POPULARITY
Roberto Inchingolo"La vendetta delle orche"e altre storie di resistenza animaleCodice Edizioniwww.codiceedizioni.itLa vendetta delle orche è un libro sulla resistenza animale, ma non nel senso comune di attivismo animalista. La nostra relazione con gli animali è a dir poco bizzarra: dopo aver esplorato ogni angolo della Terra e plasmato a nostro uso e consumo l'ambiente che ci circonda, noi esseri umani ci consideriamo la specie dominante di questo pianeta. Applichiamo questa mentalità anche agli animali, con la pretesa di averli sempre sotto controllo. Ma non sempre loro sono d'accordo. Partendo da casi e notizie di cronaca di animali che “si vendicano” contro di noi, Roberto Inchingolo racconta storie di specie che, a modo loro, sfuggono alla nostra presa e riescono, ogni tanto, a prendersi qualche rivincita. Dai fenicotteri che fuggono dalle gabbie degli zoo ai maiali che mangiano i loro allevatori, fino alle orche che distruggono le barche che affollano il mare, queste storie parlano di evoluzione e coesistenza, invitandoci a riflettere sul nostro rapporto con gli animali e svelando che il controllo umano sul mondo naturale è molto meno saldo di quanto si pensi.«Plasmare non vuol dire avere sotto controllo. Noi umani siamo creature della natura e in quanto tali soggetti alle sue stesse regole. Il pensarla diversamente è frutto di percezione falsata, di banale ignoranza del mondo naturale e di presunzione d'onnipotenza. Dell'Antropocene siamo protagonisti, ma non unici attori. Come vedremo in questo libro, negli interstizi, in maniera clandestina e fugace, altre specie sopravvivono e prosperano, facendo resistenza al nostro dominio.»Roberto InchingoloÈ laureato in Scienze naturali presso l'Università di Bologna e ha conseguito un master in Comunicazione della scienza presso la Scuola Internazionale Superiore di Studi Avanzati di Trieste. Ha lavorato come giornalista scientifico freelance e divulgatore presso la Cambridge University, l'Institute of Cancer Research di Londra e lo Human Brain Project a Marsiglia. Ha pubblicato Perché ci piace il pericolo (Sironi, 2013) e Zoocrazia. La vita politica degli animali (Durango Edizioni, 2021). Finito di scrivere La vendetta delle orche, è tornato a essere vegetariano.IL POSTO DELLE PAROLEascoltare fa pensarewww.ilpostodelleparole.itDiventa un supporter di questo podcast: https://www.spreaker.com/podcast/il-posto-delle-parole--1487855/support.
Text Tammy Directly - (720) 303-8868 Contact Tammy Here - ❤️ https://bit.ly/44FeoDE ❤️ Join Our Free Health Coaching Group
What is the Human Brain Project and how might it advance epilepsy research? Dr. Maryam Nouri speaks with Dr. Philippe Ryvlin about the project in terms of the Human Intracerebral EEG Platform and how compiling these unique data from around the world could lead to new breakthroughs and understanding of epilepsy.The Human Intracerebral EEG Platform is an open-source platform designed for collecting, managing, analyzing, and sharing iEEG data at an international level. Its primary mission is to promote the development of large-scale iEEG research projects by facilitating international collaborations in the field.Links:Human Brain ProjectHuman Intracerebral EEG PlatformThe Virtual Brain Registration is now open for the 15th European Epilepsy Congress, held September 7th through 11th in Rome, Italy. Join your colleagues for five days of teaching courses, symposia, platform sessions, career development sessions, and more! To receive a discount on registration fees, register by May 10. Visit the ILAE website for more information, or register directly at bit.ly/ilaerome. That's
Una entrevista con el neurocientífico internacional Mariano Sigman, uno de los directores del Human Brain Project, sobre la exploración de la mente humana, la neurociencia y el papel del vacío existencial en nuestras vidas. También habla de su infancia, el impacto de las experiencias de la primera infancia, su viaje al campo de la neurociencia y la conexión entre memoria e identidad. La charla profundiza en la influencia de la mente inconsciente, el circuito de dopamina en nuestro cerebro y cómo las tentaciones y adicciones de la sociedad contemporánea desafían nuestra salud mental. Mariano da su visión sobre la educación y explica cómo aprender a pensar es una habilidad crucial que las escuelas a menudo descuidan enseñar. También analiza su libro 'En la vida secreta de la mente' y expone su perspectiva sobre la espiritualidad.Conectá con Mariano:InstagramWebsiteLinkedinSupport the Show.Conectá con Roberta:LinkedinInstagramYoutubeListenConsultas: roberta@feelthevoid.club
Es war eines der größten Forschungsprojekte Europas: Das Human Brain Project. Zehn Jahre lang wollten Wissenschaftler das menschliche Gehirn erforschen und es mit Computern nachsimulieren. Doch schon bald hagelte es Kritik. Wie sind die Beteiligten damit umgegangen? Und konnte das Projekt sein großes Forschungsversprechen einlösen?
EU's største forskningsprojekt nogensinde har forfulgt drømmen om at skabe en virtuel menneskelig hjerne i en supercomputer. Med et budget på 600 millioner Euro, svarende til 4,5 milliarder kroner, var målet at skabe en forståelse for, hvordan hjernen fungerer. Resultatet efter års forskning er imidlertid uklart, og spørgsmålet rejser sig: Har projektet været en succes eller skuffelse? EU støtter omfattende forskning som et led i strategiske satsninger for at positionere sig som førende inden for forskellige områder. Mens grønne teknologier, mikrochips og medicin er velkendte arenaer for international konkurrence, har EU's mest ambitiøse satsning været at genskabe en funktionel menneskelig hjerne i en supercomputer. Forskningsprojektets visionær, Henry Markram, satte en tiårig tidsramme for at skabe den virtuelle hjerne. Trods hans karismatiske tilgang og støtte fra investorer har projektet oplevet interne stridigheder og ledelsesændringer. Trods et budget på 607 millioner Euro og deltagelse af over 500 forskere fra 19 lande har projektet ikke formået at levere den dybtgående forståelse af hjernens funktion, som det oprindeligt sigtede efter. På trods af kritik har "The Human Brain Project" produceret over 3000 videnskabelige artikler og et "google earth atlas" over hjernen, til gavn for forskere og endda hjernekirurger. Dog forbliver spørgsmålet om, hvorvidt projektet har levet op til sin oprindelige målsætning om at afsløre hemmelighederne bag hjernens kompleksitet. Med over 400 millioner Euro i EU-midler rejser det komplekse spørgsmål om, hvad investeringen egentlig har ført til, og om det er værd at glæde sig over vores naturlige, imponerende "regne-maskine" – hjernen.
Stammzellenforschung - Erste Lebendgeburt eines chimären Affen / Human Brain Project - Ein ehrgeiziges Projekt scheitert nach zehn Jahren.
Das «Human Brain Project» (HBP) war eines von zwei Vorzeige-Projekte des Europäischen FET (Future and Emerging Technologies) Programms. Dutzende Forscherinnen und Forscher versuchten an der EPFL Lausanne über zehn Jahre, das menschliche Gehirn auf unterschiedliche Weise abzubilden und digital zu simulieren. Nun ist das Projekt zu Ende gegangen. Das menschliche Gehirn jedoch konnte nur in einzelnen Bereichen künstlich nachgebaut werden. Warum die Entschlüsselung dieses Organs so komplex ist – und ob sie doch irgendwann möglich sein wird: Das erklärt in der heutigen Folge des Podcasts «Apropos» Wissenschaftsredaktor Nik Walter. Gastgeberin ist Mirja Gabathuler. Artikel zur Folge: Zehn Jahre haben Forschende das Hirn untersucht – was sind die Erfolge?Den Tagi 3 Monate zum Preis von 1 Monat lesen: tagiabo.ch
Themen: Arthrose im Alter - kann ich jetzt schon etwas tun?; Instrumente lernen in jedem Alter; Eine Welt ohne Gifte - geht das?; Was hat das Human Brain Project gebracht?; Wie Drogen in der Psychotherapie helfen; Memory - Darum gewinnen immer die Kids; Memory - Darum gewinnen immer die Kids, Moderation: Marija Bakker Von WDR 5.
In making the case for the Human Brain Project back in 2009, neuroscientist Henry Markram noted that 2 billion people are affected by some kind of mental disorder. It was time, he said, to explore fundamental questions about how the brain works. The collaboration that resulted involved hundreds of scientists across several nations. This week marks the end of Europe’s ambitious but also at times controversial initiative. Marketplace’s Lily Jamali spoke with Miryam Naddaf, a reporter for the publication Nature, about what the project’s researchers have accomplished.
In making the case for the Human Brain Project back in 2009, neuroscientist Henry Markram noted that 2 billion people are affected by some kind of mental disorder. It was time, he said, to explore fundamental questions about how the brain works. The collaboration that resulted involved hundreds of scientists across several nations. This week marks the end of Europe’s ambitious but also at times controversial initiative. Marketplace’s Lily Jamali spoke with Miryam Naddaf, a reporter for the publication Nature, about what the project’s researchers have accomplished.
Wie das Fazit zum Human Brain Project ausfällt und was der Autor Kazuo Ishiguro kann, sind Themen der neuen Podcast-Folge von MIT Technology Review.
Seit zehn Jahren arbeitet das Human Brain Project an einer Art digitaler Kopie des Gehirns. Die Neurobiologin Hannah Monyer glaubt nicht, dass Künstliche Intelligenz absehbar dem menschlichen Bewusstsein nahekommt. Ralf Caspary im Gespräch mit der Neurobiologin Prof. Hannah Monyer, Uniklinik Heidelberg.
2013 haben sich Wissenschaftler*innen aus 16 Nationen zusammengetan, mit dem Ziel, eine funktionierende Computersimulation des menschlichen Gehirns zu erstellen. Das Human Brain Project geht dieses Jahr zu Ende. Wie weit ist es in 10 Jahren gekommen?
Seit zehn Jahren versuchen europäische Wissenschaftler Gehirne im Computer zu simulieren. Mittlerweile sind die Modelle gut genug, um Chirurgen bei der Suche nach Epilepsieherden zu unterstützen. Lange, Michaelwww.deutschlandfunk.de, Forschung aktuellDirekter Link zur Audiodatei
This week we speak to Katrin Amunts, Scientific Director of the Human Brain Project and Chair of the Science and Infrastructure Board. She discusses her work on brain mapping, the importance of collaboration in neuroscience, and her advice to young researchers.Amunts is also Professor of the C. and O. Vogt Institute for Brain Research at the University of Düsseldorf, and Director of the Institute of Neuroscience and Medicine in INM-1 in Forschungszentrum Jülich.
In this episode we speak to Steven Laureys, a leading scientist in the Human Brain Project. He talks about his research on consciousness, his early fascination with the human mind, and the importance of mindfulness.Laureys is also Director of the Coma Science Group at the University of Liège, and Research Director at the Belgian National Fund of Scientific Research. He is the author of 'The No-Nonsense Meditation Book: A Scientist's Guide to the Power of Meditation.'
