now, when I hear you both talk, my mind turns to drug discovery and research, and Matt, I'm quite sure that that's right at the top of your mind. Tell us how pharmacogenomics can help in drug discovery and research. Matt: So, pharmacogenomics, I think actually just genetic profiling of diseases in itself just to start off with is actually a really good way of identifying new potential therapeutic targets, and also from derisking drug development programmes by highlighting likely adverse drug reactions of medications that are being considered for therapeutic trials, or targets that are being considered for therapeutic development. Pharmacogenomics beyond that is actually largely about – well, it enables drug development programmes by enabling you to target people who are more likely to respond, and avoid people who are more likely to have adverse drug reactions. And so that therapeutic index of the balance between likely efficacy versus likely toxicity, genetics can really play into that and enable medications to be used where otherwise they might have failed. This is most apparent I think in the cancer world. A classic example there, for example, is the development of a class of medications called EGFR inhibitors, which were developed for lung cancer, and in the initial cancer trials, actually were demonstrated to be ineffective, until people trialled them in East Asia and found that they were effective, and that that turns out to be because the type of cancers that respond to them are those that have mutations in the EGFR gene, and that that's common in East Asians. We now know that, wherever you are in the world, whether you're East Asian or European or whatever, if you have a lung adenocarcinoma with an EGFR mutation, you're very likely to respond to these medications. And so that pharmacogenomic discovery basically rescued a class of medication which is now probably the most widely used medication for lung adenocarcinomas, so a huge beneficial effect. And that example is repeated across multiple different cancer types, cancer medication types, and I'm sure in other fields we'll see that with expansive new medications coming in for molecularly targeted therapies in particular. Vivienne: So, smaller and more effective trials rather than larger trials that perhaps seem not to work but actually haven't been tailored enough to the patients that are most likely to benefit. Matt: Yeah, well, particularly now that drug development programmes tend to be very targeted at specific genetic targets, pharmacogenetics is much more likely to play a role in identifying patients who are going to respond to those medications. So, I think many people in the drug development world would like to see that, for any significant drug development programme, there's a proper associated pharmacogenomic programme to come up with molecular markers predicting a response. Vivienne: We're going to wrap up there. Thank you so much to our guests, Bill Newman, Anita Hanson, Matt Brown, and our patient Jane Burns. Thank you so much for joining us today to discuss pharmacogenomics in personalised medicine, and the benefits, the challenges and the future prospects for integrating pharmacogenomics into healthcare systems. And if you'd like to hear more podcasts like this, please subscribe to Behind the Genes. It's on your favourite podcast app. Thank you so much for listening. I've been your host, Vivienne Parry. This podcast was edited by Bill Griffin at Ventoux Digital and produced by the wonderful Naimah. Bye for now.
We're diving into advanced therapies with industry leaders. Emmanuel Abate, President of Genomic Medicine at Cytiva discussed the strategies to accelerate clinical work and reduce costs. Nathaniel Wang, CEO and Co-Founder of Replicate Bioscience highlighted their ground breaking self-replicating RNA technology, showcasing impressive clinical results for a rabies vaccine. Both experts emphasized the momentum in biotech, the potential of AI in advancing science, and the importance of making innovative therapies accessible globally. Stay tuned for these insights. Show notes Beneath Everest, a lone caretaker struggles to keep one of the world's highest laboratories alive Integrating human endogenous retroviruses into transcriptome-wide association studies highlights novel risk factors for major psychiatric conditions Keywords: vaccines, advanced therapies, mRNA, manufacturing, technology, patients, innovation, new modalities.
In this episode, we delve into the impact of the new groundbreaking research uncovering the RNU4-2 genetic variant linked to neurodevelopmental conditions. The discovery, made possible through whole genome sequencing, highlights a genetic change in the RNU4-2 gene that affects about 1 in 200 undiagnosed children with neurodevelopmental conditions, making it more prevalent than previously thought. This discovery represents one of the most common single-gene genetic causes of such conditions. Our host, Naimah Callachand, Head of Product Engagement and Growth at Genomics England, is joined by Lindsay Pearse who shares her journey through the diagnosis of her son Lars. They are also joined by Sarah Wynn, CEO of Unique, and Emma Baple, Clinical Genetics Doctor and Professor of Genomic Medicine in the University of Exeter and the Medical Director of the Southwest NHS Genomic Laboratory Hub. We also hear from the 2 research groups who independently discovered the findings: Dr Andrew Mumford, Professor of Haematology at the University of Bristol Link to the research paper: https://www.nature.com/articles/s41591-024-03085-5 Assistant Professor Nicky Whiffin, Big Data Institute and Centre for Human Genetics at the University of Oxford Link to the research paper: https://www.nature.com/articles/s41586-024-07773-7 To access resources mentioned in this podcast: Unique provides support, information and networking to families affected by rare chromosome and gene disorders - for more information and support please visit the website. Connect with other parents of children carrying a variation in RNU4-2 on the Facebook group. "I think one of the things we really hope will come out of diagnoses like this is that we will then be able to build up more of that picture about how families are affected. So, that we can give families more information about not only how their child is affected but how they might be affected in the future." You can read the transcript below or download it here: https://www.genomicsengland.co.uk/assets/documents/Podcast-transcripts/How-has-a-groundbreaking-genomic-discovery-impacted-thousands-worldwide.docx Naimah: Welcome to Behind the Genes. Lindsay: So, this feeling that like we've been on this deserted island for eight years and now all of a sudden, you're sort of looking around through the branches of the trees. It's like, wait a minute, there are other people on this island and in this case actually there's a lot more people on this island. Yeah, it's very exciting, it's validating. It gives us a lot of hope and, you know, it has been quite emotional too and also a bit of an identity shift. Being undiagnosed had become quite a big part of our identity, and so now that's kind of shifting a little bit that we have this new diagnosis and are part of a new community. Naimah: My name is Naimah Callachand and I'm Head of Product Engagement and Growth at Genomics England. On today's episode, I'm joined by Lindsay Pearse whose son Lars recently received a genetic diagnosis, made possible by research using data from the National Genomic Research Library, Sarah Wynn CEO of Unique, and Emma Baple, a clinical genetics doctor. Today we'll be discussing the impact of recent research findings which have found a genetic change in the non-coding RNU4-2 gene, to be linked to neurodevelopmental conditions. If you enjoy today's episode, we'd love your support. Please like, share and rate us on wherever you listen to your podcasts. Naimah: And first of all, I would like everyone to introduce themselves. So, Lindsay, maybe if we could come to you first. Lindsay: Great, thank you. So, thank you for having me. I'm Lindsay Pearse, I live outside of Washington DC and I'm a mum to 3 boys. My oldest son Lars who is 8, he was recently diagnosed with the de novo variant in the RNU4-2 gene. Naimah: Thank you. And Emma? Emma: My name is Emma Baple. I'm a Clinical Genetics Doctor which means I look after children and adults with genetic conditions. I'm also a Professor of Genomic Medicine in the University of Exeter and the Medical Director of the Southwest NHS Genomic Laboratory Hub. Naimah: And Sarah? Sarah: Hi, thank you for having me. I'm Sarah Wynn, I'm the CEO of a patient organisation called Unique, and we provide support and information to all those affected by rare genetic conditions. Naimah: Great, thank you. It's so great to have you all here today. So, first of all Lindsay, I wonder if we could come to you. So, you mentioned in your introduction your son Lars has recently been diagnosed with the de novo variant. I wondered if you could tell us a bit about your story, and what it's been like up until the diagnosis. Lindsay: Sure, yeah. So, Lars is, he's a wonderful 8 year-old boy. With his condition, his main symptoms he experiences global developmental delays, he's non-verbal. He's had hypertonia pretty much since birth and wears AFO's to support his walking. He has a feeding disorder and is fed by a G-Tube. Cortical vision impairments, a history of seizures and slow growth, amongst other things. So, that's just a bit of a picture of what he deals with day to day. But he's my oldest child, so first baby. When I was pregnant, we were given an IUGR diagnosis. He was breech, he had a hernia soon after birth, wouldn't breastfeed. But all of these things aren't terribly uncommon, you know. But once he was about 3 or 4 months old, we noticed that he wasn't really able to push up like he should, and we were put in touch with early intervention services for an assessment. So, we went ahead and did that when he was about 4 or 5 months old. And as parents, we could just kind of tell that something was off from the assessors. And, you know, they were very gentle with us, but we could just get that sense that okay, something is off, and they're worried here. So, that kind of kickstarted me into making appointments left, right and centre with specialists. The first specialist that we saw was a neurologist. And yeah, again, that's another appointment that I'll never forget. She referred us to genetics and to get an MRI and some lab work but at the end of the appointment, she said to us, ‘Just remember to love your child.' And, you know, that was quite shocking to us at the time because it wasn't something that had ever crossed our mind that we wouldn't do or felt like we needed to be told to do this. But on the other hand, it certainly set off a lot of worry and anxiety of okay, well, what exactly are we dealing with here? So, fast forward, we saw genetics and that was about when Lars was about 8 months old. We went through a variety of genetic testing, a chromosomal micro-array, a single gene testing, then the whole exome testing. Everything came back negative, but it was explained to us that what was going on was likely an overarching genetic diagnosis that would explain his like, multi-system symptoms. And so meanwhile as he was getting older his global delays were becoming more pronounced and we were also in and out of the hospital a lot at this time. At first, he was in day care and, you know, any sort of cold virus would always turn into like a pneumonia for him. So, we were just in and out of hospital seeing a myriad of specialists, trying to put together this puzzle of what's going on and it was really hard to accept that nobody could figure it out. That was just, you know, sort of mind-blowing to us I guess. So, we applied for and were accepted into the Undiagnosed Diseases Programme at the National Institute of Health over here. The NIH as it's commonly referred to. So, we first went there when Lars was 2. He was one of their youngest patients at the time. But that was a really great experience for us because we felt like they were looking at him holistically and across a bunch of all of his systems, and not just seeing a specialist for sort of each system. So, we really appreciated that. We also did the whole genome sequencing through this research study. Although that also came back negative and so at that point, we were told to kind of keep following up symptomatically. Keep seeing the specialists and eventually maybe one day we'll find an overarching diagnosis, but that science just hadn't quite caught up to Lars. It was hard for me again to believe that and to sort of wrap my head around that. But certainly, it was an education from all of the doctors and geneticists and everyone we saw at NIH, to realise like how far there still was to go in terms of genetic research. How it wasn't also that uncommon to be undiagnosed in the rare disease community. I would say that being undiagnosed sort of became part of our identity. And it's, you know, it was something that, you know, you had to explain to like insurance companies and to his school, and it became part of our advocacy around him. Because without being able to say oh, it's this specific thing and if it was someone who hadn't met Lars before, trying to explain to them that, you know, yeah, within the range of this community you can be undiagnosed, and they just haven't found it yet, but I promise you there is something going on here. And I'd say the other thing too without a diagnosis you have no prognosis, right? And so, trying to figure out what the future would look like. Also, family planning. We waited 5 and a half years before we had another child and, you know, it was certainly an anxiety ridden decision. Ultimately after seeing as many specialists as we possibly could, we still were left with the same answer of well, we just don't really know if it will happen again. So, that was a big decision to make. But again, it just kind of became part of our identity and something that you did eventually accept. But I would say in my experience I feel like the acceptance part also of Lars' disabilities perhaps took me a little bit longer. Because again, I didn't have a prognosis, so I didn't exactly know what we were dealing with. Only as he has become older and, you know, you're sort of getting a better sense of what his abilities might be than being able to understand, okay, this is what I'm dealing with. I need to accept that and do what I can to care for him and our family in the best way that we can. Naimah: Thanks so much for sharing that, Lindsay. I feel like you've touched on a lot of really, you know, a lot of complications and difficulties for your family. Especially, you know, with regards to keeping hopeful and things about the prognosis as well, I'm sure it was really difficult. You've mentioned that Lars was able to be diagnosed recently due to recent research efforts. So, Sarah, I wonder if you can tell us a bit more about these and what the findings have meant for patients with neurodevelopmental conditions. Sarah: Yes. So, I think we know that there are lots of families that are in Lindsay and Lars' position where they know that there is almost certainly an underlying genetic condition, and it just hasn't been found yet. And so, I think we know that lots of researchers are working really hard to try and find those causes. I think over time we know that as time goes on and research goes on, we'll find more of these new genetic causes for neurodevelopmental conditions. I think particularly as we start to look at regions of the genome that we haven't looked at so much so far. But I think one of the things that's really extraordinary about this one is that actually it turns out to be much more common than we might have expected, for one of these new conditions that we haven't found before. But I think it's about one in 200 of those undiagnosed children with neurodevelopmental conditions, have this diagnosis so that's not a small number. That's not a rare finding at all actually, that's much more common than we could ever have anticipated. But I think one of the things that we do know is that as we look further and deeper into that genomic sequence, so, we've started off looking at the bits of the sequence that are genes that code for proteins. This changes in a gene that actually doesn't code for protein, so it's less obvious that it would be important but clearly it is important in development because we know when it has a spelling mistake in it, it causes this neurodevelopmental condition. But there will be as researchers look more and more at these kinds of genes, and also the other part of the genome that is not genes at all, we'll find out more and more the underlying genetic causes of these neurodevelopmental conditions. I think it's also really important to stress why this is so important to find these genetic changes and it's because families really need a diagnosis. Lindsay talked quite eloquently and a lot about that knowing something was off and really wanting to know the reason why. Getting these diagnoses might change care management or treatment, but actually really importantly it just gives an answer to families who have often been looking for an answer for a really long time. Naimah: I just wanted to go back to the point that Sarah made that actually this genetic change is relatively common. Emma, I wondered if you could tell us a bit more about maybe why it took us so long to discover it? Emma: That's an interesting question actually. I suppose the sort of slightly simplified answer to that question is we haven't been able to sequence the whole of a person's genetic information for that long. And so, children like Lars would have had, as Lindsay described lots and lots of genetic tests up until they had a whole genome sequencing which is what Sarah was talking about. The types of tests that we had up until the whole genome sequencing wouldn't have allowed us to look at that bit of the genetic code where this RNU4-2 gene can be found. So, we can only really find that using whole genome sequencing. So, before that existed, we wouldn't have been able to find this cause of developmental condition. Naimah: Okay, thanks Emma. Naimah: Now we're going to hear from one of the two research groups who are responsible for these research findings. First of all, let's hear from Nicky Whiffin. (Clip - Nicky Whiffin) Naimah: How were the findings possible using the Genomics England dataset? Nicky: So, most previous studies have only looked at genetic variants that, in genes that make proteins, but only a subset of our genes actually do makes proteins. The Genomics England dataset we have sequencing information on the entire genome, not just on these protein coding genes and that means we can also look at variants in other genes. So, those that make molecules other than proteins. And RNU4-2 for example, makes an RNA molecule. Naimah: These findings translated to direct patient benefit for patients like Lars who were able to receive support from Unique. How does this demonstrate the value of the dataset? Nicky: Yes. So, it was incredible that we could find so many patients with RNU4-2 variants so quickly. This was enabled by access to Genomics England data but also to other large sequencing datasets around the world. So, we worked with people in the US, in Australia and also in mainland Europe. These large datasets enabled us to spot consistent patterns in the data and by looking across multiple datasets we can also make sure that our findings are robust. When we realised how significant this was and how many families would be impacted, we very quickly contacted Sarah at Unique to see if we could direct patients to them for support. (End of clip) Emma: There's one thing I wanted to raise. It's important to recognise the way that was discovered was through the National Genomic Research Library that Genomics England hosts. To highlight the value of that, and the value of having this centralised resource where families have been kind enough really to allow their data to be shared with some limited clinical information that allowed these researchers to be able to pull this out. And I think it highlights the power of the National Health Service in that we were able to create such a resource. It's really quite astounding that we've found such a common cause of a rare genetic condition, and it wouldn't have happened in the same timescale or in this way without that resource. And then to just say that as Sarah talked about the fact that we've been able to get that information out there, also the researchers were able to get out there and contact the NIH and all of these other programmes worldwide. In Australia, America, everywhere in the world