POPULARITY
Jacqueline's career trajectory is a testament to the power of curiosity and adaptability. From an early fascination with business and technology to a PhD in electrical engineering, she's shaping the future of over-the-air updates for vehicles. In this insightful interview, she discusses her journey, the challenges of German innovation culture, and the evolving landscape of automotive technology.00:09- About Jacqueline HenleJacqueline has been working in the Embedded Systems and Sensors Engineering department since 2019 and is the vice department manager of the Automotive Systems Engineering department since 2023. Jacqueline studied Industrial Engineering and Management at the Karlsruhe Institute of Technology (KIT).
Our guest for today's show is Prof. Stefano Passerini. As battery researcher he works for the Austrian Institute of Technology (AIT) in Vienna, he is the former director of the Helmholtz Institute Ulm (HIU) and Senior Distinguished Fellow of the Karlsruhe Institute of Technology (KIT).
Fusion energy, at the cutting edge of scientific advancement, offers a promising yet challenging path to sustainable power. Recent breakthroughs in magnetic confinement and laser-driven inertial fusion have moved us closer to net energy gain. However, significant obstacles remain in scaling stable fusion reactions for commercial use, requiring substantial investments and stringent safety regulations. Despite these hurdles, the potential for fusion energy to provide a nearly inexhaustible, low-carbon source of power continues to drive global research. Looking ahead, the focus will be on improving reactor efficiency and addressing material science challenges, maintaining a realistic yet optimistic outlook on fusion's role in future energy solutions.Gauss Fusion is a Greentech venture founded in 2022 by private industrial companies. The company brings together a combination of cutting-edge scientific research and industrial expertise on fusion energy that is unique in Europe. The founding companies from Germany, France, Italy and Spain have extensive expertise in fusion technology. In addition, Gauss Fusion cooperates with leading European research institutes. These include, among others: CERN, the Max Planck Institute for Plasma Physics (IPP), the Karlsruhe Institute of Technology (KIT), and ENEA in Italy. With this impressive knowledge base from industry and academia, and through strategic public-private partnerships, Gauss Fusion is pursuing the goal of bringing renewable fusion energy to market at high-speed using efficient structures, and represents an entrepreneurial approach that aims to significantly accelerate development through public-private partnerships (PPP).https://gauss-fusion.comMilena Roveda, Chief Executive Officer, Gauss Fusion, InnovatorHer previous roles include the Chief Financial Officer of DEPT (2021-2022) and IFS (2018-2019) and Chief Operating Officer of MotorK(2019-2020). Roveda has over 25 years of international experience leading teams in developing and expanding businesses and extensive know-how in designing and executing corporate strategies.The Next 100 Symposium, a Global Arena Research Institute conference, brings together leaders and experts across various disciplines. True to the original ethos of the Next 100, we reject the notion of deepening disorder, mistrust, and polarization as the "new normal." The 2024 Berlin edition aims to identify realistic, actionable paths forward, particularly in the context of the upcoming European parliamentary elections and the upcoming European Commission.https://www.next100symposium.org/If you want better insights into challenges and decisions you or your business are facing, GARI's analytical services are of unmatched complexity and high accuracy - whether your questions are on the green energy transition, trade and supply chains, or political and security related - contact us for a free consultation and see how you can optimise your decision-making.www.globari.org@LinkedIn @GARInstitute) / Twitter
Students from Stanhope Street Primary School visited Technological University Dublin (TU Dublin) to celebrate the launch of a landmark educational research project that will see every primary school in Ireland receive a free Digital Technology kit. EDTips - Enabling Digital Technology in Primary School will provide every primary school with free digital technology teaching resources and equipment to prepare for the introduction of the Primary Curriculum Framework during the 2025/2026 academic year. The project, led by CSinc (Computer Science Inclusive) at TU Dublin, has received funding from Science Foundation Ireland (SFI) and is supported by the University's industry partners AWS In Communities and Workday. Running over two years, EDTips will train primary school teachers in a suite of age-appropriate and interactive educational tools, catering to the abilities of all pupils and encouraging them to become confident, creative, and critical users of digital technology. TU Dublin academics with research expertise in Computer Science education will develop comprehensive teaching materials and activities modelled on the Primary Curriculum Framework, while AWS In Communities will supply 3,000 free offline Digital Technology kits, enabling all schools, irrespective of technical infrastructure, geographical location or socio-economics, to fully engage pupils in the curriculum. EDTips is also supported by Workday, a leading provider of enterprise cloud applications for finance and human resources. Employing over 2,000 people in Ireland, Workday will provide critical resources to help deliver the programme, including software development, content, design and project management. Commenting Minister for Education Norma Foley T.D.,said. "EDTips will not only equip primary school teachers to deliver Digital Technology education but also has the transformative ability to spark the imaginations of young minds. This could set the pupils from Stanhope Street Primary School on a trajectory of educational discovery, potentially paving the way for a rewarding career in Ireland's tech sector." Welcoming the Stanhope Street Primary School pupils and their teachers to Grangegorman, TU Dublin's Vice President for Research and Innovation, Dr Brendan Jennings, said, "Empowering primary school teachers with resources such as EDTips not only enhances their ability to deliver quality STEM education, but also contributes to the overall development of their pupils. This early exposure to STEM concepts has the potential to set students on a path of educational discovery, helping them build a strong foundation for future academic and professional pursuits in digital technology." Welcoming the launch of EDTips, Dr Lisa Higgins, Head of Challenge Research, Education & Public Engagement at SFI, commented: "Science Foundation Ireland's Discover Programme is funded by the Department of Further and Higher Education, Research, Innovation and Science and is designed to create opportunities for broader participation and engagement of the public with STEM. SFI is delighted to support this significant STEM educational programme that builds awareness and confidence in teachers to effectively deliver digital technology in primary school classrooms using fun, hands-on learning." AWS Country Lead for Ireland, Neil Morris, said: "These new technology kits will enable teachers in every primary school in Ireland to learn and be curious with coding and empower them further with digital literacy tools ahead of the introduction of Digital Technology curriculum. At AWS Ireland, we are determined to play our part in fostering the next generation of Irish technology leaders and we will continue to look for opportunities to encourage young technology talent and supporting them in their journey through school and into further education." Welcoming the EDTips initiative, Victoria MacKechnie, Director of Corporate Affairs and Operations, Workday, said: "Skills are increasingly impor...
In dieser Folge geht es darum, wie Sebastian und Gudrun Mathematik an Hochschulen unterrichten und welche Rollen das Medium Podcast und konkret unser Podcast Modellansatz dabei spielen. Die Fragen stellte unsere Hörerin Franziska Blendin, die in der Folge 233 im Jahr 2020 über Ihr Fernstudium Bachelor Maschinenbau berichtet hatte. Sie hatte uns vorab gefragt: "Was versprecht ihr euch von dem Podcast - was ist euer Fazit nach den Jahren den ihr ihn schon macht und wie gestaltet ihr warum Lehre? Was macht euch Spaß, was sind Herausforderungen, was frustriert euch? Warum und wie gestaltet ihr Lehre für Studierende außerhalb der Mathematik, also beispielsweise Maschinenbau?" Es ist ein bisschen lustig, dass die erste Folge Modellansatz, in der Sebastian und Gudrun sich spontan ein Thema zum reden suchten ausgerechnet ein Gespräch über eine neu konzipierte Vorlesung war und der Podcast diese Vorlesung bis heute in unterschiedlichen Rollen begleitet, obwohl das nicht zum ursprünglichen Plan gehörte, wie wir uns einen Podcast über Mathematik vorgestellt hatten. Einerseits haben viele kein Verständnis dafür, was alles mit Mathe gemacht werden kann, andererseits erleben wir intern andauernd so viele spannenden Vorträge und Personen. Eigentlich bringen wir die beiden Sachen in unserem Podcast nur zusammen. Das Medium Podcast ist dabei durch das Gespräch sehr niederschwellig: Es ist so sehr leicht mit den Gesprächen in die Themen einzusteigen und auch auf viel weiteren Ebenen sich darüber zu unterhalten. Wir sind überzeugt, dass wir mit Text oder Video nie so viele und so umfangreiche Austauschsformen einfangen können, mal ganz abgesehen davon, dass die Formate dann an sich für uns zu einer viel größeren Herausforderung in Form und Darstellung geworden wären. Wir hoffen, dass sich irgendwann auch mal eine Person dazu bekennt, wegen unseres Podcasts ein Mathe- oder Informatikstudium zu erwägen, aber bisher ist das tolle Feedback an sich ja schon eine ganz ausgezeichnete Bestätigung, dass diese Gespräche und Themen nicht nur uns interessieren. Viele der Gespräche haben sich auch schon vielfach für uns gelohnt: Sebastian hat aus vielen Gesprächen Inspirationen für Vorlesungen oder andere Umsetzungen gewonnen. Ein Fazit ist auf jeden Fall, dass das Ganze noch lange nicht auserzählt ist, aber wir auch nicht außerhalb unserer Umgebung leben. In der Pandemie sind einerseits Gespräche am Tisch gegenüber, wie wir sie gerne führen, schwierig geworden, und gleichzeitig ist die Lehre so viel aufwendiger geworden, dass kaum Zeit verblieb. Aufnahmen, waren zuletzt hauptsächlich "interne" Podcasts für Vorlesungen, damit die Studierenden daheim und unterwegs sich mit den Inhalten auseinandersetzen können. Gudrun hat damit auch Themen vorbereitet, die sie anschließend in die Zeitschrift Mitteilungen der Deutschen Mathematiker-Vereinigung als Artikel geschrieben hat. Das betrifft insbesondere die Folgen zu Allyship und zum Mentoring in der Mathematik. In der Vermittlung von Mathematik im Studium gibt es kaum Themen, die nicht irgendwo spannend und interessant sind. Um die Themen zu verstehen oder wie dort die Lösungen oder Verfahren gefunden wurden, muss die Theorie behandelt und in weiten Teilen verstanden werden. Da aber "Rosinenpickerei" nichts bringt (also nur die nötigsten Teile von Theorie zu erzählen), geht es darum, ein sinnvolles Mittelmaß zu finden. Also auf der einen Seite ein gutes Fundament aufzubauen zu einem Thema, aber gleichzeitig noch Zeit für Einblicke in spannende und interessante Teile zu haben. Es ist in der Vorbereitung auf der einen Seite total schön, wenn dann eine Anwendung perfekt in die Theorie passt, beispielsweise entwirft Sebastian gerade ein Skript zu formalen Sprachen und Grammatiken, und dann kann man das Komprimierverfahren LZW als eine dynamische Grammatik sehen. Oder es geht um theoretische und "langweilige" Zustandsmaschinen und dann gibt es das Beispiel, dass die Raspberry Pi Foundation gerade dazu einen eigenen Chip (RP2040) mit solchen Komponenten veröffentlicht, oder mit dem Newton-Verfahren wurde die schnelle Quadratwurzel für das Computerspiel Quake erst möglich. Ob das dann auch so toll in der Vorlesung herüberkommt, ist nochmal ein eigenes Thema, aber wenn es klappt, so ist das natürlich großartig. Umgekehrt frustriert es dann schon, wenn die Grundlagen nicht bei möglichst vielen ankommen- nicht jede Person muss sich ja bis ins letzte für ein Thema begeistern, aber am Ende sollte der Großteil die wichtigen Hauptsachen mitnehmen. Leider gibt es immer ein paar Leute, wo das dann trotz vieler Angebote leider nicht so gut klappt, und das frustriert natürlich. Dann muss geschaut werden, woran es liegen könnte. Aktuell hilft das Nörgeln und Nerven, wenn nicht regelmäßig die angebotenen Übungsaufgaben abgegeben werden, wohl mit am Besten. Warum werden mathematische Themen im Ingenieurstudium relevant: Das hängt ganz davon ab, welche Kurse wir haben, und was gebraucht wird... Sebastian unterrichtet jetzt gerade Informatik-Studierende und in den Wirtschaftswissenschaften, früher außer MACH/CIW/BIW/MAGE... auch mal Mathe-Lehrende. Das "Wie" ist dann jeweils auf die Gruppe zugeschnitten: Zunächst gibt es ja unterschiedliche Voraussetzungen: Curriculum, Haupt- & Nebenfächer, etc.. Dann gibt es eine Liste von Fertigkeiten, die vermittelt werden sollen und können, und dann besonders in den Vorlesungen außerhalb des Mathematik-Studiums die lästige Beschränkung des Umfangs der Veranstaltung, und wieviel Eigenarbeit erwartet werden kann. Grundsätzlich möchten wir auch bei den Nicht-Hauptfächlern so viel davon erzählen, was dahinter steht- statt "ist halt so"- und was heute damit gemacht werden kann. Diese Motivation macht vielen das Lernen leichter. Es muss aber auch immer viel selbst gemacht werden, dh. viele Aufgaben und prototypische Problemlösungen, denn Mathe lernt sich nicht durchs zuhören alleine. (leider... ;) Damit geht das Puzzle-Spiel los: Welche Grundlagen müssen aufgebaut werden, und was kann wie in der gegebenen Zeit sinnvoll behandelt werden... Und natürlich immer mit dem Blick darauf, ob es Anküpfungspunkte in die Studienrichtungen der Studierenden gibt. Literatur und weiterführende Informationen F. Blendin: Fußballfibel FSV Frankfurt MINT-Kolleg Baden-Württemberg fyyd - Die Podcast-Suchmaschine F. Blendin, S. Düerkop: Die Suche nach der ersten Frau, Zeit, 2.9.2020. GanzOhr-Konferenzen auf Wissenschaftspodcasts.de. RP2040 Dokumentation, Prozessor mit 8 Zustandsmaschinen. Schülerlabor Mathelabor der Fakultät für Mathematik am KIT und das Onlinelabor Einsetzungsverfahren gegenüber dem Gauß-Jordan-Verfahren Vom traditionellen Riemann-Integral zum modernen Lebesgue-Integral mit Nullmengen, das natürlich kompatibel ist zur Maßtheorie, Fourier-Transformation und zu den Sobolev-Räumen für Finite-Elemente Farbwahrnehmung durch Sinneszellen - Sinneszellen für langwelliges Licht werden auch durch kurzwelliges Licht angesprochen und das schließt die Illusion des Farbkreises Podcasts von Franziska Legende verloren Der Podcast über die vergessenen Geschichten des deutschen und internationalen Frauenfußballs, Produziert von Sascha, Sven, Petra, Freddy, Helga, Sunny, Franzi G4 Podcast über CNC-Maschinen (Thema Zerspanung, zuletzt mit Sonderfolgen zum Lernen im Studium) Braucast - Ein Hobbybrau-Podcast. Podcasts zum Thema Mathe in der Hochschullehre A. Chauhan, G. Thäter: CSE, Gespräch im Modellansatz Podcast, Folge 249, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2022. F. Blendlin, G. Thäter: Fernstudium Maschinenbau, Gespräch im Modellansatz Podcast, Folge 233, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. ]http://modellansatz.de/maschinenbau-hm|G. Thäter, G. Thäter: Maschinenbau HM], Gespräch im Modellansatz Podcast, Folge 169, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. A. Kirsch: Lehramtsausbildung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 104, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M.-L. Maier, S. Ritterbusch: Rotierender 3d-Druck, Gespräch im Modellansatz Podcast, Folge 9, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013. C. Spannagel, S. Ritterbusch: Flipped Classroom, Gespräch im Modellansatz Podcast, Folge 51, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. Podcasts als Projektabschluss S. Bischof, T. Bohlig, J. Albrecht, G. Thäter: Benchmark OpenLB, Gespräch im Modellansatz Podcast, Folge 243, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. Y. Brenner, B. Hasenclever, U. Malottke, G. Thäter: Oszillationen, Gespräch im Modellansatz Podcast, Folge 239, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. S. Gassama, L. Harms, D. Schneiderhan, G. Thäter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019. A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.A. Bayer, T. Braun, G. Thäter: Binärströmung, Gespräch im Modellansatz Podcast, Folge 218, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. C. Brett, N. Wilhelm, G. Thäter: Fluglotsen, Gespräch im Modellansatz Podcast, Folge 196, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. Weitere erwähnte Podcasts, Artikel und Vorträge J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. R. Pollandt, S. Ajuvo, S. Ritterbusch: Rechenschieber, Gespräch im Modellansatz Podcast, Folge 184, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Ritterbusch: 0x5f3759df - ein WTF für mehr FPS, Vortrag auf der GPN20, 2022. M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Heidelberger: Bilderkennung zeigt Wege als Klang, Presseinformation 029/2018, Karlsruher Institut für Technologie (KIT), 2018. N. Ranosch, G. Thäter: Klavierstimmung. Gespräch im Modellansatz Podcast, Folge 67, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
MIT researchers have developed a computational tool called "FrameDiff" that uses machine learning to create new protein structures.https://news.mit.edu/2023/generative-ai-imagines-new-protein-structures-0712 Researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed PIGINet, a system that uses machine learning to enhance the problem-solving capabilities of household robots.https://news.mit.edu/2023/ai-helps-household-robots-cut-planning-time-half-0714 Researchers at Karlsruhe Institute of Technology (KIT) have used machine learning to non-invasively localize ventricular extrasystoles, which may improve diagnosis and therapy for severe diseases.https://medicalxpress.com/news/2023-07-artificial-neural-networks-localize-extra.html OpenAI has shut down its "AI classifier" due to its low rate of accuracy.https://futurism.com/the-byte/openai-shuttered-ai-detection-tool Visit www.integratedaisolutions.com
Podcast jest dostępny także w formie newslettera: https://ainewsletter.integratedaisolutions.com/ Naukowcy z MIT opracowali narzędzie obliczeniowe o nazwie „FrameDiff”, które wykorzystuje uczenie maszynowe do tworzenia nowych struktur białkowych.https://news.mit.edu/2023/generative-ai-imagines-new-protein-structures-0712 Naukowcy z Laboratorium Informatyki i Sztucznej Inteligencji (CSAIL) MIT opracowali PIGINet, system wykorzystujący uczenie maszynowe do zwiększania możliwości rozwiązywania problemów przez roboty domowe.https://news.mit.edu/2023/ai-helps-household-robots-cut-planning-time-half-0714 Naukowcy z Karlsruhe Institute of Technology (KIT) wykorzystali uczenie maszynowe do nieinwazyjnej lokalizacji dodatkowych skurczów komorowych, co może poprawić diagnostykę i terapię ciężkich chorób.https://medicalxpress.com/news/2023-07-artificial-neural-networks-localize-extra.html OpenAI zamknął swój „klasyfikator AI” ze względu na niski wskaźnik dokładności.https://futurism.com/the-byte/openai-shuttered-ai-detection-tool Odwiedź www.integratedaisolutions.com
Kim Eisenmann ist CEO und Mitgründerin der Twinvay GmbH. Sie hat es auf die Forbes Liste „30 under 30“ geschafft. Twinvay produziert und vertreibt Xantrus, ein K.O. Tropfen Schutz-Armband an. In dieser Episode spricht Franz Kubbillum mit Kim Eisenmann über die Gründung von Twinvay und das wichtige Thema der K.O.-Tropfen. Eisenmann erklärt das Funktionsprinzip des K.O. Tropfen-Schutzarmbands und erzählt wie sie und ihre Mitgründer auf die Idee kamen. Sie beschreibt Szenarien, in denen K.O.-Tropfen eingesetzt werden, und betont, dass es sich dabei nicht nur um Party-Situationen handelt. Außerdem spricht sie über die Motive, weshalb K.O. Tropfen verabreicht werden, und die Folgen, die dadurch entstehen. Nach ihrem Schulabschluss absolvierte Eisenmann gleichzeitig ihren Bachelor- und Master-Abschluss in Wirtschaftsingenieurwesen am Karlsruhe Institute of Technology (KIT). Zur selben Zeit gründete sie gemeinsam mit ihrem Verlobten das Start-up Twinvay und arbeitete nebenbei. Wie hat sie all das unter einen Hut gebracht? Die beiden bauten das Start-up ohne externe Investoren auf und brachten das Produkt mit dm als Launch-Partner erstmals auf den deutschen Markt. Weshalb haben sich die beiden gegen Investoren entschieden? Aber das ist noch nicht alles: Neben ihrer Tätigkeit als CEO bei Twinvay gründen die beiden eine US-Firma, sind Investoren in den Bereichen Edelmetalle und NFTs/Krypto und schreiben Kinderbücher. Wie findet Eisenmann einen Ausgleich zu ihrem Alltag und welche Tipps hat sie, um ihren Alltag effizient zu gestalten? Schließlich gibt sie Einblicke in die besondere Unternehmenskultur bei Twinvay und die besonderen Managementstrategien. Themen - Gründen während des Studiums - K.O. Tropfen - Gründen ohne Investoren - Strategien für eine effiziente Alltags-Gestaltung - Relevanz des richtigen Freundeskreises - Ausgleich schaffen ------ Über Atreus – A Heidrick & Struggles Company Atreus garantiert die perfekte Interim-Ressource (m/w/d) für Missionen, die nur eine einzige Option erlauben: nachhaltigen Erfolg! Unser globales Netzwerk aus erfahrenen Managern auf Zeit zählt weltweit zu den besten. In engem Schulterschluss mit den Atreus Direktoren setzen unsere Interim Manager vor Ort Kräfte frei, die Ihr Unternehmen zukunftssicher auf das nächste Level katapultieren. ▶️ Besuchen Sie unsere Website: https://www.atreus.de/ ▶️ Interim Management: https://www.atreus.de/kompetenzen/service/interim-management/ ▶️ Für Interim Manager: https://www.atreus.de/interim-manager/ ▶️ LinkedIn-Profil von Kim Eisenmann: https://www.linkedin.com/in/kim-eisenmann-431743120/ ▶️Webseite des Xantus Drinkcheck Armbands: https://www.xantus-drinkcheck.de/ ▶️ Profil von Franz Kubbillum: https://www.atreus.de/team/franz-kubbillum/ ▶️ Behind the C auf Instagram: https://www.instagram.com/behindthecpodcast/
MLOps Coffee Sessions #137 with Niklas Kühl, Machine Learning Operations — What is it and Why Do We Need It? co-hosted by Abi Aryan. // Abstract The final goal of all industrial machine learning (ML) projects is to develop ML products and rapidly bring them into production. However, it is highly challenging to automate and operationalize ML products and thus many ML endeavors fail to deliver on their expectations. The paradigm of Machine Learning Operations (MLOps) addresses this issue. // Bio NIKLAS KÜHL studied Industrial Engineering & Management at the Karlsruhe Institute of Technology (KIT) (Bachelor and Master). During his studies, he gained practical experience in IT by working at Porsche in both national and international roles. Niklas has been working on machine learning (ML) and artificial intelligence (AI) in different domains since 2014. In 2017, he gained his PhD (summa cum laude) in Information Systems with a focus on applied machine learning from KIT. In 2020, he joined IBM. As of today, Niklas engages in two complementary roles: He is head of the Applied AI in Services Lab at the Karlsruhe Institute of Technology (KIT), and, furthermore, he works as a Managing Consultant for Data Science at IBM. In his academic and practical projects, he is working on conceptualizing, designing, and implementing AI in Systems with a focus on robust and fair AI as well as the effective collaboration between users and intelligent agents. Currently, he and his team are actively working on different ML & AI solutions within industrial services, sales forecasting, production lines or even creativity. Niklas is internationally collaborating with multiple institutions like the University of Texas and the MIT-IBM Watson AI Lab. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: niklas.xyz MLOps Newsletters: https://airtable.com/shrx9X19pGTWa7U3Y Machine Learning Operations (MLOps): Overview, Definition, and Architecture paper: https://arxiv.org/abs/2205.02302 --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Abi on LinkedIn: https://www.linkedin.com/in/abiaryan/ Connect with Niklas on LinkedIn: https://www.linkedin.com/in/niklaskuehl/ Timestamps: [00:00] Niklas' preferred coffee [00:43] Introduction to Niklas Kühl [01:16] Takeaways [02:05] Subscribe to our newsletters and give us a rating here! [02:54] Niklas background [05:09] Scraping twitter data [06:58] EV's conclusions [08:24] NLP usage on Twitter [10:26] Consumer behavior production [12:03] Management and Machine Learning Systems Communication [14:00] Current hype around Machine Learning [15:10] Budgeting ML Productions [18:15] Machine Learning Operations (MLOps): Overview, Definition, and Architecture paper [22:56] Niklas' MLOps definiton [25:55] Navigating the idea of MLOps [30:34] Return of Investment endeavor [33:58] Full stack data scientist [37:39] Defining success for different kinds of data science projects [41:06] Fun fact about Niklas [44:35] Other things Niklas do [47:02] The world is your oyster [50:57] Niklas' day to day life [52:48] One lecture Niklas can drop in [53:57] Foundational models [58:20] Wrap up
There are many differences between B2B and B2C platforms. Can the former ever be as successful as the latter? If so, what are some of the obstacles business models and strategies must overcome?These are just a few of the issues we explore in the latest episode of the Future Sight podcast.Geoffrey Parker, Leonardo Serra, and Leonardo Weiss join host Liz Lugnier to discuss key considerations for the four main types of B2B platforms: IP&S, IoT, Data Aggregation and Collaboration, and Marketplace. They tackle the difficulty of identifying a sound platform strategy, examine Platform Natives and Product to Platform models, and list several common pitfalls.Geoffrey ParkerProfessor of Engineering Innovation, Dartmouth College, Research Fellow at MIT Sloan School's Initiative for the Digital EconomyGeoff is the Charles E. Hutchinson ‘68A Professor of Engineering Innovation at Dartmouth College, where he also serves as Director of the Master of Engineering Management Program. In addition, he is a visiting scholar and research fellow at the MIT Sloan School's Initiative for the Digital Economy, where he leads platform industry research studies and co-chairs the annual MIT Platform Strategy Summit. His ambition is to understand the economics and strategy of network “platform” industries. He also co-developed the theory of “two sided networks,” which provides a mechanism to explain pricing in network markets. He is coauthor of the book “Platform Revolution.” Leonardo SerraSenior Consultant, Capgemini Invent, Visiting Scientist at MIT Sloan School Leonardo is a Senior Consultant at Capgemini Invent, focusing on platform economics and digital services. He worked on helping companies' ramp-up digital projects, adopt digital technologies, and implement platform strategies and new digital services. He's passionate about new technologies, their implementation into our everyday lives, and synergies between big companies and smaller innovative providers. He is currently a visiting scientist at MIT Sloan School of Management and conducting research on B2B platforms and their road to success. He holds a master's degree in Information Systems from the Technical University of Munich (TUM). Dr. Leonardo Weiss Ferreira ChavesGlobal Head of Intelligent Products & Services, Capgemini InventLeonardo is a Vice President at Capgemini Invent, leading the global activities around Intelligent Products and Services. His focus lies in helping companies to transform traditional products and services into green, intelligent ones to create new services and business models. He supports his clients from strategy, through product design, and into implementation, unlocking top line growth and process efficiency. Before joining Capgemini Invent, he worked at SAP Research, exploring how IoT can be used to transform companies' business models and processes. He holds a diploma in Computer Science and a PhD from the Karlsruhe Institute of Technology (KIT). You can listen back to some our previous episodes of Future Sight episodes below:Sustainability in Automotive https://www.capgemini.com/insights/research-library/all-roads-lead-to-sustainability/Sustainable IT https://www.capgemini.com/insights/research-library/future-sight-it-takes-ctrl-the-sustainable-way/Future Sight podcast is brought to you by Capgemini Invent and lead by Afashan Sayyed.This episode was hosted by Liz Lugnier and produced by Thomas O'Mahony.You can find out more about them at https://www.capgemini.com/service/invent/ and follow them on Twitter https://twitter.com/CapgeminiInvent.
Our guest answers a couple of fundamental questions an SIBs. Stefano Passerini is a Professor at the Karlsruhe Institute of Technology (KIT) and the Deputy Director at the Helmholtz Institute Ulm (HIU). He has been researching sodium as a sustainable battery material for more than 10 years.
