POPULARITY
Was hat es mit dem sogenannten Erdbeermond auf sich? In dieser Folge widmen sich unsere beiden Himmelspaziergänger Susanne und Paul dem rötlich leuchtenden Juni-Vollmond und nehmen seine Ursprünge, kulturellen Bedeutungen und physikalischen Hintergründe unter die Lupe. Die beiden Himmelsflaneure sprechen über traditionelle Mondnamen aus indigenen Kalendern Nordamerikas ebenso wie über alte deutsche Bezeichnungen und deren jahreszeitliche Bezüge.Außerdem erklären sie, warum der Vollmond manchmal besonders groß oder besonders rot erscheint, was hinter Begriffen wie Supermond, Blue Moon oder Mondillusion steckt – und wie sich all das astronomisch fundiert einordnen lässt.Zum Abschluss werfen die beiden wieder einen Blick auf eine aktuelle wissenschaftliche Schlagzeile: Hinweise auf ein mögliches Biomolekül in der Atmosphäre eines Exoplaneten. Wie realistisch ist die Hoffnung auf außerirdisches Leben – und was lässt sich tatsächlich aus den Daten schließen?Eine Folge voller Himmelsphänomene, Kulturgeschichte und moderner Astronomie – unterhaltsam und verständlich erklärt.
In der Pandemie schaffte die mRNA den Durchbruch, jetzt beginnt ein neues Kapitel für das Biomolekül. Diesmal wollen BioNTech und Moderna das Immunsystem auf Krebszellen lenken. Ihr Ziel: Eine Impfung gegen Krebs. Erste Studienergebnisse lassen hoffen. Lange, Michael; Winkelheide, Martin www.deutschlandfunk.de, Wissenschaft im Brennpunkt
In der Pandemie schaffte die mRNA den Durchbruch, jetzt beginnt ein neues Kapitel für das Biomolekül. Diesmal wollen BioNTech und Moderna das Immunsystem auf Krebszellen lenken. Ihr Ziel: Eine Impfung gegen Krebs. Erste Studienergebnisse lassen hoffen. Lange, Michael; Winkelheide, Martin www.deutschlandfunk.de, Wissenschaft im Brennpunkt
Nachfragen von Clemens Heidt zum Vortrag "Chemische Evolution - Wie entstanden die ersten Biomoleküle?" Der Vortrag gab einen Überblick über heutige Modelle zur chemischen Evolution. Er diskutiert, wie die ersten Biomoleküle entstanden sein könnten und wie sie sich zu Makromolekülen zusammengesetzt haben, bis hin zu komplexen Proteinmaschinen. Er weist aber auch auf fundamentale Probleme der ungerichteten Evolution hin und wirbt für ein offenes Weltbild, welches einen Schöpfer mit einschließt. Thomas Schrader ist Professor für Organische Chemie an der Universität Duisburg-Essen und forscht auf dem Gebiet der Supramolekularen Chemie und der Chemischen Biologie. Seine Forschung führte zur Entwicklung eines neuen Wirkstoffes gegen neurodegenerative Erkrankungen (Alzheimer/Parkinson), das sich auf dem Weg zur klinischen Testung befindet.
Der Vortrag gibt einen Überblick über heutige Modelle zur chemischen Evolution. Er diskutiert, wie die ersten Biomoleküle entstanden sein könnten und wie sie sich zu Makromolekülen zusammengesetzt haben, bis hin zu komplexen Proteinmaschinen. Er weist aber auch auf fundamentale Probleme der ungerichteten Evolution hin und wirbt für ein offenes Weltbild, welches einen Schöpfer mit einschließt. Thomas Schrader ist Professor für Organische Chemie an der Universität Duisburg-Essen und forscht auf dem Gebiet der Supramolekularen Chemie und der Chemischen Biologie. Seine Forschung führte zur Entwicklung eines neuen Wirkstoffes gegen neurodegenerative Erkrankungen (Alzheimer/Parkinson), das sich auf dem Weg zur klinischen Testung befindet.
Brose, Maximilian www.deutschlandfunk.de, Forschung aktuell
Im Gespräch mit Prof. Kerstin Göpfrich über ihre Forschung an DNA und anderen Biomolekülen in ihrem interdisziplinären Team. Details zur Episode
Es ist keine ganz einfache Frage, wohl aber eine der größten in den Naturwissenschaften: Woher stammt das Leben auf der Erde? Um uns einer Antwort zu nähern, müssen wir in flachen Tümpeln dümpeln und in die Tiefsee tauchen. Viele große Forscherïnnen haben dazu etwas beigetragen, darunter Charles Darwin, Stanley Miller oder Deborah Kelly. Franzi und Karl nehmen in dieser Folge die Chemikerin Martina Preiner an Bord: Sie war Wissenschaftsjournalistin und Podcast-Host und wurde quasi während eines Interviews mit einem Forscher, das sie führte, zurück in die Wissenschaft geholt. Sie forschte dann in Düsseldorf sowie Utrecht und machte eine Forschungsreise zu vulkanischen Tiefseequellen. Seit 2023 entwickelt sie eigene Experimente, die den möglichen Stoffwechsel der ersten Arten nachstellen, gemeinsam mit ihren Kollegïnnen am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg. Martina taucht mit uns tief ein in die Forschungsgeschichte zu jener großen Frage, woher das Leben stammt: Von der Spontanzeugung im 19. Jahrhundert und die Idee der flachen Tümpel über das berühmte Miller-Urey-Experiment im 20. Jahrhundert geht es bis zu Martinas eigenem Forschungsgebiet: Wie die ersten wichtigen Stoffwechsel-Prozesse des Lebens vielleicht ohne komplexe Biomoleküle stattfanden.
"Der Ursprung des Lebens ist ein grundlegendes Rätsel für die Naturwissenschaft." (Chirumbolo/Vella, 2021) In dieser Folge spricht Prof. Dr. Peter Imming über die Frage nach der Entstehung des Lebens: Wie kann tote zu lebender Materie werden? Wie können Biomoleküle entstehen und Organisationsformen, die sie strukturieren? Und kann das Alles entstehen ohne Planung oder Steuerung? Ohne ein Ziel das der Entstehung des Lebens zugrunde liegt? Was braucht es damit die einfachsten Zellen entstehen können? Was könnte sich in einer Uratmosphäre aus einzelnen chemischen Bausteinen gebildet haben? In dieser Folge geht es um die Miller-Urey-Experimente, Aminosäuren, Urpizzen, die Ursuppe und um die ganz grundlegende Frage wie das Leben entstand, das uns ausmacht und umgibt. Prof. Dr. Peter Imming ist Apotheker und Diplom-Chemiker. Er war in Lehre und Forschung an den Universitäten Marburg, Oxford, Münster und Yanji tätig. Seit 2004 ist er an der Universität Halle Professor für Pharmazeutische Chemie. Seine Forschung dreht sich um Stoffe gegen Turbukulose, Antiinfektiva und um die Qualitätskontrolle von Arzneimittel. Im Zusammenhang der Entstehung des Lebens interessiert er sich vor allem für die chemischen Bestandteile, die dabei eine Rolle spielen. Dieser Vortrag wurde bei der Langen Nacht der Wissenschaften in Halle gehalten.