Gäst i veckan podd är Kathinka Evers, professor i filosofi vid centrum för forsknings- och bioetik på Uppsala universitet. Sedan över tio år tillbaka leder hon det filosofiska arbetet i the Human brain project, ett multidisciplinärt projekt inom den digitala hjärnforskningen som kopplar samman neurovetenskap med it-teknologi och artificiell intelligens och involverar över 500 forskargrupper. Hosted on Acast. See acast.com/privacy for more information.
This week we speak to Mihai Petrovici, a leading scientist in the Human Brain Project. He talks to us about his research on intelligence, his experience of growing up in a family of physicists, and what he does for fun outside of work.Petrovici is also Leader of the Neuro-inspired Theory, Modeling and Applications Group at the University of Bern.
In this episode, we speak to Roshan Cools, a leading scientist in the Human Brain Project. She talks about her research on neuropsychiatric disorders, the role of dopamine in the brain, and the relationship between resilience and mental health.Cools is also Professor of Cognitive Neuropsychiatry at Radboud University Nijmegen.
In this episode we speak to Steve Furber, a leading scientist in the Human Brain Project. He talks about how he developed his interest in computing at university, his work on the SpiNNaker neuromorphic computer, and his advice to young people to ‘keep as many doors open as possible.'Furber is also the ICL Professor of Computer Engineering in the Department of Computer Science at the University of Manchester.
In this episode, we speak to Arleen Salles, a leading researcher in the Human Brain Project. She discusses her work on neuroethics, her early interest in morality, and her personal definition of career success.Salles is also a Senior Researcher in philosophy at the Center for Research Ethics and Bioethics at Uppsala University and Director of the Neuroethics Program at Centro de Investigaciones Filosoficas in Buenos Aires, Argentina.
In this episode we speak to Rainer Goebel, a leading scientist in the Human Brain Project. He talks about his work on the integration of cognitive neuroscience and artificial intelligence, his early studies in psychology and computer science, and how he spends his time outside the laboratory.Goebel is also full professor for Cognitive Neuroscience in the psychology department of Maastricht University.
In this episode, we speak to Gitte Moos Knudsen, Chair of the Human Brain Project Science and Infrastructure Advisory Board. She spoke about her research on how drugs influence the brain, her role in the Human Brain Project, and what advice she would give to her younger self.Knudsen is also Clinical Professor and Chief Physician at the Department of Clinical Medicine, Neurology, Psychiatry and Sensory Sciences, at Copenhagen University Hospital.To learn more about the Human Brain Project, please visit www.humanbrainproject.eu
In this week's episode we speak to Viktor Jirsa, a leading scientist in the Human Brain Project, and Chief Science Officer of EBRAINS. He discusses his work on brain modelling, his early career in physics, and his advice to the next generation of neuroscientists.Jirsa is also the Director of the Inserm Institut de Neurosciences des Systèmes at Aix-Marseille-Université, and Director of Research at the Centre National de la Recherche Scientifique (CNRS) in Marseille, France.
In dieser Episode führe ich ein äußerst interessates Gespräch mich mit Prof. Stephan Schleim. Er ist deutscher Philosoph und Psychologe, Professor für Theorie und Geschichte der Psychologie Universität Groningen. Seine Spezialgebiete sind die Theorie und praktische Anwendungen der Psychologie und Neurowissenschaften. In seiner Forschung zur Wissenschaftskommunikation untersucht er, wie Darstellungen der Hirnforschung akademische und gesellschaftliche Debatten beeinflussen (z. B. in der Neuroethik oder dem Neurorecht). Seit 15 Jahren ist er mit seinem Blog Menschen-Bilder bei den SciLogs vertreten, dem Portal für Wissenschaftsblogs des Spektrum-Verlags. Außerdem ist er Autor mehrerer Bücher. Ich beschäftige mich ja schon länger mit der Frage, ob unser Wissenschaftsbetrieb nicht an einigen Stellen falsch abgebogen ist und was wir tun könnten, ja müssten um diese Situation zu verbessern. Warum ist es für uns wir als Gesellschaft wichtig, diese Problemlage zu verstehen? Denn wesentliche politische Entscheidungen hängen ja von wissenschaftlichen und technischen Aussagen und Möglichkeiten ab. Wir beginnen unser Gespräch mit der Frage, ob sich die Erwartungen, die in der aus der Gesellschaft aber meist auch aus der Wissenschaft heraus an die Wissenschaft formuliert werden erfüllen? Schreitet Wissenschaft immer schneller voran? Führt dies stetig zu neuen und bahnbrechenden technischen Fortschritten? Zahlreiche Untersuchungen legen eher das Gegenteil nahe. Wie sieht es nun mit Fortschritt und Qualität wissenschaftlicher Erkenntnis aus? Welche Anreizsysteme herrschen aktuell vor, nach welchen Indikatoren werden Wissenschafter gemessen, welche Definitionen von Produktivität gibt es in der Wissenschaft und was bedeutet dies für Erkenntnis und Innovation? »Lässt man Kants akademischen Werdegang kurz Revue passieren, muss man zu dem Befund kommen, dass ein Denker wie Kant im gegenwärtigen Wissenschaftsbetrieb keine Chance gehabt hätte. Im Gegenteil: Er verkörpert geradezu alles das, was dem Eifer der Universitätsreformer ein Dorn im Auge ist.«, Konrad Paul Liessmann Es gibt nur noch selten in der modernen Wissenschaft solche positiven Beispiele, etwa den 3D-Atlas des Gehirns, wo das Ergebnis jahrzehntelanger, qualitativ hochwertiger Grundlagenforschung dargestellt werden. »Die Wissenschaft befindet sich großteils in einem hermeneutisch abgeriegelten, selbstreferentiellen System.« Was sind Beispiele für die Probleme, die wir beschreiben? Die 90er Jahre waren in den USA die Dekade des Gehirns. Auch Europa hat mit dem Human Brain Project nachgezogen — unter anderem mit dem Ziel, ein Gehirn im Computer zu simulieren. Was ist das Ergebnis dieser Dekade? Wir diskutieren Erwartungen und Versprechungen vom Gedankenlesen bis zum Lügendetektor; was waren die Folgen für die Diskussion des »freien Willen«, für Recht und Medizin? In den letzten Jahrzehnten waren auch die »bunten Bilder« des Gehirns, die aus statistischen Auswertungen von Kernspintomographen entstehen, ein Hit in wissenschaftlichen Artikeln aber auch in populärwissenschaftlichen Berichten. Man konnte fast sagen: keine Psychologie ohne »Hirnbilder«! Sind die Ergebnisse, die man mit der Kernspintomographie erhalten hat aber überhaupt vertrauenswürdig und korrekt? Beziehungsweise unter welchen Versuchsbedingungen kann man mit seriösen Ergebnissen rechnen und wurden diese in der Regel erziehlt? Also bleibt letztlich die Frage: können diese Hirnscanner, die richtig viel Geld kosten, überhaupt das Kriterium der Reproduzierbarkeit — als Mindeststandard wissenschaftlicher Qualität — erfüllen? War der Hype gerechtfertigt? »Es gibt einige gute Studien, aber in der großen Masse sind viele dieser Studien, glaube ich, nicht vertrauenswürdig. […] Diesen Schluss muss man ziehen.« Aber auch in zahlreichen anderen Bereichen der Psychologie und Psychiatrie erleben wir im Rückblick durchwachsene Ergebnisse, so etwa bei den wenig beeindruckenden Erfolgen der Antidepressiva in der Psychiatrie. Ich spreche dann auch andere Hype-Themen der Vergangenheit an, und frage, warum wir aus diesen relativen Fehlschlägen so wenig lernen, z.B. Richard Nixon und den Krieg gegen den Krebs, Erik Topol und seine Kritik des Human Genome Projects sowie die mangelhafte Leistung von KI-Systemen in der Covid-Behandlung. Wir diskutieren dann die Konsequenzen dieser Hypes, denn diese sind nicht einfach nur kurzfristige Irrtümer, sondern in ihnen stecken zum Teil enorme Opportunitätskosten und Kollateralschäden. Wenn wir über die aktuelle Situation hinausschauen: »Wissenschaft die auch taugt« — was könnten wir die Standards sein? Prof. Schleim bezieht sich auf einen Artikel von Thomas Kuhn: Hartnäckigkeit und Dogmatismus ist manchmal auch ein wesentliches Mittel zum Erfolg in der Wissenschaft. Die Behandlung von Aids kann als als Erfolgs-Beispiel gelten, auch die Entdeckung der PCR durch Kary Mullis, die psychiatrische Forschung mit Verengung auf Neuro-Wissenschaft allerdings als negatives. Überhaupt ist Kary Mullis ein gutes Beispiel für einen ultra-harnäckigen Wissenschafter gewesen, der in einem engen Bereich hohe Leistung gebracht hat, darüber hinaus aber eher für fragwürdige Ideen bekannt wurde. Nun stellt sich aber die Frage: was für das Individuum des Wissenschafters gilt, gilt das auch für die Wissenschaft als Ganzes? Und wo hört die Hartnäckigkeit auf und wird zum (sanften) Betrug? Fake it till you make it — ein wissenschaftliches Erfolgsmodell? Welchen Effekt haben New Public Management, Messen, Optimieren in der Wissenschaft(sverwaltung), Zitationsfaktoren, Impact-Faktor, usw? »There is no cost to getting things wrong. The cost is not to getting them published.