On this episode, Sabine VdL interviews Dr Dietmar Kottmann, a Partner of Oliver Wyman in Munich and a member of the insurance, and the digital practices. Dietmar has more than 20 years of management and strategic consulting experience. During this time, he has led numerous projects on strategy, IT, operational strategy, organisation, and digitisation. He leads insurance in the DACH region and is the lead author of the “InsurTech radar” series. KEY TAKEAWAYS One of the most negative examples I had in my consulting career was in the .com days. We did a large ecommerce strategy project for one of the large travel players and the core strategy we recommended for them, we know today with hindsight that it was the right strategy because it was later executed by a startup, but the client was unable to execute it. Even though, intellectually it was spot on, we were unable to set up the client for success. That keeps me awake at night. Consulting is not R&D, or what you do at university, it’s generating real impact for your clients. Oliver Wyman – more or less – has three kinds of clients 1) financial sponsors who want to invest in (digital) insurance businesses, 2) customers who want to build something new in the InsurTech space, 3) helping our incumbent clients transform and become more successful in the digital world. This last one is our bread and butter. There are always three kinds of innovation: 1) efficiency innovations – reducing waste, 20 sustaining innovations – making the product better every year with features, coverages, engagement models, 3) market creating innovations – where you think about how the market is changing and where you position yourself for future success. When you think about a problem you have to start with someone whose life and existence you might want to improve – a company or individual. What progress are they seeking – functional, emotional, social? All three must be considered to help the customer. That is the most fun part of the business, really thinking about what we’re doing in a fundamental way and going much, much deeper and being much more interesting and playing to my curiosity than “how can I advance the next generation of my product”. BEST MOMENTS ‘I started my career on the nerd side of the universe, playing with computers and programming on a Sinclair Zx81. Since then I looked for a career that allowed me to combine my passion with technology and computer science with effecting something in the real world: Strategy Consulting.’ ‘There’s one big theme in my life: Curiosity, like a child. That’s the big driver that gives me energy and drives me forward so I don’t repeat things and am open to new things and new developments.’ ‘Thinking about impact from day one, and embedding that impact into how you run your consulting project, I think that makes a difference.’ ‘When you look at what makes InsurTech business successful, it’s one of two kinds of business: 1) those who are looking are actually working on an inefficiency in a market and launch something that improves that by a large factor, 2) platform business models, a technology driven business model that rents market access to customers like Amazon.’ ABOUT THE GUEST Prior to joining Oliver Wyman, Dietmar worked at the Boston Consulting Group in Munich and New York, where he led various major strategy, IT and operations projects across an array of industries. Before working in management consulting, Dietmar held a number of technology roles in IT project management, system integration, sales, and education. Dietmar graduated from the Karlsruhe Institute of Technology (KIT) with a diploma and a PhD in computer science with honours and from the University of Hagen with a diploma in business administration. LinkedIn: https://www.linkedin.com/in/dietmar-kottmann-19620a/ ABOUT THE HOST Sabine is a corporate strategist turned entrepreneur. She is the CEO and Managing Partner of Alchemy Crew, a venture lab that accelerates the curation, validation, and commercialization of new tech business models. Sabine is renowned within the insurance sector for building some of the most renowned tech startup accelerators around the world working with over 30 corporate insurers and accelerating over 100 startup ventures. Sabine is the co-editor of the bestseller The INSURTECH Book, a top 50 Women in Tech, a FinTech and InsurTech Influencer, an investor & multi-award winner. Twitter: SabineVdLLinkedIn: Sabine VanderLindenInstagram: sabinevdLofficialFacebook: SabineVdLOfficialTikTok: sabinevdlofficialEmail: podcast@sabinevdl.comWebsite: www.sabinevdl.com This show was brought to you by Progressive Media
Join Dr. Peter Kotanko, MD, FASN Head of Biomedical Evidence Generation and Renal Research Institute, and Axel Loewe, PhD, Group Leader "Computational Cardiac Modeling" at Karlsruhe Institute of Technology (KIT) as they discuss the opportunities that the electrocardiogram (ECG) offers for the detection of electrolyte imbalances. The advantages of the ECG and the current state of the art of manual and automatic algorithms are summarized. A particular field of interest is the use of machine learning methods for an automatic classification or regression of electrolyte imbalances and concentrations, respectively.
Transport represents almost a quarter of Europe's greenhouse gas emissions and is the main course of air pollution in cities. The transport sector has not seen the same gradual decline in emissions, as other sectors. Emissions just started decreasing in 2007 and still remain higher than in 1990. Hence, let's have a look at this sector to actually understand it a bit better and its current state. For this episode, we're joined by the Coordinator of Business Unit Energy Economy at Fraunhofer Institute for Systems and Innovation Research ISI, Priv.-Doz. Dr. Patrick Plötz. He has studied Physics in Greifswald, St. Petersburg and Göttingen and did his thesis in Theoretical Physics on correlated electrons in one-dimensional systems. He holds a Doctorate degree in Theoretical Physics from the University of Heidelberg (Institute for Theoretical Physics) on complex dynamics in cold atomic gases. Fom January to December 2011 he was a researcher in the Competence Center Energy Policy and Energy Systems at the Fraunhofer Institute for Systems and Innovation Research ISI, and since January 2012 in the Competence Center Energy Technology and Energy Systems. Since 2020 he's been the Coordinator of Business Unit Energy Economy, and a private lecturer at the Karlsruhe Institute of Technology (KIT). — The NTNU Energy Transition Podcast aims to function as a knowledge hub that empowers individuals and organizations in Europe and beyond to tackle climate change and move our global society toward carbon neutrality. New episodes every Thursday. The NTNU Energy Transition Initiative was established to deliver world-leading research on energy transition strategies, to achieve the Paris ambitions in an efficient and realistic way. Every spring we organize the NTNU Energy Conference in Trondheim, Norway. You can find us on Twitter, LinkedIn, and on our webpage. Please reach out by mail to energytransition@ntnu.no.
Gudrun spricht in dieser Folge mit Pauline Brumm von der TU Darmstadt über Benetzung im Tiefdruck. Sie ist wissenschaftliche Mitarbeiterin am Institut für Druckmaschinen und Druckverfahren und promoviert im SFB 1194 zur Mechanischen Zwangsbenetzung von Oberflächen durch gravierte Tiefdruckzylinder im Teilprojekt C01. Es handelt sich um eine Weiterführung des Gesprächs mit Dr. Mathis Fricke im Modellansatz-Podcast Folge 242 über Dynamische Benetzung. Herr Fricke hatte über die Arbeit im SFB 1194 aus Sicht der Mathematik berichtet, Frau Brumm liefert in dieser Folge nun einen Beitrag aus Sicht der Anwendung. Sie hat Maschinenbau im Bachelor und Master an der TU Darmstadt studiert und sich auf Drucktechnik spezialisiert. Drucken wird seit hunderten von Jahren praktiziert und angewendet, jedoch gibt es bisher noch keine umfassende Modellbildung für viele Druckprozesse. Das bedeutet, dass ein Großteil des Wissens empirisch geprägt ist. Firmen stützen sich auf die Erfahrung von gelernten Drucktechnikern, jedoch ist diese Erfahrung nur selten öffentlich zugänglich und es gibt wenige Forschungsinstitute weltweit zum Thema Drucktechnik. Um innovative Anwendungen zu entwickeln, zum Beispiel aus dem Bereich der gedruckten Elektronik, bedarf es jedoch einer detaillierten Modellvorstellung des Druckprozesses, um klassische Druckverfahren aus dem grafischen Druck (Zeitungsdruck, Verpackungsdruck etc.) für den sogenannten „funktionalen Druck“ nutzbar zu machen. Die Schwierigkeit liegt darin, dass an den funktionalen Druck ganz andere Anforderungen gestellt werden, zum Beispiel müssen die gedruckten, häufig ultradünnen Schichten geschlossen, fehlerfrei und von konstanter Schichtdicke sein. Ein häufiger Druckfehler ist das sogenannte „Viscous Fingering“, eine hochdynamische Grenzflächeninstabilität bei der Fluidübertragung, die sich in Form von faszinierenden, verästelten, fingerartigen Strukturen in der gedruckten Schicht bemerkbar macht. Sie sehen so ähnlich aus wie die Arme eines Flussdeltas aus Vogelperspektive oder die Wurzeln von Bäumen. In ihrer Forschung untersucht Frau Brumm diese verästelten Strukturen im Tiefdruck, um sie besser zu verstehen und um den Druckfehler in Zukunft zu verhindern oder für spezielle Anwendungen nutzbar zu machen. Beim Tiefdruck wird die Farbe über gravierte Näpfchen in einem Druckzylinder übertragen. Die Näpfchen liegen vertieft und sind nur wenige zehn Mikrometer groß. Beim Kontakt mit dem zu bedruckenden Substrat (Papier, Folie, Glas…) wird die Druckfarbe unter hohem Druck und hoher Geschwindigkeit aus den Näpfchen herausgesaugt. Es kommt zur Zwangsbenetzung des Substrats. Mit Stokes-Gleichungen kann man Parametermodelle herleiten, welche das Skalierungsverhalten der verästelten, gedruckten Strukturen beschreiben. Zum Beispiel skaliert der dominante Abstand der gedruckten Strukturen mit der Druckgeschwindigkeit hoch minus ein Halb laut Sauer et al. (2015), welches dem 60 Jahre alten Skalengesetz von Saffman und Taylor (1958) entspricht. Mit Experimenten können diese Modelle bestätigt oder widerlegt werden. Die Planung von Experimenten geschieht zielgerichtet. Im Vorfeld muss überlegt werden, welche Parameter im Experiment variiert werden sollen und wie viele Messpunkte benötigt werden, um statistisch abgesicherte Aussagen treffen zu können. Meistens ist die Herausforderung, die Vielzahl der Parameterkombinationen auf ein Minimum zu reduzieren und dennoch die gewünschten Aussagen treffen zu können. Die gedruckten Proben werden hochauflösend mit einem Flachbettscanner digitalisiert und danach werden Bildverarbeitungsmethoden in den ingenieurstypischen Programmiersprachen Matlab oder Python angewendet. Beispielsweise wird eine Fast Fourier Transformation (FFT) benutzt, um den dominanten Abstand der gedruckten Strukturen zu ermitteln. Die Automatisierung des Experiments und vor allem der anschließenden Auswertung ist ein weiterer wichtiger Punkt. Um zehntausende von gedruckten Mustern zu analysieren, wurde ein hochautomatisierter computergestützter Workflow entwickelt. Seit kurzem wird von Frau Brumm auch Künstliche Intelligenz, genauer gesagt Deep Learning, zur Klassifizierung der gedruckten Muster verwendet. Dies ist notwendig, um die Skalierbarkeit hin zu industriellen Prozessen zu ermöglichen, indem umfangreiche Versuchsreihen an industriellen Maschinen durchgeführt und automatisiert ausgewertet werden. Diese werden anschließend mit kleineren Versuchsreihen an speziell entwickelten Labormaschinen verglichen, bei denen teilweise auch Modellfluide anstelle von realen Druckfarben verwendet werden. Bei Laborexperimenten werden in Teilprojekt C01 im SFB 1194 auch Hochgeschwindigkeitsvideos der hochdynamischen Grenzflächeninstabilität aufgenommen, die noch tiefere Einblicke in die Strömungsdynamik bieten und die industriellen Experimente ergänzen und erklären sollen. Der Maschinenbau ist sehr breit gefächert und das Studium muss dementsprechend auch breite Kenntnisse vermitteln. Beispielsweise werden umfangreiche Methoden aus der Mathematik gelehrt, damit ein/e Maschinenbau-Absolvent/in für die diversen Anwendungsaufgaben gerüstet ist. In der modernen Forschung ist die Fähigkeit zur interdisziplinären Zusammenarbeit und zur Wissenschaftskommunikation sehr entscheidend. Maschinenbauer/innen im SFB 1194 arbeiten beispielsweise mit Mathematikern/innen, Physikern/innen und Informatikern/innen zusammen, um eine größere Forschungsfrage zu beantworten. In dieser Podcast-Folge wird auch an junge Frauen appelliert, ein MINT-Studium auszuprobieren, um mehr Diversität im Studium, Forschung und Industrie zu erreichen, um am Ende noch innovativere Lösungen zu schaffen, die der Welt einen Nutzen bringen. Literatur und weiterführende Informationen Pauline Brumm, Tim Eike Weber, Hans Martin Sauer, and Edgar Dörsam: Ink splitting in gravure printing: localization of the transition from dots to fingers. J. Print Media Technol. Res. Vol. 10 No. 2 (2021), 81-93 Pauline Brumm, Hans Martin Sauer, and Edgar Dörsam: Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process. Colloids and Interfaces, Vol. 3 No. 1 (2019), 37 Hans Martin Sauer; Dominik Daume, and Edgar Dörsam: Lubrication theory of ink hydrodynamics in the flexographic printing nip. Journal of Print and Media Technology Research, Vol. 4 No. 3 (2015), 163-172 Julian Schäfer, Ilia V. Roisman, Hans Martin Sauer, and Edgar Dörsam: Millisecond fluid pattern formation in the nip of a gravure printing machine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 575 (2019), 222-229 Philip Geoffrey Saffman, and Geoffrey Ingram Taylor: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences Vol. 245 No. 1242 (1958), 312-329 Podcasts M. Fricke, G. Thäter: Dynamische Benetzung, Gespräch im Modellansatz Podcast, Folge 242, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. M. Haragus, G. Thäter: Pattern Formation, Conversation im Modellansatz Podcast, Episode 227, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. S. Winter: Fraktale Geometrie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 120, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. S. Lerch, G. Thaeter: Machine Learning, Gespräch im Modellansatz Podcast, Folge 232, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
1956 ist entschieden: In Karlsruhe soll der erste atomare Forschungsreaktor der Bundesrepublik entstehen. Physik-Nobelpreisträger Werner Heisenberg hatte sich für München stark gemacht, denn er ist mit seiner Forschungsgruppe aus Göttingen dorthin gezogen. Doch Kanzler Konrad Adenauer entscheidet zugunsten von Karlsruhe. Eine Rolle spielen dabei auch sicherheitspolitische Erwägungen. München liegt Adenauer zu nahe an der aus Moskau kontrollierten Tschechoslowakei. Zur Vertragsunterzeichnung schickt der Kanzler seinen Atomminister Franz Josef Strauß nach Karlsruhe. Wir hören zunächst den Bericht vom Festakt, anschließend eine Umfrage, die die Stimmung der Karlsruher widerspiegelt. Die Bauarbeiten in Karlsruhe beginnen zunächst am Rhein bei Maxau. Doch nach einem Jahr ist klar: Das ist wegen der Hochwassergefährdung dann doch zu unsicher. Das Kernforschungszentrum entsteht schließlich weiter vom Fluss entfernt, bei Leopoldshafen. Der Reaktor geht wegen dieser und anderer Verzögerungen erst 1961 in Betrieb und wird deshalb nicht der erste Reaktor in der Bundesrepublik – das wird der in Garching, zu dessen Inbetriebnahme wir im SWR2 Archivradio eine eigene Aufnahme haben. Das Kernforschungszentrum Karlsruhe wird später in Forschungszentrum Karlsruhe umbenannt und fusioniert 2009 mit der Universität zum heutigen Karlsruhe Institute of Technology KIT.
Ginkgo is a production-ready, sparse linear algebra library used for HPC on GPU architectures. It's now using oneAPI cross-architecture programming to support its foundational design with a high level of performance portability, and focus on software sustainability. ExpertsHartwig Anzt at Karlsruhe Institute of Technology (KIT) and Univ. of Tennessee, and Terry Cojean of KIT provide […]
Ginkgo is a production-ready, sparse linear algebra library used for HPC on GPU architectures. It's now using oneAPI cross-architecture programming to support its foundational design with a high level of performance portability, and focus on software sustainability. ExpertsHartwig Anzt at Karlsruhe Institute of Technology (KIT) and Univ. of Tennessee, and Terry Cojean of KIT provide […]
Ginkgo is a production-ready, sparse linear algebra library used for HPC on GPU architectures. It's now using oneAPI cross-architecture programming to support its foundational design with a high level of performance portability, and focus on software sustainability. ExpertsHartwig Anzt at Karlsruhe Institute of Technology (KIT) and Univ. of Tennessee, and Terry Cojean of KIT provide […]
Is evolution incompatible with Christianity? Is Genesis 1-3 literal history? We discuss this and more with Zachary Ardern. Zachary is a Christian and an evolutionary biologist using microbial genome and gene expression data to answer fundamental evolutionary questions and to understand microbial diversity better (we'll ask him what this means). Originally from New Zealand, Zachary is currently a postdoctoral researcher at the Karlsruhe Institute of Technology (KIT), in Germany. Prior to this he was a junior group leader at the chair of Microbial Ecology at the Technical University of Munich, and later this year will move to the Wellcome Sanger Institute as a postdoctoral fellow. More about Zachary at his website here: https://zacharyardern.com/ #evolution #genesis #christianity --- About the channel --- Dan and Phil are mates who like talking apologetics, philosophy, ethics and theology. They interview Christians who are evangelists, authors, scientists, apologists, comedians or simply interested in talking about big topics. In the future, we're looking to interview people from other faiths and atheists in a non-confrontational format. We put all interviews on a podcast. We aim to update the podcast every other week: https://criticalwitness.uk/podcast If long form interviews aren't your thing and you just want short, digestible videos, subscribe for our #shortconvos from our longer conversations that come when we have time. Follow us on Facebook, Twitter and Insta and let us know what you think of the conversations. Find: @CritWitnessUK Finally we're looking to feature other writings on our website. If you write on the topics above get in touch! https://criticalwitness.uk/blog Want more content? Support what we do on patreon: https://www.patreon.com/criticalwitness
It is time to celebrate a wonderful TVET success story! Join us as we celebrate the fiftieth anniversary of the Kiribati Institute of Technology (KIT) with special guest Anthony Bailey. The Kiribati Institute of Technology is a large Pacific TVET institution that exemplifies national and regional success. Our guest Anthony Bailey is a Strategic Advisor to the institution. Join us as we discuss the history vibrancy and ultimately the regional success of the Kiribati Institute of Technology. The episode was recorded remotely during Australia's 2020 COVID-19 lockdown conditions.
Today's Coffee Connection is Amy Lebanoff, DAAD RISE Germany and DAAD Young Ambassador Alumna. Amy participated in the DAAD RISE Germany program – a paid 10-12 week summer research internship program for undergraduate STEM students. In our conversation, she talks about her experience as a research intern at the Karlsruhe Institute of Technology (KIT) and her activities outside of the lab. For interested applicants, Amy shares detailed information about the application procedure and what applicants can do to stand out in the selection process. You can connect with Amy via Amylebanoff@gmail.com.
Gudrun sprach Mitte März 2020 mit Franziska Blendin. Das Gespräch fand statt, während beide sich in ihrem jeweiligen Wohnzimmern aufhielten: Gudrun in Karlsruhe und Franziska in Frankfurt (Main). Seit drei Semestern absolviert Franziska ein Online Studium an der Fachhochschule Frankfurt und strebt einen Bachelor in Maschinenbau an. Gudrun wollte gern von ihr erfahren, wieso sie sich für diesen Weg entschieden hat und was ihre Erfahrungen mit dieser besonderen Art des Studiums sind. Franziska hat nicht im Gymnasium Abitur gemacht, sondern ein Fachabitur im Rahmen einer Ausblidung zur Sozialassistentin im Fachbereich Pflege. Während ihrer Tätigkeit als Assistentin einer Rollstuhlfahrerin kam die Idee auf, dass sich Franziska bei dem Rollstuhlhersteller schlau machen könnte, um auch kleine Reparaturen oder Anpassungen an dem Gerät übernehmen zu können. So kam es zu einem Praktikum in dem mittelständischen Unternehmen, das den Rollstuhl herstellt. In der Zeit wuchs ihr die Flex ans Herz und es wurde die Idee geboren, so einen Beruf zu erlernen. Sie hat als Zerspanerin und Schlosserin gearbeitet, wollte allerdings auf jedenfall noch eine Fortbildung machen. Im Prinzip hätten zunächst die Möglichkeiten, einen Meister zu machen oder eine Techniker-Ausbildung neben dem Beruf zu absolvieren nahe gelegen. Aber die Erfahrung zeigte Franziska, dass es als Frau ohnehin nicht so leicht ist, für diese Stellen in die engere Wahl zu kommen und dass diese handwerkstypischen Abschlüsse häufig nicht entsprechend gewürdigt werden. Vom Lernaufwand neben der Erwerbsarbeit sind diese Wege aber ähnlich. So hat sich Franziska für ein online Studium entschieden. Der große Vorteil ist, dass es zeitlich flexibler ist und deshalb leichter mit einer Berufstätigkeit passend gemacht werden kann. Bei 100% Job schafft man aber nicht so viel, wie der ideale Plan bis zum Bachelor vorsieht, sondern eher so 3-4 Fächer (das sind 15-20 Leistungspunkte statt der im Plan avisierten 30 Punkte pro Semester - jeder Leistungspunkt entspricht dabei etwa 30 Zeitstunden Aufwand). Hinzu kommt, dass eigentlich alle, deren Abitur schon eine Weile zurück liegt und die vielleicht ein Schmalspurabi wie Franziska haben, Probleme mit Mathe und anderen Naturwissenschaften haben. Franziska ist z.B. sehr froh, dass sie nun nach drei Semestern endlich Mathe 1 bestanden hat (Mathe 2 fiel ihr dann nicht so schwer). Für jedes Modul sind drei Anwesenheitszeiten pro Semester geplant, die ausnahmsweise auch als Webkonferenz durchgeführt werden, in der die Studierenden Fragen stellen können. Den Stoff muss man sich vorher selbst z.B. mit Hilfe eines Lernprogramms oder dem Skript erarbeiten. Wöchentlich gibt es 60-90 min Vorlesung als Webkonferenz - das ist aber mehr eine Zusammenfassung des Stoffs und reicht nicht, um den Stoff zu verstehen. Außerdem müssen noch zwei Hausarbeiten eingesendet werden, um zur Prüfung zugelassen zu werden. Franziska freut sich darauf, bald Anwendungen der Mathematik im Fach Technische Schwingungen und Regelungstechnik zu sehen. Und auch die Module Technische Mechanik 1,2 und 3 waren schon viel Mathematik, haben aber Spaß gemacht. Sie hat die drei Module sofort bestanden obwohl das als schwieriges Fach gilt. In der Thermodynamik hilft ihr auch die Erfahrung aus der Berufspraxis sehr. Franziskas Vater war Mathelehrer und ist eigentlich im Ruhestand. Allerdings ist er inzwischen als Tutor für Mathe 1 an der Hochschule in Frankfurt tätig und als Team haben er und Franziska nun die Prüfung in Mathe 1 zu den Akten gelegt. Gudrun und Franziska haben sich im November 2017 beim Podäppler Workshop in Frankfurt kennengelernt. Gudrun kannte zu dem Zeitpunkt Tine Nowak aus Frankfurt aus dem Netzwerk der Wissenschaftspodcaster und Tine hatte Gudrun schon mehrfach nach Frankfurt zum Podcaster Stammtisch eingeladen bis es endlich für den Workshop geklappt hat. Franziska macht mehrere Podcasts und zwar über Fußball, Kinderbücher und Zerspanungsmaschinen. Außerdem malt sie Mathecomics - vor allem in heißen Lernphasen. Und weil das noch nicht genug ist, hat sie eine Fußballfibel über den FSV Frankfurt geschrieben, die gerade erschienen ist. Die wegen der Corona-Quarantäne ausgefallene Lesereise holt sie gerade per Youtube Livestreams nach. Literatur und weiterführende Informationen Veranstaltung zum Erscheinen der Fußballfibel F. Blendin: Fußballfibel FSV Frankfurt Redtenbacher als Mathematisierer des Maschinenbaus MINT-Kolleg Baden-Württemberg Podcasts von Franziska Hangcasting - Neues aus Bernem FSV Frankfurt Fan Podcast von Jörg und Franzi. Kinderbücher G4 Pocast über CNC-Maschinen (Thema Zerspanung, zuletzt mit Sonderfolgen zum Lernen im Studium) Von Hamstern, Monstern und Suppenkaspern - ein Kinder- und Jugendliteratur Podcast Podcasts zum Thema Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
Dr. Martin Sand works at the Department of Values, Technology and Innovation at TU Delft as a Marie Skłodowska-Curie-Fellow with a project on “Moral Luck in Science and Innovation”. He studied „European Culture and History of Ideas” at the Karlsruhe Institute of Technology (KIT) focusing on philosophy and ethics of technology. Sand obtained his PhD in 2018 with the thesis „Futures, Visions, and Responsibility-An Ethics of Innovation“, which was completed at the Institute of Technology Assessment and Systems Analysis (ITAS).The thesis was supervised by Prof. dr. Armin Grunwald (KIT) and Prof. dr. Ibo van de Poel (TU Delft). Sand is a member of the editorial board of the Springer journal Philosophy of Management and a member of the Serendipity Society. During his PhD, he taught business ethics and engineering ethics at the Technical University Kaiserslautern and Baden-Württemberg Cooperative State University Karlsruhe.https://www.tudelft.nl/tbm/over-de-faculteit/afdelingen/values-technology-and-innovation/people/postdocs/dr-m-martin-sand/
Dr. Martin Sand works at the Department of Values, Technology and Innovation at TU Delft as a Marie Skłodowska-Curie-Fellow with a project on “Moral Luck in Science and Innovation”. He studied „European Culture and History of Ideas” at the Karlsruhe Institute of Technology (KIT) focusing on philosophy and ethics of technology. Sand obtained his PhD in 2018 with the thesis „Futures, Visions, and Responsibility-An Ethics of Innovation“, which was completed at the Institute of Technology Assessment and Systems Analysis (ITAS).The thesis was supervised by Prof. dr. Armin Grunwald (KIT) and Prof. dr. Ibo van de Poel (TU Delft). Sand is a member of the editorial board of the Springer journal Philosophy of Management and a member of the Serendipity Society. During his PhD, he taught business ethics and engineering ethics at the Technical University Kaiserslautern and Baden-Württemberg Cooperative State University Karlsruhe.https://www.tudelft.nl/tbm/over-de-faculteit/afdelingen/values-technology-and-innovation/people/postdocs/dr-m-martin-sand/
In March 2018 Gudrun had a day available in London when travelling back from the FENICS workshop in Oxford. She contacted a few people working in mathematics at the University College London (ULC) and asked for their time in order to talk about their research. In the end she brought back three episodes for the podcast. This is the second of these conversations. Gudrun talks to Marta Betcke. Marta is associate professor at the UCL Department of Computer Science, member of Centre for Inverse Problems and Centre for Medical Image Computing. She has been in London since 2009. Before that she was a postdoc in the Department of Mathematics at the University of Manchester working on novel X-ray CT scanners for airport baggage screening. This was her entrance into Photoacoustic tomography (PAT), the topic Gudrun and Marta talk about at length in the episode. PAT is a way to see inside objects without destroying them. It makes images of body interiors. There the contrast is due to optical absorption, while the information is carried to the surface of the tissue by ultrasound. This is like measuring the sound of thunder after lightning. Measurements together with mathematics provide ideas about the inside. The technique combines the best of light and sound since good contrast from optical part - though with low resolution - while ultrasound has good resolution but poor contrast (since not enough absorption is going on). In PAT, the measurements are recorded at the surface of the tissue by an array of ultrasound sensors. Each of that only detects the field over a small volume of space, and the measurement continues only for a finite time. In order to form a PAT image, it is necessary to solve an inverse initial value problem by inferring an initial acoustic pressure distribution from measured acoustic time series. In many practical imaging scenarios it is not possible to obtain the full data, or the data may be sub-sampled for faster data acquisition. Then numerical models of wave propagation can be used within the variational image reconstruction framework to find a regularized least-squares solution of an optimization problem. Assuming homogeneous acoustic properties and the absence of acoustic absorption the measured time series can be related to the initial pressure distribution via the spherical mean Radon transform. Integral geometry can be used to derive direct, explicit inversion formulae for certain sensor geometries, such as e.g. spherical arrays. At the moment PAT is predominantly used in preclinical setting, to image tomours and vasculature in small animals. Breast imaging, endoscopic fetus imaging as well as monitoring of perfusion and drug metabolism are subject of intensive ongoing research. The forward problem is related to the absorption of the light and modeled by the wave equation assuming instanteneous absorption and the resulting thearmal expansion. In our case, an optical ultrasound sensor records acoustic waves over time, i.e. providing time series with desired spacial and temporal resolution. Given complete data, then one can mathematically reverse the time direction and find out the original object. Often it is not possible to collect a complete data due to e.g. single sided access to the object as in breast imaging or underlying dynamics happening on a faster rate than one can collect data. In such situations one can formulate the problem in variational framework using regularisation to compensate for the missing data. In particular in subsampling scenario, one would like to use raytracing methods as they scale linearly with the number of sensors. Marta's group is developing flexible acoustic solvers based on ray tracing discretisation of the Green's formulas. They cannot handle reflections but it is approximately correct to assume this to be true as the soundspeed variation is soft tissue is subtle. These solvers can be deployed alongside with stochastic iterative solvers for efficient solution of the variational formulation. Marta went to school in Poland. She finished her education there in a very selected school and loved math due to a great math teacher (which was also her aunt). She decidede to study Computer Sciences, since there she saw more chances on the job market. When moving to Germany her degree was not accepted, so she had to enrol again. This time for Computer Sciences and Engineering at the Hamburg University of Technology. After that she worked on her PhD in the small group of Heinrich Voss there. She had good computing skills and fit in very well. When she finished there she was married and had to solve a two body problem, which brought the couple to Manchester, where a double position was offered. Now both have a permanent position in London. References M. Betcke e.a.: Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography IEEE Transactions on Medical Imaging 37, 1382 - 1393, 2018. F. Rullan & M. Betcke: Hamilton-Green solver for the forward and adjoint problems in photoacoustic tomography archive, 2018. M. Betcke e.a.: On the adjoint operator in photoacoustic tomography Inverse Problems 32, 115012, 2016. doi C. Lutzweiler and D. Razansky: Optoacoustic imaging and tomography - reconstruction approaches and outstanding challenges in image performance and quantification, Sensors 13 7345, 2013. doi: 10.3390/s130607345 Podcasts G. Thäter, K. Page: Embryonic Patterns, Gespräch im Modellansatz Podcast, Folge 161, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. F. Cakoni, G. Thäter: Linear Sampling, Conversation im Modellansatz Podcast, Episode 226, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. G. Thäter, R. Aceska: Dynamic Sampling, Gespräch im Modellansatz Podcast, Folge 173, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. S. Hollborn: Impedanztomographie. Gespräch mit G. Thäter im Modellansatz Podcast, Folge 68, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
In March 2018 Gudrun had a day available in London when travelling back from the FENICS workshop in Oxford. She contacted a few people working in mathematics at the University College London (ULC) and asked for their time in order to talk about their research. In the end she brought back three episodes for the podcast. This is the second of these conversations. Gudrun talks to Marta Betcke. Marta is associate professor at the UCL Department of Computer Science, member of Centre for Inverse Problems and Centre for Medical Image Computing. She has been in London since 2009. Before that she was a postdoc in the Department of Mathematics at the University of Manchester working on novel X-ray CT scanners for airport baggage screening. This was her entrance into Photoacoustic tomography (PAT), the topic Gudrun and Marta talk about at length in the episode. PAT is a way to see inside objects without destroying them. It makes images of body interiors. There the contrast is due to optical absorption, while the information is carried to the surface of the tissue by ultrasound. This is like measuring the sound of thunder after lightning. Measurements together with mathematics provide ideas about the inside. The technique combines the best of light and sound since good contrast from optical part - though with low resolution - while ultrasound has good resolution but poor contrast (since not enough absorption is going on). In PAT, the measurements are recorded at the surface of the tissue by an array of ultrasound sensors. Each of that only detects the field over a small volume of space, and the measurement continues only for a finite time. In order to form a PAT image, it is necessary to solve an inverse initial value problem by inferring an initial acoustic pressure distribution from measured acoustic time series. In many practical imaging scenarios it is not possible to obtain the full data, or the data may be sub-sampled for faster data acquisition. Then numerical models of wave propagation can be used within the variational image reconstruction framework to find a regularized least-squares solution of an optimization problem. Assuming homogeneous acoustic properties and the absence of acoustic absorption the measured time series can be related to the initial pressure distribution via the spherical mean Radon transform. Integral geometry can be used to derive direct, explicit inversion formulae for certain sensor geometries, such as e.g. spherical arrays. At the moment PAT is predominantly used in preclinical setting, to image tomours and vasculature in small animals. Breast imaging, endoscopic fetus imaging as well as monitoring of perfusion and drug metabolism are subject of intensive ongoing research. The forward problem is related to the absorption of the light and modeled by the wave equation assuming instanteneous absorption and the resulting thearmal expansion. In our case, an optical ultrasound sensor records acoustic waves over time, i.e. providing time series with desired spacial and temporal resolution. Given complete data, then one can mathematically reverse the time direction and find out the original object. Often it is not possible to collect a complete data due to e.g. single sided access to the object as in breast imaging or underlying dynamics happening on a faster rate than one can collect data. In such situations one can formulate the problem in variational framework using regularisation to compensate for the missing data. In particular in subsampling scenario, one would like to use raytracing methods as they scale linearly with the number of sensors. Marta's group is developing flexible acoustic solvers based on ray tracing discretisation of the Green's formulas. They cannot handle reflections but it is approximately correct to assume this to be true as the soundspeed variation is soft tissue is subtle. These solvers can be deployed alongside with stochastic iterative solvers for efficient solution of the variational formulation. Marta went to school in Poland. She finished her education there in a very selected school and loved math due to a great math teacher (which was also her aunt). She decidede to study Computer Sciences, since there she saw more chances on the job market. When moving to Germany her degree was not accepted, so she had to enrol again. This time for Computer Sciences and Engineering at the Hamburg University of Technology. After that she worked on her PhD in the small group of Heinrich Voss there. She had good computing skills and fit in very well. When she finished there she was married and had to solve a two body problem, which brought the couple to Manchester, where a double position was offered. Now both have a permanent position in London. References M. Betcke e.a.: Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography IEEE Transactions on Medical Imaging 37, 1382 - 1393, 2018. F. Rullan & M. Betcke: Hamilton-Green solver for the forward and adjoint problems in photoacoustic tomography archive, 2018. M. Betcke e.a.: On the adjoint operator in photoacoustic tomography Inverse Problems 32, 115012, 2016. doi C. Lutzweiler and D. Razansky: Optoacoustic imaging and tomography - reconstruction approaches and outstanding challenges in image performance and quantification, Sensors 13 7345, 2013. doi: 10.3390/s130607345 Podcasts G. Thäter, K. Page: Embryonic Patterns, Gespräch im Modellansatz Podcast, Folge 161, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. F. Cakoni, G. Thäter: Linear Sampling, Conversation im Modellansatz Podcast, Episode 226, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. G. Thäter, R. Aceska: Dynamic Sampling, Gespräch im Modellansatz Podcast, Folge 173, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. S. Hollborn: Impedanztomographie. Gespräch mit G. Thäter im Modellansatz Podcast, Folge 68, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
