POPULARITY
Der kosmische Morgen ist schon lange vorbei und wir leben im langen, trägen Nachmittag des Universums. Was das heißt und was der Abend bringt, erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Diesmal geht es um Kastraten, ältere Geschwister, den Glauben an eine höhere Macht, den Urknall, die Rotverschiebung, sich ausdehnenden Raum, Final Fantasy, Hugo und nochmal das U-Boot. Du möchtest mehr über unsere Werbepartner erfahren? Hier findest du alle Infos & Rabatte: https://linktr.ee/AlliterationAmArsch
In Folge 80 geht es um fette Galaxien. Eine neue Arbeit hat festgestellt, dass die Galaxien im frühen Universum viel mehr Masse haben, als wir eigentlich dachten. Und vielleicht auch viel mehr Masse, als wir dachten, dass sie haben könnten. Wo da das Problem liegt, erklärt Ruth und außerdem auch noch, was bei der größten Explosion im Universum explodiert ist, warum im Zentrum der Milchstraße Fäden rumhängen und wie man Exoplaneten benennt. Evi erklärt die Wissenschaft hinter “Interstellar” und Fragen aus der Hörerschaft beantworten wir außerdem auch noch. Wenn ihr uns unterstützen wollt, könnt ihr das hier tun: https://www.paypal.com/paypalme/PodcastDasUniversum Oder hier: https://steadyhq.com/de/dasuniversum Oder hier: https://www.patreon.com/dasuniversum
Ruth Grützbauch ist Astronomin, betreibt in Wien ein Popup-Planetarium, und ich lasse mir von ihr erzählen, was es am Himmel nicht zu sehen gibt, obwohl es dort ist. Planetenparade im Osten – Mondfinsternis am 16. Mai – Stern Earendl – Stern Icarus – Rotverschiebung – Gravitationslinse – Blaue Riesen – James-Webb-Weltraumteleskop – Hintergrundstrahlung – Alpher-Bethe-Gamow-Theorie – Holmdel […]
Ruth Grützbauch ist Astronomin, betreibt in Wien ein Popup-Planetarium, und ich lasse mir von ihr erzählen, was es am Himmel nicht zu sehen gibt, obwohl es dort ist. Darin: Wasserstoff – Radiostrahlung – Hyperfeinstruktur – Wasserstofflinie – Henk van der Hulst – Rotverschiebung – Gaia – Rotverschiebung – Russel J. Donelly – Spektroskopie – Messier 81 (auf […]
Die Berliner Volks-Zeitung ist mit ihrem Artikel über den Einsteinturm auf dem Potsdamer Telegraphenberg sowohl architektonisch als auch wissenschaftlich am Puls der Zeit. Fritz Zielesch besucht die Baustelle des Observatoriums, das nach den Entwürfen von Erich Mendelsohn in expressionistischem Stil aus Stahl und Stahlbeton gebaut wurde. Im Turm selbst sollte nichts weniger als der Nachweis der Relativitätstheorie von Albert Einstein erbracht werden. Diese behauptete eine Verschiebung der Spektrallinien des Lichtes im Schwerefeld der Sonne, was signifikant an dem roten Farbanteil erkennbar sein sollte, es ging also um den Nachweis der sog. Rotverschiebung. Wie so oft in der Forschung, gelang es nicht auf Anhieb, diesen Beweis zu führen, da die Messungen durch zu starke atmosphärische Turbulenzen der Sonne überlagert wurden. Also diente der Einsteinturm zunächst für Pionierarbeit bei der Erforschung dieser Turbulenzen in der Sonnenatmosphäre. Frank Riede war für uns auf der Baustellenbegehung dabei.
Ruth Grützbauch ist Astronomin, betreibt in Wien ein Popup-Planetarium, und ich lasse mir von ihr erzählen, was es am Himmel nicht zu sehen gibt, obwohl es dort ist. Darin: HiNRG-Music – Andromedagalaxie – Rotverschiebung – Gezeitenschweif – Elliptische Galaxie – Heliopause – Oortsche Wolke – Kugelsternhaufen – Quasar Ruths Buch: Per Lastenrad durch die Galaxis* […]
Darin: Vier Gründe für Unsichtbarkeit, Rotverschiebung, Parsec, Parallaxe, MOND-Theorie, Axion, Quantenchromodynamik, Primordiale Schwarze Löcher, Gravitationswellen (zum Anhören), Akkretionsscheibe Der Traum vom Perpetuum Mobile lebt: Und es bewegt sich doch! (Feature)
Darin: Vier Gründe für Unsichtbarkeit, Rotverschiebung, Parsec, Parallaxe, MOND-Theorie, Axion, Quantenchromodynamik, Primordiale Schwarze Löcher, Gravitationswellen (zum Anhören), Akkretionsscheibe Der Traum vom Perpetuum Mobile lebt: Und es bewegt sich doch! (Feature)
Nachdem wir zu Beginn ein bisschen über die Verteidigung der Erde vor bösartigen Asteroiden sprechen, geht es weiter zur Hauptgeschichte: Diesmal durchqueren wir beinahe das ganze beobachtbare Universum und sehen uns eine Galaxie an, die schon existierte als das Universum erst ein paar hundert Millionen Jahre alt war. Und wer nicht weiß, wie man solche Objekte überhaupt entdecken kann, weiß das nach unseren Erklärungen hoffentlich nicht mehr nicht. Natürlich gibt es auch wieder Antworten auf Fragen. Unter anderem klären wir, wie man durch die Erde hindurch fällt und warum Jupiter kein Stern ist.
Als kleines Weihnachtsgeschenk haben wir für euch eine extra Spezialfolge aufgenommen. Denn weil ihr so viele Fragen habt, kommen wir mit den Antworten in den regulären Folgen nicht mal annähernd hinterher. Deswegen gibt es in dieser Folge nur eure Fragen und unsere Antworten darauf. Und was wäre passender als in dieser ersten Fragen-Folge, Fragen zum Universum zu beantworten? Ja, gut alles ist Teil des Universums, aber es geht diesmal um das Universum als Ganzes, um den Anfang und das Ende, die Größe und die Expansion und überhaupt, wo soll das alles hinführen? Zu all diesen Themen hattet ihr mehr als genug Fragen und wir haben uns redlich bemüht darauf Antworten zu liefern.
"Per Aufzug in den Weltraum" (Rowohlt Verlag) von Christoph Krachten beschäftigt sich mit Themen wie Künstlicher Intelligenz, Superviren, Klimawandel und dem Aufbruch ins Weltall. Das Buch gibt es ab sofort in Eurer lokalen Buchhandlung oder hier bei Amazon: http://clixoom.de/peraufzugindenweltraum Die Relativitätstheorie hat uns unsere Grenzen aufgezeigt. In unserem Universum ist es unmöglich größere Distanzen zu überwinden. Je schneller wir reisen, desto schwerer werden wir und desto schneller vergeht die Zeit. Bald könnte es hierfür jedoch eine Lösung geben: Der Warp-Antrieb! Die Idee dahinter stammt aus der Physik. Durch die Rotverschiebung von Licht im Universum wissen wir, dass sich das Universum ausdehnt. Raum kann sich allerdings vollkommen unabhängig bewegen und das sogar schneller als das Licht. Die Idee ist deshalb simpel und genial. Wir verändern einfach den Raum und verkürzen die Strecke zwischen Start und Ziel. Wir warpen ihn, wir drücken ihn zusammen. Materie mit positiver und Materie mit negativer Masse interagieren hierbei gegenseitig mit dem Raum. Das Raumschiff drückt also den Raum vor sich zusammen und dehnt ihn hinter sich wieder. Zuerst müssen allerdings ein paar Hindernisse überwunden werden… #warpantrieb #peraufzugindenweltraum #clixoomn
In dieser Folge versuchen wir die gravitative Rotverschiebung näher zu erklären. Dabei verliert Licht an Energie, wenn es aus einem Gravitationspotential heraus laufen möchte. Zusätzlich sorgt die gravitative Zeitdilatation dafür, dass in GPS-Satelliten die Uhren schneller laufen. Wie immer viel Vergnügen! #zeitdilatation #rotverschiebung #gps #einstein #relativitätstheorie
Unsere Erde, das Sonnensystem und die Milchstraße sind Teil einer kosmischen Struktur die "Laniakea" genannt wird. Das bedeutet "der unermessliche Himmel" und ist eine absolut passende Beschreibung für diesen Supergalaxienhaufen. Worum es sich genau handelt erfahrt ihr heute im Sternengeschichten-Podcast.
Kann Licht müde werden? Das haben zumindest die Wissenschaftler behauptet, die nicht akzeptieren wollten, dass sich das Universum ausdehnt. Worum es bei der "Lichtermüdung" geht und warum Licht doch nicht müde wird, erfahrt ihr heute im Podcast.