«, Prof. Brian Nosek Wir erleben aktuell in vielen Bereichen einen Hyperwettbewerb und Bewertung von Forschung — wenn man in kurzen Zeiträumen »Durchbrüche« darstellen muss, um überhaupt überleben zu können — was wird das für Konseqzenzen für Richtung und Qualität und Vermarktung der Forschung haben? Die Probleme, über die wir sprechen, sind bei weitem keine, die nur in den Interna der Wissenschaft Folgen haben, sondern breiten sich über Wissenschaftskommunikation und Expertenwesen in Gesellschaft und Politik aus? Hier ist auch der Aspekt zu sehen, dass die Verantwortung für diese Hypes auch an den Konsumenten liegt — eine Folge der Konkurrenz um Aufmerksamkeit. Was ist überhaupt von Wissenschafts-News zu halten? Denn die Taktung wird immer höher — ist das sinnvoll oder sogar schädlich? Wissenschaft ist selten eindeutig, vor allem nicht in komplexen Fragestellungen. Führt das nicht eher zu Verwirrung statt Information bei der Bevölkerung? Kann mehr Transparenz in den wissenschaftlichen Prozess die Situation verbessern? Können wir vom Rechtswesen lernen — was sind Folgen für wissenschaftliche Freiheit, politische Freiheit und Demokratie? Was können wir aus den Erfahrungen erfolgreicher Wissenschafter lernen? Ohne die Freiheit, "Sachen zu machen die nicht Mainstream waren", sei seine Forschungsarbeit nicht möglich gewesen, Anton Zeilinger Max Perutz, der österr. Wissenschafter, der von den Nazis nach England fliehen musste, hatte in seinem Labor neun Nobelpreisträger! Auf die Frage, wie man so erfolgreich wird antwortet er: »Keine Politik, keine Gremien, keine Berichte, keine Gutachter, keine Interviews, nur begabte, hoch-motivierte junge Menschen, ausgewählt von wenigen Männern mit gutem Blick.« Und was machen wir im heutigen Wissenschaftsbetrieb? Einer der Ursachen für die Probleme im aktuellen Wissenschaftsbetrieb ist das Publikations(un)wesen: welche Rolle spielen kommerzielle Verlage, Open Access, Preprint, sind Daten und Prozesse transparent? Welche Rolle spielt der Antrags-Irrsinn und die damit verbundene Bürokratie? Die bekannte amerikanische Tiefsee-Forscherin Edith Widder bringt den Konflikt zwischen innovativer Forschung und Finanzierung auf den Punkt: »Die Sache ist die: In der Wissenschaft muss man den Förderstellen erklären, was man entdecken wird, bevor sie einem Geld geben. Und ich wusste nicht was ich entdecken werde. Somit bekam ich keine Unterstützung.« Wo und in welchem Umfang macht Antragswesen Sinn, in welcher Form, und wo ist es ein Hindernis für gute Wissenschaft und verhindert vor allem auch, dass gute Wissenschafter Karrieren machen. Welcher innovative und kreative Wissenschafter ist Willens 30-40% seines Alltags mit stumpfer Bürokratie und Antragschreiben zu verbringen? Welche Folgen hat dies daher für die Selektion an Universitäten? Erik Weinstein nennt dies passend: »snap-to-grid intellectualism« Führen diese Prozesse zu kontroproduktiven Anpassungsprozessen an Indikatoren, Bürokratie, Regeln usw. Lenken wir also die verbleibende Intelligenz der Forscher weg von der Forschung hin zum Übergehen und Ausnutzen von Regeln und Bürokratie? Einfache Versprechungen und Aussagen treffen in der Realität sehr schnell an ihre Grenzen und so ist es auch nicht einfach Schritte aus der Krise zu finden. Ein erster Ansatzpunkt findet sich etwa in der Magna Charta Univesitatum. Referenzen Andere Podcast Episode 53 und Episode 54: Data Science und Machine Learning, Hype und Realität Episode 47: Große Worte Episode 44: Was ist Fortschritt? Ein Gespräch mit Philipp Blom Episode 39: Follow the Science? Episode 28: Jochen Hörisch: Für eine (denk)anstössige Universität! Episode 19 und Episode 20: Offene Systeme Episode 18: Gespräch mit Andreas Windisch: Physik, Fortschritt oder Stagnation Stephan Schleim Homepage von Stephan Schleim Stephan Schleim auf Twitter Menschen-Bilder Blog Stephan Schleim an der Universität Groningen Universität Groningen Die Neurogesellschaft: Wie die Hirnforschung Recht und Moral herausfordert, Heise (2010) Psyche & psychische Gesundheit: Philosophen, Psychologen und Psychiater im Gespräch, Heise (2020) Wissenschaft und Willensfreiheit: Was Max Planck und andere Forschende herausfanden, Springer (2023) Stephan Schleim, Sind Hirnscans nur Kaffeesatzleserei? Fachliche Referenzen Nicholas Bloom, Are Ideas Getting Harder to Find? (2020) How should medical science change, Lancet (2014) Economist: How Science goes wrong Trouble at the lab | The Economist Rettet die Wissenschaft,Die Zeit (2014) Konrad Paul Liessmann, Kant — Dienst ohne Vorschrift, Der Standard (2004) Eric Topol, Human genomics vs Clinical genomics — Expectation vs. Facts Thomas Kuhn, The Function of Dogma in Scientific Research, 1963 John P. A. Ioannidis, Why Most Published Research Findings Are False (2005) Warum KI-Werkzeuge gegen COVID-19 bislang versagt haben, Heise (2021) Physik Nobelpreis für österr. Quantenphysiker Anton Zeilinger (2022) Zitat Max Perutz aus Geoffrey West, Scale: The Universal Laws of Life and Death in Organisms, Cities and Companies, W&N (2018) Edith Widder, Glowing life in an underwater world, TED-Talk Magna Charta Univesitatum
Check out my free video series about what's missing in AI and Neuroscience Support the show to get full episodes and join the Discord community. Gaute Einevoll is a professor at the University of Oslo and Norwegian University of Life Sciences. Use develops detailed models of brain networks to use as simulations, so neuroscientists can test their various theories and hypotheses about how networks implement various functions. Thus, the models are tools. The goal is to create models that are multi-level, to test questions at various levels of biological detail; and multi-modal, to predict that handful of signals neuroscientists measure from real brains (something Gaute calls "measurement physics"). We also discuss Gaute's thoughts on Carina Curto's "beautiful vs ugly models", and his reaction to Noah Hutton's In Silico documentary about the Blue Brain and Human Brain projects (Gaute has been funded by the Human Brain Project since its inception). Gaute's website.Twitter: @GauteEinevoll.Related papers:The Scientific Case for Brain Simulations.Brain signal predictions from multi-scale networks using a linearized framework.Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortexLFPy: a Python module for calculation of extracellular potentials from multicompartment neuron models.Gaute's Sense and Science podcast. 0:00 - Intro 3:25 - Beautiful and messy models 6:34 - In Silico 9:47 - Goals of human brain project 15:50 - Brain simulation approach 21:35 - Degeneracy in parameters 26:24 - Abstract principles from simulations 32:58 - Models as tools 35:34 - Predicting brain signals 41:45 - LFPs closer to average 53:57 - Plasticity in simulations 56:53 - How detailed should we model neurons? 59:09 - Lessons from predicting signals 1:06:07 - Scaling up 1:10:54 - Simulation as a tool 1:12:35 - Oscillations 1:16:24 - Manifolds and simulations 1:20:22 - Modeling cortex like Hodgkin and Huxley
Check out my free video series about what's missing in AI and Neuroscience Support the show to get full episodes and join the Discord community. Noah Hutton writes, directs, and scores documentary and narrative films. On this episode, we discuss his documentary In Silico. In 2009, Noah watched a TED talk by Henry Markram, in which Henry claimed it would take 10 years to fully simulate a human brain. This claim inspired Noah to chronicle the project, visiting Henry and his team periodically throughout. The result was In Silico, which tells the science, human, and social story of Henry's massively funded projects - the Blue Brain Project and the Human Brain Project. In Silico website.Noah's website.Twitter: @noah_hutton. 0:00 - Intro 3:36 - Release and premier 7:37 - Noah's background 9:52 - Origins of In Silico 19:39 - Recurring visits 22:13 - Including the critics 25:22 - Markram's shifting outlook and salesmanship 35:43 - Promises and delivery 41:28 - Computer and brain terms interchange 49:22 - Progress vs. illusion of progress 52:19 - Close to quitting 58:01 - Salesmanship vs bad at estimating timelines 1:02:12 - Brain simulation science 1:11:19 - AGI 1:14:48 - Brain simulation vs. neuro-AI 1:21:03 - Opinion on TED talks 1:25:16 - Hero worship 1:29:03 - Feedback on In Silico
Karl Friston is a world-renowned neurologist and the Director of the Human Brain Project at University College London. He is also the co-author of a new book, A Necessary Evil: Why Prisons Need Mental Health Care. In this fascinating podcast episode, Karl and Lexman discuss the dehumanizing effects of cutlines on prisoners and how miserere can help recondition them.
Deep Learning, Quanten-Computing, Human Brain Project: Mehrere technologische Projekte und Durchbrüche der jüngeren Zeit eröffnen Möglichkeiten für den Einsatz von Robotern und künstlicher Intelligenz, die man höchstens aus visionärer Science Fiction kannte. Die Frage ist: Wo stehen wir aktuell und was wird künftig möglich? Darüber spricht Prof. Dr. Florian Gunter Röhrbein, Inhaber der Professur Neurorobotik an der TU Chemnitz, in der neuen Folge des TUCscicast. Röhrbein ist Experte für künstliche neuronale Netze und Forscher im Human Brain Project.
Forschende der ETH Zürich haben ein tragbares Gerät entwickelt, das den Tiefschlaf verstärken soll. Ausserdem: Kein Weg vorbei an Klimaversprechen. Und: Was das Human Brain Project gebracht hat. (00:49) Mehr Tiefschlaf. Die Qualität des Tiefschlafs lässt sich verbessern, wenn man Schlafenden zum richtigen Zeitpunkt bestimmte Tonsignale ins Ohr einspielt. Die erste klinische Studie mit einem tragbaren Gerät von ETH-Forschenden zeigt nun: Es wirkt, aber nicht bei allen gleich gut. (06:45) Kleiner Fortschritt beim Klima und weitere Meldungen. Im Rahmen der Uno-Klimakonferenz 2021 haben viele Staaten ihre Klimaschutzmassnahmen verbessert und zusätzliche angekündigt. Eine neue Analyse zeigt nun: Damit rückt das Ziel, die Klima-Erwärmung bei 2 Grad zu stoppen, erstmals in Griffweite. Doch dafür müssen sich alle rigoros an ihre Versprechen halten. (18:13) Die Bilanz des Human Brain Projects. Plan, so hochfliegend wie einst die Mondfahrt, die Kosten: eine Milliarde Euro. Mit diesen Vorgaben hat die Europäische Union 2013 das Human Brain Project gestartet, zu Beginn unter der Leitung der Technischen Hochschule Lausanne EPFL. Das gesamte menschliche Gehirn sollte von Supercomputern nachgebildet werden. Von diesem Ziel sind die Forschenden längst abgerückt.
