POPULARITY
"Der Zweck der Bibel ist nicht uns zu lehren wie die Natur funktioniert. Dafür hat Gott uns den Verstand gegeben und die Möglichkeit zu forschen. Und es ist für mich ein großes Privileg als Christin die Natur erforschen zu dürfen. Das macht Gott für mich nicht kleiner oder überflüssig, wenn ich ein bisschen was darüber erfahren darf, wie Gott schafft. Im Gegenteil: Es macht Gott für mich umso größer." Diese Folge ist die letzte unserer fünfteiligen Reihe zu dem gleichnamigen Buch "Schöpfung und Evolution". Barbara Drossel erzählt hier über die Entdeckung, die Kopernikus machte, dass Glaube und Wissenschaft sich nicht ausschließen, sondern der Glaube an Gott das wissenschaftliche Forschen befördert. Es geht um das Alter der Erde und die wissenschaftlichen Erkenntnisse darüber. Es geht um Übergangsfossilien, sogenannte missing links und darüber wie der Schöpfungsbericht zu verstehen ist. Es geht um die zufälligen Prozesse von Selektion und Mutation und warum dies als Begründung für die Vielfalt der Arten nicht ausreichen. Es geht um den Menschen, seine Abstammung, die Frage nach Schuld und Sterblichkeit und Vieles mehr. Wir hoffen diese Reihe hat auch Dich motiviert mehr über dieses und andere Themen nachzudenken. Barbara Drossel hat Physik an der Technischen Universität in München studiert. Dort har sie über Strukturbildung in offenen Systemen promoviert. 1999 hat Sie sich habilitiert und ist seit 2002 Professorin für theoretische Physik an der TU Darmstadt. Ihr Fachgebiet ist die Theorie komplexer Systeme. Sie befasst sich außerdem mit vielen Themen rund um das Thema Glaube und Wissenschaft und hat dazu einige Bücher geschrieben, wie etwa "Und Augustinus traute dem Verstand: Warum Naturwissenschaft und Glaube keine Gegensätze sind" oder "Naturwissenschaftler reden von Gott". Das Buch "Schöpfung und Evolution" ist im Shop des IGUW erhältlich: https://shop.iguw.de/ https://www.iguw.de/ https://www.begruendet-glauben.org/podcast/ Ihr findet uns auch auf Instagram: https://www.instagram.com/begruendetglauben/
Proteine sind die Bausteine des Körpers und für das Wachstum, die Reparatur und den Erhalt von Gewebe unerlässlich. Sie bilden eine Schlüsselrolle bei der Strukturbildung und Funktion von Zellen und sind wichtig für den Aufbau und Erhalt von Muskeln, Knochen, Haut, Haaren, Nägeln und dem Bindegewebe. Weiter erfüllen sie eine Vielzahl von Funktionen im Körper und neben dem Aufbau und der Reparatur von Gewebe sind sie auch bei der Bildung von Enzymen, Hormonen und Neurotransmittern beteiligt, die chemische Reaktionen im Körper steuern. Der Proteinbedarf des Menschen variiert je nach Alter, Geschlecht, Aktivität und individuellen Zielen. In dieser Folge lernst du weitere theoretische Inhalte zum Thema Ernährung des Patienten und wirst fit gemacht für deine Leistungskontrollen und die Arbeit auf Station!
Dr. Walter Demmelhuber ist Aufsichtsratsvorsitzender und Vorstand der Jäger Gruppe. Er ist zudem Dozent an der Universität Erlangen und spezialisiert auf den Bereich Big Data. In dieser Episode spricht Franz Kubbillum mit Dr. Walter Demmelhuber über das C-Level aus der Perspektive des Aufsichtsrats und wie man als Aufsichtsrat und C-Level-Manager ständig weiter lernt. Ursprünglich wollte Dr. Demmelhuber in der Landwirtschaft arbeiten und absolvierte dann eine Ausbildung zum Mechaniker. Was hat ihn letztlich dazu bewogen, in die Wirtschaft zu wechseln? Und wie prägt ihn seine Kindheit auf dem Landwirtschaftshof heute noch? Die beiden sprechen über Dr. Demmelhubers erste Herausforderungen im C-Level und wie er vom Vorstandsvorsitzenden zum Vorsitzenden des Aufsichtsrats wurde. Im Lauf seiner Karriere absolvierte er sogar eine Ausbildung zum Aufsichtsrat. Im Gespräch verrät er hilfreiche Strategien für Risikomanagement und die Strukturbildung als Geschäftsführer. Abschließend blickt Dr. Demmelhuber auf seine erste Rolle als Geschäftsführer zurück und reflektiert, was er daraus gelernt hat. Dabei gewährt er Einblicke in seine drei wichtigsten Führungsstrategien. Welche Strategien das sind, erfahren Sie im Podcast. Weitere Highlights des Podcast: Was sind die Aufgaben eines Aufsichtsrats und worin besteht der Unterschied zu einem Beirat? Was genau besagt das Peter-Prinzip? Welche Fragen stellt Dr. Demmelhuber in einem Bewerbungsgespräch für die Position als Geschäftsführer oder Aufsichtsrat? Was bedeutet für ihn Verantwortung? Welche Tipps hat Dr. Demmelhuber, um zu vermeiden, sich zu sehr mit anderen zu vergleichen? Themen - Vertrieb - Aufsichtsrat vs. Beirat - C-Level - Strukturen schaffen - Führungsstrategien - Verantwortung übernehmen - Ausbildung zum Aufsichtsrat ------ Über Atreus – A Heidrick & Struggles Company Atreus garantiert die perfekte Interim-Ressource (m/w/d) für Missionen, die nur eine einzige Option erlauben: nachhaltigen Erfolg! Unser globales Netzwerk aus erfahrenen Managern auf Zeit zählt weltweit zu den besten. In engem Schulterschluss mit den Atreus Direktoren setzen unsere Interim Manager vor Ort Kräfte frei, die Ihr Unternehmen zukunftssicher auf das nächste Level katapultieren. ▶️ Besuchen Sie unsere Website: https://www.atreus.de/ ▶️ Interim Management: https://www.atreus.de/kompetenzen/service/interim-management/ ▶️ Für Interim Manager: https://www.atreus.de/interim-manager/ ▶️ LinkedIn-Profil von Dr. Walter Demmelhuber: https://www.linkedin.com/in/dr-walter-demmelhuber-b4500125/ ▶️ Profil von Franz Kubbillum: https://www.atreus.de/team/franz-kubbillum/ ▶️ Behind the C auf Instagram: https://www.instagram.com/behindthecpodcast/
Dekret 229: Das neue außenpolitische Planungsdokument der Russischen Föderation:Ein Kommentar von Wolfgang Effenberger.Am 22. März 2023 verabschiedete sich der chinesische Staatspräsident Xi Jinping in Moskau mit den Worten: „Jetzt gibt es Veränderungen, die es seit 100 Jahren nicht gegeben hat. Wenn wir zusammen sind, treiben wir diese Veränderungen voran.“(1) Welche Veränderungen kann er gemeint haben? Aller Wahrscheinlichkeit nach hatten sich Xi und Putin festgelegt, die Welt in eine multipolare Zukunft zu führen. Wenige Tage später, am 31. März 2023, unterzeichnete der Präsident der Russischen Föderation, Wladimir Putin, das 42-seitige Dekret "Konzept der Außenpolitik der Russischen Föderation"(2). Dieses Dokument löst die außenpolitische Doktrin aus dem Jahr 2016 ab. Darin wird in sechs Kapiteln (mit insgesamt 76 Unterpunkten) eine gediegene Analyse vergangener und gegenwärtiger russischer Außenpolitik präsentiert. Sie umreißt die politisch angestrebten Ziele Russlands, wobei die Bezeichnung "multipolare Weltordnung" (eine Begriffsverwendung für internationale Staatenbeziehungen, in denen die Machtverteilung das Kriterium für die Strukturbildung ist) mehrfach vorkommt, der Begriff „unipolare Weltordnung“ (bei der ein Staat alle anderen dominiert) hingegen kein einziges Mal.Es lohnt sich also, dieses Strategie-Dokument der Russischen Föderation eingehender zu betrachten.Im Kapitel I. (Allgemeine Bestimmungen) wird darauf verwiesen, dass dieses Dokument eine systemische Vision der nationalen Interessen der Russischen Föderation im Bereich der Außenpolitik und der Grundprinzipien sowie der strategischen Ziele der russischen Außenpolitik vermittelt. Es stützt sich auf die Verfassung der Russischen Föderation, auf die allgemein anerkannten Grundsätze und Normen des Völkerrechts sowie auf die internationalen Verträge der Russischen Föderation ab. Weiter wird an die unabhängige Staatlichkeit Russlands erinnert, die seit mehr als tausend Jahre währt, ebenso an das kulturelle Erbe der vorangegangenen Epoche, an die tiefen historischen Bindungen zwischen der traditionellen europäischen Kultur und den anderen eurasischen Kulturen. Darüber hinaus wird die generelle Bedeutung Russlands in der Welt aufgezeigt: seine immensen Ressourcen in allen Lebensbereichen, seinen Status als ständiges Mitglied im UN-Sicherheitsrat, seine Rolle als Teilnehmer an den führenden zwischenstaatlichen Organisationen und Vereinigungen, seine Bedeutung als ernstzunehmende Atommacht, seinen Status als Nachfolger der Union der Sozialistischen Sowjetrepubliken (mit fortbestehender Rechtspersönlichkeit) sowie sein entscheidender Beitrag zum Sieg im Zweiten Weltkrieg und seiner aktiven Rolle bei der Gestaltung des gegenwärtigen Systems der internationalen Beziehungen.Russlands unabhängige und multi-vektorale Außenpolitik wird von seinen nationalen Interessen und dem Bewusstsein seiner besonderen Verantwortung für die Erhaltung von Frieden und Sicherheit auf globaler sowie regionaler Ebene geleitet:„Die russische Außenpolitik ist friedlich, offen, berechenbar, konsequent und pragmatisch und beruht auf der Achtung der allgemein anerkannten Grundsätze und Normen des Völkerrechts und dem Wunsch nach einer gerechten internationalen Zusammenarbeit zur Lösung gemeinsamer Probleme und zur Förderung gemeinsamer Interessen(3)“,wobei die Haltung Russlands gegenüber anderen Staaten und zwischenstaatlichen Vereinigungen davon abhängt, ob deren Politik gegenüber der Russischen Föderation konstruktiv, neutral oder feindlich ist......weiterlesen hier: https://apolut.net/verteidigung-von-existenz-und-freier-entwicklung-mit-allen-verfuegbaren-mitteln-von-wolfgang-effenberger+++Bildquelle: Salma Bashir Motiwala / shutterstock Hosted on Acast. See acast.com/privacy for more information.