In dieser Ausgabe: Wasser auf dem Mars – Lisa Pathfinder – BICEP2 – Die älteste Galaxie – Rotverschiebung – Effizientes Schlangestehen (als Podcast) – Bäume weltweit – Schneeball Erde – Podcast-Hörgewohnheiten – Neue Physik am LHC – Joghurt – Plattform für geflüchtete Wissenschaftler – Korruption – Arktisches Meereis – Fledermäuse – Die Ig Nobel […]
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Der Ursprung und die Entwicklung unseres Universums zeigt sich gleichermaßen in der Raumzeit selbst wie in den Strukturen, die in ihr entstehen. Galaxienhaufen sind das Ergebnis hierarchischer Strukturbildung. Sie sind die massivsten Objekte, die sich im heutigen Universum bilden konnten. Aufgrund dieser Eigenschaft ist ihre Anzahl und Struktur hochgradig abhängig von der Zusammensetzung und Evolution des Universums. Die Messung der Anzahldichte von Galaxienhaufen beruht auf Katalogen, die nach einer beobachtbaren Größe ausgewählt werden. Die Anwendung einer Massen-Observablen-Relation (MOR) erlaubt es, die beobachtete Anzahl als Funktion der Observablen und der Rotverschiebung mit Vorhersagen zu vergleichen und so kosmologische Parameter zu bestimmen. Man kann jedoch zu Recht behaupten, dass diese Messungen noch nicht präzise im Prozentbereich sind. Hauptgrund hierfür ist das unvollständige Verständnis der MOR. Ihre Normalisierung, die Skalierung der Observablen mit Masse und Rotverschiebung und die Größe und Korrelation von intrinsischen Streuungen muss bekannt sein, um Anzahldichten korrekt interpretieren zu können. Die Massenbestimmung von Galaxienhaufen durch die differenzielle Lichtablenkung in ihrem Gravitationsfeld, i.e. durch den so genannten schwachen Gravitationslinseneffekt (weak lensing), kann erheblich hierzu beitragen. In dieser Arbeit werden neue Methoden und Ergebnisse solcher Untersuchungen vorgestellt. Zu ersteren gehören, als Teil der Datenaufbereitung, (i) die Korrektur von CCD-Bildern für nichtlineare Effekte durch die elektrischen Felder der angesammelten Ladungen (Kapitel 2) und (ii) eine Methode zur Maskierung von Artefakten in überlappenden Aufnahmen eines Himmelsbereichs durch Vergleich mit dem Median-Bild (Kapitel 3). Schließlich ist (iii) eine Methode zur Selektion von Hintergrundgalaxien, basierend auf deren Farbe und scheinbarer Magnitude, die eine neue Korrektur für die Kontamination durch Mitglieder des Galaxienhaufens einschließt, im Abschnitt 5.3.1 beschrieben. Die wissenschaftlichen Hauptergebnisse sind die folgenden. (i) Für den Hubble Frontier Field-Haufen RXC J2248.7-4431 bestimmen wir Masse und Konzentration mittels weak lensing und bestätigen die durch Röntgen- und Sunyaev-Zel'dovich-Beobachtungen (SZ) vorhergesagte große Masse. Die Untersuchung von Haufengalaxien zeigt die Abhängigkeit von Morphologie und Leuchtkraft sowie Umgebung (Kapitel 4). (ii) Unsere Massenbestimmung für 12 Galaxienhaufen ist konsistent mit Röntgenmassen, die unter Annahme hydrostatischen Gleichgewichts des heißen Gases gemacht wurden. Wir bestätigen die MOR, die für die Signifikanz der Detektion mit dem South Pole Telescope bestimmt wurde. Wir finden jedoch Diskrepanzen zur Planck-SZ MOR. Unsere Vermutung ist, dass diese mit einer flacheren Steigung der MOR oder einem größen-, rotverschiebungs- oder rauschabhängigen Problem in der Signalextraktion zusammenhängt (Kapitel 5). (iii) Schließlich zeigen wir, durch die Verbindung von Simulationen und theoretischer Modellierung, dass die Variation von Dichteprofilen bei fester Masse signifikant zur Ungenauigkeit von Massenbestimmungen von Galaxienhaufen mittels weak lensing beiträgt. Ein Modell für diese Variationen, wie das hier entwickelte, ist daher wichtig für die genaue Bestimmung der MOR, wie sie für kommende Untersuchungen nötig sein wird (Kapitel 6).
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Aktive Galaxienkerne (AGN) werden durch das Wachstum super-schwere schwarze Löcher, die im Zentrum jeder massiven Galaxie sitzen, betrieben. Da enge Korrelationen ihrer Massen zu Eigenschaften der elliptischen Galaxienkomponente beobachtet werden, und durch ihre extreme Leuchtkraft ist es naheliegend, dass AGN einen wichtigen Baustein von Galaxien bilden. Der erste Schritt, AGN zu verstehen ist es, ihre Häufigkeit zu ermitteln, sowie die Leuchtkraft der Population. Dieses Unterfangen wird dadurch erschwert, dass die meisten AGN von Gas und Staub umgeben sind. Selbst im energiereichen Röntgenbereich, der in dieser Arbeit verwendet wird, wird die intrinsische Strahlung durch Absorption um mehrere Größenordnung verringert. Die vorliegenden Doktorarbeit untersucht zuerst die Eigenschaften dieser Wolken, im speziellen ihre Geometrie, Säulendichteverteilung und ihr Verhältnis zur Leuchtkraft des AGN. Dazu werden ∼ 300 AGN von der längst-beobachteten Röntgenregion, der Chandra Deep Field South Kampagne verwendet. Eine neue Bayesische Methode zur Spektralanalyse wurde entwickelt, um verschiedene physikalisch motivierte Modelle für den Aufbau der Wolken zu vergleichen. Das Röntgenspektrum reagiert, hauptsächlich dank Compton-Streuung, auf die Gesamtbedeckung der Quelle durch das Gas. Eine detaillierte Analyse zeigt, dass die Wolken mit einer Torus (“Donut”) Form konsistent sind, und sowohl vollständige Bedeckung als auch eine Scheiben-artige Konfiguration ausgeschlossen werden können. Außerdem ist eine weiteren Komponente höherer Dichte notwendig um zusätzlich beobachtete Compton-Reflektion zu erklären. Dies deutet auf eine strukturierte Formation hin, wie etwa ein Torus mit einem Dichtegradienten. Die Untersuchung der gesamten AGN-Population inklusive der AGN mit hohen Säulendichten, verlangt eine große Stichprobe mit einem genauen Verständnis für die Stichprobenverzerrung, sowie fortgeschrittene statistische Inferenzmethoden. Diese Arbeit baut auf eine ∼ 2000 AGN große Stichprobe die durch Röntgenemission detektiert wurde, bestehend aus mehrschichtigen Kampagnen aus den CDFS, AEGIS-XD, COSMOS and XMM-XXL Regionen. Die Röntgenspektren wurden im Detail mit einem physikalischen Spektralmodell analysiert, um die intrinsische Leuchtkraft, Rotverschiebung, sowie Säulendichte (N_H) für jedes Objekt zu erhalten, inklusive der Messunsicherheit. Außerdem wurden in dieser Arbeit neue statistische Methoden entwickelt um die richtige Assoziation zu optischen/infraroten Objekten zu finden, und um die Unsicherheiten durch Objekte ohne Pendant, der Rotverschiebungsmessung, sowie der Poissonfehler des Röntgenspektrums in alle Ergebnisse einzubinden. Einen weiteren wichtigen Beitrag bildet eine Bayesische, nicht-parametrische Methode um die unverzerrte Dichte von AGN in kosmologischen Volumen als Funktion von intrinsischer Leuchtkraft, Rotverschiebung und Säulendichte (N H ) der verbergenden Wolken zu rekonstruieren. Obwohl in dieser Methode lediglich Glattheit verwendet wird, kann dieser Ansatz dieselben Formen der Leuchtkraftverteilung sowie ihre Entwicklung rekonstruieren, die sonst oft in emprischen Modellen verwendet werden, jedoch ohne diese apriori anzunehmen. Im Großen und Ganzen kann die Leuchtkraftverteilung, in allen Rotverschiebungsschalen, als Potenzgesetz mit einem Umbruchspunkt beschrieben werden. Sowohl die Normalisation als auch der Leuchtkraftumbruchspunkt entwickeln sich über den Lauf des Universums, allerdings zeigen die Daten keine Belege für eine Veränderung der Form der Verteilung. Dies deutet darauf hin, im Gegensatz zu Aussagen vorherigen Studien, dass der Rückkopplungsmechanismus zwischen AGN und beherbergender Galaxie immer gleich funktioniert, und sich nur die Anzahl und Größe der wachsenden Systeme verändert. Die nicht-parametrische Rekonstruktionsmethode verwendet keine Annahmen darüber wie sich z.B. die Häufigkeiten von Säulendichte des verdeckenden Gases mit Leuchtkraft oder Rotverschiebung verändert. Dies erlaubt sehr robuste Schlüsse über den Anteil der verdeckten AGN (N_H > 10^22 cm −2 ), die 77 +4 −5 % der Population ausmachen sowie den Anteil der Compton-dicken AGN (38 +8 −7 %), die sich hinter enormen Säulendichten (N_H > 10^24 cm −2 ) verbergen. Insbesondere dass der letztere Anteil bestimmt werden konnte, lässt endlich Schlüsse darauf zu, wieviel AGN “verdeckt” wachsen. Außerdem suggeriert es, dass der Torus einen großen Teil des AGN verdeckt. Basierend auf der Leuchtkraft der gesamten AGN Population wurde die Masse, die über den Lauf der Zeit in schwarzen Löchern gesperrt wurde, geschätzt, und die Massendichte der supermassereichen schwarzen Löcher im heutigen Universum vorhergesagt. Die Rekonstruktion bringt außerdem zu Tage, dass der Anteil der verdeckten AGN (insbesondere der Compton-dünnen AGN) eine negative Leuchtkraftabhängigkeit aufweist, und dass sich diese Abhängigkeit über die Geschichte des Universums entwickelt hat. Dieses Resultat wird in dieser Arbeit im Zusammenhang mit bestehenden Modellen interpretiert und ist möglicherweise ein Nebeneffekt eines nicht-hierarchischen Wachstums von AGN.