POPULARITY
In this episode: We discuss Apple's newest accessibility features coming in iOS 18, share our tips for working with difficult colleagues and clients, and read your replies to our open ballot: is Swift Evolution working? Apple's new accessibility features in iOS 18: https://www.apple.com/newsroom/2024/05/apple-announces-new-accessibility-features-including-eye-tracking/?1715781602 Deep Dish Swift: https://deepdishswift.com Swift Craft: https://swiftcraft.uk iOSKonf: https://www.ioskonf.mk ARCtic Conference: https://arcticonference.com Matthew Skiles, icon designer: https://www.matthewskiles.com/ Swift Gems from Natalia Panferova: https://books.nilcoalescing.com/swift-gems The Advantage book: https://www.amazon.com/Advantage-Organizational-Health-Everything-Business/dp/0470941529 Extreme Ownership book: https://echelonfront.com/books/extreme-ownership/ Interview with Chris Lattner: https://www.youtube.com/live/OAaQhW4ifu0?si=drHVY_dkJoc4_4H6
Mojo is the latest language from the creator of Swift and LLVM. It's an attempt to take some of the best techniques from CPU/GPU-level programming and package them up in a Python-compatible syntax.In this episode we explore why Mojo was created, and what it offers to Python programmers and non-Python programmers alike. How is it built for performance, and which performance features matter? What's its take on functional programming and type systems? And can it marry the high-level programming of Python with the low-level programming of LLVM/MLIR?If you're a Python programmer who needs better performance, a C programmer who expects more from a ‘scripting language', or just someone who'd be happier if Python had a first-class type system, Mojo might well be for you…–Mojo: https://www.modular.com/max/mojoMojo's Roadmap: https://docs.modular.com/mojo/roadmap.htmlThe Mojo Discord: https://discord.com/invite/modularMLIR: https://mlir.llvm.org/Chris's Talks: https://nondot.org/sabre/Resume.html#talksChris on Twitter: https://twitter.com/clattner_llvmKris on Mastodon: http://mastodon.social/@krisajenkinsKris on LinkedIn: https://www.linkedin.com/in/krisjenkins/Kris on Twitter: https://twitter.com/krisajenkins–#software #podcast #mojolang #ml #pythonml
Speaker CFPs and Sponsor Guides are now available for AIE World's Fair — join us on June 25-27 for the biggest AI Engineer conference of 2024!Soumith Chintala needs no introduction in the ML world — his insights are incredibly accessible across Twitter, LinkedIn, podcasts, and conference talks (in this pod we'll assume you'll have caught up on the History of PyTorch pod from last year and cover different topics). He's well known as the creator of PyTorch, but he's more broadly the Engineering Lead on AI Infra, PyTorch, and Generative AI at Meta.Soumith was one of the earliest supporters of Latent Space (and more recently AI News), and we were overjoyed to catch up with him on his latest SF visit for a braindump of the latest AI topics, reactions to some of our past guests, and why Open Source AI is personally so important to him.Life in the GPU-Rich LaneBack in January, Zuck went on Instagram to announce their GPU wealth: by the end of 2024, Meta will have 350k H100s. By adding all their GPU clusters, you'd get to 600k H100-equivalents of compute. At FP16 precision, that's ~1,200,000 PFLOPS. If we used George Hotz's (previous guest!) "Person of Compute" measure, Meta now has 60k humans of compute in their clusters. Occasionally we get glimpses into the GPU-rich life; on a recent ThursdAI chat, swyx prompted PaLM tech lead Yi Tay to write down what he missed most from Google, and he commented that UL2 20B was trained by accidentally leaving the training job running for a month, because hardware failures are so rare in Google.Meta AI's Epic LLM RunBefore Llama broke the internet, Meta released an open source LLM in May 2022, OPT-175B, which was notable for how “open” it was - right down to the logbook! They used only 16 NVIDIA V100 GPUs and Soumith agrees that, with hindsight, it was likely under-trained for its parameter size.In Feb 2023 (pre Latent Space pod), Llama was released, with a 7B version trained on 1T tokens alongside 65B and 33B versions trained on 1.4T tokens. The Llama authors included Guillaume Lample and Timothée Lacroix, who went on to start Mistral.July 2023 was Llama2 time (which we covered!): 3 model sizes, 7B, 13B, and 70B, all trained on 2T tokens. The three models accounted for a grand total of 3,311,616 GPU hours for all pre-training work. CodeLlama followed shortly after, a fine-tune of Llama2 specifically focused on code generation use cases. The family had models in the 7B, 13B, 34B, and 70B size, all trained with 500B extra tokens of code and code-related data, except for 70B which is trained on 1T.All of this on top of other open sourced models like Segment Anything (one of our early hits!), Detectron, Detectron 2, DensePose, and Seamless, and in one year, Meta transformed from a company people made fun of for its “metaverse” investments to one of the key players in the AI landscape and its stock has almost tripled since (about $830B in market value created in the past year).Why Open Source AIThe obvious question is why Meta would spend hundreds of millions on its AI efforts and then release them for free. Zuck has addressed this in public statements:But for Soumith, the motivation is even more personal:“I'm irrationally interested in open source. I think open source has that fundamental way to distribute opportunity in a way that is very powerful. Like, I grew up in India… And knowledge was very centralized, but I saw that evolution of knowledge slowly getting decentralized. And that ended up helping me learn quicker and faster for like zero dollars. And I think that was a strong reason why I ended up where I am. So like that, like the open source side of things, I always push regardless of like what I get paid for, like I think I would do that as a passion project on the side……I think at a fundamental level, the most beneficial value of open source is that you make the distribution to be very wide. It's just available with no friction and people can do transformative things in a way that's very accessible. Maybe it's open source, but it has a commercial license and I'm a student in India. I don't care about the license. I just don't even understand the license. But like the fact that I can use it and do something with it is very transformative to me……Like, okay, I again always go back to like I'm a student in India with no money. What is my accessibility to any of these closed source models? At some scale I have to pay money. That makes it a non-starter and stuff. And there's also the control issue: I strongly believe if you want human aligned AI, you want all humans to give feedback. And you want all humans to have access to that technology in the first place. And I actually have seen, living in New York, whenever I come to Silicon Valley, I see a different cultural bubble.We like the way Soumith put it last year: Closed AI “rate-limits against people's imaginations and needs”!What It Takes For Open Source AI to WinHowever Soumith doesn't think Open Source will simply win by popular demand. There is a tremendous coordination problem with the decentralized nature of the open source AI development right now: nobody is collecting the valuable human feedback in the way that OpenAI or Midjourney are doing.“Open source in general always has a coordination problem. If there's a vertically integrated provider with more resources, they will just be better coordinated than open source. And so now open source has to figure out how to have coordinated benefits. And the reason you want coordinated benefits is because these models are getting better based on human feedback. And if you see with open source models, like if you go to the /r/localllama subreddit, like there's so many variations of models that are being produced from, say, Nous research. I mean, like there's like so many variations built by so many people. And one common theme is they're all using these fine-tuning or human preferences datasets that are very limited and they're not sufficiently diverse. And you look at the other side, say front-ends like Oobabooga or like Hugging Chat or Ollama, they don't really have feedback buttons. All the people using all these front-ends, they probably want to give feedback, but there's no way for them to give feedback… So we're just losing all of this feedback. Maybe open source models are being as used as GPT is at this point in like all kinds of, in a very fragmented way, like in aggregate all the open source models together are probably being used as much as GPT is, maybe close to that. But the amount of feedback that is driving back into the open source ecosystem is like negligible, maybe less than 1% of like the usage. So I think like some, like the blueprint here I think is you'd want someone to create a sinkhole for the feedback… I think if we do that, if that actually happens, I think that probably has a real chance of the open source models having a runaway effect against OpenAI, I think like there's a clear chance we can take at truly winning open source.”If you're working on solving open source coordination, please get in touch!Show Notes* Soumith Chintala Twitter* History of PyTorch episode on Gradient Podcast* The Llama Ecosystem* Apple's MLX* Neural ODEs (Ordinary Differential Equations)* AlphaGo* LMSys arena* Dan Pink's "Drive"* Robotics projects:* Dobb-E* OK Robot* Yann LeCun* Yangqing Jia of Lepton AI* Ed Catmull* George Hotz on Latent Space* Chris Lattner on Latent Space* Guillaume Lample* Yannic Kilcher of OpenAssistant* LMSys* Alex Atallah of OpenRouter* Carlo Sferrazza's 3D tactile research* Alex Wiltschko of Osmo* Tangent by Alex Wiltschko* Lerrel Pinto - RoboticsTimestamps* [00:00:00] Introductions* [00:00:51] Extrinsic vs Intrinsic Success* [00:02:40] Importance of Open Source and Its Impact* [00:03:46] PyTorch vs TinyGrad* [00:08:33] Why PyTorch is the Switzerland of frameworks* [00:10:27] Modular's Mojo + PyTorch?* [00:13:32] PyTorch vs Apple's MLX* [00:16:27] FAIR / PyTorch Alumni* [00:18:50] How can AI inference providers differentiate?* [00:21:41] How to build good benchmarks and learnings from AnyScale's* [00:25:28] Most interesting unexplored ideas* [00:28:18] What people get wrong about synthetic data* [00:35:57] Meta AI's evolution* [00:38:42] How do you allocate 600,000 GPUs?* [00:42:05] Even the GPU Rich are GPU Poor* [00:47:31] Meta's MTIA silicon* [00:50:09] Why we need open source* [00:59:00] Open source's coordination problem for feedback gathering* [01:08:59] Beyond text generation* [01:15:37] Osmo and the Future of Smell Recognition TechnologyTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO in residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:15]: Hey, and today we have in the studio Soumith Chintala, welcome.Soumith [00:00:17]: Thanks for having me.Swyx [00:00:18]: On one of your rare visits from New York where you live. You got your start in computer vision at NYU with Yann LeCun. That was a very fortuitous start. I was actually listening to your interview on the Gradient podcast. So if people want to know more about the history of Soumith, history of PyTorch, they can go to that podcast. We won't spend that much time there, but I just was marveling at your luck, or I don't know if it's your luck or your drive to find AI early and then find the right quality mentor because I guess Yan really sort of introduced you to that world.Soumith [00:00:51]: Yeah, I think you're talking about extrinsic success, right? A lot of people just have drive to do things that they think is fun, and a lot of those things might or might not be extrinsically perceived as good and successful. I think I just happened to like something that is now one of the coolest things in the world or whatever. But if I happen, the first thing I tried to become was a 3D VFX artist, and I was really interested in doing that, but I turned out to be very bad at it. So I ended up not doing that further. But even if I was good at that, whatever, and I ended up going down that path, I probably would have been equally happy. It's just like maybe like the perception of, oh, is this person successful or not might be different. I think like after a baseline, like your happiness is probably more correlated with your intrinsic stuff.Swyx [00:01:44]: Yes. I think Dan Pink has this book on drive that I often refer to about the power of intrinsic motivation versus extrinsic and how long extrinsic lasts. It's not very long at all. But anyway, now you are an investor in Runway, so in a way you're working on VFX. Yes.Soumith [00:02:01]: I mean, in a very convoluted way.Swyx [00:02:03]: It reminds me of Ed Catmull. I don't know if you guys know, but he actually tried to become an animator in his early years and failed or didn't get accepted by Disney and then went and created Pixar and then got bought by Disney and created Toy Story. So you joined Facebook in 2014 and eventually became a creator and maintainer of PyTorch. And there's this long story there you can refer to on the gradient. I think maybe people don't know that you also involved in more sort of hardware and cluster decision affair. And we can dive into more details there because we're all about hardware this month. Yeah. And then finally, I don't know what else, like what else should people know about you on a personal side or professional side?Soumith [00:02:40]: I think open source is definitely a big passion of mine and probably forms a little bit of my identity at this point. I'm irrationally interested in open source. I think open source has that fundamental way to distribute opportunity in a way that is very powerful. Like, I grew up in India. I didn't have internet for a while. In college, actually, I didn't have internet except for GPRS or whatever. And knowledge was very centralized, but I saw that evolution of knowledge slowly getting decentralized. And that ended up helping me learn quicker and faster for zero dollars. And I think that was a strong reason why I ended up where I am. So the open source side of things, I always push regardless of what I get paid for, like I think I would do that as a passion project on the side.Swyx [00:03:35]: Yeah, that's wonderful. Well, we'll talk about the challenges as well that open source has, open models versus closed models. Maybe you want to touch a little bit on PyTorch before we move on to the sort of Meta AI in general.PyTorch vs Tinygrad tradeoffsAlessio [00:03:46]: Yeah, we kind of touched on PyTorch in a lot of episodes. So we had George Hotz from TinyGrad. He called PyTorch a CISC and TinyGrad a RISC. I would love to get your thoughts on PyTorch design direction as far as, I know you talk a lot about kind of having a happy path to start with and then making complexity hidden away but then available to the end user. One of the things that George mentioned is I think you have like 250 primitive operators in PyTorch, I think TinyGrad is four. So how do you think about some of the learnings that maybe he's going to run into that you already had in the past seven, eight years almost of running PyTorch?Soumith [00:04:24]: Yeah, I think there's different models here, but I think it's two different models that people generally start with. Either they go like, I have a grand vision and I'm going to build a giant system that achieves this grand vision and maybe one is super feature complete or whatever. Or other people say they will get incrementally ambitious, right? And they say, oh, we'll start with something simple and then we'll slowly layer out complexity in a way that optimally applies Huffman coding or whatever. Like where the density of users are and what they're using, I would want to keep it in the easy, happy path and where the more niche advanced use cases, I'll still want people to try them, but they need to take additional frictional steps. George, I think just like we started with PyTorch, George started with the incrementally ambitious thing. I remember TinyGrad used to be, like we would be limited to a thousand lines of code and I think now it's at 5,000. So I think there is no real magic to which why PyTorch has the kind of complexity. I think it's probably partly necessitated and partly because we built with the technology available under us at that time, PyTorch is like 190,000 lines of code or something at this point. I think if you had to rewrite it, we would probably think about ways to rewrite it in a vastly simplified way for sure. But a lot of that complexity comes from the fact that in a very simple, explainable way, you have memory hierarchies. You have CPU has three levels of caches and then you have DRAM and SSD and then you have network. Similarly, GPU has several levels of memory and then you have different levels of network hierarchies, NVLink plus InfiniBand or Rocky or something like that, right? And the way the flops are available on your hardware, they are available in a certain way and your computation is in a certain way and you have to retrofit your computation onto both the memory hierarchy and like the flops available. When you're doing this, it is actually a fairly hard mathematical problem to do this setup, like you find the optimal thing. And finding the optimal thing is, what is optimal depends on the input variables themselves. So like, okay, what is the shape of your input tensors and what is the operation you're trying to do and various things like that. Finding that optimal configuration and writing it down in code is not the same for every input configuration you have. Like for example, just as the shape of the tensors change, let's say you have three input tensors into a Sparstar product or something like that. The shape of each of these input tensors will vastly change how you do this optimally placing this operation onto the hardware in a way that will get you maximal throughput. So a lot of our complexity comes from writing out hundreds of configurations for each single PyTorch operator and templatizing these things and symbolically generating the final CUDA code or CPU code. There's no way to avoid it because mathematically we haven't found symbolic ways to do this that also keep compile time near zero. You can write a very simple framework, but then you also should be willing to eat the long compile time. So if searching for that optimal performance at runtime, but that's the trade off. There's no, like, I don't think unless we have great breakthroughs George's vision is achievable, he should be thinking about a narrower problem such as I'm only going to make this for work for self-driving car connets or I'm only going to make this work for LLM transformers of the llama style. Like if you start narrowing the problem down, you can make a vastly simpler framework. But if you don't, if you need the generality to power all of the AI research that is happening and keep zero compile time and in all these other factors, I think it's not easy to avoid the complexity.Pytorch vs MojoAlessio [00:08:33]: That's interesting. And we kind of touched on this with Chris Lattner when he was on the podcast. If you think about frameworks, they have the model target. They have the hardware target. They have different things to think about. He mentioned when he was at Google, TensorFlow trying to be optimized to make TPUs go brr, you know, and go as fast. I think George is trying to make especially AMD stack be better than ROCm. How come PyTorch has been such as Switzerland versus just making Meta hardware go brr?Soumith [00:09:00]: First, Meta is not in the business of selling hardware. Meta is not in the business of cloud compute. The way Meta thinks about funding PyTorch is we're funding it because it's net good for Meta to fund PyTorch because PyTorch has become a standard and a big open source project. And generally it gives us a timeline edge. It gives us leverage and all that within our own work. So why is PyTorch more of a Switzerland rather than being opinionated? I think the way we think about it is not in terms of Switzerland or not. We actually the way we articulate it to all hardware vendors and software vendors and all who come to us being we want to build a backend in core for PyTorch and ship it by default is we just only look at our user side of things. Like if users are