Mit Supercomputern versucht das Human Brain Project das Gehirn eines Menschen nachzubilden. Eine vollständige Simulation des menschlichen Denkapparates steht jedoch längst nicht mehr im Mittelpunkt. Inzwischen verknüpfen viele kleinere Teilprojekte Hirnforschung mit Computertechnik.Von Michael Langewww.deutschlandfunk.de, Forschung aktuellDirekter Link zur Audiodatei
Mit Supercomputern versucht das Human Brain Project das Gehirn eines Menschen nachzubilden. Eine vollständige Simulation des menschlichen Denkapparates steht jedoch längst nicht mehr im Mittelpunkt. Inzwischen verknüpfen viele kleinere Teilprojekte Hirnforschung mit Computertechnik.Von Michael Langewww.deutschlandfunk.de, Forschung aktuellDirekter Link zur Audiodatei
When AI is equated with human intelligence, innovation suffers. While artificial intelligence can help to improve our world, many people believe the myth that it can reach beyond the limits of its programming. Andrew McDiarmid, senior fellow at Discovery Institute, discusses the limitations and dangers of AI with Erik Larson, author of the new book The Myth of Artificial Intelligence.… Source
When it comes to brain computing, timing is everything. It's how neurons wire up into circuits. It's how these circuits process highly complex data, leading to actions that can mean life or death. It's how our brains can make split-second decisions, even when faced with entirely new circumstances. And we do so without frying the brain from extensive energy consumption. To rephrase, the brain makes an excellent example of an extremely powerful computer to mimic—and computer scientists and engineers have taken the first steps towards doing so. The field of neuromorphic computing looks to recreate the brain's architecture and data processing abilities with novel hardware chips and software algorithms. It may be a pathway towards true artificial intelligence. But one crucial element is lacking. Most algorithms that power neuromorphic chips only care about the contribution of each artificial neuron—that is, how strongly they connect to one another, dubbed “synaptic weight.” What's missing—yet tantamount to our brain's inner working—is timing. This month, a team affiliated with the Human Brain Project, the European Union's flagship big data neuroscience endeavor, added the element of time to a neuromorphic algorithm. The results were then implemented on physical hardware—the BrainScaleS-2 neuromorphic platform—and pitted against state-of-the-art GPUs and conventional neuromorphic solutions. “Compared to the abstract neural networks used in deep learning, the more biological archetypes.still lag behind in terms of performance and scalability” due to their inherent complexity, the authors said. In several tests, the algorithm compared “favorably, in terms of accuracy, latency, and energy efficiency” on a standard benchmark test, said Dr. Charlotte Frenkel at the University of Zurich and ETH Zurich in Switzerland, who was not involved in the study. By adding a temporal component into neuromorphic computing, we could usher in a new era of highly efficient AI that moves from static data tasks—say, image recognition—to one that better encapsulates time. Think videos, biosignals, or brain-to-computer speech. To lead author Dr. Mihai Petrovici, the potential goes both ways. “Our work is not only interesting for neuromorphic computing and biologically inspired hardware. It also acknowledges the demand . to transfer so-called deep learning approaches to neuroscience and thereby further unveil the secrets of the human brain,” he said. Let's Talk Spikes At the root of the new algorithm is a fundamental principle in brain computing: spikes. Let's take a look at a highly abstracted neuron. It's like a tootsie roll, with a bulbous middle section flanked by two outward-reaching wrappers. One side is the input—an intricate tree that receives signals from a previous neuron. The other is the output, blasting signals to other neurons using bubble-like ships filled with chemicals, which in turn triggers an electrical response on the receiving end. Here's the crux: for this entire sequence to occur, the neuron has to “spike.” If, and only if, the neuron receives a high enough level of input—a nicely built-in noise reduction mechanism—the bulbous part will generate a spike that travels down the output channels to alert the next neuron. But neurons don't just use one spike to convey information. Rather, they spike in a time sequence. Think of it like Morse Code: the timing of when an electrical burst occurs carries a wealth of data. It's the basis for neurons wiring up into circuits and hierarchies, allowing highly energy-efficient processing. So why not adopt the same strategy for neuromorphic computers? A Spartan Brain-Like Chip Instead of mapping out a single artificial neuron's spikes—a Herculean task—the team honed in on a single metric: how long it takes for a neuron to fire. The idea behind “time-to-first-spike” code is simple: the longer it takes a neuron to spike, the lower its activity levels. Compared to counting spikes, it's an extremely sp...
Der Podcast rund um Künstliche Intelligenz von und mit Roland Becker und Dr. Sirko Straube. In dieser Folge sprechen wir mit Prof. Tanja Schultz über das Brain Computer Interface, Künstliche Gehirne und KI.Tanja Schultz wurde im April 2015 als Professorin für Kognitive Systeme im FB3 berufen. Sie legte 1989 das Staatsexamen in Mathematik und Sport ab, bevor sie sich der Informatik zuwandte. Dem Diplom folgte die Promotion in Informatik an der Universität Karlsruhe. Daran schloss sich eine sechsjährige Tätigkeit als Research Scientist und Professor an der Carnegie Mellon in Pittsburgh, PA, USA an. 2007 gründete sie am Karlsruher Institut für Technologie das Cognitive Systems Lab (CSL). In ihrer Forschung konzentriert sie sich auf kognitive technische Systeme zur Mensch-Maschine-Interaktion auf Basis von Sprache und nonverbalen Kommunikationssignalen. Dazu verknüpft sie maschinelle Lernverfahren mit Innovationen der Biosignalverarbeitung, wie zum Beispiel in der „Lautlosen Sprachkommunikation“ und „Airwriting“. Für ihr Gesamtschaffen auf dem Gebiet „Mensch und Technik in Kommunikationssystemen“ erhielt sie 2012 den Alcatel-Lucent Forschungspreis. An der Uni Bremen richtete die Informatikerin das Biosignale-Labor ein, in dem Studierende gemeinsam mit Forschern des CSL@Uni-Bremen menschzentrierte kognitive Kommunikationssysteme realisieren können.// Shownotes:• Prof. Tanja Schultz: https://de.wikipedia.org/wiki/Tanja_Schultz_(Informatikerin)• Neuralink: https://neuralink.com/• Ethically Aligned Design: https://ethicsinaction.ieee.org/• Human Brain Project: https://www.humanbrainproject.eu/en/• Avanja: https://www.avanja.de/// Mit dabei:• Hosts: Roland Becker, Dr. Sirko Straube• Sidekick & Produktion: Julian Moeser• Gast: Prof. Tanja Schultz// Über uns:• Website: https://thinkreactor.com// Folge uns:• Instagram: https://thinkreactor.com/instagram• Twitter: https://thinkreactor.com/twitter• Facebook: https://thinkreactor.com/facebook// Höre uns:• Soundcloud: https://thinkreactor.com/soundcloud• Apple Podcasts: https://thinkreactor.com/apple• Google Podcasts: https://thinkreactor.com/google• Spotify: https://thinkreactor.com/spotify• Deezer: https://thinkreactor.com/deezer• TuneIn: https://thinkreactor.com/tunein• Audio Now: https://thinkreactor.com/audionow• Stitcher: https://thinkreactor.com/stitcher• Feed: https://thinkreactor.com/feed See acast.com/privacy for privacy and opt-out information.
Thomas Südhof ist ein Grenzgänger zwischen Europa und den USA. Er gehört zu den weltweit bedeutendsten Hirnforschern. Am milliardenschweren Human Brain Project ist er beteiligt. Vor etwa 800 Millionen Jahren, sagt er, entwickelten sich aus urzeitlichen Lebensformen die Tiere. Was sie von Anfang an auszeichnet, sind chemische und später elektrische Botenstoffe und Signale, die die lebendigen Reaktionen ausmachen. Aus dieser internen Kommunikation („empfindender Zellen“) entwickeln sich Nerven und Hirn. Die Potenz dieser Gehirne, vor allem die des menschlichen, ist enorm. Dies ist paradoxerweise der Unbestimmtheit und Ungenauigkeit der Informationsübertragung zwischen den Synapsen, den Verbindungs- und Nahtstellen zwischen den Elementen des Gehirns, zu verdanken. Gerade die Unbestimmtheit gibt die Chance für die Ausweitung der Information. In ihr besteht die Plastizität des Denkorgans. Dieses Gehirn, das untrennbar mit dem Körper verknüpft ist, bleibt auch für die modernste Forschung ein Rätsel. Ein Schwerpunkt der Forschung von heute bezieht sich auf die Krankheiten des Geistes, von denen Thomas Südhof annimmt, dass wir deren organische Basis künftig erkennen werden. Es gibt wenige Personen in der Welt, die so überzeugend sagen können „Ich bin Hirnforscher“ wie Prof. Dr. Südhof. Erstausstrahlung am 19.11.2014
Katrin Amunts is the Scientific Research Director of the Human Brain Project and leads two centers at Forschungszentrum Jülich and the University Hospital Düsseldorf. With her internationally recognized work that includes the BigBrain and JuBrain projects and use of novel methodology such as polarized light imaging, she follows the footsteps of famous anatomists of the past, such as Cecile and Oskar Vogt, name givers of her institute. We talk about the relevance of anatomical models and ultra-high-definition atlases for successful deep brain stimulation procedures, the impact of open data sharing and upcoming advances in the field of whole brain anatomy.
Building a brain - On this week's Futureproof podcast with Jonathan McCrea, he talks to Dr Katrin Amunts - Chair of the Science and Infrastructure Board of the Human Brain Project & Professor of Brain Research at Dusseldorf University - about her research into building a digital model of the brain. Also on the show Jonathan was joined by Professor Shane Bergin and Dr Lara Dungan to look at the science news stories of the week. Listen and subscribe to Futureproof with Jonathan McCrea on Apple Podcasts and Spotify. Download, listen and subscribe on the Newstalk App. You can also listen to Newstalk live on newstalk.com or on Alexa, by adding the Newstalk skill and asking: 'Alexa, play Newstalk'.