Der Chemie-Nobelpreis geht in diesem Jahr an Carolyn Bertozzi (USA), Morten Meldal (Dänemark) und Barry Sharpless (USA). Sie haben Methoden entwickelt zum zielgerichteten Aufbau von Biomolekülen. Was steckt hinter der sogenannten Click-Chemie? Jochen Steiner im Gespräch mit Nina Kunze, SWR-Wissenschaftsredaktion.
Zu Weihnachten haben wir uns nochmal richtig bemüht und unseren ersten Gast eingeladen: Dr. Janina Sprenger ist Wissenschaftlerin am Deutschem Elektronen-Synchrotron "DESY". Sie ist auf Protein Kristallographie spezialisiert, was bedeutet, dass sie mithilfe von Röntgenstrahlung Biomoleküle "sichtbar" macht und analysiert. Diese Erkenntnisse können dann für Medikamente benutzt werden, zum Beispiel forscht sie gerade mit an möglichen Gegenmitteln für Corona. Wir haben ihr zahlreiche Fragen gestellt: Unteranderem über ihre Forschung, über ihre Doktorarbeit in Schweden und wie man als Wissenschaflter:in in der Gesellschaft wahrgenommen wird. Inhaltsverzeichnis 0:41 Vorstellung 2:12 Forschung am Desy bezüglich Covid 3:32 Was ist überhaupt Kristallographie 6:39 Doktorarbeit in Schweden, Ihre Forschung an Malaria 15:56 Wie sieht ein Tag als Protein Kristallograph:in aus? 19:35 Klischees über Wissenschaftler:innen 24:28 Rosalind Franklin & Frauen in der Wissenschaft 31:37 Was bedeutet künstliche Intelligenz für Kristallographie? Wird "Alpha Fold" ihre Arbeit unwichtig machen? 41:02 Schlusswort Links: Sprenger, Janina. (2014). hree-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design. Acta Crystallographica Section D Biological Crystallography. Sprenger, Janina. (2020). Structural Biology of Pf AdoMetDC - Challenges in Crystallizing a Malarial Protein. https://www.youtube.com/watch?v=o25Nda3OHcM&feature=emb_logo https://en.wikipedia.org/wiki/Drug_discovery http://www.scienceandsociety.eu/2017/06/30/young-scientists-interview-with-janina-sprenger/
Was macht ein Experte für Membranproteine eigentlich genau und wie hängen diese Biomoleküle mit unseren Medikamenten von morgen zusammen? Das weiß Sandro Keller, der seit Kurzem am Institut für Molekulare Biowissenschaften (IMB) forscht und lehrt. Der Beitrag Medikamente von morgen erschien zuerst auf AirCampus.
Das Forscherteam um den Biophysiker Dieter Braun von der Ludwig-Maximilians-Universität München konnte erstmals nachweisen, dass wasserumspülte Gesteinsporen unter dem Einfluss von Hitze (etwa durch Vulkane oder hydrothermale Schlote, heiße Quellen in kalter Umgebung) tatsächlich günstige Reaktionsräume für die Entstehung und Anreicherung komplexer Biomoleküle darstellen. Darüber hören Sie ein Gespräch mit Dieter Braun.
Aus dem Kern von Eiterzellen hat Miescher das Biomolekül isoliert, das Jahrzehnte später – in Einzelteile zerlegt – als Träger der Erbsubstanz genau beschrieben wurde.
Heute geht es um Enzyme.Eigentlich sind Enzyme einfach nur BioMoleküle, die irgendwas machen. Meistens bestehen Sie aus Proteinen, manchmal aber auch aus RNA. Enzyme haben Kofaktoren oder Koenzyme, Sie können gehemmt werden - manchmal durch andere Proteine und manchmal durch ihre eigenen Produkte. Diese Modulation der Aktivität ist wichtig in der Signaltransduktion. Die Effizient der Enzyme berechnen wir mit der Michaelis-Menten-Gleichung. Enzyme finden wir unter anderem in Waschmittel und Obst. In der Bio-Frage geht es um Menschenfressende Ananas. Bzw. ob Ananas bei Entzündungen hilft. Nicht erwähnt, aber dennoch schamloses Self-Plugging: Mein Artikel im Laborjournal: Brennen für die Wissenschaft
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Eine aussagekräftige theoretische Beschreibung des Infrarot (IR)-Schwingungsspektrums eines Biomoleküls in seiner nativen Umgebung durch Molekulardynamik (MD)-Simulationen benötigt hinreichend genaue Modelle sowohl für das Biomolekül, als auch für das umgebende Lösungsmittel. Die quantenmechanische Dichtefunktionaltheorie (DFT) stellt solche genauen Modelle zur Verfügung, zieht aber hohen Rechenaufwand nach sich. Daher ist dieser Ansatz nicht zur Simulation der MD ausgedehnter Biomolekül-Lösungsmittel-Komplexe einsetzbar. Solche Systeme können effizient mit polarisierbaren molekülmechanischen (PMM) Kraftfeldern behandelt werden, die jedoch nicht die zur Berechnung von IR-Spektren nötige Genauigkeit liefern. Einen Ausweg aus dem skizzierten Dilemma bieten Hybridverfahren, die einen relevanten Teil eines Simulationssystems mit DFT, und die ausgedehnte Lösungsmittelumgebung mit einem (P)MM-Kraftfeld beschreiben. Im Rahmen dieser Arbeit wird, ausgehend von einer DFT/MM-Hybridmethode [Eichinger et al., J. Chem. Phys. 110, 10452-10467 (1999)], ein genaues und hocheffizientes DFT/PMM-Rechenverfahren entwickelt, das der wissenschaftlichen Ọ̈ffentlichkeit nun in Form des auf Großrechnern einsetzbaren Programmpakets IPHIGENIE/CPMD zur Verfügung steht. Die neue DFT/PMM-Methode fußt auf der optimalen Integration des DFT-Fragments in die "schnelle strukturadaptierte Multipolmethode" (SAMM) zur effizienten approximativen Berechnung der Wechselwirkungen zwischen den mit gitterbasierter DFT bzw. mit PMM beschriebenen Subsystemen. Dies erlaubt stabile Hamilton'sche MD-Simulationen sowie die Steigerung der Performanz (d.h. dem Produkt aus Genauigkeit und Recheneffizienz) um mehr als eine Größenordnung. Die eingeführte explizite Modellierung der elektronischen Polarisierbarkeit im PMM-Subsystem durch induzierbare Gauß'sche Dipole ermöglicht die Verwendung wesentlich genauerer PMM-Lösungsmittelmodelle. Ein effizientes Abtastens von Peptidkonformationen mit DFT/ PMM-MD kann mit einer generalisierten Ensemblemethode erfolgen. Durch die Entwicklung eines Gauß'schen polarisierbaren Sechspunktmodells (GP6P) für Wasser und die Parametrisierung der Modellpotentiale für van der Waals-Wechselwirkungen zwischen GP6P-Molekülen und der Amidgruppe (AG) von N-Methyl-Acetamid (NMA) wird ein DFT/PMM-Modell für (Poly-)Peptide und Proteine in wässriger Lösung konstruiert. Das neue GP6P-Modell kann die Eigenschaften von flüssigem Wasser mit guter Qualität beschreiben. Ferner können die mit DFT/PMM-MD berechneten IR-Spektren eines in GP6P gelösten DFT-Modells von NMA die experimentelle Evidenz mit hervorragender Genauigkeit reproduzieren. Somit ist nun ein hocheffizientes und ausgereiftes DFT/PMM-MD-Verfahren zur genauen Berechnung der Konformationslandschaften und IR-Schwingungsspektren von in Wasser gelösten Proteinen verfügbar.