using a particular piece of hardware, then we want to support it. We very much don't want to king make the hardware side of things. So as the MacBooks have GPUs and as that stuff started getting increasingly interesting, we pushed Apple to push some engineers and work on the NPS support and we spend significant time from Meta funded engineers on that as well because a lot of people are using the Apple GPUs and there's demand. So we kind of mostly look at it from the demand side. We never look at it from like oh which hardware should we start taking opinions on.Swyx [00:10:27]: Is there a future in which, because Mojo or Modular Mojo is kind of a superset of Python, is there a future in which PyTorch might use Mojo features optionally?Soumith [00:10:36]: I think it depends on how well integrated it is into the Python ecosystem. So if Mojo is like a pip install and it's readily available and users feel like they can use Mojo so smoothly within their workflows in a way that just is low friction, we would definitely look into that. Like in the same way PyTorch now depends on Triton, OpenAI Triton, and we never had a conversation that was like huh, that's like a dependency. Should we just build a Triton of our own or should we use Triton? It almost doesn't, like those conversations don't really come up for us. The conversations are more well does Triton have 10,000 dependencies and is it hard to install? We almost don't look at these things from a strategic leverage point of view. We look at these things from a user experience point of view, like is it easy to install? Is it smoothly integrated and does it give enough benefits for us to start depending on it? If so, yeah, we should consider it. That's how we think about it.Swyx [00:11:37]: You're inclusive by default as long as it meets the minimum bar of, yeah, but like maybe I phrased it wrongly. Maybe it's more like what problems would you look to solve that you have right now?Soumith [00:11:48]: I think it depends on what problems Mojo will be useful at.Swyx [00:11:52]: Mainly a performance pitch, some amount of cross compiling pitch.Soumith [00:11:56]: Yeah, I think the performance pitch for Mojo was like, we're going to be performant even if you have a lot of custom stuff, you're going to write arbitrary custom things and we will be performant. And that value proposition is not clear to us from the PyTorch side to consider it for PyTorch. So PyTorch, it's actually not 250 operators, it's like a thousand operators. PyTorch exposes about a thousand operators and people kind of write their ideas in the thousand operators of PyTorch. Mojo is like, well, maybe it's okay to completely sidestep those thousand operators of PyTorch and just write it in a more natural form. Just write raw Python, write for loops or whatever, right? So from the consideration of how do we intersect PyTorch with Mojo, I can see one use case where you have custom stuff for some parts of your program, but mostly it's PyTorch. And so we can probably figure out how to make it easier for say Torch.compile to smoothly also consume Mojo subgraphs and like, you know, the interoperability being actually usable, that I think is valuable. But Mojo as a fundamental front end would be replacing PyTorch, not augmenting PyTorch. So in that sense, I don't see a synergy in more deeply integrating Mojo.Pytorch vs MLXSwyx [00:13:21]: So call out to Mojo whenever they have written something in Mojo and there's some performance related thing going on. And then since you mentioned Apple, what should people think of PyTorch versus MLX?Soumith [00:13:32]: I mean, MLX is early and I know the folks well, Ani used to work at FAIR and I used to chat with him all the time. He used to be based out of New York as well. The way I think about MLX is that MLX is specialized for Apple right now. It has a happy path because it's defined its product in a narrow way. At some point MLX either says we will only be supporting Apple and we will just focus on enabling, you know, there's a framework if you use your MacBook, but once you like go server side or whatever, that's not my problem and I don't care. For MLS, it enters like the server side set of things as well. Like one of these two things will happen, right? If the first thing will happen, like MLX's overall addressable market will be small, but it probably do well within that addressable market. If it enters the second phase, they're going to run into all the same complexities that we have to deal with. They will not have any magic wand and they will have more complex work to do. They probably wouldn't be able to move as fast.Swyx [00:14:44]: Like having to deal with distributed compute?Soumith [00:14:48]: Distributed, NVIDIA and AMD GPUs, like just like having a generalization of the concept of a backend, how they treat compilation with plus overheads. Right now they're deeply assumed like the whole NPS graph thing. So they need to think about all these additional things if they end up expanding onto the server side and they'll probably build something like PyTorch as well, right? Like eventually that's where it will land. And I think there they will kind of fail on the lack of differentiation. Like it wouldn't be obvious to people why they would want to use it.Swyx [00:15:24]: I mean, there are some cloud companies offering M1 and M2 chips on servers. I feel like it might be interesting for Apple to pursue that market, but it's not their core strength.Soumith [00:15:33]: Yeah. If Apple can figure out their interconnect story, maybe, like then it can become a thing.Swyx [00:15:40]: Honestly, that's more interesting than the cars. Yes.Soumith [00:15:43]: I think the moat that NVIDIA has right now, I feel is that they have the interconnect that no one else has, like AMD GPUs are pretty good. I'm sure there's various silicon that is not bad at all, but the interconnect, like NVLink is uniquely awesome. I'm sure the other hardware providers are working on it, but-Swyx [00:16:04]: I feel like when you say it's uniquely awesome, you have some appreciation of it that the rest of us don't. I mean, the rest of us just like, you know, we hear marketing lines, but what do you mean when you say NVIDIA is very good at networking? Obviously they made the acquisition maybe like 15 years ago.Soumith [00:16:15]: Just the bandwidth it offers and the latency it offers. I mean, TPUs also have a good interconnect, but you can't buy them. So you have to go to Google to use it.PyTorch MafiaAlessio [00:16:27]: Who are some of the other FAIR PyTorch alumni that are building cool companies? I know you have Fireworks AI, Lightning AI, Lepton, and Yangqing, you knew since college when he was building Coffee?Soumith [00:16:40]: Yeah, so Yangqing and I used to be framework rivals, PyTorch, I mean, we were all a very small close-knit community back then. Caffe, Torch, Theano, Chainer, Keras, various frameworks. I mean, it used to be more like 20 frameworks. I can't remember all the names. CCV by Liu Liu, who is also based out of SF. And I would actually like, you know, one of the ways it was interesting is you went into the framework guts and saw if someone wrote their own convolution kernel or they were just copying someone else's. There were four or five convolution kernels that were unique and interesting. There was one from this guy out of Russia, I forgot the name, but I remembered who was awesome enough to have written their own kernel. And at some point there, I built out these benchmarks called ConNet benchmarks. They're just benchmarking all the convolution kernels that are available at that time. It hilariously became big enough that at that time AI was getting important, but not important enough that industrial strength players came in to do these kinds of benchmarking and standardization. Like we have MLPerf today. So a lot of the startups were using ConNet benchmarks in their pitch decks as like, oh, you know, on ConNet benchmarks, this is how we fare, so you should fund us. I remember Nirvana actually was at the top of the pack because Scott Gray wrote amazingly fast convolution kernels at that time. Very interesting, but separate times. But to answer your question, Alessio, I think mainly Lepton, Fireworks are the two most obvious ones, but I'm sure the fingerprints are a lot wider. They're just people who worked within the PyTorch Cafe2 cohort of things and now end up at various other places.Swyx [00:18:50]: I think as a, both as an investor and a people looking to build on top of their services, it's a uncomfortable slash like, I don't know what I don't know pitch. Because I've met Yang Tsing and I've met Lin Chao. Yeah, I've met these folks and they're like, you know, we are deep in the PyTorch ecosystem and we serve billions of inferences a day or whatever at Facebook and now we can do it for you. And I'm like, okay, that's great. Like, what should I be wary of or cautious of when these things happen? Because I'm like, obviously this experience is extremely powerful and valuable. I just don't know what I don't know. Like, what should people know about like these sort of new inference as a service companies?Soumith [00:19:32]: I think at that point you would be investing in them for their expertise of one kind. So if they've been at a large company, but they've been doing amazing work, you would be thinking about it as what these people bring to the table is that they're really good at like GPU programming or understanding the complexity of serving models once it hits a certain scale. You know, various expertise like from the infra and AI and GPUs point of view. What you would obviously want to figure out is whether their understanding of the external markets is clear, whether they know and understand how to think about running a business, understanding how to be disciplined about making money or, you know, various things like that.Swyx [00:20:23]: Maybe I'll put it like, actually I will de-emphasize the investing bit and just more as a potential customer. Oh, okay. Like, it's more okay, you know, you have PyTorch gods, of course. Like, what else should I know?Soumith [00:20:37]: I mean, I would not care about who's building something. If I'm trying to be a customer, I would care about whether...Swyx [00:20:44]: Benchmarks.Soumith [00:20:44]: Yeah, I use it and it's usability and reliability and speed, right?Swyx [00:20:51]: Quality as well.Soumith [00:20:51]: Yeah, if someone from some random unknown place came to me and say, user stuff is great. Like, and I have the bandwidth, I probably will give it a shot. And if it turns out to be great, like I'll just use it.Benchmark dramaSwyx [00:21:07]: Okay, great. And then maybe one more thing about benchmarks, since we already brought it up and you brought up Confident Benchmarks. There was some recent drama around AnyScale. AnyScale released their own benchmarks and obviously they look great on their own benchmarks, but maybe didn't give the other... I feel there are two lines of criticism. One, which is they didn't test some apples for apples on the kind of endpoints that the other providers, that they are competitors with, on their benchmarks and that is due diligence baseline. And then the second would be more just optimizing for the right thing. You had some commentary on it. I'll just kind of let you riff.Soumith [00:21:41]: Yeah, I mean, in summary, basically my criticism of that was AnyScale built these benchmarks for end users to just understand what they should pick, right? And that's a very good thing to do. I think what they didn't do a good job of is give that end user a full understanding of what they should pick. Like they just gave them a very narrow slice of understanding. I think they just gave them latency numbers and that's not sufficient, right? You need to understand your total cost of ownership at some reasonable scale. Not oh, one API call is one cent, but a thousand API calls are 10 cents. Like people can misprice to cheat on those benchmarks. So you want to understand, okay, like how much is it going to cost me if I actually subscribe to you and do like a million API calls a month or something? And then you want to understand the latency and reliability, not just from one call you made, but an aggregate of calls you've made over several various times of the day and times of the week. And the nature of the workloads, is it just some generic single paragraph that you're sending that is cashable? Or is it like testing of real world workload? I think that kind of rigor, like in presenting that benchmark wasn't there. It was a much more narrow sliver of what should have been a good benchmark. That was my main criticism. And I'm pretty sure if before they released it, they showed it to their other stakeholders who would be caring about this benchmark because they are present in it, they would have easily just pointed out these gaps. And I think they didn't do that and they just released it. So I think those were the two main criticisms. I think they were fair and Robert took it well.Swyx [00:23:40]: And he took it very well. And we'll have him on at some point and we'll discuss it. But I think it's important for, I think the market being maturing enough that people start caring and competing on these kinds of things means that we need to establish what best practice is because otherwise everyone's going to play dirty.Soumith [00:23:55]: Yeah, absolutely. My view of the LLM inference market in general is that it's the laundromat model. Like the margins are going to drive down towards the bare minimum. It's going to be all kinds of arbitrage between how much you can get the hardware for and then how much you sell the API and how much latency your customers are willing to let go. You need to figure out how to squeeze your margins. Like what is your unique thing here? Like I think Together and Fireworks and all these people are trying to build some faster CUDA kernels and faster, you know, hardware kernels in general. But those modes only last for a month or two. These ideas quickly propagate.Swyx [00:24:38]: Even if they're not published?Soumith [00:24:39]: Even if they're not published, the idea space is small. So even if they're not published, the discovery rate is going to be pretty high. It's not like we're talking about a combinatorial thing that is really large. You're talking about Llama style LLM models. And we're going to beat those to death on a few different hardware SKUs, right? Like it's not even we have a huge diversity of hardware you're going to aim to run it on. Now when you have such a narrow problem and you have a lot of people working on it, the rate at which these ideas are going to get figured out is going to be pretty rapid.Swyx [00:25:15]: Is it a standard bag of tricks? Like the standard one that I know of is, you know, fusing operators and-Soumith [00:25:22]: Yeah, it's the standard bag of tricks on figuring out how to improve your memory bandwidth and all that, yeah.Alessio [00:25:28]: Any ideas instead of things that are not being beaten to death that people should be paying more attention to?Novel PyTorch ApplicationsSwyx [00:25:34]: One thing I was like, you know, you have a thousand operators, right? Like what's the most interesting usage of PyTorch that you're seeing maybe outside of this little bubble?Soumith [00:25:41]: So PyTorch, it's very interesting and scary at the same time, but basically it's used in a lot of exotic ways, like from the ML angle, what kind of models are being built? And you get all the way from state-based models and all of these things to stuff nth order differentiable models, like neural ODEs and stuff like that. I think there's one set of interestingness factor from the ML side of things. And then there's the other set of interesting factor from the applications point of view. It's used in Mars Rover simulations, to drug discovery, to Tesla cars. And there's a huge diversity of applications in which it is used. So in terms of the most interesting application side of things, I think I'm scared at how many interesting things that are also very critical and really important it is used in. I think the scariest was when I went to visit CERN at some point and they said they were using PyTorch and they were using GANs at the same time for particle physics research. And I was scared more about the fact that they were using GANs than they were using PyTorch, because at that time I was a researcher focusing on GANs. But the diversity is probably the most interesting. How many different things it is being used in. I think that's the most interesting to me from the applications perspective. From the models perspective, I think I've seen a lot of them. Like the really interesting ones to me are where we're starting to combine search and symbolic stuff with differentiable models, like the whole AlphaGo style models is one example. And then I think we're attempting to do it for LLMs as well, with various reward models and search. I mean, I don't think PyTorch is being used in this, but the whole alpha geometry thing was interesting because again, it's an example of combining the symbolic models with the gradient based ones. But there are stuff like alpha geometry that PyTorch is used at, especially when you intersect biology and chemistry with ML. In those areas, you want stronger guarantees on the output. So yeah, maybe from the ML side, those things to me are very interesting right now.Swyx [00:28:03]: Yeah. People are very excited about the alpha geometry thing. And it's kind of like, for me, it's theoretical. It's great. You can solve some Olympia questions. I'm not sure how to make that bridge over into the real world applications, but I'm sure people smarter than me will figure it out.Synthetic Data vs Symbolic ModelsSoumith [00:28:18]: Let me give you an example of it. You know how the whole thing about synthetic data will be the next rage in LLMs is a thing?Swyx [00:28:27]: Already is a rage.Soumith [00:28:28]: Which I think is fairly misplaced in how people perceive it. People think synthetic data is some kind of magic wand that you wave and it's going to be amazing. Synthetic data is useful in neural networks right now because we as humans have figured out a bunch of symbolic models of the world or made up certain symbolic models because of human innate biases. So we've figured out how to ground particle physics in a 30 parameter model. And it's just very hard to compute as in it takes a lot of flops to compute, but it only has 30 parameters or so. I mean, I'm not a physics expert, but it's a very low rank model. We built mathematics as a field that basically is very low rank. Language, a deep understanding of language, like the whole syntactic parse trees and just understanding how language can be broken down and into a formal symbolism is something that we figured out. So we basically as humans have accumulated all this knowledge on these subjects, either synthetic, we created those subjects in our heads, or we grounded some real world phenomenon into a set of symbols. But we haven't figured out how to teach neural networks symbolic world models directly. The only way we have to teach them is generating a bunch of inputs and outputs and gradient dissenting over them. So in areas where we have the symbolic models and we need to teach all the knowledge we have that is better encoded in the symbolic models, what we're doing is we're generating a bunch of synthetic data, a bunch of input output pairs, and then giving that to the neural network and asking it to learn the same thing that we already have a better low rank model of in gradient descent in a much more over-parameterized way. Outside of this, like where we don't have good symbolic models, like synthetic data obviously doesn't make any sense. So synthetic data is not a magic wand where it'll work in all cases in every case or whatever. It's just where we as humans already have good symbolic models off. We need to impart that knowledge to neural networks and we figured out the synthetic data is a vehicle to impart this knowledge to. So, but people, because maybe they don't know enough about synthetic data as a notion, but they hear, you know, the next wave of data revolution is synthetic data. They think it's some kind of magic where we just create a bunch of random data somehow. They don't think about how, and then they think that's just a