In der letzten Folge unserer Trilogie zur Frage: Was ist Wahrheit? sprechen wir über komplexe dynamische Systeme. Wetter, Klima, Ausbreitung von Infektionskrankheiten wie Corona oder die Funktion des Gehirns sind mit den Methoden der klassischen deterministischen Physik nicht beschreibbar. Wir sprechen darüber, wie beim Wechsel von der exakten Beschreibung elementarer mikroskopischer Vorgänge zur kollektiven Beschreibung komplexer makroskopischer Systeme neue Phänomene entstehen wie Strukturbildung und Evolution. Dieser Vorgang heißt Emergenz. Neben Experiment und Theorie tritt ein dritter Weg der wissenschaftlichen Erkenntnisgewinnung auf den Plan: Modelle und Simulationen. Wetter, Klima oder die Ausbreitung von Corona müssen anhand von Daten mit beschränkter Güte und Menge und unsicheren Modellen simuliert werden. Sokrates sagte: Ich weiß, dass ich nicht(s) weiß. In diesem Sinne muss die Wissenschaft zuammen mit ihren Aussagen zugleich deren Fehler und Unsicherheiten kommunizieren. Sie muss auch sagen, was wir (noch) nicht wissen. Hier ist auch der naturwissenschaftliche Unterricht gefragt, der immer wieder zeigen muss, dass jede Wahrheit immer auch mit einer Unsicherheit behaftet ist. Sie ist Teil der wissenschaftlichen Wahrheit.
Der Widerstand gegen die Abschaffung bürgerlicher Freiheiten im Zuge der Corona-Maßnahmen nutzt die Lockerungen des Sommers für eine Strukturbildung und Professionalisierung. Unzählige Vereine und Initiativen suchen den Austausch, die Synergieeffekte und die Optimierung der Kampagnen. Wir dürfen hoffnungsvoll in die Zukunft blicken. Ein Kommentar von Christian Steidl (https://1bis19.de/kommentar/deutschland-einig-widerstand/). Gelesen von: Robert Meier.
Warum das Ganze manchmal mehr ist als die Summe seiner Teile, erläutert Manfred Salmhofer von der Universität Heidelberg in dieser Folge.
digital kompakt | Business & Digitalisierung von Startup bis Corporate
Der zentrale Gedanke des EIF ist es kleinen und mittleren Betrieben mit Finanzmitteln zu helfen. Die Förderung von Unternehmen und Innovationen in Europa steht an erster Stelle. Der Fond ist eine Public-Private Partnership und gehört zum größten Teil der EU. Jedoch darf man den EIF nicht als Subventionsfond sehen, sondern alle Investitionen müssen auch Profit erwirtschaften und eine gewisse Rendite erzielen. Bjorn Tremmerie ist Head of Venture Capital und Impact Investing beim EIF und gibt tiefe Einblick in die Strukturen und Aufgaben des Fonds. Du erfährst… 1) …wieviel Geld der EIF verwaltet 2) …worin der EIF investiert 3) …wie der Fond strukturiert ist 4) …wer die Aufsichtsorgane sind
Der zentrale Gedanke des EIF ist es kleinen und mittleren Betrieben mit Finanzmitteln zu helfen. Die Förderung von Unternehmen und Innovationen in Europa steht an erster Stelle. Der Fond ist eine Public-Private Partnership und gehört zum größten Teil der EU. Jedoch darf man den EIF nicht als Subventionsfond sehen, sondern alle Investitionen müssen auch Profit erwirtschaften und eine gewisse Rendite erzielen. Bjorn Tremmerie ist Head of Venture Capital und Impact Investing beim EIF und gibt tiefe Einblick in die Strukturen und Aufgaben des Fonds. Du erfährst… 1) …wieviel Geld der EIF verwaltet 2) …worin der EIF investiert 3) …wie der Fond strukturiert ist 4) …wer die Aufsichtsorgane sind
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Der Ursprung und die Entwicklung unseres Universums zeigt sich gleichermaßen in der Raumzeit selbst wie in den Strukturen, die in ihr entstehen. Galaxienhaufen sind das Ergebnis hierarchischer Strukturbildung. Sie sind die massivsten Objekte, die sich im heutigen Universum bilden konnten. Aufgrund dieser Eigenschaft ist ihre Anzahl und Struktur hochgradig abhängig von der Zusammensetzung und Evolution des Universums. Die Messung der Anzahldichte von Galaxienhaufen beruht auf Katalogen, die nach einer beobachtbaren Größe ausgewählt werden. Die Anwendung einer Massen-Observablen-Relation (MOR) erlaubt es, die beobachtete Anzahl als Funktion der Observablen und der Rotverschiebung mit Vorhersagen zu vergleichen und so kosmologische Parameter zu bestimmen. Man kann jedoch zu Recht behaupten, dass diese Messungen noch nicht präzise im Prozentbereich sind. Hauptgrund hierfür ist das unvollständige Verständnis der MOR. Ihre Normalisierung, die Skalierung der Observablen mit Masse und Rotverschiebung und die Größe und Korrelation von intrinsischen Streuungen muss bekannt sein, um Anzahldichten korrekt interpretieren zu können. Die Massenbestimmung von Galaxienhaufen durch die differenzielle Lichtablenkung in ihrem Gravitationsfeld, i.e. durch den so genannten schwachen Gravitationslinseneffekt (weak lensing), kann erheblich hierzu beitragen. In dieser Arbeit werden neue Methoden und Ergebnisse solcher Untersuchungen vorgestellt. Zu ersteren gehören, als Teil der Datenaufbereitung, (i) die Korrektur von CCD-Bildern für nichtlineare Effekte durch die elektrischen Felder der angesammelten Ladungen (Kapitel 2) und (ii) eine Methode zur Maskierung von Artefakten in überlappenden Aufnahmen eines Himmelsbereichs durch Vergleich mit dem Median-Bild (Kapitel 3). Schließlich ist (iii) eine Methode zur Selektion von Hintergrundgalaxien, basierend auf deren Farbe und scheinbarer Magnitude, die eine neue Korrektur für die Kontamination durch Mitglieder des Galaxienhaufens einschließt, im Abschnitt 5.3.1 beschrieben. Die wissenschaftlichen Hauptergebnisse sind die folgenden. (i) Für den Hubble Frontier Field-Haufen RXC J2248.7-4431 bestimmen wir Masse und Konzentration mittels weak lensing und bestätigen die durch Röntgen- und Sunyaev-Zel'dovich-Beobachtungen (SZ) vorhergesagte große Masse. Die Untersuchung von Haufengalaxien zeigt die Abhängigkeit von Morphologie und Leuchtkraft sowie Umgebung (Kapitel 4). (ii) Unsere Massenbestimmung für 12 Galaxienhaufen ist konsistent mit Röntgenmassen, die unter Annahme hydrostatischen Gleichgewichts des heißen Gases gemacht wurden. Wir bestätigen die MOR, die für die Signifikanz der Detektion mit dem South Pole Telescope bestimmt wurde. Wir finden jedoch Diskrepanzen zur Planck-SZ MOR. Unsere Vermutung ist, dass diese mit einer flacheren Steigung der MOR oder einem größen-, rotverschiebungs- oder rauschabhängigen Problem in der Signalextraktion zusammenhängt (Kapitel 5). (iii) Schließlich zeigen wir, durch die Verbindung von Simulationen und theoretischer Modellierung, dass die Variation von Dichteprofilen bei fester Masse signifikant zur Ungenauigkeit von Massenbestimmungen von Galaxienhaufen mittels weak lensing beiträgt. Ein Modell für diese Variationen, wie das hier entwickelte, ist daher wichtig für die genaue Bestimmung der MOR, wie sie für kommende Untersuchungen nötig sein wird (Kapitel 6).