and quickly identify new patients who had this condition and get those diagnoses out really rapidly to people. But all that came from that power of sharing data and being able to have that all in one place and making it accessible to very clever people who could do this work and find these answers. It's so important for families like Lindsay's, and all the families in England and around the world that have got these answers. So, I guess it's a big plug for the value of data sharing and having a secure place where people feel that it's trusted and safe, that enables these diagnoses to be made. Lindsay: If I could just echo that, we're so grateful that that exists in the UK. Just acknowledging like the privilege here that we have had to be able to, I mean for our family in the US, that we've been able to, you know, get ourselves into the NIH study and into the study at Children's National. That takes a lot of work. I feel like not everybody has that opportunity to be able to spend the time to do these applications and to go to all the appointments and get the testing done and have the insurance to cover it. So, very grateful that the system exists in a way in the UK that made this sort of research possible. I just hope that that can be replicated in other places, and also to what Emma was saying earlier, come up with a lower cost test as well for this to further the growth of the community and of course then the corresponding research. Sarah: I think firstly we have to sort of thank all of those families that took part and do share their data, because I think it's not always clear why you might want to do that as a family. I think this is really a powerful example of the benefit of that. I also think the data sharing goes one stage further. So, it's partly about getting the diagnosis, but the data sharing going forward about how this condition impacts families, both clinically and sort of day to day lived experience, is how we'll be able to learn more about these conditions. And so, when families get this diagnosis next week or next year, not only will they get a diagnosis, but they'll get a really good idea about what the condition is and how it might impact their child. Naimah: And Lindsay, coming back to you. So, we've talked about, you know, what it meant for your family before the diagnosis, but what has it meant to have a diagnosis and how did you feel? And what happened whenever you received the diagnosis? Lindsay: Sure. Lars was again part of the NIH Undiagnosed Diseases Research study. So, once you attend this programme and if you are not diagnosed like at the end of your stay, they keep your details on file and you're part of this database at the NIH Undiagnosed Diseases Programme. So, if you're undiagnosed after your sort of week-long work up, your samples stay within the research programme. We were also part of a research programme at Children's National Medical Centre, the Rare Disease Institute. So, our samples were sort of on file there in their database as well. And so, at the end of March I was really quite shocked to receive a call from our long time and trusted geneticist at Children's National that they had found a diagnosis. It was quite emotional. I really kind of didn't believe it. I just kept asking, you know, ‘Are you sure? Is this it?' you know, ‘How confident are we?' Because I think in my head, I sort of always thought that we would eventually find a diagnosis, but I thought that Lars would be, you know, a 30- or 40-year-old adult. I thought it would be decades from now. Like I felt like for whatever reason we had to wait decades for the science to sort of catch up to him. So, we were very, very grateful. It felt very validating, I guess. I had always kind of had this intuition feeling that we were sort of missing something and it's more that the science just hadn't quite caught up yet. But, you know, it was validating to know that okay, Lars is not the only person in the entire world with this, it is something that is relatively common in fact within the rare disease community. That is also very exciting to me personally because I'm hopeful that that will lead more researchers to be interesting in this, given how, quote on quote, common it is. I've sort of been describing it as like a mass diagnosis event but also more so this feeling that like we've been on this deserted island for eight years and now all of a sudden, you're sort of like looking around through the branches of the trees. It's like, wait a minute, there are other people on this island ad in this case, there's actually a lot more people on this island. Yeah, it's very exciting, it's validating. It gives us a lot of hope. And, you know, it has been quite emotional too and also a bit of an identity shift. Because I spoke earlier about how like being undiagnosed had become quite a big part of our identity. So, now that's kind of shifting a little bit that we have this new diagnosis and are part of a new community. But yeah, we're just very grateful that the research had continued. And, you know, I think sometimes you sort of have this feeling of okay, our files are up on a shelf somewhere, you know, collecting dust and are people really looking at them? And actually, it turns out that the research was ongoing and yeah, we're just very grateful for that. Naimah: Thanks so much for sharing, Lindsay. It sounds like it's been a real rollercoaster of emotions for your family and I'm glad to hear that, you know, you've got some hope now that you've got a diagnosis as well. So, moving onto the next question. Emma, I wanted to ask you then, how will these findings improve clinical diagnostic services for those for neurodevelopmental conditions? Emma: So, you asked me earlier about why it had taken so long to find this particular cause of neurodevelopmental condition, and I gave you a relatively simple answer. The reality is one of the other reasons is that almost eight out of ten children and adults who have RNU4-2 related neurodevelopmental condition have exactly the same single letter spelling change in that gene. So, actually that in itself means that when researchers are looking at that information, they might think that it's actually a mistake. Because we know that when we sequence genetic information, we can see mistakes in that sequencing information that are just because the machine has, and the way that we process that data, it's not perfect. So, sometimes we find these little mistakes and they're not actually the cause of a person's problems, they're just what we call an artefact or an issue with the way that that happens. So, that is part of the reason for why it was tricky for us to know whether this was, or rather the researchers to know whether this was or was not the cause of this particular condition. But that in itself is quite helpful when we think about how we might identify more people who have this going forwards. Because unlike in Lars' case where we didn't know what the cause was and so we were still searching, and we didn't know where to look in the billions of letters that make up the genetic code to find that answer, we now know that this is really very common. It's unbelievably common. I think we didn't think we would be finding a cause of a rare genetic condition that was this commonly occurring at this stage. But the fact that it's just a single, it's commonly this one single change in the gene means that we can set up pretty cheap diagnostic testing. Which means that if you were somewhere where you wouldn't necessarily have access to whole genome sequencing, or a more comprehensive testing in that way, we could still be able to pick up this condition. And it's common enough that even if you didn't necessarily recognise that a person had it, you could still have this as part of your diagnostic tool kit for patients who have a neurodevelopmental condition. It's common enough that just doing a very simple test that could be done in any diagnostic lab anywhere in the world, you would be able to identify the majority of people who have this. Naimah: Now let's hear from the other research group who are responsible for these findings. Here is Dr Andrew Mumford. (Clip - Dr Andrew Mumford) Naimah: Why are these research findings significant? Andrew: It offers genetic diagnosis not just for a handful of families but potentially for many hundreds of families, who we all know have been searching often for many, many years for a genetic diagnosis. But actually, there are other gains from understanding how this gene causes neurodevelopmental disorder. We know that there's GRNU4-2 in codes, not a protein actually, but a small nuclear RNA which is unusual for rare, inherited disorders. It's a component of a very complicated molecule called the spliceosome which in turn regulates how thousands of other genes are regulated, how they're made into proteins. So, fundamentally this discovery tells us a lot about the biology of how the spliceosome works. We already know that some other components of the spliceosome can go wrong, and result in diseases like neurodevelopmental disorders. This gives us an extra insight and actually opens the door to, I hope, a whole load of more discoveries of genetic diagnosis possible from other components of this complicated molecule. Naimah: Your research group used a mathematical modelling approach. Can you tell me a bit about this, and what this means for other rare conditions, Andrew? Andrew: So, identifying relationships between changes in individual genes and different kinds of rare, inherited disease is notoriously difficult because of the volume of data that's involved and the need to be absolutely certain that observed genetic changes are actually the cause of different rare, inherited disease. So, applying statistics to that kind of problem isn't new. But what my collaboration group have achieved here, is to develop, actually developed some years ago a completely new approach to applying statistics to genetic data. We call that BeviMed and we've been working for many years on the genes in code that make individual proteins. Most rare disorders are caused by genetic changes in genes that make proteins. What this discovery comes from is actually we've applied the BeviMed statistical technique to genes that don't make proteins, they're non-coding genes. For example, genes that make small nuclear RNA, it's just like RNU4-2. What's unusual about the BeviMed approach is that it's very sensitive to detecting links between genetic changes and rare diseases, and it can detect statistical associations really driven by very, very small numbers of families. So, we apply it to datasets like the 100,00 Genomes dataset and identify associations using statistics that have got a very high probability of association. Other members of the team then seek to corroborate that finding by looking at if we can see the association in other datasets, and we certainly achieve that with RNU4-2. But also, assessing biological plausibility by investigating what we understand already about in this case, a small nuclear RNA, and how it can possibly result in a disease. And we normally try and employ other independent evidence such as experimental investigation. Or going back to our families and asking for additional data to help really test this sort of theory that changes in this particular gene have resulted in a problem with neurodevelopment. (End of clip) Naimah: Emma, are there any other ways that we can identify these conditions based on their clinical presentation? Emma: So, Lindsay and I were talking with you just yesterday, wasn't it? And I asked Lindsay about what sorts of things Lars had in common with other children and adults who have been diagnosed with this condition? I actually think Lindsay probably gives a better summary than I would, so I might ask you to maybe repeat what you said to me yesterday. But the bit of it that really stood out to me was when you said to us that a lot of parents have said, ‘I'm not sure how we weren't all put together in the first place because you notice so many things that were in common.' So, maybe if you can give that summary and then I can translate that back into medical terms, if that's okay Lindsay. Lindsay: Sure, of course. Yeah, it been again, kind of mind blowing, some of the similarities. Especially as we've exchanged pictures and such, and baby pictures especially where some of the children like look like siblings. So, definitely some similarities in facial features, you know, everyone seems to experience some of the slow growth, so a short stature or quite skinny. There's feeding issues also that seem to be quite common. Also, you know, things like the global developmental delays, that's certainly across the board and histories of seizures, that's also quite common. Some people have experienced also some, like, bone density issues, that's not something that we've experienced so far, but that also seems to be quite common. But then also, behaviourally, there's a lot of similarities which has been, I think, quite exciting to a lot of us because you've always thought okay, so this is just my child. And of course, some of that is true but it's also interesting to find out some of these other things that are, you know, are quite similar. So, a lot of people have mentioned their child having, like, an interesting sense of humour. Kind of like a very slapstick sense of humour which is quite interesting. Or everyone seems to love water, everybody loves swimming pools and bathtime, and all of that. Lars loves a windy day. Something about the wind, he just loves it and plane noises and things like that have also come up with other people. So, yeah, it's been really interesting and cool to see. Emma: So, I guess Lindsay's sort of very beautifully summed up what is written in the research publication. So, there's only two research publications so far on this condition, it's all really new. And I am definitely not claim to be a clinical expert on this condition, and I don't think there are any yet. It will take people time to see lots of children and adults who have this particular condition. But ultimately what Lindsay summarised was the common clinical features that have been described by parents. In my job as a clinical genetics doctor, part of what we look at is a person's appearance. So, Lindsay described the photographs of children particularly when they were little, looked very similar. In the photographs that I've seen, I would agree with that. And so obviously those children look like their mum and dad, but they have other features that are in common. They have a characteristic appearance and that helps doctors like me to have an idea as to whether a child or an adult might have a particular condition. Then put together with the sorts of information that Lindsay gave us around the low tone, so being a little bit floppier particularly when they're little. The slow growth and growth problems, problems with eating, also with seizures. Those are all common things that were pulled out of both of the two research publications on this condition and putting that all together into one picture helps doctors to have an idea whether somebody may have a particular condition. That would help us in this case to potentially request that simple test I was talking about, if maybe we were practicing in a part of the world where we wouldn't have the resources that we thankfully do have in the United Kingdom, and in the USA. Naimah: So, Sarah, just coming to you next. How does this research spread awareness and help other patients with these conditions? Sarah: So, I think one of the things that's been really great about research now is that we are able to, you know, social media and things like that mean that we can spread this information really quickly across the world basically. I think what that does is that as well as helping bring people together that they've got this diagnosis, what it does is I think it provides hope for all of those people that Lindsay was talking about at the beginning who don't have a diagnosis. So, that piece around people are still looking, the researchers are working hard and that even if you don't have a diagnosis today you might get one in the future. Lindsay talked about your sample being dusty and not being looked at. I think it gives lots of families, not just those that get this diagnosis but all of those that haven't got a diagnosis, hope, that hopefully in the future they will get a diagnosis. I think one of the things we really hope will come out of diagnoses like this is that we will then be able to build up more of that picture about how families are affected. So, that we can give families more information about not only how their child is affected but how they might be affected in the future. That prognosis information that Linsday said is really missing when you don't have a diagnosis. And I think the other thing that hopefully is the next stage in this journey with this discovery is that those two science publications that Emma talked about, what we will want to do here at Unique working with the researchers and those families that have got a diagnosis, is to produce a patient family friendly information leaflet about this condition. One of the things we know is really important about those patient leaflets is including the photos. Because as both Emma and Lindsay have said that idea that they have facial features in common. And so, if you look at a leaflet and you can recognise your child in it, and you can see others that look like it, that can be a really sort of quite heartwarming experience in what often is a lonely experience with a rare condition. Naimah: And I think kind of on that point about it being a lonely experience, I wondered Lindsay if you could talk a bit more if this research has allowed you to connect with other parents and families who have received a diagnosis, and what impact that's had on your family? Lindsay: Yeah. I mean, and I think everything that Sarah has said was spot on. It's wonderful to have resources like Unique to connect families and have those diagnoses on the platform, so other clinicians can look for it and sort of grow this group. I think that has definitely been the highlight of getting this diagnosis at this stage, right. Because there's not much more you can do with it, with someone so brand new so being able to connect with the other families has been wonderful. One amazing mum who with this diagnosis set up a Facebook group, RNU4-2 Family Connect. And, you know, it's just been amazing to see people from all over the world joining this as they receive this diagnosis, you know, sharing their stories. We've spent countless hours on the weekends over the past couple of months on Zoom calls with total strangers, but just you find that you can just talk for hours and hours because you have so much in common. It's great to see what has worked well for other families and, you know, what has not worked. Sharing resources, just kind of all learning together. Also seeing the spectrum of this diagnosis, I think most genetic disorders have a spectrum and this seems to be the same here. So, that's been very interesting. And of course, our son is 8, Lars is 8. There's now a 33-year-old and a 29-year-old in the Facebook group. Speaking for me personally it's just amazing to see them and like it's very cool to see where they're at. That sort of helps you answer some of those questions about that before were quite unknown when you were thinking about the future. Obviously, everybody's development whether you have a genetic disorder or not, it is going to be what it's going to be, and everybody is going to do their own thing. But being able to see what a path might look like is just so helpful. And, you know, we all want community and connection, and so this has been really, really great to have that now. Sarah: I don't think there's much more that I can add because Lindsay articulated so well. But it's really heartwarming for us to hear the benefits of those connections because that's really why Unique and other support groups exist. Is to provide, partly to provide information, but I think predominantly to put families in touch with other families so that they can find a new home and connect and share experiences. And, you know, stop feeling as alone as they might have done before. Naimah: Okay, we'll wrap up there. Thank you to our guests, Lindsay Pearce, Sarah Wynn and Emma Baple for joining me today as we discussed the research findings which found a genetic change in the RNU4-2 gene which has been linked to neurodevelopmental conditions. If you'd like to hear more like this, please subscribe to Behind the Genes on your favourite podcast app. Thank you for listening. I've been your host and producer, Naimah Callachand, and this podcast was edited by Bill Griffin of Ventoux Digital.