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Thermophorese beschreibt die von Temperaturegradienten angetriebene, gerichtete Bewegung von Partikeln. Obwohl dieser Effekt seit 1856 bekannt ist, werden die zugrundeliegenden Prinzipien immer noch aktiv diskutiert. Im ersten Teil dieser Arbeit wurde ein lange vorhergesagter größenabhängiger Übergang der Thermophorese zum ersten Mal experimentell verifiziert. Die Experimente untersuchen ein sphärisches Kondensator Modell für Thermophorese. Um Vorhersagen über ionisches Abschirmen geladener Partikel zu testen, sind Nanopartikel erforderlich, deren Größe im Bereich der Debye Länge liegt: DNA und RNA Oligonucleotide. Der theoretisch prognostizierte Übergang vom Plattenkondensator- über das sphärische Kondensator- bis hin zum isolierte Sphäre-Modell wurde über einen weiten Bereich von Verhältnissen zwischen Partikelgröße und Debye Länge erfolgreich beobachtet. Die Kombination dieser ionischen Thermophorese mit einer etablierten Beschreibung der Temperaturabhängigkeit von Thermophorese von ungeladenen Partikeln reicht aus, um Thermophorese von einzel- und doppelsträngiger DNA und RNA von 5°C bis 75°C und unter Salzkonzentrationen von 0.5mM bis 500mM abzudecken. Dies umfasst einen Großteil biologisch relevanten Bedingungen. Damit lassen sich nicht triviale Abhängigkeiten der Thermophorese in sehr breiten Bereichen von Salzkonzentration und Temperaturen für hoch relevante DNA und RNA Längen mit dem bestätigten Modell vorausberechnen. Diese Experimente geben neue Impulse in der Diskussion über die Rolle von sekundären elektrischen Feldern bei der Thermophorese. Zudem kann dieses neu gewonnene theoretische Verständnis die Quantifizierung von Biomolekülaffinitäten verbessern. Kooperatives Binden, das im zweiten Teil untersucht wird, ist entscheidend für das Verständnis vieler intrazellulärer Prozesse wie z.B. der Transkription. Mithilfe von Thermophoresemessungen wird das komplette Bindungsverhalten von mehr als zwei Partnern inklusive der kooperativen Effekte untersucht, die komplexe Molekül-Interaktionen formen. Die hier präsentierte, neu entwickelte Prozedur ist sehr flexibel und setzt nur einen fluoreszierzmarkierten Bindungspartner voraus. Im Gegensatz zu Methoden, die auf der Sättigung einer Bindung bei gleichzeitiger Untersuchung einer anderen beruhen, macht dieser neue Ansatz viele zusätzliche kooperative Molekülsysteme zugänglich. Kooperatives Binden eines sternförmigen, dreiteiligen DNA-Komplexes wird mit einer einzigen Messung aufgedeckt. Bindungskonstanten und thermophoretische Eigenschaften der Komplexe werde mit Messungen von Titrationsreihen innerhalb des Konzentrationswürfels untersucht. Diese Methode kann zu einer bisher fehlenden, flexiblen Messtechnik für kooperative Effekte bei geringer Veränderungen der untersuchten Systeme werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Fri, 12 Oct 2012 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/14926/ https://edoc.ub.uni-muenchen.de/14926/1/Strackharn_Mathias.pdf Strackharn, Mathias ddc:530, ddc:500, Fakul
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
In den zellulären Stoffwechsel- und Signalnetzwerken existiert eine Vielzahl von logischen Abhängigkeiten, die auf Prozesse auf molekularer Ebene zurückzuführen sind. So lässt sich beispielsweise die Effizienz einer biochemischen Reaktion über Enzyme regulieren, deren Aktivitätsgrad von äußeren Parametern abhängt. Kraft stellt eine dieser Einflussgrößen dar. Diese Arbeit befasst sich damit, das Verhalten mehrerer, logisch verknüpfter, molekularer Domänen unter Krafteinwirkung zu studieren und sich deren Eigenschaften für nanotechnologische Verfahren zu Nutze zu machen. Neben der Untersuchung von in der Natur vorkommenden Proteinen mit multiplen Domänen wurden artifizielle DNA- und proteinbasierte Systeme mit verschiedener Bindungsstärke konstruiert. Dies ermöglicht den gerichteten Transport einzelner, molekularer Bausteine mit der Präzision eines Rasterkraftmikroskopes im Nanometer-Bereich. Mithilfe dieser Single-Molecule Cut-and-Paste (SMCP) Technik können auf der Basis gerichteter, molekularer Erkennung räumliche Arrangements funktioneller Bausteine geschaffen werden. Diese lassen sich mittels Fluoreszenzmikroskopie als isoliertes System betrachten. Die Zielsetzung bei der Untersuchung der natürlichen Systeme war es, deren Abhängigkeiten zu verstehen und herauszufinden, wie sich diese mit ihrer Funktion und den an das Protein gestellten Umgebungsbedingungen in Einklang bringen lassen. Die dabei gewonnene Erkenntnis liefert nicht nur wichtige Beiträge zur biologischen und medizinischen Grundlagenforschung, sondern kann, wie am Beispiel der SMCP-Technik ersichtlich, auch hilfreich bei der Entwicklung neuartiger Messmethoden der