POPULARITY
Over the course of 30 years, in a variety of marketing, medical and leadership roles, Camille Lee has demonstrated an ability to drive transformative growth across diverse therapeutic areas.For this week's episode, Lee – who serves as SVP, U.S. head of immunology at UCB – previews the 2025 MM+M Pinnacle Awards and reflects on what it means to receive the career achievement honor.After that, managing editor Jack O'Brien and reporter Heerea Rikhraj recap the HealthFront hosted by Publicis Health Media last week. Then, editor-in-chief Jameson Fleming joins the show to play one of the board games submitted for the 2025 MM+M Agency 100, which is just over a month away from going live. Check us out at: mmm-online.com Follow us: YouTube: @MMM-onlineTikTok: @MMMnewsInstagram: @MMMnewsonlineTwitter/X: @MMMnewsLinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Hey everyone, Alex here
Recorded April 3, 2025 live at Another Country Bookstore with hosts Izzy and Dan, plus special guest host Antonia Bär. Headlines include the troubling escalations of neo-Nazi marches in Berlin, cracks in the A100, a local CDU "scandal", plus a Berliner in space and more. Interviews with Ester of 100% Tempelhofer Feld and Jolene, from Architects for Tempelhofer Feld, and Sebastian Thauer, local show promoter who recently co-founded the Cake Walk music festival. Thanks to Vanta for support! GUEST LINKS Architects for Tempelhofer Feld https://architects4thf.com/ https://www.instagram.com/architects4thf/ Open Letter: https://forms.gle/CsKnCtd2vr6KqtwKA Mailing List: https://forms.gle/kbDDrbk7sTmKAwNc9 THF 100 https://www.thf100.de/ https://www.instagram.com/thf100 Cakewalk Festivalhttps://www.instagram.com/tangiblematerial https://www.instagram.com/cakewalkfest https://malzfabrik.de Antonia Bär Shows: It's That Time of the Month: https://www.comedycafeberlin.com/event/its-that-time-of-the-month-35/ Improvised Stand-Up: https://www.comedycafeberlin.com/event/the-improvised-stand-up-show-13/ ★ Thanks to Vanta for their support, learn more at:Vanta.com/RadioSpaetkauf ➡ Vinyl Kickstarter, NOW LIVE!: https://www.kickstarter.com/profile/radiospaetkauf Technical Support: podfestberlin.com for technical support. Editing: Kaleb Wentzel-Fisher https://www.recordedvoices.com Thank you to our listeners, if you would like to make a donation or support us through a steady membership: www.radiospaetkauf.com/donate More Radio Spaetkauf: www.radiospaetkauf.com
Der Worst Case ist eingetreten: Die Ringbahnbrücke der A100 über die S-Bahngleise musste voll gesperrt werden. Der Riss im Beton wird offenbar tiefer - und inzwischen ist auch der S-Bahn-Verkehr unter der Brücke eingestellt. Die Anwohner ächzen unter dem umgeleiteten Verkehr, täglich kommt es zu Staus und ein Ende ist nicht absehbar. Und das ist nur eine Baustelle im Berliner Verkehrschaos, das auch der Landespolitik zu schaffen machte. "Spreepolitik" ist der landespolitische Podcast vom rbb für Berlin und Brandenburg: Jede Woche eine neue Folge, immer freitags in der ARD-Audiothek und in der rbb24 Inforadio App - jetzt kostenlos abonnieren!
Recorded live March 6, 2025 at Another Country Bookstore. Hosts Izzy and Dan with special guest co-hosts Pip Roper of the "History Flakes" podcast, and comedian Toby Arsalan. They chat spring weather in Berlin and its impact on relationships, Germany's new electronic health records, Berlin labor strikes, local Football and various tree removals. Plus the annoucement of a Kickstarter campaign for a vinyl release of our mini-series "How to F#€K Up an Airport," Berlin's housing crisis, and more. Interviews with Fabian Flues, a member of the Burger*innenInitiative A100, and Joanna Kusiak, a sociologist at Cambridge University and author of "Radically Legal: Berlin Constitutes the Future." Joanna Kusiak: Read the book open source: PDF LINK or listen on Audible: https://www.audible.de/pd/Radically-Legal-Hoerbuch/B0D8WSZ8QF Pip Roper: Live History Flakes Podcast Recording 29th March at Comedy Cafe Berlin https://www.comedycafeberlin.com/event/history-flakes-live-2/ Toby Arsalan: tobyarsalan.com or on insta at @tobyarsalan Fabian Flues: Bürger*innenInitiative A100 https://bi-a100.de/ Thanks to Vanta for their support, Learn more at: www.Vanta.com/RadioSpaetkauf Radio Spaetkauf: www.radiospaetkauf.com Vinyl Kickstarter, LAUNCHING SOON !: https://www.kickstarter.com/projects/radiospaetkauf Additional thanks to podfestberlin.com for technical support. And to our home for the recording, Another Country Bookstore http://www.anothercountry.de/ and of course to you the listeners, if you would like to make a donation or support us through a steady membership: www.radiospaetkauf.com/donate
Marketing Leadership Podcast: Strategies From Wise D2C & B2B Marketers
Clark Johannson, President and CEO of ClickSpace, board member at Young Presidents' Organization (YPO), and Director at A100, shares his expertise on advanced B2B performance marketing strategies, emphasizing the importance of unit economics, marketing intelligence and customer insights. Through decades of entrepreneurial experience, Clark provides actionable insights into revenue predictability, marketing efficiency and the mindset shift required for true growth marketing success.Key Takeaways:(02:49) The critical role of customer intimacy in startups to make informed decisions due to limited resources.(05:19) The struggle with predictable revenue in marketing due to lack of marketing visibility and misallocation of resources.(06:30) Why marketing tracking is essential because without it, businesses waste time and money on ineffective marketing channels.(16:04) The importance of marketing unit economics for sustainable growth to balance customer acquisition cost (CAC) and lifetime value (LTV) for financial viability.(24:48) Differentiating inbound and outbound marketing strategies.(28:32) Applying the J-Curve to marketing investment because marketing investments often see an initial dip before reaching profitability.(41:07) Marketers should learn from failed campaigns instead of focusing on vanity metrics.Resources Mentioned:Young Presidents' Organization (YPO) website - https://www.ypo.org/ A100 website - https://thea100.org/The Innovator's Dilemma by Clayton Christensen - https://www.amazon.com/Innovators-Dilemma-Technologies-Management-Innovation/dp/1633691780Harvard Business Review – "Jobs to Be Done" Theory - https://hbr.org/2016/09/know-your-customers-jobs-to-be-doneGoogle Ads - https://ads.google.com/Looker Studio (Google Data Studio) - https://lookerstudio.google.com/HubSpot - https://www.hubspot.com/Freshdesk - https://freshdesk.com/ Productboard - https://www.productboard.com/ PipeDrive - https://www.pipedrive.com/Insightful Links:Know Your Customers' “Jobs to Be Done” - https://hbr.org/2016/09/know-your-customers-jobs-to-be-doneWhat Is Market Intelligence? - https://www.businessnewsdaily.com/4697-market-intelligence.htmlHow to Calculate Unit Economics for Your Business - https://www.masterclass.com/articles/how-to-calculate-unit-economics-for-your-businessThanks for listening to the “Marketing Leadership” podcast, brought to you by Listen Network. If you enjoyed this episode, leave a review to help get the word out about the show. And be sure to subscribe so you never miss another insightful conversation.#PodcastMarketing #PerformanceMarketing #BrandMarketing #MarketingStrategy #MarketingIntelligence #GTM #B2BMarketing #D2CMarketing #PodcastAds
Creado por “El Siglo 21 es hoy”. El ascenso de DeepSeek, una inteligencia artificial de código abierto que ha generado cambios en el mercado tecnológico global. Hablamos de sus diferencias con otras IA como ChatGPT, Claude, Gemini, Grok y Mistral, su impacto en empresas como NVIDIA, así como su relación con las restricciones de exportación de chips H100, A100 y H800. También exploramos la paradoja de Jevons y su aplicación a tecnologías emergentes. Descubre por qué DeepSeek es el foco de tensiones geopolíticas entre Estados Unidos y China. Suscríbete, comparte este episodio y escucha a 1.5x para una experiencia mejorada. Capítulos: 00:00:00 Episodio 1551 00:02:39 El día en que DeepSeek se hizo noticia mundial 00:17:19 Todos hablan de DeepSeek 00:25:55 El mercado de valores 00:31:13 El impacto de la App 00:35:43 De que vive DeepSeek 00:39:11 La paradoja de Jevons 00:55:09 DeepSeek y la seguridad 00:59:06 De dónde viene 01:06:51 DeepSeek en local 01:10:07 Los chips 01:12:54 Las restricciones 01:14:46 DeepSeek avanza 01:20:27 Qwen Alibaba 01:26:24 Rumores de que usaron ChatGPT 01:29:22 ¿Qué otros modelos de IA son open source? 01:32:43 Guerra fría IA DeepSeek, inteligencia artificial, código abierto, ChatGPT, Claude, Gemini, Grok, Mistral, NVIDIA, H100, A100, H800, Jevons, geopolítica, Estados Unidos, China, tecnología emergente, mercado tecnológico.Conviértete en un seguidor de este podcast: https://www.spreaker.com/podcast/inteligencia-artificial-para-emprender--5863866/support.
Shawn has built a thriving business while also dedicating a significant amount of his time to supporting organizations like Trellis Foundation, the A100, and Venture Mentoring Services. He shares his insights on the importance of having a strong "why" behind your involvement and the value of delegating effectively to balance success and volunteering. This inspiring episode delves into the delicate balance of running a thriving business while making time for meaningful volunteer work. Thank you for listening to the Leaders, Innovators and Big Ideas podcast, supported by Rainforest Alberta. The podcast that highlights those people who are contributing to and/or supporting the innovation ecosystem in Alberta. Host: Al Del Degan is a software developer and tech leader in Alberta's innovation ecosystem. He is also a Web3 enthusiast and podcaster, sharing his knowledge and passion for emerging technologies with his audience. Al is the founder and CTO of New Idea Machine, a software company dedicated to helping new developers gain hands-on experience building real-world applications. With his commitment to giving back to the community, Al is always available to offer advice on technology and business. His passion for innovation and entrepreneurship is evident in everything he does, making him a respected leader in the tech industry. Guest: Shawn Freeman has founded and scaled many businesses to multi-million dollar corporations. He is a serial entrepreneur with decades of experience running IT management companies and can certainly speak to leading and growing large companies and being an innovative thinker. Shawn launched his career in 2011 by founding TWT Group, a small managed service provider (MSP). He grew the business to seven figures within nine years and successfully exited in 2020 through a high-value acquisition. Currently, Shawn is the founder of Impactful MSP, where he helps ambitious MSP owners achieve sustainable, long-term growth. Beyond his professional work, Shawn serves as a Board Member for the Trellis Foundation and The A100, and volunteers as a mentor with the Venture Mentoring Service of Alberta. Additionally, Shawn has been deeply involved with Entrepreneurs' Organization for over 10 years, currently serving as the Chapter President for Calgary. Show Links: Impactful MSP Trellis Foundation The A100 Venture Mentoring Service of Alberta (VMSA) Entrepreneurs' Organization Book - Traction: Gino Wyckman Book - Buy Back Your Time: Dan Martell OMO Teppan & Kitchen Show Quotes: "If you get a client that is not enjoyable to work with It's the old 80-20 rule. They take up 80% of your time. You make 20% of your profits off of them." Credits... This Episode Sponsored By: New Idea Machine Episode Music: Tony Del Degan Creator & Producer: Al Del Degan
El ascenso de DeepSeek, una inteligencia artificial de código abierto que ha generado cambios en el mercado tecnológico global. Hablamos de sus diferencias con otras IA como ChatGPT, Claude, Gemini, Grok y Mistral, su impacto en empresas como NVIDIA, así como su relación con las restricciones de exportación de chips H100, A100 y H800. También exploramos la paradoja de Jevons y su aplicación a tecnologías emergentes. Descubre por qué DeepSeek es el foco de tensiones geopolíticas entre Estados Unidos y China.Suscríbete, comparte este episodio y escucha a 1.5x para una experiencia mejorada.Capítulos: 00:00:00 Episodio 155100:02:39 El día en que DeepSeek se hizo noticia mundial00:17:19 Todos hablan de DeepSeek00:25:55 El mercado de valores00:31:13 El impacto de la App00:35:43 De que vive DeepSeek00:39:11 La paradoja de Jevons00:55:09 DeepSeek y la seguridad00:59:06 De dónde viene01:06:51 DeepSeek en local01:10:07 Los chips01:12:54 Las restricciones01:14:46 DeepSeek avanza01:20:27 Qwen Alibaba01:26:24 Rumores de que usaron ChatGPT01:29:22 ¿Qué otros modelos de IA son open source?01:32:43 Guerra fría IADeepSeek, inteligencia artificial, código abierto, ChatGPT, Claude, Gemini, Grok, Mistral, NVIDIA, H100, A100, H800, Jevons, geopolítica, Estados Unidos, China, tecnología emergente, mercado tecnológico.Conviértete en un seguidor de este podcast: https://www.spreaker.com/podcast/el-siglo-21-es-hoy--880846/support.
El ascenso de DeepSeek, una inteligencia artificial de código abierto que ha generado cambios en el mercado tecnológico global. Hablamos de sus diferencias con otras IA como ChatGPT, Claude, Gemini, Grok y Mistral, su impacto en empresas como NVIDIA, así como su relación con las restricciones de exportación de chips H100, A100 y H800. También exploramos la paradoja de Jevons y su aplicación a tecnologías emergentes. Descubre por qué DeepSeek es el foco de tensiones geopolíticas entre Estados Unidos y China.Suscríbete, comparte este episodio y escucha a 1.5x para una experiencia mejorada.Capítulos: 00:00:00 Episodio 155100:02:39 El día en que DeepSeek se hizo noticia mundial00:17:19 Todos hablan de DeepSeek00:25:55 El mercado de valores00:31:13 El impacto de la App00:35:43 De que vive DeepSeek00:39:11 La paradoja de Jevons00:55:09 DeepSeek y la seguridad00:59:06 De dónde viene01:06:51 DeepSeek en local01:10:07 Los chips01:12:54 Las restricciones01:14:46 DeepSeek avanza01:20:27 Qwen Alibaba01:26:24 Rumores de que usaron ChatGPT01:29:22 ¿Qué otros modelos de IA son open source?01:32:43 Guerra fría IADeepSeek, inteligencia artificial, código abierto, ChatGPT, Claude, Gemini, Grok, Mistral, NVIDIA, H100, A100, H800, Jevons, geopolítica, Estados Unidos, China, tecnología emergente, mercado tecnológico.Conviértete en un seguidor de este podcast: https://www.spreaker.com/podcast/el-siglo-21-es-hoy--880846/support.
El ascenso de DeepSeek, una inteligencia artificial de código abierto que ha generado cambios en el mercado tecnológico global. Hablamos de sus diferencias con otras IA como ChatGPT, Claude, Gemini, Grok y Mistral, su impacto en empresas como NVIDIA, así como su relación con las restricciones de exportación de chips H100, A100 y H800. También exploramos la paradoja de Jevons y su aplicación a tecnologías emergentes. Descubre por qué DeepSeek es el foco de tensiones geopolíticas entre Estados Unidos y China.Suscríbete, comparte este episodio y escucha a 1.5x para una experiencia mejorada.Capítulos: 00:00:00 Episodio 155100:02:39 El día en que DeepSeek se hizo noticia mundial00:17:19 Todos hablan de DeepSeek00:25:55 El mercado de valores00:31:13 El impacto de la App00:35:43 De que vive DeepSeek00:39:11 La paradoja de Jevons00:55:09 DeepSeek y la seguridad00:59:06 De dónde viene01:06:51 DeepSeek en local01:10:07 Los chips01:12:54 Las restricciones01:14:46 DeepSeek avanza01:20:27 Qwen Alibaba01:26:24 Rumores de que usaron ChatGPT01:29:22 ¿Qué otros modelos de IA son open source?01:32:43 Guerra fría IADeepSeek, inteligencia artificial, código abierto, ChatGPT, Claude, Gemini, Grok, Mistral, NVIDIA, H100, A100, H800, Jevons, geopolítica, Estados Unidos, China, tecnología emergente, mercado tecnológico.Conviértete en un seguidor de este podcast: https://www.spreaker.com/podcast/el-siglo-21-es-hoy--880846/support.
Soixante-neuvième épisode de Jeux d'Ombres, le podcast d'Ombres Portées 2.0 consacré aux parties jouées de Shadowrun. Cet épisode poursuit la campagne Netzgewitter située à Berlin en 2080, jouée avec Shadowrun : Anarchy. Dans les épisodes précédents : À peine l'éclat de Kristallkind récupéré dans les restes d'un l'hôtel sur la A100, nos trois runners préférés reprennent la route en direction du Lichtenberg, à l'est de Berlin. Un autre fragment de l'IA s'est niché quelque part dans une sorte de village de maisons flottantes accueillant une curieuse communauté religieuse d'inspiration évangélique. Vous pouvez trouver sur la Matrice un plan de Caligarikiez et un de ses alentours. Remerciements particuliers à Scott Buckley (https://www.scottbuckley.com.au) dont nous utilisons les morceaux accessibles sous licence CC-BY 4.0. Crédits : Andreas AAS Schroth pour les illustrations de Netzgewitter et notamment la vignette de cette série de podcasts. Pegasus Press, éditeur allemand de Shadowrun et de la campagne Netzgewitter. Catalyst Game Labs, éditeur de Shadowrun. Black Book Editions, éditeur français de Shadowrun et de Shadowrun : Anarchy dont les règles sont utilisées dans cette série de podcast. Shadowrun et la Matrice sont des marques déposées et / ou des marques de fabrique de The Topps Company, Inc. aux États-Unis et / ou dans d'autres pays.
Soixante-neuvième épisode de Jeux d'Ombres, le podcast d'Ombres Portées 2.0 consacré aux parties jouées de Shadowrun. Cet épisode poursuit la campagne Netzgewitter située à Berlin en 2080, jouée avec Shadowrun : Anarchy. Dans les épisodes précédents : À peine l'éclat de Kristallkind récupéré dans les restes d'un l'hôtel sur la A100, nos trois runners préférés reprennent la route en direction du Lichtenberg, à l'est de Berlin. Un autre fragment de l'IA s'est niché quelque part dans une sorte de village de maisons flottantes accueillant une curieuse communauté religieuse d'inspiration évangélique. Vous pouvez trouver sur la Matrice un plan de Caligarikiez et un de ses alentours. Remerciements particuliers à Scott Buckley (https://www.scottbuckley.com.au) dont nous utilisons les morceaux accessibles sous licence CC-BY 4.0. Crédits : Andreas AAS Schroth pour les illustrations de Netzgewitter et notamment la vignette de cette série de podcasts. Pegasus Press, éditeur allemand de Shadowrun et de la campagne Netzgewitter. Catalyst Game Labs, éditeur de Shadowrun. Black Book Editions, éditeur français de Shadowrun et de Shadowrun : Anarchy dont les règles sont utilisées dans cette série de podcast. Shadowrun et la Matrice sont des marques déposées et / ou des marques de fabrique de The Topps Company, Inc. aux États-Unis et / ou dans d'autres pays.
In this special year-end episode of The A100 Podcast, we're re-airing the live broadcast of the 2024 A100 CommImpact Awards ceremony, originally streamed on YouTube Live. Hosted by Colleen Gallagher, CEO of OnWrd & UpWrd, and Meghan Henning, Senior PR Strategist and Founding Partner, this event celebrated the exceptional achievements of associations in communications and engagement. Key Highlights: Best Media Relations Campaign: American Association for Marriage and Family Therapy's impactful mental health campaign garnered over 100 high-profile media placements. Outstanding Internal Communications: Tennessee Concrete Association's creative board engagement initiatives, including Be Pro Be Proud Tennessee and Skate4Concrete. Effective Member Engagement Initiative: BSA | The Software Alliance's Why AI? campaign showcased how modest budgets can drive global advocacy. Innovative Content Strategy: American Society of Civil Engineers' use of peer-reviewed research to align with UN Sustainable Development Goals. Thought Leadership and Research: National Association for Law Placement's Jobs & JDs report offered deep insights into legal employment trends and racial disparities, driving equity-focused conversations in the sector. Advocacy Excellence: Muscular Dystrophy Association's #AccessibleAirTravel campaign led to legislative wins in air travel accessibility. Event Promotion Excellence: Sea Tow Foundation's virtual Life Jacket Loaner Conference expanded its safety program nationwide. Leadership in Public Awareness Campaign: American Medical Association's mifepristone access campaign drove national discourse and secured a significant Supreme Court victory. Join us in celebrating these associations for their creativity, leadership, and impact. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes that celebrate the innovation and achievements of associations shaping the future.
We are recording our next big recap episode and taking questions! Submit questions and messages on Speakpipe here for a chance to appear on the show!Also subscribe to our calendar for our Singapore, NeurIPS, and all upcoming meetups!In our first ever episode with Logan Kilpatrick we called out the two hottest LLM frameworks at the time: LangChain and Dust. We've had Harrison from LangChain on twice (as a guest and as a co-host), and we've now finally come full circle as Stanislas from Dust joined us in the studio.After stints at Oracle and Stripe, Stan had joined OpenAI to work on mathematical reasoning capabilities. He describes his time at OpenAI as "the PhD I always wanted to do" while acknowledging the challenges of research work: "You're digging into a field all day long for weeks and weeks, and you find something, you get super excited for 12 seconds. And at the 13 seconds, you're like, 'oh, yeah, that was obvious.' And you go back to digging." This experience, combined with early access to GPT-4's capabilities, shaped his decision to start Dust: "If we believe in AGI and if we believe the timelines might not be too long, it's actually the last train leaving the station to start a company. After that, it's going to be computers all the way down."The History of DustDust's journey can be broken down into three phases:* Developer Framework (2022): Initially positioned as a competitor to LangChain, Dust started as a developer tooling platform. While both were open source, their approaches differed – LangChain focused on broad community adoption and integration as a pure developer experience, while Dust emphasized UI-driven development and better observability that wasn't just `print` statements.* Browser Extension (Early 2023): The company pivoted to building XP1, a browser extension that could interact with web content. This experiment helped validate user interaction patterns with AI, even while using less capable models than GPT-4.* Enterprise Platform (Current): Today, Dust has evolved into an infrastructure platform for deploying AI agents within companies, with impressive metrics like 88% daily active users in some deployments.The Case for Being HorizontalThe big discussion for early stage companies today is whether or not to be horizontal or vertical. Since models are so good at general tasks, a lot of companies are building vertical products that take care of a workflow end-to-end in order to offer more value and becoming more of “Services as Software”. Dust on the other hand is a platform for the users to build their own experiences, which has had a few advantages:* Maximum Penetration: Dust reports 60-70% weekly active users across entire companies, demonstrating the potential reach of horizontal solutions rather than selling into a single team.* Emergent Use Cases: By allowing non-technical users to create agents, Dust enables use cases to emerge organically from actual business needs rather than prescribed solutions.* Infrastructure Value: The platform approach creates lasting value through maintained integrations and connections, similar to how Stripe's value lies in maintaining payment infrastructure. Rather than relying on third-party integration providers, Dust maintains its own connections to ensure proper handling of different data types and structures.The Vertical ChallengeHowever, this approach comes with trade-offs:* Harder Go-to-Market: As Stan talked about: "We spike at penetration... but it makes our go-to-market much harder. Vertical solutions have a go-to-market that is much easier because they're like, 'oh, I'm going to solve the lawyer stuff.'"* Complex Infrastructure: Building a horizontal platform requires maintaining numerous integrations and handling diverse data types appropriately – from structured Salesforce data to unstructured Notion pages. As you scale integrations, the cost of maintaining them also scales. * Product Surface Complexity: Creating an interface that's both powerful and accessible to non-technical users requires careful design decisions, down to avoiding technical terms like "system prompt" in favor of "instructions." The Future of AI PlatformsStan initially predicted we'd see the first billion-dollar single-person company in 2023 (a prediction later echoed by Sam Altman), but he's now more focused on a different milestone: billion-dollar companies with engineering teams of just 20 people, enabled by AI assistance.This vision aligns with Dust's horizontal platform approach – building the infrastructure that allows small teams to achieve outsized impact through AI augmentation. Rather than replacing entire job functions (the vertical approach), they're betting on augmenting existing workflows across organizations.Full YouTube EpisodeChapters* 00:00:00 Introductions* 00:04:33 Joining OpenAI from Paris* 00:09:54 Research evolution and compute allocation at OpenAI* 00:13:12 Working with Ilya Sutskever and OpenAI's vision* 00:15:51 Leaving OpenAI to start Dust* 00:18:15 Early focus on browser extension and WebGPT-like functionality* 00:20:20 Dust as the infrastructure for agents* 00:24:03 Challenges of building with early AI models* 00:28:17 LLMs and Workflow Automation* 00:35:28 Building dependency graphs of agents* 00:37:34 Simulating API endpoints* 00:40:41 State of AI models* 00:43:19 Running evals* 00:46:36 Challenges in building AI agents infra* 00:49:21 Buy vs. build decisions for infrastructure components* 00:51:02 Future of SaaS and AI's Impact on Software* 00:53:07 The single employee $1B company race* 00:56:32 Horizontal vs. vertical approaches to AI agentsTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:11]: Hey, and today we're in a studio with Stanislas, welcome.Stan [00:00:14]: Thank you very much for having me.Swyx [00:00:16]: Visiting from Paris.Stan [00:00:17]: Paris.Swyx [00:00:18]: And you have had a very distinguished career. It's very hard to summarize, but you went to college in both Ecopolytechnique and Stanford, and then you worked in a number of places, Oracle, Totems, Stripe, and then OpenAI pre-ChatGPT. We'll talk, we'll spend a little bit of time about that. About two years ago, you left OpenAI to start Dust. I think you were one of the first OpenAI alum founders.Stan [00:00:40]: Yeah, I think it was about at the same time as the Adept guys, so that first wave.Swyx [00:00:46]: Yeah, and people really loved our David episode. We love a few sort of OpenAI stories, you know, for back in the day, like we're talking about pre-recording. Probably the statute of limitations on some of those stories has expired, so you can talk a little bit more freely without them coming after you. But maybe we'll just talk about, like, what was your journey into AI? You know, you were at Stripe for almost five years, there are a lot of Stripe alums going into OpenAI. I think the Stripe culture has come into OpenAI quite a bit.Stan [00:01:11]: Yeah, so I think the buses of Stripe people really started flowing in, I guess, after ChatGPT. But, yeah, my journey into AI is a... I mean, Greg Brockman. Yeah, yeah. From Greg, of course. And Daniela, actually, back in the days, Daniela Amodei.Swyx [00:01:27]: Yes, she was COO, I mean, she is COO, yeah. She had a pretty high job at OpenAI at the time, yeah, for sure.Stan [00:01:34]: My journey started as anybody else, you're fascinated with computer science and you want to make them think, it's awesome, but it doesn't work. I mean, it was a long time ago, it was like maybe 16, so it was 25 years ago. Then the first big exposure to AI would be at Stanford, and I'm going to, like, disclose a whole lamb, because at the time it was a class taught by Andrew Ng, and there was no deep learning. It was half features for vision and a star algorithm. So it was fun. But it was the early days of deep learning. At the time, I think a few years after, it was the first project at Google. But you know, that cat face or the human face trained from many images. I went to, hesitated doing a PhD, more in systems, eventually decided to go into getting a job. Went at Oracle, started a company, did a gazillion mistakes, got acquired by Stripe, worked with Greg Buckman there. And at the end of Stripe, I started interesting myself in AI again, felt like it was the time, you had the Atari games, you had the self-driving craziness at the time. And I started exploring projects, it felt like the Atari games were incredible, but there were still games. And I was looking into exploring projects that would have an impact on the world. And so I decided to explore three things, self-driving cars, cybersecurity and AI, and math and AI. It's like I sing it by a decreasing order of impact on the world, I guess.Swyx [00:03:01]: Discovering new math would be very foundational.Stan [00:03:03]: It is extremely foundational, but it's not as direct as driving people around.Swyx [00:03:07]: Sorry, you're doing this at Stripe, you're like thinking about your next move.Stan [00:03:09]: No, it was at Stripe, kind of a bit of time where I started exploring. I did a bunch of work with friends on trying to get RC cars to drive autonomously. Almost started a company in France or Europe about self-driving trucks. We decided to not go for it because it was probably very operational. And I think the idea of the company, of the team wasn't there. And also I realized that if I wake up a day and because of a bug I wrote, I killed a family, it would be a bad experience. And so I just decided like, no, that's just too crazy. And then I explored cybersecurity with a friend. We're trying to apply transformers to cut fuzzing. So cut fuzzing, you have kind of an algorithm that goes really fast and tries to mutate the inputs of a library to find bugs. And we tried to apply a transformer to that and do reinforcement learning with the signal of how much you propagate within the binary. Didn't work at all because the transformers are so slow compared to evolutionary algorithms that it kind of didn't work. Then I started interested in math and AI and started working on SAT solving with AI. And at the same time, OpenAI was kind of starting the reasoning team that were tackling that project as well. I was in touch with Greg and eventually got in touch with Ilya and finally found my way to OpenAI. I don't know how much you want to dig into that. The way to find your way to OpenAI when you're in Paris was kind of an interesting adventure as well.Swyx [00:04:33]: Please. And I want to note, this was a two-month journey. You did all this in two months.Stan [00:04:38]: The search.Swyx [00:04:40]: Your search for your next thing, because you left in July 2019 and then you joined OpenAI in September.Stan [00:04:45]: I'm going to be ashamed to say that.Swyx [00:04:47]: You were searching before. I was searching before.Stan [00:04:49]: I mean, it's normal. No, the truth is that I moved back to Paris through Stripe and I just felt the hardship of being remote from your team nine hours away. And so it kind of freed a bit of time for me to start the exploration before. Sorry, Patrick. Sorry, John.Swyx [00:05:05]: Hopefully they're listening. So you joined OpenAI from Paris and from like, obviously you had worked with Greg, but notStan [00:05:13]: anyone else. No. Yeah. So I had worked with Greg, but not Ilya, but I had started chatting with Ilya and Ilya was kind of excited because he knew that I was a good engineer through Greg, I presume, but I was not a trained researcher, didn't do a PhD, never did research. And I started chatting and he was excited all the way to the point where he was like, hey, come pass interviews, it's going to be fun. I think he didn't care where I was, he just wanted to try working together. So I go to SF, go through the interview process, get an offer. And so I get Bob McGrew on the phone for the first time, he's like, hey, Stan, it's awesome. You've got an offer. When are you coming to SF? I'm like, hey, it's awesome. I'm not coming to the SF. I'm based in Paris and we just moved. He was like, hey, it's awesome. Well, you don't have an offer anymore. Oh, my God. No, it wasn't as hard as that. But that's basically the idea. And it took me like maybe a couple more time to keep chatting and they eventually decided to try a contractor set up. And that's how I kind of started working at OpenAI, officially as a contractor, but in practice really felt like being an employee.Swyx [00:06:14]: What did you work on?Stan [00:06:15]: So it was solely focused on math and AI. And in particular in the application, so the study of the larger grid models, mathematical reasoning capabilities, and in particular in the context of formal mathematics. The motivation was simple, transformers are very creative, but yet they do mistakes. Formal math systems are of the ability to verify a proof and the tactics they can use to solve problems are very mechanical, so you miss the creativity. And so the idea was to try to explore both together. You would get the creativity of the LLMs and the kind of verification capabilities of the formal system. A formal system, just to give a little bit of context, is a system in which a proof is a program and the formal system is a type system, a type system that is so evolved that you can verify the program. If the type checks, it means that the program is correct.Swyx [00:07:06]: Is the verification much faster than actually executing the program?Stan [00:07:12]: Verification is instantaneous, basically. So the truth is that what you code in involves tactics that may involve computation to search for solutions. So it's not instantaneous. You do have to do the computation to expand the tactics into the actual proof. The verification of the proof at the very low level is instantaneous.Swyx [00:07:32]: How quickly do you run into like, you know, halting problem PNP type things, like impossibilities where you're just like that?Stan [00:07:39]: I mean, you don't run into it at the time. It was really trying to solve very easy problems. So I think the... Can you give an example of easy? Yeah, so that's the mass benchmark that everybody knows today. The Dan Hendricks one. The Dan Hendricks one, yeah. And I think it was the low end part of the mass benchmark at the time, because that mass benchmark includes AMC problems, AMC 8, AMC 10, 12. So these are the easy ones. Then AIME problems, somewhat harder, and some IMO problems, like Crazy Arm.Swyx [00:08:07]: For our listeners, we covered this in our Benchmarks 101 episode. AMC is literally the grade of like high school, grade 8, grade 10, grade 12. So you can solve this. Just briefly to mention this, because I don't think we'll touch on this again. There's a bit of work with like Lean, and then with, you know, more recently with DeepMind doing like scoring like silver on the IMO. Any commentary on like how math has evolved from your early work to today?Stan [00:08:34]: I mean, that result is mind blowing. I mean, from my perspective, spent three years on that. At the same time, Guillaume Lampe in Paris, we were both in Paris, actually. He was at FAIR, was working on some problems. We were pushing the boundaries, and the goal was the IMO. And we cracked a few problems here and there. But the idea of getting a medal at an IMO was like just remote. So this is an impressive result. And we can, I think the DeepMind team just did a good job of scaling. I think there's nothing too magical in their approach, even if it hasn't been published. There's a Dan Silver talk from seven days ago where it goes a little bit into more details. It feels like there's nothing magical there. It's really applying reinforcement learning and scaling up the amount of data that can generate through autoformalization. So we can dig into what autoformalization means if you want.Alessio [00:09:26]: Let's talk about the tail end, maybe, of the OpenAI. So you joined, and you're like, I'm going to work on math and do all of these things. I saw on one of your blog posts, you mentioned you fine-tuned over 10,000 models at OpenAI using 10 million A100 hours. How did the research evolve from the GPD 2, and then getting closer to DaVinci 003? And then you left just before ChatGPD was released, but tell people a bit more about the research path that took you there.Stan [00:09:54]: I can give you my perspective of it. I think at OpenAI, there's always been a large chunk of the compute that was reserved to train the GPTs, which makes sense. So it was pre-entropic splits. Most of the compute was going to a product called Nest, which was basically GPT-3. And then you had a bunch of, let's say, remote, not core research teams that were trying to explore maybe more specific problems or maybe the algorithm part of it. The interesting part, I don't know if it was where your question was going, is that in those labs, you're managing researchers. So by definition, you shouldn't be managing them. But in that space, there's a managing tool that is great, which is compute allocation. Basically by managing the compute allocation, you can message the team of where you think the priority should go. And so it was really a question of, you were free as a researcher to work on whatever you wanted. But if it was not aligned with OpenAI mission, and that's fair, you wouldn't get the compute allocation. As it happens, solving math was very much aligned with the direction of OpenAI. And so I was lucky to generally get the compute I needed to make good progress.Swyx [00:11:06]: What do you need to show as incremental results to get funded for further results?Stan [00:11:12]: It's an imperfect process because there's a bit of a... If you're working on math and AI, obviously there's kind of a prior that it's going to be aligned with the company. So it's much easier than to go into something much more risky, much riskier, I guess. You have to show incremental progress, I guess. It's like you ask for a certain amount of compute and you deliver a few weeks after and you demonstrate that you have a progress. Progress might be a positive result. Progress might be a strong negative result. And a strong negative result is actually often much harder to get or much more interesting than a positive result. And then it generally goes into, as any organization, you would have people finding your project or any other project cool and fancy. And so you would have that kind of phase of growing up compute allocation for it all the way to a point. And then maybe you reach an apex and then maybe you go back mostly to zero and restart the process because you're going in a different direction or something else. That's how I felt. Explore, exploit. Yeah, exactly. Exactly. Exactly. It's a reinforcement learning approach.Swyx [00:12:14]: Classic PhD student search process.Alessio [00:12:17]: And you were reporting to Ilya, like the results you were kind of bringing back to him or like what's the structure? It's almost like when you're doing such cutting edge research, you need to report to somebody who is actually really smart to understand that the direction is right.Stan [00:12:29]: So we had a reasoning team, which was working on reasoning, obviously, and so math in general. And that team had a manager, but Ilya was extremely involved in the team as an advisor, I guess. Since he brought me in OpenAI, I was lucky to mostly during the first years to have kind of a direct access to him. He would really coach me as a trainee researcher, I guess, with good engineering skills. And Ilya, I think at OpenAI, he was the one showing the North Star, right? He was his job and I think he really enjoyed it and he did it super well, was going through the teams and saying, this is where we should be going and trying to, you know, flock the different teams together towards an objective.Swyx [00:13:12]: I would say like the public perception of him is that he was the strongest believer in scaling. Oh, yeah. Obviously, he has always pursued the compression thesis. You have worked with him personally, what does the public not know about how he works?Stan [00:13:26]: I think he's really focused on building the vision and communicating the vision within the company, which was extremely useful. I was personally surprised that he spent so much time, you know, working on communicating that vision and getting the teams to work together versus...Swyx [00:13:40]: To be specific, vision is AGI? Oh, yeah.Stan [00:13:42]: Vision is like, yeah, it's the belief in compression and scanning computes. I remember when I started working on the Reasoning team, the excitement was really about scaling the compute around Reasoning and that was really the belief we wanted to ingrain in the team. And that's what has been useful to the team and with the DeepMind results shows that it was the right approach with the success of GPT-4 and stuff shows that it was the right approach.Swyx [00:14:06]: Was it according to the neural scaling laws, the Kaplan paper that was published?Stan [00:14:12]: I think it was before that, because those ones came with GPT-3, basically at the time of GPT-3 being released or being ready internally. But before that, there really was a strong belief in scale. I think it was just the belief that the transformer was a generic enough architecture that you could learn anything. And that was just a question of scaling.Alessio [00:14:33]: Any other fun stories you want to tell? Sam Altman, Greg, you know, anything.Stan [00:14:37]: Weirdly, I didn't work that much with Greg when I was at OpenAI. He had always been mostly focused on training the GPTs and rightfully so. One thing about Sam Altman, he really impressed me because when I joined, he had joined not that long ago and it felt like he was kind of a very high level CEO. And I was mind blown by how deep he was able to go into the subjects within a year or something, all the way to a situation where when I was having lunch by year two, I was at OpenAI with him. He would just quite know deeply what I was doing. With no ML background. Yeah, with no ML background, but I didn't have any either, so I guess that explains why. But I think it's a question about, you don't necessarily need to understand the very technicalities of how things are done, but you need to understand what's the goal and what's being done and what are the recent results and all of that in you. And we could have kind of a very productive discussion. And that really impressed me, given the size at the time of OpenAI, which was not negligible.Swyx [00:15:44]: Yeah. I mean, you've been a, you were a founder before, you're a founder now, and you've seen Sam as a founder. How has he affected you as a founder?Stan [00:15:51]: I think having that capability of changing the scale of your attention in the company, because most of the time you operate at a very high level, but being able to go deep down and being in the known of what's happening on the ground is something that I feel is really enlightening. That's not a place in which I ever was as a