revolution. And I think that's maybe a gap in understanding most people have in this hype cycle.Swyx [00:31:23]: Yeah, well, it's a relatively new concept, so. Oh, there's two more that I'll put in front of you and then you can see what you respond. One is, you know, I have this joke that it's, you know, it's only synthetic data if it's from the Mistral region of France, otherwise it's just a sparkling distillation, which is what news research is doing. Like they're distilling GPT-4 by creating synthetic data from GPT-4, creating mock textbooks inspired by Phi 2 and then fine tuning open source models like Llama. And so I don't know, I mean, I think that's, should we call that synthetic data? Should we call it something else? I don't know.Soumith [00:31:57]: Yeah, I mean, the outputs of LLMs, are they synthetic data? They probably are, but I think it depends on the goal you have. If your goal is you're creating synthetic data with the goal of trying to distill GPT-4's superiority into another model, I guess you can call it synthetic data, but it also feels like disingenuous because your goal is I need to copy the behavior of GPT-4 and-Swyx [00:32:25]: It's also not just behavior, but data set. So I've often thought of this as data set washing. Like you need one model at the top of the chain, you know, unnamed French company that has that, you know, makes a model that has all the data in it that we don't know where it's from, but it's open source, hey, and then we distill from that and it's great. To be fair, they also use larger models as judges for preference ranking, right? So that is, I think, a very, very accepted use of synthetic.Soumith [00:32:53]: Correct. I think it's a very interesting time where we don't really have good social models of what is acceptable depending on how many bits of information you use from someone else, right? It's like, okay, you use one bit. Is that okay? Yeah, let's accept it to be okay. Okay, what about if you use 20 bits? Is that okay? I don't know. What if you use 200 bits? I don't think we as society have ever been in this conundrum where we have to be like, where is the boundary of copyright or where is the boundary of socially accepted understanding of copying someone else? We haven't been tested this mathematically before,Swyx [00:33:38]: in my opinion. Whether it's transformative use. Yes. So yeah, I think this New York Times opening eye case is gonna go to the Supreme Court and we'll have to decide it because I think we never had to deal with it before. And then finally, for synthetic data, the thing that I'm personally exploring is solving this great stark paradigm difference between rag and fine tuning, where you can kind of create synthetic data off of your retrieved documents and then fine tune on that. That's kind of synthetic. All you need is variation or diversity of samples for you to fine tune on. And then you can fine tune new knowledge into your model. I don't know if you've seen that as a direction for synthetic data.Soumith [00:34:13]: I think you're basically trying to, what you're doing is you're saying, well, language, I know how to parametrize language to an extent. And I need to teach my model variations of this input data so that it's resilient or invariant to language uses of that data.Swyx [00:34:32]: Yeah, it doesn't overfit on the wrong source documents.Soumith [00:34:33]: So I think that's 100% synthetic. You understand, the key is you create variations of your documents and you know how to do that because you have a symbolic model or like some implicit symbolic model of language.Swyx [00:34:48]: Okay.Alessio [00:34:49]: Do you think the issue with symbolic models is just the architecture of the language models that we're building? I think maybe the thing that people grasp is the inability of transformers to deal with numbers because of the tokenizer. Is it a fundamental issue there too? And do you see alternative architectures that will be better with symbolic understanding?Soumith [00:35:09]: I am not sure if it's a fundamental issue or not. I think we just don't understand transformers enough. I don't even mean transformers as an architecture. I mean the use of transformers today, like combining the tokenizer and transformers and the dynamics of training, when you show math heavy questions versus not. I don't have a good calibration of whether I know the answer or not. I, you know, there's common criticisms that are, you know, transformers will just fail at X. But then when you scale them up to sufficient scale, they actually don't fail at that X. I think there's this entire subfield where they're trying to figure out these answers called like the science of deep learning or something. So we'll get to know more. I don't know the answer.Meta AI and Llama 2/3Swyx [00:35:57]: Got it. Let's touch a little bit on just Meta AI and you know, stuff that's going on there. Maybe, I don't know how deeply you're personally involved in it, but you're our first guest with Meta AI, which is really fantastic. And Llama 1 was, you know, you are such a believer in open source. Llama 1 was more or less the real breakthrough in open source AI. The most interesting thing for us covering on this, in this podcast was the death of Chinchilla, as people say. Any interesting insights there around the scaling models for open source models or smaller models or whatever that design decision was when you guys were doing it?Soumith [00:36:31]: So Llama 1 was Guillaume Lample and team. There was OPT before, which I think I'm also very proud of because we bridged the gap in understanding of how complex it is to train these models to the world. Like until then, no one really in gory detail published.Swyx [00:36:50]: The logs.Soumith [00:36:51]: Yeah. Like, why is it complex? And everyone says, oh, it's complex. But no one really talked about why it's complex. I think OPT was cool.Swyx [00:37:02]: I met Susan and she's very, very outspoken. Yeah.Soumith [00:37:05]: We probably, I think, didn't train it for long enough, right? That's kind of obvious in retrospect.Swyx [00:37:12]: For a 175B. Yeah. You trained it according to Chinchilla at the time or?Soumith [00:37:17]: I can't remember the details, but I think it's a commonly held belief at this point that if we trained OPT longer, it would actually end up being better. Llama 1, I think, was Guillaume Lample and team Guillaume is fantastic and went on to build Mistral. I wasn't too involved in that side of things. So I don't know what you're asking me, which is how did they think about scaling loss and all of that? Llama 2, I was more closely involved in. I helped them a reasonable amount with their infrastructure needs and stuff. And Llama 2, I think, was more like, let's get to the evolution. At that point, we kind of understood what we were missing from the industry's understanding of LLMs. And we needed more data and we needed more to train the models for longer. And we made, I think, a few tweaks to the architecture and we scaled up more. And that was Llama 2. I think Llama 2, you can think of it as after Guillaume left, the team kind of rebuilt their muscle around Llama 2. And Hugo, I think, who's the first author is fantastic. And I think he did play a reasonable big role in Llama 1 as well.Soumith [00:38:35]: And he overlaps between Llama 1 and 2. So in Llama 3, obviously, hopefully, it'll be awesome.Alessio [00:38:42]: Just one question on Llama 2, and then we'll try and fish Llama 3 spoilers out of you. In the Llama 2 paper, the loss curves of the 34 and 70B parameter, they still seem kind of steep. Like they could go lower. How, from an infrastructure level, how do you allocate resources? Could they have just gone longer or were you just, hey, this is all the GPUs that we can burn and let's just move on to Llama 3 and then make that one better?Soumith [00:39:07]: Instead of answering specifically about that Llama 2 situation or whatever, I'll tell you how we think about things. Generally, we're, I mean, Mark really is some numbers, right?Swyx [00:39:20]: So let's cite those things again. All I remember is like 600K GPUs.Soumith [00:39:24]: That is by the end of this year and 600K H100 equivalents. With 250K H100s, including all of our other GPU or accelerator stuff, it would be 600-and-something-K aggregate capacity.Swyx [00:39:38]: That's a lot of GPUs.Soumith [00:39:39]: We'll talk about that separately. But the way we think about it is we have a train of models, right? Llama 1, 2, 3, 4. And we have a bunch of GPUs. I don't think we're short of GPUs. Like-Swyx [00:39:54]: Yeah, no, I wouldn't say so. Yeah, so it's all a matter of time.Soumith [00:39:56]: I think time is the biggest bottleneck. It's like, when do you stop training the previous one and when do you start training the next one? And how do you make those decisions? The data, do you have net new data, better clean data for the next one in a way that it's not worth really focusing on the previous one? It's just a standard iterative product. You're like, when is the iPhone 1? When do you start working on iPhone 2? Where is the iPhone? And so on, right? So mostly the considerations are time and generation, rather than GPUs, in my opinion.Alessio [00:40:31]: So one of the things with the scaling loss, like Chinchilla is optimal to balance training and inference costs. I think at Meta's scale, you would rather pay a lot more maybe at training and then save on inference. How do you think about that from infrastructure perspective? I think in your tweet, you say you can try and guess on like how we're using these GPUs. Can you just give people a bit of understanding? It's like, because I've already seen a lot of VCs say, Llama 3 has been trained on 600,000 GPUs and that's obviously not true, I'm sure. How do you allocate between the research, FAIR and the Llama training, the inference on Instagram suggestions that get me to scroll, like AI-generated stickers on WhatsApp and all of that?Soumith [00:41:11]: Yeah, we haven't talked about any of this publicly, but as a broad stroke, it's like how we would allocate resources of any other kinds at any company. You run a VC portfolio, how do you allocate your investments between different companies or whatever? You kind of make various trade-offs and you kind of decide, should I invest in this project or this other project, or how much should I invest in this project? It's very much a zero sum of trade-offs. And it also comes into play, how are your clusters configured, like overall, what you can fit of what size and what cluster and so on. So broadly, there's no magic sauce here. I mean, I think the details would add more spice, but also wouldn't add more understanding. It's just gonna be like, oh, okay, I mean, this looks like they just think about this as I would normally do.Alessio [00:42:05]: So even the GPU rich run through the same struggles of having to decide where to allocate things.Soumith [00:42:11]: Yeah, I mean, at some point I forgot who said it, but you kind of fit your models to the amount of compute you have. If you don't have enough compute, you figure out how to make do with smaller models. But no one as of today, I think would feel like they have enough compute. I don't think I've heard any company within the AI space be like, oh yeah, like we feel like we have sufficient compute and we couldn't have done better. So that conversation, I don't think I've heard from any of my friends at other companies.EleutherSwyx [00:42:47]: Stella from Eleuther sometimes says that because she has a lot of donated compute. She's trying to put it to interesting uses, but for some reason she's decided to stop making large models.Soumith [00:42:57]: I mean, that's a cool, high conviction opinion that might pay out.Swyx [00:43:01]: Why?Soumith [00:43:02]: I mean, she's taking a path that most people don't care to take about in this climate and she probably will have very differentiated ideas. I mean, think about the correlation of ideas in AI right now. It's so bad, right? So everyone's fighting for the same pie. In some weird sense, that's partly why I don't really directly work on LLMs. I used to do image models and stuff and I actually stopped doing GANs because GANs were getting so hot that I didn't have any calibration of whether my work would be useful or not because, oh yeah, someone else did the same thing you did. It's like, there's so much to do, I don't understand why I need to fight for the same pie. So I think Stella's decision is very smart.Making BetsAlessio [00:43:53]: And how do you reconcile that with how we started the discussion about intrinsic versus extrinsic kind of like accomplishment or success? How should people think about that especially when they're doing a PhD or early in their career? I think in Europe, I walked through a lot of the posters and whatnot, there seems to be mode collapse in a way in the research, a lot of people working on the same things. Is it worth for a PhD to not take a bet on something that is maybe not as interesting just because of funding and visibility and whatnot? Or yeah, what suggestions would you give?Soumith [00:44:28]: I think there's a baseline level of compatibility you need to have with the field. Basically, you need to figure out if you will get paid enough to eat, right? Like whatever reasonable normal lifestyle you want to have as a baseline. So you at least have to pick a problem within the neighborhood of fundable. Like you wouldn't wanna be doing something so obscure that people are like, I don't know, like you can work on it.Swyx [00:44:59]: Would a limit on fundability, I'm just observing something like three months of compute, right? That's the top line, that's the like max that you can spend on any one project.Soumith [00:45:09]: But like, I think that's very ill specified, like how much compute, right? I think that the notion of fundability is broader. It's more like, hey, are these family of models within the acceptable set of, you're not crazy or something, right? Even something like neural or DS, which is a very boundary pushing thing or states-based models or whatever. Like all of these things I think are still in fundable territory. When you're talking about, I'm gonna do one of the neuromorphic models and then apply image classification to them or something, then it becomes a bit questionable. Again, it depends on your motivation. Maybe if you're a neuroscientist, it actually is feasible. But if you're an AI engineer, like the audience of these podcasts, then it's more questionable. The way I think about it is, you need to figure out how you can be in the baseline level of fundability just so that you can just live. And then after that, really focus on intrinsic motivation and depends on your strengths, like how you can play to your strengths and your interests at the same time. Like I try to look at a bunch of ideas that are interesting to me, but also try to play to my strengths. I'm not gonna go work on theoretical ML. I'm interested in it, but when I want to work on something like that, I try to partner with someone who is actually a good theoretical ML person and see if I actually have any value to provide. And if they think I do, then I come in. So I think you'd want to find that intersection of ideas you like, and that also play to your strengths. And I'd go from there. Everything else, like actually finding extrinsic success and all of that, I think is the way I think about it is like somewhat immaterial. When you're talking about building ecosystems and stuff, slightly different considerations come into play, but that's a different conversation.Swyx [00:47:06]: We're gonna pivot a little bit to just talking about open source AI. But one more thing I wanted to establish for Meta is this 600K number, just kind of rounding out the discussion, that's for all Meta. So including your own inference needs, right? It's not just about training.Soumith [00:47:19]: It's gonna be the number in our data centers for all of Meta, yeah.Swyx [00:47:23]: Yeah, so there's a decent amount of workload serving Facebook and Instagram and whatever. And then is there interest in like your own hardware?MTIASoumith [00:47:31]: We already talked about our own hardware. It's called MTIA. Our own silicon, I think we've even showed the standard photograph of you holding the chip that doesn't work. Like as in the chip that you basically just get like-Swyx [00:47:51]: As a test, right?Soumith [00:47:52]: Yeah, a test chip or whatever. So we are working on our silicon and we'll probably talk more about it when the time is right, but-Swyx [00:48:00]: Like what gaps do you have that the market doesn't offer?Soumith [00:48:04]: Okay, I mean, this is easy to answer. So basically, remember how I told you about there's this memory hierarchy and like sweet spots and all of that? Fundamentally, when you build a hardware, you make it general enough that a wide set of customers and a wide set of workloads can use it effectively while trying to get the maximum level of performance they can. The more specialized you make the chip, the more hardware efficient it's going to be, the more power efficient it's gonna be, the more easier it's going to be to find the software, like the kernel's right to just map that one or two workloads to that hardware and so on. So it's pretty well understood across the industry that if you have a sufficiently large volume, enough workload, you can specialize it and get some efficiency gains, like power gains and so on. So the way you can think about everyone building, every large company building silicon, I think a bunch of the other large companies are building their own silicon as well, is they, each large company has a sufficient enough set of verticalized workloads that can be specialized that have a pattern to them that say a more generic accelerator like an NVIDIA or an AMD GPU does not exploit. So there is some level of power efficiency that you're leaving on the table by not exploiting that. And you have sufficient scale and you have sufficient forecasted stability that those workloads will exist in the same form, that it's worth spending the time to build out a chip to exploit that sweet spot. Like obviously something like this is only useful if you hit a certain scale and that your forecasted prediction of those kind of workloads being in the same kind of specializable exploitable way is true. So yeah, that's why we're building our own chips.Swyx [00:50:08]: Awesome.Open Source AIAlessio [00:50:09]: Yeah, I know we've been talking a lot on a lot of different topics and going back to open source, you had a very good tweet. You said that a single company's closed source effort rate limits against people's imaginations and needs. How do you think about all the impact that some of the Meta AI work in open source has been doing and maybe directions of the whole open source AI space?Soumith [00:50:32]: Yeah, in general, I think first, I think it's worth talking about this in terms of open and not just open source, because like with the whole notion of model weights, no one even knows what source means for these things. But just for the discussion, when I say open source, you can assume it's just I'm talking about open. And then there's the whole notion of licensing and all that, commercial, non-commercial, commercial with clauses and all that. I think at a fundamental level, the most benefited value of open source is that you make the distribution to be very wide. It's just available with no friction and people can do transformative things in a way that's very accessible. Maybe it's open source, but it has a commercial license and I'm a student in India. I don't care about the license. I just don't even understand the license. But like the fact that I can use it and do something with it is very transformative to me. Like I got this thing in a very accessible way. And then it's various degrees, right? And then if it's open source, but it's actually a commercial license, then a lot of companies are gonna benefit from gaining value that they didn't previously have, that they maybe had to pay a closed source company for it. So open source is just a very interesting tool that you can use in various ways. So there's, again, two kinds of open source. One is some large company doing a lot of work and then open sourcing it. And that kind of effort is not really feasible by say a