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Im Rahmen dieser Arbeit wurde ein Frequenzkamm entwickelt, um astronomische Spektrographen besser kalibrieren zu können. Im Jahr 1999 hat die Entwicklung des Frequenzkamms den Bereich der Präzisionsspektroskopie revolutioniert. Mit seiner Hilfe wurde die Messung von Übergängen in atomaren Systemen mit zuvor unerreichter Genauigkeit möglich, was 2005 mit dem Nobelpreis für Theodor W. Hänsch und John Hall gewürdigt wurde. In dieser Zeit wurde am 3.6m Teleskop in La Silla, Chile der HARPS Spektrograph in Betrieb genommen. Er besitzt bis heute die höchste Sensitivität um die Beschleunigung kosmischer Objekte zu detektieren. Diese wird aus einer Änderung der Rotverschiebung des Lichts geschlossen. Die Präzision, mit der Frequenzänderungen gemessen werden können, ist momentan begrenzt durch die Kalibrationsquellen. Für die Entdeckung erdähnlicher Planeten über ihren Rückstoss oder gar die direkte Beobachtung der beschleunigten Ausdehnung unseres Universums ist diese Genauigkeit jedoch unzureichend. Nur durch den Einsatz neuartiger Kalibrationsquellen kann eine ausreichende Sensitivität auf Änderungen der Rotverschiebung erreicht werden. Daher wurde in 2005 eine Zusammenarbeit zwischen der Europäischen Südsternwarte (ESO) und dem Max-Planck-Institut für Quantenoptik (MPQ) initiiert um einen Frequenzkamm zu entwickeln, der für die nächste Generation von Spektrographen als Kalibrationsquelle dienen kann. In dieser Arbeit wurde ein Yb-Faserlaser entworfen und erstmals zu einem Frequenzkamm inklusive Detektion und Stabilisierung der Offset-Frequenz weiterentwickelt. Um die einzelnen Kalibrationslinien des Kamms mit einem astronomischen Spektrographen auflösen zu können, musste der Modenabstand erhöht werden. Dazu wurden Fabry-Pérot Resonatoren als schmalbandige Filter entwickelt. Schliesslich musste der spektrale Bereich des Spektrographen von 400-700nm abgedeckt werden, was durch spektrale Verbreiterung in speziell entwickelten, mikrostrukturierten Fasern erreicht wurde. Mehrere Entwicklungsstufen dieses Systems wurden an einem Spektrographen auf Teneria und an HARPS getestet. Dabei konnte jeweils gezeigt werden, dass der Frequenzkamm die erwarteten Spezifikationen erfüllt und traditionelle Kalibrationsquellen in ihrer Sensitivität auf Frequenzabweichungen übertrifft. Frequenzänderungen von 200 kHz konnten detektiert werden, was einer Sensitivität auf Geschwindigkeitsänderungen von kosmischen Objekten von 10 cm/s entspricht. Ca. 30% des spektralen Bereiches des HARPS Spektrometers konnten abgedeckt werden und mit verbesserter spektraler Verbreiterung ist das Erreichen des gesamten Bereichs mit der nächsten Entwicklungsstufe realistisch. Durch den Einsatz eines solchen, verbreiterten Frequenzkamms an Spektrographen der nächsten Generation werden Geschwindigkeitsänderungen eines kosmischen Objekts von nur 1 cm/s detektierbar. Dies wird die Durchführung der ambitionierten Beobachtugen ermöglichen, die in der Astronomie innerhalb der nächsten Jahrzehnte geplant sind.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Diese Dissertation beschreibt die Ergebnisse des Wendelstein Calar Alto Pixellensing Project (WeCAPP), welches in Richtung der Andromeda Galaxie (M31) nach Dunkler Materie in Form von "Massiven Kompakten Halo Objekten" (Machos) sucht. Die neuesten wissenschaftlichen Befunde legen ein Universum mit flacher Geometrie nahe, zu dessen Dichteinhalt Dunkle Materie ca. 23% beitraegt. Weitere 4.5% werden baryonischer Materie zugeschrieben, wobei von diesem Anteil bei kleiner Rotverschiebung bisher nur ca. 10% nachgewiesen werden konnten. Die Kandidaten fuer Machos in den Halos von Galaxien umfassen eine baryonische Komponente (vergangene Sterne wie z.B. Weisse Zwerge oder Neutronensterne), sowie eine nicht-baryonische Komponente, zum Beispiel in Form von primordialen Schwarzen Loechern. Da diese Objekte nur sehr schwach leuchten, sind sie dem direkten Nachweis entzogen. Sie koennen jedoch indirekt ueber den Gravitationslinseneffekt nachgewiesen werden, den sie auf das Licht von Sternen im Hintergrund ausueben. Der beobachtbare Helligkeitsanstieg ist charakteristisch fuer solche sogenannten Mikrolinsenereignisse und laesst sich gut von der Helligkeitsaenderung Veraenderlicher Sterne unterscheiden. Die Seltenheit der Gravitationslinsenereignisse machte den Aufbau eines grossen Datensatzes mit entsprechender zeitlicher Ueberdeckung notwendig, was durch simultane Beobachtungen an zwei Standorten (Wendelstein und Calar Alto) erreicht werden konnte. Nach einer kurzen Einfuehrung gibt Kapitel 2 einen Ueberblick ueber das Experiment und die Beobachtungsstrategie und stellt die Teleskope und verwendeten Instrumente vor. Desweiteren behandelt Kapitel 2 die Eigenschaften des Datensatzes (1997 - 2005) und stellt die Algorithmen und Methoden vor, die zum Reduzieren der Daten angewandt wurden. Kapitel 3 praesentiert ein aktualisiertes Modell der Massen- und Lichtverteilung der Andromeda Galaxie, welches gut mit kinematischen Daten, als auch mit Vorhersagen von stellaren Populationsmodellen uebereinstimmt. In Kapitel 4 wird dieses Modell genutzt, um die erwartete Rate von Gravitationslinsenereignissen und deren raeumliche Verteilung fuer das WeCAPP Experiment zu berechnen. Kapitel 5 praesentiert die Kandidaten fuer Mikrolinsenereignisse, die im WeCAPP Datensatz identifiziert werden konnten. Sowohl die Anzahl der Ereignisse als auch ihre raeumliche Verteilung deuten darauf hin, dass sie durch stellare Linsen in M31 selbst verursacht wurden (self-lensing). Der Machoanteil ist demgegenueber als eher gering einzuschaetzen. Der aufgebaute Datensatz ist aufgrund seiner langen zeitlichen Ueberdeckung hervorragend geeignet, intrinsisch Veraenderliche Quellen in M31 zu studieren. In Kapitel 6 wird dieser Katalog von ueber 20 000 Veraenderlichen Quellen praesentiert. Die gemessene Anzahldichte der Quellen weist eine starke Asymmetrie auf, die auf den Einfluss erhoehter Extinktion in den Spiralarmen zurueckzufuehren ist. Die Veraenderlichen lassen sich in 3 Gruppen einteilen, wobei sich in Gruppe 1 die klassischen Cepheiden befinden. Gruppe 2 enthaelt unter anderem Klasse 2 Cepheiden und RV Tauri Veraenderliche, wohingegen sich Gruppe 3 aus Langperiodischen Veraenderlichen zusammensetzt. Die Parameter, die aus der Fourieranalyse der Lichtkurven klassischer Cepheiden extrahiert werden konnten, zeigen den bekannten Verlauf mit der Periode der stellaren Pulsation. Auch fuer die Klasse 2 Cepheiden und die RV Tauri Sterne konnte eine Korrelation bestimmter Phasenparameter gefunden werden, wobei die Relation der RV Tauri Sterne eine Fortfuehrung der Relation der Klasse 2 Cepheiden ist. Dieses Ergebnis unterstuetzt die enge Verbindung zwischen beiden Arten von Veraenderlichen. Neben pulsierenden Veraenderlichen wurden auch ueber 60 klassische Novae identifiziert, deren Helligkeitsverlauf einen eruptiven Charakter aufweist. Der daraus resultierende Novakatalog, der in Kapitel 7 praesentiert wird, ist einer der groessten und homogensten seiner Art. Eine Korrelation mit historischen Novae erbrachte 5 Kandidaten fuer wiederkehrende Novae. Fuer einige Novae gelang es, den Zeitpunkt des Ausbruchs genau zu bestimmen und damit zu zeigen, dass die Konstanz der Helligkeit 15 Tage nach Maximum fuer schnelle und moderat schnelle Novae zu gelten scheint. Sehr schnelle Novae scheinen jedoch davon abzuweichen. Mit Hilfe dieser Relation und den exponentiellen Angleichungen an die Lichtkurven konnte gezeigt werden, dass fuer mittlere Abfallszeitskalen t2 die maximale Helligkeit linear mit dem Logarithmus der Abfallszeit skaliert, fuer grosse t2 jedoch eine Abflachung dieser linearen Relation festzustellen ist.