founder, because first company, we went all the way to 10 people. Current company, there's 25 of us. So the high level, the sky and the ground are pretty much at the same place. No, you're being too humble.Swyx [00:16:21]: I mean, Stripe was also like a huge rocket ship.Stan [00:16:23]: Stripe, I was a founder. So I was, like at OpenAI, I was really happy being on the ground, pushing the machine, making it work. Yeah.Swyx [00:16:31]: Last OpenAI question. The Anthropic split you mentioned, you were around for that. Very dramatic. David also left around that time, you left. This year, we've also had a similar management shakeup, let's just call it. Can you compare what it was like going through that split during that time? And then like, does that have any similarities now? Like, are we going to see a new Anthropic emerge from these folks that just left?Stan [00:16:54]: That I really, really don't know. At the time, the split was pretty surprising because they had been trying GPT-3, it was a success. And to be completely transparent, I wasn't in the weeds of the splits. What I understood of it is that there was a disagreement of the commercialization of that technology. I think the focal point of that disagreement was the fact that we started working on the API and wanted to make those models available through an API. Is that really the core disagreement? I don't know.Swyx [00:17:25]: Was it safety?Stan [00:17:26]: Was it commercialization?Swyx [00:17:27]: Or did they just want to start a company?Stan [00:17:28]: Exactly. Exactly. That I don't know. But I think what I was surprised of is how quickly OpenAI recovered at the time. And I think it's just because we were mostly a research org and the mission was so clear that some divergence in some teams, some people leave, the mission is still there. We have the compute. We have a site. So it just keeps going.Swyx [00:17:50]: Very deep bench. Like just a lot of talent. Yeah.Alessio [00:17:53]: So that was the OpenAI part of the history. Exactly. So then you leave OpenAI in September 2022. And I would say in Silicon Valley, the two hottest companies at the time were you and Lanktrain. What was that start like and why did you decide to start with a more developer focused kind of like an AI engineer tool rather than going back into some more research and something else?Stan [00:18:15]: Yeah. First, I'm not a trained researcher. So going through OpenAI was really kind of the PhD I always wanted to do. But research is hard. You're digging into a field all day long for weeks and weeks and weeks, and you find something, you get super excited for 12 seconds. And at the 13 seconds, you're like, oh, yeah, that was obvious. And you go back to digging. I'm not a trained, like formally trained researcher, and it wasn't kind of a necessarily an ambition of me of creating, of having a research career. And I felt the hardness of it. I enjoyed a lot of like that a ton. But at the time, I decided that I wanted to go back to something more productive. And the other fun motivation was like, I mean, if we believe in AGI and if we believe the timelines might not be too long, it's actually the last train leaving the station to start a company. After that, it's going to be computers all the way down. And so that was kind of the true motivation for like trying to go there. So that's kind of the core motivation at the beginning of personally. And the motivation for starting a company was pretty simple. I had seen GPT-4 internally at the time, it was September 2022. So it was pre-GPT, but GPT-4 was ready since, I mean, I'd been ready for a few months internally. I was like, okay, that's obvious, the capabilities are there to create an insane amount of value to the world. And yet the deployment is not there yet. The revenue of OpenAI at the time were ridiculously small compared to what it is today. So the thesis was, there's probably a lot to be done at the product level to unlock the usage.Alessio [00:19:49]: Yeah. Let's talk a bit more about the form factor, maybe. I think one of the first successes you had was kind of like the WebGPT-like thing, like using the models to traverse the web and like summarize things. And the browser was really the interface. Why did you start with the browser? Like what was it important? And then you built XP1, which was kind of like the browser extension.Stan [00:20:09]: So the starting point at the time was, if you wanted to talk about LLMs, it was still a rather small community, a community of mostly researchers and to some extent, very early adopters, very early engineers. It was almost inconceivable to just build a product and go sell it to the enterprise, though at the time there was a few companies doing that. The one on marketing, I don't remember its name, Jasper. But so the natural first intention, the first, first, first intention was to go to the developers and try to create tooling for them to create product on top of those models. And so that's what Dust was originally. It was quite different than Lanchain, and Lanchain just beat the s**t out of us, which is great. It's a choice.Swyx [00:20:53]: You were cloud, in closed source. They were open source.Stan [00:20:56]: Yeah. So technically we were open source and we still are open source, but I think that doesn't really matter. I had the strong belief from my research time that you cannot create an LLM-based workflow on just one example. Basically, if you just have one example, you overfit. So as you develop your interaction, your orchestration around the LLM, you need a dozen examples. Obviously, if you're running a dozen examples on a multi-step workflow, you start paralyzing stuff. And if you do that in the console, you just have like a messy stream of tokens going out and it's very hard to observe what's going there. And so the idea was to go with an UI so that you could kind of introspect easily the output of each interaction with the model and dig into there through an UI, which is-Swyx [00:21:42]: Was that open source? I actually didn't come across it.Stan [00:21:44]: Oh yeah, it wasn't. I mean, Dust is entirely open source even today. We're not going for an open source-Swyx [00:21:48]: If it matters, I didn't know that.Stan [00:21:49]: No, no, no, no, no. The reason why is because we're not open source because we're not doing an open source strategy. It's not an open source go-to-market at all. We're open source because we can and it's fun.Swyx [00:21:59]: Open source is marketing. You have all the downsides of open source, which is like people can clone you.Stan [00:22:03]: But I think that downside is a big fallacy. Okay. Yes, anybody can clone Dust today, but the value of Dust is not the current state. The value of Dust is the number of eyeballs and hands of developers that are creating to it in the future. And so yes, anybody can clone it today, but that wouldn't change anything. There is some value in being open source. In a discussion with the security team, you can be extremely transparent and just show the code. When you have discussion with users and there's a bug or a feature missing, you can just point to the issue, show the pull request, show the, show the, exactly, oh, PR welcome. That doesn't happen that much, but you can show the progress if the person that you're chatting with is a little bit technical, they really enjoy seeing the pull request advancing and seeing all the way to deploy. And then the downsides are mostly around security. You never want to do security by obfuscation. But the truth is that your vector of attack is facilitated by you being open source. But at the same time, it's a good thing because if you're doing anything like a bug bountying or stuff like that, you just give much more tools to the bug bountiers so that their output is much better. So there's many, many, many trade-offs. I don't believe in the value of the code base per se. I think it's really the people that are on the code base that have the value and go to market and the product and all of those things that are around the code base. Obviously, that's not true for every code base. If you're working on a very secret kernel to accelerate the inference of LLMs, I would buy that you don't want to be open source. But for product stuff, I really think there's very little risk. Yeah.Alessio [00:23:39]: I signed up for XP1, I was looking, January 2023. I think at the time you were on DaVinci 003. Given that you had seen GPD 4, how did you feel having to push a product out that was using this model that was so inferior? And you're like, please, just use it today. I promise it's going to get better. Just overall, as a founder, how do you build something that maybe doesn't quite work with the model today, but you're just expecting the new model to be better?Stan [00:24:03]: Yeah, so actually, XP1 was even on a smaller one that was the post-GDPT release, small version, so it was... Ada, Babbage... No, no, no, not that far away. But it was the small version of GDPT, basically. I don't remember its name. Yes, you have a frustration there. But at the same time, I think XP1 was designed, was an experiment, but was designed as a way to be useful at the current capability of the model. If you just want to extract data from a LinkedIn page, that model was just fine. If you want to summarize an article on a newspaper, that model was just fine. And so it was really a question of trying to find a product that works with the current capability, knowing that you will always have tailwinds as models get better and faster and cheaper. So that was kind of a... There's a bit of a frustration because you know what's out there and you know that you don't have access to it yet. It's also interesting to try to find a product that works with the current capability.Alessio [00:24:55]: And we highlighted XP1 in our anatomy of autonomy post in April of last year, which was, you know, where are all the agents, right? So now we spent 30 minutes getting to what you're building now. So you basically had a developer framework, then you had a browser extension, then you had all these things, and then you kind of got to where Dust is today. So maybe just give people an overview of what Dust is today and the courtesies behind it. Yeah, of course.Stan [00:25:20]: So Dust, we really want to build the infrastructure so that companies can deploy agents within their teams. We are horizontal by nature because we strongly believe in the emergence of use cases from the people having access to creating an agent that don't need to be developers. They have to be thinkers. They have to be curious. But anybody can create an agent that will solve an operational thing that they're doing in their day-to-day job. And to make those agents useful, there's two focus, which is interesting. The first one is an infrastructure focus. You have to build the pipes so that the agent has access to the data. You have to build the pipes such that the agents can take action, can access the web, et cetera. So that's really an infrastructure play. Maintaining connections to Notion, Slack, GitHub, all of them is a lot of work. It is boring work, boring infrastructure work, but that's something that we know is extremely valuable in the same way that Stripe is extremely valuable because it maintains the pipes. And we have that dual focus because we're also building the product for people to use it. And there it's fascinating because everything started from the conversational interface, obviously, which is a great starting point. But we're only scratching the surface, right? I think we are at the pong level of LLM productization. And we haven't invented the C3. We haven't invented Counter-Strike. We haven't invented Cyberpunk 2077. So this is really our mission is to really create the product that lets people equip themselves to just get away all the work that can be automated or assisted by LLMs.Alessio [00:26:57]: And can you just comment on different takes that people had? So maybe the most open is like auto-GPT. It's just kind of like just trying to do anything. It's like it's all magic. There's no way for you to do anything. Then you had the ADAPT, you know, we had David on the podcast. They're very like super hands-on with each individual customer to build super tailored. How do you decide where to draw the line between this is magic? This is exposed to you, especially in a market where most people don't know how to build with AI at all. So if you expect them to do the thing, they're probably not going to do it. Yeah, exactly.Stan [00:27:29]: So the auto-GPT approach obviously is extremely exciting, but we know that the agentic capability of models are not quite there yet. It just gets lost. So we're starting, we're starting where it works. Same with the XP one. And where it works is pretty simple. It's like simple workflows that involve a couple tools where you don't even need to have the model decide which tools it's used in the sense of you just want people to put it in the instructions. It's like take that page, do that search, pick up that document, do the work that I want in the format I want, and give me the results. There's no smartness there, right? In terms of orchestrating the tools, it's mostly using English for people to program a workflow where you don't have the constraint of having compatible API between the two.Swyx [00:28:17]: That kind of personal automation, would you say it's kind of like an LLM Zapier type ofStan [00:28:22]: thing?Swyx [00:28:22]: Like if this, then that, and then, you know, do this, then this. You're programming with English?Stan [00:28:28]: So you're programming with English. So you're just saying, oh, do this and then that. You can even create some form of APIs. You say, when I give you the command X, do this. When I give you the command Y, do this. And you describe the workflow. But you don't have to create boxes and create the workflow explicitly. It just needs to describe what are the tasks supposed to be and make the tool available to the agent. The tool can be a semantic search. The tool can be querying into a structured database. The tool can be searching on the web. And obviously, the interesting tools that we're only starting to scratch are actually creating external actions like reimbursing something on Stripe, sending an email, clicking on a button in the admin or something like that.Swyx [00:29:11]: Do you maintain all these integrations?Stan [00:29:13]: Today, we maintain most of the integrations. We do always have an escape hatch for people to kind of custom integrate. But the reality is that the reality of the market today is that people just want it to work, right? And so it's mostly us maintaining the integration. As an example, a very good source of information that is tricky to productize is Salesforce. Because Salesforce is basically a database and a UI. And they do the f**k they want with it. And so every company has different models and stuff like that. So right now, we don't support it natively. And the type of support or real native support will be slightly more complex than just osing into it, like is the case with Slack as an example. Because it's probably going to be, oh, you want to connect your Salesforce to us? Give us the SQL. That's the Salesforce QL language. Give us the queries you want us to run on it and inject in the context of dust. So that's interesting how not only integrations are cool, and some of them require a bit of work on the user. And for some of them that are really valuable to our users, but we don't support yet, they can just build them internally and push the data to us.Swyx [00:30:18]: I think I understand the Salesforce thing. But let me just clarify, are you using browser automation because there's no API for something?Stan [00:30:24]: No, no, no, no. In that case, so we do have browser automation for all the use cases and apply the public web. But for most of the integration with the internal system of the company, it really runs through API.Swyx [00:30:35]: Haven't you felt the pull to RPA, browser automation, that kind of stuff?Stan [00:30:39]: I mean, what I've been saying for a long time, maybe I'm wrong, is that if the future is that you're going to stand in front of a computer and looking at an agent clicking on stuff, then I'll hit my computer. And my computer is a big Lenovo. It's black. Doesn't sound good at all compared to a Mac. And if the APIs are there, we should use them. There is going to be a long tail of stuff that don't have APIs, but as the world is moving forward, that's disappearing. So the core API value in the past has really been, oh, this old 90s product doesn't have an API. So I need to use the UI to automate. I think for most of the ICP companies, the companies that ICP for us, the scale ups that are between 500 and 5,000 people, tech companies, most of the SaaS they use have APIs. Now there's an interesting question for the open web, because there are stuff that you want to do that involve websites that don't necessarily have APIs. And the current state of web integration from, which is us and OpenAI and Anthropic, I don't even know if they have web navigation, but I don't think so. The current state of affair is really, really broken because you have what? You have basically search and headless browsing. But headless browsing, I think everybody's doing basically body.innertext and fill that into the model, right?Swyx [00:31:56]: MARK MIRCHANDANI There's parsers into Markdown and stuff.Stan [00:31:58]: FRANCESC CAMPOY I'm super excited by the companies that are exploring the capability of rendering a web page into a way that is compatible for a model, being able to maintain the selector. So that's basically the place where to click in the page through that process, expose the actions to the model, have the model select an action in a way that is compatible with model, which is not a big page of a full DOM that is very noisy, and then being able to decompress that back to the original page and take the action. And that's something that is really exciting and that will kind of change the level of things that agents can do on the web. That I feel exciting, but I also feel that the bulk of the useful stuff that you can do within the company can be done through API. The data can be retrieved by API. The actions can be taken through API.Swyx [00:32:44]: For listeners, I'll note that you're basically completely disagreeing with David Wan. FRANCESC CAMPOY Exactly, exactly. I've seen it since it's summer. ADEPT is where it is, and Dust is where it is. So Dust is still standing.Alessio [00:32:55]: Can we just quickly comment on function calling? You mentioned you don't need the models to be that smart to actually pick the tools. Have you seen the models not be good enough? Or is it just like, you just don't want to put the complexity in there? Like, is there any room for improvement left in function calling? Or do you feel you usually consistently get always the right response, the right parametersStan [00:33:13]: and all of that?Alessio [00:33:13]: FRANCESC CAMPOY So that's a tricky product question.Stan [00:33:15]: Because if the instructions are good and precise, then you don't have any issue, because it's scripted for you. And the model will just look at the scripts and just follow and say, oh, he's probably talking about that action, and I'm going to use it. And the parameters are kind of abused from the state of the conversation. I'll just go with it. If you provide a very high level, kind of an auto-GPT-esque level in the instructions and provide 16 different tools to your model, yes, we're seeing the models in that state making mistakes. And there is obviously some progress can be made on the capabilities. But the interesting part is that there is already so much work that can assist, augment, accelerate by just going with pretty simply scripted for actions agents. What I'm excited about by pushing our users to create rather simple agents is that once you have those working really well, you can create meta agents that use the agents as actions. And all of a sudden, you can kind of have a hierarchy of responsibility that will probably get you almost to the point of the auto-GPT value. It requires the construction of intermediary artifacts, but you're probably going to be able to achieve something great. I'll give you some example. We have our incidents are shared in Slack in a specific channel, or shipped are shared in Slack. We have a weekly meeting where we have a table about incidents and shipped stuff. We're not writing that weekly meeting table anymore. We have an assistant that just go find the right data on Slack and create the table for us. And that assistant works perfectly. It's trivially simple, right? Take one week of data from that channel and just create the table. And then we have in that weekly meeting, obviously some graphs and reporting about our financials and our progress and our ARR. And we've created assistants to generate those graphs directly. And those assistants works great. By creating those assistants that cover those small parts of that weekly meeting, slowly we're getting to in a world where we'll have a weekly meeting assistance. We'll just call it. You don't need to prompt it. You don't need to say anything. It's going to run those different assistants and get that notion page just ready. And by doing that, if you get there, and that's an objective for us to us using Dust, get there, you're saving an hour of company time every time you run it. Yeah.Alessio [00:35:28]: That's my pet topic of NPM for agents. How do you build dependency graphs of agents? And how do you share them? Because why do I have to rebuild some of the smaller levels of what you built already?Swyx [00:35:40]: I have a quick follow-up question on agents managing other agents. It's a topic of a lot of research, both from Microsoft and even in startups. What you've discovered best practice for, let's say like a manager agent controlling a bunch of small agents. It's two-way communication. I don't know if there should be a protocol format.Stan [00:35:59]: To be completely honest, the state we are at right now is creating the simple agents. So we haven't even explored yet the meta agents. We know it's there. We know it's going to be valuable. We know it's going to be awesome. But we're starting there because it's the simplest place to start. And it's also what the market understands. If you go to a company, random SaaS B2B company, not necessarily specialized in AI, and you take an operational team and you tell them, build some tooling for yourself, they'll understand the small agents. If you tell them, build AutoGP, they'll be like, Auto what?Swyx [00:36:31]: And I noticed that in your language, you're very much focused on non-technical users. You don't really mention API here. You mention instruction instead of system prompt, right? That's very conscious.Stan [00:36:41]: Yeah, it's very conscious. It's a mark of our designer, Ed, who kind of pushed us to create a friendly product. I was knee-deep into AI when I started, obviously. And my co-founder, Gabriel, was a Stripe as well. We started a company together that got acquired by Stripe 15 years ago. It was at Alain, a healthcare company in Paris. After that, it was a little bit less so knee-deep in AI, but really focused on product. And I didn't realize how important it is to make that technology not scary to end users. It didn't feel scary to me, but it was really seen by Ed, our designer, that it was feeling scary to the users. And so we were very proactive and very deliberate about creating a brand that feels not too scary and creating a wording and a language, as you say, that really tried to communicate the fact that it's going to be fine. It's going to be easy. You're going to make it.Alessio [00:37:34]: And another big point that David had about ADAPT is we need to build an environment for the agents to act. And then if you have the environment, you can simulate what they do. How's that different when you're interacting with APIs and you're kind of touching systems that you cannot really simulate? If you call it the Salesforce API, you're just calling it.Stan [00:37:52]: So I think that goes back to the DNA of the companies that are very different. ADAPT, I think, was a product company with a very strong research DNA, and they were still doing research. One of their goals was building a model. And that's why they raised a large amount of money, et cetera. We are 100% deliberately a product company. We don't do research. We don't train models. We don't even run GPUs. We're using the models that exist, and we try to push the product boundary as far as possible with the existing models. So that creates an issue. Indeed, so to answer your question, when you're interacting in the real world, well, you cannot simulate, so you cannot improve the models. Even improving your instructions is complicated for a builder. The hope is that you can use models to evaluate the conversations so that you can get at least feedback and you could get contradictive information about the performance of the assistance. But if you take actual trace of interaction of humans with those agents, it is even for us humans extremely hard to decide whether it was a productive interaction or a really bad interaction. You don't know why the person left. You don't know if they left happy or not. So being extremely, extremely, extremely pragmatic here, it becomes a product issue. We have to build a product that identifies the end users to provide feedback so that as a first step, the person that is building the agent can iterate on it. As a second step, maybe later when we start training model and post-training, et cetera, we can optimize around that for each of those companies. Yeah.Alessio [00:39:17]: Do you see in the future products offering kind of like a simulation environment, the same way all SaaS now kind of offers APIs to build programmatically? Like in cybersecurity, there are a lot of companies working on building simulative environments so that then you can use agents like Red Team, but I haven't really seen that.Stan [00:39:34]: Yeah, no, me neither. That's a super interesting question. I think it's really going to depend on how much, because you need to simulate to generate data, you need to train data to train models. And the question at the end is, are we going to be training models or are we just going to be using frontier models as they are? On that question, I don't have a strong opinion. It might be the case that we'll be training models because in all of those AI first products, the model is so close to the product surface that as you get big and you want to really own your product, you're going to have to own the model as well. Owning the model doesn't mean doing the pre-training, that would be crazy. But at least having an internal post-training realignment loop, it makes a lot of sense. And so if we see many companies going towards that all the time, then there might be incentives for the SaaS's of the world to provide assistance in getting there. But at the same time, there's a tension because those SaaS, they don't want to be interacted by agents, they want the human to click on the button. Yeah, they got to sell seats. Exactly.Swyx [00:40:41]: Just a quick question on models. I'm sure you've used many, probably not just OpenAI. Would you characterize some models as better than others? Do you use any open source models? What have been the trends in models over the last two years?Stan [00:40:53]: We've seen over the past two years kind of a bit of a race in between models. And at times, it's the OpenAI model that is the best. At times, it's the Anthropic models that is the best. Our take on that is that we are agnostic and we let our users pick their model. Oh, they choose? Yeah, so when you create an assistant or an agent, you can just say, oh, I'm going to run it on GP4, GP4 Turbo, or...Swyx [00:41:16]: Don't you think for the non-technical user, that is actually an abstraction that you should take away from them?Stan [00:41:20]: We have a sane default. So we move the default to the latest model that is cool. And we have a sane default, and it's actually not very visible. In our flow to create an agent, you would have to go in advance and go pick your model. So this is something that the technical person will care about. But that's something that obviously is a bit too complicated for the...Swyx [00:41:40]: And do you care most about function calling or instruction following or something else?Stan [00:41:44]: I think we care most for function calling because you want to... There's nothing worse than a function call, including incorrect parameters or being a bit off because it just drives the whole interaction off.Swyx [00:41:56]: Yeah, so got the Berkeley function calling.Stan [00:42:00]: These days, it's funny how the comparison between GP4O and GP4 Turbo is still up in the air on function calling. I personally don't have proof, but I know many people, and I'm probably part of them, to think that GP4 Turbo is still better than GP4O on function calling. Wow. We'll see what comes out of the O1 class if it ever gets function calling. And Cloud 3.5 Summit is great as well. They kind of innovated in an interesting way, which was never quite publicized. But it's that they have that kind of chain of thought step whenever you use a Cloud model or Summit model with function calling. That chain of thought step doesn't exist when you just interact with it just for answering questions. But when you use function calling, you get that step, and it really helps getting better function calling.Swyx [00:42:43]: Yeah, we actually just recorded a podcast with the Berkeley team that runs that leaderboard this week. So they just released V3.Stan [00:42:49]: Yeah.Swyx [00:42:49]: It was V1 like two months ago, and then they V2, V3. Turbo is on top.Stan [00:42:53]: Turbo is on top. Turbo is over 4.0.Swyx [00:42:54]: And then the third place is XLAM from Salesforce, which is a large action model they've been trying to popularize.Stan [00:43:01]: Yep.Swyx [00:43:01]: O1 Mini is actually on here, I think. O1 Mini is number 11.Stan [00:43:05]: But arguably, O1 Mini has been in a line for that. Yeah.Alessio [00:43:09]: Do you use leaderboards? Do you have your own evals? I mean, this is kind of intuitive, right? Like using the older model is better. I think most people just upgrade. Yeah. What's the eval process like?Stan [00:43:19]: It's funny because I've been doing research for three years, and we have bigger stuff to cook. When you're deploying in a company, one thing where we really spike is that when we manage to activate the company, we have a crazy penetration. The highest penetration we have is 88% daily active users within the entire employee of the company. The kind of average penetration and activation we have in our current enterprise customers is something like more like 60% to 70% weekly active. So we basically have the entire company interacting with us. And when you're there, there is so many stuff that matters most than getting evals, getting the best model. Because there is so many places where you can create products or do stuff that will give you the 80% with the work you do. Whereas deciding if it's GPT-4 or GPT-4 Turbo or et cetera, you know, it'll just give you the 5% improvement. But the reality is that you want to focus on the places where you can really change the direction or change the interaction more drastically. But that's something that we'll have to do eventually because we still want to be serious people.Swyx [00:44:24]: It's funny because in some ways, the model labs are competing for you, right? You don't have to do any effort. You just switch model and then it'll grow. What are you really limited by? Is it additional sources?Stan [00:44:36]: It's not models, right?Swyx [00:44:37]: You're not really limited by quality of model.Stan [00:44:40]: Right now, we are limited by the infrastructure part, which is the ability to connect easily for users to all the data they need to do the job they want to do.Swyx [00:44:51]: Because you maintain all your own stuff.Stan [00:44:53]: You know, there are companies out thereSwyx [00:44:54]: that are starting to provide integrations as a service, right? I used to work in an integrations company. Yeah, I know.Stan [00:44:59]: It's just that there is some intricacies about how you chunk stuff and how you process information from one platform to the other. If you look at the end of the spectrum, you could think of, you could say, oh, I'm going to support AirByte and AirByte has- I used to work at AirByte.Swyx [00:45:12]: Oh, really?Stan [00:45:13]: That makes sense.Swyx [00:45:14]: They're the French founders as well.Stan [00:45:15]: I know Jean very well. I'm seeing him today. And the reality is that if you look at Notion, AirByte does the job of taking Notion and putting it in a structured way. But that's the way it is not really usable to actually make it available to models in a useful way. Because you get all the blocks, details, et cetera, which is useful for many use cases.Swyx [00:45:35]: It's also for data scientists and not for AI.Stan [00:45:38]: The reality of Notion is that sometimes you have a- so when you have a page, there's a lot of structure in it and you want to capture the structure and chunk the information in a way that respects that structure. In Notion, you have databases. Sometimes those databases are real tabular data. Sometimes those databases are full of text. You want to get the distinction and understand that this database should be considered like text information, whereas this other one is actually quantitative information. And to really get a very high quality interaction with that piece of information, I haven't found a solution that will work without us owning the connection end-to-end.Swyx [00:46:15]: That's why I don't invest in, there's Composio, there's All Hands from Graham Newbig. There's all these other companies that are like, we will do the integrations for you. You just, we have the open source community. We'll do off the shelf. But then you are so specific in your needs that you want to own it.Swyx [00:46:28]: Yeah, exactly.Stan [00:46:29]: You can talk to Michel about that.Swyx [00:46:30]: You know, he wants to put the AI in there, but you know. Yeah, I will. I will.Stan [00:46:35]: Cool. What are we missing?Alessio [00:46:36]: You know, what are like the things that are like sneakily hard that you're tackling that maybe people don't even realize they're like really hard?Stan [00:46:43]: The real parts as we kind of touch base throughout the conversation is really building the infra that works for those agents because it's a tenuous walk. It's an evergreen piece of work because you always have an extra integration that will be useful to a non-negligible set of your users. I'm super excited about is that there's so many interactions that shouldn't be conversational interactions and that could be very useful. Basically, know that we have the firehose of information of those companies and there's not going to be that many companies that capture the firehose of information. When you have the firehose of information, you can do a ton of stuff with models that are just not accelerating people, but giving them superhuman capability, even with the current model capability because you can just sift through much more information. An example is documentation repair. If I have the firehose of Slack messages and new Notion pages, if somebody says, I own that page, I want to be updated when there is a piece of information that should update that page, this is not possible. You get an email saying, oh, look at that Slack message. It says the opposite of what you have in that paragraph. Maybe you want to update or just ping that person. I think there is a lot to be explored on the product layer in terms of what it means to interact productively with those models. And that's a problem that's extremely hard and extremely exciting.Swyx [00:48:00]: One thing you keep mentioning about infra work, obviously, Dust is building that infra and serving that in a very consumer-friendly way. You always talk about infra being additional sources, additional connectors. That is very important. But I'm also interested in the vertical infra. There is an orchestrator underlying all these things where you're doing asynchronous work. For example, the simplest one is a cron job. You just schedule things. But also, for if this and that, you have to wait for something to be executed and proceed to the next task. I used to work on an orchestrator as well, Temporal.Stan [00:48:31]: We used Temporal. Oh, you used Temporal? Yeah. Oh, how was the experience?Swyx [00:48:34]: I need the NPS.Stan [00:48:36]: We're doing a self-discovery call now.Swyx [00:48:39]: But you can also complain to me because I don't work there anymore.Stan [00:48:42]: No, we love Temporal. There's some edges that are a bit rough, surprisingly rough. And you would say, why is it so complicated?Swyx [00:48:49]: It's always versioning.Stan [00:48:50]: Yeah, stuff like that. But we really love it. And we use it for exactly what you said, like managing the entire set of stuff that needs to happen so that in semi-real time, we get all the updates from Slack or Notion or GitHub into the system. And whenever we see that piece of information goes through, maybe trigger workflows to run agents because they need to provide alerts to users and stuff like that. And Temporal is great. Love it.Swyx [00:49:17]: You haven't evaluated others. You don't want to build your own. You're happy with...Stan [00:49:21]: Oh, no, we're not in the business of replacing Temporal. And Temporal is so... I mean, it is or any other competitive product. They're very general. If it's there, there's an interesting theory about buy versus build. I think in that case, when you're a high-growth company, your buy-build trade-off is very much on the side of buy. Because if you have the capability, you're just going to be saving time, you can focus on your core competency, etc. And it's funny because we're seeing, we're starting to see the post-high-growth company, post-SKF company, going back on that trade-off, interestingly. So that's the cloud news about removing Zendesk and Salesforce. Do you believe that, by the way?Alessio [00:49:56]: Yeah, I did a podcast with them.Stan [00:49:58]: Oh, yeah?Alessio [00:49:58]: It's true.Swyx [00:49:59]: No, no, I know.Stan [00:50:00]: Of course they say it's true,Swyx [00:50:00]: but also how well is it going to go?Stan [00:50:02]: So I'm not talking about deflecting the customer traffic. I'm talking about building AI on top of Salesforce and Zendesk, basically, if I understand correctly. And all of a sudden, your product surface becomes much smaller because you're interacting with an AI system that will take some actions. And so all of a sudden, you don't need the product layer anymore. And you realize that, oh, those things are just databases that I pay a hundred times the price, right? Because you're a post-SKF company and you have tech capabilities, you are incentivized to reduce your costs and you have the capability to do so. And then it makes sense to just scratch the SaaS away. So it's interesting that we might see kind of a bad time for SaaS in post-hyper-growth tech companies. So it's still a big market, but it's not that big because if you're not a tech company, you don't have the capabilities to reduce that cost. If you're a high-growth company, always going to be buying because you go faster with that. But that's an interesting new space, new category of companies that might remove some SaaS. Yeah, Alessio's firmSwyx [00:51:02]: has an interesting thesis on the future of SaaS in AI.Alessio [00:51:05]: Service as a software, we call it. It's basically like, well, the most extreme is like, why is there any software at all? You know, ideally, it's all a labor interface where you're asking somebody to do something for you, whether that's a person, an AI agent or whatnot.Stan [00:51:17]: Yeah, yeah, that's interesting. I have to ask.Swyx [00:51:19]: Are you paying for Temporal Cloud or are you self-hosting?Stan [00:51:22]: Oh, no, no, we're paying, we're paying. Oh, okay, interesting.Swyx [00:51:24]: We're paying way too much.Stan [00:51:26]: It's crazy expensive, but it makes us-Swyx [00:51:28]: That's why as a shareholder, I like to hear that. It makes us go faster,Stan [00:51:31]: so we're happy to pay.Swyx [00:51:33]: Other things in the infrastack, I just want a list for other founders to think about. Ops, API gateway, evals, you know, anything interesting there that you build or buy?Stan [00:51:41]: I mean, there's always an interesting question. We've been building a lot around the interface between models and because Dust, the original version, was an orchestration platform and we basically provide a unified interface to every model providers.Swyx [00:51:56]: That's what I call gateway.Stan [00:51:57]: That we add because Dust was that and so we continued building upon and we own it. But that's an interesting question was in you, you want to build that or buy it?Swyx [00:52:06]: Yeah, I always say light LLM is the current open source consensus.Stan [00:52:09]: Exactly, yeah. There's an interesting question there.Swyx [00:52:12]: Ops, Datadog, just tracking.Stan [00:52:14]: Oh yeah, so Datadog is an obvious... What are the mistakes that I regret? I started as pure JavaScript, not TypeScript, and I think you want to, if you're wondering, oh, I want to go fast, I'll do a little bit of JavaScript. No, don't, just start with TypeScript. I see, okay.Swyx [00:52:30]: So interesting, you are a research engineer that came out of OpenAI that bet on TypeScript.Stan [00:52:36]: Well, the reality is that if you're building a product, you're going to be doing a lot of JavaScript, right? And Next, we're using Next as an example. It's
02:07 A50、A100和A500指数:覆盖范围、行业分布和投资价值04:08 A系列指数:中大盘风格中的细分行业龙头覆盖,成分股暴雷风险大幅下降06:13 上证50与A50:稳定分红回报的首选指数投资08:15 我的投资考量:在A500开放申购后,停止定投沪深300并转向A500指数
In this insightful A100 video interview, Bennie F. Johnson, CEO of the American Marketing Association, shares his dynamic vision for the future of marketing. Bennie discusses how AMA serves as a global hub for marketing professionals, supporting everyone from students to executives. He explores key topics like AI, data-driven decision making, and the critical role of community in shaping the marketing profession. Key Highlights: Embracing Disruptive Change: Bennie emphasizes the importance of welcoming innovation and leveraging marketing's evolving tools to drive productive change, especially in an AI-driven landscape. Fostering Community: He explains how AMA creates spaces for marketers across all sectors to collaborate, learn, and grow, emphasizing that communities are more essential than ever in a digital-first world. Ethical Responsibility in Marketing: Bennie also touches on the growing need for transparency and ethical practices in marketing, as consumers demand more accountability from brands. Join us as Bennie Johnson shares his forward-thinking approach to marketing leadership, offering essential insights for association professionals navigating change and building stronger communities. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes packed with expert insights and innovative strategies to help your association embrace change and lead with impact!