band of volunteers doing it the same way. So there's both a capital and operational expenditure that the large company just decided to ignore and give it away to the world for some benefits of some kind. They're not as tangible as direct revenue. So in that part, Meta has been doing incredibly good things. They fund a huge amount of the PyTorch development. They've open sourced Llama and those family of models and several other fairly transformative projects. FICE is one, Segment Anything, Detectron, Detectron 2. Dense Pose. I mean, it's-Swyx [00:52:52]: Seamless. Yeah, seamless.Soumith [00:52:53]: Like it's just the list is so long that we're not gonna cover. So I think Meta comes into that category where we spend a lot of CapEx and OpEx and we have a high talent density of great AI people and we open our stuff. And the thesis for that, I remember when FAIR was started, the common thing was like, wait, why would Meta wanna start a open AI lab? Like what exactly is a benefit from a commercial perspective? And for then the thesis was very simple. It was AI is currently rate limiting Meta's ability to do things. Our ability to build various product integrations, moderation, various other factors. Like AI was the limiting factor and we just wanted AI to advance more and we didn't care if the IP of the AI was uniquely in our possession or not. However the field advances, that accelerates Meta's ability to build a better product. So we just built an open AI lab and we said, if this helps accelerate the progress of AI, that's strictly great for us. But very easy, rational, right? Still the same to a large extent with the Llama stuff. And it's the same values, but the argument, it's a bit more nuanced. And then there's a second kind of open source, which is, oh, we built this project, nights and weekends and we're very smart people and we open sourced it and then we built a community around it. This is the Linux kernel and various software projects like that. So I think about open source, like both of these things being beneficial and both of these things being different. They're different and beneficial in their own ways. The second one is really useful when there's an active arbitrage to be done. If someone's not really looking at a particular space because it's not commercially viable or whatever, like a band of volunteers can just coordinate online and do something and then make that happen. And that's great.Open Source LLMsI wanna cover a little bit about open source LLMs maybe. So open source LLMs have been very interesting because I think we were trending towards an increase in open source in AI from 2010 all the way to 2017 or something. Like where more and more pressure within the community was to open source their stuff so that their methods and stuff get adopted. And then the LLMs revolution kind of took the opposite effect OpenAI stopped open sourcing their stuff and DeepMind kind of didn't, like all the other cloud and all these other providers, they didn't open source their stuff. And it was not good in the sense that first science done in isolation probably will just form its own bubble where people believe their own b******t or whatever. So there's that problem. And then there was the other problem which was the accessibility part. Like, okay, I again always go back to I'm a student in India with no money. What is my accessibility to any of these closers models? At some scale I have to pay money. That makes it a non-starter and stuff. And there's also the control thing. I strongly believe if you want human aligned stuff, you want all humans to give feedback. And you want all humans to have access to that technology in the first place. And I actually have seen, living in New York, whenever I come to Silicon Valley, I see a different cultural bubble. Like all the friends I hang out with talk about some random thing like Dyson Spheres or whatever, that's a thing. And most of the world doesn't know or care about any of this stuff. It's definitely a bubble and bubbles can form very easily. And when you make a lot of decisions because you're in a bubble, they're probably not globally optimal decisions. So I think open source, the distribution of open source powers a certain kind of non-falsifiability that I think is very important. I think on the open source models, like it's going great in the fact that LoRa I think came out of the necessity of open source models needing to be fine-tunable in some way. Yeah, and I think DPO also came out of the academic open source side of things. So do any of the closed source labs, did any of them already have LoRa or DPO internally? Maybe, but that does not advance humanity in any way. It advances some companies probability of doing the winner takes all that I talked about earlier in the podcast.Open Source and TrustI don't know, it just feels fundamentally good. Like when people try to, you know, people are like, well, what are the ways in which it is not okay? I find most of these arguments, and this might be a little controversial, but I find a lot of arguments based on whether closed source models are safer or open source models are safer very much related to what kind of culture they grew up in, what kind of society they grew up in. If they grew up in a society that they trusted, then I think they take the closed source argument. And if they grew up in a society that they couldn't trust, where the norm was that you didn't trust your government, obviously it's corrupt or whatever, then I think the open source argument is what they take. I think there's a deep connection to like people's innate biases from their childhood and their trust in society and governmental aspects that push them towards one opinion or the other. And I'm definitely in the camp of open source is definitely going to actually have better outcomes for society. Closed source to me just means that centralization of power, which, you know, is really hard to trust. So I think it's going well
Happy leap year day everyone, very excited to bring you a special once-in-a-4 year edition of ThursdAI
We're writing this one day after the monster release of OpenAI's Sora and Gemini 1.5. We covered this on ‘s ThursdAI space, so head over there for our takes.IRL: We're ONE WEEK away from Latent Space: Final Frontiers, the second edition and anniversary of our first ever Latent Space event! Also: join us on June 25-27 for the biggest AI Engineer conference of the year!Online: All three Discord clubs are thriving. Join us every Wednesday/Friday!Almost 12 years ago, while working at Spotify, Erik Bernhardsson built one of the first open source vector databases, Annoy, based on ANN search. He also built Luigi, one of the predecessors to Airflow, which helps data teams orchestrate and execute data-intensive and long-running jobs. Surprisingly, he didn't start yet another vector database company, but instead in 2021 founded Modal, the “high-performance cloud for developers”. In 2022 they opened doors to developers after their seed round, and in 2023 announced their GA with a $16m Series A.More importantly, they have won fans among both household names like Ramp, Scale AI, Substack, and Cohere, and newer startups like (upcoming guest!) Suno.ai and individual hackers (Modal was the top tool of choice in the Vercel AI Accelerator):We've covered the nuances of GPU workloads, and how we need new developer tooling and runtimes for them (see our episodes with Chris Lattner of Modular and George Hotz of tiny to start). In this episode, we run through the major limitations of the actual infrastructure behind the clouds that run these models, and how Erik envisions the “postmodern data stack”. In his 2021 blog post “Software infrastructure 2.0: a wishlist”, Erik had “Truly serverless” as one of his points:* The word cluster is an anachronism to an end-user in the cloud! I'm already running things in the cloud where there's elastic resources available at any time. Why do I have to think about the underlying pool of resources? Just maintain it for me.* I don't ever want to provision anything in advance of load.* I don't want to pay for idle resources. Just let me pay for whatever resources I'm actually using.* Serverless doesn't mean it's a burstable VM that saves its instance state to disk during periods of idle.Swyx called this Self Provisioning Runtimes back in the day. Modal doesn't put you in YAML hell, preferring to colocate infra provisioning right next to the code that utilizes it, so you can just add GPU (and disk, and retries…):After 3 years, we finally have a big market push for this: running inference on generative models is going to be the killer app for serverless, for a few reasons:* AI models are stateless: even in conversational interfaces, each message generation is a fully-contained request to the LLM. There's no knowledge that is stored in the model itself between messages, which means that tear down / spin up of resources doesn't create any headaches with maintaining state.* Token-based pricing is better aligned with serverless infrastructure than fixed monthly costs of traditional software.* GPU scarcity makes it really expensive to have reserved instances that are available to you 24/7. It's much more convenient to build with a serverless-like infrastructure.In the episode we covered a lot more topics like maximizing GPU utilization, why Oracle Cloud rocks, and how Erik has never owned a TV in his life. Enjoy!Show Notes* Modal* ErikBot* Erik's Blog* Software Infra 2.0 Wishlist* Luigi* Annoy* Hetzner* CoreWeave* Cloudflare FaaS* Poolside AI* Modular Inference EngineChapters* [00:00:00] Introductions* [00:02:00] Erik's OSS work at Spotify: Annoy and Luigi* [00:06:22] Starting Modal* [00:07:54] Vision for a "postmodern data stack"* [00:10:43] Solving container cold start problems* [00:12:57] Designing Modal's Python SDK* [00:15:18] Self-Revisioning Runtime* [00:19:14] Truly Serverless Infrastructure* [00:20:52] Beyond model inference* [00:22:09] Tricks to maximize GPU utilization* [00:26:27] Differences in AI and data science workloads* [00:28:08] Modal vs Replicate vs Modular and lessons from Heroku's "graduation problem"* [00:34:12] Creating Erik's clone "ErikBot"* [00:37:43] Enabling massive parallelism across thousands of GPUs* [00:39:45] The Modal Sandbox for agents* [00:43:51] Thoughts on the AI Inference War* [00:49:18] Erik's best tweets* [00:51:57] Why buying hardware is a waste of money* [00:54:18] Erik's competitive programming backgrounds* [00:59:02] Why does Sweden have the best Counter Strike players?* [00:59:53] Never owning a car or TV* [01:00:21] Advice for infrastructure startupsTranscriptAlessio [00:00:00]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO-in-Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI.Swyx [00:00:14]: Hey, and today we have in the studio Erik Bernhardsson from Modal. Welcome.Erik [00:00:19]: Hi. It's awesome being here.Swyx [00:00:20]: Yeah. Awesome seeing you in person. I've seen you online for a number of years as you were building on Modal and I think you're just making a San Francisco trip just to see people here, right? I've been to like two Modal events in San Francisco here.Erik [00:00:34]: Yeah, that's right. We're based in New York, so I figured sometimes I have to come out to capital of AI and make a presence.Swyx [00:00:40]: What do you think is the pros and cons of building in New York?Erik [00:00:45]: I mean, I never built anything elsewhere. I lived in New York the last 12 years. I love the city. Obviously, there's a lot more stuff going on here and there's a lot more customers and that's why I'm out here. I do feel like for me, where I am in life, I'm a very boring person. I kind of work hard and then I go home and hang out with my kids. I don't have time to go to events and meetups and stuff anyway. In that sense, New York is kind of nice. I walk to work every morning. It's like five minutes away from my apartment. It's very time efficient in that sense. Yeah.Swyx [00:01:10]: Yeah. It's also a good life. So we'll do a brief bio and then we'll talk about anything else that people should know about you. Actually, I was surprised to find out you're from Sweden. You went to college in KTH and your master's was in implementing a scalable music recommender system. Yeah.Erik [00:01:27]: I had no idea. Yeah. So I actually studied physics, but I grew up coding and I did a lot of programming competition and then as I was thinking about graduating, I got in touch with an obscure music streaming startup called Spotify, which was then like 30 people. And for some reason, I convinced them, why don't I just come and write a master's thesis with you and I'll do some cool collaborative filtering, despite not knowing anything about collaborative filtering really. But no one knew anything back then. So I spent six months at Spotify basically building a prototype of a music recommendation system and then turned that into a master's thesis. And then later when I graduated, I joined Spotify full time.Swyx [00:02:00]: So that was the start of your data career. You also wrote a couple of popular open source tooling while you were there. Is that correct?Erik [00:02:09]: No, that's right. I mean, I was at Spotify for seven years, so this is a long stint. And Spotify was a wild place early on and I mean, data space is also a wild place. I mean, it was like Hadoop cluster in the like foosball room on the floor. It was a lot of crude, like very basic infrastructure and I didn't know anything about it. And like I was hired to kind of figure out data stuff. And I started hacking on a recommendation system and then, you know, got sidetracked in a bunch of other stuff. I fixed a bunch of reporting things and set up A-B testing and started doing like business analytics and later got back to music recommendation system. And a lot of the infrastructure didn't really exist. Like there was like Hadoop back then, which is kind of bad and I don't miss it. But I spent a lot of time with that. As a part of that, I ended up building a workflow engine called Luigi, which is like briefly like somewhat like widely ended up being used by a bunch of companies. Sort of like, you know, kind of like Airflow, but like before Airflow. I think it did some things better, some things worse. I also built a vector database called Annoy, which is like for a while, it was actually quite widely used. In 2012, so it was like way before like all this like vector database stuff ended up happening. And funny enough, I was actually obsessed with like vectors back then. Like I was like, this is going to be huge. Like just give it like a few years. I didn't know it was going to take like nine years and then there's going to suddenly be like 20 startups doing vector databases in one year. So it did happen. In that sense, I was right. I'm glad I didn't start a startup in the vector database space. I would have started way too early. But yeah, that was, yeah, it was a fun seven years as part of it. It was a great culture, a great company.Swyx [00:03:32]: Yeah. Just to take a quick tangent on this vector database thing, because we probably won't revisit it but like, has anything architecturally changed in the last nine years?Erik [00:03:41]: I'm actually not following it like super closely. I think, you know, some of the best algorithms are still the same as like hierarchical navigable small world.Swyx [00:03:51]: Yeah. HNSW.Erik [00:03:52]: Exactly. I think now there's like product quantization, there's like some other stuff that I haven't really followed super closely. I mean, obviously, like back then it was like, you know, it's always like very simple. It's like a C++ library with Python bindings and you could mmap big files and into memory and like they had some lookups. I used like this kind of recursive, like hyperspace splitting strategy, which is not that good, but it sort of was good enough at that time. But I think a lot of like HNSW is still like what people generally use. Now of course, like databases are much better in the sense like to support like inserts and updates and stuff like that. I know I never supported that. Yeah, it's sort of exciting to finally see like vector databases becoming a thing.Swyx [00:04:30]: Yeah. Yeah. And then maybe one takeaway on most interesting lesson from Daniel Ek?Erik [00:04:36]: I mean, I think Daniel Ek, you know, he started Spotify very young. Like he was like 25, something like that. And that was like a good lesson. But like he, in a way, like I think he was a very good leader. Like there was never anything like, no scandals or like no, he wasn't very eccentric at all. It was just kind of like very like level headed, like just like ran the company very well, like never made any like obvious mistakes or I think it was like a few bets that maybe like in hindsight were like a little, you know, like took us, you know, too far in one direction or another. But overall, I mean, I think he was a great CEO, like definitely, you know, up there, like generational CEO, at least for like Swedish startups.Swyx [00:05:09]: Yeah, yeah, for sure. Okay, we should probably move to make our way towards Modal. So then you spent six years as CTO of Better. You were an early engineer and then you scaled up to like 300 engineers.Erik [00:05:21]: I joined as a CTO when there was like no tech team. And yeah, that was a wild chapter in my life. Like the company did very well for a while. And then like during the pandemic, yeah, it was kind of a weird story, but yeah, it kind of collapsed.Swyx [00:05:32]: Yeah, laid off people poorly.Erik [00:05:34]: Yeah, yeah. It was like a bunch of stories. Yeah. I mean, the company like grew from like 10 people when I joined at 10,000, now it's back to a thousand. But yeah, they actually went public a few months ago, kind of crazy. They're still around, like, you know, they're still, you know, doing stuff. So yeah, very kind of interesting six years of my life for non-technical reasons, like I managed like three, four hundred, but yeah, like learning a lot of that, like recruiting. I spent all my time recruiting and stuff like that. And so managing at scale, it's like nice, like now in a way, like when I'm building my own startup. It's actually something I like, don't feel nervous about at all. Like I've managed a scale, like I feel like I can do it again. It's like very different things that I'm nervous about as a startup founder. But yeah, I started Modal three years ago after sort of, after leaving Better, I took a little bit of time off during the pandemic and, but yeah, pretty quickly I was like, I got to build something. I just want to, you know. Yeah. And then yeah, Modal took form in my head, took shape.Swyx [00:06:22]: And as far as I understand, and maybe we can sort of trade off questions. So the quick history is started Modal in 2021, got your seed with Sarah from Amplify in 2022. You just announced your Series A with Redpoint. That's right. And that brings us up to mostly today. Yeah. Most people, I think, were expecting you to build for the data space.Erik: But it is the data space.Swyx:: When I think of data space, I come from like, you know, Snowflake, BigQuery, you know, Fivetran, Nearby, that kind of stuff. And what Modal became is more general purpose than that. Yeah.Erik [00:06:53]: Yeah. I don't know. It was like fun. I actually ran into like Edo Liberty, the CEO of Pinecone, like a few weeks ago. And he was like, I was so afraid you were building a vector database. No, I started Modal because, you know, like in a way, like I work with data, like throughout my most of my career, like every different part of the stack, right? Like I thought everything like business analytics to like deep learning, you know, like building, you know, training neural networks, the scale, like everything in between. And so one of the thoughts, like, and one of the observations I had when I started Modal or like why I started was like, I just wanted to make, build better tools for data teams. And like very, like sort of abstract thing, but like, I find that the data stack is, you know, full of like point solutions that don't integrate well. And still, when you look at like data teams today, you know, like every startup ends up building their own internal Kubernetes wrapper or whatever. And you know, all the different data engineers and machine learning engineers end up kind of struggling