molekularen Bio- und Nanotechnologie sein. Mittels Einzelmolekülkraftspektroskopie im „Konstante-Kraft“ (engl. Force-Clamp) Modus wurde die Kooperativität der fünf Proteindomänen des Enzyms Titinkinase untersucht. Dieses Muskelprotein wandelt in der Skelett- und Herzmuskulatur mechanische in biochemische Signale um und regelt dadurch den Umsatz weiterer Proteine und die Expression von Genen. Es wird gezeigt, dass sich die einzelnen mechanisch induzierten Entfaltungsschritte gegenseitig bedingen und dass dies inhärent durch die molekulare Faltung des Proteins vorgegeben wird. Da Kraft zum natürlichen Parameterraum dieses Moleküls gehört, muss seine Struktur an kraftinduzierte konformationelle Änderungen angepasst sein. Durch die Abhängigkeit der Energiebarrieren während der Entfaltung wird gewährleistet, dass stabilisierende und enzymatisch wirksame Domänen nicht vor regulatorischen Domänen entfalten. Myosin-Light-Chain Kinase (MLCK) ist ein weiteres Muskelenzym, bei dem es Hinweise auf eine mechanische Aktivierbarkeit gibt. Einzelmolekülexperimente dieser Dissertation zeigen, dass die Entfaltung der Kinase ebenfalls in mehreren Schritten vonstatten geht und dass einer der Zwischenzustände durch ATP-Bindung stabilisiert wird. Die absoluten Entfaltungskräfte liegen dabei unter denen der Titinkinase, was der Hypothese der mechanischen Aktivierbarkeit entgegenkommt. Als weiteres System wurde das Cellulosom des thermophilen Bakteriums Clostridium Thermocellum auf seine mechanische Stabilität überprüft. Cellulosome sind an der Außenseite von Bakterien und Pilzen verankerte Proteinkomplexe, die in der Lage sind Lignozellulose zu zersetzen. Bei der Prozessierung der Cellulose können im Cellulosom hohe Scherkräfte auftreten, da dieses das gesamte Bakterium mit dem makromolekularen Substrat verknüpft. Mittels AFM-basierter Kraftspektroskopie wurde die Wirkung von Kraft auf einen Verbund verschiedener Konstituenten eines Cellulosoms untersucht. Es wird gezeigt, dass sich der Komplex im Vergleich zu anderen Biomolekülen durch eine extrem hohe mechanische Stabilität auszeichnet. Innerhalb der hohen Entfaltungskräfte besteht eine Hierarchie für die verschiedenen Komponenten. Bei vergleichsweise niedrigen Kräften entfalten die enzymatischen Domänen gefolgt von mittleren Kräften für das Entkoppeln der Enzyme mit dem Bindungspartner Cohesin. Sehr hohen Kräften halten die intramolekularen Wechselwirkungen der Cohesine und der Cellulose bindenden Domänen stand. Die Abstufung hoher Stabilitäten stellt eine sehr gute Anpassung an die natürlichen Anforderungen des Proteinkomplexes dar. Für die durchgeführten Messungen wurde ein modulares Kraftmikroskop (AFM) entwickelt, das sich mit einem einzelmolekülsensitiven Fluoreszenzmikroskop kombinieren lässt. Die spezielle Konstruktion weist eine extrem hohe mechanische Stabilität auf. Mittels einer photothermischen Regelung kann das AFM darüber hinaus für sensitive Bildgebung weicher molekularer Oberflächen oder in einen extrem schnellen kraftspektroskopischen Messmodus mit konstanter Zugkraft verwendet werden. Die akkurate Arbeitsweise des Systems wurde in einem internationalen Vergleichsversuch bestätigt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Genregulation gibt der Zelle die Kontrolle über Struktur und Funktion, und ist die Basis für zelluläre Differenzierung, Morphogenese und die Vielseitigkeit und Anpassungsfähigkeit von jedem Organismus. Um zu begreifen, wie eine Zelle ihre Funktion organisiert und wie sich ganz individuelle Organismen ausbilden, obwohl die gleichen genetischen Informationen vorhanden sind, muss man die Regulation der Genexpression im Detail verstehen. Diese Regulation wirkt an verschiedenen Stellen der Genexpression und besteht aus einer Vielzahl von komplexen Prozessen, die untereinander verbunden sind. Somit ist das Verständnis der zugrundeliegenden molekularen Mechanismen und ihres Zusammenspiels für Biologie und Biophysik von großer Bedeutung. Ziel dieser Arbeit ist die Untersuchung von Wechselwirkungen und Wechselwirkungskräften zwischen Biomolekülen, die an der Genregulation und der Epigenetik, auf der Ebene der Transkription beteiligt sind. Insbesondere konnten Protein-DNA-Wechselwirkungen und der Einfluss epigenetischer DNA-Modifikationen quantifiziert werden. Für die Messungen wurde ein molekularer Kraftsensor und als dessen Erweiterung ein molekularer Analog-Digital-Wandler entwickelt. Diese molekularen Sensoren ermöglichen die direkte Messung der Wechsel- wirkungskräfte zwischen DNA und Liganden. Mit dem molekularen Kraftsensor können außerdem hochparallel Messungen durchgeführt werden, wobei durch den symmetrischen, molekularen Aufbau zudem eine sehr hohe Sensitivität erreicht wird. Die Verwendung dieser Methode ermöglichte es, den Einfluss der epigenetisch modifizierten Basen Methylcytosin und Hydroxymethylcytosin („5. und 6. Base der DNA“) auf die mechanische Stabilität der DNA- Doppelhelix zu untersuchen. Es wird gezeigt, dass mit dem aus DNA-Oligomeren aufgebauten molekularen Kraftsensor Protein-DNA-Wechselwirkungen detektiert und deren Dissoziationskonstanten bestimmt werden können. Unter anderem wird die Wechselwirkung der Endonuklease EcoRI mit ihrer DNA- Erkennungssequenz quantifiziert. Hierfür wurden molekulare Kraftsensoren in Zipper- und Scher-Geometrie entworfen. Bei dem neu entwickelten Aufbau des Kraftsensors mit integriertem Förster-Resonanzenergietransfer-Farbstoffpaar genügt schon eine Fläche von 25 !m2, um die Stärke von Ligand-DNA-Wechselwirkungen bestimmen zu können. Diese Fläche liegt deutlich unterhalb der