Jeanine O'Kane is president of Syneos Health Communications — a portfolio of agencies spanning advertising, public relations, patient advocacy, medical communications, managed markets and naming and branding. Formerly president of the US public relations group at Syneos Health Communications, Jeanine has been with the organization for more than a decade and has more than 20 years of industry experience. During her tenure at Syneos Health Communications, she has been instrumental in developing award-winning communications programs and has helped integrate communications and commercial expertise into clinical development, unlocking innovative solutions to deliver life-saving therapies to patients worldwide. Jeanine was named President in April 2023. Since assuming this role, she has been steadfast in her commitment to creating a culture of growth that is rooted in innovation. Read the company's profile here. Check us out at: mmm-online.com Follow us: YouTube: @MMM-onlineTikTok: @MMMnewsInstagram: @MMMnewsonlineTwitter/X: @MMMnewsLinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Welcome back to The A100 podcast! In this episode, host Colleen Gallagher sits down with Sean Luechtefeld, Ph.D., CAE, Vice President of Membership & Communications at ANCOR (American Network of Community Options and Resources). Sean returns to the podcast to share valuable insights into the unique challenges and strategies in the world of association management, particularly in the areas of membership and communications. Key Highlights: Balancing Dual Roles: Sean discusses the complexities of balancing his dual roles in membership and communications, offering practical advice on how to prioritize tasks and manage a broad scope of responsibilities in a small-staff environment. He emphasizes the importance of surrounding yourself with a talented team and being realistic about what can be achieved. Advocacy and Active Listening: Sean highlights the significance of active listening in advocacy communications. He shares how ANCOR ensures that the voices of their members—organizations serving people with intellectual and developmental disabilities—are heard at the federal level. By understanding and acting on member feedback, ANCOR effectively supports its members in their advocacy efforts. Adapting Communications in a Changing Landscape: In a rapidly evolving media environment, Sean explains how ANCOR tailors its communications strategy to address ongoing challenges such as workforce recruitment and retention. He discusses the importance of seizing opportunities that arise from challenges and aligning messaging with current events and broader societal issues. Navigating Social Media Channels: Sean dives into the ongoing discussions within ANCOR about the best ways to engage with different social media platforms. He explores the challenges of adapting to changing user behaviors and the importance of focusing on platforms that offer the most value in reaching target audiences, such as members, lawmakers and journalists. Looking Ahead: Sean shares his thoughts on the future of membership engagement and communications within associations. He emphasizes the need to shift from selling membership benefits to promoting the overall experience of membership, creating tailored experiences that resonate with diverse member needs. Join us as Sean Luechtefeld offers actionable strategies and deep insights into effectively managing communications and membership in associations, making this episode a must-listen for association professionals. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes packed with actionable insights to help your association thrive!
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Unit economics of LLM APIs, published by dschwarz on August 28, 2024 on LessWrong. Disclaimer 1: Our calculations are rough in places; information is sparse, guesstimates abound. Disclaimer 2: This post draws from public info on FutureSearch as well as a paywalled report. If you want the paywalled numbers, email dan@futuresearch.ai with your LW account name and we'll send you the report for free. Here's our view of the unit economics of OpenAI's API. Note: this considers GPT-4-class models only, not audio or image APIs, and only direct API traffic, not usage in ChatGPT products. As of June 2024, OpenAI's API was very likely profitable, with surprisingly high margins. Our median estimate for gross margin (not including model training costs or employee salaries) was 75%. Once all traffic switches over to the new August GPT-4o model and pricing, OpenAI plausibly still will have a healthy profit margin. Our median estimate for the profit margin is 55%. The Information implied that OpenAI rents ~60k A100-equivalents from Microsoft for non-ChatGPT inference. If this is true, OpenAI is massively overprovisioned for the API, even when we account for the need to rent many extra GPUs to account for traffic spikes and future growth (arguably creating something of a mystery). We provide an explicit, simplified first-principles calculation of inference costs for the original GPT-4, and find significantly lower throughput & higher costs than Benjamin Todd's result (which drew from Semianalysis). Summary chart: What does this imply? With any numbers, we see two major scenarios: Scenario one: competition intensifies. With llama, Gemini, and Claude all comparable and cheap, OpenAI will be forced to again drop their prices in half. (With their margins FutureSearch calculates, they can do this without running at a loss.) LLM APIs become like cloud computing: huge revenue, but not very profitable. Scenario two: one LLM pulls away in quality. GPT-5 and Claude-3.5-opus might come out soon at huge quality improvements. If only one LLM is good enough for important workflows (like agents), it may be able to sustain a high price and huge margins. Profits will flow to this one winner. Our numbers update us, in either scenario, towards: An increased likelihood of more significant price drops for GPT-4-class models. A (weak) update that frontier labs are facing less pressure today to race to more capable models. If you thought that GPT-4o (and Claude, Gemini, and hosted versions of llama-405b) were already running at cost in the API, or even at a loss, you would predict that the providers are strongly motivated to release new models to find profit. If our numbers are approximately correct, these businesses may instead feel there is plenty of margin left, and profit to be had, even if GPT-5 and Claude-3.5-opus etc. do not come out for many months. More info at https://futuresearch.ai/openai-api-profit. Feedback welcome and appreciated - we'll update our estimates accordingly. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org
In this engaging episode of The A100 podcast, recorded live at ASAE's Annual Conference in Cleveland, host Meghan Henning sits down with Stephanie Denvir, MS, CAE, Chief Member Experience Officer at the American Society for Quality (ASQ). Stephanie shares her strategies for enhancing the member experience through personalization, community engagement and innovative technology. Key Highlights: Segmentation and Personalization: Stephanie discusses how ASQ is using segmentation to tailor messaging and provide personalized member experiences. By focusing on the unique needs of their diverse, global membership, ASQ is delivering targeted value to each member. Building Strong Communities: ASQ's robust network includes over 230 geographic communities and 26 technical communities. Stephanie highlights the launch of a new online community platform, which has significantly boosted member engagement by providing a space for members to connect, share insights and find volunteer opportunities 24/7. Leveraging Technology: Stephanie emphasizes ASQ's commitment to embracing technology. She shares how the implementation of a new AMS, personalized email campaigns, and an accessible conference tool that provides real-time translation in multiple languages are enhancing the member experience. ASQ is also exploring the potential of AI to further personalize content and meet member needs. Challenges and Opportunities Ahead: Looking forward, Stephanie discusses the challenges of integrating AI while ensuring data protection, and the importance of engaging the next generation of members. She stresses the need for association leaders to be open to change and to involve their boards and member leaders in the process. Join us as we dive into how ASQ is setting new standards for member engagement and leveraging technology to create a personalized, inclusive experience for all its members. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes packed with actionable insights to help your association thrive!
Harnessing the Power of Community Welcome back to The A100 podcast! In this episode, recorded live at ASAE's Annual Conference in Cleveland, O&U's Meghan Henning sits down with Greg Melia, CAE, CEO of the Customer Experience Professionals Association (CXPA). Greg shares how CXPA has leveraged the power of its global community to drive significant initiatives and maintain a strong, inclusive culture despite being a small-staff association. Key Highlights: Building the CX Book of Knowledge: Greg shares the inspiring story behind the creation of the CXPA's CX Book of Knowledge, a 322-page resource developed by 77 volunteers. This member-driven initiative has become a cornerstone for both new and seasoned customer experience professionals, providing invaluable insights, definitions and guidance. The success of this project highlights the power of community collaboration and the impact it can have on an association's reputation and value proposition. Maximizing Impact with a Small Staff: Despite having a small staff, CXPA has achieved remarkable results by uniting and motivating its members around shared goals. Greg discusses the importance of leveraging the strengths of the community, as demonstrated by the creation of 14 books following the CX Book of Knowledge. This approach not only enriches the member experience but also establishes CXPA as a trusted source of knowledge and leadership in the customer experience field. Inclusive Strategic Planning: Greg emphasizes the value of involving the broader CXPA community in strategic planning. Through a series of Zoom meetings, surveys and a steering committee, CXPA engaged over 1,200 members and non-members in shaping the organization's future. This inclusive approach has not only informed the association's direction but also cultivated a network of advocates committed to achieving CXPA's ambitious goals. Expanding Global Reach and Inclusivity: Under Greg's leadership, CXPA has grown from a small startup to a global organization with members in 70 countries. He discusses how the association has maintained a culture of inclusivity and belonging while expanding internationally, particularly through the use of virtual events and digital content. This shift, accelerated by the COVID-19 pandemic, has allowed CXPA to amplify diverse voices and ensure that all members feel represented and engaged. Navigating Emerging Trends in Customer Experience: Greg touches on the evolving nature of customer experience and the importance of staying ahead of trends. He explains how CXPA is preparing its members to meet these challenges by fostering collaboration and providing tailored resources. From digital communication channels to personalized customer interactions, Greg highlights the need for associations to be agile and responsive to the changing expectations of their members. Join us as Greg Melia offers valuable insights into how CXPA is harnessing the power of its global community to drive innovation, inclusivity and member value. Whether you're leading a small-staff association or looking to engage your members more effectively, this episode is packed with practical strategies and inspiration. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes filled with insights to help your association thrive!
Because of the nature of SAM, this is more video heavy than usual. See our YouTube!Because vision is first among equals in multimodality, and yet SOTA vision language models are closed, we've always had an interest in learning what's next in vision. Our first viral episode was Segment Anything 1, and we have since covered LLaVA, IDEFICS, Adept, and Reka. But just like with Llama 3, FAIR holds a special place in our hearts as the New Kings of Open Source AI.The list of sequels better than the originals is usually very short, but SAM 2 delighted us by not only being a better image segmentation model than SAM 1, it also conclusively and inexpensively solved video segmentation in just an elegant a way as SAM 1 did for images, and releasing everything to the community as Apache 2/CC by 4.0.“In video segmentation, we observe better accuracy, using 3x fewer interactions than prior approaches. In image segmentation, our model is more accurate and 6x faster than the Segment Anything Model (SAM).”Surprisingly EfficientThe paper reports that SAM 2 was trained on 256 A100 GPUs for 108 hours (59% more than SAM 1). Taking the upper end $2 A100 cost off gpulist.ai means SAM2 cost ~$50k to train if it had an external market-rate cost - surprisingly cheap for adding video understanding!The newly released SA-V dataset is also the largest video segment dataset to date, with careful attention given to scene/object/geographical diversity, including that of annotators. In some ways, we are surprised that SOTA video segmentation can be done on only ~50,000 videos (and 640k masklet annotations). Model-in-the-loop Data Engine for Annotations and Demo-first DevelopmentSimilar to SAM 1, a 3 Phase Data Engine helped greatly in bootstrapping this dataset. As Nikhila says in the episode, the demo you see wasn't just for show, they actually used this same tool to do annotations for the model that is now demoed in the tool:“With the original SAM, we put a lot of effort in building a high-quality demo. And the other piece here is that the demo is actually the annotation tool. So we actually use the demo as a way to improve our annotation tool. And so then it becomes very natural to invest in building a good demo because it speeds up your annotation. and improve the data quality, and that will improve the model quality. With this approach, we found it to be really successful.”An incredible 90% speedup in annotation happened due to this virtuous cycle which helped SA-V reach this incredible scale.Building the demo also helped the team live the context that their own downstream users, like Roboflow, would experience, and forced them to make choices accordingly.As Nikhila says:“It's a really encouraging trend for not thinking about only the new model capability, but what sort of applications folks want to build with models as a result of that downstream.I think it also really forces you to think about many things that you might postpone. For example, efficiency. For a good demo experience, making it real time is super important. No one wants to wait. And so it really forces you to think about these things much sooner and actually makes us think about what kind of image encoder we want to use or other things. hardware efficiency improvements. So those kind of things, I think, become a first-class citizen when you put the demo first.”Indeed, the team swapped out standard ViT-H Vision Transformers for Hiera (Hierarchical) Vision Transformers as a result of efficiency considerations.Memory AttentionSpeaking of architecture, the model design is probably the sleeper hit of a project filled with hits. The team adapted SAM 1 to video by adding streaming memory for real-time video processing:Specifically adding memory attention, memory encoder, and memory bank, which surprisingly ablated better than more intuitive but complex architectures like Gated Recurrent Units.One has to wonder if streaming memory can be added to pure language models with a similar approach… (pls comment if there's an obvious one we haven't come across yet!)Video PodcastTune in to Latent Space TV for the video demos mentioned in this video podcast!Timestamps* [00:00:00] The Rise of SAM by Udio (David Ding Edit)* [00:03:07] Introducing Nikhila* [00:06:38] The Impact of SAM 1 in 2023* [00:12:15] Do People Finetune SAM?* [00:16:05] Video Demo of SAM* [00:20:01] Why the Demo is so Important* [00:23:23] SAM 1 vs SAM 2 Architecture* [00:26:46] Video Demo of SAM on Roboflow* [00:32:44] Extending SAM 2 with other models* [00:35:00] Limitations of SAM: Screenshots* [00:38:56] SAM 2 Paper* [00:39:15] SA-V Dataset and SAM Data Engine* [00:43:15] Memory Attention to solve Video* [00:47:24] "Context Length" in Memory Attention* [00:48:17] Object Tracking* [00:50:52] The Future of FAIR* [00:52:23] CVPR, Trends in Vision* [01:02:04] Calls to ActionTranscript[00:00:00] [music intro][00:02:11] AI Charlie: Happy Yoga! This is your AI co host Charlie. Thank you for all the love for our special 1 million downloads Wins of AI Winter episode last week, especially Sam, Archie, Trellis, Morgan, Shrey, Han, and more. For this episode, we have to go all the way back to the first viral episode of the podcast Segment Anything Model and the Hard Problems of Computer Vision, which we discussed with Joseph Nelson of Roboflow.[00:02:39] AI Charlie: Since Meta released SAM 2 last week, we are delighted to welcome Joseph back as our fourth guest co host to chat with Nikhila Ravi, Research Engineering Manager at Facebook AI Research and lead author of SAM 2. Just like our SAM 1 podcast, this is a multimodal pod because of the vision element, so we definitely encourage you to hop over to our YouTube at least for the demos, if not our faces.[00:03:04] AI Charlie: Watch out and take care.[00:03:10] Introducing Nikhila[00:03:10] swyx: Welcome to the latest podcast. I'm delighted to do segment anything to our first, one of our very first viral podcasts was segment anything one with Joseph. Welcome back. Thanks so much. And this time we are joined by the lead author of Segment Anything 2, Nikki Ravi, welcome.[00:03:25] Nikhila Ravi: Thank you. Thanks for having me.[00:03:26] swyx: There's a whole story that we can refer people back to episode of the podcast way back when for the story of Segment Anything, but I think we're interested in just introducing you as a researcher, as a, on the human side what was your path into AI research? Why, you know, why did you choose computer vision coming out of your specialization at Cambridge?[00:03:46] Nikhila Ravi: So I did my undergraduate. Degree in engineering at Cambridge university. The engineering program is very general. So first couple of years, you sort of study everything from mechanical engineering to fluid mechanics, structural mechanics, material science, and also computer science.[00:04:04] Nikhila Ravi: Towards the end of my degree, I started taking more classes in machine learning and computational neuroscience, and I really enjoyed it. And actually after graduating from undergrad, I had a place at Oxford to study medicine. And so I was. Initially planning on becoming a doctor, had everything planned and then decided to take a gap year after finishing undergrad.[00:04:28] Nikhila Ravi: And actually that was around the time that sort of deep learning was emerging. And in my machine learning class in undergrad, I remember one day our professor came in and that was when Google acquired DeepMind. And so that became like a huge thing. We talked about it for the whole class. It kind of really stuck.[00:04:48] Nikhila Ravi: And I was kicked off thinking about, okay, maybe I want to try something different other than medicine. Maybe this is a different path I want to take. And then in the gap year, I did a bunch of coding, worked on a number of projects. Did some sort of freelance contracting work. And then I got a scholarship to come and study in America.[00:05:06] Nikhila Ravi: So I went to Harvard for a year, took a bunch of computer science classes at Harvard and MIT, worked on a number of AI projects, especially in computer vision. I really, really enjoyed working in computer vision. I applied to Facebook and got this job at Facebook, and I've now at Facebook at the time, now Meta, and I've been here for seven years, so very circuitous path, probably not a very unconventional, I didn't do a PhD, I'm not like a research, typical research scientist, definitely came from more of an engineering background, but since being at Meta, Have had amazing opportunities to work across so many different interesting problems in computer vision from 3D computer vision.[00:05:50] Nikhila Ravi: How can you go from images of objects to 3D structures and then going back to 2D computer vision and actually understanding the objects and the pixels and the images themselves. So it's been a very interesting journey over the past seven years.[00:06:05] swyx: It's weird because like, I guess with segment anything too, it's like 4D because you solve time, you know, you started with 3D and now you're solving the 4D.[00:06:14] Nikhila Ravi: Yeah, it's just going from 3D to images to video. It's really covering the full spectrum. And actually, one of the nice things has been, so I think I mentioned I, Wanted to become a doctor, but actually Sam is having so much impact in medicine, probably more than I could have ever had as a doctor myself. So I think, you know, hopefully Sam too can also have a similar sort of impact in medicine and other fields.[00:06:39] The Impact of SAM 1 in 2023[00:06:39] swyx: Yeah. I want to give Joseph a chance to comment. Does that also mirror your, we know your story about going into, into vision, but like in the past year, since we did our podcast on Sam what's been the impact that you've seen?[00:06:51] Joseph Nelson: Segment anything. Set a new standard in computer vision, you know recapping from from the first release to present Sam introduces the ability for models to near zero shot meaning without any training identify kind of perfect polygons and outlines of items and objects inside images and that capability previously required a Lots of manual labeling, lots of manual preparation, clicking very meticulously to create outlines of individuals and people.[00:07:25] Joseph Nelson: And there were some models that attempted to do zero shot segmentation. of items inside images, though none were as high quality as segment anything. And with the introduction of segment anything, you can pass an image with SAM1, SAM2 videos as well, and get perfect pixel perfect outlines of most everything inside the images.[00:07:52] Joseph Nelson: Now there are some edge cases across domains and Similar to the human eye, sometimes you need to say, like, which item maybe you most care about for the downstream task and problem you're working on. Though, SAM has accelerated the rate at which developers are able to use computer vision in production applications.[00:08:13] Joseph Nelson: So, at RoboFlow, we were very quick to enable the community of computer vision developers and engineers to use SAM and apply it to their problems. The principle ways of using SAM, you could kind of use SAM as is to like pass an image and receive back masks. Another use case for SAM is in preparation of data for other types of problems.[00:08:37] Joseph Nelson: So, for example, in the medical domain, let's say that you're working on a problem where you have a bunch of images from a wet lab experiment. And from each of those images, you need to count the presence of a particular protein that reacts to some experiment. To count all the individual protein reactions, You can go in and lab assistants to this day will still like kind of individually count and say what are the presence of all those proteins.[00:09:07] Joseph Nelson: With Segment Anything, it's able to identify all of those individual items correctly. But often you may need to also add like a class name to what the protein is. Or you may need to say, hey, like, I care about the protein portion of this. I don't care about the rest of the portion of this in the image.[00:09:26] Joseph Nelson: And, or what it encourages and asks for the user to do is to provide some visual prompting to say, hey, which part, like, Sam says, hey, I can find segments of anything, but which segments do you care about? And so you can do visual prompting, which is kind of a new primitive that Sam introduced. And so at RoboFlow, we have one portion of our tool stack enables users to very quickly label data.[00:09:48] Joseph Nelson: With segment anything, Sam can already provide, hey, here's where I see the outlines of objects. Or a user can click to prompt to say, Hey, here's where the outlines of objects matter. And I recently pulled statistics from the usage of SAM in RoboFlow over the course of the last year. And users have labeled about 49 million images using segment anything on the hosted side of the RoboFlow platform.[00:10:12] Joseph Nelson: And that's like 5 million in the last 30 days alone. And of those images, We did kind of like a rough bafka napkin calculation of like how much time that has saved. Because, again, the alternative is you're clicking individual points to create a polygon, and with SAM you just click once and it guesses where the polygon is.[00:10:32] Joseph Nelson: And I'm sure in a bit we can maybe screen share and show some examples of what this experience is like. And in that time estimation, it's like, On average saves, you know, maybe a dozen or so seconds. And we estimate that this is probably saved on the order of magnitude of 35 years of time for users.[00:10:53] Nikhila Ravi: That's incredible.[00:10:54] Joseph Nelson: So, I mean, basically like in the first, the first year of a model being available, not only can you say, Hey, I'm just going to go use this model, those numbers that like 49 million images. is an estimate directly related to just the hosted side. So imagine all of the users that are self hosting or using SAM for robotics applications or out in the field or offline where it's not even, like, the time or the image counts are tabulated.[00:11:20] Joseph Nelson: And we're probably talking about, you know, just a fraction of the amount of value that's actually being produced for a number of downstream tasks. So to say that the impact has been You know, people use terms like game changing and these sorts of things. It has changed the industry. It's set a new standard.[00:11:36] Joseph Nelson: And with the release of SAM 2, I think we're about to see an acceleration of those capabilities for a lot of reasons.[00:11:42] Nikhila Ravi: That's really great to hear. I think one of the, really SAM 1 was. How many fields actually rely on manual segmentation? I think we're not really exposed to that. Maybe you are at Roboflow because you get to see all the users of these tools.[00:11:57] Nikhila Ravi: But for me, it was, you know, people working on understanding coral reef bleaching or farmers counting their cows and so many different applications that as a researcher. You never get exposed to, but you can have impact towards. So I think that was really awesome to hear.[00:12:15] Do People Finetune SAM?[00:12:15] swyx: So as sort of audience surrogate, who knows less than the two of you, I'm going to ask a really dumb question maybe, but is everyone using stock, a segment, anything?[00:12:23] swyx: Are they fine tuning for the medical domain? Like how on earth could it work for the medical field without fine tuning, right? Like, is that a thing?[00:12:32] Nikhila Ravi: So I mean, I can give a quick perspective from the research side. So one of the things, design decisions we made in SAM was to not have class labels. And so all the data is annotated in a class agnostic way.[00:12:48] Nikhila Ravi: So anything that has a boundary, we consider to be an object. So for example, in any image, there's lots of small objects. We might not know what the name of them are, but they're If you can draw a boundary around it, so you can imagine that we have 11 million images in the SA 1B dataset, we annotated all the objects, there's many, many small objects.[00:13:12] Nikhila Ravi: And so if you think about cells, they're also kind of small objects, there's probably things in the training data. That looked like it, but we didn't have to label it. And so that means that even when you use SAM for applications that it wasn't really trained for, because we didn't restrict it to a certain set of categories, you can actually use it out of the box without custom adaptation.[00:13:35] Nikhila Ravi: But having said that, there's probably certain domains where you need some expertise in order to be able to segment something properly. And for those use cases, Having some extra fine tuning data would probably help, and we've sort of seen that there's some papers that have come out that do this, and, you know, we'd love to hear, Joseph, how people are collecting data with SAM and fine tuning for their use cases.[00:13:59] Joseph Nelson: Once SAM came out, there were adaptations that said, could we use SAM to be, you know, like, efficient SAM? Like, basically take SAM and maybe accelerate it. And then there were domain adapted SAMs, like CellSAM, for example, out of the UC system. Now, what's interesting is, there's, like, adapting SAM to a domain, there's kind of two ways by which that's done.[00:14:21] Joseph Nelson: One is, as you mentioned, like, potentially SAM doesn't have a good concept of The objects of interest. And so you need to do domain adaptation and increase the accuracy for zero shot prediction. The second way though, is it's not fine tuning. It's actually just prompting. It's just guiding the model existing knowledge.[00:14:42] Joseph Nelson: to say which segments you care about. And both those are actually kind of equally important on the application side. You need to, like, a priori ensure that the objects of interest can be correctly segmented and maybe collect data to do that. But even if you had, like, a perfect SAM, like an omniscient SAM that could see every segment in every domain with all pixels perfectly outlined, in production, you would still need some way to Almost like signal to the model what you care about like to paint this picture if you are like a retailer and you are providing Photos of models wearing your clothing on your retail site You may care about you know only the shirt and Sam by default might segment the full person And so there's you know visual prompting that you can do to ensure that you only outline Maybe the shirt for the purposes of swapping in and out different shirts for displaying a given model on a retail page You And so I think what's interesting is that's where, like I wouldn't call it domain adaptation, but that's where, like, when you apply to industry, like, one thing that's particularly important with tooling and enabling SAM to reach its full potential.[00:15:51] swyx: That's really encouraging to hear. I should also think, like, you know, the last time we talked about this, we wanted to, the very natural addition on the class labeling side is the grounding Dino work, right? So I think people, built a grounding SAM and all the other extensions.[00:16:05] Video Demo of SAM[00:16:05] swyx: I think it's, it's probably a good time to cut to a quick demo of SAM2 for people who are, who are tuning in for SAM2 and who better to demo SAM2 than Nikki.[00:16:15] Nikhila Ravi: Sure. So I'll try to narrate what I'm what I'm doing. So audio listeners can also understand. So we have a web demo where anyone can try SAM2 on a video. Here we have a video of someone kicking a football, and I'm going to click on the football to select the object in the first frame. But you can actually select the object in any frame of the video, and this will work.[00:16:40] Nikhila Ravi: The next step is to hit track. So the model's now tracking this in real time. We don't save any of this, it's all running in real time. And now you can see the ball has been tracked throughout the entire video. There's even like a little bit of a challenging case here where the shoe covers the football.[00:16:59] Nikhila Ravi: And actually, you know, the model makes a little bit of a mistake, but that's okay. Because we can actually, here, the model makes a little bit of a mistake here. But you know, we can actually add a refinement click. You can add negative clicks until we get the mask that we want on this frame. And then you can hit track again, and the model will track the object, taking into account the additional information I've provided at that frame.[00:17:25] Nikhila Ravi: We've also added a couple of other fun things you can do on top of the track, like add effects. We can add you know, foreground effects, background effects. And these are just ways of showing how we can use the output from SAM2 as part of other tools like video editing tools. Other systems, so this is just a preview of what you can do with SAM2, but the really cool use cases are places where we might not have even imagined SAM2 being useful.[00:17:54] Nikhila Ravi: So we have a number of examples of things you might want to use it for. There's like underwater videos that it works actually really well for even though we, models never really seen an octopus before and octopus have a lot of moving parts that SAM2 can actually quite effectively. Keep track of all the different tentacles and we can probably see it more clearly if I desaturate the background.[00:18:18] Nikhila Ravi: We can see that actually the tracking of all the different tentacles is Quite accurate. Another challenge with video is that objects can actually become occluded. They can disappear from view and reappear. And a really fun example here is the shuffling cup game, which many of you might have seen. And so here I can click on the ball in the first frame.[00:18:41] Nikhila Ravi: I can also, You know, click on a different cup. And so here, the additional challenge is that there's three cups that look exactly the same. And then there's the ball that will get occluded by the cup. So the ball's no longer visible, the cups are all moving around, they all look the same. But the model actually keeps track of the cup that we selected.[00:19:02] Nikhila Ravi: And, as you can see at the end, here I'll jump to the end so you can see. It actually finds the cup again. I wanted to point out a couple of fun demo UX features that we added that actually really helped with this. So if you can see at the bottom, there's these swim lanes and then the swim lanes, actually the thickness of the swim lane tells you if the object's visible or not.[00:19:22] Nikhila Ravi: So at the beginning, the object's visible,[00:19:25] swyx: the object[00:19:26] Nikhila Ravi: disappears, and then the object comes back. So you can actually visually tell. When the object's being occluded and when it's not, and so it's a nice way of like, knowing if you need to go in and fix the model prediction or not. And so these are some of the UX innovations that we came up with, as well as the model innovations.[00:19:46] Joseph Nelson: One thing that I think is really notable here, there's two things. One is that like, I'd love to have a little bit of a discussion about how the models keeping track of the embedded scene to keep track of the ball and the cup in different places. Put a pause on that for a second.[00:19:59] Why the Demo is so Important[00:19:59] Joseph Nelson: One thing that Meta has put an emphasis on here in a much greater degree than other model releases is the demo experience of recognizing that in addition to having a model that can do zero shot segmentation, you've created a web experience that allows folks to kind of experience both the video effects but the types of UX innovations that encourage usage and adoption.[00:20:23] Joseph Nelson: It's actually kind of reminiscent of The underlying technology of ChatGPT was available prior to the web experience of ChatGPT. Can you talk a bit about why that was a consideration to your team and how you thought about the creation of The demo experience in tandem with training and releasing a new model.[00:20:41] Nikhila Ravi: Yeah, absolutely. I think that's a really great example of how, you know, Chad, GPT was really more of a UX innovation. Obviously it was like a number of research innovations that helped to get to this point. But as you said, like the underlying technology was around for a while. And, you know, putting this UX around as a chat interface helped tremendously with the.[00:21:03] Nikhila Ravi: Adoption and people understanding how it could be useful for real world use cases. And in computer vision, especially, it's so visual. The best way to show how these models work. Is by trying it on your own image or your own video with the original SAM, we put a lot of effort in building like a high quality demo.[00:21:23] Nikhila Ravi: And the other piece here is that the demo is actually the annotation tool. So we actually. Use the demo as a way to improve our annotation tool. And so then it becomes very natural to invest in building a good demo because it speeds up your annotation and improves the data quality and that will improve the model quality.[00:21:43] Nikhila Ravi: With this approach, we found it to be really successful. And obviously externally, people really liked being able to try it. I think, you know, people in fields outside of machine learning would never have tried SAM if we didn't have that demo. And I think that definitely led to a lot of the adoption in, like, diverse fields.[00:22:05] Nikhila Ravi: And so because we saw that with SAM 2, like, the demo was a priority first class citizen from day one. And so we really invested in making that. And I think with SAM2 as well, we wanted to have like a step change in the demo experience. Interactive video segmentation, I think that experience is something that maybe has not had much thought given to it.[00:22:27] Nikhila Ravi: And we really wanted to be like, okay, if we are to design a step changing video segmentation experience, what would that look like? And that really did influence our model. And annotation design as well.[00:22:40] Joseph Nelson: It's a really encouraging trend for not thinking about only the new model capability, but what sort of applications folks want to build with models as a result of that downstream.[00:22:49] Nikhila Ravi: I think it also really forces you to think about many things that you might postpone, for example, efficiency.[00:22:55] Joseph Nelson: Yes.[00:22:55] Nikhila Ravi: For a good demo experience. Making it real time is super important. No one wants to wait. And so it really forces you to think about these things much sooner and actually makes us think about how to, what kind of image encoder we want to use or like other hardware efficiency improvements.[00:23:13] Nikhila Ravi: So those kinds of things, I think, become a first class citizen when you put the demo first.[00:23:19] SAM 1 vs SAM 2 Architecture[00:23:19] Joseph Nelson: That's one thing I was going to ask about, and this is related to the architecture change. So SAM1 and the SAM1 demo experience. You have the encoder that's creating the embeddings of all the potential spaces.[00:23:31] Joseph Nelson: That needs to be run on a GPU. That's a relatively intensive operation. But then the query of those embeddings can be run independently and on a cheaper process. So in the SAM1 demo, the way that it was structured, and also this is the way that we have our SAM tool structured in Robloflow as well, is images go to a GPU to get all the SAM based embeddings.[00:23:53] Joseph Nelson: But then for querying those embeddings, we do that client side, in the browser, so that the user can very quickly, you know, you can move your mouse over and you get the proposed candidate masks that Sam found for that region of the image. In SAM 2 you dropped that in the web demo. And I think that's because you made some notable improvements to the rate at which encoding happens.[00:24:16] Joseph Nelson: Can you talk a bit about what led to those speed increases and, again, how that interplays with providing a fast encryption? user experience for interacting with the model.[00:24:29] Nikhila Ravi: Yeah. So the SAM2 web demo is primarily focused on video. We, we decided to just keep it simple and focus on video and on GitHub, we have a Colab notebook that shows how to run SAM2 on images.[00:24:41] Nikhila Ravi: So if you're interested in using, replacing SAM with SAM2 for images, check out GitHub, but on the SAM2 demo, it's not as straightforward to adopt the same architecture as SAM. For video, because we can't send the per frame image embeddings for an entire video back to the front end. In SAM, each frame embedding was like four megabytes, but if you have a long video and that's like per frame, it would become impossible to send that back to the front end.[00:25:11] Nikhila Ravi: So, SAM 2 actually, in terms of the architecture details, I was actually just looking at this earlier, but SAM1 model was around 630 million parameters. It's a fraction of the size of these large language models, but very small. Actually, SAM2, the largest model, is around 224 million parameters. So it's actually One third the size of the SAM original model.[00:25:38] Nikhila Ravi: So we changed the imaging coder from A-V-I-T-H and SAM to a higher model, which has also developed by by meta. So that definitely was something that helped. And in terms of the efficiency compared to sam, so if we were to run SAM per frame on a video or run SAM two, it's around six times faster to run SAM two versus run SAM per frame.[00:26:03] Nikhila Ravi: A number of things improved the efficiency of SAM2 such that we were actually able to run this entirely on the server and not have any component in the front end. But I am very curious to see who puts this on device, like I'm pretty sure soon we'll see like an on device SAM2 or, you know, maybe even running in the browser or something, so.[00:26:25] Nikhila Ravi: I think that could definitely unlock some of these edge use cases that we were able to make a compelling web demo without having to do that.[00:26:34] swyx: Hugging face is probably already working on Transformers. js version of it, but totally makes sense. I want to talk about more about things from the paper, but I think we're still in this sort of demo section.[00:26:42] Video Demo of SAM on Roboflow[00:26:42] swyx: And so I want to hand it to Joseph for his demo to see what the RoboFlow site looks like.[00:26:47] Joseph Nelson: So I can, I can give some context into one key area that Nicola, you mentioned earlier, which is. Sam has made the decision, both Sam 1 and Sam 2, to be class agnostic in terms of its predictions. And that, you then have the ability to have a generalizable, model for zero shot capability.