Genomics has changed considerably over the past 10 years, and we are now exploring how to integrate it into routine healthcare. In this episode, our guests reflect on this evolution and discuss how the key learnings from the past 10 years can shape the genomics ecosystem of the future. They highlight the importance of partnership across teams, organisations and participants, emphasising the importance of keeping participant and patient benefit at the heart of research, whilst also addressing the ethical and safe storage of patient data. In this episode, our host, Helen White, who is the Participant Panel Vice-Chair for cancer at Genomics England, speaks with Dr Rich Scott, CEO of Genomics England. "Our goal is to ensure that everyone can benefit from the advancements in genomics, but this requires collaboration across disciplines and a commitment to ethical practices in managing and sharing genomic data." You can read the transcript below or download it here: https://files.genomicsengland.co.uk/documents/Podcast-transcripts/How_can_we_work_in_partnership_towards_a_new_era_of_genomic_medicine_and_research.docx Helen: Welcome to Behind the Genes. Rich: There's a whole new era I see coming in terms of the therapies that are directed at the causes of genomic conditions, both in rare conditions and in cancer, and thinking as we do that, about how we structure the system to generate evidence, and to respond to it, and have a conversation about what the right balance of evidence for patients to make a choice about their own care. Helen: My name is Helen White and I am the Participant Panel Vice Chair for Cancer, at Genomics England. On today's episode I'm joined by Dr Richard Scott, Chief Executive Officer for Genomics England. And today we'll be discussing Richard's recent appointment as CEO, lessons learnt from the last ten years in the evolution of genomics in healthcare, and how these learnings will be taken forward in the next ten years. And we'll also visit the importance of keeping participant and patient benefit at the heart of research, as well as the ethical and safe storage of patient data. If you enjoy today's episode we would love your support: please like, share and rate us on wherever you listen to your podcast. Before we dive into the interview with Rich, I wanted to take a moment to share my story and tell you a little bit about myself. I have been a member of the Participant Panel at Genomics England since 2018. It was the year before that when I was diagnosed with endometrial, or womb cancer, and was offered the chance to join the 100,000 Genomes Project, which felt like something positive at what was otherwise quite a scary time. It turns out that I have something called Lynch syndrome, that's a genetic condition that increases my chance of developing certain cancers, particularly womb and bowel cancer, which is actually a really useful thing to know as there are things I can do to reduce my chance of getting cancer; things like having regular colonoscopies and taking daily aspirin. I have now been on the participant panel for six years and one year ago I was appointed as Vice Chair for cancer. This is a new and developing role and I am excited to have so far helped recruit more people with lived experience of cancer to the panel and to be assisting Genomics England with connecting to organisations that advocate for people whose lives have been touched by cancer. So that's enough about me. I am delighted to be joined today by Richard Scott, and I am very much looking forward to our conversation. Welcome, Rich. Thank you. So Rich, you've recently been appointed CEO of Genomics England. Can you tell me a bit about your background and what brought you to this role? Rich: It's a really good question and it's one that doesn't have a really very simple answer. I guess what it boils down to is I guess I've always had an interest, even as a child, for whatever reason, in genetics and genomics. I have also then always been drawn to things where I can have an impact and particularly the impact in healthcare and that's what took me to being a medical student. And I guess it's that combination of that particular interest in genetics and being able to see, even when I was at medical school I qualified in 2000 that this was an area of medicine that was going to be really important in the future. And then as I trained, as I did a PhD and as I saw the technology develop and change and then when I saw the UK government and the NHS investing in genomics in a really foresighted way, I found myself eight or nine years sitting at Great Ormond Street as a consultant in clinical genetics where I still practice, I still do one clinic a month there as a clinical genetics consultant seeing families with rare conditions. But I could see when Genomics England was established that this was something, as I said, really foresightful where we could really collectively across the country make more of a difference together in terms of patient and healthcare outcomes. So I joined GEL eight or nine years ago initially in a subject matter expert role, and really found myself the more time it passed, understanding how working in my role at GEL and helping GEL be a really productive part of what is a busy genomics healthcare ecosystem in the UK, we can make a big difference, and that's the thing that just wakes me up in the morning, is realising how much there is left to do, being proud of the stuff we've done, the difference we've made to participants in our programmes already, but realising that many of those still need our support to do better and the big distance left to go before we really deliver on I think the long-term promise of genomics, and I feel my mixture of skills and experience make me really excited to be in the middle of that. Helen: Thank you. Yes, it sounds like you've brought many skills and experience, and interesting to hear that as a child you already had that interest in genetics and where that's taken you. Can you tell me what being CEO Genomics England means for you? What are your aspirations for your first year in this position? Rich: Well, I guess, as you can tell, I'm really excited to take on this role. As I said, as a doctor I'm always focused on the impact for patients and our participants and ultimately it's the broader health of the nation. And the role I see Genomics England playing and being able to play in the future, sort of building on that, the leadership position the UK's always had in genomics – you know if you look back to the discovery of the structure of DNA, the invention of sequencing technologies and also the clinical implementation coming from that government investment and the NHS investment, what excites me most about GEL is that we can be there, playing a critical role alongside others in that ecosystem, whether that's in the NHS, whether it's our participants and the patients who we're aiming to support academia and industry, to create a whole that's greater than the sum of the parts, and I genuinely feel that the UK remains uniquely placed to live out that potential that genomics has, engaging in the questions, not just you know, the scientific questions of: what could genomics test for? Or, how could this be implemented and is it cost-effective? But also being able to have the nuanced conversation of what we all and our participants in the public and general, expect in terms of the care we receive or how our data is looked after, and getting that really balanced view on how we chart a path forwards where we can really see big differences being made in the future, and I think always being honest to ourselves about where we are today and that things don't come in spotting some position a long time in the future that we want to navigate to, but also being really focused on the here and now and what is possible and what is evidenced, and what the next set of evidence or discussions or conversations in the public we need to have to help navigate ourselves there and that's where at the moment our focus at Genomics England is both being very clear sighted on where Genomics could go, and also thinking very clearly about where we are today, and so very much at the moment for us it's about focusing on the life service we offer to the NHS and we're really proud to be part of a world-leading whole genome sequencing service, the first national health service in the world to be providing that in the context of cancer and rare disease, and so offering and providing our service that contributes to that. Supporting researchers so that we can keep the flow of discoveries coming and also for example, making sure that our participants in existing programmes continue to get new answers as the science evolves. So, the last year more than 2,000 families had new findings fed back because of new knowledge that's accumulating, keeping that flow going. And then we've got three big research initiatives going on at the moment where we're really focusing on delivering around them. We've got a diverse data initiative where we're really focused on making sure the research library, the National Genomic Research Library, our participants are representative of the UK population, so the discoveries that we're supporting are relevant to everyone; our cancer initiative which is exploring the use of new sequencing technology in the context of cancer, and also looking at the use of image data and other modalities of data, alongside generic data to drive new discoveries. And then the third initiative is our newborn genomes programme, where we're asking a big question through a research study to generate evidence to ultimately answer the question: should every baby when they're born be offered whole genome sequencing? Most pressingly to improve and broader the range of conditions that we can look for that are severe and treatable. So, this year we're very much focused on delivering on those promises that we've made to our participants and our partners and through those programmes and very much with an eye to the future thinking about what we need to change in terms of the use of underpinning technology, so that we know that we've got the potential to scale, to think about the broader use of genomics in years to come as evidence evolves. Helen: So Rich, there have been many advances in genomics in the last ten years. What do you think are the big lessons from those last ten years, and what do you think the next ten years will look like for the genomics ecosystem, what impact will this all have on healthcare as we know it? Rich: So, genomics has changed extraordinarily in the last ten years thanks to shifts both in the technology, particularly the sequencing technology but also some of the computing technology that's there to deal with the scale of data. Ten years ago we were talking about the 100,000 genomes project and beginning the project itself, but it was still very early in the use of whole genome sequencing, that's gone from something where the big question around the 100,000 genomes project was: can this technology be used in routine care in cancer and for rare conditions, and if so, how do we do that? And we've learnt both I think about that specific question and as I mentioned, we're enormously proud to be part of enabling the NHS whole genome sequencing clinical service, so that has entered routine care. I think along the way the biggest lesson for me is actually one about this being about partnership and about working as a team across many different organisations and with our participants, and recognising that this isn't just about one set of questions, or it's not just about clinical or scientific questions, it's about joining everything up together back to that point around, so a discussion about what people expect – this is about doing stuff together and learning often quite complex lessons about practicalities is one things, for example, one of the really big lessons we learnt around the use of whole genome sequencing in cancer are just practical lessons about handling of tissue samples and the need to make sure the right fridges are available on the right corridor of a hospital, with plugs available to plug them into, through to questions around, as I say, people's expectations around how their data is stored, which it's used for, which again there's really strong precedent for, and as we explored, different uses of genomic technology, we shouldn't just take those previous answers for granted, we need to make sure we validate and check with people what their expectations are. So I think that's the big one for me is sort of the number of different angles with which one explores questions and the fact that this is very much about doing it together. I think just one other piece which is so easy for us here to take for granted is that doing things at national scale with national scale investment from government, from other funders and from the NHS is absolutely critical and when you look across the world, we are in an extraordinarily privileged position here in this country because of that investment and because that investment recognises the need critically to join clinical care and research in a whole, where you recognise that you're doing multiple things at once, but joining them up rather than them being two worlds, is really, really critical, and we're really lucky to be able to do that at national scale. So then thinking about what the next ten years might look like for the genomics ecosystem, I think lots of those things continue, so I think national scale and the need for ongoing investment to keep up our position at the forefront in terms of answering these big questions about the use of genomics in healthcare, and to where the evidence supports their implementation to roll them out and keep that link there between healthcare and research, and so making sure the systems talk to each other and I mean that in a digital sense as well as a human sense is absolutely critical. And then, so in ten years' time what are the areas of healthcare that will have been impacted, or could have been impacted by genomics, I'm really pleased that we're doing a better job for families with rare conditions and people with cancer than we were ten years ago, I think there's a long distance left to run even in those settings for us to do better and to continue to learn, so we expect our major focus to continue to be in those areas where we know they can have an impact and there's more to do. We also then have the different areas where if the evidence pans out to support the use of genomics or if we can implement systems that can support it there can be a big sort of area of growth. For example, our newborn genomes programme is asking questions and developing evidence so that in the future policymakers can decide should that become part of routine care, and I think that's something that could have become part of routine care in the next ten years if the evidence supports it and if that's something that the public support. If I were to pick one other area where there's a real potential for growth in the coming handful of years it's in something we refer to as pharmacogenomics. What that means is looking at your DNA code (genomics) to help make decisions about prescription of medicines and sometimes that's about avoiding these medicines in people who are at a higher risk of having an adverse reaction, or it's about tailoring the dose because of something about for example the way the person metabolises, chews up, the medicine and so can influence how much dose they need. That actually has an enormous potential; we all have variations in our DNA code that influence how we respond to or metabolise medicines. If you look across primary care, GPs and so forth, primary care physicians and in secondary care, hospital care, I think there's good evidence that actually probably half of all appointments, interactions in those settings, if you were to have DNA data available that could influence how prescription choices are made; sometimes that's about knowing that you're doing the right thing, giving the normal prescription, but sometimes it's about modifying it, that's an area where I think there's a real potential for growth and that's an area that the NHS also really recognise and we're exploring ways in which we might look into that and think about how that might be implemented, because actually a lot of the questions there are about how you make sure the right data, the right information is available to clinical teams and patients at the time that prescriptions are being made. There's also real potential more broadly in thinking about more common disease settings, there's lots of work going on from various research studies looking at the value of what people sometimes refer to as polygenic risk scores or integrated risk scores, where we use genomics as an element of estimating risk for common diseases like heart disease or cancer, that's something where the evidence is being worked on and is developing, I think we'll see a lot of evidence come out in the coming years and I think that will then influence how we implement genomics to help as part of that risk estimation process, which is routine now in GP practices where you go for an NHS health-check they do it with lots of complicated stuff, at the moment not genomics, and we'll see how that plays out in the years to come. So I think there's enormous room for growth where genomics where at the moment it's making an important difference to people with certain conditions that we can do better on. In the future I see it becoming very much more part of the routine day to day of healthcare. As we make that transition there's lots to work through about the evidence, the order in which that's done and the way in which we, for example, store data, and make people part of the choice about how their data is used and what I'm really excited about in Genomics England is the role we play in the middle of that, bringing our particular expertise around what we call bioinformatics, which is sort of managing genomic data at big scale, particularly national scale to support healthcare and research, generating evidence that can help inform policy, and also critically drawing things together into the conversation amongst different players in the ecosystem and participants in the public so that we can not just think about evidence in a sort of terribly scientific way but we think about it in the round. Helen: That's really interesting to hear you speak a lot about getting that evidence because that's critical, but that takes a long time doesn't it, so for example with the generation study, the newborn study it's really important to measure the benefits of that if you're testing young babies, newborn babies for diseases that if you pick up a condition that condition can be treated and something can be done about it early rather than poor parents going through this diagnostic odyssey, but also it's that balance isn't it with not leading to any harm, so if a number of parents come out of that thinking their baby might get a condition and it never happens there's potential there isn't there. But I think in terms of the public understanding of how long it takes to get evidence and everything else that needs to go on in the background I don't think it's always particularly clear that that's a massive process that has to be gone through and there's a lot of work going on behind the scenes – you can't just do these things. I think as patients/members of the public we're eager to get on and for change to happen and things to be better but it's a big, big process, but also good to hear that you talk about it being a collaborative approach, it's not just Genomics England, it's the NHS, it's members of the public and patient voices, it's other organisations working in partnership, it's a big undertaking. Rich: No, it is and I think that one of the words you used there was impatience, and I think that's healthy and important to recognise, it can be easy, particularly for example as a doctor, sat in a clinic room to accept the status quo, and at the same time, one needs to recognise the complexity of the questions, the balance, the need to generate high-quality evidence to inform those opinions and I think combining both that sort of impatience and dissatisfaction with the status quo, and that mind-set about thinking really thoroughly and collaboratively about the right evidence that is needed to change policy. Helen: Yes, really important that those patient voices are there from the beginning, from the planning of obtaining this evidence and that you're measuring the things that matter most. Rich: One of the areas where I think we've seen that play out, another area where I really see the potential for growth in the future is much more genomics-enabled treatments. We and you and the participant panel have helped us think about there's a whole new era I see coming in terms of the therapies that are directed at the causes of genomic conditions, both in rare conditions and in cancer and thinking as we do that about how we structure the system to generate evidence and to respond to it and have a conversation about what the right balance of evidence for patients to make a choice about their own care, but also policymakers to make choices about funding, decisions and safety decisions, is really important and we've been supporting to a wider work in cancer in the UK called the Cancer Vaccine Launchpad, and likewise we're part of something we call the Rare Therapies Launchpad, where in those two areas we're exploring that, and that's another area I think of real potential in the coming years, and also real nuance as we construct a way of navigating that together and making the most of the potential, but not just sort of rushing in and pretending we know all of the answers at the outset. Helen: And those launchpads are of particular interest to participants in the wider patient population, there are a lot of people and children with rare, ultra-rare conditions who are desperate for treatments that just aren't available right now, equally for cancer patients there's a big need isn't there for more effective treatments, fewer side effects, that target that person's particular cancer, so it's good news I think for the wider public. It does seem that innovation and partnerships are crucial to Genomics England's activities so how does Genomics England ensure that participant and wider patient benefit are at the heart of these activities? Rich: I think one of the really important things is actually governance is sometimes a boring word, sounds like it, but I think thinking about how we've structured the organisation and placed you, as the participant panel, as part of our governance to make sure that when we're thinking about for example access to data in the National Genomic Research Library, participants are sort of driving those decisions, it's an independent committee that makes those decisions with representation from our panel. One of the things is thinking about the governance and making sure that you as our participant panel hold us to account for the decisions that we're making, which I think is really critical. I think then also as we've learnt a lot over the years, not always getting it right, about how we make sure that participants, or potential participants in the public are involved from the outset in the design of programmes because it always helps. I think certainly before I joined Genomics England I think I would have been unsure about the best ways of going about that and that brings with it sometimes a nervousness. I think the main advice I would say to people listening is to have confidence that just getting stuck in and have conversations is the way to do it. There are then also all sorts of expertise that we've really benefited from being to bear in terms of ways of doing that engagement work and that will come; the first thing is to have the confidence and the desire to put that at the centre of how you decide where your focus should be and how you design programmes. Helen: I think Genomics England has been very successful with that by integrating that patient voice from the very early days and here we are what eight years on I think now, and yes, hopefully we'll be there for some time to come yet, as long as Genomics England exists. So Rich, with more and more health data being stored, how do we ensure that this sensitive personal data is stored and used safely and ethically across the genomics ecosystem. And actually while we're on this question, can you just explain what genomics ecosystem means, because we use that term I think quite a lot, but I think it's not necessarily understandable to the wider public? Rich: What I mean when I talk about it is I mean the mixture of different people, whether that's sometimes organisations, us, Genomics England, the NHS, the NIHR, National Institute for Health Research; industry partners whether they're people who are