Messfleckgröße aktueller DNA-Mikroarrays. Damit erfüllt der molekulare Kraftsensor bezüglich der Messfleckdichte die Voraussetzung für moderne Hochdurchsatz- Methoden. In einem zweiten Schritt wird der molekulare Kraftsensor zu einem „molekularen Analog- Digital-Wandler“ erweitert. In Analogie zum elektronischen Flash-Analog-Digital-Wandler, bei dem mehrere Komparatoren mit unterschiedlichen Referenzschaltungen parallel geschaltet sind, werden beim molekularen Analog-Digital-Wandler parallel räumlich getrennte, molekulare Kraftsensoren mit unterschiedlich stabilen Referenz-Wechselwirkungen zur Bestimmung einer unbekannten molekularen Wechselwirkung verwendet. Durch eine Kompensationsmessung wird dann die Kraft von Ligand-DNA-Wechselwirkungen bestimmt. Es werden die Wechsel- wirkungen eines Pyrrol-Imidazol Hairpin-Polyamides, der Endonuklease EcoRI und des Transkriptionsfaktors p53 zur jeweiligen DNA-Erkennungssequenz vermessen. Eine hoch- parallele Version mit Messfleckgrößen mit einem Durchmesser von minimal 15 !m konnte realisiert werden. Abgeleitet vom Bell-Evans-Modell wurde ein analytisches Modell zur Beschreibung des molekularen Analog-Digital-Wandlers entwickelt. Neben den Protein-DNA-Wechselwirkungen werden die epigenetisch modifizierten DNA- Basen Methylcytosin (mC) und Hydroxymethylcytosin (hmC) untersucht. Es wird der Nachweis erbracht, dass sich die mechanische Stabilität der DNA-Doppelhelix bei Separation in zwei Einzelstränge in beiden Fällen signifikant um mehrere Pikonewton ändert. Die Stärke des Effekts ist abhängig von der DNA-Sequenz und der Richtung der angelegten Kraft. Durch Einzelmolekül-Kraftspektroskopie wird eine Reduzierung der Potentialweite durch mC aufgezeigt. Außerdem konnte mit Hilfe von Molekulardynamik-Simulationen der Effekt für mC und teilweise auch für hmC auf molekularer Ebene aufgeklärt werden. Es wird ein Modell entwickelt, das erklärt, wie dieser Effekt einen Einfluss auf die Genregulation ausüben kann.
Mancher mag es heiß – Biomoleküle wie die Erbsubstanz DNA ziehen hingegen eher kühle Regionen vor. Warum chemische Verbindungen überhaupt in einem Temperaturgefälle wandern und wie das beginnende Leben dadurch vielleicht den entscheidenden Konzentrationsschub erfahren hat, erforscht Dr. Dieter Braun mit seiner Emmy-Noether-Nachwuchsgruppe am Lehrstuhl für Angewandte Physik.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Molekülmechanische (MM) Molekulardynamik-(MD)-Simulationen sollen eine virtuelle Realität von Makromolekülen im Computer erschaffen. Dabei zeigten sorgfältige Tests wiederholt, dass die bisherigen MM-Kraftfelder nur bedingt geeignet sind, um experimentelle Referenzdaten zu reproduzieren. In vielen Fällen sind die Mängel der Beschreibung auf die Vernachlässigung von nicht-additiven Effekten, insbesondere der elektrostatischen Polarisation, zurückzuführen. Das Wassermolekül ist stark polarisierbar und muss in MD-Simulationen von Biomolekülen einbezogen werden. Aus diesem Grund werden im ersten Teil meiner Arbeit die Effekte von externen elektrischen Feldern auf Wassermoleküle untersucht. In polarisierbaren MM-Modellen für Wasser wird das induzierte Dipolmoment zumeist an das Feld am Ort des Sauerstoffatoms gekoppelt – die Elektronendichte eines realen Wassermoleküls reagiert aber auf ein Volumenmittel des Feldes. Es wird gezeigt, dass im Gegensatz bisherigen Meinung, das elektrische Feld, dem ein Wassermolekül im Volumenwasser ausgesetzt ist, nicht homogen, sondern selbst auf dem kleinen Volumen, welches das Molekül einnimmt, hochgradig inhomogen ist. Die Feldinhomogenität ist aber dergestalt, dass sie durch eine mittlere Feldinhomogenität beschrieben werden kann. Deshalb ist das mittlere Feld annähernd proportional zum Feld am Ort des Sauerstoffatoms und kann daraus mit Hilfe eines Skalierungsfaktors berechnet werden. Das skalierte Feld kann dann zur Berechnung des Dipolmoments von punkt-polarisierbaren Wassermodellen herangezogen werden. Es wird außerdem gezeigt, dass die Polarisierbarkeit, die als Proportionalitätskonstante bei der Berechnung des Dipolmoments auftaucht, in der flüssigen Phase den gleichen Wert wie bei isolierten Wassermolekülen hat, obwohl ihre Geometrie dort von der Gasphasengeometrie abweicht. Dies ist darauf zurückzuführen, dass sich für die spezifische Geometrieänderung, die beim Transfer in die flüssige Phase beobachtet wird, zwei Beiträge zur Polarisierbarkeit gegenseitig aufheben. Diese Beiträge resultieren allgemein aus der Elongation der Bindungslängen und der Kompression des Bindungswinkels. Die Frage, ob der Einsatz eines solchen polarisierbaren Kraftfeldes die Beschreibung von Makromolekülen, wie beispielsweise Proteinen, verbessert, kann nur durch Vergleich mit dem Experiment beantwortet werden. Infrarotspektren sind hoch sensitiv bezüglich lokaler elektrischer Felder und wären deshalb eine gute Referenz. Theoretische Vorhersagen solcher Spektren sind allerdings nur für eine der in Proteinen auftretenden Banden – und auch hier nur bedingt – möglich. Der zweite Teil dieser Dissertation beschäftigt sich deshalb mit der Entwicklung eines Kraftfelds zur Berechnung aller Schwingungsbanden des Proteinrückgrats. Hier wird der Einfluss der lokalen elektrischen Felder auf die Stärke der kovalenten Bindungen explizit berücksichtigt. Aufbauend auf einer Vorabversion eines solchen Kraftfelds wird eine Methode entwickelt, um Schwingungsspektren mit spektroskopischer Genauigkeit, d.h. mit Fehlern im Bereich von wenigen Wellenzahlen, vorherzusagen. Der minimale Parametersatz, der zur korrekten Beschreibung dieser Schwingungsspektren notwendig ist, wird identifiziert, und die entbehrlichen Parameter werden eliminiert. Anhand des Moleküls N-Methylacetamid wird demonstriert, dass das neue Kraftfeld in der Lage ist, solvatochrome Verschiebungen für verschiedene polare Lösungsmittel gut zu reproduzieren.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Thu, 8 Oct 2009 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/11571/ https://edoc.ub.uni-muenchen.de/11571/1/Zangl_Anna.pdf Zangl, Anna ddc:540, ddc:500, Fakul