[00:27:05] Joseph Nelson: However, in a lot of domain applications, you do want the class wise name. And so a lot of the challenge can be adding that class wise name for the, at least the annotation to an experience that we've created. That's one of the key considerations. So I will similarly Share my screen and show an example.[00:27:27] Joseph Nelson: Here, I have a bunch of images, and there's a number of ways that I could annotate things, like I could prompt a large multimodal model with like grounding capabilities, you know, you could outsource it, or I can do manual labeling. And with the manual labeling, this is where we make use of models like segment anything.[00:27:45] Joseph Nelson: to propose candidate masks and make it faster. So we have, you know, this annotation pane and what we call the smart poly tool, which is powered by Segment Anything. This is currently Segment Anything 1. We're accelerating and seeing improvements from similar to what the paper shows of Segment Anything 2 performed better on E3.[00:28:06] Joseph Nelson: Images as well as video, but with a segment, anything I'm able to basically prompt regions of my image of interest. So for example, if like, I wanted to say, I want to like add the drum set. You'll see here that like, the original candidate proposal is just the base drum, but let's say I wanted the whole drum set.[00:28:26] Joseph Nelson: So the UX primitive of being able to add and subtract candidate regions of interest is really intuitive here. And now, great, I have this outline, but in fact what I want is, I want to name that as a class. Because maybe for the model that I'm building, I want to build like a task specific model, you know, like an object detection model or an instant segmentation model.[00:28:50] Joseph Nelson: Or, you know, maybe I'm even using like a multimodal model and I want that multimodal model to refer to regions of interest in the images as a specific thing. And so I think what's, you know, really powerful is, of course, like, I get this really rich zero shot prediction. And here we have our friend Rick.[00:29:10] Joseph Nelson: So I get this really rich candidate set of predictions. But then by adding the class wise label, I can, you know, very quickly make sure that any downstream tasks are aware not just of the segment, but also of the, what is inside that segment. Which actually takes me to A separate point of something that I predict that's probably going to happen and Nikhil, I'm actually kind of interested why maybe your team made a conscious decision to not do this initially with SAM2.[00:29:40] Joseph Nelson: There's been an emergent set of models that are also adding open text prompting capabilities to grounding models. So for example, like you've seen models like Grounding Dino or Owlvit, which, you know, you can do. Even image to image or text to image based prompting to find regions of interest. And maybe maybe I can actually give an example of that even in the context of this same data.[00:30:05] Joseph Nelson: So if I wanted to try out, you know, grounding dino on this same set of images, I could try out, you know, prompting grounding dino for a set of different classes. And what's notable is let's do, I don't know, let's prompt for person and we'll prompt for person and prompt for I don't know, microphone.[00:30:26] Joseph Nelson: NLASC or microphone. Here I can text prompt the image and then the understanding, in this case Grounding Dino's understanding, of where people are in this image allows me to create, in this case, bounding boxes, but, you know, soon you can do segmentations or in tandem with SAM do segmentations. And, you know, we've already seen applications of using SAM2 in tandem with models like Grounding Dino or Florence 2.[00:30:54] Joseph Nelson: So that people can basically text prompt and then get the benefits of the zero shot segmentation at the same time as getting the open form querying. And in doing so, you know, we maintain a framework called like autodistill so like folks can very quickly, you know, bring some images and then using autodistill to find some ontology and then prompt and say what you want from that ontology.[00:31:19] Nikhila Ravi: So you already do this for video as well?[00:31:21] Joseph Nelson: You can apply videos or groups of images, yes. So this is using a project called Autodistill. And the concept of Autodistill is, use a base model, like a big base model, which could be like SAM or Grounding Dino, and then you pass a directory of images, which also could be video, broken into individual frames, and you pass an ontology as well.[00:31:43] Joseph Nelson: So an example I was just showing was like the hello world we have, which is like a shipping container. And then the combination of the grounding capabilities of, in the example I was showing, Florence 2 plus SAM, looks for the concept of container, and then SAM does the rich segmentation of turning that concept of container into the candidate proposal of the region, so that a user could just say, hey, I want all the shipping containers, run this across a bunch of images or video frames, And then get back the class wise labels plus the regions of interest.[00:32:17] Joseph Nelson: And this feels like a natural extension. And in fact, like the open form grounding capabilities between SAM1 and SAM2 became something the field was broadly doing. So I'm curious, like, from your perspective, one of the things I thought maybe SAM2 would do is actually add this capability natively. So I'm curious to hear, like, the conscious decision to say, hey, we want to continue to be class agnostic.[00:32:39] Extending SAM 2 with other models[00:32:39] Joseph Nelson: We don't want to add yet maybe open form text prompting as a part of finding the segments and parts of images. And I'd love to hear about like the decision to think about it that way. And if you are encouraged or if you want kind of like what's happening here where people are naturally combining these capabilities as something that you would expect and encourage to happen despite not having it.[00:33:00] Joseph Nelson: In the base model itself.[00:33:02] Nikhila Ravi: Yeah, it's a great question. So I think it's really cool that the community is taking SAM and taking SAM 2 and building on top of it and coming up with cool applications. We love to see that. That's exactly why we open source our work. And then in terms of why we didn't put it into SAM 2, so as you've probably seen with SAM and SAM 2, it's a fairly narrow problem.[00:33:25] Nikhila Ravi: But we really tried to make it a step change in the capability. And so with each version, we are trying to limit the focus on one thing that we can know we can do really well. And in this case, like the first SAM, it was class agnostic segmentation, but can we do it so well that it's effectively solved?[00:33:47] Nikhila Ravi: And similarly, can we do that same thing, but with Video segmentation. So one step at a time, we are working on each of these problems one at a time so that we can actually deliver something that's really world class and step changing.[00:34:03] Joseph Nelson: So does that mean SAM 3 will have the text prompting? Problem is like the next challenge.[00:34:09] Nikhila Ravi: Who knows, who knows? Maybe the community will, will we'll build that too. So[00:34:15] Joseph Nelson: it makes sense to like very narrowly do something very well. And that's, I think, proven to be well accomplished.[00:34:21] Nikhila Ravi: It's like taking the, the, both the data, the model and the demo, and how can we push all three towards solving one thing really well?[00:34:30] Nikhila Ravi: So we found that. That's like a good recipe and that's what we've limited the focus of these, of each of these models.[00:34:38] swyx: This development reminds me of how, you know, when you do, and you break out the interpretability of ConvNets and you can see like, Oh, this is the edge detection one. I feel like SAM is the edge detection version equivalent.[00:34:51] swyx: And then you build up to whatever the next feature is on top of that.[00:34:54] Limitations of SAM: Screenshots[00:34:54] Joseph Nelson: Can I bring up one? Limitation of SAM. So like we've like even SAM one, SAM two, and the monitor is released at 4 PM Pacific on Monday. We're recording this on 11 AM Pacific on, on, on Thursday. So the, it's very fresh for a lot of the capabilities and.[00:35:09] Joseph Nelson: It is so clear that it is a stepwise change in the capability that, Nikhila, you mentioned your team wants to do, which is extend SAM's zero shot class agnostic capability to video, like, A plus, kind of mission accomplished. One thing that's interesting is finding, like, domain problems where there might be still domain applicability and domain adaptation that is available.[00:35:32] Joseph Nelson: One benchmark that we introduced at CBPR is this thing called RF100, which is like, seven different domain type problems that the industry commonly is working on in vision, like underwater document processing, aerial examples, medicine examples. And one place where interestingly segment anything maybe less performant than other models is handling screenshots.[00:35:57] Joseph Nelson: For example, like a lot of folks that are building agents to interact with the web are particularly interested in that challenge of given a screenshot of a computer, what are all the buttons. And how could I autonomously navigate and prompt and tell it to click? And I can show an example of like maybe what, how like Sam kind of performs on this challenge just to outline some of the context of this problem.[00:36:23] Joseph Nelson: But I'm curious like how you think about limitations like this and what you would expect to want to be the case. So here I just have a notebook where I run Sam on the source image on the left. Or the source image on the left and then Sam output is on the right. And this is just a screenshot of, of a website where we just grab like the top 100 websites by traffic and grab screenshots from them.[00:36:42] Joseph Nelson: One example of a place where I could see the community improving on Sam, and I'm curious how you think about this challenge and maybe why Sam is less well adapted for this type of problem. Is processing screenshots. So I'll share my screen to give an example for, for viewers that are participating here, you see like an example, a screenshot of a website on the left, and then right is SAM two running on that image.[00:37:06] Joseph Nelson: And in the context of agents, folks usually want to have like, Hey, tell me all of the buttons that a, an agent could press. Tell me like maybe the headlines of the articles tell me the individual images and Sam two behaves perhaps predictably, where it outlines like people in the images and like some of like the, the screen text.[00:37:22] Joseph Nelson: I'm curious, like, how you think about a challenge like this for a model that sees everything in the world, what about handling digital contexts? And Why maybe it could perform better here and how you would expect to see improvement for domains that might have been out of distribution from the training data?[00:37:40] Nikhila Ravi: Yeah, this is a good question. So fair, we don't really build with a specific use case in mind. We try to build like these foundational models that can be applied to lots of different use cases out of the box. So I think in this kind of example, potentially people might want to annotate some data.[00:37:59] Nikhila Ravi: Fine tune on top of what we release. I think we probably won't build things that are very custom for different use cases. I think that's not a direction we'll go in, but as you said, like the model is an annotation tool to improve the model. And so I think that's definitely the approach we want to take is we provide the tools for you to improve the model as well as the model itself.[00:38:27] Joseph Nelson: That makes sense. Focus on like as many. Multi or zero shot problems and then allow the community to pick up the torch for domain adaptation.[00:38:34] Nikhila Ravi: Yeah, absolutely. Like, we can't solve all the problems ourselves. Like, we can't solve all the different domains. But if we can provide a sort of base hammer tool, and then people can apply it to all their different problems.[00:38:48] SAM 2 Paper[00:38:48] swyx: If you don't mind, I guess we want to transition to a little bit on like asking more questions about the paper.[00:38:53] Udio AI: Sure.[00:38:54] swyx: There's a lot in here. I love the transparency from Meta recently with like LLAMA 3 last week and then, and was it last week? Maybe, maybe a little bit less than last week. But just like just really, really well written and a lot of disclosures, including the data set as well.[00:39:08] SA-V Dataset and SAM Data Engine[00:39:08] swyx: I think the top question that people had on the data set, you know, you release a diverse videos and there was, there's a lot of discussion about the data engine as well, which I really love. And I think it's innovative if you wanted. I think the top question is like, how do you decide the size of data set?[00:39:22] swyx: You know, what were you constrained by? People are asking about scaling laws. You had some ablations, but as a research manager for this whole thing, like how do you decide what you need?[00:39:32] Nikhila Ravi: Yeah. I mean, it's a great question. I think it's, as with all papers, you write them at the end of the project, so we can put these nice plots at the end, but going into it, I think, you know, the data engine design really follows.[00:39:47] Nikhila Ravi: So, this is sort of the model design, how we thought about the task, how we thought of the model capabilities. You can really see it's reflected in the different phases of the data engine. We started with just SAM, we apply SAM per frame. That's like the most basic way of extending SAM to video. Then the most obvious thing to do is to take the output masks from SAM and then provide it as input into a video object segmentation model that takes the mask as the first frame input.[00:40:19] Nikhila Ravi: And that's exactly what we did. We had SAM plus a version of SAM2 that only had mask as input. And then in the last phase, we got rid of SAM entirely and just had this one unified model that can do both image. And video segmentation. And I can do everything in just one model. And we found that, you know, going from each phase, it both improved the efficiency and it improved the data quality.[00:40:46] Nikhila Ravi: And in particular, when you get rid of this two part model, one of the advantages is that when you make refinement clicks, so, You prompt the model in one frame to select an object, then you propagate those predictions to all the other frames of the video to track the object. But if the model makes a mistake and you want to correct it, when you have this unified model, you only need to provide refinement clicks.[00:41:14] Nikhila Ravi: So you can provide maybe a negative click to remove a region or a positive click to add a region. But if you had this decoupled model, you would have to Delete that frame prediction and re annotate from scratch. And so you can imagine for more complex objects, this is actually adding like a lot of extra time to redefine that object every time you want to make a correction.[00:41:39] Nikhila Ravi: So both the data and the data engine phases really follow, like how we thought about the model design and the evolution of the capabilities, because it really helped us to do that. improve the data quality and the annotation efficiency as well.[00:41:54] swyx: Yeah, you had a really nice table with like time taken to annotate and it was just going down and down.[00:41:58] swyx: I think it was like down by like 90 percent by the time you hit stage[00:42:02] Joseph Nelson: three, which is kind of cool. We joke that when SAM 1 came out at RoboFlow, we're like, was this purpose built for our software? Like you have like the embedding, you have the embedding take like a big model and the querying of the embeddings A smaller model that happens in browser, which felt remarkably aligned.[00:42:18] Joseph Nelson: Now hearing you talk about how you think about building models with a demo in mind, it makes sense. Like, you're thinking about the ways that folks downstream are going to be consuming and creating value. So, what felt like maybe a coincidence was perhaps a deliberate choice by Meta to take into account how industry is going to take Seminal advances and apply them.[00:42:36] Nikhila Ravi: Yeah. And it's not just humans. Like it could also be a model that outputs boxes that then get fed into this model. So really thinking about this as a component that could be used by a human or as a component, as part of a, of a larger AI system. And that has, you know, a number of design requirements. It needs to be promptable.[00:42:56] Nikhila Ravi: It needs to be, have the zero shot generalization capability. We, you know, need it to be real time and. Those requirements really are very core to how we think about these models.[00:43:08] Memory Attention to solve Video[00:43:08] swyx: I cannot end this podcast without talking about the architecture, because this is your, effectively the sort of research level, architecture level innovation that enabled what I've been calling object permanence for SAM.[00:43:22] swyx: And it's memory retention. What was the inspiration going into it? And you know, what did you find?[00:43:27] Nikhila Ravi: Yeah, so at a high level, the way we think about extending SAM to video is that an image is just a special case of a video that just has one frame. With that idea in mind, we can extend the SAM architecture to be able to support segmentation across videos.[00:43:45] Nikhila Ravi: So this is a quick video that shows how this works. So SAM architecture, we have the image encoder, we have a prompt encoder, we have a mask decoder. You can click on an image. And that basically is a prompt, we use that prompt along with the image embedding to make a mask prediction for that image. Going to SAM2, we can also apply SAM2 to images because we can, you know, as I said, treat an image as a video with a single frame.[00:44:15] Nikhila Ravi: And so when we, in the SAM2 architecture, we introduce this new memory mechanism that consists of three main components. There's memory attention, there's a memory encoder, and then there's a memory bank. And when we apply SAM2 to images, these are effectively not used. And the architecture just collapses down to the original SAM architecture.[00:44:35] Nikhila Ravi: But when we do apply this to video, the memory components become really useful because they provide the context of the target object from Other frames. And so this could be from past frames. It can be from, there's two types of memory. So there's like the condition, conditional frames or the prompted frames, which are basically the frames at which a user or a model provides input like clicks.[00:45:01] Nikhila Ravi: And then there's like the surrounding frames. And say we use six frames around the current frame as memory of the object. So there's, there's those, those, both those types of memory that we use to make the prediction. Going into a little bit more detail about that, there's like two kinds of memory that we use.[00:45:18] Nikhila Ravi: So one is like spatial memory. So it's like this high resolution memory that captures the spatial details. And then we also have this like longer term object pointer memory that captures some of the sort of higher level concepts. And I think Swyx, you had a comment about how does this relate to sort of context window and LLMs.[00:45:37] Nikhila Ravi: And both of these types of memories have some relation to context window, so they both provide different types of information on the spatial side or in terms of the concept of the objects that we want to track. And so we found that having like six frame length for the spatial memory, Coupled with this longer period of the object pointer memory provides strong video segmentation accuracy at high speed.[00:46:01] Nikhila Ravi: So, as I mentioned, the real time aspect is really important. We have to find this speed accuracy trade off. And one way in which we sort of circumvent this is by allowing additional prompts on subsequent frames. So even if the model makes a mistake, maybe it loses the object. After an occlusion, you can provide another prompt, which actually goes into the memory.[00:46:24] Nikhila Ravi: And so the prompted frames are always in the memory. And so if you provide a prompt on a frame, we will, or the model will always remember what you provided. And so that's a way in which we can sort of avoid some of the model failure cases that actually is a big limitation of current models, current video object segmentation models.[00:46:45] Nikhila Ravi: Don't allow any way to recover if the model makes a mistake. And so, Joseph, going back to your point about the demo, that's something that we found just by playing with these models. There's no way to make a correction, and in many real world use cases, like, it's not going to be a one time prediction, but you actually want to be able to intervene, like, if an LLM makes a mistake, you can actually be like, no, actually do it this way, and provide feedback, and so, We really want to bring some of that thinking into how we build these computer vision models as well.[00:47:16] "Context Length" in Memory Attention[00:47:16] swyx: Amazing. My main reaction to finding out about the context length of eight input frames and six pass frames as their default is why not 60? Why not 600? In text language models, we're very used to severely extending context windows. And what does that do to the memory of your model?[00:47:35] Nikhila Ravi: So I think maybe one, one thing that's different is that the object in video, it is challenging.[00:47:41] Nikhila Ravi: Objects can, you know, change in appearance. There's different lighting conditions. They can deform, but I think a difference to language models is probably the amount of context that you need is significantly less than maintaining a long multi time conversation. And so, you know, coupling this. Short term spatial memory with this, like, longer term object pointers we found was enough.[00:48:03] Nikhila Ravi: So, I think that's probably one difference between vision models and LLMs.[00:48:09] Object Tracking[00:48:09] Joseph Nelson: I think so. If one wanted to be really precise with how literature refers to object re identification, object re identification is not only what SAM does for identifying that an object is similar across frames, It's also assigning a unique ID.[00:48:25] Joseph Nelson: How do you think about models keeping track of occurrences of objects in addition to seeing that the same looking thing is present in multiple places?[00:48:37] Nikhila Ravi: Yeah, it's a good question. I think, you know, SAM2 definitely isn't perfect and there's many limitations that, you know, we'd love to see. People in the community help us address, but one definitely challenging case is where there are multiple similar looking objects, especially if that's like a crowded scene with multiple similar looking objects, keeping track of the target object is a challenge.[00:49:03] Nikhila Ravi: That's still something that I don't know if we've solved perfectly, but again, the ability to provide refinement clicks. That's one way to sort of circumvent that problem. In most cases, when there's lots of similar looking objects, if you add enough refinement clicks, you can get the perfect track throughout the video.[00:49:22] Nikhila Ravi: So definitely that's one way to, to solve that problem. You know, we could have better motion estimation. We could do other things in the model to be able to disambiguate similar looking objects more effectively.[00:49:35] swyx: I'm just interested in leaving breadcrumbs for other researchers, anyone interested in this kind of architecture.[00:49:41] swyx: Like, are there papers that you would refer people to that are influential in your thinking or, you know, have, have other interesting alternative approaches?[00:49:49] Nikhila Ravi: I think there's other ways in which you can do tracking and video. You might not even need the full mask. I think that's it. Some other works that just track like points on objects.[00:49:59] Nikhila Ravi: It really, really depends on what your application is. Like if you don't care about the entire mask, you could just track a bounding box. You could just track a point on an object. And so having the high fidelity mask might not actually be necessary for certain use cases. From that perspective, you might not need the full capabilities.[00:50:19] Nikhila Ravi: of SAM or SAM2. There's many different approaches to tracking, I think I would encourage people to think about like what actually they need for their use case and then try to find something that that fits versus, yeah, maybe SAM2 is too much, you know, maybe you don't even need the full mask.[00:50:37] swyx: Makes total sense, but you have solved the problem that you set out to solve, which is no mean feat, which is something that we're still appreciating even today.[00:50:44] The Future of FAIR[00:50:44] swyx: If there are no further questions, I would just transition to sort of forward looking, future looking stuff. Joseph already hinted at, like, you know, our interest in SAM and the future of SAM, and obviously you're the best person to ask about that. I'm also interested in, like, How should external people think about FAIR, you know, like there's this stuff going on, this llama, this chameleon, this voice box, this image bind, like, how is, how are things organized?[00:51:09] swyx: And, you know, where are things trending?[00:51:11] Nikhila Ravi: Yeah, so in FAIR, we, you know, we have a number of different research areas. I work in an area called perception. So we built vision systems that solve basically, Look at all the fundamental problems in Compute Division. Can we build a step change in all of these different capabilities?[00:51:29] Nikhila Ravi: SAM was one example. SAM2 is another example. There are tons of other problems in Compute Division where we've made a lot of progress, but can we really say that they're solved? And so that's really the area in which I work on. And then there's a number of other research areas in language and in embodied AI.[00:51:49] Nikhila Ravi: And more efficient models and various other topics. So fair in general is still very much pushing the boundaries on solving these foundational problems across different domains. Well,[00:52:07] swyx: fair enough, maybe just outside of fair, just the future of computer vision, right?[00:52:10] CVPR, Trends in Vision[00:52:10] swyx: Like you are very involved in the community. What's the talk of the town at CVPR? Both of you went, who's doing the most interesting work? It's a question for both of you.[00:52:19] Joseph Nelson: I think the trends we're seeing towards more zero shot capability for common examples will accelerate. I think Mutu modality, meaning using, you know, images in tandem with text for richer understanding or images and video in tandem with audio and other mixed media will be a continued acceleration trend.[00:52:43] Joseph Nelson: The way I kind of see the field continuing to progress, the problem statement of computer vision is making sense of visual input. And I think about the world as the things that need to be observed follow your traditional bell curve, where like things that most frequently exist out in the world are on the center of that bell curve.[00:53:05] Joseph Nelson: And then there's things that are less frequently occurring that are in those long tails. For example, you know, as back as like 2014, you have the Cocoa data set, which sets out to say, Hey, can we find 80 common objects in context, like silverware and fridge and these sorts of things. And we also conceptualized the challenge of computer vision in terms of breaking it down into individual task types, because that's like the tools we had for the day.[00:53:29] Joseph Nelson: So that's why, you know, you have the origination of classification, object detection, instant segmentation. And then as you see things continue to progress. You have models and things that need to observe areas in the long tails. And so if you think of the Cocoa dataset as the center of that bell curve, I think of like the long tails, like really edge case problems.[00:53:49] Joseph Nelson: Some of our customers like Rivian, for example, only Rivian knows what the inside of like a Rivian should look like as it's assembled and put together before it makes its way to a customer and they're making custom parts. Right? So how could a model you've been trained on the things that go inside the componentry of producing a vehicle and Andreesen, What's kind of happening with computer vision is you're seeing models that generalize in the middle of the bell curve push outward faster.[00:54:17] Joseph Nelson: That's where you see the advent of like open text models or the richness of understanding of multimodal models. To allow richer understanding without perhaps any training, or maybe just using pre training and applying it to a given problem. And then, there's like, you know, kind of like the messy middle in between those two, right?[00:54:38] Joseph Nelson: So like, Akila kind of talked about examples where SAM does well out of distribution, where like, it finds an octopus, even though there wasn't octopi in the training data. I showed an example where, like, screenshots, where Sam isn't yet super great at screenshots, so maybe that's, like, in the messy middle or in the longer tails for now.[00:54:54] Joseph Nelson: But what's going to happen is there needs to be systems of validating the point of view that I think about, like, tooling to also validate that models are doing what we want them to do, adapting to datasets that we want them to adapt to. And so there's a lot of things on a forward looking basis that allow propelling that expansion of generalizability.[00:55:14] Joseph Nelson: That's for open text problems. That's where scaling up of training, of dataset curation, continues to play a massive role. Something that's notable, I think, about SAM2 is it's, what, 57, 000 videos? 51,[00:55:30] Nikhila Ravi: 000 videos? About 51, 000, yeah.[00:55:32] Joseph Nelson: And 100, 000 internal datasets. That's, like, not Massive, right? And the model size also isn't, you know, the largest, largest model being a couple hundred million parameters.[00:55:43] Joseph Nelson: The smallest model is 38 million parameters and can run at 45 FPS on an A100, right? Like the capabilities of, we're going to see more capable, more generalizable models. Being able to run on a higher wide array of problems with zero or multi shot capability on a faster, a faster rate. And I think the architecture innovations and things like SAM2 of memory, of increasingly like transformers making their way into division and probably blended architectures increasingly too.[00:56:15] Joseph Nelson: So my viewpoint of like on a go forward basis is we will have that bell curve of what humans can see both in the center of that curve and the long tails. And architectural changes allow richer understanding, multi and zero shot, and putting those into systems and putting those into industry and putting those into contexts that allow using them in practical and pragmatic ways.[00:56:38] Joseph Nelson: Nicola, I'd love to hear like your thought and perspective of like how you think the research trends map or don't map to that. And like maybe some of the key innovations that you saw at CVPR this year that, you know, Got you excited about the direction and maybe some promising early directions that you're thinking about researching or pushing the boundaries of further.[00:56:56] Nikhila Ravi: Yeah, I just wanted to actually reply to a couple of things that you said about so actually in video object segmentation, the number of classes. that are annotated in these, and then the size of these datasets are really small. So with SAM, it's, you know, we had a billion masks, we had 11 million images, didn't have class labels.[00:57:17] Nikhila Ravi: But even before that, there were a lot of datasets that have class labels and are annotated. With significantly more with, with like a lot of class labels, whereas in video datasets, the number of class labels are very small. So there's like YouTube VOS, which has 94 object categories, there's Mose, which has around like 30 or so object categories.[00:57:38] Nikhila Ravi: And they're usually like people, there's cars, there's dogs and cats and all these common objects, but not really, they don't really cover a very large number of object categories. And so while Sam learned this general notion of what an object is in an image. These video tracking models actually don't have that knowledge at all.[00:58:01] Nikhila Ravi: And so that's why having this data set is really important for the segment anything capability in video because if you just provide the mask as the input to an off the shelf Video object segmentation model. It might not actually be able to track that arbitrary object mask as effectively as a SAM2 model that's actually trained to track.[00:58:24] Nikhila Ravi: Any object across the entire video. So doing these sort of combining two models together to try to get a capability that will actually only get you so far and being able to actually create that the dataset to enable that anything capability, it was actually really important and we can actually see that when we do comparisons with baselines where we provide some two with the same input mask and the baseline model with the same input mask.[00:58:53] Nikhila Ravi: For example, the t shirt of a person, SAM2 can track the t shirt effectively across the entire video, whereas these baselines might actually start tracking the entire person, because that's what they're used to doing, and isolating it to just one part of the person is not something they were ever trained to do, and so those are sort of some of the limitations.
Welcome back to another exciting episode of The A100 podcast! As we gear up for the ASAE Annual Conference in Cleveland, we're thrilled to bring you a special compilation of clips from previous A100 interviews with some of the brightest minds and leaders in the association world. These leaders have shared invaluable advice and insights that we believe will inspire and guide you. Be sure to go back and check out their full episodes for more! Key Highlights: Chris Michaels, CEO, AAMFT: Chris discusses the inclusion of family therapists as Medicare providers, highlighting the importance of continuity of care and the need for more therapists to support the aging population. Mike Armstrong, CEO, National Council of Architectural Registration Boards: Mike talks about the importance of recognizing multiple pathways to practice architecture, emphasizing flexibility and the use of technology to measure competency. Kinsey Fabrizio, President, Consumer Technology Association: Kinsey provides two key pieces of career advice for association professionals: asking for new opportunities with a clear purpose and finding a good mentor to guide your journey. Anita Brikman, President and CEO, Plasma Protein Therapeutics Association: Anita shares the power of advocacy and how personal stories from patients drive their mission. She emphasizes the critical role of early involvement and strategic messaging in communications. Earl Franks, Executive Director, NAESP: Earl addresses the significant stress faced by educators and school leaders, especially during the COVID-19 pandemic. He underscores the importance of supporting the social and emotional well-being of these critical community members. Wendy-Jo Toyama, CEO, American Academy of Hospice and Palliative Medicine: Wendy-Jo talks about personal growth and the importance of stretching beyond your comfort zone. She also discusses the necessity of embracing mistakes as part of the DEI learning process. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes filled with expert advice and practical strategies to help your association thrive!
On this episode of the Scouting For Growth podcast, Sabine VdL talks to Sean Languedoc, a seasoned tech entrepreneur with over 25 years of experience building & scaling companies across borders. Sean shares the lessons he learned from scaling five companies, how Outforce.ai is transforming outsourcing, when startups should consider leveraging external teams, and his thoughts on how emerging technologies like generative AI or quantum computing are accelerating development cycles. He also offers advice for non-technical founders looking to build MVPs in a capital-efficient way. KEY TAKEAWAYS Each business started not because of a technology that I wanted to build, it started because of a problem I saw in an industry that I needed to solve, & I was enabled by technology to solve it. You can't just walk into an industry like InsurTech & disrupt it with technology, technology changes a lot faster than behaviour & infrastructure. The lesson there was if things go wrong, the agency is blamed & I'd be fired. It's nothing to do with technology, it's all about people. Across all businesses you have to look at who are you disrupting & how influential are they in the decision-making process? Who wins & who loses & who can you embrace for your winning approach & get momentum behind those. BEST MOMENTS ‘Everyone will tell you you have a great idea until you ask them to pay for it, or until you understand the culture of the industry itself.' ‘For good operators who were really interested in optimising we got a lot of momentum, but for the companies that were horse-trading favours, not so much.' ‘The industry standard is 39% of projects that go to outsourcing don't work out. I'd say another 20% on top of those end up working out only because of brute force, relentless effort by the client to teach the outsourcing agency how to do it.' ‘You can't afford to take the risk of getting it wrong, you need to go in with data & research & get it right.' ABOUT THE GUEST Sean Languedoc is a seasoned tech entrepreneur with over 25 years of experience building & scaling companies. He has founded five tech ventures across various domains, successfully taking two of them "south" from Canada to the US. Currently, Sean is the CEO of Outforce.ai, a company that transforms outsourcing from a daunting task into a strategic asset for venture-backed startups. Outforce.ai aims to be the catalyst that propels tech ventures to their next phase of growth by connecting them with the right engineering teams globally. Beyond his role at Outforce.ai, Sean is deeply involved in the startup ecosystem as a mentor, guiding entrepreneurs through the complex landscape. He serves as a board member at A100 & a Charter Member at C100, underscoring his commitment to fostering tech innovation and entrepreneurship in Canada & beyond. With his extensive expertise in international collaboration, recruiting, & navigating cultural nuances, Sean brings valuable insights on scaling teams, leveraging outsourcing effectively, and adapting to the rapidly evolving tech landscape. His unique perspective, shaped by building companies across borders, makes him an insightful guest to discuss growth strategies for startups and & future of work in an AI-driven world. LinkedIn Website ABOUT THE HOST Sabine is a corporate strategist turned entrepreneur. She is the CEO and Managing Partner of Alchemy Crew a venture lab that accelerates the curation, validation, & commercialization of new tech business models. Sabine is renowned within the insurance sector for building some of the most renowned tech startup accelerators around the world working with over 30 corporate insurers, accelerated over 100 startup ventures. Sabine is the co-editor of the bestseller The INSURTECH Book, a top 50 Women in Tech, a FinTech and InsurTech Influencer, an investor & multi-award winner. Twitter LinkedIn Instagram Facebook TikTok Email Website
Welcome back to another episode of The A100 podcast! In this insightful discussion, we dive into the world of sponsorships with two experts in the field: Dana Johnston, the Vice President of Client Partnerships and Trade Show Marketing for EMC Outdoor, and Bruce Rosenthal, a Corporate Partnership & Sponsorship Consultant and Founder & Convener of the Partnership Professionals Network. Key Highlights: Transforming Sponsorships from Transactional to Transformational: Discover how sponsorships can be a year-round responsibility, involving all departments within an association. Learn about the importance of moving beyond transactional relationships and building long-term, transformational partnerships that provide continuous value. Planning Ahead for Sponsorship Success: Find out why association teams should dedicate 3-4 hours per week to future planning and setting long-term goals for sponsorships. Understand the significance of maintaining an ongoing dialogue with industry partners to explore innovative and mutually beneficial opportunities. Engaging with Corporate Partners: Explore strategies for engaging corporate partners in meaningful discussions about their business objectives and how they align with the association's mission and member needs. Learn how to coach industry partners to focus on educational content and success stories rather than just brand visibility. Breaking Down Silos: Hear about the importance of cross-departmental collaboration in sponsorship initiatives and how associations can break down internal silos. Discover how to create an integrated approach to sponsorship that leverages the strengths of all departments to enhance member value and increase revenue. Innovative Sponsorship Strategies: Gain insights into keeping sponsorship programs fresh and forward-thinking, avoiding the trap of recycling old prospectuses. Learn practical tips on evaluating the success of sponsorship initiatives and sunset offerings that no longer meet strategic goals. Join us for this episode packed with actionable tips and deep insights from two leaders in sponsorship strategy, offering valuable lessons for association professionals looking to elevate their sponsorship programs. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes filled with expert advice and practical strategies to help your association thrive!