In dieser Dissertation untersuchen wir eine Vielzahl von Themen aus dem Bereich der Kosmologie und der Gravitation. Insbesondere behandeln wir Fragestellungen aus der Inflationstheorie, der Strukturbildung im neuzeitlichen Universum und massiver Gravitation, sowie Quantenaspekte schwarzer Löcher und Eigenschaften bestimmter skalare Theorien bei sehr hohen Energien. Im sogenannten "New Higgs Inflation"-Modell spielt das Higgs-Boson die Rolle des Inflaton-Felds. Das Modell ist kompatibel mit Messungen der Higgs-Masse, weil das Higgs-Boson nichtminimal an den Einstein-Tensor gekoppelt wird. Wir untersuchen das Modell in Hinblick auf die kürzlich veröffentlichten Resultate der BICEP2- und Planck-Experimente und finden eine hervorragende Übereinstimmung mit den gemessenen Daten. Desweiteren zeigen wir auf, dass die scheinbaren Widersprüche zwischen Planck- und BICEP2-Daten dank eines negativ laufenden Spektralindex verschwinden. Wir untersuchen außerdem die Unitaritätseigenschaften der Theorie und räsonieren, dass es während der gesamten Entwicklung des Universums nicht zu Unitaritätsverletzung kommt. Während der Dauer der inflationären Phase sind Kopplungen in den Higgs-Higgs und Higgs-Graviton-Sektoren durch eine großen feldabhängige Skala unterdrückt. Die W- und Z-Bosonen hingegen entkoppeln aufgrund ihrer sehr großen Masse. Wir zeigen eine Möglichkeit auf, die es erlaubt die Eichbosonen als Teil der Niederenergietheorie zu behalten. Dies wird erreicht durch eine gravitationsabhängige nichtminimale Kopplung des Higgs-Felds an die Eichbosonen. Im nächsten Abschnitt konzentrieren wir uns auf das neuzeitliche Universum. Wir untersuchen den sogenannten sphärischen Kollaps in Modellen gekoppelter dunkler Energie. Insbesondere leiten wir eine Formulierung des sphärischen Kollaps her, die auf den nichtlinearen Navier-Stokes-Gleichungen basiert. Im Gegensatz zu bekannten Beispielen aus der Literatur fließen alle wichtigen Fifth-Force Effekte in die Entwicklung ein. Wir zeigen, dass unsere Methode einfachen Einblick in viele Subtilitäten erlaubt, die auftreten wenn die dunkle Energie als inhomogen angenommen wird. Es folgt eine Einleitung in die Theorien von massiven Spin-2 Teilchen. Hier erklären wir die Schwierigkeiten der Formulierung einer nichtlinearen, wechselwirkenden Theorie. Wir betrachten das bekannte Problem des Boulware-Deser-Geists und zeigen zwei Wege auf, dieses No-Go-Theorem zu vermeiden. Insbesondere konstruieren wir die eindeutige Theorie eines wechselwirkenden massiven Spin-2 Teilchens, die auf kubischer Ordnung trunkiert werden kann, ohne dass sie zu Geist-Instabilitäten führt. Der zweite Teil dieser Arbeit widmet sich bekannten Problemen der Physik schwarzer Löcher. Hier liegt unser Fokus auf der Idee, das schwarze Löcher als Bose-Kondensate von Gravitonen aufgefasst werden können. Abweichungen von semiklassischem Verhalten sind Resultat von starken Quanteneffekten die aufgrund einer kollektiven starken Kopplung auftreten. Diese starke Kopplung führt in bekannten Systemen zu einem Quantenphasenübergang oder einer Bifurkation. Die quantenmechanischen Effekte könnten der Schlüssel zur Auflösung lang existierender Probleme in der Physik schwarzer Löcher sein. Dies umschließt zum Beispiel das Informationsparadox und das ``No-Hair''-Theorem. Außerdem könnten sie wertvolle Einblicke in die Vermutung liefern, dass schwarze Löcher die Systeme sind, die Informationen am schnellsten verschlüsseln. Als Modell für ein schwarzes Loch studieren wir ein System von ultrakalten Bosonen auf einem Ring. Dieses System ist bekannt als eines, dass einen Quantenkritischen Punkt besitzt. Wir demonstrieren, dass am kritischen Punkt Quanteneffekte sogar für sehr große Besetzungszahlen wichtig sein können. Hierzu definieren wir die Fluktuationsverschränkung, die angibt, wie sehr verschiedene Impulsmoden miteinander verschränkt sind. Die Fluktuationsverschränkung ist maximal am kritischen Punkt und ist dominiert von sehr langwelligen Fluktuationen. Wir finden daher Resultate die unabhängig von der Physik im ultravioletten sind. Im weiteren Verlauf besprechen wir die Informationsverarbeitung von schwarzen Löchern. Insbesondere das Zusammenspiel von Quantenkritikalität und Instabilität kann für ein sehr schnelles Wachstum von Ein-Teilchen-Verschränkung sorgen. Dementsprechend zeigen wir, dass die sogenannte "Quantum Break Time'', welche angibt wie schnell sich die exakte Zeitentwicklung von der semiklassischen entfernt, wie log(N) wächst. Hier beschreibt N die Anzahl der Konstituenten. Im Falle eines Gravitonkondensats gibt N ein Maß für die Entropie des schwarzen Lochs an. Dementsprechend interpretieren wir unsere Erkenntnisse als einen starken Hinweis, dass das Verschlüsseln von Informationen in schwarzen Löchern denselben Ursprung haben könnte. Das Verdampfen von schwarzen Löchern beruht in unserem Bild auf zwei Effekten. Kohärente Anregungen der tachyonischen radialen Mode führen zum Kollaps des Kondensats, während sich die inkohärente Streuung von Gravitonen für die Hawking-Strahlung verantwortlich zeigt. Hierfür konstruieren wir einen Prototyp, der einen bosonischen Freiheitsgrades mit impulsabhängigen Wechselwirkungen beschreibt. Im Schwinger-Keldysh-Formalismus untersuchen wir die Echtzeit-Evolution des Kondensats und zeigen, dass der Kollaps und die damit einhergehende Evaporation auf selbst-ähnliche Weise verläuft. In diesem Fall ist das Kondensat während des gesamten Kollapses an einem kritischen Punkt. Desweiteren zeigen wir Lösungen, die an einem instabilen Punkt leben, und daher schnelle Verschränkung erzeugen könnten. Der finale Teil der Arbeit befasst sich mit Renormierungsgruppenflüssen in skalaren Theorien mit impulsabhängigen Wechselwirkungen. Wer leiten die Flussgleichung für eine Theorie, die nur eine Funktion des kinetischen Terms enthält her. Hier zeigen wir die Existenz von Fixpunkten in einer Taylor-Entwicklung der Funktion auf. Wir diskutieren, inwiefern unsere Analyse für Einblick in allgemeinere Theorien mit Ableitungswechselwirkungen sorgen kann. Dies beinhaltet zum Beispiel Gravitation.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Die Forschungsergebnisse der letzten Jahre haben gezeigt, dass das Universum bei weitem nicht nur aus baryonischer Materie besteht. Tatsächlich scheinen 72% aus sogenannter Dunkler Energie zu bestehen, während selbst vom verbleibenden Teil nur etwa ein Fünftel baryonischer Materie zugeordnet werden kann. Der Rest besteht aus Dunkler Materie, deren Beschaffenheit bis heute nicht mit Sicherheit geklärt ist. Ursprünglich in den Rotationskurven von Spiralgalaxien beobachtet, wurde die Notwendigkeit ihrer Existenz inzwischen auch in elliptischen Galaxien und Galaxienhaufen nachgewiesen. Tatsächlich scheint Dunkle Materie eine entscheidende Rolle in der Strukturbildung im Universum gespielt zu haben. In der Frühzeit des Universums, als die Materieverteilung im Weltraum noch äußerst gleichmäßig war und nur sehr geringe Inhomogenitäten aufwies, bildeten sie die Kondensationskeime für den gravitativen Kollaps der Materie. Numerische Simulationen haben gezeigt, dass der heute beobachtbare Entwicklungszustand des Universums erst durch die zusätzliche Masse Dunkler Materie ermöglicht wurde, die den strukturellen Kollaps erheblich beschleunigte und nur dadurch zur heute beobachtbaren Komplexität der Strukturen führen konnte. Da Dunkle Materie nicht elektromagnetisch wechselwirkt, sondern sich nur durch ihre