from pharma companies or from biotech, academic researchers, participants in programmes – everyone who comes together to work on genomics in the UK and a bit like the word as it's used in biology, it's a sort of busy ecosystem with all sorts of people playing their own role and then working together, and so I think it's a really important thing to recognise that we're part of that and in fact it's one of the things I love most about my role at Genomics England is thinking about all of the different partners that we need to work with and to those outside it I think it can also be a bit intimidating, because it's hard to keep up with who on earth everyone is. So then thinking about the question of how we make sure that data's stored and looked after and used in the ways that people expect and safely and so forth, I think that's absolutely at the heart of my role and our role. And I think one thing is actually always sort of starting at the: why are we doing this? What benefits are we seeking to bring to people? Is that what they expect? What have they signed up for if you like? But that's in a research study or when they've decided to say yes to having a particular test, which is the same in any part of medicine. And if we use that to drive our decisions, that's what's so critical. And so that's where thinking about programmes we run, and also the things that we think might be worth something that we should prioritise in the future is always first driven by the benefit that you might be bringing, weighing up the costs and the potential downsides and harm that might be caused by the use of genomic data in that way and that's what should always drive things, and there isn't a one-size-fits-all, you know, genomic data should be used and stored in this way and that's one of the things that I think making sure that participants and the public are at the centre of the conversation is absolutely critical, it turns out that genomic data is very much like health data at large in many senses and it's very precious for those reasons. It is also special in a few ways. One of the ways that's sort of peculiar if you like is that pretty much the DNA sequence, the genome, that you're born with, is the same one that you hold throughout your life, that's different from say if you do a blood count or something that varies for various reasons over your life and most things in medicine do change quite meaningfully over a much shorter time period. One of the things about the DNA code: A) it makes it more precious because it's very much about you, your whole life; also it makes it more useful and reuseable in many ways, so one of the things that we think about a lot more in genomics is about the storage and reuse of data on an ongoing basis through the lifetime. And I do think that that model in certain settings and potentially more broadly as evidence accumulates, may well be the path that we take forward where you consider your genomic data part of your health record where it can be used and reused. And what we need to do is explore why you would in the first case generate someone's DNA sequence, and what sort of sequence, is it a whole genome or less than a whole genome? What would you use it for in the first place when you first generate it? And what other uses could there be to support the healthcare and have you involved them or the public more generally in decisions about how it's used? Because we do, as I said, see the potential for genomics being just becoming part of the fabric if you like of healthcare, good healthcare, the best healthcare. Linked to that is the point on research as well, like where people are happy for it, holding their genomic data and understanding how that impacts on longer term health outcomes, something we'll continue to learn about for years and years. So I think the first point is about focusing on the why and whose data it is, one's own genome belongs to you, it doesn't belong to anyone else, what people are happy with and consent to and expect and then always holding that in mind as one makes the choices is critical. I've talked about how we think the governance and the involvement of the participant panel is really critical for that as well. And then it also comes down to doing in various ways, the job that people would expect in terms of, for example, that safety piece, using the very latest tooling to make sure that it's held in a secure way, that it's backed up so that it won't be lost etc. and bringing sort of the right, very good minds around some of those more technical questions, but always with the expectations of the people whose genomes they are in mind and to say are we living up to their expectations, are we doing what they would expect? So, Helen, I wondered if I could ask you a couple of questions. The first one I wanted to ask is what you're hopeful for in the coming years as a participant panel member? Helen: Thank you. I've actually already posed these questions to some of the other panel members, so I'll try and make sure I include their responses here as well as mine, but I think it's important to hear from everybody, not just me, Rebecca Middleton and Emma Walters have recorded their responses as well. I think the four main things that panel members are hopeful for is the coming years, the first is equitable access to whole genome sequencing, basically everybody who needs whole genome sequencing should get access to it regardless of where they live, their income, ethnicity or disability, so that's something that we're hopeful will get better over the years. We know this is essential to improving healthcare, to improving outcomes for patients and generally for sort of greater inclusivity and in genomic research, we want as well as Genomics England, the data is the National Genomics Research Library to be representative of the population as a whole, not just the people who 1) are offered, and 2) agree to have their data in the library. And also, obviously the more data that is held in that library, the more opportunity there is for research across those rare and ultra rare conditions and rare and less common cancers, where it's all about numbers, you need numbers of sets of data in order to draw things together and make conclusions to look for patterns. And the other thing which I guess comes more under the umbrella of the NHS is that the panel is quite keen, they want everybody who's undergoing genomic testing to receive good support and after care, I think regardless of whether that testing is via the NHS or as part of a research study, sometimes it will be both, but that's for the patients at the coal face that is obviously critically important. The second, I think broad theme, coming from the panel members' responses is that I think you've mentioned this already, is increased understanding of genomics amongst the general public is really important – there's a need to demystify genomics and to generally improve public awareness of its benefits and to get those conversations going around its regulation and its ethical use, but to do that you need to get meaningful engagement from a wide range of people, you know, that's not always straightforward, there are lots of challenges there, it's all about prioritising inclusivity, accessibility, to make sure you get diverse views and perspectives on genomics and on genomics research. The other thing that came out very strongly from the responses which we have talked quite a bit about already is about this individualised healthcare. I think we as a panel are very hopeful that there will be this shift towards treatment strategies that are tailored more to the individual and their specific health condition, rather than a one-size-fits-all approach, we want effective treatments that will minimise side effects but also through the use of pharmacogenomics, to make sure if there's a risk of a severe, sometimes life-threatening side effect that that can be identified and that individual doesn't have that treatment either at all or has a lower dose, so it's not so toxic. And let's hear from Emma who talks about this. Emma: My hope is that we move to a truly individualised healthcare system and I'm really excited to see how in particular pharmacogenomics changes the healthcare landscape. For a long time we've gone with a one-size-fits-all approach, and that's easy to deliver on a large scale basis that the NHS works on, but we know fundamentally that's not how patients work, so to be able to consider individualising medication and knowing which won't work, interests and excites me. Helen: So the panel is also very hopeful about the development of those innovative therapies, and you talked about the rare therapies launchpad and the cancer vaccine launchpad, because those offer real hope for treating previously untreatable conditions and generally improving accessibility to treatments. And we're also hopeful that there will be a much better understanding of diagnosis of cancer, through things like the multi-model programme, because although there's lots and lots of research going on with cancer there's still a long way to go to have more effective treatments and to improve diagnosis of cancer. And then just finally just in response to your question, patient and public involvement, this is what the participant panel is all about, we are a group of individuals whose lives have all been touched by either a rare condition or by cancer currently, either we've had that condition ourselves or it's affected our loved one, and we do bring these diverse views and perspectives to Genomics England and I think we have a crucial role in influencing its decisions about what it does with participant data and who has access to that data. It's critically important that Genomics England listens to what matters to the people whose data it holds and who do that, as Rebecca here explains. Rebecca: Genomics is a fast-moving science and it has the impact to change lives and healthcare for future generations, but genomics is a science of people and therefore the only way you can truly understand the limitations and opportunities of it is to talk eye to eye to the very people it will impact, and not everyone will agree on everything. But how we understand genomics and its power to transform healthcare, our own and that of our children and the ones we love, can only progress at the pace of the people that it will benefit. It's a simple equation but it's not maths and indeed not science: we are all different and unique, our emotions, experience and history will be wrapped up in our viewpoints and thoughts, and that's where the panel comes in, representing and advocating for the very many different voices of genomic healthcare, ensures Genomics England is stronger, healthcare design is more meaningful and research is more impactful. I have no doubt that the panel of the future will continue to be heard and understood at Genomics England, and I hope it continues to grow to reflect more diverse voices and experiences and continues to be the people inside the science. Helen: Finally, the panel is also hopeful for increased public and patient involvement in genomics research, this is integral for shaping research both academic and commercial, it helps with identifying research priorities, developing new treatments, basically getting that voice of the patient in there to tell researchers what's the most important and what matters to them. Rich: So another question Helen, how do the panel feel about the changing genomics landscape? Helen: A good question and I think overall it's a balance between excitement and hope on the one hand, and a bit of apprehension and caution on the other. So the panel is really excited about the advances going on in healthcare, we're entering an age now where we're promised a much more proactive, as opposed to reactive approach to healthcare. You were talking earlier Rich, about having your genome sequence, and this is something that you have for life, it's like your passport, your fingerprint, so from infancy to old age you've got this data which is held somewhere which holds so much promise of predicting if you might develop a disease, whether you might react badly to a drug, so ultimately it offers great potential to improve outcomes for patients, their families and the NHS. Again, we spoke earlier about this holds so much promise for producing the diagnostic odyssey that so many parents go through when the children are born with a condition that doesn't have a diagnosis, potential to diagnose things like cancer a lot earlier where it's more treatable and to prevent disease as well, I know that's something Genomics England isn't specifically looking at, but through screening programmes, using things for example like circulating DNA which may be able to pick up that there are things going on and picking things up earlier means that those things can be dealt with earlier. I mean thinking of my own personal example, I know I have Lynch Syndrome, I know that I am at risk of developing bowel cancer now, but that means I can do something about it. So I have my colonoscopies every two years, I take aspirin every day because that reduces my chance of getting bowel cancers and I'm much more symptom-aware, so having that knowledge up front is very helpful in being able to move forward and reduce my chance of getting an advanced cancer. The panel is also very excited about the ongoing collaborations and the novel therapies that are being developed through the rare therapies launchpad, these offer a lot of hope for treating previously untreatable conditions, and improving accessibility to treatments, and obviously more targeted treatments for cancer, you know, we'd need more effective treatments for cancer but with reduced side effects, so that in a nutshell, those are the other positive sort of things that the panel feel excited about. Where they're slightly more apprehensive or concerned, I mean they do acknowledge that there are challenges ahead and there are big concerns about the NHS's ability to cope with increase in demand for genomic testing and particularly worries about education and training of healthcare professionals in genomics, how do they effectively communicate research findings or results to patients if they don't have a broad understanding of genomics? And then finally, let's hear from Emma. Emma: I think I'm excited but cautious. I think it's really important to acknowledge that the research being undertaken is groundbreaking and the vast majority of clinicians have very little to know genomics education, and translating these findings into tangible benefits for participants is so very important, and something I think we've really got to make sure we don't lose sight of. Helen: We talked earlier about awareness among the public about genomics and we do feel that there's a need to drive education forwards, you know but this is challenging, given the rapid pace of developments that we've spoken about, I think even for the panel members who I would say are relative experts in genomics now it's hard to keep up to date, so how do we do that moving forwards? We've talked about security of data, we understand there are moves to link more genomic data sets both nationally and internationally and that clearly has significant benefits because that brings bigger numbers of patients data together, but opens up potential risks in terms of security, so how do we make sure that the security of that data is as good as it is currently when it's held in one pot in Genomics England Research Library. And just a couple of final concerns that were flagged by panel members, there is some apprehension regarding potential misuse with genomic data by insurance companies; we're given a lot of reassurance about that but there are concerns that could potentially lead to the most vulnerable in society being unable to get affordable cover if they're found to have genomic changes that mean they are at risk of conditions or have certain conditions and there are also concerns about the ethical implications of AI in diagnosis and clinical decision making, you know, AI is obviously a fantastic thing for looking at patterns amongst a big lot of data, but how accurate is it and where does the human come in, in terms of decision making? So those are, I think, the broad concerns from the panel. I don't know if you have any thoughts on those, Rich? Rich: I think the big thing to say is I think having the participant panel there, you said in the middle of that, become collectively quite expert and you recognise that. Having the ability to have these complex nuance conversations and have people share that and speak directly to us about it I think is the biggest thing – lots of those points there made by the panel, I think both things that we have very much in our mind about things that one needs to balance and focus on, and there are also things that we already talk about which is reassuring I think as well, we talk about with the panel. I think one of the things for us as well is sort of being clear on some of the things where there are really clearly well-established red lines, for example, that point on insurance, but that is very clear and part of our role is making sure that that is there and people can feel comfortable in that context to understand that. I think the main thing that I would say is thank you to you Helen, and to all of the panel and all of our participants because I said earlier, this is a team thing and you are all very much part of the team and we would not be able to do our jobs in any way, I wouldn't even say effectively, I would say with the relevance, which is the thing that we drive for, the relevance to have impact for people's lives whose data we hold and will hold in the future. And so thank you for being part of the team. Helen: Thank you. And I think thank you to Genomics England for having the foresight to create the participant panel in the first instance, it was there from the get-go and I think a really great opportunity for all of us to be involved in this, to have our voices heard and listened to, so thank you. We'll wrap up there. Thank you for joining me today and thank you for discussing your appointment as CEO for Genomic England, and your view on what the genomics ecosystem might look like over the next ten years. If you would like to hear more like this, please subscribe to the Behind the Genes, on your favourite podcast app. Thank you for listening. I've been your host, Helen White. This podcast was edited by Bill Griffin at Ventoux Digital, and produced by Naimah Callachand.
Diagnosing Post-Acute Infection Syndromes: Special Series from The Cohen Center for Recovery from Complex Chronic Illnesses at Mount Sinai“Tick-borne illnesses are incredibly stealthy and complicated and if I wasn't living and breathing it every day and seeing the intensity of these symptoms in patients, I would never believe it,” says Shannon Delaney, a psychiatrist in private practice in New York City. The complexity of such illnesses and the symptoms they cause is a key reason it can often take years to reach a diagnosis, which is the focus of this episode of Raise the Line, part of a special series on post-acute infection syndromes that Osmosis from Elsevier has created in partnership with the Cohen Center for Recovery from Complex Chronic Illnesses (CoRE) at the Icahn School of Medicine at Mount Sinai Hospital. In addition to Dr. Delaney, host Dr. Raven Baxter of CoRE welcomes Dr. Amy Kontorovich, an associate professor in Cardiology and Genomic Medicine at the Icahn School and Dr. David Putrino, director of Rehabilitation Innovation at Mount Sinai, to explore the limitations of current diagnostic tools and protocols and what changes are needed to improve patient care. Key themes include developing better tests for pathogens and educating providers to listen more carefully to patients. “In a typical medical encounter, the biggest dropped ball is completely disregarding an acute infection in the medical history,” stresses Putrino. All agree that providers need to be more comfortable with uncertainty and resist the urge to develop treatment plans that don't address root causes. “If more doctors could just say, ‘I don't know' I think it would do a great service to patients," adds Kontorovich. This is a candid and enlightening discussion about the importance of developing a collaborative, patient-centered mindset to provide the best care for those suffering with a range of post-acute infection syndromes.Mentioned in this episode: Mount Sinai Health SystemSteven & Alexandra Cohen Foundation
From gene and cell therapies, to the use of CRISPR and other precision engineering technologies, this episode dives into the opportunities and challenges of the emerging field of advanced therapies. On Discovery Matters this week, Dodi and Conor are joined by Daria Donati, Chief Scientific Officer of Genomic Medicine at Cytiva, as well as Jen Moody, Vice President of External Innovation of Genomic Medicines at Danaher, to discuss the science, progress, and potential of advanced therapeutics. Demaris Mills, Group Executive of Genomic Medicines at IDT, and experts Fyodor Urnov, Professor of Molecular and Cell Biology at the University of California, Berkeley, and the Director of Technology & Translation at the Innovative Genomics Institute, cover the technologies used in gene and cell therapies as well as CRISPR to deliver powerful and precise treatments aiming for a healthier future.
Today I am speaking with Dr. Jin-Xiong She about all thing NAD+, we discuss what it is, how to measure your NAD+ levels, what impact your NAD+ levels have on your health and longevity, how to optimize your NAD+ levels and so much more! Use code KAYLA to save on all NAD+ optimization products ! About Dr. Dr. Jin-Xiong She Dr. Jin-Xiong She received his college education in China and PhD degree in France. After a short postdoctoral training at the University of Florida (UF), he was quickly promoted to Assistant Professor, Associate Professor, Full and Endowed Professor. He served as Division Chief of Experimental Pathology and Director of Research of the UF's world-class Diabetes Center. Dr. She was recruited in 2002 to be the Georgia Research Alliance Eminent Scholar in Genomic Medicine at the Medical College of Georgia. He was the founding Director of the Center for Biotechnology and Genomic Medicine, Professor of the Departments of Obstetrics and Gynecology and Department of Health Technologies as well as the director of two core research facilities for Augusta University (Genomics, Proteomics & Mass Spectrometry). In his long academic career, he has authored over 400-peer reviewed papers with an H-Index of 76 and over 19,000 citations, secured over $100 million in research grants, has been invited to speak globally. He mentored a large number of doctoral students, post-docs and faculty members. Dr. She is one of the 20 “Georgia Top Medical Researchers”. He served as President of the Chinese Geneticists in America and President of the American Diabetes Association's council on Immunology, transplantation and Immunogenetics among other honors. Dr. She is a serial entrepreneur and has founded or co-founded multiple companies in the US and China. He is the founder and CEO of Jinfiniti Precision Medicine, a company dedicated to optimizing healthspan through biomarker testing and precision nutraceuticals. More information can be found on Jin-Xiong She' LinkedIn Profile and Jin-Xiong She's Google Scholar Profile. Boying DunPhD, co-Founder & Chief Innovation OfficerBob ThordarsonChief Technology OfficerMichael HeckPhD, CLIA Clinical Laboratory Director
On April 18, 2024 we spoke with Nancy Philp about the blood supply to the retina and the cells and membrane transporters that deliver glucose and lactate to photoreceptors and other cells for glycolytic and aerobic metabolism. Guest: Nancy Philp, Professor, Department of Pathology and Genomic Medicine, Sidney Kimmel Medical School, Thomas Jefferson University Participating: Erica Tatiana Camacho, Departments of Mathematics and Neuroscience, Developmental and Regenerative Biology, UTSA Host: Charles Wilson, Department of Neuroscience, Developmental and Regenerative Biology, UTSA Thanks to James Tepper for original music
Some people struggle with symptoms for years and never receive a clear answer on what condition they have. UAB Medicine is part of the National Institutes of Health Undiagnosed Disease Network (UDN), which means they are committed to applying the latest technology to make diagnoses for their regional community. Bruce Korf, M.D., associate dean for Genomic Medicine, explains the various tools the undiagnosed disease team uses, including radiologic imaging, neurological testing, and genomic sequencing. Learn how patients from all demographics may gain access and be evaluated by a multidisciplinary team. He also explains how new diagnoses can help doctors understand the less common ways diseases present.