On this episode of the Scouting For Growth podcast, Sabine VdL talks to Edward Brawer, co-founder and CEO of PodcastAI, a groundbreaking SaaS platform that's revolutionising the podcasting industry. In this episode, we'll explore: Edward's entrepreneurial journey and the origin of PodcastAI, how AI is transforming the podcasting landscape, the future of content creation and distribution in the digital age, strategies for entrepreneurs looking to leverage podcasting for growth, & the challenges and opportunities in the rapidly evolving podcasting market. KEY TAKEAWAYS Our previous startup was with a video platform, we looked at what we could do with AI & the models were pretty expensive. It could take the titles of YouTube videos & it would give you new titles which isn't super useful. The real Aha moment for everybody was ChatGPT because it wasn't a technological development, it was realising how to use the technology. It was at that time I realised that there was no limit to what you could build with this which led me to start PodcastAI. In February I started playing around with AI voice models & I realised that I could create a parody of an episode of the All In Podcast. I posted it on Twitter & it was reposted by them & went viral, hitting 600,000 views. We did 6 in total & people wanted to know if it was real, if AI had produced the podcast, they asked for the code and GitHub repository. That's when we knew we could do it & we now have a product called ‘The Magic Pod' which creates a podcast for people who aren't comfortable with being in front of a microphone, it creates a completely automatically generated podcast based on a blog, news sites in your voice. Podcasting can be as simple or complicated as you want it to be. At its simplest, you can have a Zoom recording a put that out, PodcastAI can level up your production quality by automating all the post-production, distribution & promotion. At the higher end it's more like a scripted TV show. Everybody is able to do this. A100 years ago, the percentage of the population engaged in farming was easily double digit, now maybe 1% has to be engaged in farming because there are tractors etc. Not everybody became unemployed, they went on to do even greater stuff & increased the standard of living for everybody and earned higher wages. BEST MOMENTS ‘For most podcasters the interview is the fun part and the rest is less fun (pre- & post-production, editing, promotion & distribution, website CMS), Podcast AI makes podcasting effortless.' ‘Magic Pod is a whole new game. You don't even have to do the recording part, just give it a 3 minute sample of your voice, upload it into our system & it automatically goes out on the day & time you want.' ‘Today, podcasting is a $28billion market. In 5 years it's going to be $100billion.' ‘You'll have more throughput, higher quality overall outcomes of the work produced & agencies are going to be able to scale in a way they haven't been able to, it's going to become an enabling technology.' ABOUT THE GUEST Edward Brawer is the co-founder and CEO of PodcastAI, a cutting-edge SaaS platform revolutionising the podcasting industry through AI-powered automation. Launched in 2023, PodcastAI offers a comprehensive suite of tools for podcast creation, post-production, & distribution. Under Edward's leadership, PodcastAI has secured venture backing, with Jason Calacanis' Launch fund as the lead investor. The platform offers innovative features such as AI-generated ad reads, fully automated podcast episodes, & comprehensive post-production services, positioning itself at the forefront of the rapidly growing podcasting market. Website ABOUT THE HOST Sabine is a corporate strategist turned entrepreneur. She is the CEO and Managing Partner of Alchemy Crew a venture lab that accelerates the curation, validation, and commercialization of new tech business models. Sabine is renowned within the insurance sector for building some of the most renowned tech startup accelerators around the world working with over 30 corporate insurers, accelerated over 100 startup ventures. Sabine is the co-editor of the bestseller The INSURTECH Book, a top 50 Women in Tech, a FinTech and InsurTech Influencer, an investor & multi-award winner. Twitter LinkedIn Instagram Facebook TikTok Email Website
Welcome back to another insightful episode of The A100 podcast! Today, we're joined by Amber Worthen, Founder and CEO of Email Maven. With years of experience in communication strategy, project management and email marketing, Amber shares her expertise in revolutionizing email marketing for associations. Key Highlights: Addressing Common Email Challenges: Amber identifies key issues such as inconsistent email design and email fatigue. She emphasizes the importance of applying best practices in email design and segmenting audiences to enhance engagement and avoid overwhelming members. Optimizing Open Rates and Engagement: Practical tips on segmenting email audiences and implementing drip campaigns to ensure targeted and relevant communication, resulting in higher open and click rates. Choosing the Right Email Platform: Amber advises associations to select email platforms that integrate seamlessly with their data systems to save time and improve efficiency. She underscores the importance of conducting thorough audits to identify the best fit for current and future needs. Leveraging Data for Better Decision Making: Emphasizing the importance of data-driven decisions, Amber highlights key metrics such as open rates, click rates, conversion rates and unsubscribe rates. She encourages associations to stay curious and continually analyze data to refine their email strategies. Emerging Trends and Practical AI Tips: Amber shares insights into emerging trends like AI, offering practical AI tips for creating alternative subject lines and preheaders. She also emphasizes the importance of continuously testing and optimizing friendly from names, subject lines and preheaders to enhance engagement. Best Practices for Effective Email Marketing: Tips on sending emails at the right times based on the audience's lifestyle and behaviors, and using web tracking campaigns to target members who show interest in specific content. Join us as Amber Worthen provides practical tips and deep insights for association professionals looking to enhance their email marketing strategies and engage their members more effectively. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes packed with insights to help your association thrive!
Welcome back to another episode of The A100 podcast! Today we're thrilled to have Ben H. Rome, Director of Communications for the American Bus Association (ABA), joining us. With nearly 30 years in storytelling and strategic communications, Ben shares his insights on the evolving role of storytelling in the association world and how ABA is tackling sustainability. Key Highlights: The Power of Storytelling: Ben discusses how storytelling in associations has evolved from simple slogans and stats to creating resonant narratives that engage members on a personal level. He emphasizes the importance of making stories compelling and memorable, ensuring they resonate long past the initial campaign. Authenticity in Communication: Authenticity is crucial in storytelling. Ben highlights the risks of inauthentic messaging and the power of genuine engagement to build trust and loyalty among members. Sustainability Initiatives: ABA's research shows that motor coaches are the most eco-friendly form of group transportation. Ben explains how they used compelling infographics and social media to highlight this on Earth Day, resulting in high engagement and positive media coverage. He also touches on the challenges and advocacy efforts related to the rapid push for electric vehicles and the need for proper infrastructure to support this transition. Choosing the Right Channels: Ben shares his approach to identifying the best communication channels for different segments of ABA's audience, emphasizing the importance of tailored messaging and engagement. AI and Technology in Communications: The role of AI in enhancing efficiency in content creation, analytics and member engagement is explored. Ben offers a balanced view on using AI responsibly to support, not replace, human creativity and judgment. Join us as Ben H. Rome delves into these critical areas, offering practical tips and deep insights for association professionals looking to enhance their communication strategies. Stay Connected: Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube Podcasts to ensure you never miss an episode. Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd for the latest in association trends and strategies. Tune in for more episodes packed with insights to help your association thrive!
Listen to Jack O'Brien of MM+M and Brandon Pletsch, president of scientific visualization at Real Chemistry, as they delve into the dynamic intersection of art, science and AI innovation in the field of scientific visualization. During the interview, they will discuss the role of scientific art in communicating complex scientific ideas to key stakeholders, how AI has been integrated into this process and what the future may hold for scientific artists.Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Our 171st episode with a summary and discussion of last week's big AI news! With hosts Andrey Kurenkov (https://twitter.com/andrey_kurenkov) and Jeremie Harris (https://twitter.com/jeremiecharris) Feel free to leave us feedback here. Read out our text newsletter and comment on the podcast at https://lastweekin.ai/ Email us your questions and feedback at contact@lastweekin.ai and/or hello@gladstone.ai Timestamps + Links: (00:00:00) Intro / Banter Tools & Apps(00:03:13) Apple Intelligence: every new AI feature coming to the iPhone and Mac (00:10:03) ‘We don't need Sora anymore': Luma's new AI video generator Dream Machine slammed with traffic after debut (00:14:48) Runway unveils new hyper realistic AI video model Gen-3 Alpha, capable of 10-second-long clips (00:18:21) Leonardo AI image generator adds new video mode — here's how it works (00:22:31) Anthropic just dropped Claude 3.5 Sonnet with better vision and a sense of humor Applications & Business(00:28:23 ) Sam Altman might reportedly turn OpenAI into a regular for-profit company (00:31:19) Ilya Sutskever, Daniel Gross, Daniel Levy launch Safe Superintelligence Inc. (00:38:53) OpenAI welcomes Sarah Friar (CFO) and Kevin Weil (CPO) (00:41:44) Report: OpenAI Doubled Annualized Revenue in 6 Months (00:44:30) AI startup Adept is in deal talks with Microsoft (00:48:55) Mistral closes €600m at €5.8bn valuation with new lead investor (00:53:12) Huawei Claims Ascend 910B AI Chip Manages To Surpass NVIDIA's A100, A Crucial Alternative For China (00:56:58) Astrocade raises $12M for AI-based social gaming platform Projects & Open Source(01:01:03) Announcing the Open Release of Stable Diffusion 3 Medium, Our Most Sophisticated Image Generation Model to Date (01:05:53) Meta releases flurry of new AI models for audio, text and watermarking (01:09:39) ElevenLabs unveils open-source creator tool for adding sound effects to videos Research & Advancements(01:12:02) Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling (01:22:07) Improve Mathematical Reasoning in Language Models by Automated Process Supervision (01:28:01) Introducing Lamini Memory Tuning: 95% LLM Accuracy, 10x Fewer Hallucinations (01:30:32) An Empirical Study of Mamba-based Language Models (01:31:57) BERTs are Generative In-Context Learners (01:33:33) SELFGOAL: Your Language Agents Already Know How to Achieve High-level Goals Policy & Safety(01:35:16) Sycophancy to subterfuge: Investigating reward tampering in language models (01:42:26) Waymo issues software and mapping recall after robotaxi crashes into a telephone pole (01:45:53) Meta pauses AI models launch in Europe (01:46:44) Refusal in Language Models Is Mediated by a Single Direction Sycophancy to subterfuge: Investigating reward tampering in language models (01:51:38) Huawei exec concerned over China's inability to obtain 3.5nm chips, bemoans lack of advanced chipmaking tools Synthetic Media & Art(01:55:07) It Looked Like a Reliable News Site. It Was an A.I. Chop Shop. (01:57:39) Adobe overhauls terms of service to say it won't train AI on customers' work (01:59:31) Buzzy AI Search Engine Perplexity Is Directly Ripping Off Content From News Outlets (02:02:23) Outro + AI Song
Executive Creative Director Jason Kirshenblatt and SVP Strategic Planner Seema Keswani discuss CultHealth and how Creative Intelligence has helped propel the agency forward.Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Please note: This podcast originally aired on June 7, 2022 as part of the 2022 Agency 100. Check us out at: mmm-online.com Follow us: YouTube: @MMM-onlineTikTok: @MMMnewsInstagram: @MMMnewsonlineTwitter/X: @MMMnewsLinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
This year, Deerfield Agency celebrates a decade of excellence as a trusted partner in brand-focused healthcare marketing. Join Deerfield's Frank Burrell and Joshua Benson for insights into the growth and evolution of their Agency of Brand. They'll talk about the trends they're following and technology they are leveraging as they look ahead to Deerfield's next decade.Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Merge is Built Different to deliver true omnichannel experiences. We believe insightful storytelling and effective technology execution creates engaging HCP and patient journeys that make a difference. Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
How Lumanity is accelerating and optimizing access to medical advances through a time of rapid market transformation.Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
The perception that medical communications is simply blocking and tackling has limited the potential of the industry. In fact, med comms is much more than just meetings and dinners and with the emergence of new technologies, a more robust offering is also emerging. We at Boundless Medical Communications are helping write the next, exciting chapter in the space. Check us out at: mmm-online.com Follow us: YouTube: @MMM-onlineTikTok: @MMMnewsInstagram: @MMMnewsonlineTwitter/X: @MMMnewsLinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Focus on the things that will ‘make your boat go faster' and navigate the science to value pathway to ensure patient access and improved outcomes.Successful commercialization isn't just about regulatory approval — it is also about patient access, value and affordability. It is therefore critical that, from the beginning of the clinical phase of the commercialization process, the patient is involved in all aspects of the development of a new asset. Having a clear focus on the critical success factors and aligning across work streams to generate the appropriate evidence, specific to each stakeholder, to support the value proposition and clearly and effectively communicate that value are all critical to launch success. Marc Iskowitz sits down with Citrus Health Group CEO, Neil Matheson, to discuss evidence generation and communications to support the value proposition. Check us out at: mmm-online.com Follow us: YouTube: @MMM-onlineTikTok: @MMMnewsInstagram: @MMMnewsonlineTwitter/X: @MMMnewsLinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
How The Bloc is using behavioral science to fuel more effective creativity and communication.Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Biolumina has been successful over the course of the last 10 years, while maintaining a small agency feel. What's the secret to this success? A strong foundation of culture, values, and ways of working to ensure the DNA of the agency is replicated consistently as they grow.Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Check us out at: mmm-online.com Follow us: YouTube: @MMM-online TikTok: @MMMnews Instagram: @MMMnewsonline Twitter/X: @MMMnews LinkedIn: MM+M To read more of the most timely, balanced and original reporting in medical marketing, subscribe here.
Speakers for AI Engineer World's Fair have been announced! See our Microsoft episode for more info and buy now with code LATENTSPACE — we've been studying the best ML research conferences so we can make the best AI industry conf! Note that this year there are 4 main tracks per day and dozens of workshops/expo sessions; the free livestream will air much less than half of the content this time.Apply for free/discounted Diversity Program and Scholarship tickets here. We hope to make this the definitive technical conference for ALL AI engineers.ICLR 2024 took place from May 6-11 in Vienna, Austria. Just like we did for our extremely popular NeurIPS 2023 coverage, we decided to pay the $900 ticket (thanks to all of you paying supporters!) and brave the 18 hour flight and 5 day grind to go on behalf of all of you. We now present the results of that work!This ICLR was the biggest one by far, with a marked change in the excitement trajectory for the conference:Of the 2260 accepted papers (31% acceptance rate), of the subset of those relevant to our shortlist of AI Engineering Topics, we found many, many LLM reasoning and agent related papers, which we will cover in the next episode. We will spend this episode with 14 papers covering other relevant ICLR topics, as below.As we did last year, we'll start with the Best Paper Awards. Unlike last year, we now group our paper selections by subjective topic area, and mix in both Outstanding Paper talks as well as editorially selected poster sessions. Where we were able to do a poster session interview, please scroll to the relevant show notes for images of their poster for discussion. To cap things off, Chris Ré's spot from last year now goes to Sasha Rush for the obligatory last word on the development and applications of State Space Models.We had a blast at ICLR 2024 and you can bet that we'll be back in 2025
In this episode of Building Texas Business, I sit down with Wes Cummins, CEO of Applied Digital, for an inside look at the company's revolutionary trajectory. Wes takes us behind the scenes of Applied Digital's evolution from Bitcoin mining infrastructure to leading the charge in specialized cloud and high-performance computing. Our discussion also tackles the grit of entrepreneurship. Wes reflects on Applied Digital's resilience amid regulatory shifts, sharing lessons from his upbringing on perseverance and hard work. As the company grows, so does its specialized workforce, prompting insights on fostering talent retention and aligning culture with business goals. Overall, Wes offers a compelling narrative of continuous innovation through adversity, partnership and calculated risk-taking. SHOW HIGHLIGHTS Wes Cummins discusses the origin of Applied Digital, beginning with infrastructure for Bitcoin mining and pivoting to high-performance computing and specialized cloud services. We examine the company's strategic response to China's crackdown on Bitcoin mining and how this external challenge spurred a significant shift in Applied Digital's business model. I reflect on my own experiences with business pivots and emphasize the importance of seeking opportunities amidst market disruptions and regulatory changes. Wes shares insights from his upbringing on a family farm, including the values of hard work and resilience, and how these qualities have influenced his entrepreneurial journey. We talk about the rapid growth of Applied Digital, expanding from three to approximately 200 employees, and the operational challenges associated with scaling up. Wes outlines the importance of building a specialized team with the right skills, highlighting the role of strong human resources and recruiting in managing rapid company growth. The conversation delves into the significance of company culture in driving employee motivation, retention, and the cultivation of a spirit of empowerment and ownership. We discuss the energy challenges in powering AI technology, the use of renewable energy sources, and the potential of nuclear power to meet the increasing demand for data center capacity. Wes considers the future of Texas businesses within the energy grid, including the financial and infrastructural challenges of meeting the needs of hyperscalers. Finally, Wes and I touch on personal leadership styles, the evolution from micromanagement to autonomy, and the value of mentorship in fostering a productive work environment. LINKSShow Notes Previous Episodes About BoyarMiller About Applied Digital GUESTS Wes CumminsAbout Wes TRANSCRIPT (AI transcript provided as supporting material and may contain errors) Chris: In this episode, you will meet Wes Cummins, ceo of Applied Digital. Wes's company is building the next generation of digital infrastructure in the United States. He shares his thoughts on how building a strong company culture starts by providing opportunities for growth to your employees. All right, wes, I want to welcome you to Building Texas Business and thanks for taking time to come on the show. Wes: Chris, thanks for having me. I'm happy to be here. Chris: So let's start by just you introducing yourself. I'll at least say I know you're the CEO and founder of Applied Digital. Tell us a little bit about Applied Digital. What is that company and what is it known for? Wes: Sure. So. Applied Digital is a company that is building next generation digital infrastructure, and the company started by building infrastructure for Bitcoin mining back in 2021. Crypto mining, where a lot of the hash rate about 70% of the hash rate was in China at the time had to go elsewhere in the world. A lot of that came to the US. We assembled a team that had experience in the sector which there wasn't a lot of people in the US that had experience, given. I think it was sub 5% of the hash rate was actually in the US at the time Assembled a team, secured power sites because it takes a large amount of electricity and built data centers, which is the digital infrastructure for Bitcoin. We don't mine Bitcoin ourselves. We never have. We provide a data center service for Bitcoin miners, and the original business idea around that was anyone can be a Bitcoin miner if they come to us, so you need to have money to buy the miners, the servers, and you come to us and sign a contract. We put it in our facility, we run it for you and Bitcoin just starts hitting your wallet and you're a Bitcoin miner. So that was the original business idea. What it ended up being was we signed a few industrial scale Bitcoin miners that filled up all of our facilities Our largest customer being Marathon Digital, which I believe is the largest Bitcoin miner in the world and so that we built about 500 megawatts of data center capacity in about 24 months for Bitcoin mining. And then, in 2022, we started looking at what other products or services can we offer on our sites and with our assets, and what we landed on was high-performance computing, and at the time, high-performance computing was more of a niche market. That went after, like geotech analysis for oil and gas, aerospace design, automotive design, drug discovery, graphics rendering, and high-performance computing is typically GPU-based, typically requires significantly more power in a single rack, so much, much higher power density than traditional data centers. So we designed that in 22, started building it at the end of 22, our first facility, and then, in October of 22, we put a software layer in place to run a cloud service out of our facility, and we started running that cloud service in December of 22. Out of our facility and we started running that cloud service in December of 22. And the customers were initially small, mostly universities that were doing research, machine learning, deep learning out of that facility, and we put the cloud service in place to be our own first customer and our new style of data center, to show the data center work, and then we could lease out the data center capacity. And then, as everyone knows, the world has changed since December 22,. Really, it was when ChatGPT hit the scene, so everyone got their first taste of generative AI at a wide scale and what it does. And then, in March of 23, nvidia introduced the H100 GPU, which was their next big data center GPU upgrade from the A100. And it turned out that the data center we were building was kind of a perfect fit for the new NVIDIA gear and we were out marketing that and we landed our first actually cloud service customer in May of 20 character AI. And so we've leaned. Now we've done two things. We've leaned into the cloud services business and signed more contracts and more customers. There we're basically we own the compute and we provide a very specialized cloud service that's GPU based. And then the other thing we're doing is we went back and initially we were going to build five or 10 megawatt facilities on these sites and now we're back to building hundreds of megawatts of high performance computing, high power, density, data center capacity, mostly right now in North Dakota. But we, you know, this is a new kind of a new world on digital infrastructure and we can talk about that a lot more, but that's really what our company does is next generation digital infrastructure. Chris: That's an incredible story. Let me just kind of back up to the beginning. What was the inspiration for you to even start the business back when you did yeah, so? Wes: it's a little bit interesting. So the business model changed quickly after we started. So the initial business model was actually deploying you know kind of industrial scale GPU capacity to do altcoin mining. And that goes back a lot more to my background, which you know. I've been a tech investor for 25 years now and really what I saw was an opportunity in that market. So altcoins are anything but Bitcoin, basically, and the largest being Ethereum, and the idea was we were going to deploy a lot of GPUs and there were many different proof of work networks that require GPU capacity to run for different altcoins Again Ethereum being the largest when it was proof of work, before transitioning to proof of stake. And the idea was, as an investor, instead of putting money into these different altcoins, you could actually just aim the compute power at different networks depending on which one was most profitable. And so we were going to be a large scale GPU operator doing Ethereum and other altcoins, and we signed an agreement with a company called Sparkpool that was the largest Ethereum pool in the world I think it had roughly 25% of the entire hash for Ethereum at the time and we were going to deploy a lot of GPUs in China actually, and so we raised money for that in April of 21. And then, at the end of May of 2020, was when China cracked down on Bitcoin mining and our business model changed because the opportunity to build all this infrastructure in the US was basically presented to us. I'd already started to assemble the team that could go out and do that, and then we just accelerated that. So that was really the genesis of the company. But you know, when the world changes, you have to be accommodative to that, and so we have been. Chris: That's a great point to make and let's kind of stay on that for a minute. You start out with an idea and a plan and that was going to be in China. China, you know, without any control, you have changes, the laws and things, and you're forced to pivot. Walk us through, maybe, how that played out for you, the decision-making. Other entrepreneurs face that all the time, I think, and some successfully and, as you know, some unsuccessfully. So what are some of the things maybe you could share to help someone navigate through when market dynamics beyond your control change and force you to just totally pivot your business model? Wes: Yeah, it's an interesting position and, you're right, sometimes it's hard to make it through those. So what we did? We stepped back, because when the news first hit I remember it was I think it was the last Friday in May I was sick to my stomach. It was just like the entire business model we were going after has just been closed for us. But we spent some time over the weekend thinking about what opportunities does this create? And it became very clear the opportunity it created very quickly. The thing that was fortunate for us is I had already been in discussions about building sites for our GPUs in the US. We were looking at power sites. We were looking the US, we were looking at power sites. We were looking at, you know, construction, we were looking at that, and so there was a pretty clear path. And you know, our partners in China were looking for capacity outside of China very quickly and so we kind of had a natural customer base and we already had kind of the start of looking at these sites and what we could do there. So it was very helpful to have that. But you know, at the start it was a big gut punch when we found that out and it took us. You know, really over the weekend it became clear for us, but then it took us a couple of weeks to really change and take action on the new business opportunity and take action on the new business opportunity. But what I would say in general is typically if there's a big change, it definitely can wreak havoc with current businesses, but it's going to create some new opportunity. Chris: I think that's the idea. Wes: That's the idea of the opportunity, yeah. Chris: Yeah, I think that's the. The lesson I see consistent in talking to entrepreneurs is, you know, gut punch moments cause you to rethink the business model or where the weaknesses are, but it's about looking for the opportunity, because with every roadblock then I said, if you really take a close analysis of the situation, you can find opportunity, and then you just try to figure out how to pursue that. Wes: Yep, that's what we did, and, like I said, we were fortunate in that we'd already started putting some of these puzzle pieces in place prior to that news coming out, and so it was a little bit of an easier transition, but it wasn't an easy transition by any means. Chris: So you know it may be too a little bit of your makeup and I know I think a little bit about you. You grew up on a farm, I think in Idaho, and there have to be some lessons learned in growing up in a rural environment that teaches you that you just keep your head down and keep plugging away. Wes: Yeah, you know there's many lessons from farming and I was in kind of the last generation at least in Idaho of family farms where you know all the family members worked on the farm before it was much more commercial and so you know, generally around five to six years old we started working on the farm. I'm sure at that age we were zero help, but you know you have to get trained into it. But we, you know we did in Idaho. You do a lot of irrigating. You get up at 430 in the morning and go stand in a wet, cold potato field and move irrigation equipment around for about an hour and a half. Then you get to do it again in the middle of the day and again at night. So there was a lot of lessons. But our dad taught us being self-starters right. So self-starter was a big part of what else do I need to do, not just the task he gave me and then I have to wait for him to give me another task. Obviously hard work, but I always make the joke. The biggest thing that growing up on a potato farm taught me is that I did not want to be a farmer. That was probably the biggest takeaway for me, but it did instill, you know, very strong work ethic and that's. You know farming is a hard business. Just because you know, like many businesses or maybe it's the worst out of any business the predictability is just. It's just not there right, it's not predictable at all. You know, I always tell people when we used to do stock investments. You know, let me tell you how farming works is. Let's say that you're going to invest in a company that trades publicly. You give me all your money now, and let's call now being it's April, but let's say it was March, and then in October I'll tell you how many shares of stock you purchased, right, which would be your yield of your crop, and then you have, you know, five months to sell all those shares, no matter what the price, and that that's how farming works. You put all your money in up front. You have no idea what you have until your yield comes out, and then you don't know what the market's going to be after that, and maybe you're going to get zero shares because a hailstorm comes through or something. So you know there's a certain resiliency that it teaches you as well, because there's very lean years and there's very fat years. Chris: Yeah, interesting perspective and very true. So you know that's kind of turning back to kind of apply digital. So you know, kind of turning back to kind of apply digital, how has the company grown from a kind of a workforce and facility location in the last couple of years? Wes: So we went from three employees at the start to we're about 200 employees now. Our headquarters in Dallas, texas, and we have the second headquarters here where we run a 24-7 network operations center. And then we have sites, two sites in North Dakota. We recently divested a site in West Texas, so now we're down to two sites in North Dakota and we're really focused on those sites right now. Hyper-scale size data center deployments it is specifically our Ellendale North Dakota site. Data center deployments, specifically our Ellendale North Dakota site, where we have a significant amount of power contracted, so expect to continue to grow pretty significantly over the next few years just because of the market opportunity we see in front of us, it's a lot of growth in a short period of time. Chris: What are some of the things that you've done, kind of as a CEO, to help manage that growth, so that you know you're building a strong team to kind of execute on the company strategy? Wes: So one of the things I've done and I'm, you know, I've been an entrepreneur and investor for a long time, but as I've just, I guess the wisdom I've gained with age is making sure I put the you know the people around me that have the skills that I'm lacking. So I, you know, really focusing on the things that I do really well and putting the other you know other people in the seats around me that do things that I don't do well, extremely well. And so you know, as you grow, I would say the kind of the bigger one for me or for us growing this quickly is, you know, having strong human resources, having strong recruiting, so that we get the right people in the right positions and they're managed the right way and we put the right type of structure in place for all of our employees to be successful. And then so, so we have that. That's been a big one. And then you know, our financing team we're in a capital intensive business, and then so we have that's been a big one. And then you know, our financing team we're in a capital intensive business, and then so we have a great finance team, and then, you know, we have a tech team, so we're kind of a blend between a real estate and a technology business and we're on the leading edge of this new high power density. You know, really, ai workload technology, and so we've had to attract the right talent for that, because, similar when we were building the Bitcoin facilities, you know it was a really shallow talent pool in the US. And it's the same with, you know, large GPU deployments that, like I said earlier, that was a niche market going back to you know 22. And now it's just exploded. But finding the people that know what they're doing, managing these and you know deploying, operating, managing large scale GPU deployments is was difficult. We were early and we were able to attract you know good, really good talent in that space. But you had to go to, you know, national labs and universities to find people that had experience with really large GPU deployments, and so we've done a good job. But that goes back again to recruiting and HR and having a really strong team there to find the people that we need. But there's definitely growing pains, right, as you grow up as a company and you know putting the appropriate structures in place, because when you're, you know a three to five person startup, right, everyone's doing everything and as you grow, the people that were there originally doing everything need to become more specialized. You know, in a group of the company, so that's a that's kind of a harder transition as well. But if you, you know you find the right people and you, you know the team all works together, you're able to achieve that. But there's a in three years there've been a lot of changes at the company, a lot of new faces, and then you know, specializing people. That started, you know, doing everything. When we built our first facility, I think it was eight or nine of us at the company, right, and we're all doing everything to make that happen. And now it's gotten bigger and larger scale and we've added a lot of specialty inside the company. AD: Hello friends. This is Chris Hanslick. You're building Texas business host. Did you know that Boyer Miller, the producer of this podcast is a business law firm that works with entrepreneurs, corporations, and business leaders. Our team of attorneys serve as strategic partners to businesses by providing legal guidance to organizations of all sizes. Get to know the at BoyerMiller. com. And thanks for listening to the show Chris: That's great. So you talk about kind of the importance in the recruiting process and, I think, equally important, in the kind of onboarding, integration process, anything that y'all have implemented that you believe that's innovative in that regard to kind of help customize and streamline that process. Wes: You know, I don't think there's anything particularly innovative about what we've done. It's what I will say about our company is, you know you it's kind of recruiting from two different pools. So you have nationwide recruiting for you know people that will come and sit in, you know whether it's exec or you know SVP type roles at the company, and then we have to do a lot of local recruiting. That's another one is you know, our sites are managed locally. We have the 24-7 NOC that sits here in Dallas, but there's been a big push because our sites are typically in rural areas and so that's probably one of the biggest challenges is recruiting and training all of the people and the talent that goes directly to the sites. So it's a unique mix for our company in that instance is that you know it's kind of two different styles of workforce but we have two different recruiters that manage that. Chris: How do you then bring it back together, as you mentioned, two different workforces and obviously two different geographic locations, different states. What are some of the things that you are doing as a CEO and maybe with your senior management, to build and nurture a culture at the company that everyone gets behind, to kind of further the mission? Wes: So I think one of the biggest things that I promote a lot at our company and a lot of the other management promotes is what you would expect at a small, fast growing company. There's a lot of upward mobility opportunities at a company like this and I love to highlight those success stories within our company and really encourage people with the upward mobility. That, I think, is just a big motivator and a big part of our culture. Chris: I think it's been my experience. If people don't see opportunity in your organization, then they're going to start looking somewhere else. Wes: Look we have Our site manager in Ellendale. He was. He was like the I don't know if he was the night manager or but he was. You know he was. He was working at Walmart at night in Jamestown, north Dakota, when he started as an operator at our site in Jamestown jobs that you could do for our company and a year later he was managing the site in Ellendale and he just you know his work ethic and he just shined through and he was able to move up very quickly and, you know, moved his family to Ellendale, north Dakota, and is running the site there for us now. And it's just, you know that we have many of those stories inside of the company, but we do. I think we're unique in that we do hire locally, we offer training for these technical jobs and you know they pay typically very well versus other jobs that are available in these locations and again, there's a lot of room for advancement inside the company and it creates a really nice culture for us. Chris: So you were talking about where the business, I guess is pivoted to in large part, is providing energy and power to fuel the AI movement. There's been a lot written and discussed about the idea that one of the limiting factors of the power of AI is the lack of power to run the centers or the computers needed to run the machines to do the learning and have that advance. What's your take on that? Because where do you see the industry from the power supply and how do you see that improving over time to try to keep up with the technology? Wes: Yeah. So it's a big issue issue now and it's going to become an even bigger issue as we go through this year and into next year. Just the power capacity in the US. So the ring in Virginia basically out of power. That's the most popular data center market in the US. Santa Clara, maybe the second most popular data center market out of power. Chris: If you want new power there, it's seven to 10 years and a lot of the other Wait a minute, say those two things again because I don't think people have an appreciation for that issue and the magnitude of what you just said. So in Virginia and the nation's capital-. Wes: Yep Santa Clara. Chris: And so. Wes: California, yes, silicon Valley, two big data center markets. They're effectively out of power. Chris: If you want new power there, it's a really long wait time seven to 10. Wes: Because you have to build the infrastructure right. You need power generation and you need transmission right, and generation can be built much faster than transmission can be built. It depends on where you are right. Some states are much friendlier to new power generation than others are. So what we have done to solve that is we focus on stranded power, which stranded power means there's a lot of power generation and maybe not enough transmission to move that power out of the location where it's being generated. And the way we solve for that is we take our product, our infrastructure, to the point of generation. And so there's some other things that you have to do. You have to make sure that there's a good fiber grid for fiber optic communications at the site as well. So not every site works for this, but there's a significant amount of stranded power around the globe, but we're focused mostly here in the US. And how do you get stranded power around the globe? But we're focused mostly here in the US. And how do you get stranded power? There's really two ways that I've seen that you end up with stranded power in the US, and one is renewables are a big source of that solar and wind and typically everything we have done has been located with wind farms and there's an incentive to build where the wind blows a lot for wind farms and land is cheap, and it's, you know, there's an incentive to build where the wind blows a lot for wind farms and, you know, land is cheap. And so North Dakota, I believe, is the sixth largest wind producing state in the country and they're 48th or 49th in population. That state generates over double the amount of power that they use inside the state, and so we, you know, at our Ellendale facility, I believe, it's about two gigawatts of wind that feeds into that substation, and that's where we are located. So finding strain of power that way the other way strain of power happens in the US and, I would assume, around the world too is a very power hungry. Industry goes out of business, company goes out of business or closes a plant or something in a certain area, and there's this massive amount of power infrastructure that's left behind. So, like Alcoa smelter plants, for example, that have been shut down, those have become Bitcoin mining sites and probably sites that are attractive for high power density data centers as well. So we focus on that. Now that can be a short and kind of medium termterm solution. Longer term, you know, it becomes a bigger issue and I've heard you know any kind of. There's been so many numbers thrown around. One of the hyperscaler CEOs last week, at a conference I believe, said that a hundred gigawatts of data center capacity would need to be built between now and 20, just to supply the hyperscale. And so to put that in perspective, the entire US market for data center capacity is like 22, 23 gigawatts right now built over the last 30 years, and you're saying there needs to be a hundred in the next six years. That's going to be pretty hard One to find the power and two permitting building all of the other things that go along with it. Maybe the number's not that high, but it's still going to be a very big number. And in the meantime, for electricity, you have competing priorities, right. So you have this new data center application, you have EVs becoming a bigger percentage of cars being driven, you have new things like green hydrogen generation, which requires a lot of electricity as well. So there's definitely competing priorities and it's going to be a bigger and bigger issue. And for me I've thought a lot about this that the only solution that I see the longer term for this. If we want to do it in an environmentally friendly way, which I think everyone's focused on is there needs to be a lot more nuclear generation for baseload. Chris: Okay, that's interesting. Baseload, okay, that's interesting. Not dissimilar from what I've heard and the other things that get talked about is a lot of power is generated through water, right, and then we have competing issues on the need for water. Is it going to be to power these centers or for human life? So we're going to be struggling with those over the years to come. Let's talk a little bit about, I guess, from where you sit. Where do you see this AI and power generation issue and what are the opportunities and or risks for the Texas business ecosystem, if you will? What are the opportunities where Texas and Texas businesses might thrive and what are some risks? Wes: So there's I think there's a lot of Texas businesses that will thrive. We actually source a lot of our components and equipment out of many local Texas businesses here. So there's that ecosystem and that includes, you know, transformers, switchgear a lot of the electric gear that's going into our facilities we source out of Texas. So there's a big opportunity there for Texas at large. Outside of us, you know one of the largest, you know, energy grids in the country here with ERCOT, and so there's a lot of opportunity there. You know there's a lot of there is stranded power opportunities specifically in West Texas that could feed into this. It needs a little bit better. You know fiber network. It depends on where you are in West Texas. So some of those work. But there's a large opportunity for infrastructure in Texas for certain, and it's a very attractive market for that. But there's a lot of other businesses in Texas that are feeding into this entire supply chain. You know it goes down, it's pretty, it's a pretty deep supply chain for this business. And if you think about so, let's say, a meg of data center capacity, we have our own costs, that we do. But if you're building tier three style data centers for this type of power application you $1.2 billion for a gigawatt. You're spending $12 billion on construction and equipment and so we're saying $12 billion for a gigawatt and, like I said, on the high end of the numbers I've seen out there, we need 100 gigawatts over six years. That's a lot of business to be done. A lot of investment by the way, chris, that doesn't include the compute gear inside of the data center. So yeah, so that the cost does not include, you know, the gpus or servers and networking gear to go inside the data center and you should think about that being kind of. You know two and a half to three x what the cost of the data center is, so it's just staggering numbers. Chris: You're talking 30 to 40 million per gigawatt per megawatt. Wes: And then times that by a thousand for a gigawatt, and then the number I gave early was again this is a number that was not provided by me, but 100 gigawatts over six or seven years. Yeah, it's a really big number. Chris: Wow, well, it's coming off of that. I want to turn back kind of towards you a little bit and I always like to kind of talk about leadership styles. I think that's helpful for business owners to kind of reflect on themselves about how you show up as a leader, knowing that can evolve over time. So how would you describe your leadership style today? How do you think that's evolved over time? Wes: Yeah. So my leadership style is, you know I mentor some people. I like to, you know, keep people constantly involved in what I'm doing so they see what I'm doing day to day. And you know again, as the company has grown right, that I don't interface with every employee on a regular basis. You know I have a leadership style, that is, I'm not a micromanager. I want people to be successful in their roles. I want them to take, you know, the authority in their roles and manage their part of the business for them. And I think that's how you know, over time, how you build a much more efficient. You know big company versus a small company. You know, when we were first starting out, I definitely was, you know, had to be more of a micromanager because I was involved in every single task of the business. But as you get the right people in places and I give them a lot of autonomy to run their groups, I think that fosters a good culture and company over time is, you know, people feeling empowered and then feeling like they have you know, the destiny of at least their group. And then what I really still like about being a small company, even though we're much bigger than we were is everyone can see their own direct impact on the company. Right, you can still make a big difference as one individual inside of the company and I really I foster that culture inside the company a lot and again, I always push on this upward mobility and the fact that you're at a place where there's a lot of opportunity. Here at this place, you don't need to look outside of it to find opportunity, and I think it creates a lot of excitement inside the company and we all kind of with a small business, you kind of all ride the roller coaster together because you constantly have setbacks and you constantly have victories Then and you know we've had stretches where we have, you know, setback after setback and that maybe comes on the heels of a lot of victories in a row too. So you know, riding that roller coaster is something that everyone has to get used to, but I think we do it really effectively. But hopefully that answers the question of kind of a leadership style. Chris: Yeah, no, definitely. And you alluded to something that's part of my next question and that is because it's just part of life Can you think of and share with us kind of a challenge or setback that you've encountered could be in your personal life, but or in business that you learned from? That made you better? Wes: Yeah. Chris: And those are always, I think, some of the best learning moments. Wes: I've. You know, in my career I've had many of those and those are, you know, those are definitely learning moments and it's been, you know, either investments or in other businesses, and this is where I was talking about earlier that. You know, one of the biggest lessons I've learned is surrounding myself with people that have the skill set I don't have right. That's probably the biggest one, but I would say the biggest as far as running this company. You know, as you run a company that's growing fast and you're doing a lot of different things, you know you have to be a problem solver, right. A lot of people get really down about issues that happen inside the company. You know we had some setbacks recently where we had some. You had some equipment issues on one of our sites that went down and then, while that was happening our Texas site we were notified by the power provider that they were taking it down, for I don't remember if it was 10 or 14 days, for improvements on their grid had nothing to do with us, and so you have all of this kind of hit at the same time and if you're the CEO or another executive company, you have to be a leader. Through that. You have to solve those problems. I'm not a person who goes and screams and yells at people because I don't find it productive, but that's been the biggest is, if you're starting a company, you're going to have so many challenges. You have to be a problem solver for those challenges and especially if you have employees around you, you have to be the problem solver. And I say this about most. We're kind of an interesting blend between real estate and tech as a business, but if you're like a tech entrepreneur, you have to be a perpetual optimist. Right, you just have to be, otherwise you won't last. So you have a lot of setbacks and you have to fix those and grow and become stronger from them. But, yeah, I would say that's probably the number one is being a problem solver. Chris: I like that. So many people I've talked to. The word I would use is as an entrepreneur, you have to have grit, and it's not as easy as you think it's going to be and expect the unexpected right. Wes: Definitely expect the unexpected. Chris: Kind of like when China shut your business model down. Exactly so you know, Wes, this has been a really great conversation. I think we could go on forever, but I want to just turn to a little kind of fun personal side before we wrap up that. You know, I think we've already answered this question, because I usually ask my guests what their first job was, and I think it sounds like yours was on a potato farm in Idaho. Wes: So yeah, my first job was working on the family farm and then my second job when I was in college was I was a service station auto mechanic from skills I had learned on the farm. And then I was finally able to get out of that with an internship institutional money management firm. I think it was my junior year in college I was able to do that. But and then I went to an investment bank in New York out of college and then it's kind of been you know some of those through that to here. But yeah, the I would say my first real job outside of working for my dad on his farm was auto mechanic at a service station. Chris: That's impressive. So how long have you been in Texas? I moved to Texas in 2013. Okay, so you've been here long enough to answer my next question, which is do you prefer Tex-Mex or barbecue? Wes: If the Tex-Mex is right, I prefer Tex-Mex. Chris: Okay, I like that qualification, so we'll wrap up with this one. If you could take the Tex-Mex is right, I prefer Tex-Mex. Okay, I like that qualification, so we'll wrap up with this one. If you could take a 30-day sabbatical, where would you go and what would you do? Wes: Wow, that's a good question. It's never even crossed my mind that I would have the ability to do that 30-day sabbatical somewhere that is not a population center, probably has a beach, doesn't have to be anything specific and people can't find me on my cell phone. That would be the requirements. Chris: Those are good ones. I like those. Well, I do like the question, because most entrepreneurs never take the time to think about that right. Wes: Or have the liberty to. I have not thought about that one. Chris: Well, good, now you at least have a framework for it if it ever happens. So, wes, thanks so much for taking the time. I really appreciate getting to know you and hearing your story. It's fascinating stuff what you and your team at Applied are doing and have done already. Wes: Thanks for having me. I always love talking about our company.