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Astronomische Beobachtungen mit großen bodengebundenen Teleskopen sind, bedingt durch die statistischen Prozesse der Lichttransmission durch die Erdatmosphäre, in der räumlichen Auflösung begrenzt. Mittels adaptiver Optik, einer schnellen Korrektur der Lichtwellenfront, kann diese Einschränkung behoben werden. Damit diese Technologie auch für lichtschwache Objekte eingesetzt werden kann, ist eine künstliche Referenzquelle in der Hochatmosphäre nötig. Die vorliegende Dissertation gliedert sich in zwei Teile: Im astronomischen ersten Teil werden Beobachtungen von Quasaren mittlerer bis hoher Rotverschiebung beschrieben. Der zweite Teil beschäftigt sich mit der Entwicklung eines Lasersystems für das Very Large Telescope in Chile, mit dem ein künstlicher Leitstern erzeugt werden kann. Mittels optischer und nahinfraroter Aufnahmen radioschwacher Quasare in mehreren Rotverschiebungsbereichen wird im Rahmen dieser Arbeit eine Messung der Leuchtkraft des Quasarkerns sowie der beherbergenden Galaxie vorgenommen. Durch den Vergleich mit der räumlichen Intensitätsverteilung von Punktquellen im selben Feld mit den Beobachtungsobjekten konnte die geringfügig größere räumliche Ausdehnung der Galaxie detektiert werden. Das Helligkeitsverhältnis von Kern und Galaxie wurde mit Hilfe einer Modellierung der Oberflächenhelligkeit und der Anpassung an die Messwerte ermittelt. Dieses Verhältnis wird im Vergleich mit Messungen anderer Gruppen sowie Modellrechnungen der Galaxie- und Quasarbildung im jungen Universum diskutiert. Über den hier betrachteten Rotverschiebungsbereich von z=0.8 bis z=2.7 liegt dieses Verhältnis innerhalb der zu erwartenden Streuung der Modellrechnungen, wobei ein eindeutiger Trend mit dem kosmologischen Alter innerhalb der Fehlergrenzen nicht festgestellt werden konnte. Vergleicht man die Leuchtkraft der hier vermessenen radioschwachen Wirtsgalaxien der Quasare mit radiolauten Objekten sowie anderen Galaxientypen ähnlicher Rotverschiebung zeigt sich, dass diese eher mit Lyman-break Galaxien übereinstimmen und in der mittleren Helligkeit vergleichbar mit 'normalen' L* Galaxien sind. Die hier vorgestellten Messungen wurden an einem 3.5m Teleskop ohne Korrektur der atmosphärischen Störungen vorgenommen und sind dadurch prinzipiell in der erreichbaren räumlichen Auflösung begrenzt. Um zukünftige Messungen von Quasaren und ähnliche Projekte, bei denen eine hohe Auflösung gefordert ist, mit größerer Präzision durchführen zu können, ist ein Laserleitstern an einem großen Teleskop nötig. In Kapitel 2 werden die grundlegenden Eigenschaften der Lichttransmission durch die Erdatmosphäre und deren Implikation auf die Abbildung mit astronomischen Teleskopen beschrieben. Im selben Kapitel wird die Physik der Resonanzstreuung an Natriumatomen in der Mesosphäre beschrieben, welche zur Erzeugung des künstlichen Leitsterns genutzt wird und die Grundlage für die Auslegung des Laserleitsterns bildet. In Kapitel 3 wird die Entwicklung und der Test des Lasersystems beschrieben, welches im Rahmen dieser Arbeit für das Very Large Telescope in Chile gebaut wurde. Ziel war es, einen Laser zu entwickeln, der bei 589 nm mehr als 10 W Ausgangsleistung in einer einzelnen Mode mit hoher Strahlqualität erreicht. Mit der Aufteilung des Lasersystems in eine Master-Laser- und eine Verstärkerstufe konnten die Problematiken, welche sich durch thermische Störungen bei hoher Leistung ergeben, gelöst werden. Die cw Verstärkerstufe wurde als injektionsstabilisierter Resonator mit nicht-planarer Geometrie und zwei Farbstoffstrahlen verwirklicht, welche von vier leistungsstarken 532nm Lasern optisch gepumpt werden. Mit Hilfe eines detaillierten Modells des Laserprozesses konnte die Auslegung des Verstärkers erfolgen. Für die Stabilisierung des Verstärkers auf die Resonanzspitze wurden mehrere Methoden getestet. Hierbei konnte eine neue polarisationsspektroskopische Messmethode gefunden werden, welche ein eindeutiges Fehlersignal über den gesamten Phasenbereich liefert, womit eine hochstabile Regelung verwirklicht werden konnte. Mit dem Gesamtsystem konnte stabil eine Einmoden-Ausgangsleistung von 24 W mit hervorragender Strahlqualität erreicht werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Seit Winter 1998/1999 führen Gruppen am Max-Planck-Institut für Radioastronomie (MPIfR), Max-Planck-Institut für extraterrestrische Physik (MPE) und dem National Radio Astronomy Observatory (NRAO) bei 1.2 mm eine tiefe, große Gebiete abdeckende Himmelsdurchmusterung mit dem Max-Planck-Millimeter Bolometer Array ("MAMBO") am IRAM 30-m Millimeterteleskop durch, um eine signifikante Anzahl von hellen mm-Quellen zu detektieren. Diese Quellen sind höchstwahrscheinlich staubreiche Galaxien bei hoher Rotverschiebung mit Sternentstehungsraten von bis zu einigen Tausend Sonnenmassen pro Jahr. Kosmologisch gesehen sind sie hochinteressant, da sie signifikant zum extragalaktischen kosmischen Hintergrund, d.h. zur Stern- und Galaxienentwicklungsgeschichte des Universums, beitragen. Zum Verständnis ihrer Natur sind Identifikationen mit Hilfe tiefer optischer und Nahinfrarotaufnahmen essentiell. Aufgrund der geringen Winkelauflösung des IRAM 30-m Millimeterteleskopes (10.7") ist eine eindeutige Identifikation der mm-Quellen, die nur auf Bolometerdaten basiert, unmöglich. Deshalb ist die mm- und cm-Interferometrie ein Schlüsselelement in der Nachbeobachtung dieser staubhaltigen, hochrotverschobenen Quellen. Unsere Identifikationsstrategie basiert auf der Kombination von radio- (VLA) und millimeter- (PdBI) interferometrischen Beobachtungen, um die genauen Positionen der mm-Quellen zu bestimmen, und optischen/Nahinfrarotaufnahmen zur eigentlichen Identifikation. Ziel dieser Arbeit ist die Identifizierung und Charakterisierung der Quellen der mm-Strahlung, fokussierend auf das auf der südlichen Himmelskugel gelegene NTT Deep Field und seine Umgebung. Im Winter 2000/2001 wurden mit dem mm-Interferometer PdBI Beobachtungen durchgeführt, um exakte Flüsse und Positionen von einigen der hellsten MAMBO-Quellen bestimmen zu können. Vier wurden erfolgreich auf einem 5sigma-Niveau mit dem PdBI detektiert. Für alle PdBI-Detektionen konnten auch schwache Radiogegenstücke detektiert werden. Interessanterweise offenbarten die Positionen, die durch die interferometrischen Beobachtungen exakt bestimmt werden konnten, dass keine dieser MAMBO-Quellen ein Gegenstück im Nahinfraroten bis zu sehr schwachen Magnituden besitzt (K~22.0 mag). Diese tiefen K-Band Grenzen der helleren 1.2 mm MAMBO-Quellen setzen strikte Beschränkungen hinsichtlich der Natur und Rotverschiebung dieser Objekte: Falls die spektrale Energieverteilung der mm-Quellen denen der ultraleuchtkräftigen Infrarotgalaxien (ULIRGs) ähnelt, dann müssten sie bei Rotverschiebungen größer als 4 liegen, was einem Zeitpunkt von etwa 1.5 Mrd Jahren nach dem Urknall entspricht. Andernfalls könnten sie bei niedrigeren Rotverschiebungen sein, müssten jedoch UV-optische Farben besitzen, die röter sind als selbst die der extremsten ULIRGs, wie zum Beispiel Arp 220. Unsere Analyse basierend auf nahinfrarot/radio/(sub)mm Daten zeigt, dass es einen Trend zwischen den Flussverhältnissen nahinfrarot-zu-submm und radio-zu-submm gibt. Dieses Ergebnis deutet daraufhin, dass die geringe Helligkeit im K-band von unseren PdBI-Detektionen in erster Linie auf die hohe Rotverschiebung dieser Objekte zurückzuführen ist. Durch eine Korrelation zwischen Radioquellen, die sich nahe der nominalen mm-Position befinden und unseren tiefen optischen/Nahinfrarotaufnahmen konnte die Anzahl von sicher identifizierten MAMBO mm-Quellen auf 18 signifikant erhöht werden. Für 13 1.2 mm-Quellen wurden optische/ NIR Gegenstücke gefunden, deren K-band Magnituden zwischen 19 und 22.5 liegen. Fünf MAMBO-Quellen sind "Blank Fields" und sind schwächer als K > 22 mag. Basierend auf dem radio/mm Spektralindex, wurde der Median der Rotverschiebung der radio-identifizierten mm-Quellen berechnet: z~2.6. Der Median der optischen/NIR photometrischen Rotverschiebung für mm-Quellen mit einem Gegenstück ist ~2.1. Dies weist daraufhin, dass die radio-identifizierten mm-Quellen ohne einem optischen/NIR Gegenstück dazu tendieren, bei höheren Rotverschiebungen als die mit optischen/NIR Gegenstücken zu liegen. Ein Vergleich mit publizierten Identifikationen von Objekten aus 850 micrometer-Durchmusterungen (SCUBA) von vergleichbarer Tiefe zeigt, dass die K- und I-Magnituden unserer Gegenstücke etwa 2 mag schwächer sind und die Dispersion der I-K Farbe geringer ist. Tatsächliche Unterschiede im