In this episode, we chatted with Dr. Zsuzsanna Puspokis about how she co-founded Rhino3DMedical, a medical 3D printing-focused software based on Rhino 3D. Zsusanna demonstrated a few surgical examples in this interview. About our guest: Dr. Zsuzsanna PuspokisZsuzsanna received her PhD from the Swiss Federal Institute of Technology, Lausanne (EPFL, Switzerland) in 2016, where she completed her thesis at the internationally renowned Biomedical Imaging Group (BIG) headed by Prof. Unser.Following her doctoral studies in Biomedical Imaging and before starting her own company, Zsuzsanna worked for a year at the Lausanne University Hospital (CHUV, Switzerland) on the Human Brain Project, a flagship project of the European Union. During her employment at the hospital, she further strengthened her industry and academic links and deepened her knowledge of MRI imaging, from data acquisition to processing and analysis, in the clinical context.Since 2017, she is a co-founder and the COO of Mirrakoi SA. The company offers software solutions (Rhino3DMedical) for orthopedic and CMF surgical planning, facilitating the creation of patient-specific 3D printable anatomical models and surgical guides from medical CT/MRI scans (https://rhino3dmedical.com/). At Mirrakoi SA, Zsuzsanna leads the design and implementation of business operations. She is responsible for marketing and sales, including PR and customer relations. Zsuzsanna is well-connected within the European start-up, venture, academia, and entrepreneurship scenes where she has been active for several years and recognized by various awards and grants.Support the show (https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=STF9STPYVE2GG&source=url)
Born in 1874, in the United States, Louis George Gregory acquired an elite education and became a prominent lawyer in Washington DC at the beginning of the 20th Century. Disillusioned by the continual unfair treatment of people of African descent in the United States, Mr Gregory had lost all faith in religion until in 1907 he encountered the Baha'i Faith, the teachings of which transformed his life. In 1911, while on pilgrimage to Palestine, he met Abdu'l- Baha, the son of the prophet Founder of the Faith. This meeting transformed his life, as well as the fortunes of the Baha'i Community of the US and Canada. Louis Gregory became the foremost teacher of the Baha'i Cause in the US. In 1951, he was posthumously elevated to the ranks of the ‘Hands of the Cause of God', a selected group of international advisors to the leadership of the Faith. He was first of only 2 members of the African race to be elevated to this rank. Terrence Simmons is a native of Guyana, an English-speaking country in Northeastern South America. He attended classes for children and junior youth and embraced the Baha'i community in the mid 1970's. Over the years, he served in many administrative positions including Local Assemblies and national committees, the National Spiritual Assembly of the Baha'is of Guyana and as an Auxiliary Board Member for Protection of the Faith. Terrence is a Historian by training. He holds a BA and MA in Guianese and West Indian History from the University of Guyana, where he also taught on the faculty for a short while. He also has backgrounds in health sciences research, project management and international development. He also holds an MSc in Health Policy (clinical medicine) from Imperial College London and is a registered PRINCE2 Project and Programme Management (MSP) Practitioner in the UK. Terrence has worked in international & grassroots-based development for more than 30 years, in the areas of health research, education and youth development. He was Programme Director for the United States Peace Corps in Guyana for 9 years. Worked in London on the development of social infrastructure for Black and other Ethnic Minority Communities including serving on the Advisory Board of London's Minority Ethnic Network (MiNet). He was a programme manager in the School of Public Health at Imperial College London for 8 years. Currently, he is the Senior Project Manager in the Project Coordination Office of the Human Brain Project, an EU flagship enterprise focused on brain research in Geneva, Switzerland. He and his family has been living in South London since 2007. To view the video please visit the YouTube channel https://youtu.be/jpE5jlXvmmY
Human Brain Project Watch on Youtube Looking for a place to give? ------> Much Love to All
Andrea Macdonald founder ideaXme interviews Dr Pieter Roelfsema Director Netherlands Institute for Neuroscience. Andrea Macdonald founder ideaXme: [00:06:52] Welcome everybody again to another episode of the ideaXme show. I'm Andrea Macdonald, the founder of ideaXme. ideaXme is a global podcast available in 40 countries worldwide, a creator series and mentor program. [00:07:10] This episode concerns itself with a breakthrough towards developing a technology to restore functional vision to the blind. I'm here with the director of the Netherlands Institute for Neuroscience (NIN). Who are you? Pieter Roelfsema Director NIN: [00:07:29] My name is Pieter Roelfsema. I studied medicine but if you feel ill, you don't want me beside your bed. I went into science, studied the visual system. Few years ago, we thought: “Why not use knowledge all that knowledge we have accumulated. Why don't we start thinking about creating a device that restores rudimentary form of vision for blind people?”. Andrea Macdonald founder ideaXme: [00:07:54] There are over 40 million blind people worldwide, over two billion visually impaired, over one billion visually impaired, where this impairment could have been avoided. Could you explain the process through which a human being receives vision, or a non-visually impaired human being receives vision to the brain where it is perceived as such? Pieter Roelfsema Director NIN: [00:08:28] So the information that comes into your eyes is a sharp image on the back of your eye where your retina is. Then the information from the retina is sent through the optic nerve to a region in the mid brain called the thalamus. And from there it's sent on to the back of our brain. There's a region that's called primary visual cortex, and that region has a very accurate, two-dimensional representation of the outside world, where two points that are nearby in the outside world will map onto two points in your brain that are also nearby. So, it's a very systematic map of the outside world. Andrea Macdonald founder ideaXme: [00:09:11] And could you talk a little bit about the solution that you are providing and how it doesn't actually deal with addressing issues in the eye it deals with addressing issues in the brain or the back of the brain in the visual cortex? Pieter Roelfsema Director NIN: [00:09:34] What we know from previous work is that if you put an electrode in that region that I was just alluding to, the primary visual cortex, then you can put a little bit of current on it and you can stimulate the nerve cells that are nearby. An electrode is just a wire, actually. And so, these nerve cells will become active and a person, this can also be a person who has been blind for several years, will perceive a dot of light at that location that corresponds to the position of these two-dimensional map I was talking about. So, if you then stimulate with another wire, an electrode that is nearby, this person will see a dot of light that is close to the first dot of light. If you then have a whole series of wires, a whole series of electrodes, then you basically are addressing a part of the map and you can place dots in the person's perception at many, many different locations and you can work with it like a matrix board. So, if I'm going to stimulate one electrode, you're going to see a lot of light. But if you stimulate like in a matrix board if you switch on a single bulb you will see a dot. But on a matrix board you can also switch on several bulbs in the shape of a letter or convey other meaningful information. And we could do the same thing if you have many electrodes in the visual cortex, you can just switch on dot perceptions at many different locations and thereby convey meaningful information. Now, if a person would have such a prosthesis, which still needs to be developed further, this person would carry a camera. It could be embedded in glasses, then that kind of camera image will be sent to a processor, maybe the size of a phone that translates these camera images into brain stimulation patterns that are then going to be sent to those electrodes, maybe wirelessly. Pieter Roelfsema Director NIN: [00:11:27] So that's something also that needs to be developed. So, right now, the brain computer interfaces, many of them, they actually have a wire coming out of the skull to make the connection to the brain. Now, of course, in the future, a device that is safe and that can be used easily one would like all these things to be completely wireless. Andrea Macdonald founder ideaXme: [00:11:48] Work in this area first started in the 1970s. Could you explain to the audience why the research that you head up represents such a breakthrough? Pieter Roelfsema Director NIN: [00:12:02] Yes, so there was a fantastic researcher in the U.K., his name was Giles Brindley, he was already doing this in the 60s and in the early 70s. It's really remarkable because he already made a system that was wireless. Pieter Roelfsema Director NIN: [00:12:17] So basically, he had small coils, small kind of wire coils under the skin. Several of them actually more than one hundred. Pieter Roelfsema Director NIN: [00:12:26] And he then used a coil on the outside to induce current in a coil under the skin and then he ran a wire to the visual cortex and was able to stimulate brain cells. It was amazing that he could already do this back then, of course, we are now 50 years later, and we have improved technology, so our game is easier. We have better ways to interface with the brain, actually back then, he also put electrodes on the surface of the brain. We have found out that you can get perception's with less current if you have electrodes inside the brain. And that's an advantage. We have actually one thousand electrodes in the experiment that we recently did in monkeys. And so, we have basically more pixels from which we can build a mental image. And of course, there are other advances now. So, it's better electrode technology. We have now wireless chips that can, of course, digest much more information. So, I think this is the right time to make to make this happen. Andrea Macdonald founder ideaXme: [00:13:33] Could you explain a little bit about how the eBrains 3D Brain Atlas has helped you to advance this research? Pieter Roelfsema Director NIN: [00:13:45] Yes. So eBrains is part of The Human Brain Project. It is a collection of services that The Human Brain Project or its successor will offer to the neuroscience community. Now, for our research, we have to kind of take the shape of this visual cortex where we want to implant electrodes into account. The shape of the visual cortex is complicated. It has all kinds of folds. We call them sulci. And they are different from one individual to another, so we need to devise a strategy to implant electrodes, a sufficient number of electrodes, we're thinking about thousands of electrodes and we want to make sure that most of them are positioned in the right location. And that's where eBrains is tremendously helpful because they have the anatomical knowledge, and they can also provide some of the tools that allow us to do the correct mapping. Andrea Macdonald founder ideaXme: [00:14:42] And you have mentioned in your paper that there are a number of issues that remain to be addressed. Andrea Macdonald founder ideaXme: [00:14:52] And you've been very open about the fact that once this represents a breakthrough, you know, a lot more work needs to be done in this area. A couple of things you mentioned were a certain specific form of WIFI system needs to be developed. And you also mentioned that the whole area of tissue damage needs to be addressed. Could you talk about those two things, please? Pieter Roelfsema Director NIN: [00:15:21] Yes. The electrodes are right now using they are stiff silicon electrodes. Pieter Roelfsema Director NIN: [00:15:27] There is a mechanical mismatch between the brain tissue, which is soft and the stiff rods. And the impression has been, although this is not very well documented, is that this mismatch in mechanical properties caused this kind of sort of sliding between the electrodes and the brain tissue that then results in the build-up of tissue, glial tissue, sort of fibrous tissue that pushes the nerve cells away from the electrodes and thereby making it more difficult to stimulate the neurons. So, one way to go that seems promising is to use other materials that are much softer. So, one of them is Polyimide, which is sort of a plastic, which you can make very thin wires. And they seem then to be causing less damage than those silicon rods. Pieter Roelfsema Director NIN: [00:16:22] So that's one area where developments are currently taking place that look quite promising. The other point that you asked me to reflect upon is wireless systems. So also, there is tremendous developments there. There are systems that allow researchers to communicate with the brain, putting something under the skin and something above the skin that has enough bandwidth basically to allow communication at a high enough rate to make that possible. But also, there are definitely some developments to be further taken. Andrea Macdonald founder ideaXme: [00:17:05] And the recent research that you've spoken about in your paper, I believe, has focused on using animals to test this technology. At