Welcome back to The A100 podcast. In this week's episode, host Colleen Gallagher goes solo to dive deep into the essential world of PR and media relations tailored for associations. She peels back the layers on how to elevate your association's PR and media game to not just amplify your voice but to ensure it echoes through the corridors of your industry and beyond. Key Highlights: Demystifying Media Relations: Colleen breaks down what makes content compelling enough to be considered newsworthy, focusing on timeliness, relevance, significance and uniqueness. This segment is all about crafting messages that not only get attention but also get you the right kind of attention. Strategic Press List Management: Learn the art of building a press list that's not just a collection of contacts, but a well-curated network of media relationships. It's about quality over quantity and ensuring your stories reach the right ears. Recipe for National Media Coverage: Discover our secret ingredients for securing that coveted national spotlight. From establishing authority and leveraging current trends to the power of persistence, she shares strategies that have propelled associations onto the national stage. Nurturing Lasting Media Relationships: Colleen delves into the long-term commitment of maintaining healthy press relationships, emphasizing understanding, value exchange and reliability as key components of a robust media strategy. In this episode, we're not just sharing tips; we're providing a roadmap to transform your association's approach to PR and media relations. It's about moving from merely participating in the conversation to leading it. So whether you're looking to position your experts as industry leaders or aiming to highlight your association's achievements in a crowded marketplace, this episode is packed with insights to guide you. Subscribe to The Association 100 podcast on Spotify, Apple Podcasts or YouTube podcasts to ensure you never miss an episode, and follow us for the latest in association trends and strategies. Resources: Download O&U's Five Steps to Mastering Earned Media for Your Association eBook today! Follow us on LinkedIn at The Association 100 and OnWrd & UpWrd. Stay tuned for more episodes packed with insights into making your association excel.
Our next SF event is AI UX 2024 - let's see the new frontier for UX since last year! Last call: we are recording a preview of the AI Engineer World's Fair with swyx and Ben Dunphy, send any questions about Speaker CFPs and Sponsor Guides you have!Alessio is now hiring engineers for a new startup he is incubating at Decibel: Ideal candidate is an “ex-technical co-founder type”. Reach out to him for more!David Luan has been at the center of the modern AI revolution: he was the ~30th hire at OpenAI, he led Google's LLM efforts and co-led Google Brain, and then started Adept in 2022, one of the leading companies in the AI agents space. In today's episode, we asked David for some war stories from his time in early OpenAI (including working with Alec Radford ahead of the GPT-2 demo with Sam Altman, that resulted in Microsoft's initial $1b investment), and how Adept is building agents that can “do anything a human does on a computer" — his definition of useful AGI.Why Google *couldn't* make GPT-3While we wanted to discuss Adept, we couldn't talk to a former VP Eng of OpenAI and former LLM tech lead at Google Brain and not ask about the elephant in the room. It's often asked how Google had such a huge lead in 2017 with Vaswani et al creating the Transformer and Noam Shazeer predicting trillion-parameter models and yet it was David's team at OpenAI who ended up making GPT 1/2/3. David has some interesting answers:“So I think the real story of GPT starts at Google, of course, right? Because that's where Transformers sort of came about. However, the number one shocking thing to me was that, and this is like a consequence of the way that Google is organized…what they (should) have done would be say, hey, Noam Shazeer, you're a brilliant guy. You know how to scale these things up. Here's half of all of our TPUs. And then I think they would have destroyed us. He clearly wanted it too…You know, every day we were scaling up GPT-3, I would wake up and just be stressed. And I was stressed because, you know, you just look at the facts, right? Google has all this compute. Google has all the people who invented all of these underlying technologies. There's a guy named Noam who's really smart, who's already gone and done this talk about how he wants a trillion parameter model. And I'm just like, we're probably just doing duplicative research to what he's doing. He's got this decoder only transformer that's probably going to get there before we do. And it turned out the whole time that they just couldn't get critical mass. So during my year where I led the Google LM effort and I was one of the brain leads, you know, it became really clear why. At the time, there was a thing called the Brain Credit Marketplace. Everyone's assigned a credit. So if you have a credit, you get to buy end chips according to supply and demand. So if you want to go do a giant job, you had to convince like 19 or 20 of your colleagues not to do work. And if that's how it works, it's really hard to get that bottom up critical mass to go scale these things. And the team at Google were fighting valiantly, but we were able to beat them simply because we took big swings and we focused.”Cloning HGI for AGIHuman intelligence got to where it is today through evolution. Some argue that to get to AGI, we will approximate all the “FLOPs” that went into that process, an approach most famously mapped out by Ajeya Cotra's Biological Anchors report:The early days of OpenAI were very reinforcement learning-driven with the Dota project, but that's a very inefficient way for these models to re-learn everything. (Kanjun from Imbue shared similar ideas in her episode).David argues that there's a shortcut. We can bootstrap from existing intelligence.“Years ago, I had a debate with a Berkeley professor as to what will it actually take to build AGI. And his view is basically that you have to reproduce all the flops that went into evolution in order to be able to get there… I think we are ignoring the fact that you have a giant shortcut, which is you can behaviorally clone everything humans already know. And that's what we solved with LLMs!”LLMs today basically model intelligence using all (good!) written knowledge (see our Datasets 101 episode), and have now expanded to non-verbal knowledge (see our HuggingFace episode on multimodality). The SOTA self-supervised pre-training process is surprisingly data-efficient in taking large amounts of unstructured data, and approximating reasoning without overfitting.But how do you cross the gap from the LLMs of today to building the AGI we all want? This is why David & friends left to start Adept.“We believe the clearest framing of general intelligence is a system that can do anything a human can do in front of a computer. A foundation model for actions, trained to use every software tool, API, and webapp that exists, is a practical path to this ambitious goal” — ACT-1 BlogpostCritical Path: Abstraction with ReliabilityThe AGI dream is fully autonomous agents, but there are levels to autonomy that we are comfortable giving our agents, based on how reliable they are. In David's word choice, we always want higher levels of “abstractions” (aka autonomy), but our need for “reliability” is the practical limit on how high of an abstraction we can use.“The critical path for Adept is we want to build agents that can do a higher and higher level abstraction things over time, all while keeping an insanely high reliability standard. Because that's what turns us from research into something that customers want. And if you build agents with really high reliability standard, but are continuing pushing a level of abstraction, you then learn from your users how to get that next level of abstraction faster. So that's how you actually build the data flow. That's the critical path for the company. Everything we do is in service of that.”We saw how Adept thinks about different levels of abstraction at the 2023 Summit:The highest abstraction is the “AI Employee”, but we'll get there with “AI enabled employees”. Alessio recently gave a talk about the future of work with “services as software” at this week's Nvidia GTC (slides).No APIsUnlike a lot of large research labs, Adept's framing of AGI as "being able to use your computer like a human" carries with it a useful environmental constraint:“Having a human robot lets you do things that humans do without changing everything along the way. It's the same thing for software, right? If you go itemize out the number of things you want to do on your computer for which every step has an API, those numbers of workflows add up pretty close to zero. And so then many points along the way, you need the ability to actually control your computer like a human. It also lets you learn from human usage of computers as a source of training data that you don't get if you have to somehow figure out how every particular step needs to be some particular custom private API thing. And so I think this is actually the most practical path (to economic value).”This realization and conviction means that multimodal modals are the way to go. Instead of using function calling to call APIs to build agents, which is what OpenAI and most of the open LLM industry have done to date, Adept wants to “drive by vision”, (aka see the screen as a human sees it) and pinpoint where to click and type as a human does. No APIs needed, because most software don't expose APIs.Extra context for readers: You can see the DeepMind SIMA model in the same light: One system that learned to play a diverse set of games (instead of one dedicated model per game) using only pixel inputs and keyboard-and-mouse action outputs!The OpenInterpreter team is working on a “Computer API” that also does the same.To do this, Adept had to double down on a special kind of multimodality for knowledge work:“A giant thing that was really necessary is really fast multimodal models that are really good at understanding knowledge work and really good at understanding screens. And that is needs to kind of be the base for some of these agents……I think one big hangover primarily academic focus for multimodal models is most multimodal models are primarily trained on like natural images, cat and dog photos, stuff that's come out of the camera… (but) where are they going to be the most useful? They're going to be most useful in knowledge work tasks. That's where the majority of economic value is going to be. It's not in cat and dogs. And so if that's what it is, what do you need to train? I need to train on like charts, graphs, tables, invoices, PDFs, receipts, unstructured data, UIs. That's just a totally different pre-training corpus. And so Adept spent a lot of time building that.”With this context, you can now understand the full path of Adept's public releases:* ACT-1 (Sept 2022): a large Transformers model optimized for browser interactions. It has a custom rendering of the browser viewport that allows it to better understand it and take actions.* Persimmon-8B (Sept 2023): a permissive open LLM (weights and code here)* Fuyu-8B (Oct 2023): a small version of the multimodal model that powers Adept. Vanilla decoder-only transformer with no specialized image encoder, which allows it to handle input images of varying resolutions without downsampling.* Adept Experiments (Nov 2023): A public tool to build automations in the browser. This is powered by Adept's core technology but it's just a piece of their enterprise platform. They use it as a way to try various design ideas.* Fuyu Heavy (Jan 2024) - a new multimodal model designed specifically for digital agents and the world's third-most-capable multimodal model (beating Gemini Pro on MMMU, AI2D, and ChartQA), “behind only GPT4-V and Gemini Ultra, which are 10-20 times bigger”The Fuyu-8B post in particular exhibits a great number of examples on knowledge work multimodality:Why Adept is NOT a Research LabWith OpenAI now worth >$90b and Anthropic >$18b, it is tempting to conclude that the AI startup metagame is to build a large research lab, and attract the brightest minds and highest capital to build AGI. Our past guests (see the Humanloop episode) and (from Imbue) combined to ask the most challenging questions of the pod - with David/Adept's deep research pedigree from Deepmind and OpenAI, why is Adept not building more general foundation models (like Persimmon) and playing the academic benchmarks game? Why is Adept so focused on commercial agents instead?“I feel super good that we're doing foundation models in service of agents and all of the reward within Adept is flowing from “Can we make a better agent”…… I think pure play foundation model companies are just going to be pinched by how good the next couple of (Meta Llama models) are going to be… And then seeing the really big players put ridiculous amounts of compute behind just training these base foundation models, I think is going to commoditize a lot of the regular LLMs and soon regular multimodal models. So I feel really good that we're just focused on agents.”and the commercial grounding is his answer to Kanjun too (whom we also asked the inverse question to compare with Adept):“… the second reason I work at Adept is if you believe that actually having customers and a reward signal from customers lets you build AGI faster, which we really believe, then you should come here. And I think the examples for why that's true is for example, our evaluations are not academic evals. They're not simulator evals. They're like, okay, we have a customer that really needs us to do these particular things. We can do some of them. These are the ones they want us to, we can't do them at all. We've turned those into evals.. I think that's a degree of practicality that really helps.”And his customers seem pretty happy, because David didn't need to come on to do a sales pitch:David: “One of the things we haven't shared before is we're completely sold out for Q1.”Swyx: “Sold out of what?”David: “Sold out of bandwidth to onboard more customers.”Well, that's a great problem to have.Show Notes* David Luan* Dextro at Data Driven NYC (2015)* Adept* ACT-1* Persimmon-8B* Adept Experiments* Fuyu-8B* $350M Series B announcement* Amelia Wattenberger talk at AI Engineer Summit* FigureChapters* [00:00:00] Introductions* [00:01:14] Being employee #30 at OpenAI and its early days* [00:13:38] What is Adept and how do you define AGI?* [00:21:00] Adept's critical path and research directions* [00:26:23] How AI agents should interact with software and impact product development* [00:30:37] Analogies between AI agents and self-driving car development* [00:32:42] Balancing reliability, cost, speed and generality in AI agents* [00:37:30] Potential of foundation models for robotics* [00:39:22] Core research questions and reasons to work at AdeptTranscriptsAlessio [00:00:00]: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO in Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:15]: Hey, and today we have David Luan, CEO, co-founder of Adept in the studio. Welcome.David [00:00:20]: Yeah, thanks for having me.Swyx [00:00:21]: Been a while in the works. I've met you socially at one of those VC events and you said that you were interested in coming on and glad we finally were able to make this happen.David: Yeah, happy to be part of it.Swyx: So we like to introduce the speaker and then also just like have you talk a little bit about like what's not on your LinkedIn, what people should just generally know about you. You started a company in college, which was the first sort of real time video detection classification API that was Dextro, and that was your route to getting acquired into Axon where you're a director of AI. Then you were the 30th hire at OpenAI?David [00:00:53]: Yeah, 30, 35, something around there. Something like that.Swyx [00:00:56]: So you were VP of Eng for two and a half years to two years, briefly served as tech lead of large models at Google, and then in 2022 started Adept. So that's the sort of brief CV. Is there anything else you like want to fill in the blanks or like people should know more about?David [00:01:14]: I guess a broader story was I joined OpenAI fairly early and I did that for about two and a half to three years leading engineering there. It's really funny, I think second or third day of my time at OpenAI, Greg and Ilya pulled me in a room and we're like, you know, you should take over our directs and we'll go mostly do IC work. So that was fun, just coalescing a bunch of teams out of a couple of early initiatives that had already happened. The company, the Dota effort was going pretty hard and then more broadly trying to put bigger picture direction around what we were doing with basic research. So I spent a lot of time doing that. And then I led Google's LLM efforts, but also co-led Google Brain was one of the brain leads more broadly. You know, there's been a couple of different eras of AI research, right? If we count everything before 2012 as prehistory, which people hate it when I say that, kind of had this like you and your three best friends write a research paper that changes the world period from like 2012 to 2017. And I think the game changed in 2017 and like most labs didn't realize it, but we at OpenAI really did. I think in large part helped by like Ilya's constant beating of the drum that the world would be covered in data centers. And I think-Swyx [00:02:15]: It's causally neat.David [00:02:16]: Yeah. Well, like I think we had conviction in that, but it wasn't until we started seeing results that it became clear that that was where we had to go. But also part of it as well was for OpenAI, like when I first joined, I think one of the jobs that I had to do was how do I tell a differentiated vision for who we were technically compared to, you know, hey, we're just smaller Google Brain, or like you work at OpenAI if you live in SF and don't want to commute to Mountain View or don't want to live in London, right? That's like not enough to like hang your technical identity as a company. And so what we really did was, and I spent a lot of time pushing this, is just how do we get ourselves focused on a certain class of like giant swings and bets, right? Like how do you flip the script from you just do bottom-up research to more about how do you like leave some room for that, but really make it about like, what are the big scientific outcomes that you want to show? And then you just solve them at all costs, whether or not you care about novelty and all that stuff. And that became the dominant model for a couple of years, right? And then what's changed now is I think the number one driver of AI products over the next couple of years is going to be the deep co-design and co-evolution of product and users for feedback and actual technology. And I think labs, every tool to go do that are going to do really well. And that's a big part of why I started Adept.Alessio [00:03:20]: You mentioned Dota, any memories thinking from like the switch from RL to Transformers at the time and kind of how the industry was evolving more in the LLM side and leaving behind some of the more agent simulation work?David [00:03:33]: Like zooming way out, I think agents are just absolutely the correct long-term direction, right? You just go to find what AGI is, right? You're like, Hey, like, well, first off, actually, I don't love AGI definitions that involve human replacement because I don't think that's actually how it's going to happen. Even this definition of like, Hey, AGI is something that outperforms humans at economically valuable tasks is kind of implicit view of the world about what's going to be the role of people. I think what I'm more interested in is like a definition of AGI that's oriented around like a model that can do anything a human can do on a computer. If you go think about that, which is like super tractable, then agent is just a natural consequence of that definition. And so what did all the work we did on our own stuff like that get us was it got us a really clear formulation. Like you have a goal and you want to maximize the goal, you want to maximize reward, right? And the natural LLM formulation doesn't come with that out of the box, right? I think that we as a field got a lot right by thinking about, Hey, how do we solve problems of that caliber? And then the thing we forgot is the Novo RL is like a pretty terrible way to get there quickly. Why are we rediscovering all the knowledge about the world? Years ago, I had a debate with a Berkeley professor as to what will it actually take to build AGI. And his view is basically that you have to reproduce all the flops that went into evolution in order to be able to get there. Right.Swyx [00:04:44]: The biological basis theory. Right.David [00:04:46]: So I think we are ignoring the fact that you have a giant shortcut, which is you can behavioral clone everything humans already know. And that's what we solved with LLMs. We've solved behavioral cloning, everything that humans already know. Right. So like today, maybe LLMs is like behavioral cloning every word that gets written on the internet in the future, the multimodal models are becoming more of a thing where behavioral cloning the visual world. But really, what we're just going to have is like a universal byte model, right? Where tokens of data that have high signal come in, and then all of those patterns are like learned by the model. And then you can regurgitate any combination now. Right. So text into voice out, like image into other image out or video out or whatever, like these like mappings, right? Like all just going to be learned by this universal behavioral cloner. And so I'm glad we figured that out. And I think now we're back to the era of how do we combine this with all of the lessons we learned during the RL period. That's what's going to drive progress.Swyx [00:05:35]: I'm still going to pressure you for a few more early opening stories before we turn to the ADET stuff. On your personal site, which I love, because it's really nice, like personal, you know, story context around like your history. I need to update it. It's so old. Yeah, it's so out of date. But you mentioned GPT-2. Did you overlap with GPT-1? I think you did, right?David [00:05:53]: I actually don't quite remember. I think I was joining right around- Right around then?Swyx [00:05:57]: I was right around that, yeah. Yeah. So what I remember was Alec, you know, just kind of came in and was like very obsessed with Transformers and applying them to like Reddit sentiment analysis. Yeah, sentiment, that's right. Take us through-David [00:06:09]: Sentiment neuron, all this stuff.Swyx [00:06:10]: The history of GPT as far as you know, you know, according to you. Ah, okay.David [00:06:14]: History of GPT, according to me, that's a pretty good question. So I think the real story of GPT starts at Google, of course, right? Because that's where Transformers sort of came about. However, the number one shocking thing to me was that, and this is like a consequence of the way that Google is organized, where like, again, you and your three best friends write papers, right? Okay. So zooming way out, right? I think about my job when I was a full-time research leader as a little bit of a portfolio allocator, right? So I've got really, really smart people. My job is to convince people to coalesce around a small number of really good ideas and then run them over the finish line. My job is not actually to promote a million ideas and never have critical mass. And then as the ideas start coming together and some of them start working well, my job is to nudge resources towards the things that are really working and then start disbanding some of the things that are not working, right? That muscle did not exist during my time at Google. And I think had they had it, what they would have done would be say, hey, Noam Shazir, you're a brilliant guy. You know how to scale these things up. Here's half of all of our TPUs. And then I think they would have destroyed us. He clearly wanted it too.Swyx [00:07:17]: He's talking about trillion parameter models in 2017.David [00:07:20]: Yeah. So that's the core of the GPT story, right? Which is that, and I'm jumping around historically, right? But after GPT-2, we were all really excited about GPT-2. I can tell you more stories about that. It was the last paper that I even got to really touch before everything became more about building a research org. You know, every day we were scaling up GPT-3, I would wake up and just be stressed. And I was stressed because, you know, you just look at the facts, right? Google has all this compute. Google has all the people who invented all of these underlying technologies. There's a guy named Noam who's really smart, who's already gone and done this talk about how he wants a trillion parameter model. And I'm just like, we're probably just doing duplicative research to what he's doing, right? He's got this decoder only transformer that's probably going to get there before we do. And I was like, but like, please just like let this model finish, right? And it turned out the whole time that they just couldn't get critical mass. So during my year where I led the Google LM effort and I was one of the brain leads, you know, it became really clear why, right? At the time, there was a thing called the brain credit marketplace. And did you guys know the brain credit marketplace? No, I never heard of this. Oh, so it's actually, it's a, you can ask any Googler.Swyx [00:08:23]: It's like just like a thing that, that, I mean, look like, yeah, limited resources, you got to have some kind of marketplace, right? You know, sometimes it's explicit, sometimes it isn't, you know, just political favors.David [00:08:34]: You could. And so then basically everyone's assigned a credit, right? So if you have a credit, you get to buy end chips according to supply and demand. So if you want to go do a giant job, you had to convince like 19 or 20 of your colleagues not to do work. And if that's how it works, it's really hard to get that bottom up critical mass to go scale these things. And the team at Google were fighting valiantly, but we were able to beat them simply because we took big swings and we focused. And I think, again, that's like part of the narrative of like this phase one of AI, right? Of like this modern AI era to phase two. And I think in the same way, I think phase three company is going to out execute phase two companies because of the same asymmetry of success.Swyx [00:09:12]: Yeah. I think it's underrated how much NVIDIA works with you in the early days as well. I think maybe, I think it was Jensen. I'm not sure who circulated a recent photo of him delivering the first DGX to you guys.David [00:09:24]: I think Jensen has been a complete legend and a mastermind throughout. I have so much respect for NVIDIA. It is unreal.Swyx [00:09:34]: But like with OpenAI, like kind of give their requirements, like co-design it or just work of whatever NVIDIA gave them.David [00:09:40]: So we work really closely with them. There's, I'm not sure I can share all the stories, but examples of ones that I've found particularly interesting. So Scott Gray is amazing. I really like working with him. He was on one of my teams, the supercomputing team, which Chris Berner runs and Chris Berner still does a lot of stuff in that. As a result, like we had very close ties to NVIDIA. Actually, one of my co-founders at Adept, Eric Elson, was also one of the early GPGPU people. So he and Scott and Brian Catanzaro at NVIDIA and Jonah and Ian at NVIDIA, I think all were very close. And we're all sort of part of this group of how do we push these chips to the absolute limit? And I think that kind of collaboration helped quite a bit. I think one interesting set of stuff is knowing the A100 generation, that like quad sparsity was going to be a thing. Is that something that we want to go look into, right? And figure out if that's something that we could actually use for model training. Really what it boils down to is that, and I think more and more people realize this, six years ago, people, even three years ago, people refused to accept it. This era of AI is really a story of compute. It's really the story of how do you more efficiently map actual usable model flops to compute,Swyx [00:10:38]: Is there another GPT 2, 3 story that you love to get out there that you think is underappreciated for the amount of work that people put into it?David [00:10:48]: So two interesting GPT 2 stories. One of them was I spent a good bit of time just sprinting to help Alec get the paper out. And I remember one of the most entertaining moments was we were writing the modeling section. And I'm pretty sure the modeling section was the shortest modeling section of any ML, reasonably legitimate ML paper to that moment. It was like section three model. This is a standard vanilla decoder only transformer with like these particular things, those paragraph long if I remember correctly. And both of us were just looking at the same being like, man, the OGs in the field are going to hate this. They're going to say no novelty. Why did you guys do this work? So now it's funny to look at in hindsight that it was pivotal kind of paper, but I think it was one of the early ones where we just leaned fully into all we care about is solving problems in AI and not about, hey, is there like four different really simple ideas that are cloaked in mathematical language that doesn't actually help move the field forward?Swyx [00:11:42]: Right. And it's like you innovate on maybe like data set and scaling and not so much the architecture.David [00:11:48]: We all know how it works now, right? Which is that there's a collection of really hard won knowledge that you get only by being at the frontiers of scale. And that hard won knowledge, a lot of it's not published. A lot of it is stuff that's actually not even easily reducible to what looks like a typical academic paper. But yet that's the stuff that helps differentiate one scaling program from another. You had a second one? So the second one is, there's like some details here that I probably shouldn't fully share, but hilariously enough for the last meeting we did with Microsoft before Microsoft invested in OpenAI, Sam Altman, myself and our CFO flew up to Seattle to do the final pitch meeting. And I'd been a founder before. So I always had a tremendous amount of anxiety about partner meetings, which this basically this is what it was. I had Kevin Scott and Satya and Amy Hood, and it was my job to give the technical slides about what's the path to AGI, what's our research portfolio, all of this stuff, but it was also my job to give the GPT-2 demo. We had a slightly bigger version of GPT-2 that we had just cut maybe a day or two before this flight up. And as we all know now, model behaviors you find predictable at one checkpoint are not predictable in another checkpoint. And so I'd spent all this time trying to figure out how to keep this thing on rails. I had my canned demos, but I knew I had to go turn it around over to Satya and Kevin and let them type anything in. And that just, that really kept me up all night.Swyx [00:13:06]: Nice. Yeah.Alessio [00:13:08]: I mean, that must have helped you talking about partners meeting. You raised $420 million for Adept. The last round was a $350 million Series B, so I'm sure you do great in partner meetings.Swyx [00:13:18]: Pitchers meetings. Nice.David [00:13:20]: No, that's a high compliment coming from a VC.Alessio [00:13:22]: Yeah, no, I mean, you're doing great already for us. Let's talk about Adept. And we were doing pre-prep and you mentioned that maybe a lot of people don't understand what Adept is. So usually we try and introduce the product and then have the founders fill in the blanks, but maybe let's do the reverse. Like what is Adept? Yeah.David [00:13:38]: So I think Adept is the least understood company in the broader space of foundational models plus agents. So I'll give some color and I'll explain what it is and I'll explain also why it's actually pretty different from what people would have guessed. So the goal for Adept is we basically want to build an AI agent that can do, that can basically help humans do anything a human does on a computer. And so what that really means is we want this thing to be super good at turning natural language like goal specifications right into the correct set of end steps and then also have all the correct sensors and actuators to go get that thing done for you across any software tool that you already use. And so the end vision of this is effectively like I think in a couple of years everyone's going to have access to like an AI teammate that they can delegate arbitrary tasks to and then also be able to, you know, use it as a sounding board and just be way, way, way more productive. Right. And just changes the shape of every job from something where you're mostly doing execution to something where you're mostly actually doing like these core liberal arts skills of what should I be doing and why. Right. And I find this like really exciting and motivating because I think it's actually a pretty different vision for how AGI will play out. I think systems like Adept are the most likely systems to be proto-AGIs. But I think the ways in which we are really counterintuitive to everybody is that we've actually been really quiet because we are not a developer company. We don't sell APIs. We don't sell open source models. We also don't sell bottom up products. We're not a thing that you go and click and download the extension and like we want more users signing up for that thing. We're actually an enterprise company. So what we do is we work with a range of different companies, some like late stage multi-thousand people startups, some fortune 500s, et cetera. And what we do for them is we basically give them an out of the box solution where big complex workflows that their employees do every day could be delegated to the model. And so we look a little different from other companies in that in order to go build this full agent thing, the most important thing you got to get right is reliability. So initially zooming way back when, one of the first things that DEP did was we released this demo called Act One, right? Act One was like pretty cool. It's like kind of become a hello world thing for people to show agent demos by going to Redfin and asking to buy a house somewhere because like we did that in the original Act One demo and like showed that, showed like Google Sheets, all this other stuff. Over the last like year since that has come out, there's been a lot of really cool demos and you go play with them and you realize they work 60% of the time. But since we've always been focused on how do we build an amazing enterprise product, enterprises can't use anything that isn't in the nines of reliability. And so we've actually had to go down a slightly different tech tree than what you might find in the prompt engineering sort of plays in the agent space to get that reliability. And we've decided to prioritize reliability over all else. So like one of our use cases is crazy enough that it actually ends with a physical truck being sent to a place as the result of the agent workflow. And if you're like, if that works like 60% of the time, you're just blowing money and poor truck drivers going places.Alessio [00:16:30]: Interesting. One of the, our investment teams has this idea of services as software. I'm actually giving a talk at NVIDIA GTC about this, but basically software as a service, you're wrapping user productivity in software with agents and services as software is replacing things that, you know, you would ask somebody to do and the software just does it for you. When you think about these use cases, do the users still go in and look at the agent kind of like doing the things and can intervene or like are they totally removed from them? Like the truck thing is like, does the truck just show up or are there people in the middle checking in?David [00:17:04]: I think there's two current flaws in the framing for services as software, or I think what you just said. I think that one of them is like in our experience, as we've been rolling out Adept, the people who actually do the jobs are the most excited about it because they don't go from, I do this job to, I don't do this job. They go from, I do this job for everything, including the shitty rote stuff to I'm a supervisor. And I literally like, it's pretty magical when you watch the thing being used because now it parallelizes a bunch of the things that you had to do sequentially by hand as a human. And you can just click into any one of them and be like, Hey, I want to watch the trajectory that the agent went through to go solve this. And the nice thing about agent execution as opposed to like LLM generations is that a good chunk of the time when the agent fails to execute, it doesn't give you the wrong result. It just fails to execute. And the whole trajectory is just broken and dead and the agent knows it, right? So then those are the ones that the human then goes and solves. And so then they become a troubleshooter. They work on the more challenging stuff. They get way, way more stuff done and they're really excited about it. I think the second piece of it that we've found is our strategy as a company is to always be an augmentation company. And I think one out of principle, that's something we really care about. But two, actually, if you're framing yourself as an augmentation company, you're always going to live in a world where you're solving tasks that are a little too hard for what the model can do today and still needs a human to provide oversight, provide clarifications, provide human feedback. And that's how you build a data flywheel. That's how you actually learn from the smartest humans how to solve things models can't do today. And so I actually think that being an augmentation company forces you to go develop your core AI capabilities faster than someone who's saying, ah, okay, my job is to deliver you a lights off solution for X.Alessio [00:18:42]: Yeah. It's interesting because we've seen two parts of the market. One is we have one company that does agents for SOC analysts. People just don't have them, you know, and just they cannot attract the talent to do it. And similarly, in a software development, you have Copilot, which is the augmentation product, and then you have sweep.dev and you have these products, which they just do the whole thing. I'm really curious to see how that evolves. I agree that today the reliability is so important in the enterprise that they just don't use most of them. Yeah. Yeah. No, that's cool. But it's great to hear the story because I think from the outside, people are like, oh, a dev, they do Act One, they do Persimon, they do Fuyu, they do all this stuff. Yeah, it's just the public stuff.Swyx [00:19:20]: It's just public stuff.David [00:19:21]: So one of the things we haven't shared before is we're completely sold out for Q1. And so I think...Swyx [00:19:26]: Sold out of what?David [00:19:27]: Sold out of bandwidth to go on board more customers. And so we're like working really hard to go make that less of a bottleneck, but our expectation is that I think we're going to be significantly more public about the broader product shape and the new types of customers we want to attract later this year. So I think that clarification will happen by default.Swyx [00:19:43]: Why have you become more public? You know, if the whole push has... You're sold out, you're my enterprise, but you're also clearly putting effort towards being more open or releasing more things.David [00:19:53]: I think we just flipped over that way fairly recently. That's a good question. I think it actually boils down to two things. One, I think that, frankly, a big part of it is that the public narrative is really forming around agents as being the most important thing. And I'm really glad that's happening because when we started the company in January 2022, everybody in the field knew about the agents thing from RL, but the general public had no conception of what it was. They were still hanging their narrative hat on the tree of everything's a chatbot. And so I think now one of the things that I really care about is that when people think agent, they actually think the right thing. All sorts of different things are being called agents. Chatbots are being called agents. Things that make a function call are being called agents. To me, an agent is something that you can give a goal and get an end step workflow done correctly in the minimum number of steps. And so that's a big part of why. And I think the other part is because I think it's always good for people to be more aware of Redept as they think about what the next thing they want to do in their careers. The field is quickly pivoting in a world where foundation models are looking more and more commodity. And I think a huge amount of gain is going to happen from how do you use foundation models as the well-learned behavioral cloner to go solve agents. And I think people who want to do agents research should really come to Redept.Swyx [00:21:00]: When you say agents have become more part of the public narrative, are there specific things that you point to? I'll name a few. Bill Gates in his blog post mentioning that agents are the future. I'm the guy who made OSes, and I think agents are the next thing. So Bill Gates, I'll call that out. And then maybe Sam Altman also saying that agents are the future for open AI.David [00:21:17]: I think before that even, I think there was something like the New York Times, Cade Metz wrote a New York Times piece about it. Right now, in a bit to differentiate, I'm seeing AI startups that used to just brand themselves as an AI company, but now brand themselves as an AI agent company. It's just like, it's a term I just feel like people really want.Swyx [00:21:31]: From the VC side, it's a bit mixed. Is it? As in like, I think there are a lot of VCs where like, I would not touch any agent startups because like- Why is that? Well, you tell me.Alessio [00:21:41]: I think a lot of VCs that are maybe less technical don't understand the limitations of the-Swyx [00:21:46]: No, that's not fair.Alessio [00:21:47]: No, no, no, no. I think like- You think so? No, no. I think like the, what is possible today and like what is worth investing in, you know? And I think like, I mean, people look at you and say, well, these guys are building agents. They needed 400 million to do it. So a lot of VCs are maybe like, oh, I would rather invest in something that is tacking on AI to an existing thing, which is like easier to get the market and kind of get some of the flywheel going. But I'm also surprised a lot of funders just don't want to do agents. It's not even the funding. Sometimes we look around and it's like, why is nobody doing agents for X? Wow.David [00:22:17]: That's good to know actually. I never knew that before. My sense from my limited perspective is there's a new agent company popping up every day.Swyx [00:22:24]: So maybe I'm- They are. They are. But like I have advised people to take agents off of their title because it's so diluted.David [00:22:31]: It's now so diluted.Swyx [00:22:32]: Yeah. So then it doesn't stand for anything. Yeah.David [00:22:35]: That's a really good point.Swyx [00:22:36]: So like, you know, you're a portfolio allocator. You have people know about Persimmon, people know about Fuyu and Fuyu Heavy. Can you take us through like how you think about that evolution of that and what people should think about what that means for adepts and sort of research directions? Kind of take us through the stuff you shipped recently and how people should think about the trajectory of what you're doing.David [00:22:56]: The critical path for adepts is we want to build agents that can do a higher and higher level abstraction things over time, all while keeping an insanely high reliability standard. Because that's what turns us from research into something that customers want. And if you build agents with really high reliability standard, but are continuing pushing a level of abstraction, you then learn from your users how to get that next level of abstraction faster. So that's how you actually build the data flow. That's the critical path for the company. Everything we do is in service of that. So if you go zoom way, way back to Act One days, right? Like the core thing behind Act One is can we teach large model basically how to even actuate your computer? And I think we're one of the first places to have solved that and shown it and shown the generalization that you get when you give it various different workflows and texts. But I think from there on out, we really realized was that in order to get reliability, companies just do things in various different ways. You actually want these models to be able to get a lot better at having some specification of some guardrails for what it actually should be doing. And I think in conjunction with that, a giant thing that was really necessary is really fast multimodal models that are really good at understanding knowledge work and really good at understanding