This is the third of three conversation recorded during the Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Anne-Sophie Bonnet-BenDhia from ENSTA in Paris about transmission properties in perturbed waveguides. The spectral theory is essential to study wave phenomena. For instance, everybody has experimented with resonating frequencies in a bathtube filled with water. These resonant eigenfrequencies are eigenvalues of some operator which models the flow behaviour of the water. Eigenvalue problems are better known for matrices. For wave problems, we have to study eigenvalue problems in infinite dimension. Like the eigenvalues for a finite dimensional matrix the Spectral theory gives access to intrinisic properties of the operator and the corresponding wave phenomena. Anne-Sophie is interested in waveguides. For example, optical fibres can guide optical waves while wind instruments are guides for acoustic waves. Electromagnetic waveguides also have important applications. A practical objective is to optimize the transmission in a waveguide, even if there are some perturbations inside. It is known that for certain frequencies, there is no reflection by the perturbations but it is not apriori clear how to find these frequencies. Anne-Sophie uses complex analysis for that. The idea is to complexify the (originally real) coordinates by analytic extension. It is a classic idea for resonances that she adapts to the problem of transmission. This mathematical method of complex scaling is linked to the method of perfectly matched layers in numerics. It is used to solve problems set in unbounded domains on a computer by finite elements. Thanks to the complex scaling, she can solve a problem in a bounded domain, which reproduces the same behaviour as in the infinite domain. Finally, Anne-Sophie is able to get numerically a complex spectrum of frequencies, related to the quality of the transmission in a perturbed waveguide. The imaginary part of the complex quantity gives an indication of the quality of the transmission in the waveguide. The closer to the real axis the better the transmission. References A-S. Bonnet-BenDhia, L. Chesnel and V. Pagneux:Trapped modes and reflectionless modes as eigenfunctions of the same spectral problem Proceedings of the Royal Society A, 2018, doi 10.1098/rspa.2018.0050 A-S. Bonnet-BenDhia: Mathematical and numerical treatment of plasmonic waves at corners of metals and metamaterials Emerging Topics in Optics, IMA, Minneapolis, 2017 A-S. Bonnet-BenDhia, L. Chesnel and S. Nazarov: Perfect transmission invisibility for waveguides with sound hard walls Journal de Mathématiques Pures et Appliquées, 2017, doi 10.1016/j.matpur.2017.07.020 A.-S. Bonnet-BenDhia e.a.: A method to build non-scattering perturbations of two-dimensional acoustic waveguides Math. meth. appl. sci., vol. 40, pp. 335–349, 2015 doi 10.1002/mma.3447 Podcasts S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
This is the third of three conversation recorded during the Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Anne-Sophie Bonnet-BenDhia from ENSTA in Paris about transmission properties in perturbed waveguides. The spectral theory is essential to study wave phenomena. For instance, everybody has experimented with resonating frequencies in a bathtube filled with water. These resonant eigenfrequencies are eigenvalues of some operator which models the flow behaviour of the water. Eigenvalue problems are better known for matrices. For wave problems, we have to study eigenvalue problems in infinite dimension. Like the eigenvalues for a finite dimensional matrix the Spectral theory gives access to intrinisic properties of the operator and the corresponding wave phenomena. Anne-Sophie is interested in waveguides. For example, optical fibres can guide optical waves while wind instruments are guides for acoustic waves. Electromagnetic waveguides also have important applications. A practical objective is to optimize the transmission in a waveguide, even if there are some perturbations inside. It is known that for certain frequencies, there is no reflection by the perturbations but it is not apriori clear how to find these frequencies. Anne-Sophie uses complex analysis for that. The idea is to complexify the (originally real) coordinates by analytic extension. It is a classic idea for resonances that she adapts to the problem of transmission. This mathematical method of complex scaling is linked to the method of perfectly matched layers in numerics. It is used to solve problems set in unbounded domains on a computer by finite elements. Thanks to the complex scaling, she can solve a problem in a bounded domain, which reproduces the same behaviour as in the infinite domain. Finally, Anne-Sophie is able to get numerically a complex spectrum of frequencies, related to the quality of the transmission in a perturbed waveguide. The imaginary part of the complex quantity gives an indication of the quality of the transmission in the waveguide. The closer to the real axis the better the transmission. References A-S. Bonnet-BenDhia, L. Chesnel and V. Pagneux:Trapped modes and reflectionless modes as eigenfunctions of the same spectral problem Proceedings of the Royal Society A, 2018, doi 10.1098/rspa.2018.0050 A-S. Bonnet-BenDhia: Mathematical and numerical treatment of plasmonic waves at corners of metals and metamaterials Emerging Topics in Optics, IMA, Minneapolis, 2017 A-S. Bonnet-BenDhia, L. Chesnel and S. Nazarov: Perfect transmission invisibility for waveguides with sound hard walls Journal de Mathématiques Pures et Appliquées, 2017, doi 10.1016/j.matpur.2017.07.020 A.-S. Bonnet-BenDhia e.a.: A method to build non-scattering perturbations of two-dimensional acoustic waveguides Math. meth. appl. sci., vol. 40, pp. 335–349, 2015 doi 10.1002/mma.3447 Podcasts S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden. In the coming weeks until February 20, 2020, Anna Hein, student of science communication at KIT, intends to conduct a study on the Modellansatz Podcast within her master's thesis. For this purpose, she would like to conduct some interviews with you, the listeners of the Modellansatz Podcast, to find out who listens to the podcast and how and for what purpose it is used. The interviews will be anonymous and will take about 15 minutes each. To participate in the study, you can register with Anna Hein until 20.2.2020 at studie.modellansatz@web.de . We would be very pleased if many interested parties would contact us. This is the second of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Mariana Haragus about Benard-Rayleigh problems. On the one hand this is a much studied model problem in Partial Differential Equations. There it has connections to different fields of research due to the different ways to derive and read the stability properties and to work with nonlinearity. On the other hand it is a model for various applications where we observe an interplay between boyancy and gravity and for pattern formation in general. An everyday application is the following: If one puts a pan with a layer of oil on the hot oven (in order to heat it up) one observes different flow patterns over time. In the beginning it is easy to see that the oil is at rest and not moving at all. But if one waits long enough the still layer breaks up into small cells which makes it more difficult to see the bottom clearly. This is due to the fact that the oil starts to move in circular patterns in these cells. For the problem this means that the system has more than one solutions and depending on physical parameters one solution is stable (and observed in real life) while the others are unstable. In our example the temperature difference between bottom and top of the oil gets bigger as the pan is heating up. For a while the viscosity and the weight of the oil keep it still. But if the temperature difference is too big it is easier to redistribute the different temperature levels with the help of convection of the oil. The question for engineers as well as mathematicians is to find the point where these convection cells evolve in theory in order to keep processes on either side of this switch. In theory (not for real oil because it would start to burn) for even bigger temperature differences the original cells would break up into even smaller cells to make the exchange of energy faster. In 1903 Benard did experiments similar to the one described in the conversation which fascinated a lot of his colleagues at the time. The equations where derived a bit later and already in 1916 Lord Rayleigh found the 'switch', which nowadays is called the critical Rayleigh number. Its size depends on the thickness of the configuration, the viscositiy of the fluid, the gravity force and the temperature difference. Only in the 1980th it became clear that Benards' experiments and Rayleigh's analysis did not really cover the same problem since in the experiment the upper boundary is a free boundary to the surrounding air while Rayleigh considered fixed boundaries. And this changes the size of the critical Rayleigh number. For each person doing experiments it is also an observation that the shape of the container with small perturbations in the ideal shape changes the convection patterns. Maria does study the dynamics of nonlinear waves and patterns. This means she is interested in understanding processes which change over time. Her main questions are: Existence of observed waves as solutions of the equations The stability of certain types of solutions How is the interaction of different waves She treats her problems with the theory of dynamical systems and bifurcations. The simplest tools go back to Poincaré when understanding ordinary differential equations. One could consider the partial differential equations to be the evolution in an infinite dimensional phase space. Here, in the 1980s, Klaus Kirchgässner had a few crucial ideas how to construct special solutions to nonlinear partial differential equations. It is possible to investigate waterwave problems which are dispersive equations as well as flow problems which are dissipative. Together with her colleagues in Besancon she is also very keen to match experiments for optical waves with her mathematical analysis. There Mariana is working with a variant of the Nonlinear Schrödinger equation called Lugiato-Lefever Equation. It has many different solutions, e.g. periodic solutions and solitons. Since 2002 Mariana has been Professor in Besancon (University of Franche-Comté, France). Before that she studied and worked in a lot of different places, namely in Bordeaux, Stuttgart, Bucharest, Nice, and Timisoara. References V.A. Getling: Rayleigh-Bénard Convection Structures and Dynamics, Advanced Series in Nonlinear Dynamics, Volume 11, World Scientific, Oxford (1998) P. H. Rabinowitz: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rational Mech. Anal. (1968) 29: 32. M. Haragus and G. Iooss: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. Newell, Alan C. Solitons in mathematics and physics. CBMS-NSF Regional Conference Series in Applied Mathematics, 48. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. Y. K. Chembo, D. Gomila, M. Tlidi, C. R. Menyuk: Topical Issue: Theory and Applications of the Lugiato-Lefever Equation. Eur. Phys. J. D 71 (2017). Podcasts S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden. In the coming weeks until February 20, 2020, Anna Hein, student of science communication at KIT, intends to conduct a study on the Modellansatz Podcast within her master's thesis. For this purpose, she would like to conduct some interviews with you, the listeners of the Modellansatz Podcast, to find out who listens to the podcast and how and for what purpose it is used. The interviews will be anonymous and will take about 15 minutes each. To participate in the study, you can register with Anna Hein until 20.2.2020 at studie.modellansatz@web.de . We would be very pleased if many interested parties would contact us. This is the second of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Mariana Haragus about Benard-Rayleigh problems. On the one hand this is a much studied model problem in Partial Differential Equations. There it has connections to different fields of research due to the different ways to derive and read the stability properties and to work with nonlinearity. On the other hand it is a model for various applications where we observe an interplay between boyancy and gravity and for pattern formation in general. An everyday application is the following: If one puts a pan with a layer of oil on the hot oven (in order to heat it up) one observes different flow patterns over time. In the beginning it is easy to see that the oil is at rest and not moving at all. But if one waits long enough the still layer breaks up into small cells which makes it more difficult to see the bottom clearly. This is due to the fact that the oil starts to move in circular patterns in these cells. For the problem this means that the system has more than one solutions and depending on physical parameters one solution is stable (and observed in real life) while the others are unstable. In our example the temperature difference between bottom and top of the oil gets bigger as the pan is heating up. For a while the viscosity and the weight of the oil keep it still. But if the temperature difference is too big it is easier to redistribute the different temperature levels with the help of convection of the oil. The question for engineers as well as mathematicians is to find the point where these convection cells evolve in theory in order to keep processes on either side of this switch. In theory (not for real oil because it would start to burn) for even bigger temperature differences the original cells would break up into even smaller cells to make the exchange of energy faster. In 1903 Benard did experiments similar to the one described in the conversation which fascinated a lot of his colleagues at the time. The equations where derived a bit later and already in 1916 Lord Rayleigh found the 'switch', which nowadays is called the critical Rayleigh number. Its size depends on the thickness of the configuration, the viscositiy of the fluid, the gravity force and the temperature difference. Only in the 1980th it became clear that Benards' experiments and Rayleigh's analysis did not really cover the same problem since in the experiment the upper boundary is a free boundary to the surrounding air while Rayleigh considered fixed boundaries. And this changes the size of the critical Rayleigh number. For each person doing experiments it is also an observation that the shape of the container with small perturbations in the ideal shape changes the convection patterns. Maria does study the dynamics of nonlinear waves and patterns. This means she is interested in understanding processes which change over time. Her main questions are: Existence of observed waves as solutions of the equations The stability of certain types of solutions How is the interaction of different waves She treats her problems with the theory of dynamical systems and bifurcations. The simplest tools go back to Poincaré when understanding ordinary differential equations. One could consider the partial differential equations to be the evolution in an infinite dimensional phase space. Here, in the 1980s, Klaus Kirchgässner had a few crucial ideas how to construct special solutions to nonlinear partial differential equations. It is possible to investigate waterwave problems which are dispersive equations as well as flow problems which are dissipative. Together with her colleagues in Besancon she is also very keen to match experiments for optical waves with her mathematical analysis. There Mariana is working with a variant of the Nonlinear Schrödinger equation called Lugiato-Lefever Equation. It has many different solutions, e.g. periodic solutions and solitons. Since 2002 Mariana has been Professor in Besancon (University of Franche-Comté, France). Before that she studied and worked in a lot of different places, namely in Bordeaux, Stuttgart, Bucharest, Nice, and Timisoara. References V.A. Getling: Rayleigh-Bénard Convection Structures and Dynamics, Advanced Series in Nonlinear Dynamics, Volume 11, World Scientific, Oxford (1998) P. H. Rabinowitz: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rational Mech. Anal. (1968) 29: 32. M. Haragus and G. Iooss: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. Newell, Alan C. Solitons in mathematics and physics. CBMS-NSF Regional Conference Series in Applied Mathematics, 48. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. Y. K. Chembo, D. Gomila, M. Tlidi, C. R. Menyuk: Topical Issue: Theory and Applications of the Lugiato-Lefever Equation. Eur. Phys. J. D 71 (2017). Podcasts S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden. In the coming weeks until February 20, 2020, Anna Hein, student of science communication at KIT, intends to conduct a study on the Modellansatz Podcast within her master's thesis. For this purpose, she would like to conduct some interviews with you, the listeners of the Modellansatz Podcast, to find out who listens to the podcast and how and for what purpose it is used. The interviews will be anonymous and will take about 15 minutes each. To participate in the study, you can register with Anna Hein until 20.2.2020 at studie.modellansatz@web.de . We would be very pleased if many interested parties would contact us. This is the first of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun talked to Fioralba Cakoni about the Linear Sampling Method and Scattering. The linear sampling method is a method to reconstruct the shape of an obstacle without a priori knowledge of either the physical properties or the number of disconnected components of the scatterer. The principal problem is to detect objects inside an object without seeing it with our eyes. So we send waves of a certain frequency range into an object and then measure the response on the surface of the body. The waves can be absorbed, reflected and scattered inside the body. From this answer we would like to detect if there is something like a tumor inside the body and if yes where. Or to be more precise what is the shape of the tumor. Since the problem is non-linear and ill posed this is a difficult question and needs severyl mathematical steps on the analytical as well as the numerical side. In 1996 Colton and Kirsch (reference below) proposed a new method for the obstacle reconstruction problem in inverse scattering which is today known as the linear sampling method. It is a method to solve the above stated problem, which scientists call an inverse scattering problem. The method of linear sampling combines the answers to lots of frequencies but stays linear. So the problem in itself is not approximated but the interpretation of the response is. The central idea is to invert a bounded operator which is constructed with the help of the integral over the boundary of the body. Fioralba got her Diploma (honor’s program) and her Master's in Mathematics at the University of Tirana. For her Ph.D. she worked with George Dassios from the University of Patras but stayed at the University of Tirana. After that she worked with Wolfgang Wendland at the University of Stuttgart as Alexander von Humboldt Research Fellow. During her second year in Stuttgart she got a position at the University of Delaware in Newark. Since 2015 she has been Professor at Rutgers University. She works at the Campus in Piscataway near New Brunswick (New Jersey). References F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88, SIAM Publications, 2016. F. Cakoni, D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, Applied Mathematical Series, Vol. 188, 2014. T. Arens: Why linear sampling works, Inverse Problems 20 163-173, 2003. https://doi.org/10.1088/0266-5611/20/1/010 A. Kirsch: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems 14 1489-512, 1998 D. Colton, A. Kirsch: A simple method for solving inverse scattering problems in the resonance region, Inverse Problems 12 383-93, 1996. Podcasts S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden. In the coming weeks until February 20, 2020, Anna Hein, student of science communication at KIT, intends to conduct a study on the Modellansatz Podcast within her master's thesis. For this purpose, she would like to conduct some interviews with you, the listeners of the Modellansatz Podcast, to find out who listens to the podcast and how and for what purpose it is used. The interviews will be anonymous and will take about 15 minutes each. To participate in the study, you can register with Anna Hein until 20.2.2020 at studie.modellansatz@web.de . We would be very pleased if many interested parties would contact us. This is the first of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun talked to Fioralba Cakoni about the Linear Sampling Method and Scattering. The linear sampling method is a method to reconstruct the shape of an obstacle without a priori knowledge of either the physical properties or the number of disconnected components of the scatterer. The principal problem is to detect objects inside an object without seeing it with our eyes. So we send waves of a certain frequency range into an object and then measure the response on the surface of the body. The waves can be absorbed, reflected and scattered inside the body. From this answer we would like to detect if there is something like a tumor inside the body and if yes where. Or to be more precise what is the shape of the tumor. Since the problem is non-linear and ill posed this is a difficult question and needs severyl mathematical steps on the analytical as well as the numerical side. In 1996 Colton and Kirsch (reference below) proposed a new method for the obstacle reconstruction problem in inverse scattering which is today known as the linear sampling method. It is a method to solve the above stated problem, which scientists call an inverse scattering problem. The method of linear sampling combines the answers to lots of frequencies but stays linear. So the problem in itself is not approximated but the interpretation of the response is. The central idea is to invert a bounded operator which is constructed with the help of the integral over the boundary of the body. Fioralba got her Diploma (honor’s program) and her Master's in Mathematics at the University of Tirana. For her Ph.D. she worked with George Dassios from the University of Patras but stayed at the University of Tirana. After that she worked with Wolfgang Wendland at the University of Stuttgart as Alexander von Humboldt Research Fellow. During her second year in Stuttgart she got a position at the University of Delaware in Newark. Since 2015 she has been Professor at Rutgers University. She works at the Campus in Piscataway near New Brunswick (New Jersey). References F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88, SIAM Publications, 2016. F. Cakoni, D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, Applied Mathematical Series, Vol. 188, 2014. T. Arens: Why linear sampling works, Inverse Problems 20 163-173, 2003. https://doi.org/10.1088/0266-5611/20/1/010 A. Kirsch: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems 14 1489-512, 1998 D. Colton, A. Kirsch: A simple method for solving inverse scattering problems in the resonance region, Inverse Problems 12 383-93, 1996. Podcasts S. Fliss, G. Thäter: Transparent Boundaries. Conversation in the Modellansatz Podcast episode 75, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. M. Kray, G. Thäter: Splitting Waves. Conversation in the Modellansatz Podcast episode 62, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering. Conversation in the Modellansatz Podcast episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
Gudrun spricht mit Axel Voigt. Er ist Professor für Wissenschaftliches Rechnen und Angewandte Mathematik an der TU Dresden. Axel war Ende Oktober 2019 zu Gast in Gudruns Arbeitsgruppe, um seine Modelle für Kristallgitter zu diskutieren. Der Wunsch der Gruppe war, sowohl die Modelle als auch die dafür passenden numerischen Verfahren besser zu verstehen. Sie sind insbesondere für die Simulation der Vorgänge in Akkumulatoren interessant, die im Rahmen das Graduiertenkollegs SiMET vorangetrieben werden. Viele feste Körper haben eine Gitterstruktur. Für z.B. Silizium, Aluminium und Stahl ist dies ein Kristallgitter. In der Schule wird es der Einfachheit halber oft so dargestellt, als wäre das Kristallgitter eine feste Größe für solche Stoffe. In der Natur sind es aber polykristalline Materialien. D.h. sie bestehen aus vielen unterschiedlichen Einzelkristallen. Diese sind durch Korngrenzen voneinander getrennt. Das Studium polykristalliner Materialien erfordert theoretische und rechnerische Techniken, die Untersuchungen auf unterschiedlich großen Skalen ermöglichen. Kristallgitterverformungen können mikroskopisch beschrieben werden, indem die Position der Atome explizit berücksichtigt wird, oder makroskopisch durch Kontinuumselastizität. Grobkörnige, mesoskalige Ansätze sind daher geeignete Werkzeuge, um Informationen über polykristalline Materialien bereitzustellen. In seiner Forschung betrachtet Axel sie als kontinuierliche elastische Felder, die aus einer atomistischen Darstellung der kristallinen Strukturen abgeleitet sind. So enthält sie auch wichtige Merkmale, die für die mikroskopische Skala typisch sind. Die Größe und Phase der Amplituden der Fourierspektrum, zusammen mit der kontinuierlichen Beschreibung der Dehnungen, sind in der Lage, Kristalldrehungen, Gitterverformungen und Versetzungen zu charakterisieren. Darüber hinaus stellen sie in Kombination mit der so genannten Amplitudenerweiterung des Phasenfeld-Kristallmodells ein geeignetes Werkzeug zur Überbrückung mikroskopischer bis makroskopischer Skalen dar. Die Amplitudenerweiterung des Phasenfeld-Kristallmodells ermöglicht es, die Kristallgittereigenschaften auf diffusen Zeitskalen zu beschreiben, indem sie sich auf kontinuierliche Felder konzentriert, die auf Längenskalen variieren, die größer als der Atomabstand sind. So ermöglicht es die Simulation großer Systeme, die noch Details des Kristallgitters beibehalten. Axel Voigt hat an der TU München studiert und promoviert. Nach einem Ausflug in die Wirtschaft war er ab 2001 Gruppenleiter am Forschungsinstitut caesar in Bonn und hat sich dort auch habilitiert. Seit 2007 ist er in Dresden an der TU als Professor tätig. Literatur und weiterführende Informationen M. Salvalaglio, A. Voigt, K. R. Elder: Closing the gap between atomic-scale lattice deformations and continuum elasticity. npj Computational Materials 5 (2019), 48 S. Praetorius, M. Salvalaglio, A. Voigt: An efficient numerical framework for the amplitude expansion of the phase-field crystal model. Modelling Simul. Mater. Sci. Eng. 27 (4) (2019), 044004 M. Salvalaglio, R. Backofen, K. R. Elder, A. Voigt: Defects at grain boundaries: a coarse-grained, three-dimensional description by the amplitude expansion of the phase-field crystal model. Phys. Rev. Materials 2 (2018), 053804 Podcasts S. Carelli, G. Thäter: Batteries, Conversation im Modellansatz Podcast, Episode 211, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. L. Wagner, G. Thäter: Elastoplastizität, Gespräch im Modellansatz Podcast, Folge 210, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. M. Maier: Akkumulatoren, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 123, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Gudrun talks to Anna Geyer. Anna is Assistant professer at TU Delft in the Mathematical Physics group at the Delft Institute of Applied Mathematics. She is interested in the behaviour of solutions to equations which model shallow water waves. The day before (04.07.2019) Anna gave a talk at the Kick-off meeting for the second funding period of the CRC Wave phenomena at the mathematics faculty in Karlsruhe, where she discussed instability of peaked periodic waves. Therefore, Gudrun asks her about the different models for waves, the meaning of stability and instability, and the mathematical tools used in her field. For shallow water flows the solitary waves are especially fascinating and interesting. Traveling waves are solutions of the form representing waves of permanent shape f that propagate at constant speed c. These waves are called solitary waves if they are localized disturbances, that is, if the wave profile f decays at infinity. If the solitary waves retain their shape and speed after interacting with other waves of the same type, we say that the solitary waves are solitons. One can ask the question if a given model equation (sometimes depending on parameters in the equation or the size of the initial conditions) allows for solitary or periodic traveling waves, and secondly whether these waves are stable or unstable. Peaked periodic waves are an interesting phenomenon because at the wave crest (the peak) they are not smooth, a situation which might lead to wave breaking. For which equations are peaked waves solutions? And how stable are they? Anna answers these questions for the reduced Ostrovsky equation, which serves as model for weakly nonlinear surface and internal waves in a rotating ocean. The reduced Ostrovsky equation is a modification of the Korteweg-de Vries equation, for which the usual linear dispersive term with a third-order derivative is replaced by a linear nonlocal integral term, representing the effect of background rotation. Peaked periodic waves of this equation are known to exist since the late 1970's. Anna presented recent results in which she answers the long standing open question whether these solutions are stable. In particular, she proved linear instability of the peaked periodic waves using semi-group theory and energy estimates. Moreover, she showed that the peaked wave is unique and that the equation does not admit Hölder continuous solutions, which implies that the reduced Ostrovsky equation does not admit cusps. Finally, it turns out that the peaked wave is also spectrally unstable. This is joint work with Dmitry Pelinovsky. For the stability analysis it is really delicate how to choose the right spaces such that their norms measure the behaviour of the solution. The Camassa-Holm equation allows for solutions with peaks which are stable with respect to certain perturbations and unstable with respect to others, and can model breaking waves. Anna studied mathematics in Vienna. Adrian Constantin attracted her to the topic of partial differential equations applied to water waves. She worked with him during her PhD which she finished in 2013. Then she worked as Postdoc at the Universitat Autònoma de Barcelona and in Vienna before she accepted a tenure track position in Delft in 2017. References A. Geyer, D.E. Pelinovsky: Spectral instability of the peaked periodic wave in the reduced Ostrovsky equations, submitted (arXiv) A. Geyer, D.E. Pelinovsky: Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation, SIAM J. Math. Analysis, 51 (2019) 1188–1208 A. Geyer, D.E. Pelinovsky: Spectral stability of periodic waves in the generalized reduced Ostrovsky equation, Lett. Math. Phys. 107(7) (2017) 1293–1314 R. Grimshaw, L. Ostrovsky, V. Shrira, et al.: Long Nonlinear Surface and Internal Gravity Waves in a Rotating Ocean, Surveys in Geophysics (1998) 19: 289. A. Constantin, W. Strauss: Stability of peakons, Commun. Pure Appl. Math. 53 (2000) 603–610. F. Natali, D.E. Pelinovsky: Instability of H1-stable peakons in the Camassa-Holm equation, submitted (arXiv) Related Podcasts X. Liao, G. Thäter: Nonhomogenous Fluids, Conversation in the Modellansatz Podcast, Episode 189, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2018. M. Lopez-Fernandez, G. Thäter: Convolution Quadrature, Conversation in the Modellansatz Podcast, Episode 133, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2017. S. Fliss, G. Thäter: Transparent Boundaries, Conversation in the Modellansatz Podcast episode 075, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering, Conversation in the Modellansatz Podcast episode 058, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. E. Zuazua, G. Thäter: Waves Conversation in the Modellansatz Podcast episode 054, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