Median der Rotverschiebungen, verbleibende falsche Identifikationen mit hellen Quellen, kosmische Variationen und statistisch kleine Proben tragen höchstwahrscheinlich zu dem signifikanten Unterschied bei, welcher auch die Strategie zur Messung von Rotverschiebungen beeinflusst. In dieser Arbeit werden die Eigenschaften von NIR/(sub)mm/radio spektraler Energieverteilungen unserer Galaxien und von interferometrisch identifizierten submm- Quellen aus der Literatur diskutiert. Basierend auf einem Vergleich mit submm-Quellen mit durch CO-Messungen bestätigten spektroskopischen Rotverschiebungen argumentieren wir, dass etwa zwei Drittel der (sub)mm Galaxien bei einer Rotverschiebung höher als 2.5 liegen. Wahrscheinlich ist dieser Anteil höher, wenn Quellen ohne radio-Detektion hinzugenommen werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In dieser Dissertation wird die Entwicklung von Galaxien innerhalb eines sehr großen Zeitraums (90% des Alters des Universums) anhand sehr tief belichteter Aufnahmen des sogenannten FORS Deep Field (FDF) untersucht. Homogenität und Größe des Datensatzes erlauben eine gründliche Analyse der Galaxienentwicklung, ohne großen systematischen Effekten zu unterliegen. Nachdem in Kapitel 1 ein Überblick der Kosmologie sowie der Strukturbildung und der bis dato beobachteten Entwicklungen von Galaxien gegeben wurde, werden in Kapitel 2 die Eigenschaften des FDFs diskutiert. Dabei wird der Objekt-Katalog, der über 8000 Galaxien und photometrische Informationen in 9 Filtern enthält, vorgestellt. In Kapitel 3 werden mögliche Auswahleffekte aufgrund des im I-Band (8000 Angström) selektierten Kataloges diskutiert und die Güte der Entfernungsbestimmung, welche auf photometrischen Rotverschiebungen basiert, beschrieben. Basierend auf diesen photometrischen Rotverschiebungen wird in Kapitel 3 und Kapitel 4 die Entwicklung der Anzahldichte von Galaxien pro Magnitude und Volumen, also der Leuchtkraftfunktion (LF), in Abhängigkeit der Rotverschiebung analysiert. Die LF der Galaxien entwickelt sich im UV viel stärker als im sichtbaren bzw. nah-infraroten Licht. Ein Vergleich mit der lokalen LF ergibt, daß die Galaxienpopulation im frühen Universum im Mittel im UV viel heller (Faktor 10), die Gesamtanzahl dagegen wesentlich niedriger (Faktor 10) gewesen ist. Im optischen bleibt dieser Trend nachweisbar. Ein Vergleich mit LF-Ergebnissen von anderen Himmelsdurchmusterungen zeigt eine sehr gute Übereinstimmung mit deren Ergebnissen. Aufgrund der tiefen Belichtung des FDFs ist es zudem möglich, auch noch sehr schwache Galaxien in die Analyse mit einzubeziehen und dadurch die Steigung der Leuchtkraftfunktion, d.h. das Verhältnis von schwachen zu hellen Galaxien, deutlich besser zu bestimmen. Ein Vergleich mit Vorhersagen theoretischer Galaxienentwicklungs-Modelle zeigt eine gute Übereinstimmung bei kleiner Rotverschiebung. Mit zunehmender Entfernung nehmen jedoch die Unterschiede zu. Um die Beiträge von einzelnen Galaxienpopulationen zur LF zu untersuchen, wird der Objekt-Katalog in Kapitel 5 in vier typische Populationen aufgeteilt: von frühen Typen mit praktisch keiner Sternentstehung bis hin zu Typen mit extremer Sternbildung. Die jeweilige LF wird in den verschiedenen Rotverschiebungsbereichen mit der Gesamt-LF verglichen. Der unterschiedliche Beitrag dieser Subpopulationen zur Gesamt-LF in den verschiedenen Filtern und bei verschiedenen Rotverschiebungen erklärt auf natürliche Weise die Änderung der Steigung der LF als Funktion der Wellenlänge. In Kapitel 6 wird die Entwicklung der Sternentstehungsrate, d.h. wieviel stellare Masse pro Jahr und Volumen bei welcher Rotverschiebung gebildet wird, untersucht. Dazu wird jeweils ein FDF B, I, (I+B) und GOODS (Great Observatories Origins Deep Survey) K selektierter Galaxien-Katalog analysiert. Es wird gezeigt, daß die Sternentstehungsrate bis ca. z=1.5 ansteigt, um dann bis ca. z=4 konstant zu bleiben. Bei noch höherer Rotverschiebung scheint sie wieder abzunehmen. Dieser Trend ist weitgehend unabhängig vom Selektionsband. Aus der Sternentstehungsrate wird in Kapitel 7 die Entwicklung der stellaren Massendichte als Funktion der Rotverschiebung berechnet. Unter der Annahme, daß die mittlere Staubkorrektur im UV weitgehend unabhängig von der Rotverschiebung ist, steigt die stellare Masse zw. z=4 und z=0.5 um einen Faktor 10 an. Ein Vergleich mit der Massendichte in der Literatur ermöglicht es uns außerdem eine mittlere Staubkorrektur von 2.5 plusminus 0.2 für den UV-Fluß abzuleiten. In Kapitel 8 werden die Ergebnisse nochmals zusammengefasst. Ein Vergleich mit Vorhersagen theoretischer Galaxienentwicklungs-Modelle basierend auf monolithischen Kollaps und hierarchischer Struckturbildung zeigt zudem, daß letztere meist besser mit integralen Beobachtungsgrößen wie der Leuchtkraftdichte übereinstimmen. Es gibt jedoch bei allen Modellen Probleme bei manchen detaillierten Vorhersagen wie zum Beispiel bei der Entwicklung der LF.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Im Rahmen dieser Arbeit wurde die Fluoreszenz von Hybridsystemen aus Gold Nanopartikeln und Farbstoffen zeitlich und spektral aufgelöst untersucht. Neben einer ultraschnellen Fluoreszenzemission, welche direkt von den Gold Nanopartikeln stammt, wurde insbesondere die dipolinduzierte Auslöschung der Fluoreszenz von Farbstoffen, welche auf der Partikeloberfläche chemisch gebunden sind, als Funktion der Partikelgröße und des Molekülabstandes untersucht. Hierzu wurden für drei verschiedene Farbstoffe Serien von Hybridsystemen hergestellt, in denen stets nur ein Parameter, nämlich die Nanopartikelgröße oder der Abstand des Farbstoffes, systematisch über eine Größenordnung geändert wird. Die experimentell bestimmten Transienten der Hybridsysteme zeigen, dass bereits die kleinsten Nanopartikel mit einem Radius von nur 1 nm die Quanteneffizienz bei einem Farbstoffabstand von 1 nm um 99,8 % verringern können. Des Weiteren wird nachgewiesen, dass die Quanteneffizienz der Farbstoffe sogar bis zu Abständen von 16 nm noch um über 50 % gesenkt ist. Eine derart hohe Auslöschungseffizienz wird in Energie-Transfer Systemen, welche nur aus organischen Farbstoffen bestehen, nicht erreicht. Gold Nanopartikel sind damit in der Tat viel versprechende Energieakzeptoren für eine zukünftige Generation von Nanosensoren. In dieser Arbeit kann zum ersten Mal die Ursache der effizienten Fluoreszenzauslöschung durch Gold Nanopartikel anhand der experimentellen Bestimmung der strahlenden und nichtstrahlenden Zerfallskanäle des Hybridsystems nachgewiesen werden. Sie resultiert aus einem strahlungslosen Energie-Transfer zum Partikel und einer gleichzeitigen Absenkung der strahlenden Rate des Farbstoffs. Die experimentell ermittelten strahlenden und nichtstrahlenden Raten der Hybridsysteme werden mit Modellrechnungen nach Gersten und Nitzan verglichen. Es zeigt sich, dass bei konstantem Molekülabstand, aber unterschiedlichen Partikelgrößen, eine qualitative Übereinstimmung der Messergebnisse mit den Modellvorhersagen vorliegt, die absoluten Energie-Transfer Raten sich jedoch um zwei Größenordnungen unterscheiden. Die Abweichung von den experimentellen Ergebnissen wird auf das Vorhandensein nichtlokaler Effekte zurückgeführt, welche im Modell nicht berücksichtigt, aber von aufwendigeren Modellierungen vorhergesagt werden. Bereits ohne oberflächengebundene Farbstoffe zeigen die experimentellen Ergebnisse eine Photonenemission aus Gold Nanopartikeln. Die Emission ist in ihrer spektralen Form der Plasmonresonanz sehr ähnlich und weist ebenfalls eine mit zunehmender Partikelgröße charakteristische Rotverschiebung auf. Gold Nanopartikel mit Radien von 1 – 30 nm zeigen, dass die Quanteneffizienz der Emission unabhängig von der Partikelgröße ist. Die quantitative sehr gute Übereinstimmung der Messergebnisse mit Modellrechnungen nach Shabhazyan et al. erlaubt zum ersten Mal eine mikroskopische Erklärung der verantwortlichen physikalischen Prozesse für die beobachtete Fluoreszenz. Sie wird als der strahlende Zerfall eines Partikelplasmons identifiziert: In den Gold Nanopartikeln rekombinieren optisch generierte d-Bandlöcher strahlungslos mit sp-Bandelektronen und emittieren dabei ein Partikelplasmon. Die Rate der Plasmonemission sinkt mit dem Volumen des Nanopartikels. Die Wahrscheinlichkeit dieser generierten Plasmonoszillation, strahlend via Photonenemission zu zerfallen, steigt wiederum mit dem Partikelvolumen. Die Quanteneffizienz des gesamten Prozesses ist daher unabhängig von der Partikelgröße. Sie ist um vier Größenordnungen über derjenigen einer direkten Aussendung eines Photons durch Rekombination von d-Bandlöchern mit sp-Bandelektronen an Goldfilmen. Der Grund liegt in der weitaus stärkeren Polarisierbarkeit und entsprechend höheren strahlenden Rate des Partikelplasmons gegenüber einzelnen Elektron-Loch Paaren.