what point, although I know that similar technologies have also been tested in humans, when do you see the earliest time that you can transition from animals to humans? Andrea Macdonald founder ideaXme: [00:17:28] Because, of course, there are many movements in the world that are against animal testing and whether it causes pain or not. There’s a great deal of discomfort about it. I'm just wondering what the plans are to transition this to humans? Pieter Roelfsema Director NIN: [00:17:50] It would not be ethical to just do this in humans and just hope for the best. So, most people I talk to think that you first have to thoroughly test this. And some of this testing involves animals. And in this particular research, we had to use monkeys because they are the closest to humans and in monkeys, we could really test whether if you stimulate a pattern of electrodes in the visual cortex, they could recognize that as a pattern. This could not have been done in another species. Now, in collaboration and actually mainly driven by researchers in Spain, Eduardo Fernandez, who is also a co-author on our paper, we actually tested the same approach already in one human patients. There was an MIT Tech Review about it recently. And the good news is that many of these same stimulation patterns that we tried in monkeys also appeared to work in this in this particular individual. So, we're actually already making this step. But if you want to use other electrode materials and also wireless chips, again, we first have to demonstrate that they can be used safely. And some of these things you can test without animals. But some of these tests really involve animals. And it's even the legal requirement to demonstrate that this works in animals first. And I think that's also only the only ethical way to do it. You cannot just put something in a human and hope for the best. Andrea Macdonald founder ideaXme: [00:19:22] And the ideaXme audience is comprised of the general public, future innovators and creators, as well as the actual people who are shaping our world from the space industry right the way through to science, arts and philosophy. It would be really interesting to hear at this point, particularly for future innovators within your sector, to hear a little bit about your human story and your journey to this point. And as far as who maybe sparked your interest in this area and who influenced you and the choices you made along the way to get here. Pieter Roelfsema Director NIN: [00:20:08] Ok, that's a very broad question. And so, I started studying medicine and at some point, I didn't see myself as a medical doctor. So, I was really interested in science. And then I read a book called Gödel, Escher, Bach: An Eternal Golden Braid, written by Douglas Hofstadter, which was mainly about consciousness. And I thought, this is a really interesting topic that I want to spend time on. This is what I really would like to do. So then at some point during my studies, I already started to do some neuroscience work just as a volunteer. And then I already applied to do a PhD project with Wolf Singer, Director the Max Planck Research Institute in Frankfurt. He said, well, why don't you first finish your studies? So that's what I did. Pieter Roelfsema Director NIN: [00:21:04] I went back to the Netherlands or to where I studied, and I completed my studies hoping that he would remember that he said that I would be welcome in his lab after I completed my studies and he had not forgotten. So, I was really pleased to be part of his lab. And he was probably one of the people who influenced me the most. I had a wonderful time doing PhD research in that lab. And after that, I just continued the neuroscience. I did a lot of work just on pure vision, just trying to understand how vision works. Pieter Roelfsema Director NIN: [00:21:43] Through those studies, I think I started to read also more about prosthetics. Another person that I enjoyed talking to and who influenced me was Jens Neumann. He was one of the people in the program of Bill Dobelle, who also had a visual prosthesis program. And was one of the subjects. He had a cortical implant. It didn't work for very long. He's still a very inspiring person. And talking to him also inspired me to continue in this direction. Andrea Macdonald founder ideaXme: [00:22:21] Could you talk a little bit about the team that you're currently working with in their various roles in helping move this forward? Pieter Roelfsema Director NIN: [00:22:29] Yes, so we started this visual cortical prosthesis project, I think, in 2014. Then Xing Chen, who is the first author on the paper, joined the group. And with her, we really started to do this work. We got a lot of help from a company, Blackrock Microsystems, which helped us design the implants and make sure that we could do this for 1000 channels because that had not been done before. And after that, several other people joined the lab, Feng Wang who was also a co-author on the paper. We established contact with Eduardo Fernandez, I have already mentioned him. They're doing this work in Spain. And now the team that works on visual prosthesis is about six people in the lab. And we also started a company, Phosphoenix, because we realized that if you really want to put something in patients, you also need a commercial entity for various regulatory issues. Andrea Macdonald founder ideaXme: [00:23:29] Pieter Roelfsema, thank you very much for your time and thank you for moving the human story forward. It's been an absolute pleasure. Pieter Roelfsema Director NIN: [00:23:39] Thanks a lot. My pleasure. ideaXme is a global network to encourage everyone to learn of the people, issues and ideas that are anticipated to impact our collective futures. As well as a global podcast, ideaXme is a mentor programme, creator series and think tank. Follow us on Twitter @ideaxm Instagram: @ideaxme Connect with us here www.radioideaxme.com
„Dziś wiemy o ludzkim mózgu tyle, ile rozumiano z fizyki w XIX wieku. Najważniejsze odkrycia są przed nami. Jest wielka nadzieja, że w ciągu najbliższych lat, będziemy mogli pomóc ludziom odzyskać wzrok lub leczyć choroby Alzheimera i Parkinsona” – mówi Paweł Świeboda, szef EBRAINS i dyrektor generalny Human Brain Project. To europejskie przedsięwzięcie, którego głównym celem jest tworzenie infrastruktury badawczej, pomocnej w rozwoju neuronauki, medycyny i informatyki. To jeden z największych projektów naukowych kiedykolwiek sfinansowanych przez Unię Europejską. Obecnie zatrudnia około 500 naukowców na ponad 100 uniwersytetach, szpitalach akademickich i ośrodkach badawczych w całej Europie. Z wyjątkiem Polski. „Mamy świetnych naukowców, ale wielkie przeszkody systemowe” – odpowiada Paweł Świeboda na pytanie dlaczego. Ale przede wszystkim na te dotyczące badań ludzkiego mózgu, jak są prowadzone, co z nich wynika, kiedy będzie można sterować tym organem i czy nie boi się, że na pracy naukowców skorzystają szaleńcy. „Na świecie są dwa takiego projekty. Nasz i Elona Muska w USA. Ale wiele osób ocenia, że tak jak Musk jest dobry w marketingu, tak my jesteśmy lepsi w badaniach. Tak, jesteśmy dalej w odkryciach niż Elon Musk” – mówi Paweł Świeboda, szef EBRAINS i dyrektor generalny Human Brain Project. See acast.com/privacy for privacy and opt-out information.
Despite multi-million dollar research programmes and impressive technical progress, neuroscience still can’t explain basic systems - like a maggot’s tiny brain or the grinding of a lobster’s stomach. Professor Matthew Cobb joins me to discuss the intellectual history of neuroscience, his frank assessment of where we’re at, and how we can make progress. We cover: How the idea of the brain as computer got started in the mid-C20th, and why it’s probably wrong. (10:53) The challenge of the Grandmother Cell - and why some neurons selectively respond to Jennifer Aniston and Halle Berry! (21:00) What have we really learnt from fMRI? Is it “just a bit crap”? (27:25) Why the Human Brain Project was so controversial - and how its has spectacularly failed to live up to its own rhetoric (36:29). Could a neuroscientists understand a microprocessor? We discuss the brilliant study by Eric Jonas and Konrad Paul Kording. (41:30) The amazing achievement of artificial limbs (49:50) How useful is the ‘predictive brain theory’ favoured by Anil Seth, Karl Friston and Andy Clark? “Show me in a maggot!” Why we should get behind a Maggot Brain project. (58:40) Matthew’s book The Idea of the Brain has been shortlisted for the Baillie Gifford prize. Check it out here: https://bit.ly/2Ky6IOL *** To get in touch with Ilan or join the conversation, you can find NOUS on Twitter @NSthepodcast or on email at nousthepodcast@gmail.com
Til tross for enorm forskningsinnsats er vår kunnskap om hjernen fortsatt begrenset, og legevitenskapen har i dag lite å tilby pasienter med alvorlige hjernesykdommer som Alzheimers demens eller schizofreni. I EUs Human Brain Project bruker vi metoder fra informatikk og fysikk for å øke forståelsen. I podcasten, tatt opp under Forskningsdagene 2020, diskuterer jeg tematikken med to av mine prosjektkolleger.
Our guest this is week is none other than expert listener and pattern-seeking PhD candidate William Scott Thompson. Will is interested in understanding recurring motifs in the brain, rather than its specific functions. He is currently working in a lab at a research institute in Sweden, contributing to the longterm multinational goal of mapping the human brain! On today's episode we discuss the Human Brain Project, what goes into building a high-resolution, three-dimensional atlas of the brain, the forebrain structures known as the Basal Ganglia and the evolution of such structures, pain mapping, the difference between epigenetics and gene editing, simulation neuroscience, communication at every scale of the nervous system, the anatomy of a brain cell, the future of academia and much more! NEW! This episode now has a discussion forum, so check out the following link to access and contribute to an international collaborative debate on the following thesis: "One day, it will be possible to fully simulate the human brain." https://www.kialo-edu.com/p/24fb041a-8fc8-4ba5-85b6-f40e83ba1e95/20484 --- Send in a voice message: https://anchor.fm/abstractcast/message
Você já pensou no que pode acontecer se recriarem um cérebro por meio de supercomputadores? Não? Então é bom começar a pensar! Escuta esse episódio que eu te explico direitinho o que tá acontecendo!
This is a conversation with Tonii Leach, Tonii is a PhD researcher in the Centre for Computing and Social Responsibility at De Montfort University. Her research focuses on the impact of science fiction narratives on global AI policy. She is also a Research Assistant to both the Global AI Narratives project at the University of Cambridge, and to the Ethics Support work package of the Human Brain Project, based at De Montfort University. In this episode, Tonii explains how and why AI science fiction has caused mistrust and misunderstanding of what AI is and what AI does. She points out that we should be far more concerned about the use of our personal data, than of AI taking over any time soon.
O vedomí, slobodnej vôli a o tom, čo všetko vieme a čo nevieme o mozgu, diskutovali Jakub a Jaro s neurovedcom Petrom Jedličkom, ktorý je súčasťou rozsiahlej výskumnej siete Human Brain Project a súčasne pôsobí v Nemecku, kde sa mu darí dosahovať vynikajúce vedecké výsledky.----more----Petrov a Jarov článok o kvantovom mozgu: https://www.postoj.sk/40388/preco-vie-veda-predpovedat-pohyb-planet-ale-nie-spravanie-clovekaHuman Brain Project: https://bit.ly/2tjBcLLrozhovor s Petrom Jedličkom: https://www.postoj.sk/9929/slobodna-vola-a-predsa-existujekritika Otakara Horáka: https://dennikn.sk/354760/vzdajme-sa-slobodnej-vole-trestnemu-systemu-iba-prospeje-reakcia/Quantum Brain Hypothesis (Jedlička, anglicky): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681944/Petrova recenzia knihy First Minds: https://philpapers.org/rec/JEDROTThomas Pink, Free Will: A Very Short Introduction: https://bit.ly/2QDnhIAThomas Pink, Free Will and Determination (spomínaný článok): https://bit.ly/39wydjHThomas Pink na podcast Philosophy Bites: https://bit.ly/36esfSx
Ausstellung Faszination Gehirn
Ausstellung Faszination Gehirn
Ausstellung Faszination Gehirn
Je brein uploaden zodat je voor altijd kunt voortleven in een computer of een geheugenimplantaat voor mensen met Alzheimer. Science fiction? Of is het digitale brein in de nabije toekomst al mogelijk? In deze aflevering van Onbehaarde Apen alles over de (on)mogelijkheden van hersentechnologie.Presentatie: Lucas Brouwers, Gemma Venhuizen en Niki KortewegProductie: Misha Melita@lucasbrouwers // @GemmaJV // @nikikortewegBenieuwd naar het hele fragment van Ambrož Bajec-Lapajne, die zingt tijdens zijn hersenoperatie?https://www.youtube.com/watch?v=obiARnsKUAo#action=sharehttps://www.youtube.com/watch?v=obiARnsKUAo#action=share Meer weten over de Human Brain Project?https://www.youtube.com/watch?v=pGI_GTnSs_E Hier hoor je Robert Hampson over zijn geheugenprothese:https://www.youtube.com/watch?v=PItFisrWBCIEen doorbraak van eigen bodem. Het UMC Utrecht ontwikkelde een extensie waarmee een vrouw met Locked-in-syndroom een tablet kan besturen.https://www.youtube.com/watch?v=zdg7Kenn9YQ&feature=youtu.beTranshumanist en hoogleraar filosofie aan Oxford Nick Bostrom over wanneer we Johnny Depp’s brein kunnen uploaden:https://www.youtube.com/watch?v=86st7_Lzs2s
Joana Magalhaes fálanos da política de xénero "Human Brain Project" da Unión Europea.
Joana Magalhaes fálanos da política de xénero "Human Brain Project" da Unión Europea.
The Human Brain Project will map the millions of connections in a human brain, and create a working electronic version of the brain.