with the same things. So I started thinking about like, how do I build a new data stack, which is kind of a megalomaniac project, like, because you kind of want to like throw out everything and start over.Swyx [00:07:54]: It's almost a modern data stack.Erik [00:07:55]: Yeah, like a postmodern data stack. And so I started thinking about that. And a lot of it came from like, like more focused on like the human side of like, how do I make data teams more productive? And like, what is the technology tools that they need? And like, you know, drew out a lot of charts of like, how the data stack looks, you know, what are different components. And it shows actually very interesting, like workflow scheduling, because it kind of sits in like a nice sort of, you know, it's like a hub in the graph of like data products. But it was kind of hard to like, kind of do that in a vacuum, and also to monetize it to some extent. I got very interested in like the layers below at some point. And like, at the end of the day, like most people have code to have to run somewhere. So I think about like, okay, well, how do you make that nice? Like how do you make that? And in particular, like the thing I always like thought about, like developer productivity is like, I think the best way to measure developer productivity is like in terms of the feedback loops, like how quickly when you iterate, like when you write code, like how quickly can you get feedback. And at the innermost loop, it's like writing code and then running it. And like, as soon as you start working with the cloud, like it's like takes minutes suddenly, because you have to build a Docker container and push it to the cloud and like run it, you know. So that was like the initial focus for me was like, I just want to solve that problem. Like I want to, you know, build something less, you run things in the cloud and like retain the sort of, you know, the joy of productivity as when you're running things locally. And in particular, I was quite focused on data teams, because I think they had a couple unique needs that wasn't well served by the infrastructure at that time, or like still is in like, in particular, like Kubernetes, I feel like it's like kind of worked okay for back end teams, but not so well for data teams. And very quickly, I got sucked into like a very deep like rabbit hole of like...Swyx [00:09:24]: Not well for data teams because of burstiness. Yeah, for sure.Erik [00:09:26]: So like burstiness is like one thing, right? Like, you know, like you often have this like fan out, you want to like apply some function over very large data sets. Another thing tends to be like hardware requirements, like you need like GPUs and like, I've seen this in many companies, like you go, you know, data scientists go to a platform team and they're like, can we add GPUs to the Kubernetes? And they're like, no, like, that's, you know, complex, and we're not gonna, so like just getting GPU access. And then like, I mean, I also like data code, like frankly, or like machine learning code like tends to be like, super annoying in terms of like environments, like you end up having like a lot of like custom, like containers and like environment conflicts. And like, it's very hard to set up like a unified container that like can serve like a data scientist, because like, there's always like packages that break. And so I think there's a lot of different reasons why the technology wasn't well suited for back end. And I think the attitude at that time is often like, you know, like you had friction between the data team and the platform team, like, well, it works for the back end stuff, you know, why don't you just like, you know, make it work. But like, I actually felt like data teams, you know, or at this point now, like there's so much, so many people working with data, and like they, to some extent, like deserve their own tools and their own tool chains, and like optimizing for that is not something people have done. So that's, that's sort of like very abstract philosophical reason why I started Model. And then, and then I got sucked into this like rabbit hole of like container cold start and, you know, like whatever, Linux, page cache, you know, file system optimizations.Swyx [00:10:43]: Yeah, tell people, I think the first time I met you, I think you told me some numbers, but I don't remember, like, what are the main achievements that you were unhappy with the status quo? And then you built your own container stack?Erik [00:10:52]: Yeah, I mean, like, in particular, it was like, in order to have that loop, right? You want to be able to start, like take code on your laptop, whatever, and like run in the cloud very quickly, and like running in custom containers, and maybe like spin up like 100 containers, 1000, you know, things like that. And so container cold start was the initial like, from like a developer productivity point of view, it was like, really, what I was focusing on is, I want to take code, I want to stick it in container, I want to execute in the cloud, and like, you know, make it feel like fast. And when you look at like, how Docker works, for instance, like Docker, you have this like, fairly convoluted, like very resource inefficient way, they, you know, you build a container, you upload the whole container, and then you download it, and you run it. And Kubernetes is also like, not very fast at like starting containers. So like, I started kind of like, you know, going a layer deeper, like Docker is actually like, you know, there's like a couple of different primitives, but like a lower level primitive is run C, which is like a container runner. And I was like, what if I just take the container runner, like run C, and I point it to like my own root file system, and then I built like my own virtual file system that exposes files over a network instead. And that was like the sort of very crude version of model, it's like now I can actually start containers very quickly, because it turns out like when you start a Docker container, like, first of all, like most Docker images are like several gigabytes, and like 99% of that is never going to be consumed, like there's a bunch of like, you know, like timezone information for like Uzbekistan, like no one's going to read it. And then there's a very high overlap between the files are going to be read, there's going to be like lib torch or whatever, like it's going to be read. So you can also cache it very well. So that was like the first sort of stuff we started working on was like, let's build this like container file system. And you know, coupled with like, you know, just using run C directly. And that actually enabled us to like, get to this point of like, you write code, and then you can launch it in the cloud within like a second or two, like something like that. And you know, there's been many optimizations since then, but that was sort of starting point.Alessio [00:12:33]: Can we talk about the developer experience as well, I think one of the magic things about Modal is at the very basic layers, like a Python function decorator, it's just like stub and whatnot. But then you also have a way to define a full container, what were kind of the design decisions that went into it? Where did you start? How easy did you want it to be? And then maybe how much complexity did you then add on to make sure that every use case fit?Erik [00:12:57]: I mean, Modal, I almost feel like it's like almost like two products kind of glued together. Like there's like the low level like container runtime, like file system, all that stuff like in Rust. And then there's like the Python SDK, right? Like how do you express applications? And I think, I mean, Swix, like I think your blog was like the self-provisioning runtime was like, to me, always like to sort of, for me, like an eye-opening thing. It's like, so I didn't think about like...Swyx [00:13:15]: You wrote your post four months before me. Yeah? The software 2.0, Infra 2.0. Yeah.Erik [00:13:19]: Well, I don't know, like convergence of minds. I guess we were like both thinking. Maybe you put, I think, better words than like, you know, maybe something I was like thinking about for a long time. Yeah.Swyx [00:13:29]: And I can tell you how I was thinking about it on my end, but I want to hear you say it.Erik [00:13:32]: Yeah, yeah, I would love to. So to me, like what I always wanted to build was like, I don't know, like, I don't know if you use like Pulumi. Like Pulumi is like nice, like in the sense, like it's like Pulumi is like you describe infrastructure in code, right? And to me, that was like so nice. Like finally I can like, you know, put a for loop that creates S3 buckets or whatever. And I think like Modal sort of goes one step further in the sense that like, what if you also put the app code inside the infrastructure code and like glue it all together and then like you only have one single place that defines everything and it's all programmable. You don't have any config files. Like Modal has like zero config. There's no config. It's all code. And so that was like the goal that I wanted, like part of that. And then the other part was like, I often find that so much of like my time was spent on like the plumbing between containers. And so my thing was like, well, if I just build this like Python SDK and make it possible to like bridge like different containers, just like a function call, like, and I can say, oh, this function runs in this container and this other function runs in this container and I can just call it just like a normal function, then, you know, I can build these applications that may span a lot of different environments. Maybe they fan out, start other containers, but it's all just like inside Python. You just like have this beautiful kind of nice like DSL almost for like, you know, how to control infrastructure in the cloud. So that was sort of like how we ended up with the Python SDK as it is, which is still evolving all the time, by the way. We keep changing syntax quite a lot because I think it's still somewhat exploratory, but we're starting to converge on something that feels like reasonably good now.Swyx [00:14:54]: Yeah. And along the way you, with this expressiveness, you enabled the ability to, for example, attach a GPU to a function. Totally.Erik [00:15:02]: Yeah. It's like you just like say, you know, on the function decorator, you're like GPU equals, you know, A100 and then or like GPU equals, you know, A10 or T4 or something like that. And then you get that GPU and like, you know, you just run the code and it runs like you don't have to, you know, go through hoops to, you know, start an EC2 instance or whatever.Swyx [00:15:18]: Yeah. So it's all code. Yeah. So one of the reasons I wrote Self-Revisioning Runtimes was I was working at AWS and we had AWS CDK, which is kind of like, you know, the Amazon basics blew me. Yeah, totally. And then, and then like it creates, it compiles the cloud formation. Yeah. And then on the other side, you have to like get all the config stuff and then put it into your application code and make sure that they line up. So then you're writing code to define your infrastructure, then you're writing code to define your application. And I was just like, this is like obvious that it's going to converge, right? Yeah, totally.Erik [00:15:48]: But isn't there like, it might be wrong, but like, was it like SAM or Chalice or one of those? Like, isn't that like an AWS thing that where actually they kind of did that? I feel like there's like one.Swyx [00:15:57]: SAM. Yeah. Still very clunky. It's not, not as elegant as modal.Erik [00:16:03]: I love AWS for like the stuff it's built, you know, like historically in order for me to like, you know, what it enables me to build, but like AWS is always like struggle with developer experience.Swyx [00:16:11]: I mean, they have to not break things.Erik [00:16:15]: Yeah. Yeah. And totally. And they have to build products for a very wide range of use cases. And I think that's hard.Swyx [00:16:21]: Yeah. Yeah. So it's, it's easier to design for. Yeah. So anyway, I was, I was pretty convinced that this, this would happen. I wrote, wrote that thing. And then, you know, I imagine my surprise that you guys had it on your landing page at some point. I think, I think Akshad was just like, just throw that in there.Erik [00:16:34]: Did you trademark it?Swyx [00:16:35]: No, I didn't. But I definitely got sent a few pitch decks with my post on there and it was like really interesting. This is my first time like kind of putting a name to a phenomenon. And I think this is a useful skill for people to just communicate what they're trying to do.Erik [00:16:48]: Yeah. No, I think it's a beautiful concept.Swyx [00:16:50]: Yeah. Yeah. Yeah. But I mean, obviously you implemented it. What became more clear in your explanation today is that actually you're not that tied to Python.Erik [00:16:57]: No. I mean, I, I think that all the like lower level stuff is, you know, just running containers and like scheduling things and, you know, serving container data and stuff. So like one of the benefits of data teams is obviously like they're all like using Python, right? And so that made it a lot easier. I think, you know, if we had focused on other workloads, like, you know, for various reasons, we've like been kind of like half thinking about like CI or like things like that. But like, in a way that's like harder because like you also, then you have to be like, you know, multiple SDKs, whereas, you know, focusing on data teams, you can only, you know, Python like covers like 95% of all teams. That made it a lot easier. But like, I mean, like definitely like in the future, we're going to have others support, like supporting other languages. JavaScript for sure is the obvious next language. But you know, who knows, like, you know, Rust, Go, R, whatever, PHP, Haskell, I don't know.Swyx [00:17:42]: You know, I think for me, I actually am a person who like kind of liked the idea of programming language advancements being improvements in developer experience. But all I saw out of the academic sort of PLT type people is just type level improvements. And I always think like, for me, like one of the core reasons for self-provisioning runtimes and then why I like Modal is like, this is actually a productivity increase, right? Like, it's a language level thing, you know, you managed to stick it on top of an existing language, but it is your own language, a DSL on top of Python. And so language level increase on the order of like automatic memory management. You know, you could sort of make that analogy that like, maybe you lose some level of control, but most of the time you're okay with whatever Modal gives you. And like, that's fine. Yeah.Erik [00:18:26]: Yeah. Yeah. I mean, that's how I look at about it too. Like, you know, you look at developer productivity over the last number of decades, like, you know, it's come in like small increments of like, you know, dynamic typing or like is like one thing because not suddenly like for a lot of use cases, you don't need to care about type systems or better compiler technology or like, you know, the cloud or like, you know, relational databases. And, you know, I think, you know, you look at like that, you know, history, it's a steadily, you know, it's like, you know, you look at the developers have been getting like probably 10X more productive every decade for the last four decades or something that was kind of crazy. Like on an exponential scale, we're talking about 10X or is there a 10,000X like, you know, improvement in developer productivity. What we can build today, you know, is arguably like, you know, a fraction of the cost of what it took to build it in the eighties. Maybe it wasn't even possible in the eighties. So that to me, like, that's like so fascinating. I think it's going to keep going for the next few decades. Yeah.Alessio [00:19:14]: Yeah. Another big thing in the infra 2.0 wishlist was truly serverless infrastructure. The other on your landing page, you called them native cloud functions, something like that. I think the issue I've seen with serverless has always been people really wanted it to be stateful, even though stateless was much easier to do. And I think now with AI, most model inference is like stateless, you know, outside of the context. So that's kind of made it a lot easier to just put a model, like an AI model on model to run. How do you think about how that changes how people think about infrastructure too? Yeah.Erik [00:19:48]: I mean, I think model is definitely going in the direction of like doing more stateful things and working with data and like high IO use cases. I do think one like massive serendipitous thing that happened like halfway, you know, a year and a half into like the, you know, building model was like Gen AI started exploding and the IO pattern of Gen AI is like fits the serverless model like so well, because it's like, you know, you send this tiny piece of information, like a prompt, right, or something like that. And then like you have this GPU that does like trillions of flops, and then it sends back like a tiny piece of information, right. And that turns out to be something like, you know, if you can get serverless working with GPU, that just like works really well, right. So I think from that point of view, like serverless always to me felt like a little bit of like a solution looking for a problem. I don't actually like don't think like backend is like the problem that needs to serve it or like not as much. But I look at data and in particular, like things like Gen AI, like model inference, like it's like clearly a good fit. So I think that is, you know, to a large extent explains like why we saw, you know, the initial sort of like killer app for model being model inference, which actually wasn't like necessarily what we're focused on. But that's where we've seen like by far the most usage. Yeah.Swyx [00:20:52]: And this was before you started offering like fine tuning of language models, it was mostly stable diffusion. Yeah.Erik [00:20:59]: Yeah. I mean, like model, like I always built it to be a very general purpose compute platform, like something where you can run everything. And I used to call model like a better Kubernetes for data team for a long time. What we realized was like, yeah, that's like, you know, a year and a half in, like we barely had any users or any revenue. And like we were like, well, maybe we should look at like some use case, trying to think of use case. And that was around the same time stable diffusion came out. And the beauty of model is like you can run almost anything on model, right? Like model inference turned out to be like the place where we found initially, well, like clearly this has like 10x like better agronomics than anything else. But we're also like, you know, going back to my original vision, like we're thinking a lot about, you know, now, okay, now we do inference really well. Like what about training? What about fine tuning? What about, you know, end-to-end lifecycle deployment? What about data pre-processing? What about, you know, I don't know, real-time streaming? What about, you know, large data munging, like there's just data observability. I think there's so many things, like kind of going back to what I said about like redefining the data stack, like starting with the foundation of compute. Like one of the exciting things about model is like we've sort of, you know, we've been working on that for three years and it's maturing, but like this is so many things you can do like with just like a better compute primitive and also go up to stack and like do all this other stuff on top of it.Alessio [00:22:09]: How do you think about or rather like I would love to learn more about the underlying infrastructure and like how you make that happen because with fine tuning and training, it's a static memory. Like you exactly know what you're going to load in memory one and it's kind of like a set amount of compute versus inference, just like data is like very bursty. How do you make batches work with a serverless developer experience? You know, like what are like some fun technical challenge you solve to make sure you get max utilization on these GPUs? What we hear from people is like, we have GPUs, but we can really only get like, you know, 30, 40, 50% maybe utilization. What's some of the fun stuff you're working on to get a higher number there?Erik [00:22:48]: Yeah, I think on the inference side, like that's where we like, you know, like from a cost perspective, like utilization perspective, we've seen, you know, like very good numbers and in particular, like it's our ability to start containers and stop containers very quickly. And that means that we can auto scale extremely fast and scale down very quickly, which means like we can always adjust the sort of capacity, the number of GPUs running to the exact traffic volume. And so in many cases, like that actually leads to a sort of interesting thing where like we obviously run our things on like the public cloud, like AWS GCP, we run on Oracle, but in many cases, like users who do inference on those platforms or those clouds, even though we charge a slightly higher price per GPU hour, a lot of users like moving their large scale inference use cases to model, they end up saving a lot of money because we only charge for like with the time the GPU is actually running. And that's a hard problem, right? Like, you know, if you have to constantly adjust the number of machines, if you have to start containers, stop containers, like that's a very hard problem. Starting containers quickly is a very difficult thing. I mentioned we had to build our own file system for this. We also, you know, built our own container scheduler for that. We've implemented recently CPU memory checkpointing so we can take running containers and snapshot the entire CPU, like including registers and everything, and restore it from that point, which means we can restore it from an initialized state. We're looking at GPU checkpointing next, it's like a very interesting thing. So I think with inference stuff, that's where serverless really shines because you can drive, you know, you can push the frontier of latency versus utilization quite substantially, you know, which either ends up being a latency advantage or a cost advantage or both, right? On training, it's probably arguably like less of an advantage doing serverless, frankly, because you know, you can just like spin up a bunch of machines and try to satisfy, like, you know, train as much as you can on each machine. For that area, like we've seen, like, you know, arguably like less usage, like for modal, but there are always like some interesting use case. Like we do have a couple of customers, like RAM, for instance, like they do fine tuning with modal and they basically like one of the patterns they have is like very bursty type fine tuning where they fine tune 100 models in parallel. And that's like a separate thing that modal does really well, right? Like you can, we can start up 100 containers very quickly, run a fine tuning training job on each one of them for that only runs for, I don't know, 10, 20 minutes. And then, you know, you can do hyper parameter tuning in that sense, like just pick the best model and things like that. So there are like interesting training. I think when you get to like training, like very large foundational models, that's a use case we don't support super well, because that's very high IO, you know, you need to have like infinite band and all these things. And those are things we haven't supported yet and might take a while to get to that. So that's like probably like an area where like we're relatively weak in. Yeah.Alessio [00:25:12]: Have you cared at all about lower level model optimization? There's other cloud providers that do custom kernels to get better performance or are you just given that you're not just an AI compute company? Yeah.Erik [00:25:24]: I mean, I think like we want to support like a generic, like general workloads in a sense that like we want users to give us a container essentially or a code or code. And then we want to run that. So I think, you know, we benefit from those things in the sense that like we can tell our users, you know, to use those things. But I don't know if we want to like poke into users containers and like do those things automatically. That's sort of, I think a little bit tricky from the outside to do, because we want to be able to take like arbitrary code and execute it. But certainly like, you know, we can tell our users to like use those things. Yeah.Swyx [00:25:53]: I may have betrayed my own biases because I don't really think about modal as for data teams anymore. I think you started, I think you're much more for AI engineers. My favorite anecdotes, which I think, you know, but I don't know if you directly experienced it. I went to the Vercel AI Accelerator, which you supported. And in the Vercel AI Accelerator, a bunch of startups gave like free credits and like signups and talks and all that stuff. The only ones that stuck are the ones that actually appealed to engineers. And the top usage, the top tool used by far was modal.Erik [00:26:24]: That's awesome.Swyx [00:26:25]: For people building with AI apps. Yeah.Erik [00:26:27]: I mean, it might be also like a terminology question, like the AI versus data, right? Like I've, you know, maybe I'm just like old and jaded, but like, I've seen so many like different titles, like for a while it was like, you know, I was a data scientist and a machine learning engineer and then, you know, there was like analytics engineers and there was like an AI engineer, you know? So like, to me, it's like, I just like in my head, that's to me just like, just data, like, or like engineer, you know, like I don't really, so that's why I've been like, you know, just calling it data teams. But like, of course, like, you know, AI is like, you know, like such a massive fraction of our like workloads.Swyx [00:26:59]: It's a different Venn diagram of things you do, right? So the stuff that you're talking about where you need like infinite bands for like highly parallel training, that's not, that's more of the ML engineer, that's more of the research scientist and less of the AI engineer, which is more sort of trying to put, work at the application.Erik [00:27:16]: Yeah. I mean, to be fair to it, like we have a lot of users that are like doing stuff that I don't think fits neatly into like AI. Like we have a lot of people using like modal for web scraping, like it's kind of nice. You can just like, you know, fire up like a hundred or a thousand containers running Chromium and just like render a bunch of webpages and it takes, you know, whatever. Or like, you know, protein folding is that, I mean, maybe that's, I don't know, like, but like, you know, we have a bunch of users doing that or, or like, you know, in terms of, in the realm of biotech, like sequence alignment, like people using, or like a couple of people using like modal to run like large, like mixed integer programming problems, like, you know, using Gurobi or like things like that. So video processing is another thing that keeps coming up, like, you know, let's say you have like petabytes of video and you want to just like transcode it, like, or you can fire up a lot of containers and just run FFmpeg or like, so there are those things too. Like, I mean, like that being said, like AI is by far our biggest use case, but you know, like, again, like modal is kind of general purpose in that sense.Swyx [00:28:08]: Yeah. Well, maybe I'll stick to the stable diffusion thing and then we'll move on to the other use cases for AI that you want to highlight. The other big player in my mind is replicate. Yeah. In this, in this era, they're much more, I guess, custom built for that purpose, whereas you're more general purpose. How do you position yourself with them? Are they just for like different audiences or are you just heads on competing?Erik [00:28:29]: I think there's like a tiny sliver of the Venn diagram where we're competitive. And then like 99% of the area we're not competitive. I mean, I think for people who, if you look at like front-end engineers, I think that's where like really they found good fit is like, you know, people who built some cool web app and they want some sort of AI capability and they just, you know, an off the shelf model is like perfect for them. That's like, I like use replicate. That's great. I think where we shine is like custom models or custom workflows, you know, running things at very large scale. We need to care about utilization, care about costs. You know, we have much lower prices because we spend a lot more time optimizing our infrastructure, you know, and that's where we're competitive, right? Like, you know, and you look at some of the use cases, like Suno is a big user, like they're running like large scale, like AI. Oh, we're talking with Mikey.Swyx [00:29:12]: Oh, that's great. Cool.Erik [00:29:14]: In a month. Yeah. So, I mean, they're, they're using model for like production infrastructure. Like they have their own like custom model, like custom code and custom weights, you know, for AI generated music, Suno.AI, you know, that, that, those are the types of use cases that we like, you know, things that are like very custom or like, it's like, you know, and those are the things like it's very hard to run and replicate, right? And that's fine. Like I think they, they focus on a very different part of the stack in that sense.Swyx [00:29:35]: And then the other company pattern that I pattern match you to is Modular. I don't know.Erik [00:29:40]: Because of the names?Swyx [00:29:41]: No, no. Wow. No, but yeah, yes, the name is very similar. I think there's something that might be insightful there from a linguistics point of view. Oh no, they have Mojo, the sort of Python SDK. And they have the Modular Inference Engine, which is their sort of their cloud stack, their sort of compute inference stack. I don't know if anyone's made that comparison to you before, but like I see you evolving a little bit in parallel there.Erik [00:30:01]: No, I mean, maybe. Yeah. Like it's not a company I'm like super like familiar, like, I mean, I know the basics, but like, I guess they're similar in the sense like they want to like do a lot of, you know, they have sort of big picture vision.Swyx [00:30:12]: Yes. They also want to build very general purpose. Yeah. So they're marketing themselves as like, if you want to do off the shelf stuff, go out, go somewhere else. If you want to do custom stuff, we're the best place to do it. Yeah. Yeah. There is some overlap there. There's not overlap in the sense that you are a closed source platform. People have to host their code on you. That's true. Whereas for them, they're very insistent on not running their own cloud service. They're a box software. Yeah. They're licensed software.Erik [00:30:37]: I'm sure their VCs at some point going to force them to reconsider. No, no.Swyx [00:30:40]: Chris is very, very insistent and very convincing. So anyway, I would just make that comparison, let people make the links if they want to. But it's an interesting way to see the cloud market develop from my point of view, because I came up in this field thinking cloud is one thing, and I think your vision is like something slightly different, and I see the different takes on it.Erik [00:31:00]: Yeah. And like one thing I've, you know, like I've written a bit about it in my blog too, it's like I think of us as like a second layer of cloud provider in the sense that like I think Snowflake is like kind of a good analogy. Like Snowflake, you know, is infrastructure as a service, right? But they actually run on the like major clouds, right? And I mean, like you can like analyze this very deeply, but like one of the things I always thought about is like, why does Snowflake arbitrarily like win over Redshift? And I think Snowflake, you know, to me, one, because like, I mean, in the end, like AWS makes all the money anyway, like and like Snowflake just had the ability to like focus on like developer experience or like, you know, user experience. And to me, like really proved that you can build a cloud provider, a layer up from, you know, the traditional like public clouds. And in that layer, that's also where I would put Modal, it's like, you know, we're building a cloud provider, like we're, you know, we're like a multi-tenant environment that runs the user code. But we're also building on top of the public cloud. So I think there's a lot of room in that space, I think is very sort of interesting direction.Alessio [00:31:55]: How do you think of that compared to the traditional past history, like, you know, you had AWS, then you had Heroku, then you had Render, Railway.Erik [00:32:04]: Yeah, I mean, I think those are all like great. I think the problem that they all faced was like the graduation problem, right? Like, you know, Heroku or like, I mean, like also like Heroku, there's like a counterfactual future of like, what would have happened if Salesforce didn't buy them, right? Like, that's a sort of separate thing. But like, I think what Heroku, I think always struggled with was like, eventually companies would get big enough that you couldn't really justify running in Heroku. So they would just go and like move it to, you know, whatever AWS or, you know, in particular. And you know, that's something that keeps me up at night too, like, what does that graduation risk like look like for modal? I always think like the only way to build a successful infrastructure company in the long run in the cloud today is you have to appeal to the entire spectrum, right? Or at least like the enterprise, like you have to capture the enterprise market. But the truly good companies capture the whole spectrum, right? Like I think of companies like, I don't like Datadog or Mongo or something that were like, they both captured like the hobbyists and acquire them, but also like, you know, have very large enterprise customers. I think that arguably was like where I, in my opinion, like Heroku struggle was like, how do you maintain the customers as they get more and more advanced? I don't know what the solution is, but I think there's, you know, that's something I would have thought deeply if I was at Heroku at that time.Alessio [00:33:14]: What's the AI graduation problem? Is it, I need to fine tune the model, I need better economics, any insights from customer discussions?Erik [00:33:22]: Yeah, I mean, better economics, certainly. But although like, I would say like, even for people who like, you know, needs like thousands of GPUs, just because we can drive utilization so much better, like we, there's actually like a cost advantage of staying on modal. But yeah, I mean, certainly like, you know, and like the fact that VCs like love, you know, throwing money at least used to, you know, add companies who need it to buy GPUs. I think that didn't help the problem. And in training, I think, you know, there's less software differentiation. So in training, I think there's certainly like better economics of like buying big clusters. But I mean, my hope it's going to change, right? Like I think, you know, we're still pretty early in the cycle of like building AI infrastructure. And I think a lot of these companies over in the long run, like, you know, they're, except it may be super big ones, like, you know, on Facebook and Google, they're always going to build their own ones. But like everyone else, like some extent, you know, I think they're better off like buying platforms. And, you know, someone's going to have to build those platforms.Swyx [00:34:12]: Yeah. Cool. Let's move on to language models and just specifically that workload just to flesh it out a little bit. You already said that RAMP is like fine tuning 100 models at once simultaneously on modal. Closer to home, my favorite example is ErikBot. Maybe you want to tell that story.Erik [00:34:30]: Yeah. I mean, it was a prototype thing we built for fun, but it's pretty cool. Like we basically built this thing that hooks up to Slack. It like downloads all the Slack history and, you know, fine-tunes a model based on a person. And then you can chat with that. And so you can like, you know, clone yourself and like talk to yourself on Slack. I mean, it's like nice like demo and it's just like, I think like it's like fully contained modal. Like there's a modal app that does everything, right? Like it downloads Slack, you know, integrates with the Slack API, like downloads the stuff, the data, like just runs the fine-tuning and then like creates like dynamically an inference endpoint. And it's all like self-contained and like, you know, a few hundred lines of code. So I think it's sort of a good kind of use case for, or like it kind of demonstrates a lot of the capabilities of modal.Alessio [00:35:08]: Yeah. On a more personal side, how close did you feel ErikBot was to you?Erik [00:35:13]: It definitely captured the like the language. Yeah. I mean, I don't know, like the content, I always feel this way about like AI and it's gotten better. Like when you look at like AI output of text, like, and it's like, when you glance at it, it's like, yeah, this seems really smart, you know, but then you actually like look a little bit deeper. It's like, what does this mean?Swyx [00:35:32]: What does this person say?Erik [00:35:33]: It's like kind of vacuous, right? And that's like kind of what I felt like, you know, talking to like my clone version, like it's like says like things like the grammar is correct. Like some of the sentences make a lot of sense, but like, what are you trying to say? Like there's no content here. I don't know. I mean, it's like, I got that feeling also with chat TBT in the like early versions right now it's like better, but.Alessio [00:35:51]: That's funny. So I built this thing called small podcaster to automate a lot of our back office work, so to speak. And it's great at transcript. It's great at doing chapters. And then I was like, okay, how about you come up with a short summary? And it's like, it sounds good, but it's like, it's not even the same ballpark as like, yeah, end up writing. Right. And it's hard to see how it's going to get there.Swyx [00:36:11]: Oh, I have ideas.Erik [00:36:13]: I'm certain it's going to get there, but like, I agree with you. Right. And like, I have the same thing. I don't know if you've read like AI generated books. Like they just like kind of seem funny, right? Like there's off, right? But like you glance at it and it's like, oh, it's kind of cool. Like looks correct, but then it's like very weird when you actually read them.Swyx [00:36:30]: Yeah. Well, so for what it's worth, I think anyone can join the modal slack. Is it open to the public? Yeah, totally.Erik [00:36:35]: If you go to modal.com, there's a button in the footer.Swyx [00:36:38]: Yeah. And then you can talk to Erik Bot. And then sometimes I really like picking Erik Bot and then you answer afterwards, but then you're like, yeah, mostly correct or whatever. Any other broader lessons, you know, just broadening out from like the single use case of fine tuning, like what are you seeing people do with fine tuning or just language models on modal in general? Yeah.Erik [00:36:59]: I mean, I think language models is interesting because so many people get started with APIs and that's just, you know, they're just dominating a space in particular opening AI, right? And that's not necessarily like a place where we aim to compete. I mean, maybe at some point, but like, it's just not like a core focus for us. And I think sort of separately, it's sort of a question of like, there's economics in that long term. But like, so we tend to focus on more like the areas like around it, right? Like fine tuning, like another use case we have is a bunch of people, Ramp included, is doing batch embeddings on modal. So let's say, you know, you have like a, actually we're like writing a blog post, like we take all of Wikipedia and like parallelize embeddings in 15 minutes and produce vectors for each article. So those types of use cases, I think modal suits really well for. I think also a lot of like custom inference, like yeah, I love that.Swyx [00:37:43]: Yeah. I think you should give people an idea of the order of magnitude of parallelism, because I think people don't understand how parallel. So like, I think your classic hello world with modal is like some kind of Fibonacci function, right? Yeah, we have a bunch of different ones. Some recursive function. Yeah.Erik [00:37:59]: Yeah. I