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die moderne Astrophysik steht vor der Herausforderung, neueste Beobachtungen mit den theoretischen und numerischen Modellen der Galaxienentstehung und -entwicklung zu konfrontieren. So hofft man, die wichtigsten physikalischen Prozesse und ihre Zeitskalen identifizieren zu koennen. In dieser Arbeit nehmen wir eine komplette, helligkeits--limitierte Auswahl von 1862 Galaxien aus der Sloan Digital Sky Survey (SDSS), um eine Anzahl von globalen und strukturellen Parametern zu untersuchen. Diese Auswahl beinhaltet helle Objekte mit einer r--Band Helligkeit von < 15.9 im nahen Universum mit einer Rotverschiebung von z < 0.12. Sie enthaelt elliptische, Spiral- und irregulaere Galaxien. Photometrische Daten sind fuer die u, g, r, i und z--Baender angegeben und von 1588 Galaxien wurden nachtraeglich Spektra genommen. Die `Bulge' Komponente der Galaxien wird mit Sersic und de Vaucouleurs Modellen modelliert, waehrend die Scheibenkomponente mit einer exponentiellen Verteilung modelliert wird. Die Messung des Lichtanteils in `Bulge' und Scheibenkomponente gibt Aufschluss ueber die Effizienz des hierarchischen Strukturbildungsprozesses. In Kapitel 3 zeigen wir, dass der mittlere Anteil des Lichts aus der Scheibe stark mit der totalen absoluten Helligkeit der Galaxie zunimmt. Unabhaengige r und i Band Analysen ergeben einen sehr aehnlichen Trend. Zum ersten Mal schaetzen wir den volumengemittelten Anteil des Lichts aus der Scheibenkomponente von Galaxien ab und stellen fest, dass ungefaehr (55 +- 2) % des gesamten Lichts im lokalen Universum aus Scheiben kommt. Wir ermitteln auch die Leuchtkraftfunktion fuer reine 'Bulges', also fuer Strukturen ohne Scheibenanteil, die nicht einfache Spheroide sind. In Kapitel 4 studieren wir die Abhaengigkeiten von visuellen und quantitativen morphologischen Klassifikationskriterien mit dem Ziel sauberere Galaxienkataloge zu erstellen, besonders bei hohen Rotverschiebungen, wo die Klassifikation schwierig ist. Wir finden, dass Galaxienfarben, effektive Oberflaechenhelligkeit, Masse/Licht Anteil, und Asymmetrie Parameter einen Mehrparameter Raum aufspannen, in der alle Galaxien je nach morphologischem Typ eindeutig positioniert sind. In Kapitel 5 beobachten wir einen klaren Trend, mit dem die Skalenlaenge der Scheiben mit ihrer Helligkeit zunimmt, und dieser Trend ist unabhaengig vom photometrischen Band und der morphologischen Klasse. Es existiert auch eine klare Abhaengigkeit zwischen dem effektiven Radius des `Bulge' und seiner Helligkeit, aber die Steigung dieser Relation aendert sich mit dem morphologischem Typ. Sie ist steiler fuer fruehere Typus, was uns zu der Schlussfolgerung fuehrt, dass die Skalenlaenge weniger von der Morphologie abhaengt als die Skalenlaenge des `Bulges'. Dies legt nahe, dass `Bulges' in fruehen und spaeteren Galaxien in unterschiedlichen Prozessen gebildet werden. Wir finden auch eine Korrelation zwischen den strukturellen Parametern von Scheiben und `Bulges', insbesondere zwischen effektivem Radius der `Bulges' und der Skalenlaenge der Scheiben in Systemen fruehen Typus. Wir interpretieren dies als Beweisstueck zugunsten von saekularen Evolutionsmodellen.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In dieser Doktorarbeit studiere ich die Entstehung und Entwicklung von Galaxien in Galaxienhaufen sowohl theoretisch als auch unter Einbeziehung von Beobachtungsdaten. Diese Doktorarbeit gliedert sich in zwei Teile: Einem theoretischen Teil schliesst sich eine Datenanalyse an. Im ersten Kapitel beschreibe ich warum Galaxienhaufen wichtig sind, erklaere die Motivation und Zielsetzung der in dieser Arbeit verwendeten Analyse und erlaeutere den dafuer noetigen theoretischen Hintergrund als auch den Hintergrund fuer die Beobachtungen. Zuerst untersuche ich die Vorhersagen des hierarchischen `Modells der kalten dunklen Materie' fuer die beobachteten Eigenschaften der Population von Galaxien in Galaxienhaufen und fuer ihre Entwicklung als Funktion der kosmischen Rotverschiebung. Ich verwende eine grosse Anzahl von hochaufgeloesten numerischen Simulationen von Galaxienhaufen zusammen mit einer hochaufgeloesten Simulation einer `typischen' Region des Universums. Die grosse Aufloesung der verwendeten Simulationen ermoeglicht es mir, die Entwicklung der Zentren der dunklen Materiehalos zu verfolgen, welche mit groesseren Strukturen zusammenwachsen. Dies erlaubt eine eindeutige Identifizierung leuchtender Galaxien in den Haufen und Substrukturen der dunklen Materie. Diese Analyse ist Bestandteil des zweiten Kapitels. Um eine enge Verbindung zwischen den theoretische Vorhersagen und den Beobachtungen zu ziehen, entwickle ich ein semi-analytisches Programm, welches selbstkonsistent die photometrische und chemische Entwicklung der Galaxien in den Haufen, als auch die chemische Geschichte des Gases innerhalb der Haufen und innerhalb der Galaxien verfolgt. Dabei modelliere ich den Transport von Masse und Metallen zwischen den Sternen, das kalte Gas in Galaxien, das heisse Gas in dunklen Materiehalos, und das intergalaktische Gas ausserhalb der virialisierten Halos. Ausserdem modelliere ich die Effekte von Staub auf die emittierte Strahlung von Galaxien. Das dritte Kapitel beschreibt das semi-analytische Modell im Detail und zeigt einen Vergleich mit einer Anzahl von Beobachtungsergebnissen fuer Galaxien aus nahen Haufen. Im folgenden verwende ich dieses Modell, um die Anreicherung des intergalaktischen Mediums und des Gases innerhalb der Galaxienhaufen mit den chemischen Elementen als Funktion der Zeit zu studieren. Dabei untersuche ich, zu welchem Zeitpunkt der Grossteil der Anreicherung stattfand und welche Galaxien den groessten Beitrag lieferten. Im weiteren Verlauf analysiere ich die beobachtbaren Merkmale verschiedener Modelle von Rueckkopplungsmechanismen. Dabei zeige ich, dass die beobachtete Abnahme des baryonischen Massenanteils von Galaxienhaufen zu Gruppen nur in einem `extremen' Modell reproduziert werden kann, in welchem das wiederausgestossene Material auf einer Zeitskala wiederaufgenommen wird, die vergleichbar mit der Hubblezeit ist. Die Resultate dieser Untersuchungen werden in Kapitel 4 praesentiert. Der zweite Teil meiner Doktorarbeit handelt von der Interpretation von Daten des `ESO Distant Cluster Surveys' (EDisCS). Dieses `ESO Large Program' hat das Ziel, die Entwicklung der Galaxien in Galaxienhaufen ueber mehr als 50 Prozent der kosmischen Zeit zu studieren. Es verbindet die photometrische und spektroskopische Information einer grossen Auswahl von Galaxienhaufen bei Rotverschiebungen um 0.5 und 0.8. Ich fuehre eine detaillierte dynamische und strukturelle Analyse einer Untermenge der EDisCS Galaxienhaufen durch, fuer welche vollstaendige photometrische und spektroskopische Daten vorhanden sind. Im besonderen entwickle ich eine Methode, um Substruktur zu quantifizieren, welche der projizierten raeumlichen Verteilung als auch der Geschwindigkeitsverteilung Rechnung traegt. Die Ergebnisse werden dann detailiert mit Resultaten der numerischen Simulation verglichen. Im Kapitel 5 diskutiere ich, wie die Erweiterung der Methode auf den gesamten EDisCS Datensatz wichtige Einschraenkungen auf die relative Bedeutung der verschiedenen physikalischen Prozesse liefern wird, die Galaxienentwicklung in dichten Umgebungen beeinflussen. Zum Schluss analysiere ich die Farb-Helligkeits-Beziehung einer Untermenge der EDisCS Galaxienhaufen bei grossen Rotverschiebungen. Dabei vergleiche ich die erhaltenen Resultate der hochrotverschobenen Galaxienhaufen mit denjenigen des nahen Coma Galaxienhaufens und zeige, dass die hochrotverschobenen Galaxienhaufen ein Defizit an leuchtschwachen Galaxien der roten Sequenz im Vergleich zu denjenigen bei kleiner Rotverschiebung aufweisen. Dies deutet an, dass ein grosser Bruchteil der leuchtschwachen passiven Galaxien in Galaxienhaufen zum gegenwaertigen Zeitpunkt bei grossen Rotverschiebungen aktive Sternentstehung aufgewiesen haben koennten. Diese Aussage stimmt qualitativ mit den Vorhersagen des hierarchischen Modells ueberein. Diese Analyse wird in Kapitel 6 praesentiert.