En cuanto Elvex comenzó a mostrar síntomas de mal funcionamiento la robopsicóloga Rush (“prisa” en inglés) pidió ayuda a la famosa doctora Susan Calvin, madre de los Robots. Por lo visto el robot dice haber tenido un sueño. No sé por qué este hecho aparentemente normal (la vida es ídem y los ídem ídems son) les parece tan raro pero estamos por averiguarlo. ¿Qué le pasa a Elvex? AVISO: Música los últimos tres minutos, cuidado los que estáis prestos a dormir… [semi-spoiler] Lo primero es lo primero: derechos humanos para los robots e IA ya! :D Relato cortísimo publicado en 1986 y escrito ad hoc para la colección de cuentos homónima . Ya que hacía una incursión fuera de las tierras Dicknianas me hacía ilu traer otro clásico, que aunque no es tan viejuno como los cuentos cincuenteros que nos estamos tragando últimamente si es clave en el género, aunque sea simbólicamente. Asimov escribió no se cuantísimos cuentos de robots, y una de las cosas más famosas son las tres leyes de la robótica, que aquí aparecen mencionadas. Me gusta que las protas sean dos chicas y del gremio, robopsicólogas (Bender, otro robot, las llamaría robopilinguis). Además puedo seguir relacionándolo con Dick porqué en este sentido los dos se preguntan qué nos hace humanos (lo vimos por ejemplo “Humano Es” o “El Impostor”). En este caso la postura de Asimov podría estar más a favor de que lo que nos hace “humanos” es el deseo de supervivencia: en su sueño sólo existía la tercera ley, sin el corolario: o sea un robot debe cuidar por su propia existencia sin anteponer la de sus “dueños”. Es un poco como la liberación de los esclavos. También podría discutirse que propone que lo que nos hace humanos es el deseo de tener libre albedrío: poder elegir. Y digo deseo porque no está claro que el libre albedrío exista y no sea una ilusión, es un gran debate que dejo para fuera de los semi-spoliers. Me extenderé un poco más (gratuitamente como siempre) sobre el tema del cerebro fractal. Aunque la joven científica puede haber destapado algo que ya estaba presente en la mente de todos los robots, la justificación scifi de porqué es te robot ha salido consciente y especial es porque se ha usado un cerebro fractal en vez de un cerebro electrónico convencional y esa nueva manera de computar que puede asemejarse más a la forma de pensar humana que a la de una máquina. (Inciso: en Ghost un the Suelo, StandAloneComplex, serie brutal, los Tachikoma consiguen individualidad xq usan un aceite natural en vez de sintético, entre otras cosas). Supongo que si hubiera escrito el cuento ahora (2017) el cerebro habría sido cuántico (y hecho de grafeno). Retomando el hilo: un algoritmo fractal sugiere una forma de computar compleja y variable (los fractales son expresiones matemáticas que pueden crear formas totalmente distintas en función del nivel de magnitud en el que nos coloquemos. Son una gran ayuda para generar algoritmos que sirvan para comprimir y descomprimir archivos, y hasta se dice que puede que la información del ADN esté codificada de esta manera) al igual que un algoritmo cuántico sugiere una forma de procesar no lineal. Aunque no lo parezca, existen algunos científicos y filósofos que investigan sobre el problema de qué es la conciencia. Sobre ella sabemos casi nada y desde luego no forma parte de la investigación en el paradigma científico dominante pero se habla de dos problemas: el fuerte y el débil. El último se refiere a la capacidad de explicar qué es la experiencia. Por qué sentimos cosas subjetivamente: qué es sentir calor, ver color, el sabor, etc. Leipzig hablaba de qualias, que son los quantos de la experiencia (como n física cuántica: paquetitos de información). El problema fuerte consiste en explicar cuál es el mecanismo por el que se consigue todo esto. Por otro lado el paradigma dominante neurocientífico, una evolución del cognitivo-conductual desde la neurobiología, construye modelos cada vez más y más complejos que explican cuáles son las fases de los procesos mentales. En qué nodos se desarrollan, cuáles son las conexiones… Pero todo eso se explica de forma discreta, lineal. Es posible pues construir una red matemática que asemeje esos modelos, y de hecho es muy posible(ya se ha hecho) crear un modelo de funcionamiento de un sistema nervioso simple (ya se ha hecho con un gusano).- Habréis oído hablar del Human Brain Project. Es una cosa genial en general pero; cómo no, también tiene fantasmas y vende humos que lo que quieren es conseguir fondos: una de las líneas de investigación promete ser capaz de construir un modelo computacional de un cerebro humano. Se está trabajando para hacer lo propio restringiéndose a una columna de neuronas de la corteza visual. Posiblemente se consiga porque en las primeras fases el procesamiento visual funciona de manera bastante computacional, soy una neurona occipital de V1 y si hay luz en el punto de visión que yo codifico mando una señal de ON y si no hay mando un OFF. Así se construye una imagen (dada la vuelta) hecha de puntos con claros u oscuros con la imagen que estamos procesando. Después se buscan las líneas, los contornos; luego se ponen en relación las distintas partes locales de la escena para generar una configuración espacial global y por fin discriminar el objeto que se está viendo. Para llegar a este punto, donde ya podemos hablar de Percepción, es necesario que una red de nodos funcione en conjunto, y todavía no ha habido experiencia consciente. Pues bien, se entiende que con descripciones lineales es imposible replicar lo que sería la percepción consciente de un estímulo, mucho menos la consciencia. Por eso existen modelos que proponen explicaciones alternativas basadas en otros procesos (no lineales. El más loco y new age es la Teoría del universo holográfico muy divertida para explorar y pasar una buena tarde en internet – y la más scifi y más cariño tengo es la de Penrose, el físico ganador del premio Nobel, que propone que en los microtúbulos (estructuras microscópicas dentro de las neuronas -los neurotransmisores y otra moléculas viajan a través del axón por ellos) las leyes físicas no son las de nuestro nivel de magnitud, son las leyes del universo cuántico, y por ende la unidad de funcionamiento de la consciencia no se podría explicar con mecánica newtoniana si no mediante física cuántica. Buf!!! Locurón. Bueno, no pude resistrme a poner Paranoid Android como música final, ya asumo totalemtne que estos aportes no sirven para dormir así que de perdidos al río pero prometo volver a la música cincuentera. La paz con vosotros! Ilustración: Asimov /// errores de edición? Haberlos haylos >>> soymescalito@gmail.com /// Muchas gracias!! =^__^= fantasía, novela, cuentos, cuento, scifi, ciencia, ficción, literatura, audio, audiolibro, ciencia ficción, novelas, relato, relatos, voz, lectura, scifi, ficion, cyberpunk, ciberpunk, literatura, historia, historias, terror, pulp, temponauta, relatividad general, física, robot, androide, consciencia, espíritu, cibernética, ia, inteligencia artificial, computación, cyborg, esclavitud, revolución, obrero,
En cuanto Elvex comenzó a mostrar síntomas de mal funcionamiento la robopsicóloga Rush (“prisa” en inglés) pidió ayuda a la famosa doctora Susan Calvin, madre de los Robots. Por lo visto el robot dice haber tenido un sueño. No sé por qué este hecho aparentemente normal (la vida es ídem y los ídem ídems son) les parece tan raro pero estamos por averiguarlo. ¿Qué le pasa a Elvex? AVISO: Música los últimos tres minutos, cuidado los que estáis prestos a dormir… [semi-spoiler] Lo primero es lo primero: derechos humanos para los robots e IA ya! :D Relato cortísimo publicado en 1986 y escrito ad hoc para la colección de cuentos homónima . Ya que hacía una incursión fuera de las tierras Dicknianas me hacía ilu traer otro clásico, que aunque no es tan viejuno como los cuentos cincuenteros que nos estamos tragando últimamente si es clave en el género, aunque sea simbólicamente. Asimov escribió no se cuantísimos cuentos de robots, y una de las cosas más famosas son las tres leyes de la robótica, que aquí aparecen mencionadas. Me gusta que las protas sean dos chicas y del gremio, robopsicólogas (Bender, otro robot, las llamaría robopilinguis). Además puedo seguir relacionándolo con Dick porqué en este sentido los dos se preguntan qué nos hace humanos (lo vimos por ejemplo “Humano Es” o “El Impostor”). En este caso la postura de Asimov podría estar más a favor de que lo que nos hace “humanos” es el deseo de supervivencia: en su sueño sólo existía la tercera ley, sin el corolario: o sea un robot debe cuidar por su propia existencia sin anteponer la de sus “dueños”. Es un poco como la liberación de los esclavos. También podría discutirse que propone que lo que nos hace humanos es el deseo de tener libre albedrío: poder elegir. Y digo deseo porque no está claro que el libre albedrío exista y no sea una ilusión, es un gran debate que dejo para fuera de los semi-spoliers. Me extenderé un poco más (gratuitamente como siempre) sobre el tema del cerebro fractal. Aunque la joven científica puede haber destapado algo que ya estaba presente en la mente de todos los robots, la justificación scifi de porqué es te robot ha salido consciente y especial es porque se ha usado un cerebro fractal en vez de un cerebro electrónico convencional y esa nueva manera de computar que puede asemejarse más a la forma de pensar humana que a la de una máquina. (Inciso: en Ghost un the Suelo, StandAloneComplex, serie brutal, los Tachikoma consiguen individualidad xq usan un aceite natural en vez de sintético, entre otras cosas). Supongo que si hubiera escrito el cuento ahora (2017) el cerebro habría sido cuántico (y hecho de grafeno). Retomando el hilo: un algoritmo fractal sugiere una forma de computar compleja y variable (los fractales son expresiones matemáticas que pueden crear formas totalmente distintas en función del nivel de magnitud en el que nos coloquemos. Son una gran ayuda para generar algoritmos que sirvan para comprimir y descomprimir archivos, y hasta se dice que puede que la información del ADN esté codificada de esta manera) al igual que un algoritmo cuántico sugiere una forma de procesar no lineal. Aunque no lo parezca, existen algunos científicos y filósofos que investigan sobre el problema de qué es la conciencia. Sobre ella sabemos casi nada y desde luego no forma parte de la investigación en el paradigma científico dominante pero se habla de dos problemas: el fuerte y el débil. El último se refiere a la capacidad de explicar qué es la experiencia. Por qué sentimos cosas subjetivamente: qué es sentir calor, ver color, el sabor, etc. Leipzig hablaba de qualias, que son los quantos de la experiencia (como n física cuántica: paquetitos de información). El problema fuerte consiste en explicar cuál es el mecanismo por el que se consigue todo esto. Por otro lado el paradigma dominante neurocientífico, una evolución del cognitivo-conductual desde la neurobiología, construye modelos cada vez más y más complejos que explican cuáles son las fases de los procesos mentales. En qué nodos se desarrollan, cuáles son las conexiones… Pero todo eso se explica de forma discreta, lineal. Es posible pues construir una red matemática que asemeje esos modelos, y de hecho es muy posible(ya se ha hecho) crear un modelo de funcionamiento de un sistema nervioso simple (ya se ha hecho con un gusano).- Habréis oído hablar del Human Brain Project. Es una cosa genial en general pero; cómo no, también tiene fantasmas y vende humos que lo que quieren es conseguir fondos: una de las líneas de investigación promete ser capaz de construir un modelo computacional de un cerebro humano. Se está trabajando para hacer lo propio restringiéndose a una columna de neuronas de la corteza visual. Posiblemente se consiga porque en las primeras fases el procesamiento visual funciona de manera bastante computacional, soy una neurona occipital de V1 y si hay luz en el punto de visión que yo codifico mando una señal de ON y si no hay mando un OFF. Así se construye una imagen (dada la vuelta) hecha de puntos con claros u oscuros con la imagen que estamos procesando. Después se buscan las líneas, los contornos; luego se ponen en relación las distintas partes locales de la escena para generar una configuración espacial global y por fin discriminar el objeto que se está viendo. Para llegar a este punto, donde ya podemos hablar de Percepción, es necesario que una red de nodos funcione en conjunto, y todavía no ha habido experiencia consciente. Pues bien, se entiende que con descripciones lineales es imposible replicar lo que sería la percepción consciente de un estímulo, mucho menos la consciencia. Por eso existen modelos que proponen explicaciones alternativas basadas en otros procesos (no lineales. El más loco y new age es la Teoría del universo holográfico muy divertida para explorar y pasar una buena tarde en internet – y la más scifi y más cariño tengo es la de Penrose, el físico ganador del premio Nobel, que propone que en los microtúbulos (estructuras microscópicas dentro de las neuronas -los neurotransmisores y otra moléculas viajan a través del axón por ellos) las leyes físicas no son las de nuestro nivel de magnitud, son las leyes del universo cuántico, y por ende la unidad de funcionamiento de la consciencia no se podría explicar con mecánica newtoniana si no mediante física cuántica. Buf!!! Locurón. Bueno, no pude resistrme a poner Paranoid Android como música final, ya asumo totalemtne que estos aportes no sirven para dormir así que de perdidos al río pero prometo volver a la música cincuentera. La paz con vosotros! Ilustración: Asimov /// errores de edición? Haberlos haylos >>> soymescalito@gmail.com /// Muchas gracias!! =^__^= fantasía, novela, cuentos, cuento, scifi, ciencia, ficción, literatura, audio, audiolibro, ciencia ficción, novelas, relato, relatos, voz, lectura, scifi, ficion, cyberpunk, ciberpunk, literatura, historia, historias, terror, pulp, temponauta, relatividad general, física, robot, androide, consciencia, espíritu, cibernética, ia, inteligencia artificial, computación, cyborg, esclavitud, revolución, obrero,
The Human Brain Projects ~ In 2013 both the US and the EU have joined forces to spend a decade focused on understanding the brain in greater detail. What makes it work? How does it grow? How are memories formed? How is intelligence developed? So many mysteries about the brain and so much to be discovered. Today on the Brain Lady Speaks show Julie will share some of the new information that has been discovered in the last few years that is shedding light on this amazing piece of anatomy. More importantly she will share the practical application of this information and how it can help us to enrich our lives businesses and relationships.