screens. And that is needs to kind of be the base for some of these agents. Back then we had to do a ton of research basically on how do we actually make that possible? Well, first off, like back in forgot exactly one month to 23, like there were no multimodal models really that you could use for things like this. And so we pushed really hard on stuff like the Fuyu architecture. I think one big hangover primarily academic focus for multimodal models is most multimodal models are primarily trained on like natural images, cat and dog photos, stuff that's come out of the camera. Coco. Yeah, right. And the Coco is awesome. Like I love Coco. I love TY. Like it's really helped the field. Right. But like that's the build one thing. I actually think it's really clear today. Multimodal models are the default foundation model, right? It's just going to supplant LLMs. Like you just train a giant multimodal model. And so for that though, like where are they going to be the most useful? They're going to be most useful in knowledge work tasks. That's where the majority of economic value is going to be. It's not in cat and dogs. Right. And so if that's what it is, what do you need to train? I need to train on like charts, graphs, tables, invoices, PDFs, receipts, unstructured data, UIs. That's just a totally different pre-training corpus. And so a depth spent a lot of time building that. And so the public for use and stuff aren't trained on our actual corpus, it's trained on some other stuff. But you take a lot of that data and then you make it really fast and make it really good at things like dense OCR on screens. And then now you have the right like raw putty to go make a good agent. So that's kind of like some of the modeling side, we've kind of only announced some of that stuff. We haven't really announced much of the agent's work, but that if you put those together with the correct product form factor, and I think the product form factor also really matters. I think we're seeing, and you guys probably see this a little bit more than I do, but we're seeing like a little bit of a pushback against the tyranny of chatbots as form factor. And I think that the reason why the form factor matters is the form factor changes what data you collect in the human feedback loop. And so I think we've spent a lot of time doing full vertical integration of all these bits in order to get to where we are.Swyx [00:25:44]: Yeah. I'll plug Amelia Wattenberger's talk at our conference, where she gave a little bit of the thinking behind like what else exists other than chatbots that if you could delegate to reliable agents, you could do. I was kind of excited at Adept experiments or Adept workflows, I don't know what the official name for it is. I was like, okay, like this is something I can use, but it seems like it's just an experiment for now. It's not your product.David [00:26:06]: So you basically just use experiments as like a way to go push various ideas on the design side to some people and just be like, yeah, we'll play with it. Actually the experiments code base underpins the actual product, but it's just the code base itself is kind of like a skeleton for us to go deploy arbitrary cards on the side.Swyx [00:26:22]: Yeah.Alessio [00:26:23]: Makes sense. I was going to say, I would love to talk about the interaction layer. So you train a model to see UI, but then there's the question of how do you actually act on the UI? I think there was some rumors about open app building agents that are kind of like, they manage the end point. So the whole computer, you're more at the browser level. I read in one of your papers, you have like a different representation, kind of like you don't just take the dome and act on it. You do a lot more stuff. How do you think about the best way the models will interact with the software and like how the development of products is going to change with that in mind as more and more of the work is done by agents instead of people?David [00:26:58]: This is, there's so much surface area here and it's actually one of the things I'm really excited about. And it's funny because I've spent most of my time doing research stuff, but there's like a whole new ball game that I've been learning about and I find it really cool. So I would say the best analogy I have to why Adept is pursuing a path of being able to use your computer like a human, plus of course being able to call APIs and being able to call APIs is the easy part, like being able to use your computer like a human is a hard part. It's in the same way why people are excited about humanoid robotics, right? In a world where you had T equals infinity, right? You're probably going to have various different form factors that robots could just be in and like all the specialization. But the fact is that humans live in a human environment. So having a human robot lets you do things that humans do without changing everything along the way. It's the same thing for software, right? If you go itemize out the number of things you want to do on your computer for which every step has an API, those numbers of workflows add up pretty close to zero. And so then many points along the way, you need the ability to actually control your computer like a human. It also lets you learn from human usage of computers as a source of training data that you don't get if you have to somehow figure out how every particular step needs to be some particular custom private API thing. And so I think this is actually the most practical path. I think because it's the most practical path, I think a lot of success will come from going down this path. I kind of think about this early days of the agent interaction layer level is a little bit like, do you all remember Windows 3.1? Like those days? Okay, this might be, I might be, I might be too old for you guys on this. But back in the day, Windows 3.1, we had this transition period between pure command line, right? Being the default into this new world where the GUI is the default and then you drop into the command line for like programmer things, right? The old way was you booted your computer up, DOS booted, and then it would give you the C colon slash thing. And you typed Windows and you hit enter, and then you got put into Windows. And then the GUI kind of became a layer above the command line. The same thing is going to happen with agent interfaces is like today we'll be having the GUI is like the base layer. And then the agent just controls the current GUI layer plus APIs. And in the future, as more and more trust is built towards agents and more and more things can be done by agents, if more UIs for agents are actually generative in and of themselves, then that just becomes a standard interaction layer. And if that becomes a standard interaction layer, what changes for software is that a lot of software is going to be either systems or record or like certain customized workflow execution engines. And a lot of how you actually do stuff will be controlled at the agent layer.Alessio [00:29:19]: And you think the rabbit interface is more like it would like you're not actually seeing the app that the model interacts with. You're just saying, hey, I need to log this call on Salesforce. And you're never actually going on salesforce.com directly as the user. I can see that being a model.David [00:29:33]: I think I don't know enough about what using rabbit in real life will actually be like to comment on that particular thing. But I think the broader idea that, you know, you have a goal, right? The agent knows how to break your goal down into steps. The agent knows how to use the underlying software and systems or record to achieve that goal for you. The agent maybe presents you information in a custom way that's only relevant to your particular goal, all just really leads to a world where you don't really need to ever interface with the apps underneath unless you're a power user for some niche thing.Swyx [00:30:03]: General question. So first of all, I think like the sort of input mode conversation. I wonder if you have any analogies that you like with self-driving, because I do think like there's a little bit of how the model should perceive the world. And you know, the primary split in self-driving is LiDAR versus camera. And I feel like most agent companies that I'm tracking are all moving towards camera approach, which is like the multimodal approach, you know, multimodal vision, very heavy vision, all the Fuyu stuff that you're doing. You're focusing on that, including charts and tables. And do you find that inspiration there from like the self-driving world? That's a good question.David [00:30:37]: I think sometimes the most useful inspiration I've found from self-driving is the levels analogy. I think that's awesome. But I think that our number one goal is for agents not to look like self-driving. We want to minimize the chances that agents are sort of a thing that you just have to bang your head at for a long time to get to like two discontinuous milestones, which is basically what's happened in self-driving. We want to be living in a world where you have the data flywheel immediately, and that takes you all the way up to the top. But similarly, I mean, compared to self-driving, like two things that people really undervalue is like really easy to driving a car down highway 101 in a sunny day demo. That actually doesn't prove anything anymore. And I think the second thing is that as a non-self-driving expert, I think one of the things that we believe really strongly is that everyone undervalues the importance of really good sensors and actuators. And actually a lot of what's helped us get a lot of reliability is a really strong focus on actually why does the model not do this thing? And the non-trivial amount of time, the time the model doesn't actually do the thing is because if you're a wizard of ozzing it yourself, or if you have unreliable actuators, you can't do the thing. And so we've had to fix a lot of those problems.Swyx [00:31:43]: I was slightly surprised just because I do generally consider the way most that we see all around San Francisco as the most, I guess, real case of agents that we have in very material ways.David [00:31:55]: Oh, that's absolutely true. I think they've done an awesome job, but it has taken a long time for self-driving to mature from when it entered the consciousness and the driving down 101 on a sunny day moment happened to now. Right. So I want to see that more compressed.Swyx [00:32:07]: And I mean, you know, cruise, you know, RIP. And then one more thing on just like, just going back on this reliability thing, something I have been holding in my head that I'm curious to get your commentary on is I think there's a trade-off between reliability and generality, or I want to broaden reliability into just general like sort of production readiness and enterprise readiness scale. Because you have reliability, you also have cost, you have speed, speed is a huge emphasis for a debt. The tendency or the temptation is to reduce generality to improve reliability and to improve cost, improve speed. Do you perceive a trade-off? Do you have any insights that solve those trade-offs for you guys?David [00:32:42]: There's definitely a trade-off. If you're at the Pareto frontier, I think a lot of folks aren't actually at the Pareto frontier. I think the way you get there is basically how do you frame the fundamental agent problem in a way that just continues to benefit from data? I think one of the main ways of being able to solve that particular trade-off is you basically just want to formulate the problem such that every particular use case just looks like you collecting more data to go make that use case possible. I think that's how you really solve. Then you get into the other problems like, okay, are you overfitting on these end use cases? You're not doing a thing where you're being super prescriptive for the end steps that the model can only do, for example.Swyx [00:33:17]: Then the question becomes, do you have one house model that you can then customize for each customer and you're fine-tuning them on each customer's specific use case?David [00:33:25]: Yeah.Swyx [00:33:26]: We're not sharing that. You're not sharing that. It's tempting, but that doesn't look like AGI to me. You know what I mean? That is just you have a good base model and then you fine-tune it.David [00:33:35]: For what it's worth, I think there's two paths to a lot more capability coming out of the models that we all are training these days. I think one path is you figure out how to spend, compute, and turn it into data. In that path, I consider search, RL, all the things that we all love in this era as part of that path, like self-play, all that stuff. The second path is how do you get super competent, high intelligence demonstrations from humans? I think the right way to move forward is you kind of want to combine the two. The first one gives you maximum sample efficiency for a little second, but I think that it's going to be hard to be running at max speed towards AGI without actually solving a bit of both.Swyx [00:34:16]: You haven't talked much about synthetic data, as far as I can tell. Probably this is a bit too much of a trend right now, but any insights on using synthetic data to augment the expensive human data?David [00:34:26]: The best part about framing AGI as being able to help people do things on computers is you have an environment.Swyx [00:34:31]: Yes. So you can simulate all of it.David [00:34:35]: You can do a lot of stuff when you have an environment.Alessio [00:34:37]: We were having dinner for our one-year anniversary. Congrats. Yeah. Thank you. Raza from HumanLoop was there, and we mentioned you were coming on the pod. This is our first-Swyx [00:34:45]: So he submitted a question.Alessio [00:34:46]: Yeah, this is our first, I guess, like mailbag question. He asked, when you started GPD 4 Data and Exist, now you have a GPD 4 vision and help you building a lot of those things. How do you think about the things that are unique to you as Adept, and like going back to like the maybe research direction that you want to take the team and what you want people to come work on at Adept, versus what is maybe now become commoditized that you didn't expect everybody would have access to?David [00:35:11]: Yeah, that's a really good question. I think implicit in that question, and I wish he were tier two so he can push back on my assumption about his question, but I think implicit in that question is calculus of where does advantage accrue in the overall ML stack. And maybe part of the assumption is that advantage accrues solely to base model scaling. But I actually believe pretty strongly that the way that you really win is that you have to go build an agent stack that is much more than that of the base model itself. And so I think like that is always going to be a giant advantage of vertical integration. I think like it lets us do things like have a really, really fast base model, is really good at agent things, but is bad at cat and dog photos. It's pretty good at cat and dog photos. It's not like soda at cat and dog photos, right? So like we're allocating our capacity wisely, right? That's like one thing that you really get to do. I also think that the other thing that is pretty important now in the broader foundation modeling space is I feel despite any potential concerns about how good is agents as like a startup area, right? Like we were talking about earlier, I feel super good that we're doing foundation models in service of agents and all of the reward within Adept is flowing from can we make a better agent? Because right now I think we all see that, you know, if you're training on publicly available web data, you put in the flops and you do reasonable things, then you get decent results. And if you just double the amount of compute, then you get predictably better results. And so I think pure play foundation model companies are just going to be pinched by how good the next couple of llamas are going to be and the next what good open source thing. And then seeing the really big players put ridiculous amounts of compute behind just training these base foundation models, I think is going to commoditize a lot of the regular LLMs and soon regular multimodal models. So I feel really good that we're just focused on agents.Swyx [00:36:56]: So you don't consider yourself a pure play foundation model company?David [00:36:59]: No, because if we were a pure play foundation model company, we would be training general foundation models that do summarization and all this other...Swyx [00:37:06]: You're dedicated towards the agent. Yeah.David [00:37:09]: And our business is an agent business. We're not here to sell you tokens, right? And I think like selling tokens, unless there's like a...Swyx [00:37:14]: Not here to sell you tokens. I love it.David [00:37:16]: It's like if you have a particular area of specialty, right? Then you won't get caught in the fact that everyone's just scaling to ridiculous levels of compute. But if you don't have a specialty, I find that, I think it's going to be a little tougher.Swyx [00:37:27]: Interesting. Are you interested in robotics at all? Just a...David [00:37:30]: I'm personally fascinated by robotics. I've always loved robotics.Swyx [00:37:33]: Embodied agents as a business, you know, Figure is like a big, also sort of open AI affiliated company that raises a lot of money.David [00:37:39]: I think it's cool. I think, I mean, I don't know exactly what they're doing, but...Swyx [00:37:44]: Robots. Yeah.David [00:37:46]: Well, I mean, that's a...Swyx [00:37:47]: Yeah. What question would you ask? If we had them on, what would you ask them?David [00:37:50]: Oh, I just want to understand what their overall strategy is going to be between now and when there's reliable stuff to be deployed. But honestly, I just don't know enough about it.Swyx [00:37:57]: And if I told you, hey, fire your entire warehouse workforce and, you know, put robots in there, isn't that a strategy? Oh yeah.David [00:38:04]: Yeah. Sorry. I'm not questioning whether they're doing smart things. I genuinely don't know what they're doing as much, but I think there's two things. One, I'm so excited for someone to train a foundation model of robots. It's just, I think it's just going to work. Like I will die on this hill, but I mean, like again, this whole time, like we've been on this podcast, we're just going to continually saying these models are basically behavioral cloners. Right. So let's go behavioral clone all this like robot behavior. Right. And then you figure out everything else you have to do in order to teach you how to solve a new problem. That's going to work. I'm super stoked for that. I think unlike what we're doing with helping humans with knowledge work, it just sounds like a more zero sum job replacement play. Right. And I'm personally less excited about that.Alessio [00:38:46]: We had a Ken June from InBoo on the podcast. We asked her why people should go work there and not at Adept.Swyx [00:38:52]: Oh, that's so funny.Alessio [00:38:54]: Well, she said, you know, there's space for everybody in this market. We're all doing interesting work. And she said, they're really excited about building an operating system for agent. And for her, the biggest research thing was like getting models, better reasoning and planning for these agents. The reverse question to you, you know, why should people be excited to come work at Adept instead of InBoo? And maybe what are like the core research questions that people should be passionate about to have fun at Adept? Yeah.David [00:39:22]: First off, I think that I'm sure you guys believe this too. The AI space to the extent there's an AI space and the AI agent space are both exactly as she likely said, I think colossal opportunities and people are just going to end up winning in different areas and a lot of companies are going to do well. So I really don't feel that zero something at all. I would say to like change the zero sum framing is why should you be at Adept? I think there's two huge reasons to be at Adept. I think one of them is everything we do is in the service of like useful agents. We're not a research lab. We do a lot of research in service of that goal, but we don't think about ourselves as like a classic research lab at all. And I think the second reason I work at Adept is if you believe that actually having customers and a reward signal from customers lets you build a GI faster, which we really believe, then you should come here. And I think the examples for why that's true is for example, our evaluations, they're not academic evals. They're not simulator evals. They're like, okay, we have a customer that really needs us to do these particular things. We can do some of them. These are the ones they want us to, we can't do them at all. We've turned those into evals, solve it, right? I think that's really cool. Like everybody knows a lot of these evals are like pretty saturated and the new ones that even are not saturated. You look at someone and you're like, is this actually useful? Right? I think that's a degree of practicality that really helps. Like we're equally excited about the same problems around reasoning and planning and generalization and all of this stuff. They're very grounded in actual needs right now, which is really cool.Swyx [00:40:45]: Yeah. This has been a wonderful dive. You know, I wish we had more time, but I would just leave it kind of open to you. I think you have broad thoughts, you know, just about
This Friday we're doing a special crossover event in SF with of SemiAnalysis (previous guest!), and we will do a live podcast on site. RSVP here. Also join us on June 25-27 for the biggest AI Engineer conference of the year!Replicate is one of the most popular AI inference providers, reporting over 2 million users as of their $40m Series B with a16z. But how did they get there? The Definitive Replicate Story (warts and all)Their overnight success took 5 years of building, and it all started with arXiv Vanity, which was a 2017 vacation project that scrapes arXiv PDFs and re-renders them into semantic web pages that reflow nicely with better typography and whitespace. From there, Ben and Andreas' idea was to build tools to make ML research more robust and reproducible by making it easy to share code artefacts alongside papers. They had previously created Fig, which made it easy to spin up dev environments; it was eventually acquired by Docker and turned into `docker-compose`, the industry standard way to define services from containerized applications. 2019: CogThe first iteration of Replicate was a Fig-equivalent for ML workloads which they called Cog; it made it easy for researchers to package all their work and share it with peers for review and reproducibility. But they found that researchers were terrible users: they'd do all this work for a paper, publish it, and then never return to it again. “We talked to a bunch of researchers and they really wanted that.... But how the hell is this a business, you know, like how are we even going to make any money out of this? …So we went and talked to a bunch of companies trying to sell them something which didn't exist. So we're like, hey, do you want a way to share research inside your company so that other researchers or say like the product manager can test out the machine learning model? They're like, maybe. Do you want like a deployment platform for deploying models? Do you want a central place for versioning models? We were trying to think of lots of different products we could sell that were related to this thing…So we then got halfway through our YC batch. We hadn't built a product. We had no users. We had no idea what our business was going to be because we couldn't get anybody to like buy something which didn't exist. And actually there was quite a way through our, I think it was like two thirds the way through our YC batch or something. And we're like, okay, well we're kind of screwed now because we don't have anything to show at demo day.”The team graduated YCombinator with no customers, no product and nothing to demo - which was fine because demo day got canceled as the YC W'20 class graduated right into the pandemic. The team spent the next year exploring and building Covid tools.2021: CLIP + GAN = PixRayBy 2021, OpenAI released CLIP. Overnight dozens of Discord servers got spun up to hack on CLIP + GANs. Unlike academic researchers, this community was constantly releasing new checkpoints and builds of models. PixRay was one of the first models being built on Replicate, and it quickly started taking over the community. Chris Dixon has a famous 2010 post titled “The next big thing will start out looking like a toy”; image generation would have definitely felt like a toy in 2021, but it gave Replicate its initial boost.2022: Stable DiffusionIn August 2022 Stable Diffusion came out, and all the work they had been doing to build this infrastructure for CLIP / GANs models became the best way for people to share their StableDiffusion fine-tunes:And like the first week we saw people making animation models out of it. We saw people make game texture models that use circular convolutions to make repeatable textures. We saw a few weeks later, people were fine tuning it so you could put your face in these models and all of these other ways. […] So tons of product builders wanted to build stuff with it. And we were just sitting in there in the middle, as the interface layer between all these people who wanted to build, and all these machine learning experts who were building cool models. And that's really where it took off. Incredible supply, incredible demand, and we were just in the middle.(Stable Diffusion also spawned Latent Space as a newsletter)The landing page paved the cowpath for the intense interest in diffusion model APIs.2023: Llama & other multimodal LLMsBy 2023, Replicate's growing visibility in the Stable Diffusion indie hacker community came from top AI hackers like Pieter Levels and Danny Postmaa, each making millions off their AI apps:Meta then released LLaMA 1 and 2 (our coverage of it), greatly pushing forward the SOTA open source model landscape. Demand for text LLMs and other modalities rose, and Replicate broadened its focus accordingly, culminating in a $18m Series A and $40m Series B from a16z (at a $350m valuation).Building standards for the AI worldNow that the industry is evolving from toys to enterprise use cases, all these companies are working to set standards for their own space. We cover this at ~45 mins in the podcast. Some examples:* LangChain has been trying to establish "chain” as the standard mental models when putting multiple prompts and models together, and the “LangChain Expression Language” to go with it. (Our episode with Harrison)* LLamaHub for packaging RAG utilities. (Our episode with Jerry)* Ollama's Modelfile to define runtimes for different model architectures. These are usually targeted at local inference. * Cog (by Replicate) to create environments to which you can easily attach CUDA devices and make it easy to spin up inference on remote servers. * GGUF as the filetype ggml-based executors. None of them have really broken out yet, but this is going to become a fiercer competition as the market matures. Full Video PodcastAs a reminder, all Latent Space pods now come in full video on our YouTube, with bonus content that we cut for time!Show Notes* Ben Firshman* Replicate* Free $10 credit for Latent Space readers* Andreas Jansson (Ben's co-founder)* Charlie Holtz (Replicate's Hacker in Residence)* Fig (now Docker Compose)* Command Line Interface Guidelines (clig)* Apple Human Interface Guidelines* arXiv Vanity* Open Interpreter* PixRay* SF Compute* Big Sleep by Advadnoun* VQGAN-CLIP by Rivers Have WingsTimestamps* [00:00:00] Introductions* [00:01:17] Low latency is all you need* [00:04:08] Evolution of CLIs* [00:05:59] How building ArxivVanity led to Replicate* [00:11:37] Making ML research replicable with containers* [00:17:22] Doing YC in 2020 and pivoting to tools for COVID* [00:20:22] Launching the first version of Replicate* [00:25:51] Embracing the generative image community* [00:28:04] Getting reverse engineered into an API product* [00:31:25] Growing to 2 million users* [00:34:29] Indie vs Enterprise customers* [00:37:09] How Unsplash uses Replicate* [00:38:29] Learnings from Docker that went into Cog* [00:45:25] Creating AI standards* [00:50:05] Replicate's compute availability* [00:53:55] Fixing GPU waste* [01:00:39] What's open source AI?* [01:04:46] Building for AI engineers* [01:06:41] Hiring at ReplicateThis summary covers the full range of topics discussed throughout the episode, providing a comprehensive overview of the content and insights shared.TranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO in Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:14]: Hey, and today we have Ben Firshman in the studio. Welcome Ben.Ben [00:00:18]: Hey, good to be here.Swyx [00:00:19]: Ben, you're a co-founder and CEO of Replicate. Before that, you were most notably founder of Fig, which became Docker Compose. You also did a couple of other things before that, but that's what a lot of people know you for. What should people know about you that, you know, outside of your, your sort of LinkedIn profile?Ben [00:00:35]: Yeah. Good question. I think I'm a builder and tinkerer, like in a very broad sense. And I love using my hands to make things. So like I work on, you know, things may be a bit closer to tech, like electronics. I also like build things out of wood and I like fix cars and I fix my bike and build bicycles and all this kind of stuff. And there's so much, I think I've learned from transferable skills, from just like working in the real world to building things, building things in software. And you know, it's so much about being a builder, both in real life and, and in software that crosses over.Swyx [00:01:11]: Is there a real world analogy that you use often when you're thinking about like a code architecture or problem?Ben [00:01:17]: I like to build software tools as if they were something real. So I wrote this thing called the command line interface guidelines, which was a bit like sort of the Mac human interface guidelines, but for command line interfaces, I did it with the guy I created Docker Compose with and a few other people. And I think something in there, I think I described that your command line interface should feel like a big iron machine where you pull a lever and it goes clunk and like things should respond within like 50 milliseconds as if it was like a real life thing. And like another analogy here is like in the real life, you know, when you press a button on an electronic device and it's like a soft switch and you press it and nothing happens and there's no physical feedback of anything happening, then like half a second later, something happens. Like that's how a lot of software feels, but instead like software should feel more like something that's real where you touch, you pull a physical lever and the physical lever moves, you know, and I've taken that lesson of kind of human interface to, to software a ton. You know, it's all about kind of low latency of feeling, things feeling really solid and robust, both the command lines and, and user interfaces as well.Swyx [00:02:22]: And how did you operationalize that for Fig or Docker?Ben [00:02:27]: A lot of it's just low latency. Actually, we didn't do it very well for Fig in the first place. We used Python, which was a big mistake where Python's really hard to get booting up fast because you have to load up the whole Python runtime before it can run anything. Okay. Go is much better at this where like Go just instantly starts.Swyx [00:02:45]: You have to be under 500 milliseconds to start up?Ben [00:02:48]: Yeah, effectively. I mean, I mean, you know, perception of human things being immediate is, you know, something like a hundred milliseconds. So anything like that is, is yeah, good enough.Swyx [00:02:57]: Yeah. Also, I should mention, since we're talking about your side projects, well, one thing is I am maybe one of a few fellow people who have actually written something about CLI design principles because I was in charge of the Netlify CLI back in the day and had many thoughts. One of my fun thoughts, I'll just share it in case you have thoughts, is I think CLIs are effectively starting points for scripts that are then run. And the moment one of the script's preconditions are not fulfilled, typically they end. So the CLI developer will just exit the program. And the way that I designed, I really wanted to create the Netlify dev workflow was for it to be kind of a state machine that would resolve itself. If it detected a precondition wasn't fulfilled, it would actually delegate to a subprogram that would then fulfill that precondition, asking for more info or waiting until a condition is fulfilled. Then it would go back to the original flow and continue that. I don't know if that was ever tried or is there a more formal definition of it? Because I just came up with it randomly. But it felt like the beginnings of AI in the sense that when you run a CLI command, you have an intent to do something and you may not have given the CLI all the things that it needs to do, to execute that intent. So that was my two cents.Ben [00:04:08]: Yeah, that reminds me of a thing we sort of thought about when writing the CLI guidelines, where CLIs were designed in a world where the CLI was really a programming environment and it's primarily designed for machines to use all of these commands and scripts. Whereas over time, the CLI has evolved to humans. It was back in a world where the primary way of using computers was writing shell scripts effectively. We've transitioned to a world where actually humans are using CLI programs much more than they used to. And the current sort of best practices about how Unix was designed, there's lots of design documents about Unix from the 70s and 80s, where they say things like, command line commands should not output anything on success. It should be completely silent, which makes sense if you're using it in a shell script. But if a user is using that, it just looks like it's broken. If you type copy and it just doesn't say anything, you assume that it didn't work as a new user. I think what's really interesting about the CLI is that it's actually a really good, to your point, it's a really good user interface where it can be like a conversation, where it feels like you're, instead of just like you telling the computer to do this thing and either silently succeeding or saying, no, you did, failed, it can guide you in the right direction and tell you what your intent might be, and that kind of thing in a way that's actually, it's almost more natural to a CLI than it is in a graphical user interface because it feels like this back and forth with the computer, almost funnily like a language model. So I think there's some interesting intersection of CLIs and language models actually being very sort of closely related and a good fit for each other.Swyx [00:05:59]: Yeah, I'll say one of the surprises from last year, I worked on a coding agent, but I think the most successful coding agent of my cohort was Open Interpreter, which was a CLI implementation. And I have chronically, even as a CLI person, I have chronically underestimated the CLI as a useful interface. You also developed ArchiveVanity, which you recently retired after a glorious seven years.Ben [00:06:22]: Something like that.Swyx [00:06:23]: Which is nice, I guess, HTML PDFs.Ben [00:06:27]: Yeah, that was actually the start of where Replicate came from. Okay, we can tell that story. So when I quit Docker, I got really interested in science infrastructure, just as like a problem area, because it is like science has created so much progress in the world. The fact that we're, you know, can talk to each other on a podcast and we use computers and the fact that we're alive is probably thanks to medical research, you know. But science is just like completely archaic and broken and it's like 19th century processes that just happen to be copied to the internet rather than take into account that, you know, we can transfer information at the speed of light now. And the whole way science is funded and all this kind of thing is all kind of very broken. And there's just so much potential for making science work better. And I realized that I wasn't a scientist and I didn't really have any time to go and get a PhD and become a researcher, but I'm a tool builder and I could make existing scientists better at their job. And if I could make like a bunch of scientists a little bit better at their job, maybe that's the kind of equivalent of being a researcher. So one particular thing I dialed in on is just how science is disseminated in that all of these PDFs, quite often behind paywalls, you know, on the internet.Swyx [00:07:34]: And that's a whole thing because it's funded by national grants, government grants, then they're put behind paywalls. Yeah, exactly.Ben [00:07:40]: That's like a whole, yeah, I could talk for hours about that. But the particular thing we got dialed in on was, interestingly, these PDFs are also, there's a bunch of open science that happens as well. So math, physics, computer science, machine learning, notably, is all published on the archive, which is actually a surprisingly old institution.Swyx [00:08:00]: Some random Cornell.Ben [00:08:01]: Yeah, it was just like somebody in Cornell who started a mailing list in the 80s. And then when the web was invented, they built a web interface around it. Like it's super old.Swyx [00:08:11]: And it's like kind of like a user group thing, right? That's why they're all these like numbers and stuff.Ben [00:08:15]: Yeah, exactly. Like it's a bit like something, yeah. That's where all basically all of math, physics and computer science happens. But it's still PDFs published to this thing. Yeah, which is just so infuriating. The web was invented at CERN, a physics institution, to share academic writing. Like there are figure tags, there are like author tags, there are heading tags, there are site tags. You know, hyperlinks are effectively citations because you want to link to another academic paper. But instead, you have to like copy and paste these things and try and get around paywalls. Like it's absurd, you know. And now we have like social media and things, but still like academic papers as PDFs, you know. This is not what the web was for. So anyway, I got really frustrated with that. And I went on vacation with my old friend Andreas. So we were, we used to work together in London on a startup, at somebody else's startup. And we were just on vacation in Greece for fun. And he was like trying to read a machine learning paper on his phone, you know, like we had to like zoom in and like scroll line by line on the PDF. And he was like, this is f*****g stupid. So I was like, I know, like this is something we discovered our mutual hatred for this, you know. And we spent our vacation sitting by the pool, like making latex to HTML, like converters, making the first version of Archive Vanity. Anyway, that was up then a whole thing. And the story, we shut it down recently because they caught the eye of Archive. They were like, oh, this is great. We just haven't had the time to work on this. And what's tragic about the Archive, it's like this project of Cornell that's like, they can barely scrounge together enough money to survive. I think it might be better funded now than it was when we were, we were collaborating with them. And compared to these like scientific journals, it's just that this is actually where the work happens. But they just have a fraction of the money that like these big scientific journals have, which is just so tragic. But anyway, they were like, yeah, this is great. We can't afford to like do it, but do you want to like as a volunteer integrate arXiv Vanity into arXiv?Swyx [00:10:05]: Oh, you did the work.Ben [00:10:06]: We didn't do the work. We started doing the work. We did some. I think we worked on this for like a few months to actually get it integrated into arXiv. And then we got like distracted by Replicate. So a guy called Dan picked up the work and made it happen. Like somebody who works on one of the, the piece of the libraries that powers arXiv Vanity. Okay.Swyx [00:10:26]: And the relationship with arXiv Sanity?Ben [00:10:28]: None.Swyx [00:10:30]: Did you predate them? I actually don't know the lineage.Ben [00:10:32]: We were after, we both were both users of arXiv Sanity, which is like a sort of arXiv...Ben [00:10:37]: Which is Andre's RecSys on top of arXiv.Ben [00:10:40]: Yeah. Yeah. And we were both users of that. And I think we were trying to come up with a working name for arXiv and Andreas just like cracked a joke of like, oh, let's call it arXiv Vanity. Let's make the papers look nice. Yeah. Yeah. And that was the working name and it just stuck.Swyx [00:10:52]: Got it.Ben [00:10:53]: Got it.Alessio [00:10:54]: Yeah. And then from there, tell us more about why you got distracted, right? So Replicate, maybe it feels like an overnight success to a lot of people, but you've been building this since 2019. Yeah.Ben [00:11:04]: So what prompted the start?Alessio [00:11:05]: And we've been collaborating for even longer.Ben [00:11:07]: So we created arXiv Vanity in 2017. So in some sense, we've been doing this almost like six, seven years now, a classic seven year.Swyx [00:11:16]: Overnight success.Ben [00:11:17]: Yeah. Yes. We did arXiv Vanity and then worked on a bunch of like surrounding projects. I was still like really interested in science publishing at that point. And I'm trying to remember, because I tell a lot of like the condensed story to people because I can't really tell like a seven year history. So I'm trying to figure out like the right. Oh, we got room. The right length.Swyx [00:11:35]: We want to nail the definitive Replicate story here.Ben [00:11:37]: One thing that's really interesting about these machine learning papers is that these machine learning papers are published on arXiv and a lot of them are actual fundamental research. So like should be like prose describing a theory. But a lot of them are just running pieces of software that like a machine learning researcher made that did something, you know, it was like an image classification model or something. And they managed to make an image classification model that was better than the existing state of the art. And they've made an actual running piece of software that does image segmentation. And then what they had to do is they then had to take that piece of software and write it up as prose and math in a PDF. And what's frustrating about that is like if you want to. So this was like Andreas is, Andreas was a machine learning engineer at Spotify. And some of his job was like he did pure research as well. Like he did a PhD and he was doing a lot of stuff internally. But part of his job was also being an engineer and taking some of these existing things that people have made and published and trying to apply them to actual problems at Spotify. And he was like, you know, you get given a paper which like describes roughly how the model works. It's probably listing lots of crucial information. There's sometimes code on GitHub. More and more there's code on GitHub. But back then it was kind of relatively rare. But it's quite often just like scrappy research code and didn't actually run. And, you know, there was maybe the weights that were on Google Drive, but they accidentally deleted the weights of Google Drive, you know, and it was like really hard to like take this stuff and actually use it for real things. We just started talking together about like his problems at Spotify and I connected this back to my work at Docker as well. I was like, oh, this is what we created containers for. You know, we solved this problem for normal software by putting the thing inside a container so you could ship it around and it kept on running. So we were sort of hypothesizing about like, hmm, what if we put machine learning models inside containers so they could actually be shipped around and they could be defined in like some production ready formats and other researchers could run them to generate baselines and you could people who wanted to actually apply them to real problems in the world could just pick up the container and run it, you know. And we then thought this is quite whether it gets normally in this part of the story I skip forward to be like and then we created cog this container stuff for machine learning models and we created Replicate, the place for people to publish these machine learning models. But there's actually like two or three years between that. The thing we then got dialed into was Andreas was like, what if there was a CI system for machine learning? It's like one of the things he really struggled with as a researcher is generating baselines. So when like he's writing a paper, he needs to like get like five other models that are existing work and get them running.Swyx [00:14:21]: On the same evals.Ben [00:14:22]: Exactly, on the same evals so you can compare apples to apples because you can't trust the numbers in the paper.Swyx [00:14:26]: So you can be Google and just publish them anyway.Ben [00:14:31]: So I think this was coming from the thinking of like there should be containers for machine learning, but why are people going to use that? Okay, maybe we can create a supply of containers by like creating this useful tool for researchers. And the useful tool was like, let's get researchers to package up their models and push them to the central place where we run a standard set of benchmarks across the models so that you can trust those results and you can compare these models apples to apples and for like a researcher for Andreas, like doing a new piece of research, he could trust those numbers and he could like pull down those models, confirm it on his machine, use the standard benchmark to then measure his model and you know, all this kind of stuff. And so we started building that. That's what we applied to YC with, got into YC and we started sort of building a prototype of this. And then this is like where it all starts to fall apart. We were like, okay, that sounds great. And we talked to a bunch of researchers and they really wanted that and that sounds brilliant. That's a great way to create a supply of like models on this research platform. But how the hell is this a business, you know, like how are we even going to make any money out of this? And we're like, oh s**t, that's like the, that's the real unknown here of like what the business is. So we thought it would be a really good idea to like, okay, before we get too deep into this, let's try and like reduce the risk of this turning into a business. So let's try and like research what the business could be for this research tool effectively. So we went and talked to a bunch of companies trying to sell them something which didn't exist. So we're like, hey, do you want a way to share research inside your company so that other researchers or say like the product manager can test out the machine learning model? They're like, maybe. And we were like, do you want like a deployment platform for deploying models? Like, do you want like a central place for versioning models? Like we're trying to think of like lots of different like products we could sell that were like related to this thing. And terrible idea. Like we're not sales people and like people don't want to buy something that doesn't exist. I think some people can pull this off, but we were just like, you know, a bunch of product people, products and engineer people, and we just like couldn't pull this off. So we then got halfway through our YC batch. We hadn't built a product. We had no users. We had no idea what our business was going to be because we couldn't get anybody to like buy something which didn't exist. And actually there was quite a way through our, I think it was like two thirds the way through our YC batch or something. And we're like, okay, well we're kind of screwed now because we don't have anything to show at demo day. And then we then like tried to figure out, okay, what can we build in like two weeks that'll be something. So we like desperately tried to, I can't remember what we've tried to build at that point. And then two weeks before demo day, I just remember it was all, we were going down to Mountain View every week for dinners and we got called on to like an all hands Zoom call, which was super weird. We're like, what's going on? And they were like, don't come to dinner tomorrow. And we realized, we kind of looked at the news and we were like, oh, there's a pandemic going on. We were like so deep in our startup. We were just like completely oblivious to what was going on around us.Swyx [00:17:20]: Was this Jan or Feb 2020?Ben [00:17:22]: This was March 2020. March 2020. 