Gudrun talks to Anna Geyer. Anna is Assistant professer at TU Delft in the Mathematical Physics group at the Delft Institute of Applied Mathematics. She is interested in the behaviour of solutions to equations which model shallow water waves. The day before (04.07.2019) Anna gave a talk at the Kick-off meeting for the second funding period of the CRC Wave phenomena at the mathematics faculty in Karlsruhe, where she discussed instability of peaked periodic waves. Therefore, Gudrun asks her about the different models for waves, the meaning of stability and instability, and the mathematical tools used in her field. For shallow water flows the solitary waves are especially fascinating and interesting. Traveling waves are solutions of the form representing waves of permanent shape f that propagate at constant speed c. These waves are called solitary waves if they are localized disturbances, that is, if the wave profile f decays at infinity. If the solitary waves retain their shape and speed after interacting with other waves of the same type, we say that the solitary waves are solitons. One can ask the question if a given model equation (sometimes depending on parameters in the equation or the size of the initial conditions) allows for solitary or periodic traveling waves, and secondly whether these waves are stable or unstable. Peaked periodic waves are an interesting phenomenon because at the wave crest (the peak) they are not smooth, a situation which might lead to wave breaking. For which equations are peaked waves solutions? And how stable are they? Anna answers these questions for the reduced Ostrovsky equation, which serves as model for weakly nonlinear surface and internal waves in a rotating ocean. The reduced Ostrovsky equation is a modification of the Korteweg-de Vries equation, for which the usual linear dispersive term with a third-order derivative is replaced by a linear nonlocal integral term, representing the effect of background rotation. Peaked periodic waves of this equation are known to exist since the late 1970's. Anna presented recent results in which she answers the long standing open question whether these solutions are stable. In particular, she proved linear instability of the peaked periodic waves using semi-group theory and energy estimates. Moreover, she showed that the peaked wave is unique and that the equation does not admit Hölder continuous solutions, which implies that the reduced Ostrovsky equation does not admit cusps. Finally, it turns out that the peaked wave is also spectrally unstable. This is joint work with Dmitry Pelinovsky. For the stability analysis it is really delicate how to choose the right spaces such that their norms measure the behaviour of the solution. The Camassa-Holm equation allows for solutions with peaks which are stable with respect to certain perturbations and unstable with respect to others, and can model breaking waves. Anna studied mathematics in Vienna. Adrian Constantin attracted her to the topic of partial differential equations applied to water waves. She worked with him during her PhD which she finished in 2013. Then she worked as Postdoc at the Universitat Autònoma de Barcelona and in Vienna before she accepted a tenure track position in Delft in 2017. References A. Geyer, D.E. Pelinovsky: Spectral instability of the peaked periodic wave in the reduced Ostrovsky equations, submitted (arXiv) A. Geyer, D.E. Pelinovsky: Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation, SIAM J. Math. Analysis, 51 (2019) 1188–1208 A. Geyer, D.E. Pelinovsky: Spectral stability of periodic waves in the generalized reduced Ostrovsky equation, Lett. Math. Phys. 107(7) (2017) 1293–1314 R. Grimshaw, L. Ostrovsky, V. Shrira, et al.: Long Nonlinear Surface and Internal Gravity Waves in a Rotating Ocean, Surveys in Geophysics (1998) 19: 289. A. Constantin, W. Strauss: Stability of peakons, Commun. Pure Appl. Math. 53 (2000) 603–610. F. Natali, D.E. Pelinovsky: Instability of H1-stable peakons in the Camassa-Holm equation, submitted (arXiv) Related Podcasts X. Liao, G. Thäter: Nonhomogenous Fluids, Conversation in the Modellansatz Podcast, Episode 189, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2018. M. Lopez-Fernandez, G. Thäter: Convolution Quadrature, Conversation in the Modellansatz Podcast, Episode 133, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2017. S. Fliss, G. Thäter: Transparent Boundaries, Conversation in the Modellansatz Podcast episode 075, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. F. Sayas, G. Thäter: Acoustic scattering, Conversation in the Modellansatz Podcast episode 058, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015. E. Zuazua, G. Thäter: Waves Conversation in the Modellansatz Podcast episode 054, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2015.
Titans Of Nuclear | Interviewing World Experts on Nuclear Energy
In this episode, we discuss... (1) Germany’s Karlsruhe Institute of Technology (KIT) and their nuclear research (2) How other methods of containing accidents may be better but strict regulations and ignorance hinder implementation (3) Short term versus long term nuclear waste storage (4) Why Germany’s nuclear industry has ended and how this may affect the future of nuclear in other European countries
Gudrun Talks to Sema Coşkun who at the moment of the conversation in 2018 is a Post Doc researcher at the University Kaiserslautern in the group of financial mathematics. She constructs models for the behaviour of energy markets. In short the conversation covers the questions How are classical markets modelled? In which way are energy markets different and need new ideas? The seminal work of Black and Scholes (1973) established the modern financial theory. In a Black-Scholes setting, it is assumed that the stock price follows a Geometric Brownian Motion with a constant drift and constant volatility. The stochastic differential equation for the stock price process has an explicit solution. Therefore, it is possible to obtain the price of a European call option in a closed-form formula. Nevertheless, there exist drawbacks of the Black-Scholes assumptions. The most criticized aspect is the constant volatility assumption. It is considered an oversimplification. Several improved models have been introduced to overcome those drawbacks. One significant example of such new models is the Heston stochastic volatility model (Heston, 1993). In this model, volatility is indirectly modeled by a separate mean reverting stochastic process, namely. the Cox-Ingersoll-Ross (CIR) process. The CIR process captures the dynamics of the volatility process well. However, it is not easy to obtain option prices in the Heston model since the model has more complicated dynamics compared to the Black-Scholes model. In financial mathematics, one can use several methods to deal with these problems. In general, various stochastic processes are used to model the behavior of financial phenomena. One can then employ purely stochastic approaches by using the tools from stochastic calculus or probabilistic approaches by using the tools from probability theory. On the other hand, it is also possible to use Partial Differential Equations (the PDE approach). The correspondence between the stochastic problem and its related PDE representation is established by the help of Feynman-Kac theorem. Also in their original paper, Black and Scholes transferred the stochastic representation of the problem into its corresponding PDE, the heat equation. After solving the heat equation, they transformed the solution back into the relevant option price. As a third type of methods, one can employ numerical methods such as Monte Carlo methods. Monte Carlo methods are especially useful to compute the expected value of a random variable. Roughly speaking, instead of examining the probabilistic evolution of this random variable, we focus on the possible outcomes of it. One generates random numbers with the same distribution as the random variable and then we simulate possible outcomes by using those random numbers. Then we replace the expected value of the random variable by taking the arithmetic average of the possible outcomes obtained by the Monte Carlo simulation. The idea of Monte Carlo is simple. However, it takes its strength from two essential theorems, namely Kolmogorov’s strong law of large numbers which ensures convergence of the estimates and the central limit theorem, which refers to the error distribution of our estimates. Electricity markets exhibit certain properties which we do not observe in other markets. Those properties are mainly due to the unique characteristics of the production and consumption of electricity. Most importantly one cannot physically store electricity. This leads to several differences compared to other financial markets. For example, we observe spikes in electricity prices. Spikes refer to sudden upward or downward jumps which are followed by a fast reversion to the mean level. Therefore, electricity prices show extreme variability compared to other commodities or stocks. For example, in stock markets we observe a moderate volatility level ranging between 1% and 1.5%, commodities like crude oil or natural gas have relatively high volatilities ranging between 1.5% and 4% and finally the electricity energy has up to 50% volatility (Weron, 2000). Moreover, electricity prices show strong seasonality which is related to day to day and month to month variations in the electricity consumption. In other words, electricity consumption varies depending on the day of the week and month of the year. Another important property of the electricity prices is that they follow a mean reverting process. Thus, the Ornstein-Uhlenbeck (OU) process which has a Gaussian distribution is widely used to model electricity prices. In order to incorporate the spike behavior of the electricity prices, a jump or a Levy component is merged into the OU process. These models are known as generalized OU processes (Barndorff-Nielsen & Shephard, 2001; Benth, Kallsen & Meyer-Brandis, 2007). There exist several models to capture those properties of electricity prices. For example, structural models which are based on the equilibrium of supply and demand (Barlow, 2002), Markov jump diffusion models which combine the OU process with pure jump diffusions (Geman & Roncoroni, 2006), regime-switching models which aim to distinguish the base and spike regimes of the electricity prices and finally the multi-factor models which have a deterministic component for seasonality, a mean reverting process for the base signal and a jump or Levy process for spikes (Meyer-Brandis & Tankov, 2008). The German electricity market is one of the largest in Europe. The energy strategy of Germany follows the objective to phase out the nuclear power plants by 2021 and gradually introduce renewable energy ressources. For electricity production, the share of renewable ressources will increase up to 80% by 2050. The introduction of renewable ressources brings also some challenges for electricity trading. For example, the forecast errors regarding the electricity production might cause high risk for market participants. However, the developed market structure of Germany is designed to reduce this risk as much as possible. There are two main electricity spot price markets where the market participants can trade electricity. The first one is the day-ahead market in which the trading takes place around noon on the day before the delivery. In this market, the trades are based on auctions. The second one is the intraday market in which the trading starts at 3pm on the day before the delivery and continues up until 30 minutes before the delivery. Intraday market allows continuous trading of electricity which indeed helps the market participants to adjust their positions more precisely in the market by reducing the forecast errors. References S. Coskun and R. Korn: Pricing Barrier Options in the Heston Model Using the Heath-Platen estimator. Monte Carlo Methods and Applications. 24 (1) 29-42, 2018. S. Coskun: Application of the Heath–Platen Estimator in Pricing Barrier and Bond Options. PhD thesis, Department of Mathematics, University of Kaiserslautern, Germany, 2017. S. Desmettre and R. Korn: 10 Computationally challenging problems in Finance. FPGA Based Accelerators for Financial Applications, Springer, Heidelberg, 1–32, 2015. F. Black and M. Scholes: The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637-654, 1973. S.L. Heston: A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2):327–343, 1993. R. Korn, E. Korn and G. Kroisandt: Monte Carlo Methods and Models in Finance and Insurance. Chapman & Hall/CRC Financ. Math. Ser., CRC Press, Boca Raton, 2010. P. Glasserman, Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Appl. Math. (New York) 53, Springer, New York, 2004. M.T. Barlow: A diffusion model for electricity prices. Mathematical Finance, 12(4):287-298, 2002. O.E. Barndorff-Nielsen and N. Shephard: Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society B, 63(2):167-241, 2001. H. Geman and A. Roncoroni: Understanding the fine structure of electricity prices. The Journal of Business, 79(3):1225-1261, 2006. T. Meyer-Brandis and P. Tankov: Multi-factor jump-diffusion models of electricity prices. International Journal of Theoretical and Applied Finance, 11(5):503-528, 2008. R. Weron: Energy price risk management. Physica A, 285(1-2):127–134, 2000. Podcasts G. Thäter, M. Hofmanová: Turbulence, conversation in the Modellansatz Podcast, episode 155, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2018. http://modellansatz.de/turbulence G. Thäter, M. J. Amtenbrink: Wasserstofftankstellen, Gespräch im Modellansatz Podcast, Folge 163, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/wasserstofftankstellen S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm K. Cindric, G. Thäter: Kaufverhalten, Gespräch im Modellansatz Podcast, Folge 45, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/kaufverhalten V. Riess, G. Thäter: Gasspeicher, Gespräch im Modellansatz Podcast, Folge 23, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/gasspeicher F. Schueth, T. Pritlove: Energieforschung, Episode 12 im Forschergeist Podcast, Stifterverband/Metaebene, 2015. https://forschergeist.de/podcast/fg012-energieforschung/
Gudrun Talks to Sema Coşkun who at the moment of the conversation in 2018 is a Post Doc researcher at the University Kaiserslautern in the group of financial mathematics. She constructs models for the behaviour of energy markets. In short the conversation covers the questions How are classical markets modelled? In which way are energy markets different and need new ideas? The seminal work of Black and Scholes (1973) established the modern financial theory. In a Black-Scholes setting, it is assumed that the stock price follows a Geometric Brownian Motion with a constant drift and constant volatility. The stochastic differential equation for the stock price process has an explicit solution. Therefore, it is possible to obtain the price of a European call option in a closed-form formula. Nevertheless, there exist drawbacks of the Black-Scholes assumptions. The most criticized aspect is the constant volatility assumption. It is considered an oversimplification. Several improved models have been introduced to overcome those drawbacks. One significant example of such new models is the Heston stochastic volatility model (Heston, 1993). In this model, volatility is indirectly modeled by a separate mean reverting stochastic process, namely. the Cox-Ingersoll-Ross (CIR) process. The CIR process captures the dynamics of the volatility process well. However, it is not easy to obtain option prices in the Heston model since the model has more complicated dynamics compared to the Black-Scholes model. In financial mathematics, one can use several methods to deal with these problems. In general, various stochastic processes are used to model the behavior of financial phenomena. One can then employ purely stochastic approaches by using the tools from stochastic calculus or probabilistic approaches by using the tools from probability theory. On the other hand, it is also possible to use Partial Differential Equations (the PDE approach). The correspondence between the stochastic problem and its related PDE representation is established by the help of Feynman-Kac theorem. Also in their original paper, Black and Scholes transferred the stochastic representation of the problem into its corresponding PDE, the heat equation. After solving the heat equation, they transformed the solution back into the relevant option price. As a third type of methods, one can employ numerical methods such as Monte Carlo methods. Monte Carlo methods are especially useful to compute the expected value of a random variable. Roughly speaking, instead of examining the probabilistic evolution of this random variable, we focus on the possible outcomes of it. One generates random numbers with the same distribution as the random variable and then we simulate possible outcomes by using those random numbers. Then we replace the expected value of the random variable by taking the arithmetic average of the possible outcomes obtained by the Monte Carlo simulation. The idea of Monte Carlo is simple. However, it takes its strength from two essential theorems, namely Kolmogorov’s strong law of large numbers which ensures convergence of the estimates and the central limit theorem, which refers to the error distribution of our estimates. Electricity markets exhibit certain properties which we do not observe in other markets. Those properties are mainly due to the unique characteristics of the production and consumption of electricity. Most importantly one cannot physically store electricity. This leads to several differences compared to other financial markets. For example, we observe spikes in electricity prices. Spikes refer to sudden upward or downward jumps which are followed by a fast reversion to the mean level. Therefore, electricity prices show extreme variability compared to other commodities or stocks. For example, in stock markets we observe a moderate volatility level ranging between 1% and 1.5%, commodities like crude oil or natural gas have relatively high volatilities ranging between 1.5% and 4% and finally the electricity energy has up to 50% volatility (Weron, 2000). Moreover, electricity prices show strong seasonality which is related to day to day and month to month variations in the electricity consumption. In other words, electricity consumption varies depending on the day of the week and month of the year. Another important property of the electricity prices is that they follow a mean reverting process. Thus, the Ornstein-Uhlenbeck (OU) process which has a Gaussian distribution is widely used to model electricity prices. In order to incorporate the spike behavior of the electricity prices, a jump or a Levy component is merged into the OU process. These models are known as generalized OU processes (Barndorff-Nielsen & Shephard, 2001; Benth, Kallsen & Meyer-Brandis, 2007). There exist several models to capture those properties of electricity prices. For example, structural models which are based on the equilibrium of supply and demand (Barlow, 2002), Markov jump diffusion models which combine the OU process with pure jump diffusions (Geman & Roncoroni, 2006), regime-switching models which aim to distinguish the base and spike regimes of the electricity prices and finally the multi-factor models which have a deterministic component for seasonality, a mean reverting process for the base signal and a jump or Levy process for spikes (Meyer-Brandis & Tankov, 2008). The German electricity market is one of the largest in Europe. The energy strategy of Germany follows the objective to phase out the nuclear power plants by 2021 and gradually introduce renewable energy ressources. For electricity production, the share of renewable ressources will increase up to 80% by 2050. The introduction of renewable ressources brings also some challenges for electricity trading. For example, the forecast errors regarding the electricity production might cause high risk for market participants. However, the developed market structure of Germany is designed to reduce this risk as much as possible. There are two main electricity spot price markets where the market participants can trade electricity. The first one is the day-ahead market in which the trading takes place around noon on the day before the delivery. In this market, the trades are based on auctions. The second one is the intraday market in which the trading starts at 3pm on the day before the delivery and continues up until 30 minutes before the delivery. Intraday market allows continuous trading of electricity which indeed helps the market participants to adjust their positions more precisely in the market by reducing the forecast errors. References S. Coskun and R. Korn: Pricing Barrier Options in the Heston Model Using the Heath-Platen estimator. Monte Carlo Methods and Applications. 24 (1) 29-42, 2018. S. Coskun: Application of the Heath–Platen Estimator in Pricing Barrier and Bond Options. PhD thesis, Department of Mathematics, University of Kaiserslautern, Germany, 2017. S. Desmettre and R. Korn: 10 Computationally challenging problems in Finance. FPGA Based Accelerators for Financial Applications, Springer, Heidelberg, 1–32, 2015. F. Black and M. Scholes: The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637-654, 1973. S.L. Heston: A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2):327–343, 1993. R. Korn, E. Korn and G. Kroisandt: Monte Carlo Methods and Models in Finance and Insurance. Chapman & Hall/CRC Financ. Math. Ser., CRC Press, Boca Raton, 2010. P. Glasserman, Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Appl. Math. (New York) 53, Springer, New York, 2004. M.T. Barlow: A diffusion model for electricity prices. Mathematical Finance, 12(4):287-298, 2002. O.E. Barndorff-Nielsen and N. Shephard: Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society B, 63(2):167-241, 2001. H. Geman and A. Roncoroni: Understanding the fine structure of electricity prices. The Journal of Business, 79(3):1225-1261, 2006. T. Meyer-Brandis and P. Tankov: Multi-factor jump-diffusion models of electricity prices. International Journal of Theoretical and Applied Finance, 11(5):503-528, 2008. R. Weron: Energy price risk management. Physica A, 285(1-2):127–134, 2000. Podcasts G. Thäter, M. Hofmanová: Turbulence, conversation in the Modellansatz Podcast, episode 155, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2018. http://modellansatz.de/turbulence G. Thäter, M. J. Amtenbrink: Wasserstofftankstellen, Gespräch im Modellansatz Podcast, Folge 163, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/wasserstofftankstellen S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm K. Cindric, G. Thäter: Kaufverhalten, Gespräch im Modellansatz Podcast, Folge 45, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/kaufverhalten V. Riess, G. Thäter: Gasspeicher, Gespräch im Modellansatz Podcast, Folge 23, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/gasspeicher F. Schueth, T. Pritlove: Energieforschung, Episode 12 im Forschergeist Podcast, Stifterverband/Metaebene, 2015. https://forschergeist.de/podcast/fg012-energieforschung/
Gudrun talks with the Scotish engineer Claire Harvey. After already having finished a Master's degree in Product design engineering at the University of Glasgow for the last two years Claire has been a student of the Energy Technologies (ENTECH) Master program. This is an international and interdisciplinary program under the label of the European Institute of Innovation and Technology (EIT) inbetween a number of European technical universities. She spent her first year in Lisbon at Instituto Superior Técnico (IST) and the second master year at the Karlsruhe Institute of Technology (KIT). Gudrun had the role of her supervisor at KIT while she worked on her Master's thesis at the EUREF Campus in Berlin for the Startup inno2grid. Her study courses prepared her for very diverse work in the sector of renewable energy. Her decision to work with inno2grid in Berlin was based on the fact, that it would help to pave the way towards better solutions for planning micro grids and sustainable districts. Also, she wanted to see an actual micro grid at work. The office building of Schneider Electric, where the Startup inno2grid has its rooms is an experiment delivering data of energy production and consumption while being a usual office building. We will hear more about that in the episode with Carlos Mauricio Rojas La Rotta soon. Micro grids are small scale electrical grid systems where self-sufficient supply is achieved. Therefore, the integration of micro grid design within district planning processes should be developed efficiently. In the planning process of districts with decentralised energy systems, unique and customised design of micro grids is usually required to meet local technical, economical and environmental needs. From a technical standpoint, a detailed understanding of factors such as load use, generation potential and site constraints are needed to correctly and most efficiently design and implement the network. The presence of many different actors and stakeholders contribute to the complexity of the planning process, where varying levels of technical experience and disparate methods of working across teams is commonplace. Large quantities of digital information are required across the whole life-cycle of a planning project, not just to do with energetic planning but also for asset management and monitoring after a micro grid has been implemented. In the design of micro grids, large amounts of data must be gathered, there are initial optimization objectives to be met, and simulating control strategies of a district which are adapted to customer requirements is a critical step. Linking these processes - being able to assemble data as well as communicate the results and interactions of different "layers" of a project to stakeholders are challenges that arise as more cross-sector projects are carried out, with the growing interest in smart grid implementation. Claire's thesis explores tools to assist the planning process for micro grids on the district scale. Using geographical information system (GIS) software, results relating to the energetic planning of a district is linked to geo-referenced data. Layers related to energy planning are implemented - calculating useful parameters and connecting to a database where different stakeholders within a project can contribute. Resource potential, electrical/thermal demand and supply system dimensioning can be calculated, which is beneficial for clients and decision makers to visualize digital information related to a project. Within the open source program QGIS, spatial analysis and optimizations relating to the design of an energy system are performed. As the time dimension is a key part in the planning of the energy supply system of a micro grid, the data is linked to a Python simulation environment where dynamic analysis can be performed, and the results are fed back in to the QGIS project. References T. Benz et al.: Der Zellulare Ansatz. VDE, Energietechnische Gesellschaft, Frankfurt, Germany, 2015. A. Halu et al.: Data-driven modeling of solar-powered urban microgrids. Science Advances 2 (1). DOI:10.1126/sciadv.1500700, 2016. M. Giudice and E. Patti: BIM and GIS for District Modelling Politecnico di Torino, Turin, Italy, 2014. QGIS Ch. Nytsch-Geusen et al.: Sustainable and energy-efficient redevelopment of city quarters - Analytical and planning tools for energy assessment and rehabilitation of urban districts. Universität der Künste, Berlin, 2015. Podcasts Z. Ahamed, G. Thäter: Electric Vehicles on the Grid, Gespräch im Modellansatz Podcast, Folge 183, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, M. J. Amtenbrink: Wasserstofftankstellen, Gespräch im Modellansatz Podcast, Folge 163, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, B. Pousinho: Weather Generator, Gespräch im Modellansatz Podcast, Folge 148, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Gudrun talks with the Scotish engineer Claire Harvey. After already having finished a Master's degree in Product design engineering at the University of Glasgow for the last two years Claire has been a student of the Energy Technologies (ENTECH) Master program. This is an international and interdisciplinary program under the label of the European Institute of Innovation and Technology (EIT) inbetween a number of European technical universities. She spent her first year in Lisbon at Instituto Superior Técnico (IST) and the second master year at the Karlsruhe Institute of Technology (KIT). Gudrun had the role of her supervisor at KIT while she worked on her Master's thesis at the EUREF Campus in Berlin for the Startup inno2grid. Her study courses prepared her for very diverse work in the sector of renewable energy. Her decision to work with inno2grid in Berlin was based on the fact, that it would help to pave the way towards better solutions for planning micro grids and sustainable districts. Also, she wanted to see an actual micro grid at work. The office building of Schneider Electric, where the Startup inno2grid has its rooms is an experiment delivering data of energy production and consumption while being a usual office building. We will hear more about that in the episode with Carlos Mauricio Rojas La Rotta soon. Micro grids are small scale electrical grid systems where self-sufficient supply is achieved. Therefore, the integration of micro grid design within district planning processes should be developed efficiently. In the planning process of districts with decentralised energy systems, unique and customised design of micro grids is usually required to meet local technical, economical and environmental needs. From a technical standpoint, a detailed understanding of factors such as load use, generation potential and site constraints are needed to correctly and most efficiently design and implement the network. The presence of many different actors and stakeholders contribute to the complexity of the planning process, where varying levels of technical experience and disparate methods of working across teams is commonplace. Large quantities of digital information are required across the whole life-cycle of a planning project, not just to do with energetic planning but also for asset management and monitoring after a micro grid has been implemented. In the design of micro grids, large amounts of data must be gathered, there are initial optimization objectives to be met, and simulating control strategies of a district which are adapted to customer requirements is a critical step. Linking these processes - being able to assemble data as well as communicate the results and interactions of different "layers" of a project to stakeholders are challenges that arise as more cross-sector projects are carried out, with the growing interest in smart grid implementation. Claire's thesis explores tools to assist the planning process for micro grids on the district scale. Using geographical information system (GIS) software, results relating to the energetic planning of a district is linked to geo-referenced data. Layers related to energy planning are implemented - calculating useful parameters and connecting to a database where different stakeholders within a project can contribute. Resource potential, electrical/thermal demand and supply system dimensioning can be calculated, which is beneficial for clients and decision makers to visualize digital information related to a project. Within the open source program QGIS, spatial analysis and optimizations relating to the design of an energy system are performed. As the time dimension is a key part in the planning of the energy supply system of a micro grid, the data is linked to a Python simulation environment where dynamic analysis can be performed, and the results are fed back in to the QGIS project. References T. Benz et al.: Der Zellulare Ansatz. VDE, Energietechnische Gesellschaft, Frankfurt, Germany, 2015. A. Halu et al.: Data-driven modeling of solar-powered urban microgrids. Science Advances 2 (1). DOI:10.1126/sciadv.1500700, 2016. M. Giudice and E. Patti: BIM and GIS for District Modelling Politecnico di Torino, Turin, Italy, 2014. QGIS Ch. Nytsch-Geusen et al.: Sustainable and energy-efficient redevelopment of city quarters - Analytical and planning tools for energy assessment and rehabilitation of urban districts. Universität der Künste, Berlin, 2015. Podcasts Z. Ahamed, G. Thäter: Electric Vehicles on the Grid, Gespräch im Modellansatz Podcast, Folge 183, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, M. J. Amtenbrink: Wasserstofftankstellen, Gespräch im Modellansatz Podcast, Folge 163, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, B. Pousinho: Weather Generator, Gespräch im Modellansatz Podcast, Folge 148, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Gudrun talks to Zaheer Ahamed about the influence of an increasing number of Electric vehicles (EV) to the electrical grid. Zaheer just finished the ENTECH Master's program. He started it with his first year at the Karlsruhe Institute for Technology (KIT) and continued in Uppsala University for the second year.Gudrun was part of the grading process of Zaheer's master thesis "Estimating Balancing Capacities of Electric Vehicles on the German and Swedish grids in 2030". The rising awareness of pollution from transport is leading to innovations within the transport sector. At the moment EVs are the leading technology. With many countries Germany and Sweden joined the so-called EV30@30 campaign, aiming for 30% of new vehicles sales to be electric by 2030. These ambitions alongside an ever increasing capacity of variable renewable energy sources (RES) in our power systems, pose a concerning challenge for Transmission systems operators (TSO) to maintain proper power system operation. Imbalances between supply and demand are undesirable in any electrical power system and with the rising popularity of EVs and RES such events are only expected to continue or increase.Fortunately, with the recent development of Vehicle to grid (V2G) concepts as well as extensive studies into the load-shifting potential of EVs, EVs presents an interesting solution for power system balancing distributed energy storage system. Zaheer's study showed that EV are capable of balancing the grid for approximately 60% of the time providing 55-60% of the total balancing energy required. However, the operation also took heavy toll on the EV’s battery performance as it could potentially reduce its life to a 1/7th of its original lifetime. References Commission Regulation (EU) 2017/1485 of 2 August 2017 on establishing a guideline on electricity transmission system operation, 2017. S. Weitemeyer e.a.: Integration of Renewable Energy Sources in future power systems: The role of storage. Renewable Energy, 75 pp.14-20, 2015. D.M.Greenwood e.a.: Frequency response services designed for energy storage. Applied Energy, 203 pp.115-127, 2017. Eurostat Database J. Schäuble e.a.: Generating electric vehicle load profiles from empirical data of three EV fleets in Southwest Germany. Journal of Cleaner Production, 150 pp.253-266, 2017. Podcasts Volker Quaschning, Tim Pritlove: Energiewende, Forschergeist 053, Stifterverband / Metaebene, 2018. V. Auinger, G. Thäter: Optimale Akkuladung, Gespräch im Modellansatz Podcast, Folge 160, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/optimale-akkuladung M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter M. Maier, G. Thäter: Akkumulatoren, Gespräch im Modellansatz Podcast, Folge 123, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/akkumulatoren D. Schumann, M. Voelter: Elektromobilität, Omega Tau Podcast 163, Makus Völter und Nora Ludewig, 2015. J. Dickmann, S. Ritterbusch: Pumpspeicherkraftwerke, Gespräch im Modellansatz Podcast, Folge 5, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013.