There is nothing more important than good brain health and wellbeing throughout our lives. Yet while many people are concerned with their physical health and utilise wearable tech and mobile devises to monitor their exercise, steps, heart rate etc, we are not yet using technology to enhance our brain health and wellbeing. In this lecture, I will discuss how neuroscientists can work together with other experts in game development, IT and computing to develop enjoyable games for enhancing cognition, such as memory. In addition, I will discuss how we can use games to improve cognition, motivation and the ability to function in daily life for people with neuropsychiatric disorders, such as schizophrenia. Everyone likes to play games, so why not play one that is fun and good for your brain? Biography Barbara J Sahakian is Professor of Clinical Neuropsychology at the University of Cambridge Department of Psychiatry and MRC /Wellcome Trust Behavioural and Clinical Neuroscience Institute. She is also an Honorary Clinical Psychologist at Addenbrooke’s Hospital, Cambridge. She holds a PhD and a DSc from the University of Cambridge. She is President of the International Neuroethics Society, Past-President of the British Association for Psychopharmacology and a Fellow of the Academy of Medical Sciences. Sahakian is also a Member of the International Expert Jury for the 2017 Else Kröner-Fresenius-Stiftung Prize. She is a member of ACNP , CINP Council and ECNP Review Board and a member of the Human Brain Project. She is co-author of ‘Bad Moves: How decision making goes wrong and the ethics of smart drugs’ (Oxford University Press, 2013) and co-editor of The Oxford Handbook of Neuroethics (OUP, 2011). Sahakian has an international reputation in the fields of psychopharmacology, neuropsychology, neuropsychiatry, neuroimaging and neuroethics. She is perhaps best known for her work on ‘hot’ and ‘cold’ cognitive deficits in depression and early detection and early treatment with cholinesterase inhibitors in Alzheimer’s disease. She has over 390 publications in high impact scientific journals. The ISI Web of Science database credits her with a Hirsch (h) index of 102, with some publications having over 300 citations. Sahakian co-invented the neuropsychological CANTAB tests. She serves as a Senior Consultant to Cambridge Cognition, a University of Cambridge spin-out that provides CANTAB (www.cantab.com). She is also a Consultant for Peak (Brainbow) (https://itunes.apple.com/gb/app/peak-brain-training/id806223188?mt=8). Sahakian has contributed to Neuroscience and Mental Health Government Policy and has spoken on resilience, brain health, neuroscience and mental health at the World Economic Forum, Davos, 2014. She was also a finalist for a World Technology Award 2014 under the category of ‘Health and Medicine’. She is a member of the World Economic Forum Global Agenda Council on Brain Research.
For our first episode, we discuss the Blue Brain project, or as it is now known, the Human Brain Project. The focus of this project is to understand the brain by simulating it in extreme detail. We go into the history of the project, the politics, and the science of it, including what it even means to "simulate the brain in extreme detail."
Episode four of the CS@Manchester podcast features an interview with Professor Steve Furber from the School of Computer Science at The University of Manchester. Steve talks us through his time before joining the University, his research with The Human Brain Project, SpiNNaker and his interest in historical computer science pioneers Ada Lovelace and Alan Turing.
Ist das Gehirn bald entzaubert? Supercomputer sollen in zehn Jahren im Human Brain Project der Europäischen Union ein ganzes Gehirn simulieren. In den USA und China sind ähnliche Projekte angelaufen. Versprochen wird ein riesiger Erkenntnisgewinn, sodass auch Krankheiten wie Alzheimer, Schizophrenie oder Depression besser behandelt werden können. Doch so leicht lässt sich das menschliche Gehirn dann doch nicht kartieren. Kritiker bezweifeln daher, dass man psychische Veränderungen und Störungen bald aus den Windungen des Nervensystems ablesen kann. (Produktion 2014)
The Human Brain Project ushers in a new era of research, “The Brain Age.”
En este capítulo os hablamos del Human Brain Project, una iniciativa de la Unión Europea para simular el funcionamiento del cerebro, al menos en parte, utilizando superordenadores. A cuenta de esto os hablamos de cómo almacena la información el cerebro, y para ello os ponemos como ejemplo la manera en que el cerebro codifica nuestra posición en el espacio, usando unas células especializadas que se identifican con localizaciones concretas. En el año 2015 la iniciativa europea de la que hablamos en este episodio hubo de revisar a la baja sus objetivos, pues resultaron ser tan ambiciosos que no estaban al alcance de las actuales capacidades de computación. Aun así, la lucha por entender el funcionamiento del cerebro continúa. Este programa se emitió originalmente el 5 de abril de 2013. Podéis escuchar el resto de podcasts de La Brújula en su canal de iVoox y en la web de Onda Cero, ondacero.es
This week on the on your mind neuroscience podcast: We’re super excited to announce that we will be live-streaming the 2015 Sunposium: Neural Circuits and Sunshine, put on by the Max Planck Florida Institute for Neuroscience on Monday March 30 and Tuesday March 31! There’s an impressive list of speakers, including Nobel Award winner Eric Betzig and in vivo memory manipulator Richard Tsien, who’s talks will be available for your viewing pleasure, live on this page. We were able to get an interview with Dan Wilson, a graduate student at the Institute who studies synaptic dynamics in individual dendrites, which means you get a bonus weekend episode! Of course it wouldn’t be an OYM episode if Liam and Kat didn’t talk about what’s on their minds, so we’ve got a lot of discussion going on about open sourcing the human body, the latest report to come out of the controversy over the Human Brain Project, and the possibility that neurons evolved twice! We hope you enjoy. Get the stream and links to everything we talked about head to www.onyourmind.ca/sunposium2015
Millions invested in brain research across the globe. It's the decade of the brain. But how will the results shape our future societies? Like this podcast? Please help us by supporting the Naked Scientists
Millions invested in brain research across the globe. It's the decade of the brain. But how will the results shape our future societies? Like this podcast? Please help us by supporting the Naked Scientists
Kat’s on vacation this week, but it won’t stop her from calling in to talk neuroscience with the guys. We’re talking about the place for creativity in science, the role of private vs public funders and the ongoing saga with the Human Brain Project. Then it’s onto this week’s article about adapter proteins in the clearance protein aggregates, including mutant huntingtin. For links to everything we talked about today, full show notes and more head to www.onyourmind.ca/taking-cues
And we’re back! This week, we’ll talk about the history of women’s role in science, the controversy over the Human Brain Project in Europe and how it may be more enjoyable to give yourself a few electric shocks than to be alone with your own thoughts. Then it’s onto a paper that uses a genetic approach to explore cell patterning in mouse retinas For links, full show notes and more head to OnYourMind.ca/PTTG1-Keeps-You-Regular
Schwerpunkt: Karlheinz Meier von der Universität Heidelberg über Computerarchitekturen nach dem Vorbild des Gehirns || Nachrichten: Plastik-Grundstoff in Titans Atmosphäre entdeckt | Spuren von Wasser im Marssand | Schärfster Röntgenstrahl der Welt erzeugt || Veranstaltungen: Frankfurt | Bonn | Heidelberg
Scientists try to model a complete human brain in a software simulation
Stephen Euin Cobb (author and futurist) is today's speaker. Topics: News and commentary concerning: The first implanted brain-computer interface which is wireless (it's from Brown University); The Human Brain Project intends to simulate an entire human brain; A new Exoplanet-Hunting Telescope which takes adaptive optics to a whole new level; A 3-D Printer which creates microscopic objects; And the world's smallest implant for monitoring blood chemistry can tell your smart phone when you're about to have a heart attack. Hosted by Stephen Euin Cobb, this is the March 27, 2013 episode of The Future And You. [Running time: 28 minutes] NOTE: In today's commentary about 3-D printers, the professor I mentioned interviewing some years ago was Dr. Adrian Bowyer (inventor of the RepRap Machine, an open-source 3-D printer any hobbyist can make). If you'd like to learn about Dr. Bowyer's pioneering work in open-source 3-D printers check out the September 17, 2008 episode. That episode is 83 minutes long because we went onto a lot of detail. Stephen Euin Cobb is an author, futurist, magazine writer and host of the award-winning podcast The Future And You. A contributing editor for Space and Time Magazine; he is also a regular contributor for Robot, H+, Grim Couture and Port Iris magazines; and he spent three years as a columnist and contributing editor for Jim Baen's Universe Magazine. He is an artist, essayist, game designer, transhumanist, and is on the Advisory Board of The Lifeboat Foundation. His novels include Bones Burnt Black, Plague at Redhook and Skinbrain.