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Hybridmethoden, welche eine quantenmechanische Beschreibung eines Moleküls im Rahmen der Dichtefunktionaltheorie (DFT) mit einer molekülmechanischen (MM) Modellierung seiner Umgebung kombinieren, eröffnen einen Zugang zur Berechnung von Lösungsmitteleffekten in molekularen Schwingungsspektren. In der vorliegenden Arbeit wird eine solche DFT/MM-Hybridmethode exemplarisch zur Analyse der Schwingungsspektren von Biomolekülen eingesetzt. Durch Vergleich mit spektroskopischen Daten werden die erzielbare Genauigkeit und der dazu nötige Rechenaufwand ausgelotet. Bei den untersuchten Systemen handelt es sich um den Retinalchromophor der lichtgetriebenen Protonenpumpe Bakteriorhdopsin (BR) und um ein in Methanol gelöstes, lichtschaltbares beta-Hairpinpeptid. Die inhomogen verbreiterten Schwingungsspektren werden mit DFT/MM unter Verwendung der „instantanen Normalmodenanalyse (INMA)“ beschrieben. Dabei wird durch eine MM Molekulardynamik-(MD-)Simulation ein Raumtemperatur-Ensemble von Strukturen des Moleküls in seiner jeweiligen Umgebung generiert und für jeden solchen Strukturschnappschuss das Infrarot-(IR-) Spektrum durch DFT/MM Normalmodenanalyse berechnet. Das inhomogen verbreiterte Raumtemperaturspektrum ergibt sich durch Überlagerung dieser Linienspektren. Für BR ist die Erzeugung eines solchen Ensembles schwierig, da die BR Struktur bei Verwendung der üblichen nicht-polarisierbaren MM-Kraftfelder unter MD „zerfällt“. Einen Ausweg bietet ein mit DFT/MM Methoden berechnetes polarisiertes BR-Kraftfeld, das die BR-Struktur auch bei Langzeit-MD-Simulationen (50 ns) erhält. Mit einem speziell entwickelten Hamiltonschen Replika-Austauschverfahren lässt sich anschließend zeigen, dass die bei den tiefen Temperaturen der Kristallstrukturanalyse homogene BR Struktur bei Raumtemperatur heterogen wird, was eine Vielzahl experimenteller Befunde erklärt. Die INMA Berechnung der Schwingungspektren des BR-Chromophors bei Raumtemperatur in situ, eine systematische Analyse diverser Einflussparameter und Vergleiche mit experimentellen Daten beantworten schließlich die Frage, mit welcher Qualität solche Spektren bei sorgfältiger Modellierung und unter Einsatz der gewgenwärtig verfügbaren DFT/MM Methoden berechnet werden können. Weiterhin werden DFT/MM-Hybridrechnungen dazu eingesetzt, um den strukturellen Gehalt von ps-zeitaufgelöste IR Daten zur Entfaltungsdynamik eines lichtschaltbaren beta-Hairpinpeptids zu dekodieren. Der lichtinduzierte Entfaltungsprozess wird mit MM/MD simuliert. DFT/MM Berechnungen der durch den Entfaltungsprozess ausgelösten Bandenverschiebungen im Amid-I Bereich zeigen dann, dass die spektrospopischen Beobachtungen das sukzessive Aufreissen der ursprünglich geordneten H-Brückenstruktur des Peptids anzeigen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Die beiden tabakspezifischen Nitrosamine (TSNA) 4 (Methylnitrosamino) 1-(3 pyridyl)-1-butanon (NNK) und N'-Nitrosonornicotin (NNN) sind kanzerogene Inhaltstoffe des Tabakrauchs. NNK erzeugt im Tierversuch vor allem Tumoren in Lunge, Leber, Bauchspeicheldrüse und der Nasenhöhle. NNN führt dagegen zu Ösophagustumoren, aber auch zu Tumoren der Nasenhöhle. Unter metabolischer Aktivierung bilden beide TSNA eine reaktive Zwischenstufe, die mit Biomolekülen reagiert und nach Hydrolyse 4-Hydroxy-(3-pyridyl)-1-butanon (HPB) abspaltet. Nach Extraktion und Derivatisierung kann das HPB mit hoher Nachweisempfindlichkeit mittels Gaschromatographie/Massenspektrometrie (GC/MS) bestimmt werden. Eine andere Quelle für diese Addukte stellt das Myosmin dar. Zwar ist es auch ein Nebenbestandteil der Alkaloidfraktion des Tabaks, aber unabhängig davon kommt es in einer Vielzahl von Nahrungsmitteln vor und kann in Plasma und Speichel des Menschen nachgewiesen werden. Myosmin bildet im sauren Milieu durch Nitrosierung bzw. Peroxidierung ebenfalls HPB-Addukte. Ähnliche Bedingungen liegen in der unteren Speiseröhre bei einer Refluxerkrankung vor. Bei einem Teil der Patienten kommt es zu einer Metaplasie der Speiseröhrenschleimhaut, dem Barrett-Ösophagus, der ein Präkanzerose darstellt, und aus dem sich pro Jahr bei 1-2% der Patienten ein ösophageales Adenokarzinoms (EAC) entwickelt. Das EAC zeigt vor allem in westlichen Industriestaaten eine stark steigende Inzidenzrate. Hauptrisikofaktoren für die Entstehung eines EAC sind neben dem Barrett-Ösophagus das männliche Geschlecht, Übergewicht und eine gemüse-/obstarme Ernährung bzw. der übermäßige Verzehr von tierischen Fetten. Ziel der vorliegenden Arbeit war die Untersuchung der Rolle von HPB-abspaltenden DNA-Addukten in Biopsien der unteren Speiseröhre für das Krankheitsbild, insbesondere der Sequenz Reflux, gastroösophageale Refluxkrankheit (GERD), Barrett, EAC und der mögliche Beitrag des Rauchens und der Myosminbelastung durch die Ernährung. Im Rahmen einer endoskopischen Untersuchung erhielten wir von nüchternen Patienten zwei Biopsien der Ösophagusschleimhaut oral and aboral der magennahen Läsion für die Bestimmung der DNA-Addukte und eine Blutprobe zur