Schwerkraft bemerkbar macht, stellt der Gravitationslinseneffekt eine ausgezeichnete Methode dar, die Existenz und Menge an Dunkler Materie nachzuweisen. Der schwache Gravitationslinseneffekt macht sich zu Nutzen, dass die intrinsischen Orientierungen der Galaxien im Weltraum keine Vorzugsrichtung haben, gleichbedeutend mit ihrer statistischen Gleichverteilung. Die gravitationsbedingte kohärente Verzerrung der Hintergrundobjekte führt zu einer Abweichung von dieser Gleichverteilung, die von den Eigenschaften der Gravitationslinsen abhängt und daher zu deren Analyse genutzt werden kann. Diese Dissertation beschreibt die Galaxy-Galaxy-Lensing-Analyse von insgesamt 89 deg^2 optischer Daten, die im Rahmen des CFHTLS-WIDE-Surveys beobachtet wurden und aus denen im Rahmen dieser Arbeit photometrische Rotverschiebungs- und Elliptizitätskataloge erzeugt wurden. Das Galaxiensample besteht aus insgesamt 5×10^6 Linsen mit Rotverschiebungen von 0.05 < z_phot ≤ 1 und einem zugehörigen Hintergrund von insgesamt 1.7×10^6 Quellen mit erfolgreich gemessenen Elliptizitäten in einem Rotverschiebungsintervall von 0.05 < z_phot ≤ 2. Unter Annahme analytischer Galaxienhaloprofile wurden für die Galaxien die Masse, das Masse-zu-Leuchtkraft-Verhältnis und die entsprechenden Halomodellprofilparameter sowie ihre Skalenrelationen bezüglich der absoluten Leuchtkraft untersucht. Dies geschah sowohl für das gesamte Linsensample als auch für Linsensamples in Abhängigkeit des SED-Typs und der Umgebungsdichte. Die ermittelten Skalenrelationen wurden genutzt, um die durchschnittlichen Werte für die Galaxienhaloparameter und eine mittlere Masse für die Galaxien in Abhängigkeit ihres SED-Typs zu bestimmen. Es ergibt sich eine Gesamtmasse von M_total = 23.2+2.8−2.5×10^11 h^{−1} M_⊙ für eine durchschnittliche Galaxie mit einer Referenzleuchtkraft von L∗ = 1.6×10^10 h^{−2} L_⊙. Die Gesamtmasse roter Galaxien bei gleicher Leuchtkraft überschreitet diejenige des entsprechenden gemischten Samples um ca. 130%, während die mittlere Masse einer blauen Galaxie ca. 65% unterhalb des Durchschnitts liegt. Die Gesamtmasse der Galaxien steigt stark mit der Umgebungsdichte an, betrachtet man die Geschwindigkeitsdispersion ist dies jedoch nicht der Fall. Dies bedeutet, dass die zentrale Galaxienmateriedichte kaum von der Umgebung sondern fast nur von der Leuchtkraft abhängt. Die Belastbarkeit der Ergebnisse wurde von zu diesem Zweck erzeugten Simulationen bestätigt. Es hat sich dabei gezeigt, dass der Effekt mehrfacher gravitativer Ablenkung an verschiedenen Galaxien angemessen berücksichtigt werden muss, um systematische Abweichungen zu vermeiden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Die Entwicklung des ersten präzisen kosmologischen Modells, des LCDM Modells, ist eine bedeutende Errungenschaft der modernen, beobachtenden Kosmologie. Trotzdem bleiben eine Reihe von wichtigen Fragen über Zusammensetzung und Entwicklungsgeschichte des Universums unbeantwortet: Abgesehen von der Natur der Dunklen Materie ist der physikalische Ursprung der Dunklen Energie eine der ganz großen Fragen der theoretischen Physik. Ebenso bedürfen die statistischen Eigenschaften der anfänglichen Dichtefluktuationen im frühen Universum einer genauen überprüfung. Kleinste Abweichungen von den Gauß'schen Fluktuationen des Standardmodells würden, sofern sie nachgewiesen werden, eine Vielzahl von Informationen über die Physik des frühen Universums enthalten. In dieser Arbeit benutze ich numerische Verfahren, um neue, hochpräzise Vorhersagen zur kosmischen Strukturbildung in generalisierten Dunkle Energie Kosmologien zu treffen. Außerdem berücksichtige ich Modelle mit nicht-Gauß'schen Anfangbedingungen. Im ersten Abschnitt untersuche ich die nicht-lineare Strukturentstehung in sogenannten `Early Dark Energy' (EDE) Modellen und vergleiche sie mit dem LCDM Standardmodell. Interessanterweise zeigen meine Ergebnisse, dass der Sheth and Tormen (1999) Formalismus, mit dem üblicherweise die Anzahldichte von Halos aus Dunkler Materie geschätzt wird, in EDE Kosmologien weiterhin anwendbar ist, im Widerspruch zu analytischen Berechnungen. In diesem Zusammenhang untersuche ich auch das Verhältnis zwischen Masse und Geschwindigkeitsdispersion der Dunklen Materie in Halos. Dabei stelle ich eine gute übereinstimmung mit der Normalisierung der LCDM Kosmologien fest, wie sie in Evrard et al. (2008) beschrieben ist. Allerdings führt das frühere Anwachsen der Dichtestrukturen in EDE Modellen zu großen Unterschieden in der Massenfunktion der Halos bei hohen Rotverschiebungen. Dies könnte direkt in Beobachtungen gemessen werden, indem man die Anzahl der Gruppen als Funktion der Geschwindigkeitsdispersion der enthaltenen Galaxien entlang der Sichtlinie bestimmt. Insbesondere würde dadurch das Problem der mehrdeutigen Massebestimmung von Halos umgangen. Schließlich ermittele ich die Beziehung zwischen dem Konzentrationsparameter von Halos und der Halomasse in den EDE Kosmologien. Im zweiten Teil meiner Arbeit verwende ich ein Set an hochaufgelöste hydrodynamische Simulationen um die globalen Eigenschaften der thermischen und kinetischen Sunyaev Zeldovich (SZ) Effekte zu untersuchen. Dabei stellen wir fest, dass in den SZ-Beobachtungskarten der EDE Modelle der Compton-y-Parameter systematisch größer ist als im LCDM Modell. Erwartungsgemäß finde ich daher auch, dass das Leistungsspektrum der thermischen und kinetischen SZ Fluktuationen in EDE Kosmologien größer ist als im Standardmodell. Allerdings reicht diese Steigerung für realistische EDE Modelle nicht aus, um die theoretischen Voraussagen in übereinstimmung mit aktuellen Messungen der Mikrowellenhintergrundanisotropie bei großen Multipolwerten zu bringen. Eine Zählung der durch den SZ Effekt detektierbaren Halos in den simulierten Karten zeigt nur einen leichten Anstieg in den massereichsten Haufen für EDE Kosmologien. Ebenso sind Voraussagen für zukünftige Zählungen von SZ-detektierten Haufen durch das South Pole Telescope (SPT Ruhl, 2004) stark durch Unsicherheiten in der Kosmologie beeinträchtigt. Schließlich finde ich, dass die Normalisierung und die Steigung der Relation zwischen thermischem SZ-Effekt und Halomasse in vielen EDE Kosmologien unverändert bleibt, was die Interpretation von Beobachtungen des SZ Effekts in Galaxienhaufen vereinfacht. In weiteren Untersuchungen berechne ich eine Reihe von hochaufgelösten Vielteilchensimulationen für physikalisch motivierte nicht-Gauß'sche Kosmologien. In umfangreichen Studien untersuche ich die Massenverteilungsfunktion der Halos und deren Entwicklung in nicht-Gauß'schen Modellen. Zudem vergleiche ich meine numerischen Experimente mit analytischen Vorhersagen von Matarrese et al. (2000) und LoVerde et al. (2008). Dabei finde ich eine sehr gute übereinstimmung zwischen Simulation und analytischer Vorhersage, vorausgesetzt bestimmte Korrekturen für die Dynamik des nicht-sphärischen Kollapses werden berücksichtigt. Dazu werden die Vorhersagen dahingehend modifiziert, dass sie im Grenzfall sehr seltener Ereignisse einem geeignet veränderten Grenzwert der kritischen Dichte entsprechen. Desweiteren bestätige ich jüngste Ergebnisse, nach denen primordiale nicht-Gauß'sche Dichtefluktuationen eine starke skalenabhänginge Verzerrung auf großen Skalen verursachen, und ich lege einen physikalisch motivierten mathematischen Ausdruck vor, der es erlaubt, die Verzerrung zu messen und der eine gute Näherung für die Simulationsergebnisse darstellt.