Gudrun talks to Zaheer Ahamed about the influence of an increasing number of Electric vehicles (EV) to the electrical grid. Zaheer just finished the ENTECH Master's program. He started it with his first year at the Karlsruhe Institute for Technology (KIT) and continued in Uppsala University for the second year.Gudrun was part of the grading process of Zaheer's master thesis "Estimating Balancing Capacities of Electric Vehicles on the German and Swedish grids in 2030". The rising awareness of pollution from transport is leading to innovations within the transport sector. At the moment EVs are the leading technology. With many countries Germany and Sweden joined the so-called EV30@30 campaign, aiming for 30% of new vehicles sales to be electric by 2030. These ambitions alongside an ever increasing capacity of variable renewable energy sources (RES) in our power systems, pose a concerning challenge for Transmission systems operators (TSO) to maintain proper power system operation. Imbalances between supply and demand are undesirable in any electrical power system and with the rising popularity of EVs and RES such events are only expected to continue or increase.Fortunately, with the recent development of Vehicle to grid (V2G) concepts as well as extensive studies into the load-shifting potential of EVs, EVs presents an interesting solution for power system balancing distributed energy storage system. Zaheer's study showed that EV are capable of balancing the grid for approximately 60% of the time providing 55-60% of the total balancing energy required. However, the operation also took heavy toll on the EV’s battery performance as it could potentially reduce its life to a 1/7th of its original lifetime. References Commission Regulation (EU) 2017/1485 of 2 August 2017 on establishing a guideline on electricity transmission system operation, 2017. S. Weitemeyer e.a.: Integration of Renewable Energy Sources in future power systems: The role of storage. Renewable Energy, 75 pp.14-20, 2015. D.M.Greenwood e.a.: Frequency response services designed for energy storage. Applied Energy, 203 pp.115-127, 2017. Eurostat Database J. Schäuble e.a.: Generating electric vehicle load profiles from empirical data of three EV fleets in Southwest Germany. Journal of Cleaner Production, 150 pp.253-266, 2017. Podcasts Volker Quaschning, Tim Pritlove: Energiewende, Forschergeist 053, Stifterverband / Metaebene, 2018. V. Auinger, G. Thäter: Optimale Akkuladung, Gespräch im Modellansatz Podcast, Folge 160, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/optimale-akkuladung M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter M. Maier, G. Thäter: Akkumulatoren, Gespräch im Modellansatz Podcast, Folge 123, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/akkumulatoren D. Schumann, M. Voelter: Elektromobilität, Omega Tau Podcast 163, Makus Völter und Nora Ludewig, 2015. J. Dickmann, S. Ritterbusch: Pumpspeicherkraftwerke, Gespräch im Modellansatz Podcast, Folge 5, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013.
Gudrun talks to Jousef Murad about the computing platform SimScale. Jousef is currently studying mechanical engineering at the Karlsruhe Institute of Technology (KIT) and focuses on turbulence modelling and computational mechanics in his Master's studies. He first learned about the existence of SimScale early in the year 2015 and started as a FEA (finite element analysis) simulation assistant in November 2016. Meanwhile he switched to Community Management and now is Community and Academic Program Manager at the company being responsible for user requests and Formula student teams all over the world. Formula student is a name for design competitions for teams of students constructing racing cars. SimScale is a cloud-based platform that gives instant access to computational fluid dynamics (CFD) and finite element analysis (FEA) simulation technology, helping engineers and designers to easily test performance, optimize durability or improve efficiency of their design. SimScale is accessible from a standard web browser and from any computer, eliminating the hurdles that accompany traditional simulation tools: high installation costs, licensing fees, deployment of high-performance computing hardware, and required updates and maintenance. Via the platform, several state-of-the-art open solvers are made available like,e.g., OpenFOAM and Meshing with SnappyHexMesh. More information about the packages being used can be found at https://www.simscale.com/open-source/ . On top of having easier access to open source software, the connected user forum is very active and helps everybody to enter the field even as a person without experience. Founded in 2012 in Munich (Germany), nowadays SimScale is an integral part of the design validation process for many companies worldwide and individual users. It is mainly used by product designers and engineers working in Architecture, Engineering & Construction or Heating, Ventilation & Air-Conditioning. Also in the Electronics, Consumer Goods and Packaging and Containers industries SimScale is useful for testing and optimizing designs in the early development stages. SimScale offers pricing plans that can be customized, from independent professionals to SMEs and multinational companies. The Community plan makes it possible to use SimScale for free, with 3000 core hours/year using up to 16 cloud computing cores. Simulation around Burj Khalifa using SimScale References Turbulence models on the English Wikipedia S. Pope: Turbulent Flows. Cambridge University Press, 2000. P. Sagaut, C. Cambon: Homogeneous Turbulence Dynamics. Cambridge University Press, 2008. Related Podcasts G. Thäter, M. Hofmanová: Turbulence, Gespräch im Modellansatz Podcast, Folge 155, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. N. Vercauteren, S. Ritterbusch: Lokale Turbulenzen, Gespräch im Modellansatz Podcast, Folge 144, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 53, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. B.Valsler, D. Ansell: The Science of Turbulence, The Naked Scientists Podcast, 2010.
Gudrun talks to Jousef Murad about the computing platform SimScale. Jousef is currently studying mechanical engineering at the Karlsruhe Institute of Technology (KIT) and focuses on turbulence modelling and computational mechanics in his Master's studies. He first learned about the existence of SimScale early in the year 2015 and started as a FEA (finite element analysis) simulation assistant in November 2016. Meanwhile he switched to Community Management and now is Community and Academic Program Manager at the company being responsible for user requests and Formula student teams all over the world. Formula student is a name for design competitions for teams of students constructing racing cars. SimScale is a cloud-based platform that gives instant access to computational fluid dynamics (CFD) and finite element analysis (FEA) simulation technology, helping engineers and designers to easily test performance, optimize durability or improve efficiency of their design. SimScale is accessible from a standard web browser and from any computer, eliminating the hurdles that accompany traditional simulation tools: high installation costs, licensing fees, deployment of high-performance computing hardware, and required updates and maintenance. Via the platform, several state-of-the-art open solvers are made available like,e.g., OpenFOAM and Meshing with SnappyHexMesh. More information about the packages being used can be found at https://www.simscale.com/open-source/ . On top of having easier access to open source software, the connected user forum is very active and helps everybody to enter the field even as a person without experience. Founded in 2012 in Munich (Germany), nowadays SimScale is an integral part of the design validation process for many companies worldwide and individual users. It is mainly used by product designers and engineers working in Architecture, Engineering & Construction or Heating, Ventilation & Air-Conditioning. Also in the Electronics, Consumer Goods and Packaging and Containers industries SimScale is useful for testing and optimizing designs in the early development stages. SimScale offers pricing plans that can be customized, from independent professionals to SMEs and multinational companies. The Community plan makes it possible to use SimScale for free, with 3000 core hours/year using up to 16 cloud computing cores. Simulation around Burj Khalifa using SimScale References Turbulence models on the English Wikipedia S. Pope: Turbulent Flows. Cambridge University Press, 2000. P. Sagaut, C. Cambon: Homogeneous Turbulence Dynamics. Cambridge University Press, 2008. Related Podcasts G. Thäter, M. Hofmanová: Turbulence, Gespräch im Modellansatz Podcast, Folge 155, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. N. Vercauteren, S. Ritterbusch: Lokale Turbulenzen, Gespräch im Modellansatz Podcast, Folge 144, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 53, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. B.Valsler, D. Ansell: The Science of Turbulence, The Naked Scientists Podcast, 2010.
In the last two semesters Gudrun has taught the courses Advanced Mathematics I and II for Mechanical Engineers. This is a mandatory lecture for the International mechanical engineering students at KIT in their first year of the Bachelor program. This program is organized by the Carl Benz School of Engineering. Beside the study courses, the school also provides common housing for students coming to Karlsruhe from all over the world. The general structure and topics of the first year in Advanced Mathematics were already discussed in our episode 146 Advanced Mathematics with Jonathan Rollin. This time Gudrun invited two students from her course to have the student's perspective, talking about mathematics, life, and everything. Yueyang Cai grew up mostly in China. In 2015, the work of her mother led Yueyang to Stuttgart. While looking for opportunities to study a technical subject in Germany the English speaking program in Karlsruhe somehow suggested itself. After one year she is sure to have made the right decision. The second student in the conversation is Siddhant Dhanrajani. His family is Indian but lives in Dubai. For that he got his education in Dubai in an Indian community follwowing the Indian educational system (CBSE). He had never heard of the Engineering program in Karlsruhe but found it through thourough research. He is really amazed at how such an excellent study program and such an excellent university as the KIT are not better known for their value in the world. In the conversation both students talk about their education in their respective countries, their hopes and plans for the study course mechanical engineering and their experiences in the first year here in Karlsruhe. It is very interesting to see how the different ways to teach mathematics, namely, either as a toolbox full of recipes (which the students get well-trained in) or secondly as a way to approach problems in a context of a mathematical education contribute to an experience to be well-equipped to work creative and with a lot of potential as an engineer. Though the students finished only the first year in a three years course they already work towards applications and necessary certificates for their possible master program after finishing the course in Karlsruhe. Related Podcasts G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
In the last two semesters Gudrun has taught the courses Advanced Mathematics I and II for Mechanical Engineers. This is a mandatory lecture for the International mechanical engineering students at KIT in their first year of the Bachelor program. This program is organized by the Carl Benz School of Engineering. Beside the study courses, the school also provides common housing for students coming to Karlsruhe from all over the world. The general structure and topics of the first year in Advanced Mathematics were already discussed in our episode 146 Advanced Mathematics with Jonathan Rollin. This time Gudrun invited two students from her course to have the student's perspective, talking about mathematics, life, and everything. Yueyang Cai grew up mostly in China. In 2015, the work of her mother led Yueyang to Stuttgart. While looking for opportunities to study a technical subject in Germany the English speaking program in Karlsruhe somehow suggested itself. After one year she is sure to have made the right decision. The second student in the conversation is Siddhant Dhanrajani. His family is Indian but lives in Dubai. For that he got his education in Dubai in an Indian community follwowing the Indian educational system (CBSE). He had never heard of the Engineering program in Karlsruhe but found it through thourough research. He is really amazed at how such an excellent study program and such an excellent university as the KIT are not better known for their value in the world. In the conversation both students talk about their education in their respective countries, their hopes and plans for the study course mechanical engineering and their experiences in the first year here in Karlsruhe. It is very interesting to see how the different ways to teach mathematics, namely, either as a toolbox full of recipes (which the students get well-trained in) or secondly as a way to approach problems in a context of a mathematical education contribute to an experience to be well-equipped to work creative and with a lot of potential as an engineer. Though the students finished only the first year in a three years course they already work towards applications and necessary certificates for their possible master program after finishing the course in Karlsruhe. Related Podcasts G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
Gudrun sprach mit Gabriel Thäter. Er ist der langjährigen Hörerschaft schon bekannt, denn er hat im Februar 2015 als Schüler über sein BOGY-Praktikum am Institut für angewandte und numerische Mathematik berichtet. Heute ist er Maschinenbau-Student am KIT und absolviert gerade sein viertes Semester. Damit hat Gabriel die drei Semester, in denen Mathematik zum Studienplan für Maschinenbauer gehört - die sogenannte Höhere Mathematik (HM) I-III - erfolgreich abgeschlossen. Außerdem arbeitet er schon das zweite Semester als Tutor in der HM-Ausbildung für das Studienjahr, das nach ihm das Studium aufgenommen hat. Gudrun wollte im Gespräch aus erster Hand erfahren, wie die Mathe-Ausbildung bei ihm angekommen ist. Der Ausgang war, mit welchen Wünschen und Erwartungen Gabriel sich für ein Studium im Maschinenbau entschieden hat. Tatsächlich war Maschinenbau nicht sein erster Wunsch, sondern er hatte sich zunächst für ein Duales Studium in Luft- und Raumfahrttechnik beworben. Das Duale Studium vereinigt Praxisphasen in einem Unternehmen mit Studienphasen an einer Fachhochschule und führt zum Abschluss Bachelor. Während der Studienzeit zahlt das Unternehmen ein Gehalt. Diese Studiensituation ist ist so attraktiv, dass der Wettbewerb um die wenigen Studienplätze immer sehr stark ist - auch wenn es nicht die ideale Ausgangssituation für eine Forschungstätigkeit später ist, da die theoretische Ausbildung nicht so breit aufgestellt sein kann wie im Bachelor an einer Universität. Ein Studium des Maschinenbaus kam Gabriels Wunschbild Raumfahrttechnik am nächsten, zumal mit einem Studium in Karlsruhe für ihn auch kein Wohnort-Wechsel nötig wurde. Inzwischen ist Gabriel mit der "zweiten Wahl" sehr zufrieden, denn sein Studium erweist sich für ihn sehr vielseitig und bereitet ihn auf unterschiedliche Spezialisierungsmöglichkeiten vor. Im Moment plant er, sich in der Richtung Thermische Strömungsmaschinen zu vertiefen. Gabriel war darauf gefasst, dass Mathematik an der Uni etwas mehr Zeit und Mühe kosten wird als in der Schule. Es hat ihn aber doch etwas überrascht, wie sehr sich Stoffdichte und Unterrichtstempo von der Schule unterscheiden. Trotzdem hat er seinen Ehrgeiz darin gesetzt, die Übungsaufgaben möglichst richtig und vollständig zum gegegebnen Termin einzureichen. Um für die schriftliche Prüfung am Ende des Semester zugelassen zu werden, muss man in der Summe der Übungsblätter 1-10 eine gewisse Mindestpunktzahl erreichen. Für Gabriel hat sich die Arbeit in einer Gruppe bewährt. Für die Prüfungsvorbereitung hat er auch alte Klausuren aus der Fachschaft herangezogen. Die Aufteilung des Lernens in der Vorlesung, der zentralen Übung und in den Tutorium hat ihm gut gefallen. Jede Veranstaltung hat ihren Platz und ihren eigenen Nutzen für ihn gezeigt. Als Tutor sieht er nun die Lehre auch ein wenig von der anderen Seite. Er unterrichtet selbst pro Woche eine Stunde, in der die Studierenden Fragen zu den aktuellen Aufgaben stellen und in Gruppen Aufgaben lösen, die den Übungsaufgaben zuarbeiten. Außerdem korrigiert er die Hausaufgaben seiner Tutoriengruppe. Dabei fällt ihm negativ auf, wenn zur Lösung kein logischer Rahmen gegeben wird, sondern einfach "wild losgerechnet" wird. Dann fällt es oft schwer, zu verstehen, was die Studierenden eigentlich mit den Rechnungen finden möchten und ob das sinnvoll ist oder falsch. Gabriel sagt, dass er durch die Vorbereitung der Tutorien oft noch viel besser verstanden hat, was er eigentlich im ersten und zweiten Semester gelernt hat. Podcasts und weiterführende Informationen G. Thäter: Wasserraketen, Gespräch mit G. Thäter im Modellansatz Podcast Folge 49, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/wasserraketen F. Hettlich: Höhere Mathematik, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. http://modellansatz.de/hoehere-mathematik G. Thäter, J. Rollin: Advanced Mathematics, conversation in the Modellansatz Podcast, episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. http://modellansatz.de/advanced-mathematics Informationen zur Höheren Mathematik im Maschinenbau am KIT
Gudrun talks with Asher Zarth. He finished his Master thesis in the Lattice Boltzmann Research group at the Karlsruhe Institute for Technology (KIT) in April 2018. Lattice Boltzmann methods (LBM) are an established method of computational fluid dynamics. Also, the solution of temperature-dependent problems - modeled by the Boussinesq approximation - with LBM has been done for some time. Moreover, LBM have been used to solve optimization problems, including parameter identification, shape optimization and topology optimization. Usual optimization approaches for partial differential equations are strongly based on using the corresponding adjoint problem. Especially since this method provides the sensitivities of quantities in the optimization process as well. This is very helpful. But it is also very hard to find the adjoint problem for each new problem. This needs a lot of experience and deep mathematical understanding. For that, Asher uses automatic differentiation (AD) instead, which is very flexible and user friendly. His algorithm combines an extension of LBM to porous media models as part of the shape optimization framework. The main idea of that framework is to use the permeability as a geometric design parameter instead of a rigid object which changes its shape in the iterative process. The optimization itself is carried out with line search methods, whereby the sensitivities are calculated by AD instead of using the adjoint problem. The method benefits from a straighforward and extensible implementation as the use of AD provides a way to obtain accurate derivatives with little knowledge of the mathematical formulation of the problem. Furthermore, the simplicity of the AD system allows optimization to be easily integrated into existing simulations - for example in the software package OpenLB which Asher used in his thesis. One example to test the algorithm is the shape of an object under Stokes flow such that the drag becomes minimal. It is known that it looks like an american football ball. The new algorithm converges fast to that shape. References F. Klemens e.a.: CFD- MRI: A Coupled Measurement and Simulation Approach for Accurate Fluid Flow Characterisation and Domain Identification. Computers & Fluids 166, 218-224, 2018. T. Dbouk: A review about the engineering design of optimal heat transfer systems using topology optimization. Applied Thermal Engineering 112, pp. 841-854, 2017. C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer-Verlag, 2013. M. J. Krause and V. Heuveline: Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Computers & Fluids 80, pp. 28-36, 2013. A. Kamikawa and M. Kawahara: Optimal control of thermal fluid flow using automatic differentiation. Computational Mechanics 43.6, pp. 839-846, 2009. A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. SIAM, 2008.
Gudrun talks with Asher Zarth. He finished his Master thesis in the Lattice Boltzmann Research group at the Karlsruhe Institute for Technology (KIT) in April 2018. Lattice Boltzmann methods (LBM) are an established method of computational fluid dynamics. Also, the solution of temperature-dependent problems - modeled by the Boussinesq approximation - with LBM has been done for some time. Moreover, LBM have been used to solve optimization problems, including parameter identification, shape optimization and topology optimization. Usual optimization approaches for partial differential equations are strongly based on using the corresponding adjoint problem. Especially since this method provides the sensitivities of quantities in the optimization process as well. This is very helpful. But it is also very hard to find the adjoint problem for each new problem. This needs a lot of experience and deep mathematical understanding. For that, Asher uses automatic differentiation (AD) instead, which is very flexible and user friendly. His algorithm combines an extension of LBM to porous media models as part of the shape optimization framework. The main idea of that framework is to use the permeability as a geometric design parameter instead of a rigid object which changes its shape in the iterative process. The optimization itself is carried out with line search methods, whereby the sensitivities are calculated by AD instead of using the adjoint problem. The method benefits from a straighforward and extensible implementation as the use of AD provides a way to obtain accurate derivatives with little knowledge of the mathematical formulation of the problem. Furthermore, the simplicity of the AD system allows optimization to be easily integrated into existing simulations - for example in the software package OpenLB which Asher used in his thesis. One example to test the algorithm is the shape of an object under Stokes flow such that the drag becomes minimal. It is known that it looks like an american football ball. The new algorithm converges fast to that shape. References F. Klemens e.a.: CFD- MRI: A Coupled Measurement and Simulation Approach for Accurate Fluid Flow Characterisation and Domain Identification. Computers & Fluids 166, 218-224, 2018. T. Dbouk: A review about the engineering design of optimal heat transfer systems using topology optimization. Applied Thermal Engineering 112, pp. 841-854, 2017. C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer-Verlag, 2013. M. J. Krause and V. Heuveline: Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Computers & Fluids 80, pp. 28-36, 2013. A. Kamikawa and M. Kawahara: Optimal control of thermal fluid flow using automatic differentiation. Computational Mechanics 43.6, pp. 839-846, 2009. A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. SIAM, 2008.
Gudrun is speaking with the portuguese engineer Bruno Pousinho. He has been a student of the Energy Technologies (ENTECH) Master program. This is an international and interdisciplinary program under the label of the European Institute of Innovation and Technology (EIT) inbetween a number of European technical universities. Bruno spent his second master year at the Karlsruhe Institute of Technology (KIT). Gudrun had the role of his supervisor at KIT while he worked on his Master's thesis at the Chair of Renewable and Sustainable Energy Systems (ENS) at TUM in Garching. His direct contact person there was Franz Christange from the group of Prof. Thomas Hamacher. Renewable energy systems are a growing part of the energy mix. In Germany between 1990 and 2016 it grew from 4168 GW to 104024 GW. This corresponds to an annual power consumption share of 3.4% and 31.7%, respectively. But in the related research this means a crucial shift. The conventional centralized synchronous machine dominated models have to be exchanged for decentralized power electronic dominated networks - so-called microgrids. This needs collaboration of mechanical and electrical engineers. The interdisciplinary group at TUM has the goal to work on modeling future microgrids in order to easily configure and simulate them. One additional factor is that for most renewable energy systems it is necessary to have the right weather conditions. Moreover, there is always the problem of reliability. Especially for Photovoltaics (PV) and wind turbines Weather phenomena as solar irradiation, air temperature and wind speed have to be known in advance in order to plan for these types of systems. There are two fundamentally different approaches to model weather data. Firstly the numerical weather and climate models, which provide the weather forecast for the next days and years. Secondly, so-called weather generators. The numerical models are very complex and have to run on the largest computer systems available. For that in order to have a simple enough model for planning the Renewable energy resources (RER) at a certain place weather generators are used. They produce synthetic weather data on the basis of the weather conditions in the past. They do not predict/forecast the values of a specific weather phenomenon for a specific time but provides random simulations whose outputs show the same or very similar distributional properties as the measured weather data in the past. The group in Garching wanted to have a time dynamic analytical model. The model is time continuous which grant it the ability of having any time sampling interval. This means it wanted to have a system of equations for the generation of synthetic weather data with as few as possible parameters. When Bruno started his work, there existed a model for Garching (developped by Franz Christange) with about 60 parameters. The aim of Bruno's work was to reduce the number of parameters and to show that the general concept can be used worldwide, i.e. it can adapt to different weather data in different climate zones. In the thesis the tested points range from 33º South to 40º North. In the synthesis of the weather generator the crucial tool is to use stochastic relations. Mostly the standard normal distribution is applied and shaped for the rate of change and corelation between RER. In particular this means that it describes the fundamental behavior of weather (mean, standard deviation, time- and cross-correlation) and introduces them into white noise in an analytical way. This idea was first introduced for crop estimation by Richardson in 1985. Time-dependence works on different time scales - through days and through seasons, e.g.. In the Analysis it is then necessary to parametrize the measured weather data and to provide a parameter set to the weather model. Bruno started his Master course in Lisbon at Instituto Superior tecnico (IST). In his second year he changed to KIT in Karlsruhe and put his focus on Energy systems. In his thesis he uses a lot of mathematics which he learned during his Bachelor education and had to recall and refresh. The results of the project are published in the open source model 'solfons' in Github, which uses Python and was developed in MATLAB. References F. Christange & T. Hamacher: Analytical Modeling Concept for Weather Phenomena as Renewable Energy Resources, in IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016. doi: 10.1109/ICRERA.2016.7884551 P. Ailliot, D. Allard, P. Naveau, C. D. Beaulieu, R. Cedex: Stochastic weather generators, an overview of weather type models, Journal de la Société Française de Statistique, Vol. 156, No 1, pp. 1-14, 2015. C.L. Wiegand, A.J. Richardson: Leaf area, light interception, and yield estimates from spectral components analysis, Agron. J., 76, 543, 1984. solfons: Artificial wheater data for energy system modeling, Software at GitHub. Podcasts S. Seier, T. Alexandrin: Blindstrom - Der Energie Podcast, 2016-2017. M. Völter, V. Hagenmeyer: Stromnetze, ein Überblick, omega tau Podcast, Episode 246, 2017. K. A. Zach, L. Bodingbauer: Energiespeicher, PHS186 in der Physikalischen Soiree, 2013. F. Trieb, T. Pritlive: Energie der Zukunft, RZ033 im Raumzeit Podcast, Metaebene Personal Media, 2012.