Bestimmung der Myosmin- und Cotininkonzentration. Zusätzlich wurden die Teilnehmer gebeten einen Fragebogen zu Lebens- und Ernährungsgewohnheiten auszufüllen. Vorrangiges Ziel war zunächst die Verbesserung der bestehenden analytischen Methoden. Bei der Bestimmung der Plasmakonzentration der Nicotinoide konnte durch Verwendung einer Mischpolymer-Festphase der Zeit- und Materialaufwand deutlich reduziert werden. Insgesamt nahmen 92 Patienten an der Studie teil, wobei von 84 Teilnehmern auch die HPB-Addukte und Plasmakonzentrationen bestimmt werden konnten. Die Konzentration der HPB-Addukte in Schleimhautbiopsien der unteren Speiseröhre war mit 4,75 pmol/mg deutlich höher als zuvor berichtete Adduktlevel von Gewebeproben, die im Rahmen von Autopsien gewonnen worden waren und auch untere Schichten der Ösophaguswand einschlossen. Insgesamt ergab sich keine Abhängigkeit der Adduktkonzentration vom Geschlecht oder Rauchstatus. In der Sequenz Reflux, GERD, Barrett, EAC zeigten Patienten mit Reflux eine deutliche Tendenz zu höheren Werten. Bei Patienten, die häufig unter Sodbrennen leiden, war die Konzentration der HPB-Addukte gegenüber symptomfreien Patienten signifikant erhöht. Diese Ergebnisse stützen die Hypothese der Bildung von HPB-Addukten aus Myosmin in der unteren Speiseröhre. Hinsichtlich der Ernährungsgewohnheiten zeigten sich wenige Auffälligkeiten. Lediglich bei häufigem Verzehr von scharfen Speisen und nusshaltigen Lebensmitteln und bei regelmäßigem Alkoholkonsum zeigte sich eine Tendenz zu höheren Adduktwerten. Beim Milchkonsum verhielt es sich umgekehrt, der häufigere Verzehr führte zu einer Erniedrigung der HPB-Konzentration an der DNA. Die Myosminkonzentration im Plasma der nüchternen Patienten hatte aufgrund der anzunehmenden kurzen Halbwertszeit von Myosmin nur eine geringe Aussagekraft. Es bestand keine Korrelation mit den HPB-Addukten und auch keine Abhängigkeit vom Rauchstatus, während regelmäßiger Alkoholkonsum die Konzentration von Myosmin signifikant erhöhte.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Kohlenhydrate gehören zu den Biomolekülen mit dem mengenmäßig größten Anteil in der Natur, jedoch wurden sie lange Zeit fast ausschließlich als Energiespeicher, Stütz- und Gerüstsubstanzen betrachtet. Die in den letzten Jahren stetig wachsenden Erkenntnisse ihrer essentiellen Bedeutung in wichtigen biologischen Prozessen und die damit verbundenen vielversprechenden Anwendungsmöglichkeiten als Impfstoffe und Medikamente gegen eine Reihe von Krankheiten wie zum Beispiel Krebs, Aids, Diabetes oder Alzheimer führen jedoch zu einem immer größer werdenden Interesse dieser Stoffklasse. Die vorliegende Dissertation gibt einen umfassenden und systematischen Einblick in die Koordinationsmöglichkeiten von Kohlenhydraten an Palladium(II). Dabei erweist sich Palladium(II) in besonderem Maße als ein Zentralatom, das in der Lage ist, die Isomeren- und Konformerenverteilung von Monosacchariden drastisch zu verschieben und so Formen zugänglich zu machen, die ohne Komplexierung nur schwer oder gar nicht nachweisbar sind. Palladium(II) ermöglicht nicht nur stabile Komplexe sowohl mit Pyranosen als auch mit Furanosen in den verschiedensten Bindungsmodi aufzubauen, sondern dient darüber hinaus, durch die in Abhängigkeit des jeweiligen Bindungsmodus auftretenden charakteristischen CIS-Werte der 13C-NMR-Signale, als „Sonde“ für die Koordination an ein bestimmtes Kohlenhydratisomer. Die erhaltenen Ergebnisse erweitern grundlegend die Kenntnisse der Koordinationschemie auf diesem Gebiet und können auch aus pharmazeutischer und katalytischer Sicht von Bedeutung sein.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die postmortale Alterung von Knochen (Diagenese) besteht aus einer sehr komplexen Serie von Prozessen, welche auf allen Ebenen seiner Organisation (makromorphologisch, mikro- und ultrastrukturell, molekular) erfolgt und entscheidend von Umweltfaktoren geprägt wird. In der vorliegenden Untersuchung wurde der Diagenesestatus von 127 archäologischem Knochen mit unterschiedlichen Liegezeiten (ca. 11500 bis 400 Jahren), auf mehreren Ebenen (Mikrostruktur, Biomoleküle, mineralische Matrix) festgestellt und diskutiert. Durch die Untersuchung von experimentell gealtertem Knochenmaterial konnten zusätzlich rein chemische Diageneseprozesse auf den untersuchten Ebenen nachvollzogen werden. Weiterhin wurde eine kleine Stichprobe von zehn modernen kremierten Knochen analysiert. Es ließen sich drei verschiedene Typen des diagenetischen Knochenstatus aufstellen (Diagenesetypen). Die histologische Knochenebene wurde als die Ebene erkannt, welche die meisten Informationen über den Erhaltungsstatus der anderen Merkmale liefern kann. Mit ihr hängt die Ausprägung der Fluoreszenz von Knochenquerschnitten bei Betrachtung unter UV-Licht zusammen. Folglich können diese beiden Merkmale als Indikatoren für den Diagenesetyp einer Knochenprobe dienen. Die Erfolgsaussichten der in der biologischen Spurenkunde angewandten Methoden hängen wesentlich von dem Ausmaß der postmortalen Knochenalterung ab. So ist es für die Analyse von größter Bedeutung, die Auswirkung der verschiedenen Einflussfaktoren auf die unterschiedlichen Ebenen der Knochenalterung zu erkennen und zu verstehen, um das biologische Signal von Dekompositionsartefakten trennen zu können. Durch die Erkenntnisse zu diagenetischen Abbauprozessen und Erhaltungszuständen des Knochens konnten in der vorliegenden Untersuchung die Möglichkeiten und Grenzen verschiedener spurenkundlicher Analysemethoden überprüft (DNA-Analysen, Analysen stabiler Isotope