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Die vorliegende Arbeit behandelt Fragen aus dem interdisziplinären Gebiet der Nanowissenschaften durch Untersuchungen mittels Rastertunnelmikroskopie und Computerchemie. Sie steht im Kontext der Entwicklung nanotechnologischer Herstellungsverfahren, die sich auf die "bottom-up"- Fertigungsstrategie beziehen. Diese Strategie verfolgt das Ziel, aus einzelnen elementaren Bausteinen (z.B. Molekülen) grössere funktionelle Strukturen und Systeme kontrolliert zusammenzusetzen. Kern dieser Arbeit ist die Vorstellung eines neuartigen Strukturbildungsprozesses auf molekularer Ebene und die Erschliessung dessen Potentials. Für diesen Prozess wird der Begriff "supramolekulare Festphasenbenetzung" vorgeschlagen. Damit wird ausgedrückt, dass die Ergebnisse als eine neue Bedingung für supramolekulare, spontane Strukturbildung (engl. self-assembly) interpretiert werden, die bei Raumtemperatur an der Grenze zwischen zwei festen Phasen stattfindet. Das vorgestellte Modell beschreibt diesen Prozess durch Nanokristalle, die – in einer Matrix suspendiert – bei Kontakt mit einer Kristalloberfläche ein Verhalten zeigen, das trotz vorhandener Festkörpereigenschaften (kristalline Ordnung) dem Verhalten flüssiger Tropfen bei der Benetzung von Oberflächen verwandt ist. Darauf aufbauend wird das technologische Potential des neuen Prozesses erschlossen: 1. Adsorbatstrukturen von einer Reihe organischer Halbleiter werden erstmals beschrieben. Damit wird zudem gezeigt, dass sich durch supramolekulare Festphasenbenetzung unlösliche Halbleitermoleküle sehr einfach und unter Umgebungsbedingungen geordnet adsorbieren lassen – ein Ergebnis, das sonst nur mit grossen Aufwand (z.B. Molekularstrahlepitaxie im Vakuum) möglich wäre. 2. Ein Erklärungsmodell wird entwickelt, mit dem sich die bislang unverstandene Möglichkeit molekularer Datenspeicherung mittels PTCDA- Moleküle theoretisch erklären und auf weitere, unter (1) vorgestellte Moleküle erweitern lässt. 3. Die Entwicklung eines Nanofabrikationskonzeptes wird vorgestellt, das eine lokale Kontrolle des Wachstums von Nanostrukturen ermöglicht. Der Vorteil gegenüber einer klassischen, Molekül für Molekül durchgeführten Nanostrukturierung liegt darin, dass durch die Spitze eines Rastertunnelmikroskops allein die Information über Wachstumsrichtungen in das System lokal einzubringen ist, die eigentliche Bildung der Strukturen jedoch durch selbständig ablaufende und somit qualitativ und zeitlich hoche¢ziente Wachstumsprozesse stattfindet ("geführtes Wachstum"). Damit lässt sich die bisherige Beschränkung von self-assembly auf streng periodische Strukturen durchbrechen und die vordefinierte Bildung komplexer Strukturen erreichen. 4. Ein Verfahren wird vorgestellt, das eine lokale Adsorption von Molekülen zu geordneten Schichten innerhalb einer Lage fremder Moleküle erlaubt und somit den Aufbau heterogener Adsorbatschichten ermöglicht.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Hintergrund und Ziele der Arbeit: Bakterien und DNA Viren werden anhand unmethylierter CpG-Motive innerhalb ihrer DNA von den TLR 9 tragenden PDCs und den B Zellen des humanen Immunsystems als Gefahrensignale erkannt. Mittels synthetischer, CpG-enthaltender ODN nutzt man diese Grundsatzmechanismen, um vergleichbare Immunantworten auszulösen. Auf Grundlage eines unterschiedlichen immunologischen Aktivierungsprofils wurden bislang drei CpG-Klassen definiert: CpG-A, CpG-B und CpG-C. Mit Hilfe von CpG-A war es erstmals möglich, IFN-α in PDCs (den endogenen Hauptproduzenten dieses Zytokins) in Mengen zu induzieren, wie es bislang nur mit Viren selbst möglich war. Auch CpG-C stimuliert PDCs zur Sekretion von IFN α und aktiviert darüber hinaus B Zellen - eine Eigenschaft, die CpG-A nicht besitzt. Die sequenzspezifischen und strukturellen Voraussetzungen für diese differenziellen Wirkprofile waren bislang unzureichend verstanden, auch weil die Struktur-Analysen nur begrenzt auf die tatsächlichen Vorgänge im physiologischen Milieu übertragbar waren. Um CpG-ODN für die therapeutische Anwendung zu optimieren, sind die genauen Kenntnisse der Struktur-Wirkungsbeziehungen jedoch unverzichtbar. Ein zweiter Ansatzpunkt zur Optimierung der Anwendung liegt in der Verbesserung der systemischen Stabilität von CpG-ODN. Die Bindung von CpG-ODN an partikuläre Trägersysteme (z.B. Gelatine-Nanopartikel) wurde bereits in unserer Abteiliung als mögliches drug-delivery-System etabliert. Eine Weiterentwicklung dieses Prinzips wären partikuläre Strukturen, die aus immunstimulatorischen Nukleinsäuren aufgebaut keiner weiteren Trägermaterialien bedürfen. Beide Ansatzpunkte führen zu den Zielen dieser Arbeit: 1) Die Aufklärung der Struktur-Wirkungsbeziehungen der CpG-Klassen A und C durch Etablierung geeigneter Methoden zur Untersuchung im physiologischen Milieu. 2) Die Entwicklung immunstimulatorischer partikulärer Strukturen auf Basis der in Teil 1) identifizierten wirksamen Strukturelemente beider CpG-Klassen. Ergebnisse: 1) Struktur-Wirkungsbeziehungen von ODN 2216 (CpG-A) und ODN M362 (CpG-C): CpG-A bildet im physiologischen Milieu spontan multimolekulare Strukturen, deren mittlere Durchmesser mit 24 40 nm im Größenbereich von Viren liegen. Es zeigte sich, dass für diese Multimerisierungen das Zusammenspiel aus flankierenden Poly-G-Motiven, palindromischem Zentrum und eingelagerten Natrium- oder Kaliumionen entscheidend ist. Physiologisches Milieu wirkt sich sowohl den Umgebungs-pH und die Na+/K+-Konzentrationen als auch die Temperatur (37 °C) betreffend optimal förderlich auf die Strukturbildung aus. Die Identifizierung dieser maßgeblichen Faktoren machte es möglich, den Strukturaufbau von CpG-A experimentell zu kontrollieren und die immunologischen Wirkungen der verschiedenen Strukturen direkt zu vergleichen. Für die rasche und hohe Induktion von IFN-α und anderen inflammatorischen Zytokinen durch PDCs sind große Partikel verantwortlich. Die Multimerisierungen von ODN 2216 werden bei pH < 6 zunehmend aufgehoben. Unterbindet man die Multimerisierungen durch Präinkubation der ODN bei Temperaturen > 60 °C oder durch Entzug der stabilisierenden Natriumionen (indem man sie zuvor in Aqua ad inj. löst), so verliert ODN 2216 seine immunstimulatorische Aktivität in Bezug auf PDCs. Die schwache Wirkung der CpG-A-Monomere kann jedoch durch Präinkubation von PDCs mit IFN β deutlich gesteigert werden. Im Gegensatz zu den ebenfalls einzelsträngig vorliegenden ODN 2006 (CpG-B) haben auch Monomere von ODN 2216 keine aktivierende Wirkung auf B Zellen. CpG-C hat durch die palindromische Sequenz die Möglichkeit, Hairpins und Duplices zu bilden. ODN M362 zeigt jedoch keine Hairpinstrukturen. Die Duplexformationen sind bei 37 °C in vitro nicht stabil und spielen keine Rolle bei der durch diese ODN initiierten B-Zell-Aktivierung. Duplices haben jedoch Anteil an der Induktion von IFN-α in PDCs. Die in dieser Arbeit etablierten Protokolle der Temperatur-Präinkubation ermöglichen erstmalig eine experimentelle Kontrolle der Strukturbildungen von CpG-A und CpG-C und dadurch den Vergleich von Struktur und Wirkung. Das Standardprotokoll für Gelelektrophorese wurde dahingehend modifiziert, dass ein physiologisches Milieu sowohl durch die anwesenden Ionen als auch durch die Umgebungstemperatur (37°C) simuliert werden konnte. 2)Design Nukleinsäure-basierter Nanopartikel: Zentrale Elemente von CpG-A und CpG-C (palindromische Sequenz, gerüstartige Verbindung mehrerer Nukleinsäuren) wurden eingesetzt, indem ODN M362-Sequenzen (CpG-C) an bi- und trivalenten Grundgerüsten (Linkern) für den Strukturaufbau optimiert wurden. Trivalente Linker ermöglichen die variierende Zusammenlagerung der palindromischen Nukleinsäuren in drei Richtungen des Raumes und dadurch die Bildung großer Partikel. Diese sind den bisher bekannten Maximalstimuli CpG-B und CpG-C hinsichtlich der Aktivierung von B-Zellen gleichwertig. Erstmalig konnten auf diese Weise B-Zellen durch partikuläre Strukturen stark aktiviert werden. Nach Vor-Komplexierung der Partikel mit Poly-L-Arginin wird die Aktivität bei B-Zellen nochmals verstärkt. Kurze, nicht-palindromische CpG-DNA-Sequenzen an trivalenten Grundgerüsten induzieren nach Vor-Komplexierung mit Poly-L-Arginin deutlich mehr IFN-α in PBMCs als CpG-A, obwohl sie selbst nicht multimerisieren. Wird die (palindromische) RNA-Sequenz von CpG-C an einem trivalenten Linker verwendet, so können ebenfalls große Strukturen generiert werden, die nach Transfektion vergleichbare Mengen IFN-α in PBMCs induzieren wie CpG-A. Ausblick: Die vorliegende Dissertation verbindet Fragestellungen der Immunologie und der pharmazeutischen Technologie mit den Möglichkeiten der Biochemie. Es werden nicht nur verschiedene Methoden zur strukturellen Untersuchung von CpG-ODN im physiologischen Milieu etabliert, sondern auch die experimentelle Kontrolle der Strukturbildung von CpG-A ermöglicht. Die entwickelte Technik der Generierung dreidimensionaler, über palindromische Nukleinsäuren aufgebauter Partikel ist nicht auf CpG-Motive in DNA begrenzt, sondern kann auf eine andere für Viren charakteristische Nukleinsäure (Einzelstrang-RNA) übertragen werden. Dadurch würde zusätzlich möglich, die immunologischen Profile von ssRNA, dsRNA und CpG in einem Partikel zu kombinieren und die Art der Immunantwort je nach Zusammensetzung der Partikel gezielt zu bestimmen. Die klinische Relevanz dieser Arbeit ergibt sich aus den neuen Erkenntnissen über die Multimerisierungen von CpG-A, welche dessen therapeutischen Einsatz optimieren und besser standardisierbar machen sollen. Außerdem werden neue Hinweise auf die unterschiedlichen Aufnahme- und Erkennungsmechanismen beider CpG-Klassen und deren Aktivierung der Synthese von IFN-α gewonnen. Darüber hinaus wurde durch die Entwicklung der Polyvalenten Linker eine grundsätzlich neue Technik im Stil eines Baukastensystems etabliert, welche als Grundstein einer neuen Generation von immunstimulatorischen Multimeren dienen soll. Die Koadministration von Adjuvans und Antigen in direkter räumlicher Nähe bietet neue Gestaltungsmöglichkeiten in der Vakzineentwicklung. Zudem ist zu erwarten, dass unter Einbeziehung der RNA basierten immunologischen Wirkprofile innerhalb eines Partikels der Einsatz von CpG-ODN zur Therapie von Virusinfektionen und Tumoren weiter verbessert werden kann.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Elliptische Galaxien sind homogene, von alten Sternen dominierte dynamische Systeme, die sich heute in einem Zustand annähernden Gleichgewichts befinden. Ihre Entstehung liegt zeitlich weit zurück und ihr jetziger Zustand lässt nur noch indirekte Rückschlüsse auf den genauen Zeitpunkt und die Art ihrer Entstehung zu. Moderne Theorien zur Strukturbildung im Universum sagen vorher, dass alle massereicheren Galaxien von Halos aus dunkler Materie umgeben sind. Die zentrale Dichte der dunklen Materie stellt sich dabei als ein indirektes Mass für die Entstehungsepoche der Galaxien heraus. Hinweise auf den Enstehungsprozess - die Literatur kennt im wesentlichen den Kollaps einer protogalaktischen Gaswolke oder die Verschmelzung mehrerer Vorläufergalaxien - ergeben sich aus der Verteilung der Sternbahnen in elliptischen Galaxien. Sowohl die Verteilung der Masse als auch die der Sternbahnen sind schwierig aus Beobachtungen zu bestimmen, weil elliptische Galaxien dreidimensionale Objekte sind und man nicht von vornherein weiß unter welchem Blickwinkel man sie beobachtet. Außerdem bilden ihre Sterne ein stossfreies dynamisches System, das beliebige Grade von Anisotropie annehmen kann. Seit etwa Anfang der 90er Jahre stehen mit den Messungen von projizierten Geschwindigkeitsprofilen Beobachtungsdaten zur Verfügung, die eine Rekonstruktion des genauen dynamischen Aufbaus einzelner Objekte zulassen. Erst seit etwa fünf Jahren hat die Entwicklung dynamischer Modelle ein vergleichbares Niveau erreicht, so dass es jetzt möglich ist, zumindest die volle Bandbreite achsensymmetrischer Modelle mit Beobachtungen einzelner Galaxien zu vergleichen. Die vorliegende Arbeit ist die erste Studie einer Stichprobe von mehreren Objekten mit achsensymmetrischen Modellen. Ähnlich umfangreiche Arbeiten waren bisher auf die Anwendung sphärisch-symmetrischer Modelle beschränkt, in denen weder Rotation noch Inklinationseffekte berücksichtigt werden können. Die Datenanalyse der vorliegenden Arbeit basiert auf der sog. Schwarzschild-Methode. Dabei wird zunächst aus Galaxienbildern das Gravitationspotential der sichtbaren Materie berechnet. Anschließend wird eine Bibliothek mit tausenden Sternbahnen angelegt, aus deren Überlagerung dann ein Modell konstruiert wird. Falls nötig, wird dunkle Materie hinzugefügt bis Modell und Daten im Rahmen der Messfehler übereinstimmen. Diese Methode wird im Rahmen der Arbeit weiterentwickelt: Eine gleichmässige Verteilung von invarianten Kurven einzelner Orbits in geeignet gewählten Poincaré-Schnitten wird als Kriterium für eine zuverlässige Berücksichtigung aller Bahntypen eingeführt. Ein Verfahren wird implementiert, dass ebenfalls Poincaré-Schnitte verwendet, um die Phasenvolumina einzelner Orbits und damit die Phasenraumverteilungsfunktion von Galaxien zu berechnen. Monte-Carlo Simulationen zeigen, dass mit optimierter Regularisierung sowohl interne Geschwindigkeiten als auch die Massenstruktur mit einer Genauigkeit von etwa 15 Prozent aus den vorliegenden Daten rekonstruiert werden können. Die untersuchten elliptischen Galaxien haben näherungsweise konstante Kreisgeschwindigkeiten außerhalb ihrer Zentren, ähnlich wie Spiralgalaxien. Die Halo Skalenradien einiger Ellipsen sind allerdings um einen Faktor zehn kleiner als die in gleichhellen Spiralen. Mit den flachen Rotationskurven sind 10 bis 50 Prozent dunkler Materie innerhalb des Effektivradius verknüpft. Die zentrale Dichte der dunklen Materie ist in Ellipsen um einen Faktor 25 höher als in Spiralgalaxien, was eine Enstehungsrotverschiebung von z = 4 impliziert. Soweit bestätigen die Modelle aus dieser Arbeit Resultate früherer Arbeiten mit sphärisch symmetrischen Modellen. In den Coma Galaxien mit den ältesten stellaren Populationen sind entweder - im Vergleich zu jüngeren Galaxien - mehr Sterne geringer Masse gebildet worden oder aber die dunkle Materie in diesen Galaxien folgt einer ähnlichen radialen Verteilung, wie die leuchtende Materie. Die Ergebnisse der Arbeit bestätigen kürzlich erschienene Arbeiten, nach denen elliptische Galaxien im grossen und ganzen eine homologe dynamische Familie bilden. Die verbleibende Streuung um entsprechende, aus dem Virialsatz ableitbare, globale Skalenrelationen sind auf eine systematische Verknüpfung des Drehimpulses mit der Leuchtkraftverteilung zurückzuführen. Der Ursprung dieser Relation ist noch unklar, aber ihr Vorhandensein erlaubt die Streuung in den Skalenrelationen um ein Drittel zu reduzieren. Dadurch könnte es in Zukunft möglich sein, die Entfernung einzelner Ellipsen mit grosser Genauigkeit aus ihrer Kinematik abzuleiten. Die Abflachung der untersuchten Galaxien kommt durch eine relative Unterhäufigkeit von Sternen auf Bahnen, die den Äquator mit hoher vertikaler Geschwindigkeit durchkreuzen, zustande. Eine solche Verteilung von Sternen maximiert ihre Entropie im Phasenraum, wodurch elliptische Galaxien zu einem hohen Grade dynamisch relaxiert scheinen. Allerdings offenbart eine genaue Untersuchung der Sternverteilung im Phasenraum eine reichhaltige Feinstruktur. Ein Objekt besteht aus der Überlagerung einer dünnen, rotierenden Scheibe und eines strukturlosen Sphäroids. In anderen Galaxien zeigt sich eine starke Asymmetrie zwischen rotierenden und gegenrotierenden Sternen in ihren Außenbezirken, gekoppelt mit relativ niedrigen stellaren Altern. Beides deutet daraufhin, dass die Sterne in diesen Regionen erst vor relativ kurzer Zeit zur Galaxie hinzugekommen sind. Über den beobachteten radialen Bereich zeigt keine Galaxie die typische Struktur nach einem Kollaps. Die Vielfalt der dynamischen Eigenschaften spricht eher für das Verschmelzungsszenario mit seiner natürlichen Variation an Ausgangskonfigurationen und -objekten.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In dieser Arbeit wurde mit Röntgenkleinwinkelstreuung (SAXS) und Fluoreszenzkorrelationsspektroskopie (FCS) die Struktur und das Phasenverhalten supramolekularer Komplexe aus Lipiden und hydrophiler DNA in unpolarem Lösungsmittel (Alkan) sowie von Komplexen aus Tensiden und hydrophoben Dendrimeren in wäßriger Umgebung untersucht. In beiden Fällen wurden Makromoleküle mit Amphiphilen komplexiert, die eine sowohl zur Oberfläche der Makromoleküle als auch zum Lösungsmittel kompatible Grenzfläche erzeugen. Weiterhin wurde im Rahmen dieser Arbeit eine Klein- und Weitwinkel Röntgenstreuanlage konzipiert und aufgebaut, die für Untersuchungen an weicher kondensierter Materie unter maximalen Fluß optimierte wurde. Der absolute Photonenfluß und die Auflösungsfunktion, sowie das Signal-Rausch-Verhalten und die zeitabhängige Speicherung des Bildplattensignals wurden bestimmt und mit der Theorie verglichen. Um eine DNA-basierte selbstorganisierte Strukturbildung in unpolaren Lösungsmitteln zu verstehen, wurden Grundlagenuntersuchungen an Lipid/DNA-Komplexen in Alkan durchgeführt und das Phasendiagramm des quaternären System aus DNA, Lipid, Wasser und Alkan bestimmt. Es wurden Lipidmischungen aus dem zwitterionischen DOPE und dem kationische DOTAP verwendet, und die Untersuchungen auf ein isoelektrisches Verhältnis zwischen DOTAP und DNA beschränkt. Das Phasendiagramm wurde als Funktion des Gewichtsanteil Phi des zwitterionischen Lipides DOPE an der Lipidgesamtmenge beschrieben. Bei einer ausreichenden Zugabe von Wasser und Alkan bilden diese zwei getrennte Phasen, wobei sich die Messungen auf die Alkanphase konzentrierten. Die Lipid/DNA-Komplexe wurden mit Röntgenkleinwinkelmessungen am Hamburger Synchrotronstrahlungslabor (HASYLAB) untersucht. Es konnte eine stabile Mesophase aus inversen zylinderartigen Lipid/DNA-Mizellen nachgewiesen werden, die bei steigendem DOPE Anteil Phi in eine Phase aus inversen sphärischen Lipid-Mizellen mit DNA-freiem Wasserkern übergeht. Zwischen beiden Phasen befindet sich ein Koexistenzbereich aus zylindrischen und sphärischen Mizellen, welcher sich zwischen Phi=72 % und Phi=82 % erstreckt. Die DNA befindet sich im Inneren der zylinderartigen inversen Lipidmizellen und ist entlang der Mizelle gestreckt. Sie wird von einer 1 nm dicken Wasserschicht von dem umgebenden Lipid getrennt. Die aus der Elektronendichteverteilung ermittelte Zusammensetzung der Lipidhülle ist gegenüber der zugegebenen Lipidzusammensetzung Phi zu einem höheren DOPE Gehalt verschoben. Aus der Interpartikelkorrelation kann eine starke Zunahme der Konzentration der Lipid/DNA-Mizellen mit steigendem Phi nachgewiesen werden. Interessanterweise ist die Struktur der zylinderartigen Lipid/DNA-Mizellen weitgehend unabhängig von der Sorte der verwendeten Alkane (Oktan, Dekan und Dodekan). Der Koexistenzbereich verschiebt sich bei Oktan in Vergleich zu Dekan und Dodekan zu einem höheren Wert. Außerdem können in Dekan für reines DOTAP (Phi=0 %) keine Komplexe festgestellt werden. Es wurde das Phasenverhalten der Lipid/DNA-Komplexe als Funktion der Wasserkonzentration bestimmt. Dies wurde exemplarisch bei einer Lipidzusammensetzung von Phi=76 % durchgeführt, bei der unter Wasserüberschuß annähernd die gesamte DNA in Alkan übergeht. Bei niedrigem Wassergehalt bilden sich in Alkan invertierte sphärische Lipidmizellen, die mit steigendem Wassergehalt anschwellen. Ab einem Wassergehalt von 163 % (Gewichtsprozent Wasser zu DNA) treten zylinderartige Lipid/DNA-Mizellen auf, deren Wassergehalt mit der zugegebenen Wassermenge bis zu einer Schichtdicke von 1 nm zunimmt. Im zweiten Teil der Arbeit wurden mit Hilfe der Fluoreszenzkorrelationsspektroskopie hydrophobe Polyphenylen-Chromophor-Dendrimere untersucht. Drei Arme des Dendrimers weisen fluoreszierende Gruppen auf, der vierte einen bioaktiven Biotinanker. Es konnte gezeigt werden, daß die Dendrimere supramolekulare Komplexe mit Tensiden formen und so in wäßrigen Medien gelöst und als multichromophorer Fluoreszenzmarker verwendet werden können. Die Komplexe zeigen bei Verwendung verschiedener Tenside unterschiedliche Strukturen. Alle weiteren Messungen wurden mit dem Tensid Tween 20 durchgeführt, das monodisperse Tensid/Dendrimer-Mizellen mit jeweils einem einzelnen Dendrimer bilden kann. Aus der Analyse der Fluoreszenzautokorrelation bei einer Dendrimerkonzentration von 50 nM erhält man zwei stark unterschiedliche Diffusionszeiten von t_D=168 µs und t_D=2470 µs, die beide über den gesamten Tensid-Konzentrationsbereich nachweisbar sind. Die schnellere Komponente aus Tensid/Dendrimer-Mizellen mit jeweils einem einzelnen Dendrimer pro Mizelle, dominiert die Autokorrelationsfunktion oberhalb einer Tensidkonzentration von 1,7e-4 M. Ihre Diffusionskonstante bleibt für alle Tensidkonzentrationen konstant und ergibt einen hydrodynamischen Radius R_H=7,1 nm. Die langsamere Komponente aus großen Aggregaten mit einer Vielzahl von Dendrimeren überwiegt unterhalb der Übergangskonzentration. Ihr hydrodynamischer Radius divergiert mit sinkender Tensidkonzentration bis hin zu einer Größe von über 20µm. Die Tensid/Dendrimer-Mizellen bleiben auch bei Verdünnung stabil. Innerhalb eines Konzentrationsbereiches der Dendrimere zwischen 10 nM und 10 M ist die gemessene Konzentration proportional zu dem Verdünnungsfaktor. Damit können die Tensid/Dendrimer-Mizellen als Fluoreszenzmarker für quantitative Fluoreszenzmessungen genutzt werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
In dieser Dissertation wird die Entwicklung von Galaxien innerhalb eines sehr großen Zeitraums (90% des Alters des Universums) anhand sehr tief belichteter Aufnahmen des sogenannten FORS Deep Field (FDF) untersucht. Homogenität und Größe des Datensatzes erlauben eine gründliche Analyse der Galaxienentwicklung, ohne großen systematischen Effekten zu unterliegen. Nachdem in Kapitel 1 ein Überblick der Kosmologie sowie der Strukturbildung und der bis dato beobachteten Entwicklungen von Galaxien gegeben wurde, werden in Kapitel 2 die Eigenschaften des FDFs diskutiert. Dabei wird der Objekt-Katalog, der über 8000 Galaxien und photometrische Informationen in 9 Filtern enthält, vorgestellt. In Kapitel 3 werden mögliche Auswahleffekte aufgrund des im I-Band (8000 Angström) selektierten Kataloges diskutiert und die Güte der Entfernungsbestimmung, welche auf photometrischen Rotverschiebungen basiert, beschrieben. Basierend auf diesen photometrischen Rotverschiebungen wird in Kapitel 3 und Kapitel 4 die Entwicklung der Anzahldichte von Galaxien pro Magnitude und Volumen, also der Leuchtkraftfunktion (LF), in Abhängigkeit der Rotverschiebung analysiert. Die LF der Galaxien entwickelt sich im UV viel stärker als im sichtbaren bzw. nah-infraroten Licht. Ein Vergleich mit der lokalen LF ergibt, daß die Galaxienpopulation im frühen Universum im Mittel im UV viel heller (Faktor 10), die Gesamtanzahl dagegen wesentlich niedriger (Faktor 10) gewesen ist. Im optischen bleibt dieser Trend nachweisbar. Ein Vergleich mit LF-Ergebnissen von anderen Himmelsdurchmusterungen zeigt eine sehr gute Übereinstimmung mit deren Ergebnissen. Aufgrund der tiefen Belichtung des FDFs ist es zudem möglich, auch noch sehr schwache Galaxien in die Analyse mit einzubeziehen und dadurch die Steigung der Leuchtkraftfunktion, d.h. das Verhältnis von schwachen zu hellen Galaxien, deutlich besser zu bestimmen. Ein Vergleich mit Vorhersagen theoretischer Galaxienentwicklungs-Modelle zeigt eine gute Übereinstimmung bei kleiner Rotverschiebung. Mit zunehmender Entfernung nehmen jedoch die Unterschiede zu. Um die Beiträge von einzelnen Galaxienpopulationen zur LF zu untersuchen, wird der Objekt-Katalog in Kapitel 5 in vier typische Populationen aufgeteilt: von frühen Typen mit praktisch keiner Sternentstehung bis hin zu Typen mit extremer Sternbildung. Die jeweilige LF wird in den verschiedenen Rotverschiebungsbereichen mit der Gesamt-LF verglichen. Der unterschiedliche Beitrag dieser Subpopulationen zur Gesamt-LF in den verschiedenen Filtern und bei verschiedenen Rotverschiebungen erklärt auf natürliche Weise die Änderung der Steigung der LF als Funktion der Wellenlänge. In Kapitel 6 wird die Entwicklung der Sternentstehungsrate, d.h. wieviel stellare Masse pro Jahr und Volumen bei welcher Rotverschiebung gebildet wird, untersucht. Dazu wird jeweils ein FDF B, I, (I+B) und GOODS (Great Observatories Origins Deep Survey) K selektierter Galaxien-Katalog analysiert. Es wird gezeigt, daß die Sternentstehungsrate bis ca. z=1.5 ansteigt, um dann bis ca. z=4 konstant zu bleiben. Bei noch höherer Rotverschiebung scheint sie wieder abzunehmen. Dieser Trend ist weitgehend unabhängig vom Selektionsband. Aus der Sternentstehungsrate wird in Kapitel 7 die Entwicklung der stellaren Massendichte als Funktion der Rotverschiebung berechnet. Unter der Annahme, daß die mittlere Staubkorrektur im UV weitgehend unabhängig von der Rotverschiebung ist, steigt die stellare Masse zw. z=4 und z=0.5 um einen Faktor 10 an. Ein Vergleich mit der Massendichte in der Literatur ermöglicht es uns außerdem eine mittlere Staubkorrektur von 2.5 plusminus 0.2 für den UV-Fluß abzuleiten. In Kapitel 8 werden die Ergebnisse nochmals zusammengefasst. Ein Vergleich mit Vorhersagen theoretischer Galaxienentwicklungs-Modelle basierend auf monolithischen Kollaps und hierarchischer Struckturbildung zeigt zudem, daß letztere meist besser mit integralen Beobachtungsgrößen wie der Leuchtkraftdichte übereinstimmen. Es gibt jedoch bei allen Modellen Probleme bei manchen detaillierten Vorhersagen wie zum Beispiel bei der Entwicklung der LF.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Im Rahmen dieser Arbeit werden Nanostrukturen aus biologischen Molekülen untersucht, sowie neue Methoden zur Strukturierung biologischer Systeme im nanoskaligen Bereich entwickelt und vorgestellt. Neben selbstorganisierten und enzymatischen Prozessen, wie sie bei der Strukturbildung biologischer Systeme eine wesentliche Rolle spielen, wird insbesondere auch eine neuartige Methode der gerichteten enzymatischen Hydrolyse biologischer Membranen, die eine gezielte Strukturierung im Nanometerbereich ermöglicht, vorgestellt. Vor dem Hintergrund, daß die Natur mit Polynucleinsäuren extrem vielseitige, universell einsetzbare und chemisch sowie molekularbiologisch sehr gut handhabbare molekulare Bausteine für den selbstorganisierten Aufbau hochintegrierter Nanoarchitekturen zur Verfügung stellt, werden ferner die grundlegenden Mechanismen und Kräfte der molekularen Erkennung bei der DNA-Basenpaarung sowie die mechanische Stabilität der DNA- Doppelhelix untersucht. - Durch kraftmikroskopische Untersuchungen an einer binären Mischung aus Dipalmitoyl- Phosphatidylcholin (DPPC) und Diarachidoyl-Phosphatidylcholin (DAPC) konnte erstmals die laterale Struktur von binären Lipidmischungen in Lipiddoppelschichten direkt bestimmt werden. Es konnte gezeigt werden, daß diese biologisch wichtigen Lipide in Lipiddoppelschichten spontan Domänen mit einer chrakteristischen Größe von etwa 10 nm bilden. Ein Vergleich der Ergebnisse der kraftmikroskopischen Untersuchungen mit denen von Neutronendiffraktionsexperimenten zeigte eine hervorragende Übereinstimmung der mit diesen beiden komplementären Techniken bestimmten mittleren Domänenabstände. - Untersuchungen des enzymatischen Abbaus von Lipidmembranen durch das lipolytische Enzym Phospholipase A2 (PLA2) erlaubten erstmals Einblicke in die Aktivität dieser Enzyme auf der Einzelmolekülebene. Es konnte gezeigt werden, daß die Enzymaktivität stark von den physikalischen Eigenschaften der Membran abhängig ist und daß Membranen in der Gel-Phase ausschließlich von Membrandefekten her und entlang der Hauptachsen des Molekülkristalls hydrolysiert werden, während die Hydrolyse flüssigkristalliner Membranen im wesentlichen isotrop verläuft. Die am freien Enzym gewonnenen Erkenntnisse konnten dann in einem nächsten Schritt zur Entwicklung einer neuartigen gerichteten Hydrolyse von Lipidmembranen genutzt werden, bei der mit der Spitze eines Rasterkraftmikroskops gezielt Defekte in kristallin gepackten Membranen induziert werden, und die Membranen dann durch das Enzym an Stellen mit diesen künstlichen Packungsdefekten hydrolysiert wird. Auf diese Weise konnten künstliche Strukturen in festkörpergestützten Membranen mit minimalen Strukturdurchmessern von bis zu 10 nm erzeugt werden. - Mit Hilfe von kraftspektroskopischen Untersuchungen an einzelnen DNA-Molekülen konnte erstmals ein neuartiger kraftinduzierter Schmelzübergang, der je nach Kraftladungsrate, Umgebungsbedingungen und DNA-Sequenz und Topologie zwischen einigen Piconewton (pN) und etwa 300 pN stattfindet, nachgewiesen werden. Durch Variation von Kraftladungsrate, Ionenstärke, Umgebungstemperatur und DNA-Sequenz konnte gezeigt werden, daß die mechanische Energie die unter Gleichgewichtsbedingungen bis zum kraftinduzierten Schmelzen in der DNA-Doppelhelix deponiert werden kann, hervorragend mit der freien Basenpaarungsenthalpie ∆Gbp der entsprechenden DNA- Sequenz unter den jeweiligen Umgebungsbedingungen übereinstimmt. Es konnte gezeigt werden, daß sich mit Hilfe der Temperaturabhängigkeit der mechanischen Stabilität von DNA die thermodynamischen Größen ∆Hbp und ∆Sbp von DNA direkt aus Kraftexperimenten an einzelnen Molekülen bestimmen lassen. Schließlich konnten die Basenpaarungskräfte von DNA erstmals sequenzspezifisch bestimmt werden. Die zum reißverschlußartigen Aufbrechen einer GC-Basenpaarung nötigen Kräfte betragen demnach 20±3 pN, die zum Aufbrechen einer AT-Basenpaarung nötigen Kräfte 9±3 pN. Auch hier konnte eine sehr gute Übereinstimmung der zum Aufbrechen der Basenpaarungen nötigen mechanischen Energie mit der freien Basenpaarungsenthalpie ∆Gbp festgestellt werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Thu, 16 Dec 1999 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/414/ https://edoc.ub.uni-muenchen.de/414/1/Rauscher_Markus.pdf Rauscher, Markus Bernhard ddc:530, ddc:500, Fakultät für Physik