Nilay Shah, MD is a clinician-scientist and Associate Professor in the Division of Hematology/Oncology/BMT at Nationwide Children's Hospital. His primary clinical focus is on pediatric solid tumors, including neuroblastomas, tumors of the kidneys, and rare solid tumors of childhood. His research focuses on the molecular drivers of pediatric cancers and how new treatment approaches can be taken to better target those drivers. In this role, he works to identify new uses of currently available anticancer treatments, including drugs originally developed for use against cancers in adults. He serves as Associate Director for Liver Tumor, Kidney Tumor, Germ Cell, and Neuroblastoma Targeted Therapies, and is currently the Sponsor and Study Principal Investigator the CaboMain trial, a Phase 2 study evaluating the efficacy of the oral anticancer agent cabozantinib as a maintenance therapy for ultra-high-risk solid tumors.He also serves as co-director of the Cancer Genetics Program. This program serves to advance the use of genetic and genomic evaluations for the benefits of patients. In this role, he sees patients in the Cancer Predisposition Clinic for evaluation, surveillance, and management of patients with genetic alterations that predispose to cancer development. He also consults on patients for precision oncology, partnering with the Institute for Genomic Medicine to identify therapeutic approaches based on patient tumor and germline genomics.Dr. Shah is a graduate of the Honors Program in Medical Education at Northwestern University, earning his medical degree in 2003. Dr. Shah completed a residency in General Pediatrics in 2006 at the Children's Hospital of Wisconsin, and a fellowship in Pediatric Hematology/Oncology at Johns Hopkins University and the National Cancer Institute in 2011. He also was a Research Instructor at the Lombardi Comprehensive Cancer Center at Georgetown University in Washington, D.C., prior to his arrival at Nationwide Children's Hospital in 2013.
In this episode we welcome Dr. Wendy Chung, Chair of the Department of Pediatrics at Boston Children's Hospital and Professor at Harvard Medical School. Dr Chung has dedicated much of her career to uncovering the role of genetics in both rare and common diseases, and translating these findings into healthcare. Beyond her incredible science, Wendy has helped shape policy frameworks that govern the world of genetic medicine, and is now leading the pioneering GUARDIAN Study which has provided whole genome screening to >8,000 babies. Join us as we delve into the insights and experiences of a true pioneer in the field of genetics and medicine.
Professor Stephen Quake's research has helped countless patients avoid the pain and suffering that can come with invasive diagnostic testing. Russ and Stephen discuss his work to develop a number of noninvasive blood tests to help detect preterm births, genetic disorders like Down Syndrome, cancer, and organ transplant rejection. It's an episode that reminds us of the power of good science. We hope you'll take another listen and enjoy.Links:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads or Twitter/XConnect with School of Engineering >>> Twitter/XChapters:(00:00:00) IntroductionHost Russ Altman introduces the episode featuring Dr. Stephen Quake, highlighting his contributions to non-invasive blood tests. (00:00:46) Understanding DNA in DiagnosticsIntroduction to the revelation of detecting DNA in the bloodstream, shedding light on various bodily processes.(00:02:24) The Beginning of Dr. Quake's work with Cell Free DNADr. Quake tells the story of his journey into research with cell free DNA beginning with searching for a less risky alternative to an amniocentesis(00:05:11) Impact on Prenatal TestingThe transformation in prenatal diagnostics, replacing invasive tests & understanding the detection capabilities for prenatal genetic disorders like using cell-free DNA.(00:06:39) Transplant Rejection MonitoringThe discovery of cell free DNA & it's use in heart & lung transplant patients detecting early rejection & the real-life implications of this technology.(00:10:35) Unveiling Infectious AgentsThe detection of infectious agents in blood & the real life applications of this discovery(00:14:52) Advances in Cancer DetectionDiscussion shifts to cancer detection using cell-free DNA, emphasizing the important application of monitoring cancer progression and treatment efficacy. (00:17:18) Predicting Preterm BirthDr. Quake delves into the groundbreaking research predicting preterm births using cell-free RNA and DNA, sharing insights into discoveries indicating preterm birth risks and gestational age predictions and the significance of this.(00:21:42) The Chan Zuckerberg Biohub's MissionThe origins and bold mission of Steve Quake's current work at the Chan Zuckerberg Biohub, to cure, treat, or prevent all human diseases by the end of the century and the feasibility of such an ambitious goal. (00:24:03) Biohub's Research StrategyBiohub's strategy focusing on cell biology and infectious diseases internally, while funding nearly a hundred faculty across diverse areas in Bay Area Universities.(00:26:26) Conclusion LINKS:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads or Twitter/XConnect with School of Engineering >>> Twitter/X
We get sciency with the GW School of Medicine & Health Sciences' Anil Bajnath, MD, MBA, IFMCP, ABAARM, MIFHI, an expert on Precision Medicine, aka Personalized Medicine. (Sciency is a word—it's in the OED.) This episode was originally published May 31, 2020. Dr. Bajnath is the CEO and Founder of The Institute for Human Optimization Precision Medicine Research Group and an Adjunct Assistant Professor in the GW Integrative Medicine Programs at the university. The NIH describes Precision Medicine as "an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person." Dr. Bajnath is board-certified in Family Medicine and Integrative Medicine. Throughout the span of a decade, he has cultivated extensive first-hand experience in Precision, Integrative, Functional and Genomic Medicine. He is also the author of "The Longevity Equation: The Step-By-Step Blueprint to Hack Your Genes, Optimize Your Health, And Master the Art of Existence." ◘ Related Content Dr. Bajnath's website https://anilbajnath.com/ Dr. Bajnath's book: "The Longevity Equation: The Step-By-Step Blueprint to Hack Your Genes, Optimize Your Health, And Master the Art of Existence" https://longevityequation.net/ NIH: The Promise of Precision Medicine https://www.nih.gov/about-nih/what-we-do/nih-turning-discovery-into-health/promise-precision-medicine Sung Symposium: Next Generation Health www.youtube.com/watch?v=Xlf3jhJNB…&feature=emb_logo CDC: Precision health: Improving health for each of us and all of us https://www.cdc.gov/genomics/about/precision_med.htm Who Will Benefit From Precision Medicine www.ucsf.edu/magazine/benefit-precision-medicine ◘ Transcript www.linkedin.com/pulse/transcript…lth/?published=t ◘ This podcast features the song “Follow Your Dreams” (freemusicarchive.org/music/Scott_Ho…ur_Dreams_1918) by Scott Holmes, available under a Creative Commons Attribution-Noncommercial (01https://creativecommons.org/licenses/by-nc/4.0/) license. ◘ Disclaimer: The content and information shared in GW Integrative Medicine is for educational purposes only and should not be taken as medical advice. The views and opinions expressed in GW Integrative Medicine represent the opinions of the host(s) and their guest(s). For medical advice, diagnosis, and/or treatment, please consult a medical professional.
Profound changes in the practice of medicine are underway, being driven by rapid developments in several fields, particularly in genomics.
From the busy corridors of the hospital to the whirlwind of entrepreneurship, this episode takes you through a remarkable journey. It's a honest conversation between Yasir Sacranie, the CEO of MicroPharm, and yours truly, where we unveil our exhilarating transition from the world of specialised hospital pharmacy to starting our own businesses. We lay bare the hurdles we have encountered and the driving force that kept us going. You'll hear us delve into the inception of Pharmacist Diaries and MicroPharm, and the early challenges we tackled in setting up these ventures. Striking a balance between your professional and personal life is crucial, especially in the realm of entrepreneurship - this is a subject we address head-on in our chat. We explore the importance of managing time, both work and sleep, for overall well-being. If you've got a burning idea or a passion, listen up! We offer you our insights and experiences and encourage you to make the jump, but stress the importance of doing your homework. We talk about the necessary mindset and skills to construct your dream project from scratch. And remember - entrepreneurship is a journey - it's completely okay to step out of your comfort zone and experiment. Stay tuned for the next episode where we delve deeper into the essential skillset of an entrepreneur. PARTNERSHIPS: The Naked Pharmacy is offering my podcast listeners a 20% discount on all their products. Use discount code PD20 at checkout to receive the offer. SUPPORT THE PODCAST: As I continue to grow and evolve this podcast, I am committed to bringing you inspiring and empowering content. But in order to do that, I need your support. I've set up a Buy Me a Coffee donation page where you have the opportunity to donate a coffee (£5). You'll be helping us invest in the infrastructure, equipment, and team needed to take Pharmacist Diaries to the next level. With your help, we can continue to inspire and empower pharmacists around the world, and create a community that supports and uplifts one another. CONNECT WITH YASIR: LinkedIn: Yasir Sacranie Instagram: @micrpharm YouTube: @micrpharm Twitter: @micropharmorg tikTok: @micropharm MicroPharm Website FILMED AND EDITED BY: Sunjay Vyas Follow me on My Website, YouTube, Instagram, Facebook, LinkedIn, and/or Twitter. Feel free to subscribe to the podcast on your favourite podcast platform so you can be notified when a new episode is released or leave a review on apple podcasts. If you have any suggestions for guests you want me to talk to or if you'd like to come on yourself, please feel free to contact me via social media, or email at info@pharmacistdiaries.com.
In this episode of Trends from the Trenches, host Stan Gloss speaks with Heidi Rehm, PhD, Chair Elect of the Global Alliance for Genomics and Health (GA4GH), about data sharing policies and standards that can advance both genomics and health. Rehm discusses the benefits of data sharing on a global scale, how organizations can reduce friction of people's usage and adoption of standards, and successful examples of implementation. She also shares her thoughts on the future of AI, “data citizenship,” and how the COVID-19 pandemic paved a hopeful road of new opportunities for researchers everywhere to work together and share data to help humanity. Links from this episode: GA4GH Broad Institute Center for Genomic Medicine, MGH Harvard Medicale School Bio-IT World BioTeam Bio-IT World Europe Trends from the Trenches boiler: Bio-IT World's Trends from the Trenches podcast delivers your insider's look at the science, technology, and executive trends driving the life sciences through conversations with industry leaders. BioTeam co-founder Stan Gloss brings years of industry experience in science, data, and technology to conversations exploring what is driving data and discovery, and what's coming next.
Nilay Shah, MD is a clinician-scientist and Associate Professor in the Division of Hematology/Oncology/BMT at Nationwide Children's Hospital. His primary clinical focus is on pediatric solid tumors, including neuroblastomas, tumors of the kidneys, and rare solid tumors of childhood. His research focuses on the molecular drivers of pediatric cancers and how new treatment approaches can be taken to better target those drivers. In this role, he works to identify new uses of currently available anticancer treatments, including drugs originally developed for use against cancers in adults. He serves as Associate Director for Liver Tumor, Kidney Tumor, Germ Cell, and Neuroblastoma Targeted Therapies, and is currently the Sponsor and Study Principal Investigator the CaboMain trial, a Phase 2 study evaluating the efficacy of the oral anticancer agent cabozantinib as a maintenance therapy for ultra-high-risk solid tumors. He also serves as co-director of the Cancer Genetics Program. This program serves to advance the use of genetic and genomic evaluations for the benefits of patients. In this role, he sees patients in the Cancer Predisposition Clinic for evaluation, surveillance, and management of patients with genetic alterations that predispose to cancer development. He also consults on patients for precision oncology, partnering with the Institute for Genomic Medicine to identify therapeutic approaches based on patient tumor and germline genomics. --- What We Do at MIB Agents: PROGRAMS: End-of-Life MISSIONS Gamer Agents Agent Writers Prayer Agents Healing Hearts - Bereaved Parent and Sibling Support Ambassador Agents - Peer Support Warrior Mail Young Adult Survivorship Support Group EDUCATION for physicians, researchers and families: OsteoBites, weekly webinar & podcast with thought leaders and innovators in Osteosarcoma MIB Book: Osteosarcoma: From our Families to Yours RESEARCH: Annual MIB FACTOR Research Conference Funding multiple $100,000 and $50,000 grants annually for OS research MIB Testing & Research Directory The Osteosarcoma Project partner with Broad Institute of MIT and Harvard ... Kids are still dying with 40+ year old treatments. Help us MakeItBetter. https://www.mibagents.org Help support MIB Agents, Donate here https://give-usa.keela.co/embed/YAipuSaWxHPJP7RCJ SUBSCRIBE for all the Osteosarcoma Intel
In this episode, Patrick welcomes Caroline Wright, a leading expert in genomic medicine and Professor of Genomic Medicine at Exeter University. Listen in as they delve into the world of rare diseases, discussing the challenges in diagnosis, uses of population cohorts and, the potential of newborn screening. Caroline shares her excitement about new technologies in genomics and emphasises the importance of data sharing. Discover the significance of genetic variants and the need for cautious interpretation.