mean, like, yeah, I mean, it's like pretty easy in modal, like fan out to like, you know, at least like 100 GPUs, like in a few seconds. And you know, if you give it like a couple of minutes, like we can, you know, you can fan out to like thousands of GPUs. Like we run it relatively large scale. And yeah, we've run, you know, many thousands of GPUs at certain points when we needed, you know, big backfills or some customers had very large compute needs.Swyx [00:38:21]: Yeah. Yeah. And I mean, that's super useful for a number of things. So one of my early interactions with modal as well was with a small developer, which is my sort of coding agent. The reason I chose modal was a number of things. One, I just wanted to try it out. I just had an excuse to try it. Akshay offered to onboard me personally. But the most interesting thing was that you could have that sort of local development experience as it was running on my laptop, but then it would seamlessly translate to a cloud service or like a cloud hosted environment. And then it could fan out with concurrency controls. So I could say like, because like, you know, the number of times I hit the GPT-3 API at the time was going to be subject to the rate limit. But I wanted to fan out without worrying about that kind of stuff. With modal, I can just kind of declare that in my config and that's it. Oh, like a concurrency limit?Erik [00:39:07]: Yeah. Yeah.Swyx [00:39:09]: Yeah. There's a lot of control. And that's why it's like, yeah, this is a pretty good use case for like writing this kind of LLM application code inside of this environment that just understands fan out and rate limiting natively. You don't actually have an exposed queue system, but you have it under the hood, you know, that kind of stuff. Totally.Erik [00:39:28]: It's a self-provisioning cloud.Swyx [00:39:30]: So the last part of modal I wanted to touch on, and obviously feel free, I know you're working on new features, was the sandbox that was introduced last year. And this is something that I think was inspired by Code Interpreter. You can tell me the longer history behind that.Erik [00:39:45]: Yeah. Like we originally built it for the use case, like there was a bunch of customers who looked into code generation applications and then they came to us and asked us, is there a safe way to execute code? And yeah, we spent a lot of time on like container security. We used GeoVisor, for instance, which is a Google product that provides pretty strong isolation of code. So we built a product where you can basically like run arbitrary code inside a container and monitor its output or like get it back in a safe way. I mean, over time it's like evolved into more of like, I think the long-term direction is actually I think more interesting, which is that I think modal as a platform where like I think the core like container infrastructure we offer could actually be like, you know, unbundled from like the client SDK and offer to like other, you know, like we're talking to a couple of like other companies that want to run, you know, through their packages, like run, execute jobs on modal, like kind of programmatically. So that's actually the direction like Sandbox is going. It's like turning into more like a platform for platforms is kind of what I've been thinking about it as.Swyx [00:40:45]: Oh boy. Platform. That's the old Kubernetes line.Erik [00:40:48]: Yeah. Yeah. Yeah. But it's like, you know, like having that ability to like programmatically, you know, create containers and execute them, I think, I think is really cool. And I think it opens up a lot of interesting capabilities that are sort of separate from the like core Python SDK in modal. So I'm really excited about C. It's like one of those features that we kind of released and like, you know, then we kind of look at like what users actually build with it and people are starting to build like kind of crazy things. And then, you know, we double down on some of those things because when we see like, you know, potential new product features and so Sandbox, I think in that sense, it's like kind of in that direction. We found a lot of like interesting use cases in the direction of like platformized container runner.Swyx [00:41:27]: Can you be more specific about what you're double down on after seeing users in action?Erik [00:41:32]: I mean, we're working with like some companies that, I mean, without getting into specifics like that, need the ability to take their users code and then launch containers on modal. And it's not about security necessarily, like they just want to use modal as a back end, right? Like they may already provide like Kubernetes as a back end, Lambda as a back end, and now they want to add modal as a back end, right? And so, you know, they need a way to programmatically define jobs on behalf of their users and execute them. And so, I don't know, that's kind of abstract, but does that make sense? I totally get it.Swyx [00:42:03]: It's sort of one level of recursion to sort of be the Modal for their customers.Erik [00:42:09]: Exactly.Swyx [00:42:10]: Yeah, exactly. And Cloudflare has done this, you know, Kenton Vardar from Cloudflare, who's like the tech lead on this thing, called it sort of functions as a service as a service.Erik [00:42:17]: Yeah, that's exactly right. FaSasS.Swyx [00:42:21]: FaSasS. Yeah, like, I mean, like that, I think any base layer, second layer cloud provider like yourself, compute provider like yourself should provide, you know, it's a mark of maturity and success that people just trust you to do that. They'd rather build on top of you than compete with you. The more interesting thing for me is like, what does it mean to serve a computer like an LLM developer, rather than a human developer, right? Like, that's what a sandbox is to me, that you have to redefine modal to serve a different non-human audience.Erik [00:42:51]: Yeah. Yeah, and I think there's some really interesting people, you know, building very cool things.Swyx [00:42:55]: Yeah. So I don't have an answer, but, you know, I imagine things like, hey, the way you give feedback is different. Maybe you have to like stream errors, log errors differently. I don't really know. Yeah. Obviously, there's like safety considerations. Maybe you have an API to like restrict access to the web. Yeah. I don't think anyone would use it, but it's there if you want it.Erik [00:43:17]: Yeah.Swyx [00:43:18]: Yeah. Any other sort of design considerations? I have no idea.Erik [00:43:21]: With sandboxes?Swyx [00:43:22]: Yeah. Yeah.Erik [00:43:24]: Open-ended question here. Yeah. I mean, no, I think, yeah, the network restrictions, I think, make a lot of sense. Yeah. I mean, I think, you know, long-term, like, I think there's a lot of interesting use cases where like the LLM, in itself, can like decide, I want to install these packages and like run this thing. And like, obviously, for a lot of those use cases, like you want to have some sort of control that it doesn't like install malicious stuff and steal your secrets and things like that. But I think that's what's exciting about the sandbox primitive, is like it lets you do that in a relatively safe way.Alessio [00:43:51]: Do you have any thoughts on the inference wars? A lot of providers are just rushing to the bottom to get the lowest price per million tokens. Some of them, you know, the Sean Randomat, they're just losing money and there's like the physics of it just don't work out for them to make any money on it. How do you think about your pricing and like how much premium you can get and you can kind of command versus using lower prices as kind of like a wedge into getting there, especially once you have model instrumented? What are the tradeoffs and any thoughts on strategies that work?Erik [00:44:23]: I mean, we focus more on like custom models and custom code. And I think in that space, there's like less competition and I think we can have a pricing markup, right? Like, you know, people will always compare our prices to like, you know, the GPU power they can get elsewhere. And so how big can that markup be? Like it never can be, you know, we can never charge like 10x more, but we can certainly charge a premium. And like, you know, for that reason, like we can have pretty good margins. The LLM space is like the opposite, like the switching cost of LLMs is zero. If all you're doing is like straight up, like at least like open source, right? Like if all you're doing is like, you know, using some, you know, inference endpoint that serves an open source model and, you know, some other provider comes along and like offers a lower price, you're just going to switch, right? So I don't know, to me that reminds me a lot of like all this like 15 minute delivery wars or like, you know, like Uber versus Lyft, you know, and like maybe going back even further, like I think a lot about like sort of, you know, flip side of this is like, it's actually a positive side, which is like, I thought a lot about like fiber optics boom of like 98, 99, like the other day, or like, you know, and also like the overinvestment in GPU today. Like, like, yeah, like, you know, I don't know, like in the end, like, I don't think VCs will have the return they expected, like, you know, in these things, but guess who's going to benefit, like, you know, is the consumers, like someone's like reaping the value of this. And that's, I think an amazing flip side is that, you know, we should be very grateful, the fact that like VCs want to subsidize these things, which is, you know, like you go back to fiber optics, like there was an extreme, like overinvestment in fiber optics network in like 98. And no one made money who did that. But consumers, you know, got tremendous benefits of all the fiber optics cables that were led, you know, throughout the country in the decades after. I feel something similar abou
Catch us at Modular's ModCon next week with Chris Lattner, and join our community!Due to Bryan's very wide ranging experience in data science and AI across Blue Bottle (!), StitchFix, Weights & Biases, and now Hex Magic, this episode can be considered a two-parter.Notebooks = Chat++We've talked a lot about AI UX (in our meetups, writeups, and guest posts), and today we're excited to dive into a new old player in AI interfaces: notebooks! Depending on your background, you either Don't Like or you Like notebooks — they are the most popular example of Knuth's Literate Programming concept, basically a collection of cells; each cell can execute code, display it, and share its state with all the other cells in a notebook. They can also simply be Markdown cells to add commentary to the analysis. Notebooks have a long history but most recently became popular from iPython evolving into Project Jupyter, and a wave of notebook based startups from Observable to DeepNote and Databricks sprung up for the modern data stack.The first wave of AI applications has been very chat focused (ChatGPT, Character.ai, Perplexity, etc). Chat as a user interface has a few shortcomings, the major one being the inability to edit previous messages. We enjoyed Bryan's takes on why notebooks feel like “Chat++” and how they are building Hex Magic:* Atomic actions vs Stream of consciousness: in a chat interface, you make corrections by adding more messages to a conversation (i.e. “Can you try again by doing X instead?” or “I actually meant XYZ”). The context can easily get messy and confusing for models (and humans!) to follow. Notebooks' cell structure on the other hand allows users to go back to any previous cells and make edits without having to add new ones at the bottom. * “Airlocks” for repeatability: one of the ideas they came up with at Hex is “airlocks”, a collection of cells that depend on each other and keep each other in sync. If you have a task like “Create a summary of my customers' recent purchases”, there are many sub-tasks to be done (look up the data, sum the amounts, write the text, etc). Each sub-task will be in its own cell, and the airlock will keep them all in sync together.* Technical + Non-Technical users: previously you had to use Python / R / Julia to write notebooks code, but with models like GPT-4, natural language is usually enough. Hex is also working on lowering the barrier of entry for non-technical users into notebooks, similar to how Code Interpreter is doing the same in ChatGPT. Obviously notebooks aren't new for developers (OpenAI Cookbooks are a good example), but haven't had much adoption in less technical spheres. Some of the shortcomings of chat UIs + LLMs lowering the barrier of entry to creating code cells might make them a much more popular UX going forward.RAG = RecSys!We also talked about the LLMOps landscape and why it's an “iron mine” rather than a “gold rush”: I'll shamelessly steal [this] from a friend, Adam Azzam from Prefect. He says that [LLMOps] is more of like an iron mine than a gold mine in the sense of there is a lot of work to extract this precious, precious resource. Don't expect to just go down to the stream and do a little panning. There's a lot of work to be done. And frankly, the steps to go from this resource to something valuable is significant.Some of my favorite takeaways:* RAG as RecSys for LLMs: at its core, the goal of a RAG pipeline is finding the most relevant documents based on a task. This isn't very different from traditional recommendation system products that surface things for users. How can we apply old lessons to this new problem? Bryan cites fellow AIE Summit speaker and Latent Space Paper Club host Eugene Yan in decomposing the retrieval problem into retrieval, filtering, and scoring/ranking/ordering:As AI Engineers increasingly find that long context has tradeoffs, they will also have to relearn age old lessons that vector search is NOT all you need and a good systems not models approach is essential to scalable/debuggable RAG. Good thing Bryan has just written the first O'Reilly book about modern RecSys, eh?* Narrowing down evaluation: while “hallucination” is a easy term to throw around, the reality is more nuanced. A lot of times, model errors can be automatically fixed: is this JSON valid? If not, why? Is it just missing a closing brace? These smaller issues can be checked and fixed before returning the response to the user, which is easier than fixing the model.* Fine-tuning isn't all you need: when they first started building Magic, one of the discussions was around fine-tuning a model. In our episode with Jeremy Howard we talked about how fine-tuning leads to loss of capabilities as well. In notebooks, you are often dealing with domain-specific data (i.e. purchases, orders, wardrobe composition, household items, etc); the fact that the model understands that “items” are probably part of an “order” is really helpful. They have found that GPT-4 + 3.5-turbo were everything they needed to ship a great product rather than having to fine-tune on notebooks specifically.Definitely recommend listening to this one if you are interested in getting a better understanding of how to think about AI, data, and how we can use traditional machine learning lessons in large language models. The AI PivotFor more Bryan, don't miss his fireside chat at the AI Engineer Summit:Show Notes* Hex Magic* Bryan's new book: Building Recommendation Systems in Python and JAX* Bryan's whitepaper about MLOps* “Kitbashing in ML”, slides from his talk on building on top of foundation models* “Bayesian Statistics The Fun Way” by Will Kurt* Bryan's Twitter* “Berkeley man determined to walk every street in his city”* People:* Adam Azzam* Graham Neubig* Eugene Yan* Even OldridgeTimestamps* [00:00:00] Bryan's background* [00:02:34] Overview of Hex and the Magic product* [00:05:57] How Magic handles the complex notebook format to integrate cleanly with Hex* [00:08:37] Discussion of whether to build vs buy models - why Hex uses GPT-4 vs fine-tuning* [00:13:06] UX design for Magic with Hex's notebook format (aka “Chat++”)* [00:18:37] Expanding notebooks to less technical users* [00:23:46] The "Memex" as an exciting underexplored area - personal knowledge graph and memory augmentation* [00:27:02] What makes for good LLMops vs MLOps* [00:34:53] Building rigorous evaluators for Magic and best practices* [00:36:52] Different types of metrics for LLM evaluation beyond just end task accuracy* [00:39:19] Evaluation strategy when you don't own the core model that's being evaluated* [00:41:49] All the places you can make improvements outside of retraining the core LLM* [00:45:00] Lightning RoundTranscriptAlessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, Partner and CTO-in-Residence of Decibel Partners, and today I'm joining by Bryan Bischof. [00:00:15]Bryan: Hey, nice to meet you. [00:00:17]Alessio: So Bryan has one of the most thorough and impressive backgrounds we had on the show so far. Lead software engineer at Blue Bottle Coffee, which if you live in San Francisco, you know a lot about. And maybe you'll tell us 30 seconds on what that actually means. You worked as a data scientist at Stitch Fix, which used to be one of the premier data science teams out there. [00:00:38]Bryan: It used to be. Ouch. [00:00:39]Alessio: Well, no, no. Well, you left, you know, so how good can it still be? Then head of data science at Weights and Biases. You're also a professor at Rutgers and you're just wrapping up a new O'Reilly book as well. So a lot, a lot going on. Yeah. [00:00:52]Bryan: And currently head of AI at Hex. [00:00:54]Alessio: Let's do the Blue Bottle thing because I definitely want to hear what's the, what's that like? [00:00:58]Bryan: So I was leading data at Blue Bottle. I was the first data hire. I came in to kind of get the data warehouse in order and then see what we could build on top of it. But ultimately I mostly focused on demand forecasting, a little bit of recsys, a little bit of sort of like website optimization and analytics. But ultimately anything that you could imagine sort of like a retail company needing to do with their data, we had to do. I sort of like led that team, hired a few people, expanded it out. One interesting thing was I was part of the Nestle acquisition. So there was a period of time where we were sort of preparing for that and didn't know, which was a really interesting dynamic. Being acquired is a very not necessarily fun experience for the data team. [00:01:37]Alessio: I build a lot of internal tools for sourcing at the firm and we have a small VCs and data community of like other people doing it. And I feel like if you had a data feed into like the Blue Bottle in South Park, the Blue Bottle at the Hanahaus in Palo Alto, you can get a lot of secondhand information on the state of VC funding. [00:01:54]Bryan: Oh yeah. I feel like the real source of alpha is just bugging a Blue Bottle. [00:01:58]Alessio: Exactly. And what's your latest book about? [00:02:02]Bryan: I just wrapped up a book with a coauthor Hector Yee called Building Production Recommendation Systems. I'll give you the rest of the title because it's fun. It's in Python and JAX. And so for those of you that are like eagerly awaiting the first O'Reilly book that focuses on JAX, here you go. [00:02:17]Alessio: Awesome. And we'll chat about that later on. But let's maybe talk about Hex and Magic before. I've known Hex for a while, I've used it as a notebook provider and you've been working on a lot of amazing AI enabled experiences. So maybe run us through that. [00:02:34]Bryan: So I too, before I sort of like joined Hex, saw it as this like really incredible notebook platform, sort of a great place to do data science workflows, quite complicated, quite ad hoc interactive ones. And before I joined, I thought it was the best place to do data science workflows. And so when I heard about the possibility of building AI tools on top of that platform, that seemed like a huge opportunity. In particular, I lead the product called Magic. Magic is really like a suite of sort of capabilities as opposed to its own independent product. What I mean by that is they are sort of AI enhancements to the existing product. And that's a really important difference from sort of building something totally new that just uses AI. It's really important to us to enhance the already incredible platform with AI capabilities. So these are things like the sort of obvious like co-pilot-esque vibes, but also more