leichter Elemente) werden. Insbesondere wurden die Kriterien für die Validisierung stabiler Isotopendaten aus Kollagen betrachtet: Die Analysen zeigten, dass weder Kollagengehalt, noch C% und N% oder molare C/N-Verhältnis ausreichen, um diagenetisch veränderte Isotopenverhältnisse auszuschließen. Die Veränderung von Isotopenverhältnissen beruht mehrheitlich auf einer Veränderung der Aminosäurekomposition des Kollagens. Die Erstellung eines Aminosäureprofils ist daher unerlässlich für die Prüfung der Validität der Ergebnisse stabiler Isotopenanalysen. Die Prüfung der Zusammenhänge verschiedener Merkmale ermöglichte die Entwicklung und Überprüfung von Screeningmethoden für Kollagen- und DNA-Gehalt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die konfokale Fluoreszenzspektroskopie ermöglicht die Untersuchung der Struktur und Dynamik von Biomolekülen. In den letzten Jahren konnte sie sich zunemend im Bereich der Einzelmolekülspektroskopie etablieren, jedoch besteht gerade im Hinblick auf die zunehmende Zahl der in vivo-Anwendungen Potential, die Sensitivität und die Information, die aus einem einzelnen Datensatz herausgefiltert werden kann , zu erhöhen. In dieser Arbeit konnte die Methode der gepulsten alternierenden Anregung (Pulsed Interleaved Excitation, PIE) entwickelt werden, bei der die zusätzliche Information zugänglich ist, mit welcher Anregungsquelle das jeweilige Photon erzeugt wurde.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Im Rahmen dieser Arbeit werden Nanostrukturen aus biologischen Molekülen untersucht, sowie neue Methoden zur Strukturierung biologischer Systeme im nanoskaligen Bereich entwickelt und vorgestellt. Neben selbstorganisierten und enzymatischen Prozessen, wie sie bei der Strukturbildung biologischer Systeme eine wesentliche Rolle spielen, wird insbesondere auch eine neuartige Methode der gerichteten enzymatischen Hydrolyse biologischer Membranen, die eine gezielte Strukturierung im Nanometerbereich ermöglicht, vorgestellt. Vor dem Hintergrund, daß die Natur mit Polynucleinsäuren extrem vielseitige, universell einsetzbare und chemisch sowie molekularbiologisch sehr gut handhabbare molekulare Bausteine für den selbstorganisierten Aufbau hochintegrierter Nanoarchitekturen zur Verfügung stellt, werden ferner die grundlegenden Mechanismen und Kräfte der molekularen Erkennung bei der DNA-Basenpaarung sowie die mechanische Stabilität der DNA- Doppelhelix untersucht. - Durch kraftmikroskopische Untersuchungen an einer binären Mischung aus Dipalmitoyl- Phosphatidylcholin (DPPC) und Diarachidoyl-Phosphatidylcholin (DAPC) konnte erstmals die laterale Struktur von binären Lipidmischungen in Lipiddoppelschichten direkt bestimmt werden. Es konnte gezeigt werden, daß diese biologisch wichtigen Lipide in Lipiddoppelschichten spontan Domänen mit einer chrakteristischen Größe von etwa 10 nm bilden. Ein Vergleich der Ergebnisse der kraftmikroskopischen Untersuchungen mit denen von Neutronendiffraktionsexperimenten zeigte eine hervorragende Übereinstimmung der mit diesen beiden komplementären Techniken bestimmten mittleren Domänenabstände. - Untersuchungen des enzymatischen Abbaus von Lipidmembranen durch das lipolytische Enzym Phospholipase A2 (PLA2) erlaubten erstmals Einblicke in die Aktivität dieser Enzyme auf der Einzelmolekülebene. Es konnte gezeigt werden, daß die Enzymaktivität stark von den physikalischen Eigenschaften der Membran abhängig ist und daß Membranen in der Gel-Phase ausschließlich von Membrandefekten her und entlang der Hauptachsen des Molekülkristalls hydrolysiert werden, während die Hydrolyse flüssigkristalliner Membranen im wesentlichen isotrop verläuft. Die am freien Enzym gewonnenen Erkenntnisse konnten dann in einem nächsten Schritt zur Entwicklung einer neuartigen gerichteten Hydrolyse von Lipidmembranen genutzt werden, bei der mit der Spitze eines Rasterkraftmikroskops gezielt Defekte in kristallin gepackten Membranen induziert werden, und die Membranen dann durch das Enzym an Stellen mit diesen künstlichen Packungsdefekten hydrolysiert wird. Auf diese Weise konnten künstliche Strukturen in festkörpergestützten Membranen mit minimalen Strukturdurchmessern von bis zu 10 nm erzeugt werden. - Mit Hilfe von kraftspektroskopischen Untersuchungen an einzelnen DNA-Molekülen konnte erstmals ein neuartiger kraftinduzierter Schmelzübergang, der je nach Kraftladungsrate, Umgebungsbedingungen und DNA-Sequenz und Topologie zwischen einigen Piconewton (pN) und etwa 300 pN stattfindet, nachgewiesen werden. Durch Variation von Kraftladungsrate, Ionenstärke, Umgebungstemperatur und DNA-Sequenz konnte gezeigt werden, daß die mechanische Energie die unter Gleichgewichtsbedingungen bis zum kraftinduzierten Schmelzen in der DNA-Doppelhelix deponiert werden kann, hervorragend mit der freien Basenpaarungsenthalpie ∆Gbp der entsprechenden DNA- Sequenz unter den jeweiligen Umgebungsbedingungen übereinstimmt. Es konnte gezeigt werden, daß sich mit Hilfe der Temperaturabhängigkeit der mechanischen Stabilität von DNA die thermodynamischen Größen ∆Hbp und ∆Sbp von DNA direkt aus Kraftexperimenten an einzelnen Molekülen bestimmen lassen. Schließlich konnten die Basenpaarungskräfte von DNA erstmals sequenzspezifisch bestimmt werden. Die zum reißverschlußartigen Aufbrechen einer GC-Basenpaarung nötigen Kräfte betragen demnach 20±3 pN, die zum Aufbrechen einer AT-Basenpaarung nötigen Kräfte 9±3 pN. Auch hier konnte eine sehr gute Übereinstimmung der zum Aufbrechen der Basenpaarungen nötigen mechanischen Energie mit der freien Basenpaarungsenthalpie ∆Gbp festgestellt werden.