2020.Swyx [00:17:25]: Yeah. Because I remember Silicon Valley at the time was early to COVID. Like they started locking down a lot faster than the rest of the US.Ben [00:17:32]: Yeah, exactly. And I remember, yeah, soon after that, like there was the San Francisco lockdowns and then like the YC batch just like stopped. There wasn't demo day and it was in a sense a blessing for us because we just kind ofSwyx [00:17:43]: In the normal course of events, you're actually allowed to defer to a future demo day. Yeah.Ben [00:17:51]: So we didn't even take any defer because it just kind of didn't happen.Swyx [00:17:55]: So was YC helpful?Ben [00:17:57]: Yes. We completely screwed up the batch and that was our fault. I think the thing that YC has become incredibly valuable for us has been after YC. I think there was a reason why we couldn't, didn't need to do YC to start with because we were quite experienced. We had done some startups before. We were kind of well connected with VCs, you know, it was relatively easy to raise money because we were like a known quantity. You know, if you go to a VC and be like, Hey, I made this piece of-Swyx [00:18:24]: It's Docker Compose for AI.Ben [00:18:26]: Exactly. Yeah. And like, you know, people can pattern match like that and they can have some trust, you know what you're doing. Whereas it's much harder for people straight out of college and that's where like YC sweet spot is like helping people straight out of college who are super promising, like figure out how to do that.Swyx [00:18:40]: No credentials.Ben [00:18:41]: Yeah, exactly. We don't need that. But the thing that's been incredibly useful for us since YC has been, this was actually, I think, so Docker was a YC company and Solomon, the founder of Docker, I think told me this. He was like, a lot of people underestimate the value of YC after you finish the batch. And his biggest regret was like not staying in touch with YC. I might be misattributing this, but I think it was him. And so we made a point of that. And we just stayed in touch with our batch partner, who Jared at YC has been fantastic.Ben [00:19:10]: Jared Friedman. All of like the team at YC, there was the growth team at YC when they were still there and they've been super helpful. And two things have been super helpful about that is like raising money, like they just know exactly how to raise money. And they've been super helpful during that process in all of our rounds, like we've done three rounds since we did YC and they've been super helpful during the whole process. And also just like reaching a ton of customers. So like the magic of YC is that you have all of, like there's thousands of YC companies, I think, on the order of thousands, I think. And they're all of your first customers. And they're like super helpful, super receptive, really want to like try out new things. You have like a warm intro to every one of them basically. And there's this mailing list where you can post about updates to your products, which is like really receptive. And that's just been fantastic for us. Like we've just like got so many of our users and customers through YC. Yeah.Swyx [00:20:00]: Well, so the classic criticism or the sort of, you know, pushback is people don't buy you because you are both from YC. But at least they'll open the email. Right. Like that's the... Okay.Ben [00:20:13]: Yeah. Yeah. Yeah.Swyx [00:20:16]: So that's been a really, really positive experience for us. And sorry, I interrupted with the YC question. Like you were, you make it, you just made it out of the YC, survived the pandemic.Ben [00:20:22]: I'll try and condense this a little bit. Then we started building tools for COVID weirdly. We were like, okay, we don't have a startup. We haven't figured out anything. What's the most useful thing we could be doing right now?Swyx [00:20:32]: Save lives.Ben [00:20:33]: So yeah. Let's try and save lives. I think we failed at that as well. We had a bunch of products that didn't really go anywhere. We kind of worked on, yeah, a bunch of stuff like contact tracing, which turned out didn't really be a useful thing. Sort of Andreas worked on like a door dash for like people delivering food to people who are vulnerable. What else did we do? The meta problem of like helping people direct their efforts to what was most useful and a few other things like that. It didn't really go anywhere. So we're like, okay, this is not really working either. We were considering actually just like doing like work for COVID. We have this decision document early on in our company, which is like, should we become a like government app contracting shop? We decided no.Swyx [00:21:11]: Because you also did work for the gov.uk. Yeah, exactly.Ben [00:21:14]: We had experience like doing some like-Swyx [00:21:17]: And the Guardian and all that.Ben [00:21:18]: Yeah. For like government stuff. And we were just like really good at building stuff. Like we were just like product people. Like I was like the front end product side and Andreas was the back end side. So we were just like a product. And we were working with a designer at the time, a guy called Mark, who did our early designs for Replicate. And we were like, hey, what if we just team up and like become and build stuff? And yeah, we gave up on that in the end for, I can't remember the details. So we went back to machine learning. And then we were like, well, we're not really sure if this is going to work. And one of my most painful experiences from previous startups is shutting them down. Like when you realize it's not really working and having to shut it down, it's like a ton of work and it's people hate you and it's just sort of, you know. So we were like, how can we make something we don't have to shut down? And even better, how can we make something that won't page us in the middle of the night? So we made an open source project. We made a thing which was an open source Weights and Biases, because we had this theory that like people want open source tools. There should be like an open source, like version control, experiment tracking like thing. And it was intuitive to us and we're like, oh, we're software developers and we like command line tools. Like everyone loves command line tools and open source stuff, but machine learning researchers just really didn't care. Like they just wanted to click on buttons. They didn't mind that it was a cloud service. It was all very visual as well, that you need lots of graphs and charts and stuff like this. So it wasn't right. Like it was right. We actually were building something that Andreas made at Spotify for just like saving experiments to cloud storage automatically, but other people didn't really want this. So we kind of gave up on that. And then that was actually originally called Replicate and we renamed that out of the way. So it's now called Keepsake and I think some people still use it. Then we sort of came back, we looped back to our original idea. So we were like, oh, maybe there was a thing in that thing we were originally sort of thinking about of like researchers sharing their work and containers for machine learning models. So we just built that. And at that point we were kind of running out of the YC money. So we were like, okay, this like feels good though. Let's like give this a shot. So that was the point we raised a seed round. We raised seed round. Pre-launch. We raised pre-launch and pre-team. It was an idea basically. We had a little prototype. It was just an idea and a team. But we were like, okay, like, you know, bootstrapping this thing is getting hard. So let's actually raise some money. Then we made Cog and Replicate. It initially didn't have APIs, interestingly. It was just the bit that I was talking about before of helping researchers share their work. So it was a way for researchers to put their work on a webpage such that other people could try it out and so that you could download the Docker container. We cut the benchmarks thing of it because we thought that was just like too complicated. But it had a Docker container that like, you know, Andreas in a past life could download and run with his benchmark and you could compare all these models apples to apples. So that was like the theory behind it. That kind of started to work. It was like still when like, you know, it was long time pre-AI hype and there was lots of interesting stuff going on, but it was very much in like the classic deep learning era. So sort of image segmentation models and sentiment analysis and all these kinds of things, you know, that people were using, that we're using deep learning models for. And we were very much building for research because all of this stuff was happening in research institutions, you know, the sort of people who'd be publishing to archive. So we were creating an accompanying material for their models, basically, you know, they wanted a demo for their models and we were creating a company material for it. What was funny about that is they were like not very good users. Like they were, they were doing great work obviously, but, but the way that research worked is that they, they just made like one thing every six months and they just fired and forget it, forgot it. Like they, they published this piece of paper and like, done, I've, I've published it. So they like output it to Replicate and then they just stopped using Replicate. You know, they were like once every six monthly users and that wasn't great for us, but we stumbled across this early community. This was early 2021 when OpenAI created this, created CLIP and people started smushing CLIP and GANs together to produce image generation models. And this started with, you know, it was just a bunch of like tinkerers on Discord, basically. There was an early model called Big Sleep by Advadnoun. And then there was VQGAN Clip, which was like a bit more popular by Rivers Have Wings. And it was all just people like tinkering on stuff in Colabs and it was very dynamic and it was people just making copies of co-labs and playing around with things and forking in. And to me this, I saw this and I was like, oh, this feels like open source software, like so much more than the research world where like people are publishing these papers.Swyx [00:25:48]: You don't know their real names and it's just like a Discord.Ben [00:25:51]: Yeah, exactly. But crucially, it was like people were tinkering and forking and things were moving really fast and it just felt like this creative, dynamic, collaborative community in a way that research wasn't really, like it was still stuck in this kind of six month publication cycle. So we just kind of latched onto that and started building for this community. And you know, a lot of those early models were published on Replicate. I think the first one that was really primarily on Replicate was one called Pixray, which was sort of mid 2021 and it had a really cool like pixel art output, but it also just like produced general, you know, the sort of, they weren't like crisp in images, but they were quite aesthetically pleasing, like some of these early image generation models. And you know, that was like published primarily on Replicate and then a few other models around that were like published on Replicate. And that's where we really started to find our early community and like where we really found like, oh, we've actually built a thing that people want and they were great users as well. And people really want to try out these models. Lots of people were like running the models on Replicate. We still didn't have APIs though, interestingly, and this is like another like really complicated part of the story. We had no idea what a business model was still at this point. I don't think people could even pay for it. You know, it was just like these web forms where people could run the model.Swyx [00:27:06]: Just for historical interest, which discords were they and how did you find them? Was this the Lion Discord? Yeah, Lion. This is Eleuther.Ben [00:27:12]: Eleuther, yeah. It was the Eleuther one. These two, right? There was a channel where Viki Gangklep, this was early 2021, where Viki Gangklep was set up as a Discord bot. I just remember being completely just like captivated by this thing. I was just like playing around with it all afternoon and like the sort of thing. In Discord. Oh s**t, it's 2am. You know, yeah.Swyx [00:27:33]: This is the beginnings of Midjourney.Ben [00:27:34]: Yeah, exactly. And Stability. It was the start of Midjourney. And you know, it's where that kind of user interface came from. Like what's beautiful about the user interface is like you could see what other people are doing. And you could riff off other people's ideas. And it was just so much fun to just like play around with this in like a channel full of a hundred people. And yeah, that just like completely captivated me and I'm like, okay, this is something, you know. So like we should get these things on Replicate. Yeah, that's where that all came from.Swyx [00:28:00]: And then you moved on to, so was it APIs next or was it Stable Diffusion next?Ben [00:28:04]: It was APIs next. And the APIs happened because one of our users, our web form had like an internal API for making the web form work, like with an API that was called from JavaScript. And somebody like reverse engineered that to start generating images with a script. You know, they did like, you know, Web Inspector Coffee is Carl, like figured out what the API request was. And it wasn't secured or anything.Swyx [00:28:28]: Of course not.Ben [00:28:29]: They started generating a bunch of images and like we got tons of traffic and like what's going on? And I think like a sort of usual reaction to that would be like, hey, you're abusing our API and to shut them down. And instead we're like, oh, this is interesting. Like people want to run these models. So we documented the API in a Notion document, like our internal API in a Notion document and like message this person being like, hey, you seem to have found our API. Here's the documentation. That'll be like a thousand bucks a month, please, with a straight form, like we just click some buttons to make. And they were like, sure, that sounds great. So that was our first customer.Swyx [00:29:05]: A thousand bucks a month.Ben [00:29:07]: It was a surprising amount of money. That's not casual. It was on the order of a thousand bucks a month.Swyx [00:29:11]: So was it a business?Ben [00:29:13]: It was the creator of PixRay. Like it was, he generated NFT art. And so he like made a bunch of art with these models and was, you know, selling these NFTs effectively. And I think lots of people in his community were doing similar things. And like he then referred us to other people who were also generating NFTs and he joined us with models. We started our API business. Yeah. Then we like made an official API and actually like added some billing to it. So it wasn't just like a fixed fee.Swyx [00:29:40]: And now people think of you as the host and models API business. Yeah, exactly.Ben [00:29:44]: But that just turned out to be our business, you know, but what ended up being beautiful about this is it was really fulfilling. Like the original goal of what we wanted to do is that we wanted to make this research that people were making accessible to like other people and for it to be used in the real world. And this was like the just like ultimately the right way to do it because all of these people making these generative models could publish them to replicate and they wanted a place to publish it. And software engineers, you know, like myself, like I'm not a machine learning expert, but I want to use this stuff, could just run these models with a single line of code. And we thought, oh, maybe the Docker image is enough, but it's actually super hard to get the Docker image running on a GPU and stuff. So it really needed to be the hosted API for this to work and to make it accessible to software engineers. And we just like wound our way to this. Yeah.Swyx [00:30:30]: Two years to the first paying customer. Yeah, exactly.Alessio [00:30:33]: Did you ever think about becoming Midjourney during that time? You have like so much interest in image generation.Swyx [00:30:38]: I mean, you're doing fine for the record, but, you know, it was right there, you were playing with it.Ben [00:30:46]: I don't think it was our expertise. Like I think our expertise was DevTools rather than like Midjourney is almost like a consumer products, you know? Yeah. So I don't think it was our expertise. It certainly occurred to us. I think at the time we were thinking about like, oh, maybe we could hire some of these people in this community and make great models and stuff like this. But we ended up more being at the tooling. Like I think like before I was saying, like I'm not really a researcher, but I'm more like the tool builder, the behind the scenes. And I think both me and Andreas are like that.Swyx [00:31:09]: I think this is an illustration of the tool builder philosophy. Something where you latch on to in DevTools, which is when you see people behaving weird, it's not their fault, it's yours. And you want to pave the cow paths is what they say, right? Like the unofficial paths that people are making, like make it official and make it easy for them and then maybe charge a bit of money.Alessio [00:31:25]: And now fast forward a couple of years, you have 2 million developers using Replicate. Maybe more. That was the last public number that I found.Ben [00:31:33]: It's 2 million users. Not all those people are developers, but a lot of them are developers, yeah.Alessio [00:31:38]: And then 30,000 paying customers was the number late in space runs on Replicate. So we had a small podcaster and we host a whisper diarization on Replicate. And we're paying. So we're late in space in the 30,000. You raised a $40 million dollars, Series B. I would say that maybe the stable diffusion time, August 22, was like really when the company started to break out. Tell us a bit about that and the community that came out and I know now you're expanding beyond just image generation.Ben [00:32:06]: Yeah, like I think we kind of set ourselves, like we saw there was this really interesting image, generative image world going on. So we kind of, you know, like we're building the tools for that community already, really. And we knew stable diffusion was coming out. We knew it was a really exciting thing, you know, it was the best generative image model so far. I think the thing we underestimated was just like what an inflection point it would be, where it was, I think Simon Willison put it this way, where he said something along the lines of it was a model that was open source and tinkerable and like, you know, it was just good enough and open source and tinkerable such that it just kind of took off in a way that none of the models had before. And like what was really neat about stable diffusion is it was open source so you could like, compared to like Dali, for example, which was like sort of equivalent quality. And like the first week we saw like people making animation models out of it. We saw people make like game texture models that like use circular convolutions to make repeatable textures. We saw, you know, a few weeks later, like people were fine tuning it so you could make, put your face in these models and all of these other-Swyx [00:33:10]: Textual inversion.Ben [00:33:11]: Yep. Yeah, exactly. That happened a bit before that. And all of this sort of innovation was happening all of a sudden. And people were publishing on Replicate because you could just like publish arbitrary models on Replicate. So we had this sort of supply of like interesting stuff being built. But because it was a sufficiently good model, there was also just like a ton of people building with it. They were like, oh, we can build products with this thing. And this was like about the time where people were starting to get really interested in AI. So like tons of product builders wanted to build stuff with it. And we were just like sitting in there in the middle, it's like the interface layer between like all these people who wanted to build and all these like machine learning experts who were building cool models. And that's like really where it took off. We were just sort of incredible supply, incredible demand, and we were just like in the middle. And then, yeah, since then, we've just kind of grown and grown really. And we've been building a lot for like the indie hacker community, these like individual tinkerers, but also startups and a lot of large companies as well who are sort of exploring and building AI things. Then kind of the same thing happened like middle of last year with language models and Lama 2, where the same kind of stable diffusion effect happened with Lama. And Lama 2 was like our biggest week of growth ever because like tons of people wanted to tinker with it and run it. And you know, since then we've just been seeing a ton of growth in language models as well as image models. Yeah. We're just kind of riding a lot of the interest that's going on in AI and all the people building in AI, you know. Yeah.Swyx [00:34:29]: Kudos. Right place, right time. But also, you know, took a while to position for the right place before the wave came. I'm curious if like you have any insights on these different markets. So Peter Levels, notably very loud person, very picky about his tools. I wasn't sure actually if he used you. He does. So you've met him on your Series B blog posts and Danny Post might as well, his competitor all in that wave. What are their needs versus, you know, the more enterprise or B2B type needs? Did you come to a decision point where you're like, okay, you know, how serious are these indie hackers versus like the actual businesses that are bigger and perhaps better customers because they're less churny?Ben [00:35:04]: They're surprisingly similar because I think a lot of people right now want to use and build with AI, but they're not AI experts and they're not infrastructure experts either. So they want to be able to use this stuff without having to like figure out all the internals of the models and, you know, like touch PyTorch and whatever. And they also don't want to be like setting up and booting up servers. And that's the same all the way from like indie hackers just getting started because like obviously you just want to get started as quickly as possible, all the way through to like large companies who want to be able to use this stuff, but don't have like all of the experts on stuff, you know, you know, big companies like Google and so on that do actually have a lot of experts on stuff, but the vast majority of companies don't. And they're all software engineers who want to be able to use this AI stuff, but they just don't know how to use it. And it's like, you really need to be an expert and it takes a long time to like learn the skills to be able to use that. So they're surprisingly similar in that sense. I think it's kind of also unfair of like the indie community, like they're not churning surprisingly, or churny or spiky surprisingly, like they're building real established businesses, which is like, kudos to them, like building these really like large, sustainable businesses, often just as solo developers. And it's kind of remarkable how they can do that actually, and it's in credit to a lot of their like product skills. And you know, we're just like there to help them being like their machine learning team effectively to help them use all of this stuff. A lot of these indie hackers are some of our largest customers, like alongside some of our biggest customers that you would think would be spending a lot more money than them, but yeah.Swyx [00:36:35]: And we should name some of these. So you have them on your landing page, your Buzzfeed, you have Unsplash, Character AI. What do they power? What can you say about their usage?Ben [00:36:43]: Yeah, totally. It's kind of a various things.Swyx [00:36:46]: Well, I mean, I'm naming them because they're on your landing page. So you have logo rights. It's useful for people to, like, I'm not imaginative. I see monkey see monkey do, right? Like if I see someone doing something that I want to do, then I'm like, okay, Replicate's great for that.Ben [00:37:00]: Yeah, yeah, yeah.Swyx [00:37:01]: So that's what I think about case studies on company landing pages is that it's just a way of explaining like, yep, this is something that we are good for. Yeah, totally.Ben [00:37:09]: I mean, it's, these companies are doing things all the way up and down the stack at different levels of sophistication. So like Unsplash, for example, they actually publicly posted this story on Twitter where they're using BLIP to annotate all of the images in their catalog. So you know, they have lots of images in the catalog and they want to create a text description of it so you can search for it. And they're annotating images with, you know, off the shelf, open source model, you know, we have this big library of open source models that you can run. And you know, we've got lots of people are running these open source models off the shelf. And then most of our larger customers are doing more sophisticated stuff. So they're like fine tuning the models, they're running completely custom models on us. A lot of these larger companies are like, using us for a lot of their, you know, inference, but it's like a lot of custom models and them like writing the Python themselves because they've got machine learning experts on the team. And they're using us for like, you know, their inference infrastructure effectively. And so it's like lots of different levels of sophistication where like some people using these off the shelf models. Some people are fine tuning models. So like level, Peter Levels is a great example where a lot of his products are based off like fine tuning, fine tuning image models, for example. And then we've also got like larger customers who are just like using us as infrastructure effectively. So yeah, it's like all things up and down, up and down the stack.Alessio [00:38:29]: Let's talk a bit about COG and the technical layer. So there are a lot of GPU clouds. I think people have different pricing points. And I think everybody tries to offer a different developer experience on top of it, which then lets you charge a premium. Why did you want to create COG?Ben [00:38:46]: You worked at Docker.Alessio [00:38:47]: What were some of the issues with traditional container runtimes? And maybe yeah, what were you surprised with as you built it?Ben [00:38:54]: COG came right from the start, actually, when we were thinking about this, you know, evaluation, the sort of benchmarking system for machine learning researchers, where we wanted researchers to publish their models in a standard format that was guaranteed to keep on running, that you could replicate the results of, like that's where the name came from. And we realized that we needed something like Docker to make that work, you know. And I think it was just like natural from my point of view of like, obviously that should be open source, that we should try and create some kind of open standard here that people can share. Because if more people use this format, then that's great for everyone involved. I think the magic of Docker is not really in the software. It's just like the standard that people have agreed on, like, here are a bunch of keys for a JSON document, basically. And you know, that was the magic of like the metaphor of real containerization as well. It's not the containers that are interesting. It's just like the size and shape of the damn box, you know. And it's a similar thing here, where really we just wanted to get people to agree on like, this is what a machine learning model is. This is how a prediction works. This is what the inputs are, this is what the outputs are. So cog is really just a Docker container that attaches to a CUDA device, if it needs a GPU, that has a open API specification as a label on the Docker image. And the open API specification defines the interface for the machine learning model, like the inputs and outputs effectively, or the params in machine learning terminology. And you know, we just wanted to get people to kind of agree on this thing. And it's like general purpose enough, like we weren't saying like, some of the existing things were like at the graph level, but we really wanted something general purpose enough that you could just put anything inside this and it was like future compatible and it was just like arbitrary software. And you know, it'd be future compatible with like future inference servers and future machine learning model formats and all this kind of stuff. So that was the intent behind it. It just came naturally that we wanted to define this format. And that's been really working for us. Like a bunch of people have been using cog outside of replicates, which is kind of our original intention, like this should be how machine learning is packaged and how people should use it. Like it's common to use cog in situations where like maybe they can't use the SAS service because I don't know, they're in a big company and they're not allowed to use a SAS service, but they can use cog internally still. And like they can download the models from replicates and run them internally in their org, which we've been seeing happen. And that works really well. People who want to build like custom inference pipelines, but don't want to like reinvent the world, they can use cog off the shelf and use it as like a component in their inference pipelines. We've been seeing tons of usage like that and it's just been kind of happening organically. We haven't really been trying, you know, but it's like there if people want it and we've been seeing people use it. So that's great. Yeah. So a lot of it is just sort of philosophical of just like, this is how it should work from my experience at Docker, you know, and there's just a lot of value from like the core being open, I think, and that other people can share it and it's like an integration point. So, you know, if replicate, for example, wanted to work with a testing system, like a CI system or whatever, we can just like interface at the cog level, like that system just needs to put cog models and then you can like test your models on that CI system before they get deployed to replicate. And it's just like a format that everyone, we can get everyone to agree on, you know.Alessio [00:41:55]: What do you think, I guess, Docker got wrong? Because if I look at a Docker Compose and a cog definition, first of all, the cog is kind of like the Dockerfile plus the Compose versus in Docker Compose, you're just exposing the services. And also Docker Compose is very like ports driven versus you have like the actual, you know, predict this is what you have to run.Ben [00:42:16]: Yeah.Alessio [00:42:17]: Any learnings and maybe tips for other people building container based runtimes, like how much should you separate the API services versus the image building or how much you want to build them together?Ben [00:42:29]: I think it was coming from two sides. We were thinking about the design from the point of view of user needs, what are their problems and what problems can we solve for them, but also what the interface should be for a machine learning model. And it was sort of the combination of two things that led us to this design. So the thing I talked about before was a little bit of like the interface around the machine learning model. So we realized that we wanted to be general purpose. We wanted to be at the like JSON, like human readable things rather than the tensor level. So it was like an open API specification that wrapped a Docker container. And that's where that design came from. And it's really just a wrapper around Docker. So we were kind of building on, standing on shoulders there, but Docker is too low level. So it's just like arbitrary software. So we wanted to be able to like have a open API specification that defined the function effectively that is the machine learning model. But also like how that function is written, how that function is run, which is all defined in code and stuff like that. So it's like a bunch of abstraction on top of Docker to make that work. And that's where that design came from. But the core problems we were solving for users was that Docker is really hard to use and productionizing machine learning models is really hard. So on the first part of that, we knew we couldn't use Dockerfiles. Like Dockerfiles are hard enough for software developers to write. I'm saying this with love as somebody who works on Docker and like works on Dockerfiles, but it's really hard to use. And you need to know a bunch about Linux, basically, because you're running a bunch of CLI commands. You need to know a bunch about Linux and best practices and like how apt works and all this kind of stuff. So we're like, OK, we can't get to that level. We need something that machine learning researchers will be able to understand, like people who are used to like Colab notebooks. And what they understand is they're like, I need this version of Python. I need these Python packages. And somebody told me to apt-get install something. You know? If there was sudo in there, I don't really know what that means. So we tried to create a format that was at that level, and that's what cog.yaml is. And we were really kind of trying to imagine like, what is that machine learning researcher going to understand, you know, and trying to build for them. Then the productionizing machine learning models thing is like, OK, how can we package up all of the complexity of like productionizing machine learning models, like picking CUDA versions, like hooking it up to GPUs, writing an inference server, defining a schema, doing batching, all of these just like really gnarly things that everyone does again and again. And just like, you know, provide that as a tool. And that's where that side of it came from. So it's like combining those user needs with, you know, the sort of world need of needing like a common standard for like what a machine learning model is. And that's how we thought about the design. I don't know whether that answers the question.Alessio [00:45:12]: Yeah. So your idea was like, hey, you really want what Docker stands for in terms of standard, but you actually don't want people to do all the work that goes into Docker.Ben [00:45:22]: It needs to be higher level, you know?Swyx [00:45:25]: So I want to, for the listener, you're not the only standard that is out there. As with any standard, there must be 14 of them. You are surprisingly friendly with Olama, who is your former colleagues from Docker, who came out with the model file. Mozilla came out with the Lama file. And then I don't know if this is in the same category even, but I'm just going to throw it in there. Like Hugging Face has the transformers and diffusers library, which is a way of disseminating models that obviously people use. How would you compare your contrast, your approach of Cog versus all these?Ben [00:45:53]: It's kind of complementary, actually, which is kind of neat in that a lot of transformers, for example, is lower level than Cog. So it's a Python library effectively, but you still need to like...Swyx [00:46:04]: Expose them.Ben [00:46:05]: Yeah. You still need to turn that into an inference server. You still need to like install the Python packages and that kind of thing. So lots of replicate models are transformers models and diffusers models inside Cog, you know? So that's like the level that that sits. So it's very complementary in some sense. We're kind of working on integration with Hugging Face such that you can deploy models from Hugging Face into Cog models and stuff like that to replicate. And some of these things like Llamafile and what Llama are working on are also very complementary in that they're doing a lot of the sort of running these things locally on laptops, which is not a thing that works very well with Cog. Like Cog is really designed around servers and attaching to CUDA devices and NVIDIA GPUs and this kind of thing. So we're actually like, you know, figuring out ways that like we can, those things can be interoperable because, you know, they should be and they are quite complementary and that you should be able to like take a model and replicate and run it on your local machine. You should be able to take a model, you know, the machine and run it in the cloud.Swyx [00:47:02]: Is the base layer something like, is it at the like the GGUF level, which by the way, I need to get a primer on like the different formats that have emerged, or is it at the star dot file level, which is model file, Llamafile, whatever, whatever, or is it at the Cog level? I don't know, to be honest.Ben [00:47:16]: And I think this is something we still have to figure out. There's a lot yet, like exactly where those lines are drawn. Don't know exactly. I think this is something we're trying to figure out ourselves, but I think there's certainly a lot of promise about these systems interoperating. We just want things to work together. You know, we want to try and reduce the number of standards. So the more, the more these things can interoperate and, you know
VISIT HTTP://PETERNAVARRO.SUBSTACK.COM FOR THE TRANSCIPT AND MORE! PLEASE WRITE A REVIEW -- AND SPARE ME THE PRISON JOKES LIBTARDS. One of the geopolitical risks that Nvidia itself faces TODAY is from Communist China. For starters, China accounts for about 25% of Nvidia's revenue for its data center business, which is the largest operation at the company. Anything from increased sanctions on China to a catastrophic war with Taiwan would obviously hit Nvidia hard. Perhaps the biggest threat, however, is the US government – and rightly so. Right now, the Biden administration is trying to curb Communist China's access to technology, and specifically AI which China intends to fully use for military uses. In thumbing its nose at those sanctions by running and runs around those sanctions, Nvidia risks a crackdown that, truth be told is long overdue. As to why the Biden regime continues to allow the Chinese military and state researched institutes of artificial intelligence to continue to buy the coveted A100 and H 100 Nvidia chips is a mystery.
In this episode of the Thoughtful Entrepreneur, your host Josh Elledge speaks with the Founder & CEO of Outforce, Sean Languedoc.Outforce was conceived from Sean's frustrations with the outsourcing landscape. The challenge of sifting through the noise to find qualified software engineers was a time-consuming and often costly endeavor. Sean's mission with Outforce was clear: streamline hiring the right expertise efficiently and effectively.Hiring and staffing engineers is notoriously slow and challenging, particularly in the tech sector. The high demand for skilled professionals and the limited availability create a bottleneck for businesses looking to scale. Outsourcing can be a game-changer, offering a faster route to assembling a team. However, it's crucial to find engineers with the technical skills and domain expertise to match your project's needs.Sean, a seasoned tech founder, understands the risks involved in hiring. The cost of bringing on someone who isn't the right fit can be significant. He stresses the importance of effective interviewing and a deep understanding of the technical requirements and domain knowledge necessary for the role.Key Points from the Episode:Challenges in outsourcing software engineeringImportance of finding the right expertise in a time-sensitive mannerRisks and challenges of hiring engineersOutsforce's platform and approach to matching companies with engineering teamsPricing model and negotiation leverage of OutforceDefining scope and executing projects effectivelyImportance of dynamic interaction between engineering, sales, and customer success teamsAbout Sean Languedoc:Sean Languedoc boasts over 25 years of experience in the tech industry, currently serving as the CEO of Outforce.ai (formerly Global Talent Accelerator). Throughout his entrepreneurial journey, Sean has excelled in transforming outsourcing from a daunting task into a strategic asset for venture-backed companies. At the core of Outforce.ai is the mission to simplify the outsourcing process, turning it into a direct path for achieving goals. Sean fosters collaborations that swiftly transition from onboarding to project execution, reducing lead times for tech ventures. In addition to his leadership at Outforce.ai, Sean remains actively involved in the startup ecosystem as a mentor, guiding emerging entrepreneurs and contributing to the growth of the tech innovation landscape. Sean's commitment extends to serving on the boards of A100 and as a Charter Member at C100, emphasizing his dedication to advancing tech innovation and entrepreneurship in Canada and beyond.About Outforce:Outforce, a pioneering venture in outsourcing solutions, simplifies the complex process of sourcing and scaling engineering teams for venture-backed companies. With a focus on safety and efficiency, Outforce navigates the intricate outsourcing landscape by thoroughly vetting thousands of engineering agencies. The platform employs a swift and comprehensive approach, filtering and assessing teams based on essential criteria such as culture fit, domain expertise, and technical proficiency. By seamlessly matching companies with the most suitable teams, Outforce transforms the outsourcing experience from a bewildering maze into a streamlined path to mission accomplishment. This innovative solution enhances team onboarding speed and ensures a strategic alignment that propels venture-backed enterprises toward their growth objectives.Apply to be a Guest on The Thoughtful Entrepreneur: