Podcasts about modellansatz podcast folge

  • 1PODCASTS
  • 6EPISODES
  • 1h 10mAVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 5, 2019LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about modellansatz podcast folge

Modellansatz
Tonsysteme

Modellansatz

Play Episode Listen Later Sep 5, 2019 62:48


Stephan Ajuvo (@ajuvo) vom damals(tm) Podcast, Damon Lee von der Hochschule für Musik und Sebastian Ritterbusch trafen sich zu Gulasch-Programmiernacht 2019 des CCC-Erfakreises Entropia e.V., die wieder im ZKM und der HfG Karlsruhe stattfand. Es geht um Musik, Mathematik und wie es so dazu kam, wie es ist. Damon Lee unterrichtet seit einem Jahr an der Hochschule für Musik und befasst sich mit Musik für Film, Theater, Medien und Videospielen. Im aktuellen Semester verwendet er Unity 3D um mit räumlicher Musik und Klängen virtuelle Räume im Gaming-Umfeld umzusetzen. Auch im Forschungsprojekt Terrain wird untersucht, in wie weit räumliche Klänge eine bessere Orientierungsfähigkeit im urbanen Umfeld unterstützen können. Die Idee zu dieser Folge entstand im Nachgang zur gemeinsamen Aufnahme von Stephan und Sebastian zum Thema Rechenschieber, da die Musik, wie wir sie kennen, auch ein Rechenproblem besitzt, und man dieses an jedem Klavier wiederfinden kann. Dazu spielte Musik auch eine wichtige Rolle in der Technikgeschichte, wie beispielsweise das Theremin und das Trautonium. Die Klaviatur eines herkömmlichen Klaviers erscheint mit den weißen und schwarzen Tasten alle Töne abzubilden, die unser gewöhnliches Tonsystem mit Noten abbilden kann. Der Ursprung dieses Tonsystems entstammt aus recht einfachen physikalischen und mathematischen Eigenschaften: Wird eine Saite halbiert und im Vergleich zu zuvor in Schwingung gebracht, so verdoppelt sich die Frequenz und wir hören den einen gleichartigen höheren Ton, der im Tonsystem auch gleich benannt wird, er ist nur um eine Oktave höher. Aus einem Kammerton a' mit 440Hz ändert sich in der Tonhöhe zu a'' mit 880Hz. Neben einer Verdopplung ergibt auch eine Verdreifachung der Frequenz einen für uns Menschen angenehmen Klang. Da aber der Ton über eine Oktave höher liegt, wird dazu der wieder um eine Oktave tiefere Ton, also der Ton mit 1,5-facher Frequenz betrachtet. Dieses Tonintervall wie beispielsweise von a' mit 440Hz zu e'' mit 660Hz ist eine (reine) Quinte. Entsprechend des Quintenzirkels werden so alle 12 unterschiedlichen Halbtöne des Notensystems innerhalb einer Oktave erreicht. Nur gibt es hier ein grundsätzliches mathematisches Problem: Gemäß des Fundamentalsatzes der Arithmetik hat jede Zahl eine eindeutige Primfaktorzerlegung. Es ist also nicht möglich mit mehreren Multiplikationen mit 2 zur gleichen Zahl zu gelangen, die durch Multiplikationen mit 3 erreicht wird. Somit kann der Quintenzirkel nicht geschlossen sein, sondern ist eigentlich eine niemals endende Quintenspirale und wir müssten unendlich viele unterschiedliche Töne statt nur zwölf in einer Oktave haben. In Zahlen ist . Nach 12 reinen Quinten erreichen wir also nicht genau den ursprünglichen Ton um 7 Oktaven höher, doch der Abstand ist nicht sehr groß. Es ist grundsätzlich unmöglich ein endliches Tonsystem auf der Basis von reinen Oktaven und reinen Quinten zu erzeugen, und es wurden unterschiedliche Strategien entwickelt, mit diesem Problem zurecht zu kommen. Wird das Problem ignoriert und nur die letzte Quinte verkleinert, damit sie auf den ursprünglichen Ton um sieben Oktaven höher trifft, so entsteht eine schlimm klingende Wolfsquinte. Auch im Cello-Bau können durch Wahl der Verhältnisse der Saiten und der Schwingungsfrequenzen des Korpus fast unspielbare Töne entstehen, diese werden Wolfston genannt. In der Musik wird die erforderliche Korrektur von Intervallen auch Komma-Anpassung genannt, die beispielsweise bei Streichinstrumenten automatisch, da hier die Töne nicht auf festen Frequenzen festgelegt sind, sondern durch die Fingerposition auf dem Griffbrett individuell gespielt wird. Bei Tasteninstrumenten müssen die Töne aber im Vorfeld vollständig in ihrer Frequenz festgelegt werden, und hier haben sich historisch verschiedene Stimmungen ergeben: Nach vielen Variationen, die immer durch die Wolfsquinte unspielbare Tonarten beinhalteten, wurde ab 1681 in der Barockzeit von Andreas Werkmeister die Wohltemperierte Stimmung eingeführt, in der zwar jede Tonart spielbar, aber jeweils individuelle Stimmungen und Charaktäre vermittelten. Diese Unterschiede sollen Johann Sebastian Bach bis 1742 zum Werk Das wohltemperierte Klavier inspiriert haben, wo er die jeweiligen Eigenheiten aller Tonarten musikalisch umsetzte. Die heute am häufigsten verwendete Gleichtstufige oder Gleichmäßige Stimmung verkleinert alle Quinten statt 1,5 auf den gleichen Faktor , so dass alle Töne auf die Frequenzen festgelegt sind. Damit sind alle Tonarten absolut gleichberechtigt gut spielbar, sie klingen aber auch alle gleich, und haben alle den gleichen kleinen Fehler. Da aber gerade bei Streichinstrumenten natürlich passendere Frequenzen gewählt werden, klingen gerade synthetisch erzeugte Streicher unrealistisch, wenn sie der exakten gleichstufigen Stimmung folgen. Während bei der Klavierstimmung die Töne durch die Spannung der Saiten eingestellt werden können, so werden metallische Orgelpfeifen mechanisch mit einem Stimmeisen in ihrer Frequenz angepasst. Die Porzellanorgel ist eine ungewöhnliche unter anderem in Meissen hergestellte Form, deren Pfeifen natürlich auch mit Luft und nicht durch Vibration, wie beim Schlaginstrument des Vibraphons klingen. György Ligeti, populär bekannt durch Filmmusiken in 2001: Odyssee im Weltraum und Eyes Wide Shut, hat sich in seinem späteren Schaffenswerk auch mit exotischeren Tonsystemen auf Basis reiner Intervalle mit Streichern befasst. Beispielsweise sollte Continuum, für Cembalo, mit Mitteltöniger Stimmung gespielt werden. Um in der herkömmlichen Notation auf der Basis von 12 Halbtönen auch feinere Tonschritte bezeichnen zu können, wurden die Zeichen Halb-Kreuz und Halb-b eingeführt, die auf die Viertelton-Musik führten. Hier stellt sich die interessante Frage, ob eine Erhöhung auf 24 Tönen pro Oktave bei reinen Intervallen sich der Fehler reduziert. Diese Frage beantwortet die Berechnung des entsprechenden Faktors aus Quinten mit dem nächsten Faktor aus Oktaven und die Berechnung des relativen Fehlers, der korrigiert werden muss. Bis 53 Quinten haben folgende Kombinationen einen Fehler von weniger als 7%: Quinten n 5 7 12 17 24 29 36 41 46 48 53 Oktaven m 3 4 7 10 14 17 21 24 27 28 31 Fehler5,1%6,8%1,4%3,8%2,8%2,5%4,2%1,1%6,6%5,6%0,2% Ein sehr primitives Tonsystem kann also mit 5 Tönen aufgestellt werden, aber offensichtlich treffen 12 Töne deutlich besser. 24 Töne ermöglichen zwar mehr Tonvielfalt, verbessern aber den Fehler nicht. Erst ein Tonsystem mit 29 Tönen würde bei gleichstufiger Stimmung einen exakteren Klang als bei 12 Tönen ermöglichen. Noch besser wäre dann nur noch ein Tonsystem mit 41 Tönen pro Oktave, eine extreme Verbesserung ergibt sich bei 51 Tönen pro Oktave bei entsprechenden Problemen beim Bau einer solchen Klaviatur. Dazu haben Tonsystemerweiterungen in Vielfachen von 12 eine höhere Kompatibilität zum herkömmlichen System, und die Nähe der besseren Tonsysteme mit 29 zu 24 und 53 zu 48 zeigt, dass die Vielfachen in der Aufführung als Näherungen zu den besseren Darstellungen betrachtet werden können. Gérard Grisey (z.B. Les espaces acoustiques) und Tristan Murail sind Vertreter der Spektralisten, die in ihren Partituren erweiterte Tonsysteme verwenden. Hier sind die Tonangaben jedoch harmonisch statt melodisch gedacht, sind also in der Aufführung entsprechend zu interpretieren. YouTube: Gérard Grisey - Vortex Temporum - Ensemble Recherche Natürlich dürfen die Töne von Instrumenten nicht nur mit ihrer Grundfrequenz betrachtet werden, sondern erst das Zusammenspiel aller Harmonischen und Obertöne in Vielfachen der Grundfrequenz machen den charakteristischen Klang eines Instruments aus. Durch eine Fourier-Analyse kann mathematisch ein solches Frequenzspektrum eines Geräusches oder eines Tons berechnet werden. Oft ist hier eine überraschende Anzahl von Obertönen zu sehen, die von Menschen nicht unabhängig vom Grundton gehört werden. In der Ottoman Musik finden sich oft für west-europäische Ohren ungewohnte Harmonien, die aus ihrer langen orientalischen Geschichte andere Formen der Komposition und Tonsysteme entwickelt haben. In der Audioelektronik wurden ab etwa 1912 Röhren für Verstärker und insbesondere in der Musik verwendet, und die exakte Bauform der Bleche und Elektroden hatte deutliche Auswirkungen auf die Übertragung und Erzeugung von Spektren und Audiowellen durch Verzerrungen. Die Hammondorgel war eine sehr beliebte elektromechanische Orgel, wo anstatt von Pfeifen rotierende Zahnräder vor elektrischen Abnehmern die Töne erzeugten. Mit Hilfe von Röhren wurde in der DDR versucht, Silbermann-Orgeln als elektronische Orgeln auf Basis des Prinzips der Hammondorgel nachzubilden. Die Klangfarben der Silbermann-Orgeln wurden hier durch elektronische Rekonstruktion der Obertöne nachempfunden. Was als angenehmer Klang empfunden wird, ist eine persönliche Sache. Jedoch ist auffällig, dass der harmonische Grundklang eines Dur-Akkords einen sehr mathematischen Hintergrund hat: Die Quinte integriert den Faktor 3, bzw. 3/2, also 1.5, die große Terz den Faktor 5, bzw. 5/4 also 1.25, und die Quarte zur nächsten Oktave mit Faktor 2 ist der Faktor 4/3. Ein Zusammenspiel von so kleinen Faktoren wird bei kleinem kleinsten gemeinsamen Vielfachen wieder periodisch und ergibt einen gleichmäßigen Klang. Das persönliche Empfinden kann physiologisch mit dem Aufbau der Hörschnecke zusammenhängen, wird aber auch stark durch Erfahrungen geprägt. Musik besteht aber nicht aus einem Klang, sondern einer zeitlichen Abfolge von Konsonanz und Dissonanz, und das gilt nicht nur für neue Veröffentlichungen alter Meister von Wolfgang Rehm. So spielt Ornette Coleman mit den Erwartungen der Hörenden bis ins Chaos. YouTube: Ornette Coleman Solo - Rare! Im Google-Doodle zu Ehren von Johann Sebastian Bach hingegen versucht aus eine Vorgabe mit einem neuronalen Netz gerade die erwartete Vervollständigung im Stil von Bach zu komponieren. Eine Regelmäßigkeit oder Überraschung in der Musik kann auch im Sinne eines Informationsgehalts interpretiert werden: Sehr regelmäßige Formen sind vorhersagbar und enthalten wenig Information, die unerwartete Wendung hingegen trägt viel Information. Die als algorithmischen Komposition bezeichneten Werkzeuge werden in vielen Programmen und Geräten angeboten, beispielsweise als automatische Begleitung. Die Ergebnisse erscheinen aber nicht sehr kreativ. Bei der Verwendung von künstlichen neuronalen Netzen für die Komposition ist es leider nicht möglich im Nachhinein zu analysieren, warum und wie bestimmte Passagen erzeugt wurden: Auch wenn sie mit existierenden Beispielen mit Backpropagation trainiert wurden, arbeiten dann als Black Box, aus der nicht direkt abstrakte Entscheidungsgrundlagen reproduziert werden können. Alles Lernen setzt voraus, dass es ein Maß für die Güte gibt, was ist demnach die Qualität einer Komposition, was unterscheidet Kreativität vom Zufall und wo stimmt dies zwischen unterschiedlichen Menschen überein? Wie an prähistorischen Instrumenten zu erkennen, ist Klangerzeugung und Musik mit der Stimmbildung eng mit der Evolution des Menschen verknüpft. Recht spät entstanden Techniken zur Kodifizierung von Tonfolgen, wie beispielsweise in der Gregorianik. Es ist anzunehmen, dass der gesellschaftliche Einfluss auf die Kompositionen ihrer Zeit sehr groß war, und es jeweils auch besondere Auswirkungen wie die Blue Notes gegeben hat. Heute wird Komposition in vielen Schritten gelehrt: Angefangen von der Musiktheorie, Erlernen von Instrumenten und Musikgeschichte wird dann in Kompositionstechniken unterschiedlicher Musikepochen eingeführt. Ausgehend von den Techniken von Josquin Desprez im 15. Jahrhundert zur Verwendung des Kontrapunkt im 16. Jahrhundert, oder wie Johann Sebastian Bach den Kontrapunkt im 18. Jahrhundert nutzte. In den Notenblättern von Ludwig van Beethoven ist zu erkennen, wie er von Joseph Haydn das Komponieren auf Basis von Kontrapunkten erlernte, und auch heute mit seinen inzwischen vom Betthoven-Haus umfangreich digitalisierte Werk die Musikforschung begeistert. Ein Lehrkanon kann sich wie Kompositionstechniken über die Zeit ändern, so wie in der Mathematik früher das Riemannsche Integral Standard war, so sehen wir inzwischen den Übergang zum mächtigeren und der Wirklichkeit näheren Integralbegriff nach Lebesgue. So wie heute häufiger der neuere Begriff zum Einsatz kommt, so ist es sinnvoll und gut, auch frühere Techniken, wie auch frühere Kompositionstechniken, zu kennen und daraus lernen zu können. Im Berufsbild einer Komponistin oder eines Komponisten ist es heute meisstens nicht so, dass der Kreativität freien Lauf gelassen wird, sondern die Arbeit erfolgt in interdisziplinärer Zusammenarbeit in einem Team. Besonders für Videospielmusik oder Filmmusik wird die Komposition auf besondere Situationen hin entwickelt und erarbeitet. Wie Kreativität, Teamwork, Künstliche Intelligenz und Programmieren zu neuen Lösungen zusammenwirken kann, war auf der Gulaschprogrammiernacht auch in der Projektion der Schlangenprogrammiernacht zu sehen, wo verschiedene Programme als Schlangen in einer virtuellen Welt miteinander lebten. Der spielerische Umgang mit Algorithmen wie bei Schere, Stein, Papier führt schnell auf Spieltheorie und Herausforderungen im Hochfrequenzhandel. Literatur und weiterführende Informationen C.-Z. A. Huang, C. Hawthorne, A. Roberts, M. Dinculescu, J. Wexler, L. Hong, J. Howcroft: The Bach Doodle: Approachable music composition with machine learning at scale, ISMIR 2019. U. Peil: Die chromatische Tonleiter - Mathematik und Physik, Jahrbuch der Braunschweigischen Wissenschaftlichen Gesellschaft, 2012. M. Schönewolf: Der Wolf in der Musik. Podcasts U. Häse, S. Ajuvo: Theremin, Folge 56 im damals(tm) Podcast, 2018. N. Ranosch, G. Thäter: Klavierstimmung, Gespräch im Modellansatz Podcast, Folge 67, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. P. Modler, S. Ritterbusch: Raumklang, Folge 8 im Podcast Neues Terrain, 2019. R. Pollandt, S. Ajuvo, S. Ritterbusch: Rechenschieber, Gespräch im damals(tm) und Modellansatz Podcast, Folge 184, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. S. Brill, T. Pritlove: Das Ohr, CRE: Technik, Kultur, Gesellschaft, Folge 206, 2014. C. Conradi: Der erste letzte Ton, Systemfehler Podcast, Folge 26, 12.4.2018. C. Conradi: Elektronische Orgel made in DDR, Zeitfragen, Deutschlandfunk Kultur, 12.6.2019. G. Follmer, H. Klein: WR051 Ortsgespräch, WRINT: Wer redet ist nicht tot, Folge 51, 2012. Audiospuren Tonbeispiele von D. Lee und S. Ritterbusch MuWi: C-g pythagoräischer Wolf, CC-BY-SA, 2007. Mdd4696: WolfTone, Public Domain, 2005. GPN19 Special P. Packmohr, S. Ritterbusch: Neural Networks, Data Science Phil, Episode 16, 2019. P. Packmohr, S. Ritterbusch: Propensity Score Matching, Gespräch im Modellansatz Podcast, Folge 207, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. http://modellansatz.de/propensity-score-matching C. Haupt, S. Ritterbusch: Research Software Engineering, Gespräch im Modellansatz Podcast, Folge 208, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. http://modellansatz.de/research-software-engineering D. Lee, S. Ajuvo, S. Ritterbusch: Tonsysteme, Gespräch im Modellansatz Podcast, Folge 216, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. http://modellansatz.de/tonsysteme GPN18 Special D. Gnad, S. Ritterbusch: FPGA Seitenkanäle, Gespräch im Modellansatz Podcast, Folge 177, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/fpga-seitenkanaele B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauen GPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter GPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine

theater evolution ein film geschichte gespr wolf arbeit rick musik jahr dazu folge heute zeit neben ohren nach frage halb medien formen zusammenarbeit rolle netz erfahrungen kultur wie menschen wahl auswirkungen durch chaos verh aufnahme fehler gesellschaft welt werk komponisten bei verst qualit hier continuum les roberts hong luft lauf noch public domain wird wexler ornette coleman wirklichkeit vertreter werkzeuge techniken papier erst umgang zufall kombinationen damit stil beethoven system team kreativit bis einfluss literatur stephan weltraum einsatz oft diese frage umfeld faktor stein erwartungen basis meister ddr klavier notation sache hawthorne ludwig verbesserung begriff bach josquin desprez cc by sa instruments nur strategien theremin programme vibration kompositionen kl brill zahl black box ligeti unity 3d klang fakult teamwork musikgeschichte ehren spannung pfeifen sinne semester herausforderungen stimmung vergleich gy unity3d erh recht situationen somit nachhinein johann sebastian bach jahrhundert abstand hochschule eyes wide shut filmmusik hintergrund ausgehend jedoch quinte aufbau besonders problemen faktoren sehr korrektur vorfeld komposition komponieren angefangen noten passagen begleitung berechnung variationen rekonstruktion nachgang huang abfolge die idee korpus beispielsweise frequenz verwendung anzahl mit hilfe auff grundfrequenz der ursprung zusammenspiel die ergebnisse beispielen bau odyssee programmen erlernen algorithmen stimmungen intelligenz erzeugung schritten wendung schlangen meissen barockzeit darstellungen mathematik krause obert kammerton komponistin instrumenten videospielen zkm physik jahrbuch 440hz joseph haydn projektion orgel eigenheiten haupt schere hfg karlsruhe karlsruher institut vorgabe technologie kit verdopplung frequenzen netzen bauform faktors empfinden schwingung streicher fehlers entsprechend stimmbildung programmieren zahnr tasten musiktheorie klaviatur tonart intervallen tonh prinzips verzerrungen blue notes kontrapunkt ajuvo grisey saiten der wolf harmonien orgelpfeifen quinten spieltheorie lebesgue orgeln filmmusiken intervalle gleichm tonarten magin klaviers kompatibilit spektren charakt vervollst dissonanz diese unterschiede oktaven deutschlandfunk kultur elektroden oktave backpropagation grundton harmonischen griffbrett modellansatz podcast folge modellansatz podcast technikgeschichte sebastian ritterbusch saite cembalo videospielmusik schaffenswerk ismir hammondorgel partituren tristan murail gregorianik
Modellansatz
Research Software Engineering

Modellansatz

Play Episode Listen Later Jun 20, 2019 119:37


Vom 30. Mai - 2. Juni 2019 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN19 statt. Dort traf Sebastian auf Carina Haupt, die schon auf der GPN18 von der öffentlich finanzierten Wissenschaft forderte: Publish Your Research! Carina Haupt studierte Informatik an der Hochschule Bonn-Rhein-Sieg. Aktuell befasst Sie sich wissenschaftlich mit Forschungssoftware, die meist von Wissenschaftlerinnen und Wissenschaftlern nur geringfügiger Kenntnis von Softwaretechnik oder unter Aspekten von Nachhaltigkeit entwickelt wird, da die Software nur als Mittel zum Zweck gesehen wird. Ziel der Wissenschaftlerinnen und Wissenschaftlern ist es schließlich Forschung zu betreiben und nicht Software zu entwickeln. Dabei zeigt die anhaltende Replication Crisis, die darin besteht, dass etliche publizierte wissenschaftliche Arbeiten nicht reproduzierbar sind, und somit alle abgeleiteten Arbeiten auf unsicheren Füßen stehen und eigentlich unter den geänderten Voraussetzungen wiederholt werden müssten. Eine Herausforderung ist, dass für viele Forschende, wie beispielsweise in der Mathematik, oft die Software nur zur Verifikation der eigentlichen wissenschaftlichen Aussagen verwendet wird, und daher eine deutlich geringere Wertschätzung erfährt. Auch wird ein Reputationsverlust befürchtet, wenn die Softwarequalität nicht den Ansprüchen im Kernbereich der Forschung entspricht, so dass oft von einer veröffentlichung des Source Codes und der Daten abgesehen wird. Dabei muss die Offenlegung der verwendeten Verfahren und Daten ein Grundanliegen ernsthafter Forschung sein und eine Kennzeichnung von Software beispielsweise als Proof-of-Concept sollte einen angemessenen Anspruch an die Software sicherstellen. Am Deutschen Zentrum für Luft- und Raumfahrt (DLR), leitet Carina eine Gruppe zum Software Engineering und ist dort mit ihren Kolleginnen und Kollegen für 40 Institute an 20 Standorten Ansprech- und Kooperationspartnerin für Softwareentwicklung unter anderem im wissenschaftlichen Umfeld von Luft- und Raumfahrt, Energie und Verkehr. Inzwischen ist dort ihr Enthusiasmus für Open Source, und Forschenden in der Softwareentwicklung zu unterstützen, zu ihrem eigenen Forschungsgebiet geworden. Bevor sie zum DLR kam, war sie beim Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI) im Bereich der Bioinformatik und dem Semantic Web, sowie in der Industrie und nebenberuflich bei der Froscon tätig, bis sie dem Ruf von Andreas Schreiber in ihre aktuelle Gruppe folgte. Um Außenstehenden einen schnellen und sehr unterhaltsamen Einstieg in und wichtige Motivation für das Software Engineering bei der DLR zu bieten, hat sie auf der GPN18 einen Vortrag Software-Fehler in der Raumfahrt: Disintegrating Rockets mit großem Anklang gehalten. Aber kann die Publikation von Forschungsdaten bei Auswirkungen der Replikationskrise wie der Analyse, dass über die Hälfte von Psychologiepapern nicht nachvollzogen werden können, helfen? Auf jeden Fall hätte die Veröffentlichung schon frühere Diskussionen und Verbesserungen der Ergebnisse ermöglicht, da abgeleitete Arbeiten statt der geschriebenen Darstellung auf den echten Daten ihre erweiterten Analysen hätten durchführen können. Soweit die Theorie, praktisch muss man sich eingehend damit befassen, was genau erforderlich ist, um eine Reproduzierbarkeit schon auf Seiten der Daten und Software zu ermöglichen. Das Befassen mit diesen Themen führt von einer Erstellung einer Publikation zum Begriff der Open Science oder offener Wissenschaft, die unter anderem Open Access, Open Data als auch Open Source betrifft. Hier konzentriert sich Carina in ihrer Forschung besonders auf den letzten Teil, insbesondere wie Erkenntnisse aus der Softwaretechnik dazu beitragen können, dem großen Ziel der Reproduzierbarkeit auch über die Zeit hinweg zumindest näher zu kommen. Wichtig ist auch den Entstehensprozess von Software zu betrachten. Die Fernseh-Show Bares für Rares demonstriert, wie die Wertigkeit eines Objekts durch eine nachgewiesene Herkunft signifikant beeinflusst wird. Dies erfolgt durch Nachweis der sogenannten Provenience. Der Begriff Provenience bedeutet die Aufzeichnung der Geschichte der Entstehung eines Objektes. Dies läßt sich auf Software übertragen. Die Wertigkeit und Qualität von einer Software-Publikation könnte zum Beispiel dadruch evaluiert werden indem der Build- und Entwicklungsprozess aufgezeichnet, und mit dem PROV W3C-Standards dokumentiert. Neben der Dokumentation liegt der nächste Schritt für reproduzierbare Software (vgl. E. Heitlinger: Reproduzierbarkeit – Wissenschaftliche Arbeit als Software-Projekt) darin, die erforderlichen zusätzlichen Bestandteile auch zur Verfügung zu stellen. Die nachhaltige Softwareentwicklung befasst sich in besonderem Maße damit, dass die Software von anderen sowohl genutzt als auch in Zukunft weiterentwickelt werden kann. Natürlich sollten wissenschaftliche Veröffentlichungen grundsätzlich die Wissensgewinnung und Validierung genau beschreiben, nur ist dies im gängigen Rahmen und Form normaler Publikationsformen weder in Form noch im Umfang abzubilden. Daher fordern viele Journals und Konferenzen, die Daten und Methoden in der Form von ausführbaren, web-basierten Jupyter Notebooks zur Verfügung zu stellen. Ein neuer Ansatz ist eine "Software Zitierbarkeit" zu ermöglichen, also sowohl die Form mit Weblinks und Versionierung, also auch mit Infrastruktur wie dem Dienst Zenodo, das einen Digital Object Indentifier (DOI) für Software mit einem Langzeitarchiv bereitstellt. Das ist ein Service, der in etwas weniger spezialisierter Form für unterschiedliche Medien auch von vielen Hochschulbibliotheken angeboten wird. Am DLR widmet sich die Software Engineering Initiative mit vielen Ansätzen, um Forschenden zu helfen nachhaltige Software zu entwickeln. Ein wichtiger Bestandteil sind hier Trainings, wie beispielsweise Repositories verwendet werden sollten: Hinweise für sinnvolle Commit-Messages verwenden. Wie sollten Versionen vergeben werden? Neben den eigentlichen Sourcen sollte auch der Build-Prozess und Testdaten im Repository sein Sinnvolle Struktur von Dateibäumen und sprechende Bennenung von Dateien Jedes Repository sollte eine README-Datei haben, die am Anfang kurz die Funktion der Sourcen beschreibt und in welchem Scope und in welchen Constraints die Ziele erreicht werden sollen, wie sie installiert, ausgeführt und getestet wird und wie sollte die Software zitiert werden? Unter welcher Lizenz steht die Software? Unterstützung gibt es auch durch zentrale Infrastruktur, die vom DLR beispielsweise durch eine eigene GitLab bald zur Verfügung stehen wird, und allen Forschenden einen eigenen persönlichen Bereich anbieten, sowie Projekten sofort entsprechende Strukturen bereitstellen. Die im Gespräch erwähnte SHA1-Kollision Shattered hatte einen Stillstand der für mehrere Browser grundlegende WebKit-Entwicklung zur Folge, da deren Subversion-Repository nicht mit der Hash-Kollision zurecht gekommen ist. Es gibt vielseitige Motivationsgründe für Forschende die Unterstützung der Software Engineering Initiative anzunehmen: Entweder sind sie aus einem füngeren universitären Umfeld schon mit der Thematik vertraut, oder haben Probleme durch fehlene Softwarequalität schon kennengelernt, lassen sich von Beispielen überzeugen oder Qualitätsanforderungen überreden, oder es wird ihnen durch Vorgesetzte nahe gelegt. Ein Mittel zur Motivation sind insbesondere die am DLR entwickelten Software Engineering Guidelines, die Kolleginnen und Kollegen zur Verfügung gestellt werden können. Darin sind sowohl Begründungen für das Vorgehen, aber auch einfach zur verfolgende Entscheidungsbäume und Checklisten, die je nach Größe und Kritikalität von Projekt unterschiedlich aufwendige Empfehlungen vorschlagen. Dies kann von einer TODO-Datei bis zur Integration eines vollständigen Issue-Tracker gehen, der in der höchsten Qualitätsstufe auch mit dem kompletten Code-Management integriert werden sollte. Diese Guidelines sind am DLR in eine Qualitätsinitiative integriert, bei der in jedem Institut ein Qualitätsbeauftragter oder eine Qualitätsbeauftragte zumindest erfassen sollte, warum bestimmte Empfehlungen nicht entsprochen wird, oder idealerweise das Institut dabei dazu zu motivieren diese einfach genau so umsetzen. Die erforderliche Bereitstellung digitaler Infrastruktur durch Organisationen spielt für Hochschulen neben den Bereichen des Software Engineerings auch in der Lehre eine wichtige Rolle: "Wenn technische Möglichkeiten wie Vorlesungsaufzeichnungen auch im Rahmen obligatorischer Lehrveranstaltungen genutzt werden sollen, müssen Hochschulen daher auch aus datenschutzrechtlichen Gründen entweder eine eigene Infrastruktur aufbauen oder datenschutzkonforme Dienstleistungen gegen Entgelt in Anspruch nehmen." A. Lauber-Rönsberg in Videocampus Sachsen – Machbarkeitsuntersuchung. Was alles bei der Nutzung mit Software-Repositories am Beispiel von GIT passieren kann, erzählt Sujeevan Vijayakumaran im GPN19-Vortrag Dämliche Dinge mit git anstellen. Grundlage für viele Aktivitäten der Software Engineering Group basieren auf Software Carpentries, beispielsweise mit einer GIT Einführung, die auch auf die Nachhaltigkeit abzielt. In der Helmholtz-Gesellschaft wurde das HIFIS-Projekt (Helmholtz Infrastructure for Federated ICT Services) gestartet, um die Initiativen und Erfahrungen in der Bereitstellung von Infrastrukturen innerhalb der Helmholtz Gesellschaft zu bündeln. Hier geht es nicht nur um den Betrieb der Software, sondern auch um das Training für die Services und im Allgemeinen. Dazu sollen Communities für Software Engineering und weiteren Themen gebildet werden, damit der Austausch über Erfahrungen und Wissen leichter ablaufen kann. Die Initiativen im Bereich der Research Software Engineers werden im neu gegründeten Verein DE-RSE e.V. gegründet, der vom 4.-6. Juni im Potsdam die erste Konferenz für ForschungssoftwareentwicklerInnen in Deutschland deRSE19 veranstaltet. Der Ursprung dieser Initiative liegt im WSSSPE Workshop (Working towards sustainable software for science: practice and experiences) und der Konferenz der Research Software Egineers Association. Die #deRSE19 wird auch besonders durch die TIB, dem Leibniz-Informationszentrum, Technik und Naturwissenschaften, Universitätsbibliothek, unterstützt. In der Zukunft muss es auch darum gehen, Infrastrukturen bereit zu stellen, über gute Verfahren zu informieren und auch Anreize für Forschenden zu schaffen, die verschiedenen Ansätze aufnehmen. Der Verein und das HIFIS-Projekt möchten hier mit unterschiedlichen Ansätzen dazu beitragen die Situation zu verbessern, und insbesondere die aktuelle Dynamik in Richtung Open Journals, Open Data, Open Source und Open Science zu nutzen. Für einzelne Gruppen und Instituten sollte die Wichtigkeit sich mit Open Source Lizenzen nicht unterschätzt werden: Es kann sonst zu Inkopatibilitäten zwischen verschiedenen Lizenzen kommen, oder es fehlen Einverständniserklärungen von einzelnen, nicht vertraglich verbundenen Personen. Diese können beispielsweise Studierende sein, die im Rahmen einer Abschlussarbeit an einem Projekt mitgearbeitet haben. Hier muss ein Contributor Licence Agreement bereit sein, die von sonst nicht vertraglich gebunden Beitragenden unterschrieben werden kann. Literatur und weiterführende Informationen C. Haupt, T. Schlauch: The Software Engineering Community at DLR—How We Got Where We Are, Proceedings of the Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE5. 1), 2017. A. Schreiber, C. Haupt: Raising awareness about open source licensing at the German aerospace center, 2018 IEEE Aerospace Conference. IEEE, 2018. D. A. Almeida, G. C. Murphy, G. Wilson, M. Hoye: Do software developers understand open source licenses?, Proceedings of the 25th International Conference on Program Comprehension (pp. 1-11), IEEE Press, 2017. R. Krishnamurthy, M. Meinel, C. Haupt, A. Schreiber, P. Mäder: DLR secure software engineering: position and vision paper. Proceedings of the 1st International Workshop on Security Awareness from Design to Deployment (pp. 49-50). ACM, 2018. Podcasts M. Fromm, K. Förstner: Open Science Radio C. Haupt, S. Janosch, K. Förstner: Voices from de-RSE Conference 2019, Open Science Radio, OSR171, 2019. C. Haupt, S. Druskat, K. Förstner: de-RSE Association and Conference for Research Software Engineers in Germany, Open Science Radio, OSR140, 2019. S. Janosch, K. Förstner: Forschungssoftware in Deutschland, Open Science Radio, OSR091, 2017. GPN19 Special P. Packmohr, S. Ritterbusch: Neural Networks, Data Science Phil, Episode 16, 2019. P. Packmohr, S. Ritterbusch: Propensity Score Matching, Gespräch im Modellansatz Podcast, Folge 207, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. http://modellansatz.de/propensity-score-matching C. Haupt, S. Ritterbusch: Research Software Engineering, Gespräch im Modellansatz Podcast, Folge 208, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. http://modellansatz.de/research-software-engineering GPN18 Special D. Gnad, S. Ritterbusch: FPGA Seitenkanäle, Gespräch im Modellansatz Podcast, Folge 177, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/fpga-seitenkanaele B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauen GPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter GPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine

design german workshop ein geschichte gespr conference training open access scope germany rick communities teil anfang deutschland mai dazu folge zeit technik neben erkenntnisse seiten themen dinge verf medien erfahrungen wie arbeiten situation unterst fall auswirkungen vom ergebnisse juni rahmen aufzeichnung diese projekten entstehung universit beispiel versionen daten austausch kollegen begr qualit hier motivation acm analyse institute software service luft sie dort journals darstellung ansatz energie gruppe initiative vorgehen schritt verkehr zweck anspruch voices allgemeinen zukunft literatur probleme dabei schreiber thematik umfeld aspekten raumfahrt theorie personen wissen herkunft nachhaltigkeit proof services ieee semantic web integration potsdam international conference concept rares deployment lehre wissenschaft bestandteil unter begriff aktivit open source dlr almeida wichtigkeit ziel projekt wichtig darin kenntnis diskussionen fakult nutzung dokumentation dienstleistungen constraints ruf podcasts m ans institut ziele bereichen studierende funktion betrieb bestandteile bevor wertsch daher lizenz einstieg industrie verfahren methoden erstellung instituten umfang stillstand hochschule open data repositories empfehlungen analysen strukturen hinweise voraussetzungen mittel bereich browser aussagen git aktuell open science grundlage proceedings forschung der ursprung dynamik beispielen forschungsgebiet gruppen wertigkeit inzwischen algorithmen enthusiasmus abschlussarbeit mathematik krause entweder replication crisis anklang anspr wissenschaftlern anreize infrastruktur reproduzierbarkeit konferenz zkm konferenzen organisationen entgelt kolleginnen informatik repository software engineering fromm publikation tib haupt hochschulen bereitstellung gestaltung hfg karlsruher institut softwaretechnik technologie kit initiativen nachweis hochschule bonn rhein sieg trainings lizenzen kennzeichnung eine herausforderung verbesserungen objekts fraunhofer institut einverst der verein soweit gitlab forschungsdaten checklisten vorgesetzte infrastrukturen krishnamurthy validierung weblinks janosch ajuvo rolle wenn forschende objektes jupyter notebooks magin security awareness issue tracker forschenden offenlegung verifikation bioinformatik open science radio podcast sm die wertigkeit modellansatz podcast folge modellansatz podcast forschungssoftware international workshop froscon
Modellansatz
Propensity Score Matching

Modellansatz

Play Episode Listen Later Jun 13, 2019 69:59


Auf der Gulaschprogrammiernacht 2019 traf Sebastian auf den Podcaster Data Science Phil Philipp Packmohr @PPackmohr. Sein Interesse zur Data Science entstand während seines Studiums in den Life Sciences an der Hochschule Furtwangen in den Bereichen der molekularen und technischen Medizin und zu Medical Diagnostic Technologies. In seiner Masterarbeit hat er sich betreut von Prof. Dr. Matthias Kohl mit der statistischen Aufbereitung von Beobachtungsstudien befasst, genauer mit der kausalen Inferenz aus Observationsdaten mit Propensity Score Matching Algorithmen. Kausale Inferenz, das Schließen von Beobachtungen auf kausale Zusammenhänge, ist tatsächlich sehr wichtig in allen empirischen Wissenschaften wie zum Beispiel der Ökonomie, der Psychologie, der Politologie, der Soziologie und auch der Medizin. Idealerweise sollten Studien in der Form von randomisierten kontrollierten Studien durchgeführt werden, da nur so eine bewusste oder unbewusste Einflussnahme auf den Ergebnisse verhindert werden kann. Beispielsweise leiden Evaluationen an Hochschulen am Ende von Vorlesungen oder Studiengängen oft unter einem Survivorship Bias, da nur noch die Personen befragt werden, die bis zum Ende durchgehalten haben. Doch werden nicht alle Studien aufgrund von verschiedenen Gründen (wie zum Beispiel der hohen Kosten) randomisiert durchgeführt, und so war es auch bei dem für seine Arbeit zentralen Observationsdatensatz von Prof. Dr. Konrad Reinhart an der Klinik für Intensivmedizin vom Universitätsklinikum Jena zu Therapien zur Vermeidung von akutem Nierenversagen. Der Datensatz behandelte 21757 Patienten mit soziodemographischen und biologischen Merkmalen aus der elektronischen Gesundheitsakte mit bis zu 209 Variablen, sowie der gewählten Therapie und ob es zu Nierenversagen kam oder nicht. Die Variablen werden bei der Untersuchung als Confounder, Störfaktoren oder Kovariate benannt, die nicht als ursächlich für den Therapieverlauf gesehen werden, aber diesen sowohl beeinflussen können. In einer nicht-randomisierten Studie werden die Confounder nicht gleichmäßig über die Therapiearten verteilt sein, und damit die zusammengefassten Ergebnisse unerwünscht verfälschen. Eine Aufbereitung anhand der Confounder kann aber nie eine völlig randomisierte Studie ersetzen, da in den Daten nicht auftretende Confounder, wie bespielsweise dem athletischen Status, nicht berücksichtigt werden können. Im Propensity Score Matching werden nun die Erfolgsquoten von Therapien vereinfacht gesagt als durch einen Score gewichtete Erfolgsquote unter Berücksichtigung der aufgetretenen Häufigkeiten der Confounder zur erwarteten Häufigkeit der Confounder berechnet. Problematisch ist dabei der Umgang mit fehlenden Datenwerten, da nur ein Bruchteil der Datensätze wirklich alle Variablen definiert. Hier mussten sinnvolle Datenergänzungsverfahren eingesetzt werden. Die Auswertung erfolgte mit dem kostenlosen Open Source Projekt R (Plattform für statistische Berechnungen), das eine Vielzahl Verfahren und Algorithmen zur Verfügung stellt. Die im Laufe der Arbeit entwickelten Verfahren finden sich im Github Repository zu den Analyseverfahren. Die Analyse des Observationsdatensatz ergab nun Risikoraten von 15.6% bis 11.5% für Nierenversagen. Dies muss aber nicht bedeuten, dass die eine Therapie immer der anderen Therapie vorzuziehen ist, da viele Kriterien für die Wahl einer Therapie einbezogen werden müssen. In der personalisierte oder prädiktiven Medizin wird versucht, an Hand von Observationsanalysen sogar weitergehende Therapiehinweise in Abhängigkeit von Confoundern der einzelnen Patienten zu geben. Den Anstoß für den Data Science Phil Podcast fand Philipp in einem Aufruf vom YouTuber Martin Jung. Im englisch-sprachigen Podcast geht es um grundlegende Verfahren der Data Science, aber auch um weiterführende Themen, die er auf Konferenzen mit Gästen diskutiert. Literatur und weiterführende Informationen P. R. Rosenbaum, D. B. Rubin, Donald B: The Central Role of the Propensity Score in Observational Studies for Causal Effects, Biometrika. 70 (1): 41–55 , 1983. J. Pearl: Causality: Models, Reasoning, and Inference , Cambridge University Press, 2019. D. Ho, K. Imai, G. King, E. Stuart: MatchIt - Nonparametric Preprocessing for Parametric Causal Inference, Journal of Statistical Software, 42(8), 1 - 28, 2011. D. Ho, K. Imai, G. King, E. Stuart: MatchIt: Nonparametric Preprocessing for Parametric Causal Inference, R-Module, 2018. E. A. Stuart: Matching Methods for Causal Inference: A review and a look forward, Statistical Science 25(1): 1-21, 2010. Research Gate Profil von Philipp Packmohr Github Profil von Philipp Packmohr Science Days im Europapark Rust Data Science Blog von Philipp Packmohr stamats von Prof. Dr. Matthias Kohl Podcasts Data Science Phil Podcast P. Packmohr, S. Ritterbusch: Neural Networks, Data Science Phil, Episode 16, 2019. I. Hinneburg: EbPharm-Magazin im September, Adjustierung in epidemiologischen Studien, Podcast Evidenzbasierte Pharmazie, 2017. GPN19 Special P. Packmohr, S. Ritterbusch: Neural Networks, Data Science Phil, Episode 16, 2019. P. Packmohr, S. Ritterbusch: Propensity Score Matching, Gespräch im Modellansatz Podcast, Folge 207, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. http://modellansatz.de/propensity-score-matching GPN18 Special D. Gnad, S. Ritterbusch: FPGA Seitenkanäle, Gespräch im Modellansatz Podcast, Folge 177, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/fpga-seitenkanaele B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauen GPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter GPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine

Modellansatz
FPGA Seitenkanäle

Modellansatz

Play Episode Listen Later Aug 16, 2018 54:10


Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf sich Sebastian mit Dennis Gnad, um mit ihm über Seitenangriffe auf Field Programmable Gate Arrays (FPGA) zu sprechen. FPGAs sind veränderliche Computerchips, die hervorragend bei der Entwicklung von logischen Schaltkreisen oder spezieller Glue Logic helfen, und kommen inzwischen auch als Rechenbeschleuniger zum Einsatz. Man kann FPGAs als Vorstufe zu Application-Specific Integrated Circuits (ASIC) sehen, auf denen Strukturen noch viel feiner, für höhere Taktraten und sparsamer abgebildet werden können, das Design aber um Größenordnungen teurer ist. Und während einem ASIC die Funktion ab Werk einbelichtet ist, können FPGAs nahezu beliebig oft zur Laufzeit umprogrammiert werden. Wie im Podcast zu digitalen Währungen erwähnt, spielen Graphical Process Units (GPUs), FPGAs und ASICs eine große Rolle bei Kryptowährungen. Hier ist ein einzelner FPGA-Chip beim so genannten Mining meisst nicht schneller als eine GPU, verbrauchen jedoch im Vergleich deutlich weniger Strom. Spezialisierte ASICs hingegen übersteigen in Effizienz und Geschwindigkeit alle anderen Lösungen. FPGAs finden sich aktuell in vielen Consumer-Produkten, wie dem Apple iPhone 7, im Samsung Galaxy S5, Smart-TVs und selbst auch der Pebble Smartwatch. Ihren besonderen Vorteil spielen FPGAs bei der Verarbeitung von großen Datenmengen wie Videodaten aus, da sie in der Parallelisierung nur durch den verfügbaren Platz beschränkt sind. Die Beschreibung von FPGAs und ASICs, oder deren Programmierung, erfolgt eher strukturell in Hardwarebeschreibungssprachen wie Verilog oder VHDL. Diese Beschreibungen unterscheiden sich sehr von imperativen Programmiersprachen, wie sie oft für CPUs oder GPUs verwendet werden. Es werden in logischen oder kombinatorischen Blöcken Daten verarbeitet, die dann in Taktschritten von und in Datenregister übertragen werden. Die erreichbare Taktfrequenz hängt von der Komplexität der kombinatorischen Blöcke ab. Ein Beispiel für logische Blöcke können Soft-Cores sein, wo zukünftige oder nicht mehr erhältliche CPU-Designs in FPGAs zur Evaluation oder Rekonstruktion abgebildet werden. Eine Variante ist die Entwicklung in OpenCL, wo verschiedene Architekturen wie GPUs, CPUs und FPGA unterstützt werden. Für die effiziente Umsetzung ist dafür weiterhin großes Hardwarewissen erforderlich, und man kann nicht erwarten, dass Code für FPGAs ebenso auf GPU, oder umgekehrt CPU-Code in FPGAs darstellbar ist. Das Interesse von Dennis Gnad liegt bei den FPGAs darin, deren Daten, Logik oder Inhalte durch Seitenkanalangriffe in von den Entwicklern unvorhergesehener Art und Weise auszulesen. Ein Beispiel ist das Erkennen von Fernsehsendungen aus dem Stromverbrauch des Fernsehgeräts wie es auch schon im Podcast zu Smart Metern beschrieben wurde. Ebenso wurden schon Kryptoschlüssel aus Geräuschen einer CPU bestimmt. Mit Soundkarten kann man Funkuhren verstellen und auch Grafikkarten können als UKW-Sender verwendet werden. Die elektromagnetische Abstrahlung ist ein sehr klassischer Seitenkanal und ist als Van-Eck-Phreaking seit 1985 bekannt. Gerade wurden die Timing- und Speculative-Execution-Covered-Channel-Angriffe Spectre und Meltdown für einen großteil aktueller CPUs bekannt, die aktiv Seitenkanäle für verdeckten Informationszugriff nutzen. Normalerweise benötigen Power-Side-Angriffe, die den Stromverbrauch auswerten, physischen Zugang zum Gerät oder der Stromversorgung. Überraschenderweise ist es auf FPGAs hingegen möglich den Stromverbrauch anderer Schaltungsbestandteile rein durch Software zu bestimmen. Dazu werden FPGAs an der Grenze der Timing-Parameter betrieben, und statistisch die erfolgreiche Ausführung gemessen. Mit verschieden langen Pfaden können auch gleichzeitig die Zeitschranken verschieden stark belastet werden und damit gleichzeitig für mehrere Spannungsstufen ausgewertet werden. Damit kann der relative Spannungsverlauf kontinuierlich gemessen werden. Im Zuge seiner Forschung zu Voltage Fluctuations in FPGAs konnte Dennis Gnad die Qualität der Messungen nachweisen. Für die eigentliche Auswertung der Messungen werden hier die Verfahren der Differential Power Analysis verwendet, die nicht absolute Messungen, sondern mit relativen Messungen den Verlauf oder Unterschiede in den Verläufen statistisch analysieren. Speziell wurden mit dem Pearson Korrelations-Koeffizient verschiedene Schlüssel-Hypothesen mit modellierten Stromverläufen aufgestellt, um den Suchraum für einen kryptographischen AES-Schlüssel jeweils stückweise einzuschränken. Dafür musste die spezielle AES-Implementation auf dem FPGA bekannt sein, um entsprechende Leakage-Modelle für die Korrelationsauswertung aufstellen zu können. Insgesamt wurde so ein rein software-getriebener Angriff auf FPGAs demonstriert, der ohne sehr aufwändiges Code-Review-Verfahren, dessen Umsetzung bei VHDL ohnehin große Fragen aufwirft, kaum zu entdecken ist. Dennis betreibt die Forschung als Doktorand am Chair of Dependable Nano Computing (CDNC) am Karlsruher Institut für Technologie (KIT), deren Forschung besonders auf die Verlässlichkeit und auch der Sicherheit von Computersystemen abzielt. Die Forschungsarbeiten zu Seitenkanälen über den Stromverbrauch haben ebenso Anwendungen für die Zuverlässigkeit von den Systemen, da ebenso mit der Messung auch eine entsprechende Beeinflussung bis zur Erzeugung von Fehlerzuständen möglich wird, wie es von Dennis durch Fehlerzustände in der Stromversorgung zum Neustart von FPGAs demonstriert werden konnte. Mit Stuxnet wurde bekannt, dass auch Industrieanlagen mit Software zerstört werden konnten, es gab aber auch Computermonitore, die kreativ in neue Nutzungszustände gebracht wurden. Literatur und weiterführende Informationen D. Gnad: Seitenkanal-Angriffe innerhalb FPGA-Chips, Vortrag auf der GPN18, Karlsruhe, 2018. F. Schellenberg, D. Gnad, A. Moradi, M. Tahoori: An Inside Job: Remote Power Analysis Attacks on FPGAs, Cryptology ePrint Archive: Report 2018/012, Proceedings of Design, Automation & Test in Europe (DATE), 2018. D. Gnad, F. Oboril, M. Tahoori: Voltage Drop-based Fault Attacks on FPGAs using Valid Bitstreams, International Conference on Field-Programmable Logic and Applications (FPL), Belgium, 2017. A. Moradi, F.-X. Standaert: Moments-Correlating DPA, Cryptology ePrint Archive: Report 2014/409, Theory of Implementations workshop, 2016. P. Kocher, J. Jaffe, B. Jun, et al: Introduction to differential power analysis, J Cryptogr Eng 1: 5, 2011. E. Brier, C. Clavier, F. Olivier: Correlation power analysis with a leakage model, International workshop on cryptographic hardware and embedded systems. Springer, Berlin, Heidelberg, 2004. Cryptology ePrint Archive Search Portal Side Channel Cryptanalysis Lounge - Ruhr-Universität Bochum D. Gnad, F. Oboril, S. Kiamehr, M. Tahoori: An Experimental Evaluation and Analysis of Transient Voltage Fluctuations in FPGAs, in IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2018. F. Schellenberg, D. Gnad, A. Moradi, M. Tahoori: Remote Inter-Chip Power Analysis Side-Channel Attacks at Board-Level], In Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), USA, 2018. (to appear Nov. '18) J. Krautter, D. Gnad, M. Tahoori: FPGAhammer: Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES], in IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), Vol.1, No.3, 2018. (to appear Sept. '18)Podcasts A.-L. Baecker, C. Schrimpe: Crypto for the Masses – Grundlagen, Request for Comments, Der RFC Podcast, Folge 15, 2018. M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. S. Ritterbusch, G. Thäter: Digitale Währungen, Gespräch im Modellansatz Podcast, Folge 32, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. B. Heinz, T. Pritlove: FPGA, CRE: Technik, Kultur, Gesellschaft, Folge 117, Metaebene Personal Media, 2009.GPN18 Special D. Gnad, S. Ritterbusch: FPGA Seitenkanäle, Gespräch im Modellansatz Podcast, Folge 177, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/fpga-seitenkanaele B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauenGPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meterGPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine

design art berlin man mit gespr theory international rick mai und dazu folge normalerweise rolle kultur wie usa platz vom gesellschaft daten fragen werk qualit hier vol code analysis software timing dort gerade belgium ausf weise zugang damit heidelberg karlsruhe literatur einsatz schl entwicklung verlauf gpu international conference meltdown aes automation request evaluation heinz mining springer fakult funktion zuverl vergleich inhalte logik dfa verfahren beeinflussung umsetzung vortrag neustart unterschiede jaffe hochschule grenze cpu moradi asic laufzeit vhdl systemen ebenso strukturen komplexit im zuge auswertung insgesamt apple iphone vorteil sicherheit rekonstruktion proceedings forschung anwendungen verarbeitung hypothesen das interesse kryptow erzeugung entwicklern angriff mathematik krause strom industrieanlagen pfaden fpga fernsehsendungen geschwindigkeit zkm effizienz stromversorgung speziell asics messungen kocher ihren opencl ieee transactions programmierung architekturen baecker gestaltung hfg karlsruher institut cpus verl technologie kit ein beispiel erkennen stromverbrauch gpus computerchips board level messung smart tvs fpgas vorstufe datenmengen eine variante die beschreibung fernsehger clavier samsung galaxy s5 taktfrequenz ajuvo doktorand grafikkarten implementations magin in proceedings parallelisierung computersystemen abstrahlung schaltkreisen modellansatz podcast folge metaebene personal media modellansatz podcast verilog ukw sender europe date schellenberg pebble smartwatch
Modellansatz
Flugunfälle

Modellansatz

Play Episode Listen Later Jul 26, 2018 82:29


Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf Sebastian auf Bernd Sieker und sprach mit ihm um Unfälle mit Autopiloten mit Flugzeugen und Automobilen. Der Flugreiseverkehr ist inzwischen sehr sicher, es verbleibt aber ein Restrisiko, das man an den sehr seltenen Flugunfällen erkennen kann. Bernd untersucht nun die wenigen Abstürze großer Airliner, die es noch gab, und fragt sich, wie es zu diesen Katastrophen kommen konnte. Beispiele für Unfallursachen können beispielsweise Ausfälle scheinbar weniger relevanter Systeme sein, wo von der Crew Entscheidungen getroffen werden, die sie für sinnvoll halten, sich aber später als problematisch herausstellen. Technische Schäden, die unmittelbar zum Absturz führen, sind inzwischen sehr selten. Und selbst scheinbare kritische Ausfälle wie Triebwerksausfälle werden geübt und es gibt Prozeduren, wie man in diesen Fällen das Flugzeug möglichst sicher landen können sollte. Im Segelflug gehört eine Außenlandung auf freiem Feld zum Normalbetrieb, wobei man natürlich für am Boden etwaig entstandenen Schaden aufkommen muss, falls der Landwirt darauf besteht. Eine entsprechende nicht genehmigte Sicherheits- oder Notlandung führt bei Motorflugzeugen zur Auskunfts- oder Meldepflicht mit entsprechenden Auflagen zum Abtransport oder Erlaubnis zum Wiederstart. Bei der Untersuchung von Unglücksfällen geht der erste Blick auf offizielle Berichte oder Untersuchungen. So auch beim Air-France Flug 447 von 2009, wo ein Airbus A330-203 mitten über dem Atlantik plötzlich verschwand. Erste Indizien auf das Unglück wurden durch ACARS-System über Satellit empfangen, unter anderem über den Ausfall von Staurohren, mit denen die Geschwindigkeit des Flugzeugs gemessen wird. Das ist ein dramatischer Ausfall an Information, mit dem die Piloten aber umgehen können müssten und der eigentlich nicht zu einem Absturz führen sollte, denn die Geschwindigkeit ist noch mittels anderer Sensoren erkennbar. Erste gefundene Wrackteile deuteten darauf hin, dass das Flugzeug fast senkrecht in horizontaler Lage auf das Wasser aufgeschlagen sein musste. Dies führte auf die Vermutung, dass das Flugzeug überzogen wurde, bis es zum Strömungsabriss kam, und es daraufhin einfach herunterfiel. Nach Bergung des Flugschreibers bestätigte sich der vermutete Ablauf. Er wurde durch einen überraschend kurzen Zeitraum von wenigen Minuten zwischen Fehlermeldung und Absturz aus Reiseflughöhe belegt. Die Piloten müssen in der widersprüchlichen Situation gewesen sein, dass ihnen der Sink"flug" angezeigt wurde, während die Nase des Flugzeugs nach oben zeigte, was laut Training normalerweise in diesem Flugzustand nicht möglich ist. Bei dem eingesetzten Fly-by-wire System wäre eigentlich auch kein Strömungsabriss möglich gewesen. Nach Ausfall der Staurohre führte nun die Verkettung zwischen unvorhersehbarem Flugzeugzustand und der dramatischen Fehlinterpretation durch die Piloten zum Absturz. In der Ursachenanalyse ist sowohl zu beachten, dass die Warnmeldungen zum Strömungsabriss von den Piloten womöglich wegen einer Vielzahl von Warnmeldungen nicht mehr erfasst werden konnte. Ebenso wurden widersprüchliche Angaben zur Fluggeschwindigkeit und Anstellwinkeln von den Systemen des Flugzeugs irgendwann als ungültig abgewiesen und entsprechende Warnungen abgeschaltet oder nur noch widersprüchlich wiedergegeben. Dies führt zur Betrachtung solcher Systeme unter dem Aspekt, dass sie sozio-technisch sind, mit der Einsicht, dass gerade bei der Übertragung von Aufgaben des Menschen an Technik und zurück ein besonderes und schwer vorhersehbares Fehlerpotenzial besteht. Insbesondere Autopiloten haben eine besondere Bedeutung, da sie direkt in die Aufgaben der steuernden Menschen eingreifen. Klassisch steuern Autopiloten nur in sehr engen Parametern wie einzuhaltende Richtung, Höhe, Querneigung der Sink-/Steiggeschwindigkeit. Im Auto sind schon Geschwindigkeits- und Abstandsautomatik üblich. Jedoch sind auch Landungen mit Autopilot möglich, die aber ein besonderes Training und Überprüfung von Mensch und Maschine und Verbesserung der Algorithmen und redundante Sensoren erfordern. Dies zeigt schon, wie kritisch Autopiloten im Automobil zu sehen sind, da hier bisher kein besonderes Training für die Verwendung von Autopiloten erfolgt. Eine Überraschung ist dabei, dass eine besondere Gefahr daraus entsteht, wenn Autopiloten so zuverlässig werden dass sich Menschen zu sehr auf sie verlassen. Überraschende Situationen kann aber der Mensch meist besser bewältigen. Bei der Untersuchung von Flugunfällen stellt sich besonders die Frage, welche Ereignisse die eigentliche Ursache also für das Unglück verantwortlich sind. Wie ist hier Kausalität zu definieren? An der Uni Bielefeld wurde in der Arbeitsgruppe von Prof. Ladkin dazu die Why-Because-Analysis (WBA) entwickelt, wo die Counterfactual Test Theory von David Lewis zum Einsatz kommt. Aus der Überprüfung, ob ein Ereignis notwendig und die Menge der gefunden Ereignisse hinreichend für die Entstehung eines Ereignisses war, entsteht ein kausaler "Why-Because"-Graph (WBG), der genau nur die Ereignisse zusammenfasst, die notwendig zum Unglück führten. Ein interessantes philosophisches Konstrukt ist hier die Nearest-Possible-World-Theory, die ein Szenario konstruiert, das dem Unglück möglichst stark ähnelt, für das aber es nicht zum Unglück gekommen wäre. Was war hier anders? Was können wir daraus lernen? Durch Vergleich mit vorherigen dokumentierten Ereignissen können Teile des WBG auch quantitativ bewertet werden, obgleich die Datenbasis oft sehr gering ist. Dennoch können Schlüsse gezogen werden, welche Ereignisse bisher ignoriert wurden und ob dies gerechtfertigt ist. Das National Transportation Safety Board (NTSB) befasst sich in den USA wie die Bundesstelle für Flugunfalluntersuchung (BFU) in Deutschland typischerweise mit der Aufarbeitung von Unglücksfällen, und wie diesen in Zukunft entgegengewirkt werden kann. Darüber hinaus haben ebenso Versicherungen von Fluggesellschaften ein großes Interesse an einer Aufarbeitung, da die Fluggesellschaften in vielen Bereichen für Unglücke haftbar sind, soweit sie nicht nachweisen können, dass die Hersteller verantwortlich zu machen sind. Während des Asiana Airlines Flug 214 kam es in einer Boeing 777 im Anflug auf San Francisco 2013 im Landeanflug zu einer "Mode Confusion" beim Autopilot: Die erwartete Schubregulierung blieb aus, und es kam zu einem Absturz. Im Fall des Turkish Airlines Flug 1951 mit einer Boeing 737 nach Amsterdam gab es im Anflug einen Fehler im Radarhöhenmessgerät, wodurch der Autopilot in Erwartung der Landung aktiv den Schub zurückregelte. Die Korrektur der Piloten schlug fehl, da sie sich nicht über die genauen Abläufe im Klaren waren. Dies deutet schon deutlich darauf, dass Schwierigkeiten beim Einsatz von Autopiloten im automobilen Umfeld zu erwarten sind. Darüber hinaus sind die erforderlichen menschlichen Reaktionszeiten im Auto deutlich kürzer, so dass Missverständnisse oder das An- oder Abschalten von Autopilot-Funktionen deutlich leichter zu Unglücken führen können. Eine wichtige Einstufung sind hier die erreichten SAE Autonomiestufen, die beschreiben, wie weit das Fahrzeug Aufgaben des Fahrens übernehmen kann. Besonders problematisch ist Autonomiestufe 3: Hier darf der Fahrer sich während der Fahrt anderen Dingen als der Fahrzeugführung zuwenden, muss aber nach einer gewisse Vorwarnzeit wieder die Führung wieder übernnehmen können. Selbst bei wenigen Sekunden wird dies bei höheren Geschwindigkeiten sehr schwer zu erfüllen sein. Bei Stufe 4 muss das Fahrzeug auch ohne Fahrerintervention sicher bleiben, notfalls durch Anhalten, Stufe 5 ist vollständig autonom von Tür zu Tür. Ein weiterer Gesichtspunkt ist die vorhandene Sensoraustattung und deren Ausfallsicherheit oder die Interpretation der Sensormessungen. Im Fall des Unfalls eines Uber-Autos am 18. März 2018 in Arizona wurde eine Fußgängerin von den Sensoren zwar erfasst, jedoch wurden die Detektion durch die Software als Fehler zurückgewiesen und es kam zum Unfall. Die hier verwendete Software war und wird weit weniger getestet und formal geprüft als Software im Luftfahrtumfeld, da dies auch im Bezug auf neuronale Bilderkennungsverfahren schwer umzusetzen sein wird. Ein weiterer Aspekt ist, dass selbst wenn ein sozio-technisches System sicherer als Menschen fährt, die Akzeptanz nur sehr schwer zu erreichen sein und viele rechtliche und ethische Fragen zunächst zu klären wären. Vielen Dank an Markus Völter für die Unterstützung in dieser Folge. Literatur und weiterführende Informationen D. Lewis: Counterfactuals and comparative possibility, Springer, Dordrecht, 57-85, 1973. P. Ladkin: Causal reasoning about aircraft accidents, International Conference on Computer Safety, Reliability, and Security. Springer, Berlin, Heidelberg, 2000. B. Sieker: Visualisation Concepts and Improved Software Tools for Causal System Analysis, Diplomarbeit an der Technischen Fakultät der Universität Bielefeld, 2004. B. Sieker: Systemanforderungsanalyse von Bahnbetriebsverfahren mit Hilfe der Ontological Hazard Analysis am Beispiel des Zugleitbetriebs nach FV-NE, Dissertation an der Technischen Fakultät der Universität Bielefeld, 2010. Causalis Limited Research Group Networks, System Safety, Embedded and Distributed Systems B. Sieker: Hold Steering Wheel! Autopilots and Autonomous Driving. Presentation at the Gulaschprogrammiernacht 18, ZKM/HfG, Karlsruhe, 2018. B. Sieker: What's It Doing Now? The Role of Automation Dependency in Aviation Accidents. Presentation at the Chaos Communication Congress 33C3, 2016. Podcasts H. Butz, M. Völter: Komplexe Systeme, Folge 058 im omega tau Podcast, Markus Völter und Nora Ludewig, 2011. S. B. Johnson, M. Völter: System Health Management, Episode 100 in the omega tau Podcast, Markus Völter and Nora Ludewig, 2012. R. Reichel, M. Völter: Fly by Wire im A320, Folge 138 im omega tau Podcast, Markus Völter und Nora Ludewig, 2014. S., J., C., A., M. Völter: Mit Lufthansas A380 nach Hong Kong Teil 1, Folge 262 im omega tau Podcast, Markus Völter und Nora Ludewig, 2017. S., J., C., A., M. Völter: Mit Lufthansas A380 nach Hong Kong Teil 2, Folge 263 im omega tau Podcast, Markus Völter und Nora Ludewig, 2017. P. Nathen, G. Thäter: Lilium, Gespräch im Modellansatz Podcast, Folge 145, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. GPN18 Special B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauen GPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter GPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine

berlin ein er gespr training rick san francisco deutschland mai und folge technik dar auto frage bedeutung mensch wie menschen blick ereignissen situation unterst usa vom entstehung universit fehler angaben beispiel minuten teile fragen bei fahrt aspekt absturz hier security arizona wire boeing interpretation presentation software dort schaden stufe amsterdam dingen ausf interesse abl autopilot system menge heidelberg vielen dank karlsruhe maschine beispiele zukunft literatur einsatz feld ereignisse schl richtung umfeld bezug im fall dennoch aufgaben missverst wasser zeitraum prof str international conference reliability unfall landwirt verbesserung lage sink david lewis ereignis springer airliner fakult bereichen lilium embedded sekunden ereignisses gesichtspunkt situationen abst bielefeld berichte konstrukt hochschule jedoch piloten ablauf erste systemen hilfe selbst ebenso besonders ursache systeme betrachtung verkettung hersteller nase flugzeug gefahr aufarbeitung unf akzeptanz klassisch untersuchung dissertation vielzahl verwendung untersuchungen schwierigkeiten parametern bernd einstufung katastrophen algorithmen versicherungen unfalls im auto notlandung auflagen ungl mathematik krause warnungen sensoren nathen flugzeugs abschalten geschwindigkeit zkm klaren einsicht erwartung fehlinterpretation vermutung fahrer fahrens podcasts h reichel fahrzeug atlantik gestaltung hfg karlsruher institut a320 technologie kit reaktionszeiten arbeitsgruppe abtransport fluggesellschaften automobil geschwindigkeiten szenario geschwindigkeits satellit schub automobilen erlaubnis fahrzeugf autonomous driving ausfall flugzeugen warnmeldungen sicherheits ausfallsicherheit restrisiko kausalit landung air france flug autopiloten ajuvo dordrecht diplomarbeit uni bielefeld anflug magin markus v datenbasis landungen die korrektur fehlermeldung wbg anhalten butz landeanflug detektion durch vergleich prozeduren modellansatz podcast folge nora ludewig modellansatz podcast flugunf meldepflicht airbus a330 die piloten bundesstelle chaos communication congress 33c3
Modellansatz
Maschinenbau HM

Modellansatz

Play Episode Listen Later Jun 14, 2018 32:59


Gudrun sprach mit Gabriel Thäter. Er ist der langjährigen Hörerschaft schon bekannt, denn er hat im Februar 2015 als Schüler über sein BOGY-Praktikum am Institut für angewandte und numerische Mathematik berichtet. Heute ist er Maschinenbau-Student am KIT und absolviert gerade sein viertes Semester. Damit hat Gabriel die drei Semester, in denen Mathematik zum Studienplan für Maschinenbauer gehört - die sogenannte Höhere Mathematik (HM) I-III - erfolgreich abgeschlossen. Außerdem arbeitet er schon das zweite Semester als Tutor in der HM-Ausbildung für das Studienjahr, das nach ihm das Studium aufgenommen hat. Gudrun wollte im Gespräch aus erster Hand erfahren, wie die Mathe-Ausbildung bei ihm angekommen ist. Der Ausgang war, mit welchen Wünschen und Erwartungen Gabriel sich für ein Studium im Maschinenbau entschieden hat. Tatsächlich war Maschinenbau nicht sein erster Wunsch, sondern er hatte sich zunächst für ein Duales Studium in Luft- und Raumfahrttechnik beworben. Das Duale Studium vereinigt Praxisphasen in einem Unternehmen mit Studienphasen an einer Fachhochschule und führt zum Abschluss Bachelor. Während der Studienzeit zahlt das Unternehmen ein Gehalt. Diese Studiensituation ist ist so attraktiv, dass der Wettbewerb um die wenigen Studienplätze immer sehr stark ist - auch wenn es nicht die ideale Ausgangssituation für eine Forschungstätigkeit später ist, da die theoretische Ausbildung nicht so breit aufgestellt sein kann wie im Bachelor an einer Universität. Ein Studium des Maschinenbaus kam Gabriels Wunschbild Raumfahrttechnik am nächsten, zumal mit einem Studium in Karlsruhe für ihn auch kein Wohnort-Wechsel nötig wurde. Inzwischen ist Gabriel mit der "zweiten Wahl" sehr zufrieden, denn sein Studium erweist sich für ihn sehr vielseitig und bereitet ihn auf unterschiedliche Spezialisierungsmöglichkeiten vor. Im Moment plant er, sich in der Richtung Thermische Strömungsmaschinen zu vertiefen. Gabriel war darauf gefasst, dass Mathematik an der Uni etwas mehr Zeit und Mühe kosten wird als in der Schule. Es hat ihn aber doch etwas überrascht, wie sehr sich Stoffdichte und Unterrichtstempo von der Schule unterscheiden. Trotzdem hat er seinen Ehrgeiz darin gesetzt, die Übungsaufgaben möglichst richtig und vollständig zum gegegebnen Termin einzureichen. Um für die schriftliche Prüfung am Ende des Semester zugelassen zu werden, muss man in der Summe der Übungsblätter 1-10 eine gewisse Mindestpunktzahl erreichen. Für Gabriel hat sich die Arbeit in einer Gruppe bewährt. Für die Prüfungsvorbereitung hat er auch alte Klausuren aus der Fachschaft herangezogen. Die Aufteilung des Lernens in der Vorlesung, der zentralen Übung und in den Tutorium hat ihm gut gefallen. Jede Veranstaltung hat ihren Platz und ihren eigenen Nutzen für ihn gezeigt. Als Tutor sieht er nun die Lehre auch ein wenig von der anderen Seite. Er unterrichtet selbst pro Woche eine Stunde, in der die Studierenden Fragen zu den aktuellen Aufgaben stellen und in Gruppen Aufgaben lösen, die den Übungsaufgaben zuarbeiten. Außerdem korrigiert er die Hausaufgaben seiner Tutoriengruppe. Dabei fällt ihm negativ auf, wenn zur Lösung kein logischer Rahmen gegeben wird, sondern einfach "wild losgerechnet" wird. Dann fällt es oft schwer, zu verstehen, was die Studierenden eigentlich mit den Rechnungen finden möchten und ob das sinnvoll ist oder falsch. Gabriel sagt, dass er durch die Vorbereitung der Tutorien oft noch viel besser verstanden hat, was er eigentlich im ersten und zweiten Semester gelernt hat. Podcasts und weiterführende Informationen G. Thäter: Wasserraketen, Gespräch mit G. Thäter im Modellansatz Podcast Folge 49, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/wasserraketen F. Hettlich: Höhere Mathematik, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. http://modellansatz.de/hoehere-mathematik G. Thäter, J. Rollin: Advanced Mathematics, conversation in the Modellansatz Podcast, episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. http://modellansatz.de/advanced-mathematics Informationen zur Höheren Mathematik im Maschinenbau am KIT