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Gemäß den aktuellen kosmologischen Modellen besteht der Großteil der Masse im Universum aus dunkler Materie. Aus früheren Studien ist es bekannt, daß Galaxien verschiedener Typen auf verschiedene Weise verteilt sind. Die räumliche Verteilung von Galaxien folgt nicht der Verteilung der Masse. Die Relation zwischen der Galaxienverteilung und der Massenverteilung wird »»Bias der Galaxienverteilung¶¶ genannt. Laut den derzeitigen Modellen für die Bildung von Galaxien entstehen die Galaxien durch das Abkühlen und die Kondensation des baryonischen Gases innerhalb der Potentialtöpfe von virialisierten Klumpen aus dunkler Materie (dunkle Halos). Obwohl die hydrodynamischen Prozesse, die an der Entstehung von Galaxien beteiligt sind, noch wenig verstanden sind, wird angenommen, daß diese Prozesse für die Entstehung einzelner Objekte relevant sind und daß sie möglicherweiser keine bedeutende Rolle bei der gesamten räumlichen Verteilung der Galaxien spielen. Das bedeutet, daß das Problem der Verteilung der Galaxien und des sogenannten Bias der Galaxienverteilung gut untersucht werden kann, indem man die Verteilung von dunklen Halos betrachtet. Diese Annäherung ist sehr praktisch, weil bei der Haloentstehung und der Verteilung die Gravitation der einzige beteiligte physikalische Prozess ist. In dieser Arbeit beschäftige ich mich mit den Eigenschaften der räumlichen Verteilung von dunklen Halos auf kosmischen Dichtefeldern. Die Analyse wird in zwei Hauptteilen durchgeführt. Im ersten Schwerpunkt studiere ich deterministische Bias- Modelle, die auf einem sphärischen Kollapsmodell, sowie auf einem ellipsoidförmigen Kollapsmodell beruhen. Im zweiten Teil meiner Arbeit konzentriere ich mich auf die stochastische Beschaffenheit des Bias der Halo- und Galaxien-Verteilung unter Verwendung der bedingten Wahrscheinlichkeitsfunktion. Ich studiere den deterministischen Bias der Haloverteilung mit Hilfe von verschiedenen Modellen für die Bias Relation zwischen dunklen Halos und der darunterliegenden Materie. Mit der Benutzung von N-Körper Simulationen mit hoher Auflösung prüfe ich einige theoretische Modelle für die Streuung und für höherwertige Momente der Halo Verteilung in Modellen mit kalter dunkler Materie (CDM, englisch cold dark matter). Ich habe herausgefunden, daß die theoretischen Modelle des Bias, die auf einem sphärischen Kollapsmodell beruhen, die simulierten counts-in-cells Momente für Halos mit Massen grösser als M* ziemlich genau beschreiben. M* wird als die Massenskala, auf der die Fluktuation des Dichtefeldes ein rms von ungefähr 1 hat, definiert. Eine bedeutende Verbesserung der theoretischen Beschreibung der simulierten counts-in-cells Momente für unter-M* Halos wird erzielt, wenn ein ellipsoidförmiges Kollapsmodell anstelle eines sphärischen für die Definition von dunklen Halos benutzt wird. Beide Versionen der Modelle sind besonders genau in der Beschreibung der counts-in-cells Momente der Nachkommen von Halos, die bei hohen Rotverschiebungen ausgewählt worden sind. Deswegen sind diese Bias-Modelle ziemlich nützlich für die Interpretierung der Momente der Galaxienverteilung. Als eine Anwendung der Bias-Modelle berechne ich die Voraussage der Modelle für die höherwertigen Momente der Verteilung der Lyman break Galaxien und deren Nachkommen. Es wird angenommen, daß die Lyman break Galaxien im Zentrum der massivsten Halos bei der Rotverschiebung z » 3 entstehen. Ich habe festgestellt, daß, obwohl der lineare Bias-Parameter b stark von der angenommenen Kosmologie abhängt, die Werte der höherwertigen Momente praktisch dieselben in beiden LamdaCDM und TafCDM Modelle sind. Folglich können die höherwertigen Momente der räumlichen Verteilung dieser Objekte die kosmologische Parameter nicht eingrenzen. Au¼erdem betrachte ich die stochastische Natur der Bias Relation vom Gesichtspunkt der bedingten Wahrscheinlichkeitsfunktion aus. Die stochastische Natur der Verteilung von dunklen Halos in einem kosmischen Dichtefeld zeigt sich in der Verteilungsfunktion PV (N j ±m), die die Wahrscheinlichkeit angibt, N Halos in einem Volumen V mit Massendichtekonstrast deltam zu finden. Diese bedingte Wahrscheinlichkeitsfunktion spezifiziert vollständig die Bias-Relation in einem statistischen Sinn. Die Annahme, daß die Population von Galaxien und dunklen Halos durch einen Poisson-prozeß (d.h. die bedingte Wahrscheinlichkeit Funktion hat die Form einer Poissonverteilung) erzeugt wurde, hat keine physikalische Unterstützung. Deshalb ist es wichtig zu prüfen, ob andere Verteilungsfunktionen die bedingte Wahrscheinlichkeit besser beschreiben können. Ich benutze drei Funktionen, zusammen mit der Poissonfunktion, um es nachzuprüfen, wie sie die bedingte Wahrscheinlichkeit aus N-Körper Simulationen hoher Auflösung reproduzieren. Diese drei Funktionen sind die Gauss, die Lognormal und die Thermodynamische Verteilung. Die Thermodynamische Verteilung wurde in den achtziger Jahren aus thermodynamischen Argumenten entwickelt. Ich fand, daß die bedingten Wahrscheinlichkeitsfunktionen für Halo Massen von einer Gaussfunktion besser beschrieben werden, und daß PV (N /deltam) significant nicht-Poisson ist. Das Verhältnis zwischen der Streuung und dem Erwartungswert geht von » 1 (Poisson) bei 1 + ±m ¿ 1 bis < 1 (unter-Poisson) bei 1 + ±m » 1 bis > 1 (über-Poisson) für 1 + ±m À 1. Es stellte sich heraus, daß der Mittelwert der Biasrelation durch Halo Bias Modelle, die auf dem Press-Schechter Formalismus beruhen, gut beschrieben wird. Die unter-Poisson Streuung kann als eine Folge von Halo-Ausschließung begründet werden, während die Ä uber-Poisson Streuung bei hohen deltam Werte durch Halo-Bündelung begründet werden kann. Ein einfaches phänomenologisches Modell für die Streuung der Bias-Relation, als Funktion von deltam, wird vorgeschlagen. Galaxienkataloge, die mit Hilfe semi-analytischer Modelle aus der N-Körper Simulationen erzeugt worden sind, wurden benutzt, um das Verhalten des Bias der Galaxienverteilung zu untersuchen. Der Bias der Galaxienverteilung, die aus semi-analytischen Modellen der Galaxienentstehung abgeleitet wird, zeigt ein ähnliches stochastisches Verhalten wie der von dunklen Halos. Die bedingte Wahrscheinlichkeit für Galaxien wird durch eine Gaussfunktion gut beschrieben. Diese Resultate haben wichtige Implikationen bei den Deutungen der Verteilung von Galaxien in Bezug auf das zugrundeliegenden Dichtefeld. Um die Eigenschaften der Massenverteilung im Universum aus statistischen Maßen der Galaxienverteilung abzuleiten, ist es notwendig, zuerst die stochastische Natur des Bias der Galaxienverteilung zu verstehen. Die Hauptteile dieser Arbeit befinden sich in den Artikeln Casas-Miranda et al. (2002) und Casas-Miranda et al. (2002 in Vorbereitung).
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit werden die ersten röntgenographisch charakterisierten Kristallstrukturen von Mangan(IV)-Polyolato-Komplexen vorgestellt (1–11, 13). Ausgehend von Mangan(II) wird mittels zwei Äquivalenten Kaliumhexacyanoferrat(III) die Oxidationsstufe +IV erreicht. Alle Komplexe entstehen aus wäßriger, stark alkalischer Lösung. Die Kristallisation erfolgt in der Kälte, da Mangan(IV)-Komplexe bei Raumtemperatur innerhalb eines Tages zu Mangan(III) reduziert werden. Mangan(IV) zeigt eine starke Präferenz für Koordinationsoktaeder, welches ein stabiles Struk- turelement darstellt. Das Metallion wird von mindestens zwei 1,2-Diolato- oder 1,3-Diolato- Gruppen chelatartig koordiniert. Mangan(IV) bildet mit D-Glucon- und Lactobionsäure jeweils einen mononuklearen Komplex, KNa3[Mn(D-Glc1AH–4)2] · 7 H2O (1) und KNa2,5[Mn(Lac1AH–3,75)2] · 19,23 H2O (2). D-Glu- conato(4–)-Liganden koordinieren über die Sauerstoff-Donoren der Alkohol-Gruppen an C3, C4 und C6, während Lactobionato(3,5–)-Liganden über die Sauerstoff-Donoren der Alkohol- Gruppen an C2, C3 und C5 an Mangan(IV) binden. Dieses Koordinationsmuster entspricht einer threo-Sequenz, von der die dritte Koordinationsstelle um ein C-Atom weiter entfernt liegt. Lactobionsäure besitzt D-Gluconsäure-Teilstruktur, was sich auch im Bauprinzip wie- derfindet. In 1 liegen die Kalium- und Natrium-Ionen mit den Mangan-Atomen auf unendlich langen Strängen entlang [001]. In 2 entsteht ein dreidimensionales