Eric Topol (00:00):Hello, this is Eric Topol, and I'm thrilled to have a chance to have a conversation with Magdalena Skipper, who is the Editor-in-Chief of Nature. And a historic note. Back in 2018, she became the first woman editor of Nature in its 149 years, and only the eighth editor of all times. Having taken over for Philip Campbell, who had been previously the editor for 22 years, we're going to ask her if she's going to do 22 or more years, but we're going to have a fun conversation because there's so much going on in medical publishing, and I think, you know, that Nature is the number one cited science journal in the world. So, welcome, Magdalena.Magdalena Skipper (00:41):Thank you very much. Real pleasure to be here and chatting with you today, Eric. Thank you.How COVID-19 Affected NatureEric Topol (00:47):Well, you know, we're still, of course, in the pandemic world. It's obviously not as bad as it had been, but there's still things going on with new variants and Long Covid, and it's not, the virus isn't going away. But first thing I wanted to get into was how did Nature handle this frenetic craziness? I mean, it was putting out accelerated publications on almost a daily or weekly basis and putting out like a speed, velocity of the likes that we've not seen. This must have been really trying for the whole crew. What, what do you think?Magdalena Skipper (01:29):It was! And, you know, the first thing I, I think I will recognize two things at the same time. So the first one, as you say, at a time, such as the pandemic, but actually at any point when there is a, a new health emergency that is spreading, especially something as unknown, as new as, as it was the case with SARS-CoV-2. And of course, in the beginning, we really knew nothing about what we were facing if speed is of the essence, but equally what's truly important is of course, the rigor itself. So that combination of needing to publish as quickly as possible, but at the same time as rigorously evaluating the papers as possible, that was actually quite a challenge. And of course, you know, what we sometimes forget when we talk about, well, researchers themselves, but also editors and publishers is of course, as individuals, as human beings.(02:33):They are going through all the trauma, all the constraints associated with various lockdowns concerns about the loved ones, perhaps those ones who are in the care. You know, in many cases of course there would've been the elderly who are individuals would've been concerned by or indeed children, because of course, schools in so many places were. And all the while, while we were dealing with these very human, very ordinary daily preoccupations, we were very focused on the fact that we had a responsibility and a duty to publish papers and evaluate them as quickly as possible. It really was an extraordinary time. And, and you know, one other thing I should emphasize is, of course, it's not just the manuscript editors who evaluate the research, it's the reporters on my team as well who are going out of their the way to find out as much information to report as robustly, find as many sources to, to interview as possible.(03:44):And, and, you know, I also have to mention colleagues who work on production side of nature actually make Naturehappen, be published online on a daily and then of course weekly basis. And literally from one week to the next all our operations had to be performed from home. And it's really remarkable that the issue was not late. We published the issue, just as you know, from as lockdowns came in. And as it happens, the production side of Nature is mainly based in, in London. So most of that team effectively found themselves not being able to go to the office effectively from one day to the next. So it really was an extraordinary time and, and a time that as I said was, was a time of great responsibility. But looking back on it, I'm actually incredibly proud of, of my team, what, what they achievedEric Topol (04:47):Did they hold up? I mean, they hadn't, they didn't get burnout from lack of sleep and lack of everything. Are they still hanging in there?Magdalena Skipper (04:55):So they are hanging in there. You'll be glad to hear. But I think, very importantly, we were there for one another insofar that we could be, of course, we were all at home remotely. We were not meeting, but we had virtual meetings, which were regular of course in as a whole team, but also in, in subgroups as we sub-teams, as we worked together, that human contact in addition to of course, loved ones and families and friends, that human contact in a professional setting was, was really, really necessary. And clearly what I'm describing was affected all of us one way or another. Sometimes there is a tendency not to remember. That also applies to editors, publishers, and of course researchers themselves. I mean, very clearly they were at the forefront of the issue facing the same problems.Nature and Challenge of Generative A.I.Eric Topol (05:57):Well, a new challenge has arisen, not that the pandemic of course has gone away, but now we have this large language models of AI, Generative AI, which you've written editorials at Nature, which, of course, is it human or is it the machine? What do you think about that challenge?Magdalena Skipper (06:19):Well of course, you know, the way I like to think about it is AI, of course, broadly is, has been around for a very long time, a number of decades, right? And steadily over the last several years, we have seen AI emerge as a really powerful and important tool in research right across a number of disciplines. The reason why we are all talking about AI right now, and I really think all of us are talking about AI all the time, is, of course, specifically the emergence of generative AI, the large language models that, that you just mentioned. And they sort of burst onto the scene for all of us really last year in the autumn with chat GPT and GPT-4 and so on. But it's important to remember that, of course, when we talk about AI, there are other models, other approaches, and machine learning in general has been creating quite some revolution in research already.(07:36): You know, probably the best example that will be familiar to many of the listeners was of course Alpha Fold which, you know, Nature published a couple of years ago and, and has been really revolutionized structural biology. But, of course, there are many other examples which are now becoming developing much more rapidly, becoming much more, I would say, commonplace in, in research practice. You know, not just predicting structure from sequencing from sequence. And I say just so flippantly now, of course, it was such and it continues to be such an incredible tool. But of course now we have AI approaches, which actually suggest new protein design, new, new small molecule design. We've had in the last couple of years, we've had identification of new potential antibiotics that are effective against bacterial strains that have otherwise been resistant to any known antibiotics.(08:48):And, and of course, it's not just in biomedicine. Material science--I think it's very helpful, hopeful when it comes to, to AI tools as well. And then, and of course, generative AI indeed helps us in some of these contexts already. But I think your question perhaps was more focused on the publishing, the communication, the sort of output of, of research, which of course is also very important. In some way. The reason why I answered, I began to answer the question the way I did, is because I'm actually very excited about harnessing the power of AI in augmenting research itself. Helping navigate enormous data sets generate hypotheses to be tested finding new ways to advance projects. I think that's a very exciting opportunity. And we're just beginning to see the first applications of it.(10:04):Now, in terms of publishing you referred to some editorials that we wrote about this. And right at the beginning of the year, there was a flurry of excitement associated with the ability of generative AI to indeed generate text. There were some manuscripts which were published in journals that were co-authored by Chat GPT. I I even believe there was an editorial which was co-authored by Chat GPT. So in response to that, we felt very strongly that, that clearly there was a need to, to come out with a, a clear position, just as in doing research, we see AI tools as tools to support writing, but clearly they don't have the ability to fulfill authorship criteria. Clearly, they cannot be authors. Clearly, they must only remain as tools supporting researchers and individuals writing and communicating their research.(11:23):And so we, we wrote a very clear editorial about this, essentially summarizing what I just explained and asking the community to be transparent about how AI tool has been used, just as you would be transparent about your methodology, how you have arrived at the results that you're reporting and, and results that support your conclusions. So for us, it's a relatively simple set of recommendations. As I say, we ask for transparency. We understand it can be a tool that can be used to help write a paper. What we also ask at this stage that generative AI tools are not used to generate figures or images in papers, simply because there are a number of outstanding copyright issues, a number of outstanding privacy issues, they remain unresolved. And for as long as they remain unresolved, we feel it's not an appropriate application of these tools. So that's our editorial position.Eric Topol (12:42):Yeah, no, that's very helpful. I mean, where do you think, if you write a manuscript and then you put it into let's say GPT-4 and say, please edit this, is that okay? Or is that something that, and it's acknowledged that the paper was written by us researchers, but then we had it tweaked by chatbot or is that something that it wouldn't go over too well?Magdalena Skipper (13:10):Well, my preference, and actually what I would hope is that if you were writing this paper and then you felt the need to put it through a chatbot as you just put it, although I find it hard to imagine that you would find no need for that,Eric Topol (13:29):I wouldn't do it. But I know there's people out there that are working on it.Magdalena Skipper (13:32):Yeah, absolutely. But then I would hope that the last pass, the final word, would rest with you as the author. Because, of course, if you are using a tool for whatever it is that you do, you want, at the end of the day to make sure that what that tool has returned is aligned with what you intended that you perform some kind of a sense check. We, of course, all know that although GPT-4 has less of a tendency to hallucinate, so to essentially come up with fabricated sort of statements and, and reality, if you like, it remains an issue. It can remain an issue. And very clearly any, any scientific communication has to be rooted in facts. So, in the scenario that you propose, I would hope that if a researcher felt compelled to run the manuscript through a chatbot, and for example, one consideration may for an individual whose English is not their first language, who feel may feel more comfortable with a sort of support of this kind. But in the end, the final check, the final sign off, if you like, on that manuscript before submission would need to come from the researcher, from the corresponding author, from the writing group. and indeed assistance from a chatbot would need to be disclosed.Eric Topol (15:14):For us. Yeah, I mean, it's really interesting because you can almost foresee the shortcut of having to go get all the references and all the links, you could say, you know, please insert these, but you better check them because they may be fabricated Absolutely. It's going to be really interesting to see how this plays out and the difficulty of detecting what is written by a large language model versus a person.Nature and PreprintsNow another topic that I think is really in play is the preprint world and publishing via preprints. And as you know there's been Michael Eisen and the whole idea of how things would move with his journal eLife. And you will remember when you and I were together at a conference. I organized Future of Genomic Medicine many years ago at the kind of dawn of life science preprints. And some people in the audience sai, “what's a preprint?” Right? Nobody else asks about that now. It's come a long way over this decade. And where do we go with this? Should journals like the top journals in the world like Nature require a paper to be vetted through the pre-print mechanism? Where is this headed, do you think?Magdalena Skipper (16:40):Yeah, it's an excellent question. And, and you know, by the way, I have such wonderful memories from, of that conference. I think this must have been like 11 years ago or something like that. It was a long time ago. And I actually remember presenting this, this vision of a rather radical vision of, of the future of publishing. And here we are in the future as compared to then, and we have moved relatively little by comparison to where we were then. But back to your question. So, you know, the first thing to say is that, of course, just as a reminder, preprints have been around for more than two decades now. And, and of course they initially were really spearheaded and advanced by the physical sciences community. archive itself is, as I say, more than two decades old. So, you know, for us at Nature as a multidisciplinary journal where of course, we've been publishing in the physical sciences since the very beginning of our existence as soon as preprints first emerged in those communities, we realized that we could coexist very harmoniously as a journal peer-review based journal with preprints.(17:59):So when initially biological sciences community embraced them and bioRxiv was established, and then of course, many other archives and then subsequently actually really spearheaded by Covid, the medical and clinical community began to embrace preprints. in many ways, for us, that was nothing new. It was just an extension of something that we worked with before. Although our own our own policies have evolved. So, for example, during the pandemic we actually mandated deposition of papers that were submitted to us that were Covid related. We mandated the deposition in a preprint server. The authors had the choice which server they deposited, but we wanted those manuscripts to be available to the community for the scrutiny as soon as they were finalized, as soon as they were actually written. So while we were reviewing them again as quickly as rigorously, but as quickly as possible, the preprint was already available for the community just before the pandemic.(19:17):As it happens, we also took a step forward with our policy. So previously, let's just say we were completely fine with preprints. We saw preprints as compatible with submission to, to Nature, and for that matter to the other journals in the Nature Portfolio. But actually just in the year before COVID started, we decided to actively encourage our authors to deposit preprints. We could see that preprint sharing had great advantage. You know, the, the usuals of advantages, which are often listed first are of course ability to make that primacy claim, make a stake that, that you have been working on something and, and this is your project. You have a set of results that you are ready to communicate to, to the community at large. And of course, another very important one is that sort of community and, and almost public form of peer review and, and ability to comment.(20:30):And incidentally, I remember as you know, my, my history as an editor very well. We've known each other for a long time. I remember when the genomics community, which is sort of my, my background is sort of my old hat, if you like, that, that I used to wear when the genomics community began to embrace preprints especially the population and evolutionary genomicists really embraced this idea that this was like a group peer review. And the authors of those preprints were very grateful to the community for improving the papers before they were submitted to journals, or sometimes that sort of community review was going on while a paper was being considered at a journal. And we, as editors actually encouraged sort of formal submission of these reviews, if you like, I mean, formal maybe is the wrong word, but we were saying that we would take those comments into account when evaluating papers.(21:38):So there has been an interesting evolution that more and more disciplines, more and more fields have embraced preprints as a way of disseminating information. Preprints service themselves have also grown and matured in the sense that there is now realization that, for example, clinical preprints need a higher degree of scrutiny they're posted on a preprint server than maybe let's say theoretical physics or theoretical biology preprints. So overall all communities collectively have grown and matured. Where are we going with this? I mean, who knows? I was predicting 12 years ago you know, a bit of a different, more advanced future today. It's very difficult to predict the future. I do think, however, that what we are seeing today, that sort of hand in glove coexistence of preprints with journals, with peer reviewed papers is going to continue into the future. And I think actually that's a really valuable and interesting combination. So it's a great development to see and great to see that communities right across disciplines have really embraced this.Eric Topol (23:11):Yeah, I think it does complement, obviously the traditional peer review of a few expert reviewers with, you know, could be hundreds if not thousands of people that weigh in on, on a pre-print. So yeah, it's fascinating to see. And it's, I still remember the vision that you portrayed for it, and how we we're not quite there yet, but I'm sure there'll be further evolution.Women in Science: Where Do We Stand?Now, another area that I think is particularly good to get your input, because you're a woman in science, as you mentioned, you know, grounded obviously in genetics and genomics, and here you are, one of the most influential women in science at a time when there's been a reckoning that women in science have been shortchanged historically, I mean, for hundreds of years. Do you see that this is starting to get better? Are there palpable signs that we're finally getting kind of equal rights here? Or are we, is it, is it just still a long fight ahead?Magdalena Skipper (24:20):So the, the optimist in me and, and I should say, you know, my, my glass, my glass is always half full. The optimist in me says that it is getting better, but the realist in me has to add immediately that the changes too slow. It really is too slow. We do see many more women prominently able to make the contributions that they should, they can, and they should make to whatever discipline whatever aspect of the research community and beyond they wish to, to make. I still think it costs them too much. I still think we don't appreciate and support women sufficiently.(25:23):Maybe we have moved on the bottleneck in the, in the pipeline a little bit further, towards more seniority. But we still, we still don't sufficiently support women. As I say, we, I think we still default to an expectation that successful women in science in research more broadly will somehow emulate how success has looked in the past. And that's a shame, that's a shame not just for those women who are trying to come in and make a difference, but it's a shame for all of us because it means that we are denying diversity in that picture of success. Yes. So yes, I think, I think that we have seen many changes, but I think the change is not happening fast enough.Eric Topol (26:23):Yeah. One of the things that I've noticed since of particular interest in AI is that the very profound imbalance of researchers, the gender imbalance there is just, you know, I'm not even sure if it's 10% women researchers in AI, so that has to be changed. And so this, there's so many things that are holding us back, but, but that's certainly one of, of many.Magdalena Skipper (26:49):Absolutely. And, and, and if I can just add, there are some outstandingly influential female researchers in the AI field, as you say, they are just outnumbered. Yes. , I think not given the opportunity to, to fully blossom, if you like, considering their capabilities and, and their contributions already.Eric Topol (27:11):You know, it's so true. I just interviewed Melanie Mitchell from the Santa Fe Institute, and I work with Fei- Fei Li. And when I, when Fei-Fei Li and I spoke some months ago about a book (Genius Makers) that Cade Metz, the New York Times journalist had written, and I say, why didn't he bring up or emphasize the role of any women in the whole book . Yes--who work in A--I mean, she, she obviously was, was did not take that particularly well, and as did I.Too Many Nature Portfolio Journals?So one of the other areas that I think you already touched on, which is separating Nature, the flagship journal from the Nature Portfolio of, I don't know what it's up to now, 200, 300, I'm not sure how many journals are. So do you, do you have to over oversee that? Do you have input on that? Because what I worry about is, you know, people quote a Nature journal and it may not be, you know, at that level that you would be proud of. What, what are your thoughts about this endless proliferation of the nature portfolio?Magdalena Skipper (28:17):Well, I, I'm, first of all, I'm not sure if it's endless, butEric Topol (28:20):Oh, that's good. .Magdalena Skipper (28:22):So, so let me, I think in your question, you touched on a number of things. So first of all, a clarification. So my role is as Editor-in-Chief of Nature, and of course, that is my main focus. there is another aspect to my role, which is Chief Editorial Advisor for the Nature Portfolio. So in that sense each of the journals within the Nature portfolio has its own chief editor. but by virtue, I guess, of my seniority, and also by virtue of multi-disciplinarity of Nature I have this advisory role to my colleagues in the other journals. I like to think about the Nature Portfolio as an ecosystem, actually. And it's an ecosystem, like any ecosystem. It has different niches, each of which fulfills a different role. Some of them are bigger, some of them are smaller, some of them are very specialized, others are more general.(29:22):And I think you know, working with researchers for many years as an editor now, I can see benefits to having that sort of almost an ecosystem type approach to publishing. You know, for example, we mentioned already earlier that in my previous sort of incarnation as an editor, my focus was on genomics especially in the context of human genomics. of course starting from the Human Genome Project, these were very large or have, where, why, why am I using past tense? They are, to this day, very large collaborative projects involving many different labs, many different approaches these days that they're not just focused on genomics, but of course other omics go hand in hand with them. So when a project comes to fruition, when, when it comes to be published, there are many different pieces that need to be communicated, many different papers of different sizes of different value.(30:32):And for example what value maybe is the wrong word of different utility? So, for example, there may be a flagship paper that is published in the pages of my journal of Nature, but there may be papers that specifically described development of methodology that was part of the same stage of the project. And those papers may be published in Nature Methods, which is part of the Nature Portfolio. There are other journals that are part of Nature Portfolio, which have different editorial bar. And so, you know, one example is Scientific Reports, which is a journal which does not require conceptual novelty in the papers that it publishes. Of course, it requires rigor and, and robustness in the papers that it publishes, like every journal should. But there is utility in publishing papers in a journal like this.(31:36):There may be replications that are published there that further add further evidence to support conclusions that are already well known, but nevertheless, they're useful. I should however, add that in Nature itself, we also publish replications, right? There are different degrees of influence and impact that, of course, different studies be there, replications or not that can carry. So, that will be my way of conceptualizing the Nature Portfolio. and, you know, coming back to your, to your comment that it seems like it's endless. I think well, nothing, nothing is endless. Of course. Nothing, nothing, right, grows forever. I do think that we have in the launches within the portfolio, we have been able to capture and at the same time serve an interesting evolution in the research ecosystem itself. So the final comment I will make on this is, if you look at some of the more recent launches in the portfolio, they've been what we like to call thematic journals, such as, for example, Nature Food or Nature Water.Eric Topol (33:10):Right?Magdalena Skipper (33:10):And here we are really capitalizing on that multi-disciplinarity of these emerging themes that, especially in the context of sustainable development goals, have acquired their own identity. They don't belong to one discipline or another discipline. And, and so these journals, they're new journals, relatively new journals, some of them very new Nature Waters is, is quite new, but they provide a focal point for researchers who come together to solve a particular set of problems from different disciplines. And I think that's an interesting function in, as I say, for the community.What About the Paywalls?Eric Topol (33:53):Yeah, there's no question some of the newer journals and their transdisciplinary mission --they're needed and they become extremely popular and well -cited very quickly to prove that. So along that line obviously the public is all fired up about paywalls and you know, and obviously for Covid, there was no paywalls, which is pretty extraordinary. Do you see someday that journals will have a hard time of maintaining this? I mean, you have what I consider an extraordinary solution, which is the ReadCube postings anyone can access, you just can't download the PDF, and I wish authors would always routinely put that out there because that would solve part of the problem. But do you think we're going to go to a free access that's much more wide, perhaps even routine, in the years ahead?Magdalena Skipper (34:52):So certainly open access as in ability to access a manuscript, published manuscript without any payment or barrier associated with a Creative Commons license is something that is advanced as a, as a preferred future by many researchers, by many funders. and for that matter, actually many publishers as well. You know, let me make one thing very clear. As an editor, I would love as many people as possible to read the papers that I publish in my journal.Magdalena Skipper (35:30):That should go without saying. Sure. at the same time, publishing papers, of course, is associated with a cost, and, and that cost has to be somehow covered. In the old days it was exclusively covered by library subscriptions or site licenses or personal subscriptions. Now the focus is shifting. And of course, Nature itself as well as the other research journals such as, for example, Nature Medicine or indeed Nature Water, as I mentioned before are what we call transformative journals. So effectively we are hybrid journals that advocate for open access. So today, when you submit a paper to Nature, you can publish under the traditional publishing model, or you can choose to publish open access, which is associated with an article processing charge. That should, in my view, be part of your costs of doing research, because after all, I'm a firm believer in the fact that publishing your research should be seen as part of doing research, not sort of an add-on.(36:47):Now, I'm glad you mentioned read Read Cube and this functionality that we call shared it. We developed it actually quite some years ago. I would say at least a decade ago. it remains curiously underappreciated. Yeah. I just don't understand it. Yeah, exactly. And, and we, we inform the authors that they are free to use that link. And, and just to clarify, it's a linked as you exactly as you explained to an online version of the paper. It's the final version, the record version of the paper. You can't download it, but you can share that link. Anyone can share that link once they have it Infinite number of times. So it's not like the link expires, or it's a, a finite number of, of that it has a number of finite number of uses in addition to that nature.(37:49):And for that matter, the whole of Springer Nature is part of Research4Life. Now, that's an organization that provides free access to all content from publishers. And Springer Nature is not the only publisher that's part of Research for Life that provides full access to all of our content in the countries which are designated as low and middle income countries by the World Bank. So that we've been part of that. And, and previously for many, many years, in fact, decades, again, that is curiously underappreciated, including in the low and middle income countries. So, you know, recently had an opportunity to do some visits in Africa. And my, my take home message there was, if there is one thing that you remember from our conversation or from my presentation, please remember about Research4Life.Magdalena Skipper (38:52):Because that content is freely available if you follow, if you go to our content through Research4Life. And incidentally, there's also training, which is available there. So part of Nature portfolio in addition to journals, we have Nature Master classes, which is training for researchers. And that is also completely freely available in those countries. So there are a number of approaches to, to getting content open access is definitely growing, but there are those other ways to gain access to content which is not open access at the moment.Eric Topol (39:33):I'm really glad you reviewed that because a lot of people who are going to be listening are going to really cue into that. Now the last question for you is, you know, it's not just every Wednesday, 51 or whatever, 50 weeks a year, that you're getting the journal ready, but it's every day now that you're putting out stuff and on the Nature website. Features that are by the way, free or full access and many other things to keep Nature out there on a daily, if not minute to minute basis. So this is really a big charge to, you know, do this all so well. So what keeps you up at night about Nature is this, this must be a very tough position.Magdalena Skipper (40:28):So the first thing I would say that is that of course it's, it's not me. I'm just the person here talking to you representing Nature. I have an outstanding team.Eric Topol (40:44):I've met them, and they're amazing.Magdalena Skipper (40:46):And it's really them who are making it possible on a minute by minute, certainly day by day basis. And so the reason why I sleep relatively well is thanks to them actually, okay,Eric Topol (41:00):. Okay.What Keeps You Up At Night?Magdalena Skipper (41:01):But more, but more broadly. and this is a thought which is bigger than Nature itself. What actually keeps me up at night these days is the rather difficult light in which science and research is portrayed these days increasingly.Magdalena Skipper (41:27):And I think it's very unfortunately being to support other goals and other ends forgetting about the fact that science is an ongoing process that science takes steps back when it needs to revise its position, that it still continues to be true, that s science progresses through self-correction. Even if that self-correction doesn't happen overnight, it takes time to realize that a correction is required, takes time to evaluate judiciously that correction is required and what kind of correction is required, right? These are the things that of course, you and I know very well. But the, sometimes if for individuals who are not close to the process of how science research fact-based discovery is conducted, if you just look at information on social media or in general media, you may walk away with an impression that science is not worth paying attention to that science is in some deep crisis.Magdalena Skipper (43:04):And I think that's, that's a shame that that's a picture that we have other things that need other things in science, in research that need correcting, that need sorting out. Of course, we mustn't forget that research is done by humans and, and after all it is human to air. But overall, that's actually something that keeps me up at night. That overall, I really hope that those of us who are engaged in one way or another within the research enterprise, we can continue to advance the right kind of image that it's not perfect in some artificial way, but actually, at the same time, it's the only way that we can move forward. We can understand the world around us, and we can wake, make the world around us better, actually.Eric Topol (44:11):Yeah. I'm so glad you've emphasized this because just like we talked earlier about distinguishing between human and AI content generated here, we have science and anti-science blurring facts, blurring truths, and basically taking down science as a search for truth and making it trying to, you know, obscure its mission and, in many ways, we, we saw it with not just anti-vax, but it's much bigger. The political motives are obvious extraordinary, particularly as we see here in the U.S. but other countries as well. So I almost didn't hit you for that question, just because it's so profound. We don't have the answers, but the fact that you're thinking about it tells, tells us all a lot. So Magdalena, this has been a joy. I really appreciate all your candid and very thoughtful responses to some of these questions.(45:09):Some of them pretty tough questions I have to say. And I look forward to our conversations and chances to visit with you again in the future. And congratulations again on taking on the leadership of Nature for five years now-- I believe just past your five-year anniversary now. You could say that's small out of 155 years, but I think it's a lot. particularly since the last few years have been, you really challenging. But to you and your team ultimately –-major kudos. I'm on the Nature website every single day. I mean, even, I when I'm on vacation, I'll be checking out the Nature site. So you can tell that I think so highly of the its content and we'll look forward to future conversations going forward.Magdalena Skipper (45:52):Thank you very much. Thank you very much, Eric. It's always a pleasure to talk to you. Thank you. Get full access to Ground Truths at erictopol.substack.com/subscribe
In recent years, there has been a major influx of new genetic tests that have hit the market. While these tests promise to revolutionize diagnostics and treatment decision-making, the industry needs to overcome a variety of reimbursement and logistical barriers to achieve any goals for genomics at scale. In this episode, guest host and Advisory Board expert partner Devin Airey invites Mark Gardner, the SVP of Genomic Medicine and Oncology at Quest Diagnostics, and Dan Edelstein, President and CEO of Haystack Oncology, to discuss their vision for genomics at scale. Throughout the conversation, they discuss increased attention from providers and purchasers, how to integrate new genomics technology into patient care, and how to address opportunities and concerns in the market. Links: 6 questions shaping the future of oncology screening and diagnostics What liquid biopsies could mean for cancer treatment and disease monitoring Home | Quest Diagnostics Haystack Oncology – Better decisions with better MRD testing Quest Diagnostics to Acquire Haystack Oncology, Adding Sensitive Liquid Biopsy Technology for Improving Personalized Cancer Care to Oncology Portfolio [Webinar] Consumer insights decision makers should lead with in 2023 (August 24 | 3-4pm ET)
Come hear about exceptional advances made in genomic medicine and how they can help health care organizations deliver transformative and personalized care, with our guests: practicing physician and medical geneticist Marsha Fearing, MD, MPH, MMSc; Anna Dover, doctor of pharmacy and director of product management at First Databank; Dr. Ray Lorenz, associate medical director; and Pat Rice, clinical director of precision medicine and genetics at Frederick Health in Frederick, Maryland.
Join us on the Newborn Screening SPOTlight podcast with Dr. Jerry Vockley, who is a Professor of Human Genetics, the Graduate School of Public Health, Cleveland Family Endowed Pediatric Research, School of Medicine, Chief of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, and Director of the Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh. Dr. Vockley is internationally recognized as a leader in the field of inborn errors of metabolism. His current research focuses on mitochondrial energy metabolism, novel therapies for disorders of fatty acid oxidation and amino acid metabolism, and population genetics of the Plain communities in the United States. He has published over 320 peer-reviewed scholarly articles and is the principal or Co-investigator on multiple NIH grants. Dr. has an active clinical research program and participates in and consults on multiple gene therapy trials. Dr. Vockley has served on numerous national and international scientific boards including the Advisory Committee (to the Secretary of Health and Human Services) on Heritable Disorders in Newborns and Children where he was chair of the technology committee. He is a Fellow in the American Association for the Advancement of Science. He is a Founding Fellow of the American College of Medical Genetics and Genomics, and currently serves on its board of directors. He is founder and chair of the International Network on Fatty Acid Oxidation Research and Therapy (INFORM). He has served as chair of the Pennsylvania State Newborn Screening Advisory Committee and is a past president of the International Organizing Committee for the International Congress on Inborn Errors of Metabolism and the Society for the Inherited Metabolic Disorders (SIMD). On this podcast, Dr. Vockley shares his career journey and personal stories about the impact of newborn screening research on physicians, families, and advocates. Interview Questions: Among your many appointments, you serve on the Board of the American College of Medical Genetics and Genomics (ACMG) and advise on efforts to improve health through the practice of medical genetics and genomics. In addition to the ACMG board, you were integral in the early and current days of the NBSTRN. Can you tell us how you got involved in NBSTRN? As technologies to screen, diagnose, treat, and manage disease advance and increasingly use sequencing, can you share with our listeners your vision of how sequencing will be used in newborn screening in the future? What excites you about this potential, and can you share any concerns? You have published over 320 peer-reviewed scholarly articles and led many efforts funded by NIH and others. Can you describe the key findings from your most recent publication, “Rapid Whole-Genomic Sequencing and a Targeted Neonatal Gene Panel in Infants With a Suspected Genetic Disorder.” You are the Cleveland Family Endowed Pediatric Research, School of Medicine Professor of Human Genetics, Graduate School of Public Health, and the Director of the Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh. In your article titled “Scaling genetic resources: New paradigms for diagnosis and treatment of rare genetic disease,” you mentioned that the movement from the basic science laboratory to clinical trials is still hampered by a regulatory system rooted in traditional trial design and requires a fresh assessment of safe ways to obtain approval for new drugs. You proposed the development and scaling of nucleic acid-based therapies. Could you share this possibility with our listeners and what challenges need to be overcome to deliver them safely with appropriate evaluation and long-term follow-up? Can you share any stories of inspiration that keep you going? Anything else you'd like to share? Thank you for your efforts in conceptualizing the NBSTRN and establishing a network of stakeholders that includes health professionals, researchers, state programs and families, and advocates. Do you have advice for this community and how they can help to realize and capitalize on the fifteen years of NBSTRN? You are involved in training the new generation of medical geneticists. What do you tell them about newborn screening research? What does NBS research mean to you?
Cancer is the number two cause of death worldwide, and despite 100s of billions invested, there is still no cure, only treatments. The treatments we do have such as chemotherapy, radiation, and surgery, while extremely aggressive, work very well if detection is early. Since there are dozens of types of cancer, screening and detection has proven challenging–but that might be changing. My guest on this week's podcast is on the forefront of genomic medicine and hopes to make early screen accessible to everyone. Listen and learn: How new technology allows for blood plasma scanning of cell-free DNA (cfDNA) to find tiny particles from cancers The role of full body MRI in cancer screening Why it currently costs thousands per year but could end up costing a fraction of this in the future Links GetSerenity.live ABOUT OUR GUEST Jo Bhakdi is the Founder and CEO of Quantgene, a precision genomics and oncology company founded in 2015. Quantgene's goal is to build the future of medicine by utilizing advanced scientific and technological innovations. Like the Show? Leave us a review Check out our YouTube channel Visit www.yogabody.com
Synopsis: Sekar Kathiresan is the Co-Founder, CEO and Board Member of Verve Therapeutics, a clinical-stage biotechnology company developing gene editing medicines to treat patients with cardiovascular disease. Sekar discusses Verve's work developing single-course, in vivo liver-directed gene editing medicines for patients with and at risk of cardiovascular disease and what the company pipeline looks like. He talks about the evolution of his pitch after years of experience with fundraising, how he approaches team building, and his perspective on why people are leaving academia for biotech. He also discusses what he's learned about being a board member and what a good board for a pre-revenue biotech looks like. Biography: Dr. Sekar Kathiresan is co-founder and CEO of Verve Therapeutics, a biotechnology company pioneering a new approach to the care of cardiovascular disease, transforming treatment from chronic management to single-course gene editing medicines. Dr. Kathiresan is a cardiologist and scientist who has focused his career on understanding the inherited basis for heart attack and leveraging those insights to improve the care of cardiovascular disease. Based on his groundbreaking discoveries in human genetic mutations that confer resistance to cardiovascular disease, Dr. Kathiresan co-founded Verve Therapeutics with a vision to create a pipeline of single-course, gene editing therapies focused on addressing the root causes of this highly prevalent and life-threatening disease. Today, Verve is advancing two initial programs that target PCSK9 and ANGPTL3, respectively – genes that have been extensively validated by Dr. Kathiresan and others as targets for lowering blood lipids, such as low-density lipoprotein cholesterol, which is a major driver of cardiovascular disease. Prior to joining Verve, Dr. Kathiresan's roles included director of the Massachusetts General Hospital (MGH) Center for Genomic Medicine, director of the Cardiovascular Disease Initiative at the Broad Institute and professor of medicine at Harvard Medical School. There, Dr. Kathiresan's research laboratory focused on understanding the inherited basis for blood lipids and myocardial infarction. For his research contributions, he has been recognized by the American Heart Association with its highest scientific honor – a Distinguished Scientist Award and by the American Society of Human Genetics with the 2018 Curt Stern Award. Dr. Kathiresan graduated summa cum laude with a B.A. in history from the University of Pennsylvania and received his M.D. from Harvard Medical School. He completed his clinical training in internal medicine and cardiology at MGH and his postdoctoral research training in human genetics at the Framingham Heart Study and the Broad Institute.
What did we learn from our battle with COVID-19? When the next pandemic comes, will we do a better job of handling it? In late April, the COVID Crisis Group issued a report called Lessons from the COVID War. They assessed how the world handled the deadly disease, and they assert, “no country's performance is more disappointing than that of the United States.” Dr. Alexander Lazar joins Tom to discuss the report's findings on the American public health response to COVID-19. Dr. Lazar is professor of Pathology and Genomic Medicine at the University of Texas M.D. Anderson Cancer Center, and one of 34 experts who served on the COVID Crisis Group. The group formed in 2021, assembling an international team to study the global response to the coronavirus pandemic. Dr. Alexander Lazar joins us on Zoom from Houston, Texas.See omnystudio.com/listener for privacy information.
On this episode of StartUp Health NOW, we're talking with Jo Bhakdi, CEO & Founder of Quantgene, a company that joined StartUp Health in 2019. Bhakdi and his team have made a name for themselves by offering a kind of deep genomic profiling that allows them to identify cancers early, detect hereditary diseases, and find adverse drug interactions. The name of the game here is genomic medicine and we're not talking about 23andMe or Ancestry.com. As you'll hear in the interview, Bhakdi has a revolutionary vision for where the field of genomic medicine is heading in the next five years. And he's got a strategy for getting there. Spoiler alert: Bhakdi believes that if we can get the cost of genomic testing down – which he's actively working on – and can scale access to genomic medicine to millions of people, that could knock cancer out of the top 10 list of leading causes of death entirely. Since cancer is currently at number two, it's a pretty radical idea, but Bhakdi has a strong track record and a compelling market strategy through Quantgene's new offering called Serenity. We'll let him explain the vision in this episode. Founders: Health Transformer University fuels your health moonshot Funders: Become a Health Moonshot Champion Want more content like this? You can subscribe to the podcast as well as other health innovation updates at startuphealth.com/content. Sign up for StartUp Health Insider™ to get funding insights, news, and special updates delivered to your inbox. Looking to break down health barriers? If you're an entrepreneur or investor, contact us to learn how you can join our Health Equity Moonshot. Passionate about Type 1 diabetes? If you're an entrepreneur or investor, contact us to learn how you can join our T1D Moonshot.