Gudrun is speaking with the portuguese engineer Bruno Pousinho. He has been a student of the Energy Technologies (ENTECH) Master program. This is an international and interdisciplinary program under the label of the European Institute of Innovation and Technology (EIT) inbetween a number of European technical universities. Bruno spent his second master year at the Karlsruhe Institute of Technology (KIT). Gudrun had the role of his supervisor at KIT while he worked on his Master's thesis at the Chair of Renewable and Sustainable Energy Systems (ENS) at TUM in Garching. His direct contact person there was Franz Christange from the group of Prof. Thomas Hamacher. Renewable energy systems are a growing part of the energy mix. In Germany between 1990 and 2016 it grew from 4168 GW to 104024 GW. This corresponds to an annual power consumption share of 3.4% and 31.7%, respectively. But in the related research this means a crucial shift. The conventional centralized synchronous machine dominated models have to be exchanged for decentralized power electronic dominated networks - so-called microgrids. This needs collaboration of mechanical and electrical engineers. The interdisciplinary group at TUM has the goal to work on modeling future microgrids in order to easily configure and simulate them. One additional factor is that for most renewable energy systems it is necessary to have the right weather conditions. Moreover, there is always the problem of reliability. Especially for Photovoltaics (PV) and wind turbines Weather phenomena as solar irradiation, air temperature and wind speed have to be known in advance in order to plan for these types of systems. There are two fundamentally different approaches to model weather data. Firstly the numerical weather and climate models, which provide the weather forecast for the next days and years. Secondly, so-called weather generators. The numerical models are very complex and have to run on the largest computer systems available. For that in order to have a simple enough model for planning the Renewable energy resources (RER) at a certain place weather generators are used. They produce synthetic weather data on the basis of the weather conditions in the past. They do not predict/forecast the values of a specific weather phenomenon for a specific time but provides random simulations whose outputs show the same or very similar distributional properties as the measured weather data in the past. The group in Garching wanted to have a time dynamic analytical model. The model is time continuous which grant it the ability of having any time sampling interval. This means it wanted to have a system of equations for the generation of synthetic weather data with as few as possible parameters. When Bruno started his work, there existed a model for Garching (developped by Franz Christange) with about 60 parameters. The aim of Bruno's work was to reduce the number of parameters and to show that the general concept can be used worldwide, i.e. it can adapt to different weather data in different climate zones. In the thesis the tested points range from 33º South to 40º North. In the synthesis of the weather generator the crucial tool is to use stochastic relations. Mostly the standard normal distribution is applied and shaped for the rate of change and corelation between RER. In particular this means that it describes the fundamental behavior of weather (mean, standard deviation, time- and cross-correlation) and introduces them into white noise in an analytical way. This idea was first introduced for crop estimation by Richardson in 1985. Time-dependence works on different time scales - through days and through seasons, e.g.. In the Analysis it is then necessary to parametrize the measured weather data and to provide a parameter set to the weather model. Bruno started his Master course in Lisbon at Instituto Superior tecnico (IST). In his second year he changed to KIT in Karlsruhe and put his focus on Energy systems. In his thesis he uses a lot of mathematics which he learned during his Bachelor education and had to recall and refresh. The results of the project are published in the open source model 'solfons' in Github, which uses Python and was developed in MATLAB. References F. Christange & T. Hamacher: Analytical Modeling Concept for Weather Phenomena as Renewable Energy Resources, in IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016. doi: 10.1109/ICRERA.2016.7884551 P. Ailliot, D. Allard, P. Naveau, C. D. Beaulieu, R. Cedex: Stochastic weather generators, an overview of weather type models, Journal de la Société Française de Statistique, Vol. 156, No 1, pp. 1-14, 2015. C.L. Wiegand, A.J. Richardson: Leaf area, light interception, and yield estimates from spectral components analysis, Agron. J., 76, 543, 1984. solfons: Artificial wheater data for energy system modeling, Software at GitHub. Podcasts S. Seier, T. Alexandrin: Blindstrom - Der Energie Podcast, 2016-2017. M. Völter, V. Hagenmeyer: Stromnetze, ein Überblick, omega tau Podcast, Episode 246, 2017. K. A. Zach, L. Bodingbauer: Energiespeicher, PHS186 in der Physikalischen Soiree, 2013. F. Trieb, T. Pritlive: Energie der Zukunft, RZ033 im Raumzeit Podcast, Metaebene Personal Media, 2012.
Gudrun Thäter and Jonathan Rollin talk about their plans for the course Advanced Mathematics (taught in English) for mechanical engineers at the Karlsruhe Institute of Technology (KIT). The topics of their conversation are relevant in the mathematical education for engineers in general (though the structure of courses differs between universities). They discuss how to embrace university mathematics, how to study, what is the structure of the educational program and what topics will be covered in the first semester in Karlsruhe. For students starting an engineering study course it is clear, that a mathematical education will be an important part. Nevertheless, most students are not aware that their experiences with mathematics at school will not match well with the mathematics at university. This is true in many ways. Mathematics is much more than calculations. As the mathematical models become more involved, more theoretical knowledge is needed in order to learn how and why the calculations work. In particular the connections among basic ideas become more and more important to see why certain rules are valid. Very often this knowledge also is essential since the rules need to be adapted for different settings. In their everyday work, engineers combine the use of well-established procedures with the ability to come up with solutions to yet unsolved problems. In our mathematics education, we try to support that skills insofar as we train certain calculations with the aim that they become routine for the future engineers. But we also show the ideas and ways how mathematicians came up with these ideas and how they are applied again and again at different levels of abstraction. This shall help the students to become creative in their engineering career. Moreover seeing how the calculation procedures are derived often helps to remember them. So it makes a lot of sense to learn about proofs behind calculations, even if we usually do not ask to repeat proofs during the written exam at the end of the semester. The course is structured as 2 lectures, 1 problem class and 1 tutorial per week. Moreover there is a homework sheet every week. All of them play their own role in helping students to make progress in mathematics. The lecture is the place to see new material and to learn about examples, connections and motivations. In this course there are lecture notes which cover most topics of the lecture (and on top of that there are a lot of books out there!). So the lecture is the place where students follow the main ideas and take these ideas to work with the written notes of the lecture later on. The theory taught in the lecture becomes more alive in the problem classes and tutorials. In the problem classes students see how the theory is applied to solve problems and exercises. But most importantly, students must solve problems on their own, with the help of the material from the lecture. Only in this way they learn how to use the theory. Very often the problems seem quite hard in the sense that it is not clear how to start or proceed. This is due to the fact that students are still learning to translate the information from the lecture to a net of knowledge they build for themselves. In the tutorial the tutor and the fellow students work together to find first steps onto a ladder to solving problems on the homework. Gudrun and Jonathan love mathematics. But from their own experience they can understand why some of the students fear mathematics and expect it to be too difficult to master. They have the following tips: just take one step after the other, and do not give up too early discuss problems, questions and topics of the lecture with fellow students - talking about mathematics helps to understand it teach fellow students about things you understand - you will be more confident with your arguments, or find some gaps to fix take time to think about mathematics and the homework problems sit down after the lecture, and repeat the arguments and ideas in your own words in order to make them your own use the problem classes and tutorials to ask questions In the lecture course, students see the basic concepts of different mathematical fields. Namely, it covers calculus, linear algebra, numerics and stochastics. Results from all these fields will help them as engineers to calculate as well as to invent. There is no standard or best way to organize the topics since there is a network of connections inbetween results and a lot of different ways to end up with models and calculation procedures. In the course in Karlsruhe in the first semester we mainly focus on calculus and touch the following subjects: Numbers Methods of proof Complex numbers Sequences and convergence Functions and continuity Series Differential calculus of one real variable Integral calculus Numerical integration Elementary differential equations All of these topics have applications and typical problems which will be trained in the problem class. But moreover they are stepping stones in order to master more and more complex problems. This already becomes clear during the first semester but will become more clear at the end of the course. Literature and related information K. F. Riley, M. P. Hobson, S. J. Bence: Mathematical Methods for Physics and Engineering. Cambridge University Press. K. F. Riley, M. P. Hobson: Foundation Mathematics for the Physical Sciences. Cambridge University Press. T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K. Lichtenegger, H. Stachel: Mathematik.Spektrum Akademischer Verlag, Heidelberg (in German). J. Stewart: Calculus, Early Transcendentals. Brooks/Cole Publishing Company. K. Burg, H. Haf, F. Wille: Höhere Mathematik für Ingenieure. Volumes I-III. Teubner Verlag, Stuttgart (in German). E. Kreyszig: Advanced Engineering Mathematics. John Wiley & Sons. E.W. Swokowski, M. Olinick, D. Pence, J.A. Cole: Calculus. PWS Publishing Company. Boston. Podcasts F. Hettlich: Höhere Mathematik, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. J. Eilinghoff: Analysis, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 36, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
Gudrun Thäter and Jonathan Rollin talk about their plans for the course Advanced Mathematics (taught in English) for mechanical engineers at the Karlsruhe Institute of Technology (KIT). The topics of their conversation are relevant in the mathematical education for engineers in general (though the structure of courses differs between universities). They discuss how to embrace university mathematics, how to study, what is the structure of the educational program and what topics will be covered in the first semester in Karlsruhe. For students starting an engineering study course it is clear, that a mathematical education will be an important part. Nevertheless, most students are not aware that their experiences with mathematics at school will not match well with the mathematics at university. This is true in many ways. Mathematics is much more than calculations. As the mathematical models become more involved, more theoretical knowledge is needed in order to learn how and why the calculations work. In particular the connections among basic ideas become more and more important to see why certain rules are valid. Very often this knowledge also is essential since the rules need to be adapted for different settings. In their everyday work, engineers combine the use of well-established procedures with the ability to come up with solutions to yet unsolved problems. In our mathematics education, we try to support that skills insofar as we train certain calculations with the aim that they become routine for the future engineers. But we also show the ideas and ways how mathematicians came up with these ideas and how they are applied again and again at different levels of abstraction. This shall help the students to become creative in their engineering career. Moreover seeing how the calculation procedures are derived often helps to remember them. So it makes a lot of sense to learn about proofs behind calculations, even if we usually do not ask to repeat proofs during the written exam at the end of the semester. The course is structured as 2 lectures, 1 problem class and 1 tutorial per week. Moreover there is a homework sheet every week. All of them play their own role in helping students to make progress in mathematics. The lecture is the place to see new material and to learn about examples, connections and motivations. In this course there are lecture notes which cover most topics of the lecture (and on top of that there are a lot of books out there!). So the lecture is the place where students follow the main ideas and take these ideas to work with the written notes of the lecture later on. The theory taught in the lecture becomes more alive in the problem classes and tutorials. In the problem classes students see how the theory is applied to solve problems and exercises. But most importantly, students must solve problems on their own, with the help of the material from the lecture. Only in this way they learn how to use the theory. Very often the problems seem quite hard in the sense that it is not clear how to start or proceed. This is due to the fact that students are still learning to translate the information from the lecture to a net of knowledge they build for themselves. In the tutorial the tutor and the fellow students work together to find first steps onto a ladder to solving problems on the homework. Gudrun and Jonathan love mathematics. But from their own experience they can understand why some of the students fear mathematics and expect it to be too difficult to master. They have the following tips: just take one step after the other, and do not give up too early discuss problems, questions and topics of the lecture with fellow students - talking about mathematics helps to understand it teach fellow students about things you understand - you will be more confident with your arguments, or find some gaps to fix take time to think about mathematics and the homework problems sit down after the lecture, and repeat the arguments and ideas in your own words in order to make them your own use the problem classes and tutorials to ask questions In the lecture course, students see the basic concepts of different mathematical fields. Namely, it covers calculus, linear algebra, numerics and stochastics. Results from all these fields will help them as engineers to calculate as well as to invent. There is no standard or best way to organize the topics since there is a network of connections inbetween results and a lot of different ways to end up with models and calculation procedures. In the course in Karlsruhe in the first semester we mainly focus on calculus and touch the following subjects: Numbers Methods of proof Complex numbers Sequences and convergence Functions and continuity Series Differential calculus of one real variable Integral calculus Numerical integration Elementary differential equations All of these topics have applications and typical problems which will be trained in the problem class. But moreover they are stepping stones in order to master more and more complex problems. This already becomes clear during the first semester but will become more clear at the end of the course. Literature and related information K. F. Riley, M. P. Hobson, S. J. Bence: Mathematical Methods for Physics and Engineering. Cambridge University Press. K. F. Riley, M. P. Hobson: Foundation Mathematics for the Physical Sciences. Cambridge University Press. T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K. Lichtenegger, H. Stachel: Mathematik.Spektrum Akademischer Verlag, Heidelberg (in German). J. Stewart: Calculus, Early Transcendentals. Brooks/Cole Publishing Company. K. Burg, H. Haf, F. Wille: Höhere Mathematik für Ingenieure. Volumes I-III. Teubner Verlag, Stuttgart (in German). E. Kreyszig: Advanced Engineering Mathematics. John Wiley & Sons. E.W. Swokowski, M. Olinick, D. Pence, J.A. Cole: Calculus. PWS Publishing Company. Boston. Podcasts F. Hettlich: Höhere Mathematik, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. J. Eilinghoff: Analysis, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 36, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
This is one of two conversations which Gudrun Thäter recorded alongside the conference Women in PDEs which took place at our Department in Karlsruhe on 27-28 April 2017. Maria Lopez-Fernandez from the University La Sapienza in Rome was one of the seven invited speakers. She got her university degree at the University of Valladolid in Spain and worked as an academic researcher in Madrid and at the University of Zürich. Her field of research is numerical analyis and in particular the robust and efficient approximation of convolutions. The conversation is mainly focussed on its applications to wave scattering problems. The important questions for the numerical tools are: Consistency, stability and convergence analysis. The methods proposed by Maria are Convolution Quadrature type methods for the time discretization coupled with the boundary integral methods for the spatial discretization. Convolution Quadrature methods are based on Laplace transformation and numerical integration. They were initially mostly developed for parabolic problems and are now adapted to serve in the context of (hyperbolic) wave equations. Convolution quadrature methods introduce artificial dissipation in the computation, which stabilzes the numerics. However it would be physically more meaningful to work instead with schemes which conserve mass. She is mainly interested in fast algorithms with reduced memory requirements and adaptivity in time and space. The motivational example for her talk was the observation of severe acoustic problems inside a new building at the University of Zürich. Any conversation in the atrium made a lot of noise and if someone was speaking loud it was hard to understand by the others. An improvement was provided by specialised engineers who installed absorbing panels. From the mathematical point of view this is an nice application of the modelling and numerics of wave scattering problems. Of course, it would make a lot of sense to simulate the acoustic situation for such spaces before building them - if stable fast software for the distribution of acoustic pressure or the transport of signals was available. The mathematical challenges are high computational costs, high storage requirements and and stability problems. Due to the nonlocal nature of the equations it is also really hard to make the calculations in parallel to run faster. In addition time-adaptive methods for these types of problems were missing completely in the mathematical literature. In creating them one has to control the numerical errors with the help of a priori and a posteriori estimates which due to Maria's and others work during the last years is in principle known now but still very complicated. Also one easily runs into stability problems when changing the time step size. The acoustic pressure distribution for the new building in Zürich has been sucessfully simulated by co-workers in Zürich and Graz by using these results together with knowledge about the sound-source and deriving heuristic measures from that in order to find a sequence of time steps which keeps the problem stable and adapt to the computations effectively. There is a lot of hope to improve the performance of these tools by representing the required boundary element matrices by approximations with much sparser matrices. References M. López Fernández, S. Sauter: Generalized Convolution Quadrature with Variable Time Stepping. Part II: Algorithm and Numerical Results. Applied Numerical Mathematics, 94, pp. 88 - 105 (2015) M. López Fernández, S. Sauter: Generalized Convolution Quadrature based on Runge-Kutta Methods. Numerische Mathematik, 133 (4), pp. 734 - 779 (2016) S. Sauter, M. Schanz: Convolution Quadrature for the Wave Equation with Impedance Boundary Conditions. Journal of Computational Physics, Vol 334, pp. 442 - 459 (2017) Podcasts T. Arens: Lärmschutz, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 16, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. F. Sayas: Acoustic Scattering, Conversation with G. Thäter in the Modellansatz Podcast, Episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2016.
This is one of two conversations which Gudrun Thäter recorded alongside the conference Women in PDEs which took place at our Department in Karlsruhe on 27-28 April 2017. Maria Lopez-Fernandez from the University La Sapienza in Rome was one of the seven invited speakers. She got her university degree at the University of Valladolid in Spain and worked as an academic researcher in Madrid and at the University of Zürich. Her field of research is numerical analyis and in particular the robust and efficient approximation of convolutions. The conversation is mainly focussed on its applications to wave scattering problems. The important questions for the numerical tools are: Consistency, stability and convergence analysis. The methods proposed by Maria are Convolution Quadrature type methods for the time discretization coupled with the boundary integral methods for the spatial discretization. Convolution Quadrature methods are based on Laplace transformation and numerical integration. They were initially mostly developed for parabolic problems and are now adapted to serve in the context of (hyperbolic) wave equations. Convolution quadrature methods introduce artificial dissipation in the computation, which stabilzes the numerics. However it would be physically more meaningful to work instead with schemes which conserve mass. She is mainly interested in fast algorithms with reduced memory requirements and adaptivity in time and space. The motivational example for her talk was the observation of severe acoustic problems inside a new building at the University of Zürich. Any conversation in the atrium made a lot of noise and if someone was speaking loud it was hard to understand by the others. An improvement was provided by specialised engineers who installed absorbing panels. From the mathematical point of view this is an nice application of the modelling and numerics of wave scattering problems. Of course, it would make a lot of sense to simulate the acoustic situation for such spaces before building them - if stable fast software for the distribution of acoustic pressure or the transport of signals was available. The mathematical challenges are high computational costs, high storage requirements and and stability problems. Due to the nonlocal nature of the equations it is also really hard to make the calculations in parallel to run faster. In addition time-adaptive methods for these types of problems were missing completely in the mathematical literature. In creating them one has to control the numerical errors with the help of a priori and a posteriori estimates which due to Maria's and others work during the last years is in principle known now but still very complicated. Also one easily runs into stability problems when changing the time step size. The acoustic pressure distribution for the new building in Zürich has been sucessfully simulated by co-workers in Zürich and Graz by using these results together with knowledge about the sound-source and deriving heuristic measures from that in order to find a sequence of time steps which keeps the problem stable and adapt to the computations effectively. There is a lot of hope to improve the performance of these tools by representing the required boundary element matrices by approximations with much sparser matrices. References M. López Fernández, S. Sauter: Generalized Convolution Quadrature with Variable Time Stepping. Part II: Algorithm and Numerical Results. Applied Numerical Mathematics, 94, pp. 88 - 105 (2015) M. López Fernández, S. Sauter: Generalized Convolution Quadrature based on Runge-Kutta Methods. Numerische Mathematik, 133 (4), pp. 734 - 779 (2016) S. Sauter, M. Schanz: Convolution Quadrature for the Wave Equation with Impedance Boundary Conditions. Journal of Computational Physics, Vol 334, pp. 442 - 459 (2017) Podcasts T. Arens: Lärmschutz, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 16, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. F. Sayas: Acoustic Scattering, Conversation with G. Thäter in the Modellansatz Podcast, Episode 58, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2016.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
GLOBALE: Der Wiener Kreis - Aktualität in Wissenschaft und Kunst | Symposium Vortrag/Gespräch 01.07.2016 bis 02.07.2016 ZKM_Kubus Die Impulse des Wiener Kreises sind bis heute nicht nur in den modernen exakten Wissenschaften wie Physik, Mathematik, der Informatik sowie den Ingenieurwissenschaften allgegenwärtig, sondern haben weit darüber hinaus Disziplinen wie die Ökonomie, die Architektur, die Psychologie oder die Literatur bestimmt. Der Einfluss des Wiener Kreises geht über die sozialen Fortschrittsbewegungen bis in die moderne Kunst. Aus Anlass der Ausstellung »Der Wiener Kreis. Exaktes Denken am Rande des Untergangs« am Zentrum für Kunst und Medien veranstalten das Institut Wiener Kreis der Universität Wien, das Institut für Philosophie sowie das Institut für Technikfolgenabschätzung (ITAS) des Karlsruher Instituts für Technologie (KIT) und das Zentrum für Kunst und Medien (ZKM) gemeinsam ein zweitägiges Symposium zur Wirkungskraft und Wirkungsgeschichte des Kreises von der kurzen Epoche seines Bestehens bis hin zur Gegenwart. /// GLOBALE: The Vienna Circle – Currentness in Science and Art | Symposium Lecture/Talk 01.07.2016 to 02.07.2016 ZKM_Cube Even now, the stimuli of the Vienna Circle are not just pervasive in modern exact sciences, such as physics, mathematics, information technology and engineering. They have also defined disciplines such as economy, architecture, psychology and literature. The influence of the Vienna Circle goes beyond social progressive movements into modern art. On the occasion of the »Vienna Circle. Exact Thinking on the Edge of Doom« exhibition at the Center for Art and Media, the Institute Vienna Circle of the University of Vienna, the Institute of Philosophy and the Institute of Technological Impact Assessment (ITAS) of the Karlsruhe Institute of Technology (KIT) and the Center for Art and Media (ZKM) are jointly hosting a two-day symposium about the impact and impact history of the Circle from the short period of its existence to the present day.
Pascal Kraft is a researcher at the Institute for Applied and Numerical Mathematics of the Karlsruhe Institute of Technology (KIT) and he introduces us to Julia Sets which he investigated for his Bachelors Thesis. It is natural for us to think something like this: If I take two simple things and put them together in some sense, nothing too complex should arise from that. A fascinating result of the work of mathematicians like Gaston Julia and Benoît Mandelbrot dating back to the first half of the 20th century show that this assumption doesn't always hold. In his bachelor's thesis under supervision of Jan-Philipp Weiß, Pascal Kraft worked on the efficient computation of Julia Sets. In laymans terms you can describe these sets as follows: Some electronic calculators have the functions of repeating the last action if you press "=" or "enter" multiple times. So if you used the root function of your calculator on a number and now you want the root of the result you simply press "=" again. Now imagine you had a function on your calculater that didn't only square the input but also added a certain value - say 0.5. Then you put in a number, apply this function and keep repeating it over and over again. Now you ask yourself if you keep pressing the "="-button if the result keeps on growing and tends to infinity or if it stays below some threshold indefinitely. Using real numbers this concept is somewhat boring but if we use complex numbers we find, that the results are astonishing. To use a more precise definition: for a function , the Filled Julia Set is defined as the set of values , for whom the series stays bounded. The Julia Set is defined as the boundary of this set. A typical example for a suitable function in this context is . We now look at the complex plane where the x-axis represents the real part of a complex number and the y-axis its imaginary part. For each point on this plane having a coordinate we take the corresponding complex number and plug this value into our function and the results over and over again up to a certain degree until we see if this sequence diverges. Computing a graphical representation of such a Julia Set is a numerically costly task since we have no other way of determining its interior points other then trying out a large amount of starting points and seeing what happens after hundreds of iterations. The results, however, turn out to be surprising and worth the effort. The geometric representations - images - of filled Julia Sets turn out to be very aesthetically pleasing since they are no simple compositions of elementary shapes but rather consist of intricate shapes and patterns. The reason for these beautiful shapes lie in the nature of multiplication and addition on the complex plane: A multiplication can be a magnification and down-scaling, mirroring and rotation, whereas the complex addition is represented by a translation on the complex plane. Since the function is applied over and over again, the intrinsic features are repeated in scaled and rotated forms over and over again, and this results in a self-similarity on infinite scales. In his bachelor's thesis, Pascal focussed on the efficient computation of such sets which can mean multiple things: it can either mean that the goal was to quickly write a program which could generate an image of a Julia Set, or that a program was sought which was very fast in computing such a program. Lastly it can also mean that we want to save power and seek a program which uses computational power efficiently to compute such an image, i.e. that consumes little energy. This is a typical problem when considering a numerical approach in any application and it arises very naturally here: While the computation of Julia Sets can greatly benefit from parallelization, the benefits are at loss when many tasks are waiting for one calculation and therefore the speedup and computational efficiency breaks down due to Amdahl's law. The difference of these optimization criteria becomes especially obvious when we want to do further research ontop of our problem solver that we have used so far. The Mandelbrot Set for example is the set of values , for whom the Filled Julia Set is not equal to the Julia Set (i.e. the Filled Julia Set has interior points). One detail is important for the computation of either of these sets: If we check one single point we can never really say if it is inside the Filled Julia Set for sure (unless we can prove periodicity but that is not really feasible). What we can show however is, that if the magnitude of a point in the series of computations is above a certain bound, the results will tend to infinity from this point on. The approach is therefore to compute steps until either a maximum of steps is reached or a certain threshold is exceeded. Based on this assumption, we see that computing a point which lies inside the filled Julia Set is the bigger effort. So if computing a Julia Set for a given parameter is a lot of work, its complex parameter most likely lies inside the Mandelbrot Set (as we find many points for whom the computation doesn't abort prematurely and it is therefore likely that some of these points will be interior). If we want to draw the Mandelbrot Set based on this approach, we have to compute thousands of Julia Sets and if the computation of a single image was to take a minute this would not really be feasible anymore. Since the computation of a Julia Set can even be done in a webbrowser these days, we include below a little tool which lets you set a complex parameter and compute four different Julia Sets. Have fun with our Interactive Julia Sets! References and further reading J. Dufner, A. Roser, F. Unseld: Fraktale und Julia-Mengen, Harri Deutsch Verlag, 1998. H.-O. Peitgen, P. H. Richter: The beauty of fractals: images of complex dynamical systems, Springer Berlin Heidelberg, 1986. B. B. Mandelbrot: Fractal aspects of the iteration of for complex and z, Annals of the New York Academy of Sciences 357.1: 249-259, 1980. P. Kraft: Paralleles Rechnen auf GPUs - Julia Mengen und das magnetische Pendel Fraktal, Bachelor Thesis. 2012. J. Gaston: Mémoire sur l’itération des fonctions rationnelles, Journal de Math´ematiques pures et appliqu ´ees 4 (Rep 1968), pp. 47-245 / 121-319, 1918. P. Blanchard: Complex analytical dynamics on the Riemann sphere, Bulletin of the American Mathematical Society 11, pp. 84-141, 1984.
Pascal Kraft is a researcher at the Institute for Applied and Numerical Mathematics of the Karlsruhe Institute of Technology (KIT) and he introduces us to Julia Sets which he investigated for his Bachelors Thesis. It is natural for us to think something like this: If I take two simple things and put them together in some sense, nothing too complex should arise from that. A fascinating result of the work of mathematicians like Gaston Julia and Benoît Mandelbrot dating back to the first half of the 20th century show that this assumption doesn't always hold. In his bachelor's thesis under supervision of Jan-Philipp Weiß, Pascal Kraft worked on the efficient computation of Julia Sets. In laymans terms you can describe these sets as follows: Some electronic calculators have the functions of repeating the last action if you press "=" or "enter" multiple times. So if you used the root function of your calculator on a number and now you want the root of the result you simply press "=" again. Now imagine you had a function on your calculater that didn't only square the input but also added a certain value - say 0.5. Then you put in a number, apply this function and keep repeating it over and over again. Now you ask yourself if you keep pressing the "="-button if the result keeps on growing and tends to infinity or if it stays below some threshold indefinitely. Using real numbers this concept is somewhat boring but if we use complex numbers we find, that the results are astonishing. To use a more precise definition: for a function , the Filled Julia Set is defined as the set of values , for whom the series stays bounded. The Julia Set is defined as the boundary of this set. A typical example for a suitable function in this context is . We now look at the complex plane where the x-axis represents the real part of a complex number and the y-axis its imaginary part. For each point on this plane having a coordinate we take the corresponding complex number and plug this value into our function and the results over and over again up to a certain degree until we see if this sequence diverges. Computing a graphical representation of such a Julia Set is a numerically costly task since we have no other way of determining its interior points other then trying out a large amount of starting points and seeing what happens after hundreds of iterations. The results, however, turn out to be surprising and worth the effort. The geometric representations - images - of filled Julia Sets turn out to be very aesthetically pleasing since they are no simple compositions of elementary shapes but rather consist of intricate shapes and patterns. The reason for these beautiful shapes lie in the nature of multiplication and addition on the complex plane: A multiplication can be a magnification and down-scaling, mirroring and rotation, whereas the complex addition is represented by a translation on the complex plane. Since the function is applied over and over again, the intrinsic features are repeated in scaled and rotated forms over and over again, and this results in a self-similarity on infinite scales. In his bachelor's thesis, Pascal focussed on the efficient computation of such sets which can mean multiple things: it can either mean that the goal was to quickly write a program which could generate an image of a Julia Set, or that a program was sought which was very fast in computing such a program. Lastly it can also mean that we want to save power and seek a program which uses computational power efficiently to compute such an image, i.e. that consumes little energy. This is a typical problem when considering a numerical approach in any application and it arises very naturally here: While the computation of Julia Sets can greatly benefit from parallelization, the benefits are at loss when many tasks are waiting for one calculation and therefore the speedup and computational efficiency breaks down due to Amdahl's law. The difference of these optimization criteria becomes especially obvious when we want to do further research ontop of our problem solver that we have used so far. The Mandelbrot Set for example is the set of values , for whom the Filled Julia Set is not equal to the Julia Set (i.e. the Filled Julia Set has interior points). One detail is important for the computation of either of these sets: If we check one single point we can never really say if it is inside the Filled Julia Set for sure (unless we can prove periodicity but that is not really feasible). What we can show however is, that if the magnitude of a point in the series of computations is above a certain bound, the results will tend to infinity from this point on. The approach is therefore to compute steps until either a maximum of steps is reached or a certain threshold is exceeded. Based on this assumption, we see that computing a point which lies inside the filled Julia Set is the bigger effort. So if computing a Julia Set for a given parameter is a lot of work, its complex parameter most likely lies inside the Mandelbrot Set (as we find many points for whom the computation doesn't abort prematurely and it is therefore likely that some of these points will be interior). If we want to draw the Mandelbrot Set based on this approach, we have to compute thousands of Julia Sets and if the computation of a single image was to take a minute this would not really be feasible anymore. Since the computation of a Julia Set can even be done in a webbrowser these days, we include below a little tool which lets you set a complex parameter and compute four different Julia Sets. Have fun with our Interactive Julia Sets! References and further reading J. Dufner, A. Roser, F. Unseld: Fraktale und Julia-Mengen, Harri Deutsch Verlag, 1998. H.-O. Peitgen, P. H. Richter: The beauty of fractals: images of complex dynamical systems, Springer Berlin Heidelberg, 1986. B. B. Mandelbrot: Fractal aspects of the iteration of for complex and z, Annals of the New York Academy of Sciences 357.1: 249-259, 1980. P. Kraft: Paralleles Rechnen auf GPUs - Julia Mengen und das magnetische Pendel Fraktal, Bachelor Thesis. 2012. J. Gaston: Mémoire sur l’itération des fonctions rationnelles, Journal de Math´ematiques pures et appliqu ´ees 4 (Rep 1968), pp. 47-245 / 121-319, 1918. P. Blanchard: Complex analytical dynamics on the Riemann sphere, Bulletin of the American Mathematical Society 11, pp. 84-141, 1984.
This is the last of four conversation Gudrun had during the British Applied Mathematics Colloquium which took place 5th – 8th April 2016 in Oxford. Andrea Bertozzi from the University of California in Los Angeles (UCLA) held a public lecture on The Mathematics of Crime. She has been Professor of Mathematics at UCLA since 2003 and Betsy Wood Knapp Chair for Innovation and Creativity (since 2012). From 1995-2004 she worked mostly at Duke University first as Associate Professor of Mathematics and then as Professor of Mathematics and Physics. As an undergraduate at Princeton University she studied physics and astronomy alongside her major in mathematics and went through a Princeton PhD-program. For her thesis she worked in applied analysis and studied fluid flow. As postdoc she worked with Peter Constantin at the University of Chicago (1991-1995) on global regularity for vortex patches. But even more importantly, this was the moment when she found research problems that needed knowledge about PDEs and flow but in addition both numerical analysis and scientific computing. She found out that she really likes to collaborate with very different specialists. Today hardwork can largely be carried out on a desktop but occasionally clusters or supercomputers are necessary. The initial request to work on Mathematics in crime came from a colleague, the social scientist Jeffrey Brantingham. He works in Anthropology at UCLA and had well established contacts with the police in LA. He was looking for mathematical input on some of his problems and raised that issue with Andrea Bertozzi. Her postdoc George Mohler came up with the idea to adapt an earthquake model after a discussion with Frederic Paik Schoenberg, a world expert in that field working at UCLA. The idea is to model crimes of opportunity as being triggered by crimes that already happend. So the likelihood of new crimes can be predicted as an excitation in space and time like the shock of an earthquake. Of course, here statistical models are necessary which say how the excitement is distributed and decays in space and time. Mathematically this is a self-exciting point process. The traditional Poisson process model has a single parameter and thus, no memory - i.e. no connections to other events can be modelled. The Hawkes process builds on the Poisson process as background noise but adds new events which then are triggering events according to an excitation rate and the exponential decay of excitation over time. This is a memory effect based on actual events (not only on a likelihood) and a three parameter model. It is not too difficult to process field data, fit data to that model and make an extrapolation in time. Meanwhile the results of that idea work really well in the field. Results of field trials both in the UK and US have just been published and there is a commercial product available providing services to the police. In addition to coming up with useful ideas and having an interdisciplinary group of people committed to make them work it was necessery to find funding in order to support students to work on that topic. The first grant came from the National Science Foundation and from this time on the group included George Tita (UC Irvine) a criminology expert in LA-Gangs and Lincoln Chayes as another mathematician in the team. The practical implementation of this crime prevention method for the police is as follows: Before the policemen go out on a shift they ususally meet to divide their teams over the area they are serving. The teams take the crime prediction for that shift which is calculated by the computer model on the basis of whatever data is available up to shift. According to expected spots of crimes they especially assign teams to monitor those areas more closely. After introducing this method in the police work in Santa Cruz (California) police observed a significant reduction of 27% in crime. Of course this is a wonderful success story. Another success story involves the career development of the students and postdocs who now have permanent positions. Since this was the first group in the US to bring mathematics to police work this opened a lot of doors for young people involved. Another interesting topic in the context of Mathematics and crime are gang crime data. As for the the crime prediction model the attack of one gang on a rival gang usually triggers another event soon afterwards. A well chosen group of undergraduates already is mathematically educated enough to study the temporary distribution of gang related crime in LA with 30 street gangs and a complex net of enemies. We are speaking about hundreds of crimes in one year related to the activity of gangs. The mathematical tool which proved to be useful was a maximum liklihood penalization model again for the Hawkes process applied on the expected retaliatory behaviour. A more complex problem, which was treated in a PhD-thesis, is to single out gangs which would be probably responsable for certain crimes. This means to solve the inverse problem: We know the time and the crime and want to find out who did it. The result was published in Inverse Problems 2011. The tool was a variational model with an energy which is related to the data. The missing information is guessed and then put into the energy . In finding the best guess related to the chosen energy model a probable candidate for the crime is found. For a small number of unsolved crimes one can just go through all possible combinations. For hundreds or even several hundreds of unsolved crimes - all combinations cannot be handled. We make it easier by increasing the number of choices and formulate a continuous instead of the discrete problem, for which the optimization works with a standard gradient descent algorithm. A third topic and a third tool is Compressed sensing. It looks at sparsitiy in data like the probability distribution for crime in different parts of the city. Usually the crime rate is high in certain areas of a city and very low in others. For these sharp changes one needs different methods since we have to allow for jumps. Here the total variation enters the model as the -norm of the gradient. It promotes sparsity of edges in the solution. Before coming up with this concept it was necessary to cross-validate quite a number of times, which is computational very expensive. So instead of in hours the result is obtained in a couple minutes now. When Andrea Bertozzi was a young child she spent a lot of Sundays in the Science museum in Boston and wanted to become a scientist when grown up. The only problem was, that she could not decide which science would be the best choice since she liked everything in the museum. Today she says having chosen applied mathematics indeed she can do all science since mathematics works as a connector between sciences and opens a lot of doors. References Press coverage of Crime prevention collected Website of Mathematical and Simulation Modeling of Crime Examples for work of undergraduates M. Allenby, e.a.: A Point Process Model for Simulating Gang-on-Gang Violence, Project Report, 2010. K. Louie: Statistical Modeling of Gang Violence in Los Angeles, talk at AMS Joint meetings San Francisco, AMS Session on Mathematics in the Social Sciences, 2010] Publications of A. Bertozzi and co-workers on Crime prevention G.O. Mohler e.a.: Randomized controlled field trials of predictive policing, J. Am. Stat. Assoc., 111(512), 1399-1411, 2015. J. T. Woodworth e.a.: Nonlocal Crime Density Estimation Incorporating Housing Information, Phil. Trans. Roy. Soc. A, 372(2028), 20130403, 2014. J. Zipkin, M. B. Short & A. L. Bertozzi: Cops on the dots in a mathematical model of urban crime and police response, Discrete and Continuous Dynamical Systems B, 19(5), pp. 1479-1506, 2014. H. Hu e.a.: A Method Based on Total Variation for Network Modularity Optimization using the MBO Scheme, SIAM J. Appl. Math., 73(6), pp. 2224-2246, 2013. L.M. Smith e.a.: Adaptation of an Ecological Territorial Model to Street Gang Spatial Patterns in Los Angeles Discrete and Continuous Dynamical Systems A, 32(9), pp. 3223 - 3244, 2012. G. Mohler e.a.. (2011): Self- exciting point process modeling of crime, Journal of the American Statistical Association, 106(493):100–108, 2011. A. Stomakhin, M. Short, and A. Bertozzi: Reconstruction of missing data in social networks based on temporal patterns of interactions. Inverse Problems, 27, 2011. N. Rodriguez & A. Bertozzi: Local Existence and Uniqueness of Solutions to a PDE model for Criminal Behavior , M3AS, special issue on Mathematics and Complexity in Human and Life Sciences, Vol. 20, Issue supp01, pp. 1425-1457, 2010. Related Podcasts AMS - Mathematical Moments Podcast: MM97 - Forecasting Crime British Applied Mathematics Colloquium 2016 Special J.Dodd: Crop Growth, Conversation with G. Thäter in the Modellansatz Podcast episode 89, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2016. http://modellansatz.de/crop-growth H. Wilson: Viscoelastic Fluids, Conversation with G. Thäter in the Modellansatz Podcast episode 92, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2016. http://modellansatz.de/viscoelastic-fluids A. Hosoi: Robots, Conversation with G. Thäter in the Modellansatz Podcast, episode 108, Department for Mathematics, Karlsruhe Institute of Technologie (KIT), 2016. http://modellansatz.de/robot A. Bertozzi: Crime Prevention, Conversation with G. Thäter in the Modellansatz Podcast, episode 109, Department for Mathematics, Karlsruhe Institute of Technologie (KIT), 2016. http://modellansatz.de/crime-prevention
This is the last of four conversation Gudrun had during the British Applied Mathematics Colloquium which took place 5th – 8th April 2016 in Oxford. Andrea Bertozzi from the University of California in Los Angeles (UCLA) held a public lecture on The Mathematics of Crime. She has been Professor of Mathematics at UCLA since 2003 and Betsy Wood Knapp Chair for Innovation and Creativity (since 2012). From 1995-2004 she worked mostly at Duke University first as Associate Professor of Mathematics and then as Professor of Mathematics and Physics. As an undergraduate at Princeton University she studied physics and astronomy alongside her major in mathematics and went through a Princeton PhD-program. For her thesis she worked in applied analysis and studied fluid flow. As postdoc she worked with Peter Constantin at the University of Chicago (1991-1995) on global regularity for vortex patches. But even more importantly, this was the moment when she found research problems that needed knowledge about PDEs and flow but in addition both numerical analysis and scientific computing. She found out that she really likes to collaborate with very different specialists. Today hardwork can largely be carried out on a desktop but occasionally clusters or supercomputers are necessary. The initial request to work on Mathematics in crime came from a colleague, the social scientist Jeffrey Brantingham. He works in Anthropology at UCLA and had well established contacts with the police in LA. He was looking for mathematical input on some of his problems and raised that issue with Andrea Bertozzi. Her postdoc George Mohler came up with the idea to adapt an earthquake model after a discussion with Frederic Paik Schoenberg, a world expert in that field working at UCLA. The idea is to model crimes of opportunity as being triggered by crimes that already happend. So the likelihood of new crimes can be predicted as an excitation in space and time like the shock of an earthquake. Of course, here statistical models are necessary which say how the excitement is distributed and decays in space and time. Mathematically this is a self-exciting point process. The traditional Poisson process model has a single parameter and thus, no memory - i.e. no connections to other events can be modelled. The Hawkes process builds on the Poisson process as background noise but adds new events which then are triggering events according to an excitation rate and the exponential decay of excitation over time. This is a memory effect based on actual events (not only on a likelihood) and a three parameter model. It is not too difficult to process field data, fit data to that model and make an extrapolation in time. Meanwhile the results of that idea work really well in the field. Results of field trials both in the UK and US have just been published and there is a commercial product available providing services to the police. In addition to coming up with useful ideas and having an interdisciplinary group of people committed to make them work it was necessery to find funding in order to support students to work on that topic. The first grant came from the National Science Foundation and from this time on the group included George Tita (UC Irvine) a criminology expert in LA-Gangs and Lincoln Chayes as another mathematician in the team. The practical implementation of this crime prevention method for the police is as follows: Before the policemen go out on a shift they ususally meet to divide their teams over the area they are serving. The teams take the crime prediction for that shift which is calculated by the computer model on the basis of whatever data is available up to shift. According to expected spots of crimes they especially assign teams to monitor those areas more closely. After introducing this method in the police work in Santa Cruz (California) police observed a significant reduction of 27% in crime. Of course this is a wonderful success story. Another success story involves the career development of the students and postdocs who now have permanent positions. Since this was the first group in the US to bring mathematics to police work this opened a lot of doors for young people involved. Another interesting topic in the context of Mathematics and crime are gang crime data. As for the the crime prediction model the attack of one gang on a rival gang usually triggers another event soon afterwards. A well chosen group of undergraduates already is mathematically educated enough to study the temporary distribution of gang related crime in LA with 30 street gangs and a complex net of enemies. We are speaking about hundreds of crimes in one year related to the activity of gangs. The mathematical tool which proved to be useful was a maximum liklihood penalization model again for the Hawkes process applied on the expected retaliatory behaviour. A more complex problem, which was treated in a PhD-thesis, is to single out gangs which would be probably responsable for certain crimes. This means to solve the inverse problem: We know the time and the crime and want to find out who did it. The result was published in Inverse Problems 2011. The tool was a variational model with an energy which is related to the data. The missing information is guessed and then put into the energy . In finding the best guess related to the chosen energy model a probable candidate for the crime is found. For a small number of unsolved crimes one can just go through all possible combinations. For hundreds or even several hundreds of unsolved crimes - all combinations cannot be handled. We make it easier by increasing the number of choices and formulate a continuous instead of the discrete problem, for which the optimization works with a standard gradient descent algorithm. A third topic and a third tool is Compressed sensing. It looks at sparsitiy in data like the probability distribution for crime in different parts of the city. Usually the crime rate is high in certain areas of a city and very low in others. For these sharp changes one needs different methods since we have to allow for jumps. Here the total variation enters the model as the -norm of the gradient. It promotes sparsity of edges in the solution. Before coming up with this concept it was necessary to cross-validate quite a number of times, which is computational very expensive. So instead of in hours the result is obtained in a couple minutes now. When Andrea Bertozzi was a young child she spent a lot of Sundays in the Science museum in Boston and wanted to become a scientist when grown up. The only problem was, that she could not decide which science would be the best choice since she liked everything in the museum. Today she says having chosen applied mathematics indeed she can do all science since mathematics works as a connector between sciences and opens a lot of doors. References Press coverage of Crime prevention collected Website of Mathematical and Simulation Modeling of Crime Examples for work of undergraduates M. Allenby, e.a.: A Point Process Model for Simulating Gang-on-Gang Violence, Project Report, 2010. K. Louie: Statistical Modeling of Gang Violence in Los Angeles, talk at AMS Joint meetings San Francisco, AMS Session on Mathematics in the Social Sciences, 2010] Publications of A. Bertozzi and co-workers on Crime prevention G.O. Mohler e.a.: Randomized controlled field trials of predictive policing, J. Am. Stat. Assoc., 111(512), 1399-1411, 2015. J. T. Woodworth e.a.: Nonlocal Crime Density Estimation Incorporating Housing Information, Phil. Trans. Roy. Soc. A, 372(2028), 20130403, 2014. J. Zipkin, M. B. Short & A. L. Bertozzi: Cops on the dots in a mathematical model of urban crime and police response, Discrete and Continuous Dynamical Systems B, 19(5), pp. 1479-1506, 2014. H. Hu e.a.: A Method Based on Total Variation for Network Modularity Optimization using the MBO Scheme, SIAM J. Appl. Math., 73(6), pp. 2224-2246, 2013. L.M. Smith e.a.: Adaptation of an Ecological Territorial Model to Street Gang Spatial Patterns in Los Angeles Discrete and Continuous Dynamical Systems A, 32(9), pp. 3223 - 3244, 2012. G. Mohler e.a.. (2011): Self- exciting point process modeling of crime, Journal of the American Statistical Association, 106(493):100–108, 2011. A. Stomakhin, M. Short, and A. Bertozzi: Reconstruction of missing data in social networks based on temporal patterns of interactions. Inverse Problems, 27, 2011. N. Rodriguez & A. Bertozzi: Local Existence and Uniqueness of Solutions to a PDE model for Criminal Behavior , M3AS, special issue on Mathematics and Complexity in Human and Life Sciences, Vol. 20, Issue supp01, pp. 1425-1457, 2010. Related Podcasts AMS - Mathematical Moments Podcast: MM97 - Forecasting Crime British Applied Mathematics Colloquium 2016 Special J.Dodd: Crop Growth, Conversation with G. Thäter in the Modellansatz Podcast episode 89, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2016. http://modellansatz.de/crop-growth H. Wilson: Viscoelastic Fluids, Conversation with G. Thäter in the Modellansatz Podcast episode 92, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2016. http://modellansatz.de/viscoelastic-fluids A. Hosoi: Robots, Conversation with G. Thäter in the Modellansatz Podcast, episode 108, Department for Mathematics, Karlsruhe Institute of Technologie (KIT), 2016. http://modellansatz.de/robot A. Bertozzi: Crime Prevention, Conversation with G. Thäter in the Modellansatz Podcast, episode 109, Department for Mathematics, Karlsruhe Institute of Technologie (KIT), 2016. http://modellansatz.de/crime-prevention
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Nanotechnology gains much attention and credibility from a portfolio of detailed and attractive images of atoms, molecules, and other nanoscale objects. Usually they are created by either a Scanning Tunneling Microscope (STM) or an Atomic Force Microscope (AFM). These images employ familiar conventions for making the nanoscale look like a three-dimensional topography. Yet there is a series of problems in the relation between a nanoscale object and a picture of the object. Nanoscale objects are much smaller than the wavelength of visible light, in which case colors, shading and other visual conventions are artificial. A picture of an atom or a molecule cannot possibly look like an atom or a molecule. This relationship has been explored extensively by philosophers, artists and others. Now, in addition to seeing what is wrong with nano images, we should also see what is right: what is the visual knowledge in these images that is worth appreciating? To answer that question, we can turn to certain aesthetic resources, e.g., the cubist principle of simultaneité. And then simultaneité leads to an exercise called inter-instrumentality. By employing these aesthetic resources, we can derive visual knowledge from nano images even as we realize the problems in the relation between a molecule and a picture of a molecule. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Ein nicht unwesentlicher Grund für die Popularität und Aktualität der Nanotechnologie ist die Verbreitung detaillierter, hochqualitativer Abbildungen von Atomen, Molekülen und Nanoobjekten, aufgenommen mit dem Rastertunnelmikroskop (RTM) oder Rasterkraftmikroskop (RKM). Der Nanokosmos wird mittels konventioneller Methoden in eine dreidimensionale Topografie umgewandelt. Hierbei treten allerdings Unstimmigkeiten zwischen Objekt und Repräsentation in Erscheinung. Da Nanoobjekte weitaus kleiner sind als die Wellenlänge des Lichts, handelt es sich bei den Farben, Schattierungen und anderen Qualitäten um willkürliche Darstellungshilfen. Die Abbildung eines Atoms oder Moleküls kann unmöglich wie ein Atom oder Molekül aussehen. Philosophen, Künstler und andere Gruppen haben dieses Paradox eingehend untersucht. Man sollte indessen nicht nur sehen, was an den Bildern falsch ist, sondern auch, was an ihnen der Realität entspricht. Enthalten sie brauchbare visuelle Anhaltspunkte? Um diese Frage zu beantworten, wenden wir uns ästhetischen Präzedenzfällen zu, etwa dem kubistischen Prinzip der Simultaneität (simultaneité), das uns zu interinstrumentalen Versuchstechniken führt. Durch die Anwendung ästhetischer Mittel gelingt es uns, visuelle Informationen aus den Nano-Bildern zu extrahieren, ohne deshalb aus den Augen zu verlieren, dass die Relation von Molekül und Abbildung Diskontinuitäten aufweist.
Molecular Aesthetics | Interactive 3D-Installation Ljljana Fruk and Bernd Lintermann are presenting the interactive 3D-Installation »Molecules that Changed the World«. It was part of the Symposium »Molecular Aesthetics« which took place as a part of the project »Käpsele Connection. Creativity and Innovation in Baden-Württemberg« in cooperation with DFG-Center for Functional Nanostructures (CFN) of the Karlsruhe Institute of Technology (KIT). Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Ljljana Fruk und Bernd Lintermann präsentieren die interaktive 3D-Installation »Molecules that Changed the World«. Diese war Teil des Symposiums »Molekulare Ästhetik«, das im Rahmen des Projekts »Käpsele Connection. Kreativität und Innovation in Baden-Württemberg« in Zusammenarbeit mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Institute of Technology entstand. Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Symposium The representation of macromolecular structures, for research or publication purposes, was a particular challenge for 20th century scientists. Focusing on protein science, this talk will explore how scientists and their collaborators have developed and used various techniques, from physical models to photorealistic computer graphics, to represent these structures. It will particularly focus on how the domains of science, the mechanical arts, the visual arts and computer science intersected and criss-crossed as this culture of macromolecular representation changed and evolved through the second half of the 20th century. Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). It was in the 60s of the last century that the pores of our senses openend up. Was it the mescaline impregnated pictures of a Henri Michaux, was it the LSD-borne dreams of a Timothy Leary. Was it the wounds of the second world war, written down in the palm sized drawings of a »WOLS« (Wolfgang Schulze) It was the high period of kinetics of a Jean Tinguely, of a Gerhard von Graevenitz, of the seriell paintings of a Victor Vasarely, generated from the value inverted pragmatism of emptiness of a Marcel Duchamp. Everything screamed out for new art. Now it had to arrive, the biologically based kinetic. A word was spit out: Biokinetic. Realised for the first time in 1969 in the Musem Schloss Morsbroich of the city of chemistry, Leverkusen, the museum which had shortly before become a lanching pad into the infinite blue space of an Yves Klein. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Es war in den Sechzigern des vergangenen Jahrhunderts, als sich die Poren unserer Sinne öffneten. Waren es die Meskalin trächtigen Bilder eines Henri Michaux, waren es die LSD getragenen Träume eines Timothy Leary? Waren es die Wunden des 2. Weltkrieges, niedergeschrieben in den Handteller großen Zeichnungen eines “WOLS“ (Wolfgang Schulze)? Es war die Hohe Zeit der Kinetik eines Jean Tinguely, eines Gerhard von Graevenitz, der seriellen Malerei eines Victor Vasarely, entstanden aus dem Werte umkehrenden Pragmatismus der Leere eines Marcel Duchamp. Alles schrie nach neuer Kunst. Jetzt musste sie kommen, die biologisch getragene Kinetik. Ein Wort dafür wurde ausgespieen: Biokinetik. Erstmals realisiert 1969 im Museum Schloss Morsbroich der Chemiestadt Leverkusen, jenem Museum, das kurz zuvor Startrampe in den unendlichen blauen Raum eines Yves Klein gewesen ist.
Molecular Aesthetics | Symposium Artists operate within both the miniscule contexts of cells and molecules and the vastly larger macrocosm of human experience. While scientists ponder higher dimensions and the existence of multiple universes, the scope of knowledge encompasses once inconceivable reaches of space and time. Art is no longer limited to human scale. Neither is it any longer confined to this world or even, to this universe. Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Künstler agieren sowohl im Mikrokosmos der Moleküle und Zellen als auch im vielfach größeren Makrokosmos der menschlichen Erfahrungswelt. Unser Wissen ist durch die wissenschaftliche Erforschung höherer Dimensionen und multipler Paralleluniversen in bislang unvorstellbare Regionen von Raum und Zeit vorgedrungen. Kunst bleibt nicht länger auf das menschliche Maß beschränkt und weist über die Grenzen unseres Planeten, ja sogar unseres Universums hinaus. Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Symposium The fascinating structure of DNA has enabled the encoding of a life's message and 50 years after the discovery, genome libraries and gene manipulation, we have just about scratched the surface. But today, DNA is not only a molecule of life, but also an important building block in a new field of nanotechnology - design of novel nanostructures. And the structures, which have been designed on the nano scale by making use of remarkable properties of a double helix, are not only fascinatingly complex but have, in the last decade, found a range of interesting applications and continue to attract lots of attention. What has been done till now to fill in the gaps in understanding the DNA and where can we go from here? Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Die faszinierende Struktur der DNS verschlüsselt die Botschaften des Lebens. Trotz Genom-Datenbanken und Genmanipulationen bleibt sie auch 50 Jahre nach ihrer Entdeckung ein Neuland der Forschung. Neben ihrer Funktion als Molekül des Lebens dient die DNS heute als Grundbaustein im aufstrebenden Feld der Nanotechnologie. Die speziellen Eigenschaften der Doppelhelix ermöglichen die Entwicklung innovativer, komplexer Nanostrukturen, die im vergangenen Jahrzehnt zahlreiche Anwendungsgebiete fanden und nach wie vor großes wissenschaftliches Interesse erregen. Was wurde unternommen, um die Lücken in unserer Kenntnis der DNS zu füllen, und welche zukünftigen Schritte bieten sich an? Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Symposium After the discussion of the term "molecular aesthetics" and the examination of some synthetic supermolecules, principles leading to aesthetically demanding molecules are discussed on the basis of various organic natural substances. Through dimerization, bilateral-symmetric or card-like connections are formed. The linkage to ring-shaped, rotationally symmetric molecules takes place according to certain laws. The phenomenon of translation can be observed in linear and three-dimensional polymers. In the crystal lattice of the diamond the most different figures are hidden. Of particular interest is the chirality or handiness of natural and medicinal substances, which gives the molecules amazing properties. The comparison of words, molecules and melodies is also aesthetically appealing. Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Nach der Diskussion des Begriffes „molekulare Ästhetik“ und der Betrachtung einiger synthetischer Supermoleküle werden anhand verschiedener organischer Naturstoffe Prinzipien besprochen, die zu ästhetisch anspruchsvollen Molekülen führen. Durch Dimerisierung entstehen bilateral-symmetrische oder spielkartenartige Verbindungen. Die Verknüpfung zu ringförmigen, rotationssymmetrischen Molekülen erfolgt nach bestimmten Gesetzmäßigkeiten. Das Phänomen der Translation ist in linearen und drei dimensionalen Polymeren zu beobachten. Im Kristallgitter des Diamanten sind die unterschiedlichsten Figuren versteckt. Von besonderem Interesse ist die Chiralität oder Händigkeit von Natur- und Arzneistoffen, die den Molekülen erstaunliche Eigenschaften verleiht. Ästhetisch reizvoll erscheint auch der Vergleich von Worten, Molekülen und Melodien. Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). How and why are biomedia employed in the field of (media) art? Whilst the technosciences themselves have increasingly become potent producers of aesthetic visualizations, do artists just want to make rival use of the epistemic power of the image? Or do they rather use wetware at the molecular or cellular level in order to short-circuit semiotic procedures of representation by staging and voluntarily emphasizing the very authenticity of their biological subjects, objects, processes or systems? The artistic use of biomedia as means of expression takes advantage of the high degree of non-fictitious believability, truthfulness and manifest corporality of their status as real biological entities, potentially living or stemming from life, and thus resembling the viewers of this art themselves. But while their real, apparent, or at least potential a/liveness first prompts the viewer's feeling of immediacy, the underlying mediality and technological constructedness of these displays is more slowly, cryptically revealed and addressed. Therefore, the apparent visual and diegetic core of biotechnological artworks needs to be carefully analyzed, beyond a purely image-based hermeneutic approach, on the basis of the artistic media themselves with their respective phenomenological impacts and their epistemic nexuses. Features that once unfolded primarily as artistic images are today being remediated, dispersed and fragmented into a confusing multitude of media. Here, mediation and technologies are no longer employed merely to achieve an aesthetic effect. They are themselves fully-integrated elements of the aesthetic idiom. Indeed, biomedia's potential to produce, destabilize and deconstruct authenticity can be seen in the light of two complementary and well-established mechanisms in art history: Illusionism, which can be considered the simulation of an authentic presence that appears even to share a physical space with the viewer, and indexicality, on the other hand, which acknowledges that cultural products per se obey sign modalities and hence induce degrees of representation. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Wie und warum werden Biomedien in der (Medien-) Kunst eingesetzt? Während die Technowissenschaften selbst immer häufiger zu potenten Gestaltern ästhetisierter Veranschaulichungen werden, wollen Künstler da konkurrierend die epistemische Kraft von Bildlichkeit in Anspruch nehmen? Oder benutzen sie Wetware auf molekularer und zellulärer Ebene, um semiotische Repräsentationsprozesse kurzzuschließen, indem sie die Authentizität ihrer biologischen Subjekte, Objekte, Abläufe oder Systeme inszenieren und bewusst herausstellen? Die Verwendung von Biomedien als künstlerisches Ausdrucksmittel nutzt deren überzeugende Glaubwürdigkeit und Wirklichkeitsnähe ebenso wie die manifest präsente Körperhaftigkeit, welche sich aus dem Status als biologische Einheiten ableitet, welche lebendig sind oder aus Lebendigem hervorgingen und somit dem Betrachter einer solchen Kunst gleichen. Während ihre faktische, offenbare oder zumindest potenzielle Lebendigkeit bei der Rezeption zunächst ein Gefühl der Unmittelbarkeit hervorruft, tritt die zugrunde liegende mediale und technologische Konstruiertheit jener Dispositve nach und nach bruchstückhaft und kryptisch zutage. Der visuelle und diegetische Kern biotechnologischer Kunstwerke verlangt daher eine eingehende Analyse, die nicht allein auf die Hermeneutik des Bildes, sondern direkt auf die künstlerischen Medieneinschließlich ihrer phänomenologischen Wirkungen und epistemischen Verknüpfungen gegründet ist. Erscheinungen, die früher primär die Form von Kunstbildern annahmen, werden heute in eine verwirrende Vielfalt von Medien übersetzt, verstreut und fragmentiert. Das Medial-Technologische ist nicht mehr Mittel zum Zweck, sondern vollwertiges Element der ästhetischen Sprache. Dennoch führen Biomedien in der Kunst historische Mechanismen der Authentizitätsproduktion fort, insbesondere jene von Illusionismusund Indexikalität.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Organolithium compounds were pioneered by Wilhelm Schlenk at the University of Jena in Germany in 1917. Nominated for a Nobel Prize for this and other brilliant work, Schlenk lost out because it was thought “organolithium compounds are too unstable to be of any use”. A century on and organolithium and other organometallic compounds are absolutely indispensable to the world. They are utilised in the manufacture of pharmaceuticals, dyes, agrochemicals, perfumes, polymers and many other important everyday commodities. Their reputation of being challenging to handle and even pyrophoric, belies the fact that, at the molecular level, organolithium compounds adopt a bewildering variety of beautiful, eyecatching structures. These structures are not just aesthetically pleasing, they are the engines which drive the chemistry and properties of these useful materials. Our contribution to the development of these structures is discussed, focusing on the different architectures and patterns which emerge. Chemists are constantly looking at new ways of improving organometallic chemistry. Presently we are developing the concept of “synergic bimetallics”. Reactions impossible with conventional organometallic compounds are now made possible using these synergic bimetallics as the two distinct metals can communicate with each other through the structure. Underpinning this new chemistry is a fascinating world of molecular architecture involving rings of atoms which can capture other molecules in their cores. An example of a sodium-magnesium ring capturing an iron molecule is shown in the portrait below. Cover art is becoming increasingly important in chemistry papers to draw attention to new discoveries in thoughtful, creative ways. Examples from our own work will be included in the presentation. /// Der deutsche Chemiker Wilhelm Schlenk (Universität Jena) experimentierte 1917 erstmals mit Organolithiumverbindungen. Dank dieser und anderer richtungsweisender Leistungen wurde Schlenk für den Nobelpreis vorgeschlagen, der ihm jedoch nicht verliehen wurde, da „Organolithiumverbindungen zu instabil für praktische Anwendungen“ seien. Ein Jahrhundert später sind Organolithium und andere Organometallverbindungen zum unverzichtbaren Grundstoff in der Herstellung von Arzneimitteln, Farbstoffen, Duftstoffen, Agrochemikalien, Polymeren und vielen anderen Gebrauchsgegenständen geworden. Entgegen ihrem Ruf, schwierig zu verarbeiten und sogar luftentzündlich zu sein, entfalten Organolithiumverbindungen auf molekularer Ebene atemberaubend schöne Strukturen von unglaublicher Vielfalt. Ihre Struktur ist nicht nur in ästhetischer Hinsicht bedeutend - sie bestimmt zugleich die chemischen Eigenschaften dieser nützlichen Materialien. Wir stellen unseren Beitrag zur Entwicklung dieser Strukturen vor, mit besonderem Augenmerk auf die entstehenden Bauformen und Muster. Chemiker suchen ständig nach neuen Wegen zur Verbesserung der Organometallchemie. Wir beschäftigen uns aktuell mit „synergistischen Bimetallen“, deren Komponenten über die Struktur miteinander kommunizieren und Reaktionen zulassen, die mit konventionellen Organometallverbindungen undurchführbar waren. Grundlage dieses neuen Forschungsgebiets ist die faszinierende Welt der molekularen Architektur. So können Atomringe fremde Moleküle aufnehmen, wie die untere Abbildung eines Natrium-Magnesium-Rings, der ein Eisenmolekül an sich bindet, zeigt. Umschlaggrafiken spielen als Blickfang eine immer größere Rolle in der chemischen Literatur. Wir präsentieren Beispiele aus unseren Veröffentlichungen.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Deleuze and Guattari's concept of the 'molecular' is not, as Eugene Thacker has recently remarked, necessarily about 'molecules' in a conventional scientific sense. Rather the concept is at the heart of a Deleuzian challenge to hierarchies of matter/form and molar/molecular. In A Thousand Plateaus the 'molecular' is synonymous with concepts of becoming, deterritorialisation and multiplicity. In practice, this means that Deleuze and Guattari challenge the genetic determinism that is often associated with molecular biology. When drawing on the work of Jacob and Monod, for example, they conceptualise the relationship between nucleic acids and proteins in terms of 'expression' and 'content'. The existence of what Deleuze and Guattari call a 'pure line of expression' (DNA) gives living organisms a high degree of deterritorialisation. This 'molecular' vision is developed most fully in Deleuze's work on aesthetics, and in particular his work on music, literature and film. In all of this work Deleuze adopts a radically materialist perspective. As far as music is concerned, he suggests that it might be possible to move away from thinking in terms of a musical 'matter' on which 'form' is imposed (this would in turn imply a hierarchy of matter, life, and spirit). In short, the coupling of 'matter-form' might be replaced by 'matter-force'. In this way, certain kinds of music would be able to render audible forces that would otherwise be non-audible. Similarly, as far as literature is concerned, Deleuze's molecular perspective highlights the ways in which writing is capable of rendering impersonal affects, percepts and singularities. In the case of film, Deleuze's reading of Bergson's materialism leads him to propose a radical immanence of the image in matter. /// Der Begriff des „Molekularen“ bei Gilles Deleuze und Pierre-Félix Guattari bezieht sich, wie Eugene Thacker jüngst angemerkt hat, nicht unbedingt auf „Moleküle“ im wissenschaftlichen Sinn. Vielmehr ist er die Spitze, die Deleuze gegen die Hierarchien von Materie/Form und Molar/Molekular wendet. „Molekular“ steht in Tausend Plateaus gleichbedeutend mit Werden, Deterritorialisierung, Multiplizität. Die beiden Autoren formulieren daraus eine Kampfansage an den genetischen Determinismus, der beharrlich mit der Molekularbiologie in Zusammenhang gebracht wird. In ihrer Behandlung des Werks von François Jacob und Jacques Monod interpretierten sie die Beziehung zwischen Nukleinsäuren und Proteinen unter dem Aspekt von „Ausdruck“ und „Inhalt“. Die Existenz dessen, was Deleuze und Guattari als „reine Linie des Ausdrucks“ (DNS) bezeichnen, verleiht dem lebenden Organismus einen hohen Grad an Deterritorialisierung. Am stärksten ausgeprägt ist der „molekulare“ Blick in Deleuzes Schriften zur Ästhetik, insbesondere in jenen zu Musik, Literatur und Film, in denen er eine radikal materialistische Position bezieht. In Bezug auf die Musik spekuliert er, dass es möglich sein müsse, von der Vorstellung einer musikalischen „Materie“, die in eine „Form“ gezwungen wird (und ihrerseits eine Hierarchie von Materie, Leben und Geist voraussetzt), abzugehen und die Dualität Materie-Form durch Materie-Kraft zu ersetzen. Bestimmte Arten der Musik könnten damit unhörbare Kräfte hörbar machen. In der Literatur erhellt der molekulare Blick, wie unpersönliche Affekte, Empfindungen und Singularitäten sich in Worte fassen lassen. Und in seiner Filmtheorie postuliert Deleuze ausgehend vom Materialismus Bergsons eine radikale Immanenz des Bilds in der Materie.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Interactive 3D-Installation Ljljana Fruk and Bernd Lintermann are presenting the interactive 3D-Installation »Molecules that Changed the World«. It was part of the Symposium »Molecular Aesthetics« which took place as a part of the project »Käpsele Connection. Creativity and Innovation in Baden-Württemberg« in cooperation with DFG-Center for Functional Nanostructures (CFN) of the Karlsruhe Institute of Technology (KIT). Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). As part of several joint projects on creativity and innovation which will be carried out by the ZKM | Center for Art and Media Karlsruhe and Akademie Schloss Solitude and which were initiated by the State of Baden-Württemberg between 2007 and 2010, the symposium »Molecular Aesthetics« aims at establishing a link between the current developments in molecular sciences and the visual arts and music. Also marking the International Year of Chemistry, it tries to initiate an interdisciplinary exchange of views and ideas, which could lead to a new definition of aesthetics. This project is financed by the Ministry of science, Research and Arts Baden Württemberg. /// Ljljana Fruk und Bernd Lintermann präsentieren die interaktive 3D-Installation »Molecules that Changed the World«. Diese war Teil des Symposiums »Molekulare Ästhetik«, das im Rahmen des Projekts »Käpsele Connection. Kreativität und Innovation in Baden-Württemberg« in Zusammenarbeit mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Institute of Technology entstand. Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Teil der gemeinsam vom ZKM | Zentrum für Kunst und Medientechnologie und der Akademie Schloss Solitude ausgeführten Projekte zum Thema Kreativität und Innovation, die 2007 vom Staatsministerium Baden-Württemberg initiiert wurden, zielt das Symposium »Molekulare Ästhetik« darauf ab, eine Verbindung zwischen den aktuellen Entwicklungen in den Molekularwissenschaften und der Kunst und der Musik zu etablieren. Es versucht, im internationalen Jahr der Chemie einen interdisziplinären Austausch von Ansichten und Ideen zu initiieren, der zu einer neuen Definition von Ästhetik führen könnte. Das Projekt wird gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Members of our species, Homo sapiens sapiens, have been occupying regions of the earth for at least 60,000 years but it is only around 10,000 years ago that permanent structures began to be built - reflecting the predominantly nomadic life-style of our ancestors before this time. Monumental constructions in stone, typified by the pyramids and other great structures scattered throughout the Middle East, remain to remind us of the mind-shift that accompanied this change. Since then, art, architecture and engineering have all flourished on the human (or macro) scale, frequently driven by both challenge and creativity. Dating from the beginnings of modern chemistry around two hundred years ago, when the nature of matter first begun to be understood in terms of atoms and molecules, it has been increasingly possible to undertake related creative activities at the molecular level - representing a further milestone in human history. This is especially true over the past three decades or so - reflecting the development of supramolecular chemistry, a sub-branch of chemistry that tends to mimic Nature's way of doing things. A focus of supramolecular chemistry is the use of single molecules and ions as 'building blocks' to construct larger assemblies exhibiting pre-designed shapes and properties. Using the tools of modern chemistry this is now often possible and supramolecular systems of significant subtlety, and also of very considerable aesthetic appeal, are being increasingly created on the nanometer scale. It is an area of contemporary chemistry where human creativity may be readily expressed. A range of structures from the supramolecular realm that bridge the boundaries between art and science will be presented. These include examples displaying artistic nuances that mimic structures found in the macro world as well as interwoven and other motifs showing both intricacy and beauty in their molecular forms. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Der moderne Mensch (Homo sapiens sapiens) bewohnt seit mindestens 60.000 Jahren die Erde, begann aber erst vor ungefähr 10.000 Jahren, dauerhafte Bauwerke zu errichten. Bis zu diesem Zeitpunkt pflegten unsere Vorahnen eine vorwiegend nomadische Lebensweise. Steinbauten nach Art der Pyramiden und anderer Monumente, die über ganz Vorderasien verstreut sind, erinnern an den Geisteswandel, der diesen Entwicklungssprung begleitet haben muss. Kunst, Architektur und Technik florieren nach dieser Zäsur auf menschlicher (makroskopischer) Ebene, vielfach von unserer Erfindungskraft und neuen Herausforderungen angetrieben. Seit den Anfängen der modernen Chemie vor etwa 200 Jahren, als Atom und Molekül sich als Bausteine der Materie herauskristallisierten, rückte die Möglichkeit in immer größere Nähe, die genannten schöpferischen Tätigkeiten auch auf molekularer Ebene auszuführen - ein weiterer Meilenstein in der Geschichte der Menschheit. Dies gilt besonders für das Aufkommen der supramolekularen Chemie in den letzten drei Jahrzehnten. Diese Disziplin beschäftigt sich mit der Nachahmung von Naturprozessen und verwendet einzelne Moleküle und Ionen als „Bausteine“ zur Konstruktion übergeordneter Verbindungen, die spezifische Formen und Eigenschaften aufweisen. Die Werkzeuge der modernen Chemie machen es möglich, im Nano-Bereich relativ diffizile supramolekulare Systeme aufzubauen, die ästhetisch reizvoll sind. Der menschliche Erfindergeist kann sich in diesem Zweig der modernen Chemie frei entfalten. Eine Reihe supramolekularer Strukturen wird präsentiert, die eine Brücke zwischen Kunst und Wissenschaft schlagen. Einzelne Beispiele erinnern an Formen aus der Makrowelt, andere belegen die Schönheit und den Detailreichtum molekularer Konstellationen.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Molecules are intrinsically unseeable; as a result it has been necessary for scientists, since the late nineteenth century, to use a common, imaginative set of forms to represent their properties. One might think that such structures are simply heuristical, but upon study it becomes apparent that they actually constitute the science they underwrite, embedding molecular study with an muted aesthetics that delights and motivates scientists. As chemistry has evolved and been rebranded as nanoscience, scientists have had the opportunity to envision molecular forms again through the lens of scanning probe microscopy (SPM). Unlike the valence forms familiar now for over a century, SPM images give molecules the gloss of photographic validity; nevertheless, from buckminsterfullerene to molecular machines, scientists “discover” that SPM generated images validate and reiterate the familiar valence forms spawned in the late nineteenth century and envisioned for so many decades. In this talk I examine the evolution of molecular aesthetics from the first representations of buckminsterfullerene forward, including the aesthetics of molecular machines and scanning probe microscopy. I will highlight buckminsterfullerene's Platonic aesthetics, the aesthetic relationship of nanocars and molecular switches to Boyle's seventeenth-century mechanistic philosophy and twentieth-century machine aesthetics, and the photographic aesthetics of SPM. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Moleküle sind an sich unsichtbar. Daher ist es seit Ende des 19. Jahrhunderts üblich geworden, ihre Eigenschaften mittels eines allgemeingültigen, anschaulichen Formenvokabulars darzustellen. Man könnte meinen, dass solche Gebilde rein heuristischer Natur sind, doch stellt sich bei genauerer Betrachtung heraus, dass sie selbst zum Gegenstand der Wissenschaft geworden sind, die sie repräsentieren. Sie bereichern die Molekularforschung mit einer unaufdringlichen Ästhetik, die den Wissenschaftler anspricht und motiviert. Mit der Weiterentwicklung und Neukonzeption der Chemie als Nanowissenschaft entstand die Möglichkeit, molekulare Formen mithilfe der Rastersondenmikroskopie (RSM) zu visualisieren. Im Gegensatz zu den bereits seit gut einem Jahrhundert bekannten Valenzformen versehen RSM-Bilder die Moleküle mit dem Glanz der fotografischen Abbildungstreue. Dessen ungeachtet „entdecken“ Wissenschaftler, dass RSM-Darstellungen - von Buckminsterfullerenen bis zu molekularen Maschinen - die seit vielen Jahrzehnten vertrauten Valenzformen auffrischen und bestätigen. Wir verfolgen die Entwicklung der Molekularästhetik von der ersten Darstellung des Buckminsterfullerens bis zu späteren Errungenschaften wie der Ästhetik molekularer Maschinen und der Rastersondenmikroskopie. Zur Sprache kommen die platonische Ästhetik des Buckminsterfullerens, die ästhetischen Wurzeln der Nanocars und der molekularen Schalter in Boyles mechanistischer Philosophie des 17. Jahrhunderts und in der Maschinenästhetik des 20. Jahrhunderts sowie die fotografische Ästhetik der Rastersondenmikroskopie.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Sonification - the study of the acoustic conversion of experimental data - covers various fields of application, such as monitoring and comprehension of physical phenomena, audio perception of the environment by visually impaired people, and musical composition. Among the various existing sonification techniques, the acoustic conversion of molecular vibrational spectra is well-suited for the exploration of microscopic structures. Non-audible oscillations naturally occur in molecules, at rates that are orders of magnitude faster than acoustic vibrations, in a frequency range extending from 30 GHz to 300 THz and can be recorded with spectrometers. Usual analyses of such spectra involve visual examinations, comparison of experimental data with spectral databases or computed spectra. An extended method for the acoustic and musical conversion of vibrational spectral data considers any piece of music as a combination of elementary waveforms. This method leads to molecular sounds, molecular scales and even molecular musical pieces. It translates into an audible signal the same physical phenomenon at different time scales. Its versatility allows the choice of the selected musical parameters and of the time scale descriptions of the corresponding waveforms, in order to obtain the most compelling musical results. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Sonifikation - die Umwandlung experimenteller Daten in Klangereignisse - findet breite Anwendung, etwa in der Untersuchung und Überwachung physischer Phänomene, in akustischen Wahrnehmungshilfen für Sehbehinderte oder in der Musik. Die Transposition molekularer Schwingungsspektren in Tonsignale eignet sich ideal zur Erforschung mikroskopischer Strukturen. Moleküle oszillieren um ein Vielfaches schneller als Schallschwingungen in einem Frequenzbereich zwischen 30 GHz und 300 THz. Instrumente zur Aufzeichnung dieser Phänomene (Spektrometer) benutzen optische Komponenten und elektromagnetische Licht- und Infrarotstrahlung. Die Auswertung der höchst aufschlussreichen Schwingungsspektren erfolgt zumeist auf visuellem Weg oder durch den Vergleich mit gespeicherten oder rechnerisch erzeugten Spektren. Eine erweiterte Methode zur akustischen und musikalischen Darstellung molekularer Schwingungsfrequenzdaten definiert jedes beliebige Musikstück als Kombination elementarer Wellenformen. Die skizzierte Methode erzeugt molekulare Töne, molekulare Tonleitern und molekulare Musikstücke. Sie wird entlang verschiedener Zeitskalen in Tonsignale umgesetzt. Dieser flexible Ansatz ermöglicht die Auswahl der Ton- und Zeitparameter, die mit einer bestimmten Wellenform verbunden sind, und gewährleistet dadurch überzeugende musikalische Resultate.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). My thesis is that there is an integral tetrahedron linking new sciences, new technologies, new media, and new aesthetics such that each enables the others. Viewing the tetrahedron as integral, symbiotic, and transformative alters the usual world view of the scientist, who is generally still trained in a nineteenth century Comteian positivism that has sciences driving progress in all other human endeavors. Few scientists appreciate the many ways in which media and aesthetics inform and make possible their own insights. I shall explore through a set of case studies how aesthetics and media enable new science and technology, thereby defining the nature of the linkers attaching each discipline to the others. I shall focus in particular on four such linkages: 1) the imaginary worlds that a scientist must conceive before testing the nature of perceived existence; 2) the nature of what physicist/philosopher Michael Polanyi has called “personal knowledge”, the intuitive, sensual way in which a scientist comes to know nature before words, equations or graphical representations are possible; 3) technique, which embodies the physical rendering of ideas into experiments and apparatuses; and 4) synosia, a combination of synaesthetic sensual experience with formal intellectual knowledge resulting in a feeling of knowing and knowing feelings. My conclusion is that these linkages can exist only when science, technology, media and aesthetics intersect and combine to co-stimulate each other. The fundamentally important result is the phenomenon of wonder. For in the final analysis, as my colleague Scott Gilbert has recently argued, it is wonder that drives all of us, in every discipline, to explore the nature and meaning of our existence. Molecular aesthetics embodies that wonder in wonderful and wonder-full ways that will produce not only new arts, but also new sciences. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Als Ansatzpunkt dient uns das Schema eines Tetraeders, das neue Wissenschaften, Technologien, Medien und Ästhetiken so verknüpft, dass ein wechselseitig gewinnbringender Austausch entsteht. Diese integrale, symbiotische und transformative Vernetzung verändert das Weltbild des durchschnittlichen Wissenschaftlers, der auch heute noch an der Überzeugung des Comte'schen Positivismus aus dem 19. Jahrhundert festhält, die Wissenschaft sei die treibende Kraft des Fortschritts in allen menschlichen Unternehmungen. Nur wenige Wissenschaftler lassen sich auf die Frage ein, inwieweit Ästhetik und Medien ihre Studien beeinflussen und überhaupt erst möglich machen. Wir zeigen anhand mehrerer Fallstudien, wie Ästhetik und Medien die Innovation in Wissenschaft und Technik vorantreiben. Dabei fällt ein Schlaglicht auf die Wechselbeziehungen zwischen den Disziplinen. Vier davon werden genauer betrachtet: 1) die Vorstellungswelten, die ein Wissenschaftler ersinnen muss, ehe er die Beschaffenheit wahrgenommener Phänomene prüft, 2) das „persönliche Wissen“ gemäß der Definition des Physikers und Philosophen Michael Polanyi als intuitive, sinnliche Annäherung an die Natur, die der verbalen, grafischen oder mathematischen Artikulation vorausgeht, 3) Technik, die konkrete Umsetzung von Ideen in Experimente und Versuchsanordnungen, sowie 4) „Synosie“, die Kombination synästhetischer Sinneswahrnehmungen mit rationalem Denken, die gefühltes Wissen oder wissende Gefühle erzeugt. Wir gelangen zu dem Schluss, dass Wechselbeziehungen dieser Art nur dann eintreten können, wenn Wissenschaft, Technologie, Medien und Ästhetik sich so überschneiden und verflechten, dass eine gegenseitige Bereicherung gegeben ist. Wichtigstes Resultat ist das Phänomen des Wunders. Denn wie Scott Gilbert unlängst argumentiert hat, ist es am Ende das Wunder, das uns in allen Disziplinen dazu antreibt, das Wesen und den Sinn unseres Daseins zu hinterfragen. Die molekulare Ästhetik verkörpert dieses Wunder auf wundervolle Art und Weise. Sie bereitet nicht nur einer neuen Kunst den Weg, sondern auch einer neuen Wissenschaft.
Molecular Aesthetics | Symposium Symposium at ZKM | Center for Art and Media, July 15 -17, 2011 in cooperation with DFG-Center for Functional Nanostructures (CFN) Karlsruhe Institute for Technology (KIT). Music is defined as time-based art. This conception is expressed by the intervall theory which is the dominant theory for Western music. On the lines of a score (invented by Guido Arezzo, 1025) notes are placed one after another as a temporal sequence. With the help of Clifford Algebra and Grassmann Vector Spaces it can be demonstrated that a single topological sequence can be transformed into different temporal sequences. By this method music becomes part of topology, space-based art. The notes of a score can be independent as points and numbers. These numbers are part of a field, topological neighbours. The Game of Life by John Conway (1970) is an ideal field to reflect this new conception of music. The Game of Life is a cellular automaton and serves as method of composition. It consists of a regular grid of cells, each in one of a finite number of states, such as "On" and "Off". The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. For example, the neighborhood of a cell might be defined as the set of cells a distance of 2 or less from the cell. The cells are treated as notes and can be calculated or »composed« according to the rules of the Game of Life. Naturally this process can also be interpreted in a rather free way. /// Symposium im ZKM | Zentrum für Kunst und Medientechnologie, 15. -17. Juli 2011 In Kooperation mit dem DFG-Centrum für Funktionelle Nanostrukturen (CFN) des Karlsruhe Instituts für Technologie. Die Musik ist als zeitbedingte Kunst definiert. Diese Konzeption wird durch die Intervalltheorie ausgedrückt, die dominante Theorie in der westlichen Musik. Die Noten werden nacheinander als eine zeitliche Sequenz auf die Notenlinien (erfunden von Guido Arezzo, 1025) gesetzt. Mithilfe von Clifford Algebra und Grassmann Vektorräumen kann man zeigen, dass jede einzelne topologische Sequenz in verschiedene zeitliche Sequenzen transformiert werden kann. Durch diese Methode wird die Musik ein Teil der Topologie, raumbasierte Kunst. Die Noten einer Partitur können als Punkte und Zahlen selbstständig werden. Diese Zahlen sind Teil eines Feldes, topologische Nachbarn. The Game of Life von John Conway (1970) ist ein ideales Beispiel, um dieses neue Verständnis von Musik zum Ausdruck zu bringen. The Game of Life ist ein zellulares Automaton und dient als Kompositionsmethode. Es ist aus einem regelmäßigen Zellennetz gebaut, jedes in einer bestimmten Zahl von Zuständen, wie beispielsweise »On« und »Off«. Dieses Netz kann in jeder bestimmten Anzahl von Dimensionen existieren. Für jede einzelne Zelle ist eine Zellenreihe, ihre Nachbarschaft genannt, relativ zu einer spezifischen Zelle definiert. Beispielsweise könnte die Nachbarschaft einer Zelle als Zellenfolge einer Entfernung von 2 oder weniger von einer Zelle definiert werden. Die Zellen werden als Noten behandelt und können nach den Regeln von Game of Life, berechnet oder »komponiert« werden. Diesen Prozess kann man natürlich auch in einer freieren Art interpretieren.