Netzwerk mit dimeren Un- tereinheiten aus kantenverknüpften Oktaedern. Auch mit Dulcitol gelingt es, zwei Komplexe zu kristallisieren, die das Bindungsstellenmus- ter der Lactobionato(3,5–)-Liganden aufweisen: K6[Mn(Dulc2,3,5H–3)2]2 [DulcH–2] · 12 H2O (3) und Ba4[Mn(Dulc2,3,5H–3)2]2 [Fe(CN)6] · 8 H2O (4). Die beiden Dulcitolato-Komplexe unterscheiden sich nicht vom Bindungsmodus her, sondern nur in der Art der eingelagerten Gegenionen. In 3 verknüpfen die Kaliumkationen zwei Komplexanionen aus benachbarten Strängen miteinander, des weiteren koordinieren diese an die bindenden Alkohol-Gruppen der Dulcitolato-Liganden, als auch an die Sauerstoff-Atome des zweifach deprotonierten, nicht- koordinierenden Dulcitol. In 4 beteiligen sich die Bariumkationen sowohl an der Reduktion der effektiven Ladung an Mangan als auch am Aufbau eines dreidimensionalen Netzwerks über die Anbindung an Stickstoffatome des Hexacyanoferrat(II)-Ions. Mangan(IV) und Methyl-β-D-ribopyranosid-2,3,4-ato(3–)-Liganden bilden ebenfalls ein Ko- ordinationsoktaeder, Na4[Mn(Me-β-D-Ribp2,3,4H–3)2]2 · 4 H2O (5). Methyl-β-D-ribopyranosid koordiniert in 1C4-Konformation, in welcher die drei cis-ständigen Hydroxyl-Gruppen als Tri- olatoeinheit auf einer Seite zu liegen kommen. Die Natriumkationen binden an Ligand-O- Atome und ein Wassermolekül. Es entsteht ein dreidimensionales Netzwerk mit dimeren Un- tereinheiten von flächenverknüpften Oktaedern, jedoch fehlt eine Verknüpfung der Stränge entlang [001] wie in 4. Es ist kein Wasserstoffbrückenbindungssystem vorhanden. Pentaerythritol-Liganden bilden mit Mangan(IV) zwei Komplexe, die sich nicht in ihren Bin- dungsmodi, sondern in der Art der eingebauten Gegenionen als auch in der Ladung ihrer Komplexanionen unterscheiden, KLi4[Mn(C5H9O4)(C5H8O4)][Mn(C5H9O4)2] · 21 H2O (6) und Na6[Mn(C5H8O4)2][Mn(C5H9O4)2] · 20 H2O (7). Sowohl in 6 als auch in 7 entstehen mehrere kantenverknüpfte Polyeder, die wiederum einen unendlich langen Strang bilden. Mit α- und β-Cyclodextrin sind bei Verwendung von Lithiumhydroxid als Base zwei Kom- plexe durch Kristallisation zugänglich, Li2[∆-Mn(α-CDH–2)3] · 3 EtOH · 38 H2O (8) und K3Li4[Λ-Mn(β-CDH–3,67)3] · 33 H2O (9). Die Ausbildung von intramolekularen Wasserstoff- brückenbindungen wird durch die eingebauten Gegenkationen erleichtert, wodurch es zu einer Reduktion negativer Ladung um das Zentralmetall kommt. Die Koordinationsstelle wird durch die sperrigen Liganden nach außen abgeschirmt. Eine Anbindung von Lithium- bzw. Kalium-Ionen an die koordinierenden Alkohol-Gruppen ist deshalb nicht möglich. Die La- dungskompensation um das Zentralion geschieht allein durch intramolekulare Wasserstoff- brückenbindungen. Allerdings sind die höhere Ladungsdichte des Lithium-Ions bzw. des Ka- lium-Ions und die passende Größe für die Stabilität des Komplexes entscheidend. Xylitol und D-Threitol koordinieren mit jeweils zwei Liganden an Mangan(IV), die Koordina- tionssphäre wird durch eine di-µ-Oxo-Brücke vervollständigt. Xylitol besitzt D-Threitol- Teilstruktur. Es entstehen die Komplexe Ca8[Mn2(Xylt2,4H–2)4 (µ-O)2]2 [Fe(CN)6]2 · 24 H2O (10) und Ca4[Mn2(rac-Thre2,4H–2)4 (µ-O)2] [Fe(CN)6] · 22 H2O (11). Beiden Komplexen ist die zentrale, dimere Einheit [Mn2O2]4+ gemeinsam, die in Inversionssymmetrie vorliegt. Die Koordinationspolyeder sind untereinander kantenverknüpft. Die Annäherung der Mangan(IV)- Zentren liegt in derselben Größenordnung (in 10 287,4(2) pm, in 11 284,4(6) pm). Sowohl in 10 als auch in 11 finden sich Calcium- und Hexacyanoferrat(II)-Ionen, welche für die Stabili- sierung des Komplexes erforderlich sind. In beiden Fällen entsteht ein dreidimensionales Netzwerk mit dimeren Untereinheiten von kantenverknüpften Polyedern. Die Manganzentren sind jeweils antiferromagnetisch gekoppelt (für 10: J/k = –12,2 K und für 11: J/k = –15,2 K). Cytidin bildet mit Mangan(IV) ein Koordinationsoktaeder, K2[Mn(CytH–2)3]·17H2O (13), in welchem drei Cytidin-Liganden als 1,2-Diolat wirken. Mit meso-D-Glycero-D-gulo-heptitol gelingt lediglich die Kristallisation eines Mangan(III)- Komplexes, K2Ba11[Mn2(HeptH–7)2]2 [Fe(CN)6]4 · 49,8 H2O (12). Der Heptitol-Ligand weist sieben Hydroxyl-Gruppen auf, von denen fünf für die Komplexierung des Mangan(III) betätigt werden, wobei eine Hydroxyl-Gruppe µ2-verbrückend wirkt. Die Annäherung der Man- gan(III)-Zentren beträgt 326,3(2) pm bzw. 328,7(3) pm. Der Komplex zeigt die für Man- gan(III) typische Jahn-Teller-Verzerrung, die in den µ2-Oxo-Brücken zum Ausdruck kommt. Die Manganzentren sind ferromagnetisch gekoppelt (J/k = +1,1 K). Die UV/VIS-Spektren der intensiv roten Mangan(IV)-Polyol-Lösungen zeigen nur wenig cha- rakteristische Absorptionsbanden (Schulter bei ca. 520 nm bzw. 19230 cm–1). 4.2 Untersuchungen zur Sauerstoffabsorption wäßriger Mangan(II)- Polyol-Systeme Für die Untersuchung der Sauerstoffabsorption wäßriger Mangan(II)-Polyol-Systeme entfiel die Wahl auf vier Polyole, D-Gluconsäure, Dulcitol, Xylitol und α-Cyclodextrin. Das Ver- hältnis von Base : Mangan(II) : Ligand betrug 10:1:3,5, im Fall des α-Cyclodextrins 10:1:3. Es wurden zwei Meßreihen bei verschiedenen Temperaturen, 20 °C und 5 °C, durchgeführt. Die Messungen bei 20 °C wurden zudem UV/VIS-spektroskopisch verfolgt. Als relevante Parameter sind die Konzentration der Reaktionsteilnehmer, das gewählte Ver- hältnis von Base : Mangan(II) : Ligand, der pH-Wert, die gewählte Base und die Temperatur anzusehen. Auch dem eingesetzten Liganden muß ein Einfluß zugebilligt werden. Die Untersuchungen zeigen, daß eine sukzessive Erhöhung der Mangan(II)-Konzentration bei konstantem Verhältnis von Base : Mangan(II) : Ligand und bei konstanter Temperatur sowohl das Anwachsen der Basenkonzentration sowie des pH-Wertes als auch einen steigenden Sau- erstoffverbrauch bewirken. Starke Abweichungen vom theoretisch zu erwartenden Sauer- stoffbedarf zeigen sich bei hohen Konzentrationen (0,06 M Mn(II)) der Reaktionsteilnehmer. Dies konnte in beiden Meßreihen festgestellt werden. Die bessere Löslichkeit des Sauerstoffs bei abnehmender Temperatur läßt sich bestätigen, da der Gesamtsauerstoffbedarf bei hohen Konzentrationen der Reaktionsteilnehmer niedriger lag als bei den Messungen bei 20 °C. Die spektroskopischen Daten zeigen, daß die Oxidation zunächst sehr schnell voranschreitet und schließlich immer langsamer wird. Da die Reaktionsgeschwindigkeit von der Oxidationszahl des Zentralatoms abhängt und um so schneller ist, je niedriger die Oxidationszahl des Zentral- atoms und je größer das Zentralatom ist, erfolgt die Bildung von Mangan(IV) demnach (klei- nes Metallion, hohe Oxidationszahl) langsam. Bei einer sequentiellen Oxidation von Man- gan(II) über Mangan(III) zu Mangan(IV) wird ein isosbestischer Punkt bei Verwendung von D- Gluconsäure, Dulcitol und Xylitol durchlaufen. Dieser zeigt an, daß zwei Spezies den glei- chen Extinktionskoeffizienten haben. Bei Messungen mit α-Cyclodextrin ist kein isosbesti- scher Punkt vorhanden. Daher sind wohl thermodynamische Aspekte zu berücksichtigen, die einerseits die Stabilisierung von Mangan(III) begünstigen und andererseits die Stabilisierung von Mangan(IV). Die Auswertung des Sauerstoffverbrauchs im Zusammenhang mit der Rot- verschiebung der Absorptionsbanden deckt eine Diskrepanz auf: Es ist ein Überschuß an Sau- erstoff vorhanden, welcher nicht für die Oxidation von Mangan(II) zu Mangan(IV) genutzt wird. Der Gesamtsauerstoffbedarf setzt sich folglich aus zwei Komponenten zusammen. Ab- hängig von der Einwaage an Mangan(II) dient ein Teil dazu, Mangan(II) zu Mangan(IV) zu oxidieren, der Rest des Sauerstoffverbrauchs läßt auf Ligandoxidationsprozesse schließen. Analyseverfahren wie die HPLC oder/und die Cyclovoltammetrie könnten dieses Ergebnis untermauern. Eine Ausnahme bilden Mangan(II)-α-Cyclodextrin-Systeme: Diese erreichen den theoretisch zu erwartenden Verbrauch nicht. Ob Diskrepanzen in den ermittelten Ergeb- nissen apparativ bedingt sein können, muß geprüft werden. Untersuchungen mit Wasserstoffperoxid und natronalkalischen Gluconat-Lösungen sprechen für den gleichen Sachverhalt. Der theoretisch zu erwartende Verbrauch bei hohen Konzentra- tionen der Reaktionsteilnehmer und bei gleicher Meßtemperatur wird ebenfalls überschritten. Die spektroskopischen Daten zeigen die gleiche Rotverschiebung der Absorptionsbanden. Die Annahme, daß es sich bei der reaktiven Spezies in Lösung um die gleiche handeln könnte, scheint nicht abwegig.