Rare diseases, despite their name, are more prevalent than one might expect, impacting up to 10% of the population, particularly children. But a staggering 95% of the 10,000 known rare diseases remain without effective treatments, posing an immense challenge for affected families, foundations, and scientists working tirelessly to remedy the situation.Nasha Fitter (CEO, FOXG1 Research Foundation and VP, RWE and Ciitizen Platform at Invitae) joins CareTalk to explain the importance of rare disease research and why there is hope on the horizon.ABOUT CARETALKCareTalk is a weekly podcast that provides an incisive, no B.S. view of the US healthcare industry. Join co-hosts John Driscoll (President U.S. Healthcare and EVP, Walgreens Boots Alliance) and David Williams (President, Health Business Group) as they debate the latest in US healthcare news, business and policy.ABOUT NASHA FITTERNasha Fitter is a leader in the rare disease space known for her breakthrough work on utilizing real world evidence to accelerate treatments. She is the mother of a child with the rare neurological condition, FOXG1 Syndrome, and co-founded and leads the FOXG1 Research Foundation. Nasha is also the VP of Ecosystem Partnerships at genetic testing company Invitae. Nasha serves on the board for the ACMG Foundation for Genetic and Genomic Medicine and has an MBA from the Harvard Business School.Learn more about FOXG1 Research FoundationLearn more about FOXG1 Syndrome Dive deeper into this episode and read our article, "Rare Disease Research and Its Potential To Unlock Medical Mysteries." JOIN OUR NEWSLETTERGET IN TOUCHBecome a CareTalk sponsorGuest appearance requestsVisit us on the webFOLLOW CARETALKSpotifyApple PodcastsGoogle PodcastsFollow us on LinkedInProduced by Grippi Media#raredisease #rarediseases #rarediseaseday #science #healthcare #health Subscribe to the CareTalk Newsletter to access exclusive content and insights covering the biggest topics in healthcare today. Produced by Grippi Media
We are thrilled to have Dr. Stephen Kingsmore, a dedicated physician, researcher, an inventor, and who is the currently the President/CEO of Rady Children's Institute for Genomic Medicine in San Diego, California. In this podcast, you will not only learn what drives Dr. Kingsmore's purpose to improve the lives of newborns and to prevent avoidable and unnecessary deaths due to late diagnosis of rare genetic condition, but also his challenges in clinical practice and research in making his dream of a learning healthcare system using genomic medicine a reality globally. Among his achievements, Dr. Kingsmore pioneered the development of ultra-rapid Whole Genome Sequencing to decode rare disease in newborns. In 2021, he led the RCIGM team to break his own world speed record by achieving diagnosis via WGS in 13.5 hours. Dr. Kingsmore came to Rady Children's in 2015 from Children's Mercy Kansas City, where he was the Executive Director of Medical Panomics. He previously served as President and CEO of the National Center for Genome Resources; COO of Molecular Staging Inc.; Vice President of Research at CuraGen Corporation; founder of GatorGen; and Assistant Professor at the University of Florida's School of Medicine. Dr. Kingsmore received MB, ChB, BAO and DSc degrees from the Queen's University of Belfast. He trained in clinical immunology in Northern Ireland and did residency in internal medicine and fellowship at Duke University Medical Center. He is a fellow of the Royal College of Pathologists. Learn from Dr. Kingsmore how to work through the challenges in research and clinical practice in advancing newborn screening research. Podcast Interview Questions Thank you, Dr. Kingsmore, for being a guest on the NBSTRN podcast, NBS SPOTlight. We are excited to speak with you today! Dr. Kingsmore, you are currently the President/CEO of Rady Children's Institute for Genomic Medicine, where you lead a multi-disciplinary team of scientists, physicians and researchers who are pioneering the use of rapid Whole Genome Sequencing to enable precise diagnoses for critically ill newborns. How did your interest in rare disease research lead you to San Diego? Many of us remember specific milestones you and your team have accomplished and your calls to action have inspired stakeholders across the NBS community. During your presentation at our NBS Research Summit in 2021 you spoke about “NBS and Rapid Whole Genome Sequencing (rWGS) for Severe Infant Onset Genetic Diseases". Most recently, you were a part of the International Conference on Newborn Sequencing (ICoNS) in augural meeting where you joined researchers from across the world to share information about newborn sequencing initiatives. What were the major takeaways from that meeting, and what should the NBS Research Community be aware of? You recently published that your team has developed a “Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots.” Up to eighty-one genetic diseases are included in screening, thirty-six of which are recommended for NBS by a federal advisory committee known as the Recommended Uniform Screening Panel. As you know, there are more than 7,000 rare genetic diseases (RD) that affect 6-8% of the US population or about 30 million Americans. Addition to the RUSP is a lengthy process. What are your thoughts on how the use of genome sequencing using dried blood spots to identify rare diseases could change the landscape of newborn screening policy when we currently adopt one condition at a time and the nationwide implementation can take years? We appreciate your contribution to the American Journal of Medical Genetics Special Issue on Newborn Screening Research, where Dr. Amy Brower and Dr. Kee Chan were co-editors of this issue. Your article on the “Dispatches from Biotech beginning BeginNGS: Rapid newborn genome sequencing to end the diagnostic and therapeutic odyssey” highlights the BeginNGS, a consortium in collaboration with academia, pharmaceuticals, biotechnology and non-profit organization to provide a platform for implementing whole-genome sequencing for newborn screening, disease management and interventions, and rare disease drug development for use by partners around the world. Could you share the work in progress as of now? If we were to implement whole-genome sequencing for newborn screening globally one day, how do you envision long-term follow-up of management of care for the patient and families, including medical, non-medical, psychological services, education, and other related services to improve the quality of life to be supported? You received your medical training from the Queen's University of Belfast in Ireland. You trained in clinical immunology in Northern Ireland and did residency in internal medicine and fellowship at Duke University Medical Center. You are also a fellow of the Royal College of Pathologists. What sparked your interest in newborn screening? You have such a long history of successes and accomplishments that have global impact on health care and public health. In March of 2015, you surpassed your previous record in genetic sequencing by reducing the process to 26 hours, which was recognized in April 2016 by Guinness World Record as the fastest genetic sequencing in the world. Now, I think your team has reduced the time again. On the flip side of the coin, would you mind sharing your biggest challenge —and what did you learn from that experience? What's your biggest challenge in your research right now, and how are you tackling it? How could NBSTRN data tools and resources assist you? What does NBS research mean to you?
Sandy Macrae, CEO of Sangamo Therapeutics, talks about the promise and limitations of genomic medicine to find the most effective and affordable treatments for patients with autoimmune and inflammatory diseases. Their CAR-Treg cell therapy platform allows T cells to be tracked throughout the body and activated to release chemicals and signals to reduce inflammation. Small molecule oral pills will always be used to treat diseases and vaccines to prevent them. The goal of genomic medicine is to eradicate the disease. Sandy explains, "We co-opted what's a very natural process and attached a whole series of things to it. The zinc finger gets us to the right bit of the DNA, and then we can either cut the DNA. We can turn it down, turn it off, replace a base, or replace a chunk of it. That's the advantage of the zinc fingers. It's natural. It's small. It's easily delivered and has a whole range of functions that allows us to choose the right tool for the right disease." "But there's going to be a growing space for diseases where there is a clear genetic influence or genetic participation in the disease, where a simple injection of a virus that takes the editing technology to the DNA can change the patient's course of their disease. I'm thinking of Sickle Cell Disease, where patients who were going into the hospital 10, 12, or 15 times a year are now not having any of those painful episodes. I'm thinking of Hemophilia, where they used to have to inject two or three times a week and have bleeding episodes, and they can now walk free and not worry about their bleeding." "But really, the excitement within Sangamo is the next-generation projects, the Tregs that we just spoke about, and a whole platform of brain-active conscription factors that we're working on." @SangamoTx #GenomicMedicine #GeneTherapy #CellTherapy #ZincFingers #Tregs #Tcells sangamo.com Download the transcript here
Sandy Macrae, CEO of Sangamo Therapeutics, talks about the promise and limitations of genomic medicine to find the most effective and affordable treatments for patients with autoimmune and inflammatory diseases. Their CAR-Treg cell therapy platform allows T cells to be tracked throughout the body and activated to release chemicals and signals to reduce inflammation. Small molecule oral pills will always be used to treat diseases and vaccines to prevent them. The goal of genomic medicine is to eradicate the disease. Sandy explains, "We co-opted what's a very natural process and attached a whole series of things to it. The zinc finger gets us to the right bit of the DNA, and then we can either cut the DNA. We can turn it down, turn it off, replace a base, or replace a chunk of it. That's the advantage of the zinc fingers. It's natural. It's small. It's easily delivered and has a whole range of functions that allows us to choose the right tool for the right disease." "But there's going to be a growing space for diseases where there is a clear genetic influence or genetic participation in the disease, where a simple injection of a virus that takes the editing technology to the DNA can change the patient's course of their disease. I'm thinking of Sickle Cell Disease, where patients who were going into the hospital 10, 12, or 15 times a year are now not having any of those painful episodes. I'm thinking of Hemophilia, where they used to have to inject two or three times a week and have bleeding episodes, and they can now walk free and not worry about their bleeding." "But really, the excitement within Sangamo is the next-generation projects, the Tregs that we just spoke about, and a whole platform of brain-active conscription factors that we're working on." @SangamoTx #GenomicMedicine #GeneTherapy #CellTherapy #ZincFingers #Tregs #Tcells sangamo.com Listen to the podcast here
There's a quiet revolution happening in the field of genetic screening of newborns. Within the last couple of years it's become possible to sequence the entire genome of a newborn baby, all six billion base pairs of DNA, and diagnose potential genetic disorders in about 7 hours. That's already happening in a handful of hospitals, with a focus on babies who are showing symptoms of rare genetic disorders. But within five years, says Harry's guest, Dr. Stephen Kingsmore, it should be possible to extend this rapid whole-genome sequencing to every baby in every hospital, whether they're showing symptoms or not.Kingsmore earned his medical degrees in Northern Ireland, trained in internal medicine and rheumatology at Duke, and studied genomic medicine at Children's Mercy Hospital in Kansas City. And he's now the president and CEO of the Institute for Genomic Medicine at Rady Children's Hospital in San Diego. There, he's been leading an aggressive push to prove that rapid whole-genome sequencing and diagnosis can not only save the lives of newborns, but save the healthcare system a lot of money by making hospital stays shorter and therapies more directed. He's been able to use that argument to get Medicaid agencies in California and five other states, as well as a handful of private insurance companies, to cover whole-genome sequencing as the new standard of care for babies who end up in intensive care with unexplained illnesses. And if his newest project, BeginNGS, succeeds, it could lead to universal screening of all newborns for hundreds or even thousands of rare genetic disorders. For a full transcript of this episode, please visit our episode page at http://www.glorikian.com/podcast Please rate and review The Harry Glorikian Show on Apple Podcasts! Here's how to do that from an iPhone, iPad, or iPod touch:1. Open the Podcasts app on your iPhone, iPad, or Mac. 2. Navigate to The Harry Glorikian Show podcast. You can find it by searching for it or selecting it from your library. Just note that you'll have to go to the series page which shows all the episodes, not just the page for a single episode.3. Scroll down to find the subhead titled "Ratings & Reviews."4. Under one of the highlighted reviews, select "Write a Review."5. Next, select a star rating at the top — you have the option of choosing between one and five stars. 6. Using the text box at the top, write a title for your review. Then, in the lower text box, write your review. Your review can be up to 300 words long.7. Once you've finished, select "Send" or "Save" in the top-right corner. 8. If you've never left a podcast review before, enter a nickname. Your nickname will be displayed next to any reviews you leave from here on out. 9. After selecting a nickname, tap OK. Your review may not be immediately visible.That's it! Thanks so much.
If the future of healthcare is personalised genomics, how can we ensure that it is used to lessen inequities, rather than strengthen them? This week, Our Changing World speaks to two of the co-leaders of the Rakieora programme – a pilot to develop a New Zealand specific national database for genomic research.
This podcast is part of a miniseries of interviews with speakers from the 2022 annual conference of the Adelphi Genetics Forum - a learned society that aims to promote research and discussion concerning the scientific understanding of human heredity. Formerly known as the Galton Institute, and before that, the Eugenics Education Society, the society has changed its name to the Adelphi Genetics Forum to firmly reject and distance itself from the discredited and damaging ideas of its namesake, Francis Galton – widely viewed as the founder of eugenics.Anneke Lucassen is Professor of Genomic Medicine & Director of the Centre for Personalised Medicine at the University of Oxford and Professor of Clinical Genetics at the University of Southampton. Her talk, titled “Genomic Medicine, Diverse Data and the Language of Race, Ancestry and Ethnicity” explored the issues caused by a lack of diversity in genomic databases, and the challenges of addressing this in a way that doesn't cause additional injustice and harm. Kat Arney started by asking why it's so necessary to do this work.You can find out more about the Adelphi Genetics Forum, including their grants, awards and publications, at adelphigenetics.org You can check out the rest of this series on the Genetics Unzipped podcast feed – just search for Genetics Unzipped on Spotify or wherever you get your podcasts. This series was produced by the team at First Create The Media – that's Kat Arney, Sally Le Page and Emma Werner, with help from Ed Prosser and Frankie Pike. Our music is Drops of H2O by J. Lang, licensed under Creative Commons.
In 2012, the 100,000 Genomes Project was announced, the same year we started this podcast!Back in 2015 we did an episode about the 100,000 Genomes Project so we're excited to revisit this massive project today with Dr. Julian Barwell, who is a clinical geneticist and has countless titles but today's most relevant one is the operational clinical lead of the 100,000 Genome project.After finishing his Clinical Genetics training (2001-2007) at Guy's, St George's and the Royal Marsden from the University of London; Dr. Barwell started as a consultant in Clinical Genetics in Leicester. He runs specialist clinics in inherited cancer susceptibility; non-alcoholic fatty liver disease and susceptibility to hepatitis, cirrhosis and hepatocellular carcinoma; Von Hipped Linda syndrome and Neurofibromatosis type 2. He has over 60 publications and helped coin the internationally known phrase, the 'Angelina Jolie effect' on referrals to inherited breast cancer clinics. He also developed the first YouTube channel for Clinical Genetics that has been viewed in over 100 countries and developed the Supporting Families with Cancer projects in association with the Genetics Education Centre (GENIE) at the University of Leicester. He is the clinical lead for the delivery of Paediatrics, Obstetrics & Gynaecology, Non-Malignant Haematology and Clinical Genetics national portfolio research studies (CRN) in the East Midlands. He is the rare disease lead for the 100,000 Genome Project in Leicester and the public and patient involvement clinical lead for the East of England Genomics Medicine Centre with the aim of reducing inequality of access to Genomic Medicine. He is the designer of the genome project eligibility criteria wheels for Health Education England and is on the Genomics England committee for patient involvement and access to genomics for black and minority ethnic groups. He is a national clinical advisor to the National Hereditary Breast Cancer Helpline and helped develop the award winning Prostaid male health App and is clinical lead of the United Against Prostate Cancer project, establishing tumour BRCA testing. He is joint clinical lead of the Paediatric and Genetics Clinical Research Facility at the Leicester Royal infirmary and is establishing a fragile X syndrome research group and patient self-navigation App project with the Genomic Medicine Service Alliance. He is a senior author of the newly commissioned book, Clinical Genetics and Genomics at a Glance as well as a children's book on DNA. On This Episode We Discuss:Ten years of the 100,000 Genomes Project (2012-2022)Advantages of using digital pedigrees tools such as the one developed by TrakGeneWhy it's important to have genomes from various ancestries representedImportance of utilizing digital pedigrees How the 100,000 Genome Project is going to change the role of genetic counselorsReclassifying variants as data is continuously being analyzedIf you want to learn more about what it's like to be a clinical geneticist, check out this article which follows Dr. Barwell through a day in the life, and you can find a list of Genomics England's publications here.To learn more about TrakGene, the pedigree drawing tool and clinical genetics database software company that we mentioned in this episode, you can head to their website or follow them on Twitter, Facebook, LinkedIn, and YouTube. You can also follow Dr. Barwell on Twitter and Facebook!Don't forget to enter our upcoming giveaway via social media next week for a lifetime subscription to TrakGene and a copy of “The Patient Will See You Now” by Dr. Eric Topol. You can also use code “DNATODAY” for a year free trial for TrakGene. Stay tuned for the next new episode of DNA Today on next Friday, November 4th, 2022 where we'll be defining quality genetic tests with Blueprint Genetics! In the meantime, you can binge over 205 other episodes on Apple Podcasts, Spotify, streaming on the website, or any other podcast player by searching, “DNA Today”. Episodes since 2021 are also recorded with video which you can watch on our YouTube channel. DNA Today is hosted and produced by Kira Dineen. Our social media lead is Corinne Merlino. Our video lead is Amanda Andreoli. See what else we are up to on Twitter, Instagram, Facebook, YouTube and our website, DNApodcast.com. Questions/inquiries can be sent to info@DNApodcast.com.
Dr. Paldeep S. Atwal joins the podcast today to discuss his research in clinical genomic medicine and educate us on Ehlers-Danlos syndromes (EDS). Dr. Atwal is a board-certified clinical and medical biochemical geneticist and director of the Atwal Clinic for Genomic & Personalized Medicine. Hypermobility disorders can be debilitating to live with. Medical professionals like Dr. Atwal are finding innovative ways to diagnose and treat EDS, and conditions like it… Offer: This Podcast is Sponsored by Lost Empire Herbs. Right now, Lost Empire Herb's bestselling Pine Pollen is now available for just one penny, plus shipping and handling. Go to www.GeniusPollen.com to find out more and grab yourself a bag today. No hidden charges, no trial offer, no shenanigans. Just a low cost way to try Lost Empire Herbs' top product for next to nothing. If you're looking for 100% natural hormonal support for men and women YOU'VE GOT TO TRY THIS.. In this episode, you will find out: What errors of metabolism mean, and how it affects people who suffer from it. Dr. Atwal's understanding of EDS, and the typical age that people develop symptoms. Why people with EDS experience fatigue. Why EDS is considered a genetic syndrome. You can find out more about Dr. Atwal by clicking here! Episode also available on Apple Podcast: http://apple.co/30PvU9C
In the latest episode of Exchanges at Goldman Sachs, Salveen Richter, Lead Analyst for the U.S. Biotechnology Sector in Goldman Sachs Research, explains how new innovations in gene editing are transforming the future of medicine and the greater biotech investment landscape.