interesting and dynamic ways of integrating AI into the product. And ultimately the goal is just to make people even more effective with the platform. [00:03:38]Alessio: How do you think about the evolution of the product and the AI component? You know, even if you think about 10 months ago, some of these models were not really good on very math based tasks. Now they're getting a lot better. I'm guessing a lot of your workloads and use cases is data analysis and whatnot. [00:03:53]Bryan: When I joined, it was pre 4 and it was pre the sort of like new chat API and all that. But when I joined, it was already clear that GPT was pretty good at writing code. And so when I joined, they had already executed on the vision of what if we allowed the user to ask a natural language prompt to an AI and have the AI assist them with writing code. So what that looked like when I first joined was it had some capability of writing SQL and it had some capability of writing Python and it had the ability to explain and describe code that was already written. Those very, what feel like now primitive capabilities, believe it or not, were already quite cool. It's easy to look back and think, oh, it's like kind of like Stone Age in these timelines. But to be clear, when you're building on such an incredible platform, adding a little bit of these capabilities feels really effective. And so almost immediately I started noticing how it affected my own workflow because ultimately as sort of like an engineering lead and a lot of my responsibility is to be doing analytics to make data driven decisions about what products we build. And so I'm actually using Hex quite a bit in the process of like iterating on our product. When I'm using Hex to do that, I'm using Magic all the time. And even in those early days, the amount that it sped me up, that it enabled me to very quickly like execute was really impressive. And so even though the models weren't that good at certain things back then, that capability was not to be underestimated. But to your point, the models have evolved between 3.5 Turbo and 4. We've actually seen quite a big enhancement in the kinds of tasks that we can ask Magic and even more so with things like function calling and understanding a little bit more of the landscape of agent workflows, we've been able to really accelerate. [00:05:57]Alessio: You know, I tried using some of the early models in notebooks and it actually didn't like the IPyNB formatting, kind of like a JSON plus XML plus all these weird things. How have you kind of tackled that? Do you have some magic behind the scenes to make it easier for models? Like, are you still using completely off the shelf models? Do you have some proprietary ones? [00:06:19]Bryan: We are using at the moment in production 3.5 Turbo and GPT-4. I would say for a large number of our applications, GPT-4 is pretty much required. To your question about, does it understand the structure of the notebook? And does it understand all of this somewhat complicated wrappers around the content that you want to show? We do our very best to abstract that away from the model and make sure that the model doesn't have to think about what the cell wrapper code looks like. Or for our Magic charts, it doesn't have to speak the language of Vega. These are things that we put a lot of work in on the engineering side, to the AI engineer profile. This is the AI engineering work to get all of that out of the way so that the model can speak in the languages that it's best at. The model is quite good at SQL. So let's ensure that it's speaking the language of SQL and that we are doing the engineering work to get the output of that model, the generations, into our notebook format. So too for other cell types that we support, including charts, and just in general, understanding the flow of different cells, understanding what a notebook is, all of that is hard work that we've done to ensure that the model doesn't have to learn anything like that. I remember early on, people asked the question, are you going to fine tune a model to understand Hex cells? And almost immediately, my answer was no. No we're not. Using fine-tuned models in 2022, I was already aware that there are some limitations of that approach and frankly, even using GPT-3 and GPT-2 back in the day in Stitch Fix, I had already seen a lot of instances where putting more effort into pre- and post-processing can avoid some of these larger lifts. [00:08:14]Alessio: You mentioned Stitch Fix and GPT-2. How has the balance between build versus buy, so to speak, evolved? So GPT-2 was a model that was not super advanced, so for a lot of use cases it was worth building your own thing. Is with GPT-4 and the likes, is there a reason to still build your own models for a lot of this stuff? Or should most people be fine-tuning? How do you think about that? [00:08:37]Bryan: Sometimes people ask, why are you using GPT-4 and why aren't you going down the avenue of fine-tuning today? I can get into fine-tuning specifically, but I do want to talk a little bit about the good old days of GPT-2. Shout out to Reza. Reza introduced me to GPT-2. I still remember him explaining the difference between general transformers and GPT. I remember one of the tasks that we wanted to solve with transformer-based generative models at Stitch Fix were writing descriptions of clothing. You might think, ooh, that's a multi-modal problem. The answer is, not necessarily. We actually have a lot of features about the clothes that are almost already enough to generate some reasonable text. I remember at that time, that was one of the first applications that we had considered. There was a really great team of NLP scientists at Stitch Fix who worked on a lot of applications like this. I still remember being exposed to the GPT endpoint back in the days of 2. If I'm not mistaken, and feel free to fact check this, I'm pretty sure Stitch Fix was the first OpenAI customer, unlike their true enterprise application. Long story short, I ultimately think that depending on your task, using the most cutting-edge general model has some advantages. If those are advantages that you can reap, then go for it. So at Hex, why GPT-4? Why do we need such a general model for writing code, writing SQL, doing data analysis? Shouldn't a fine-tuned model just on Kaggle notebooks be good enough? I'd argue no. And ultimately, because we don't have one specific sphere of data that we need to write great data analysis workbooks for, we actually want to provide a platform for anyone to do data analysis about their business. To do that, you actually need to entertain an extremely general universe of concepts. So as an example, if you work at Hex and you want to do data analysis, our projects are called Hexes. That's relatively straightforward to teach it. There's a concept of a notebook. These are data science notebooks, and you want to ask analytics questions about notebooks. Maybe if you trained on notebooks, you could answer those questions, but let's come back to Blue Bottle. If I'm at Blue Bottle and I have data science work to do, I have to ask it questions about coffee. I have to ask it questions about pastries, doing demand forecasting. And so very quickly, you can see that just by serving just those two customers, a model purely fine-tuned on like Kaggle competitions may not actually fit the bill. And so the more and more that you want to build a platform that is sufficiently general for your customer base, the more I think that these large general models really pack a lot of additional opportunity in. [00:11:21]Alessio: With a lot of our companies, we talked about stuff that you used to have to extract features for, now you have out of the box. So say you're a travel company, you want to do a query, like show me all the hotels and places that are warm during spring break. It would be just literally like impossible to do before these models, you know? But now the model knows, okay, spring break is like usually these dates and like these locations are usually warm. So you get so much out of it for free. And in terms of Magic integrating into Hex, I think AI UX is one of our favorite topics and how do you actually make that seamless. In traditional code editors, the line of code is like kind of the atomic unit and HEX, you have the code, but then you have the cell also. [00:12:04]Bryan: I think the first time I saw Copilot and really like fell in love with Copilot, I thought finally, fancy auto-complete. And that felt so good. It felt so elegant. It felt so right sized for the task. But as a data scientist, a lot of the work that you do previous to the ML engineering part of the house, you're working in these cells and these cells are atomic. They're expressing one idea. And so ultimately, if you want to make the transition from something like this code, where you've got like a large amount of code and there's a large amount of files and they kind of need to have awareness of one another, and that's a long story and we can talk about that. But in this atomic, somewhat linear flow through the notebook, what you ultimately want to do is you want to reason with the agent at the level of these individual thoughts, these atomic ideas. Usually it's good practice in say Jupyter notebook to not let your cells get too big. If your cell doesn't fit on one page, that's like kind of a code smell, like why is it so damn big? What are you doing in this cell? That also lends some hints as to what the UI should feel like. I want to ask questions about this one atomic thing. So you ask the agent, take this data frame and strip out this prefix from all the strings in this column. That's an atomic task. It's probably about two lines of pandas. I can write it, but it's actually very natural to ask magic to do that for me. And what I promise you is that it is faster to ask magic to do that for me. At this point, that kind of code, I never write. And so then you ask the next question, which is what should the UI be to do chains, to do multiple cells that work together? Because ultimately a notebook is a chain of cells and actually it's a first class citizen for Hex. So we have a DAG and the DAG is the execution DAG for the individual cells. This is one of the reasons that Hex is reactive and kind of dynamic in that way. And so the very next question is, what is the sort of like AI UI for these collections of cells? And back in June and July, we thought really hard about what does it feel like to ask magic a question and get a short chain of cells back that execute on that task. And so we've thought a lot about sort of like how that breaks down into individual atomic units and how those are tied together. We introduced something which is kind of an internal name, but it's called the airlock. And the airlock is exactly a sequence of cells that refer to one another, understand one another, use things that are happening in other cells. And it gives you a chance to sort of preview what magic has generated for you. Then you can accept or reject as an entire group. And that's one of the reasons we call it an airlock, because at any time you can sort of eject the airlock and see it in the space. But to come back to your question about how the AI UX fits into this notebook, ultimately a notebook is very conversational in its structure. I've got a series of thoughts that I'm going to express as a series of cells. And sometimes if I'm a kind data scientist, I'll put some text in between them too, explaining what on earth I'm doing. And that feels, in my opinion, and I think this is quite shared amongst exons, that feels like a really nice refinement of the chat UI. I've been saying for several months now, like, please stop building chat UIs. There is some irony because I think what the notebook allows is like chat plus plus. [00:15:36]Alessio: Yeah, I think the first wave of everything was like chat with X. So it was like chat with your data, chat with your documents and all of this. But people want to code, you know, at the end of the day. And I think that goes into the end user. I think most people that use notebooks are software engineer, data scientists. I think the cool things about these models is like people that are not traditionally technical can do a lot of very advanced things. And that's why people like code interpreter and chat GBT. How do you think about the evolution of that persona? Do you see a lot of non-technical people also now coming to Hex to like collaborate with like their technical folks? [00:16:13]Bryan: Yeah, I would say there might even be more enthusiasm than we're prepared for. We're obviously like very excited to bring what we call the like low floor user into this world and give more people the opportunity to self-serve on their data. We wanted to start by focusing on users who are already familiar with Hex and really make magic fantastic for them. One of the sort of like internal, I would say almost North Stars is our team's charter is to make Hex feel more magical. That is true for all of our users, but that's easiest to do on users that are already able to use Hex in a great way. What we're hearing from some customers in particular is sort of like, I'm excited for some of my less technical stakeholders to get in there and start asking questions. And so that raises a lot of really deep questions. If you immediately enable self-service for data, which is almost like a joke over the last like maybe like eight years, if you immediately enabled self-service, what challenges does that bring with it? What risks does that bring with it? And so it has given us the opportunity to think about things like governance and to think about things like alignment with the data team and making sure that the data team has clear visibility into what the self-service looks like. Having been leading a data team, trying to provide answers for stakeholders and hearing that they really want to self-serve, a question that we often found ourselves asking is, what is the easiest way that we can keep them on the rails? What is the easiest way that we can set up the data warehouse and set up our tools such that they can ask and answer their own questions without coming away with like false answers? Because that is such a priority for data teams, it becomes an important focus of my team, which is, okay, magic may be an enabler. And if it is, what do we also have to respect? We recently introduced the data manager and the data manager is an auxiliary sort of like tool on the Hex platform to allow people to write more like relevant metadata about their data warehouse to make sure that magic has access to the best information. And there are some things coming to kind of even further that story around governance and understanding. [00:18:37]Alessio: You know, you mentioned self-serve data. And when I was like a joke, you know, the whole rush to the modern data stack was something to behold. Do you think AI is like in a similar space where it's like a bit of a gold rush? [00:18:51]Bryan: I have like sort of two comments here. One I'll shamelessly steal from a friend, Adam Azzam from Prefect. He says that this is more of like an iron mine than a gold mine in the sense of there is a lot of work to extract this precious, precious resource. And that's the first one is I think, don't expect to just go down to the stream and do a little panning. There's a lot of work to be done. And frankly, the steps to go from this like gold to, or this resource to something valuable is significant. I think people have gotten a little carried away with the old maxim of like, don't go pan for gold, sell pickaxes and shovels. It's a much stronger business model. At this point, I feel like I look around and I see more pickaxe salesmen and shovel salesmen than I do prospectors. And that scares me a little bit. Metagame where people are starting to think about how they can build tools for people building tools for AI. And that starts to give me a little bit of like pause in terms of like, how confident are we that we can even extract this resource into something valuable? I got a text message from a VC earlier today, and I won't name the VC or the fund, but the question was, what are some medium or large size companies that have integrated AI into their platform in a way that you're really impressed by? And I looked at the text message for a few minutes and I was finding myself thinking and thinking, and I responded, maybe only co-pilot. It's been a couple hours now, and I don't think I've thought of another one. And I think that's where I reflect again on this, like iron versus gold. If it was really gold, I feel like I'd be more blown away by other AI integrations. And I'm not yet. [00:20:40]Alessio: I feel like all the people finding gold are the ones building things that traditionally we didn't focus on. So like mid-journey. I've talked to a company yesterday, which I'm not going to name, but they do agents for some use case, let's call it. They are 11 months old. They're making like 8 million a month in revenue, but in a space that you wouldn't even think about selling to. If you were like a shovel builder, you wouldn't even go sell to those people. And Swix talks about this a bunch, about like actually trying to go application first for some things. Let's actually see what people want to use and what works. What do you think are the most maybe underexplored areas in AI? Is there anything that you wish people were actually trying to shovel? [00:21:23]Bryan: I've been saying for a couple of months now, if I had unlimited resources and I was just sort of like truly like, you know, on my own building whatever I wanted, I think the thing that I'd be most excited about is building sort of like the personal Memex. The Memex is something that I've wanted since I was a kid. And are you familiar with the Memex? It's the memory extender. And it's this idea that sort of like human memory is quite weak. And so if we can extend that, then that's a big opportunity. So I think one of the things that I've always found to be one of the limiting cases here is access. How do you access that data? Even if you did build that data like out, how would you quickly access it? And one of the things I think there's a constellation of technologies that have come together in the last couple of years that now make this quite feasible. Like information retrieval has really improved and we have a lot more simple systems for getting started with information retrieval to natural language is ultimately the interface that you'd really like these systems to work on, both in terms of sort of like structuring the data and preparing the data, but also on the retrieval side. So what keys off the query for retrieval, probably ultimately natural language. And third, if you really want to go into like the purely futuristic aspect of this, it is latent voice to text. And that is also something that has quite recently become possible. I did talk to a company recently called gather, which seems to have some cool ideas in this direction, but I haven't seen yet what I, what I really want, which is I want something that is sort of like every time I listen to a podcast or I watch a movie or I read a book, it sort of like has a great vector index built on top of all that information that's contained within. And then when I'm having my next conversation and I can't quite remember the name of this person who did this amazing thing, for example, if we're talking about the Memex, it'd be really nice to have Vannevar Bush like pop up on my, you know, on my Memex display, because I always forget Vannevar Bush's name. This is one time that I didn't, but I often do. This is something that I think is only recently enabled and maybe we're still five years out before it can be good, but I think it's one of the most exciting projects that has become possible in the last three years that I think generally wasn't possible before. [00:23:46]Alessio: Would you wear one of those AI pendants that record everything? [00:23:50]Bryan: I think I'm just going to do it because I just like support the idea. I'm also admittedly someone who, when Google Glass first came out, thought that seems awesome. I know that there's like a lot of like challenges about the privacy aspect of it, but it is something that I did feel was like a disappointment to lose some of that technology. Fun fact, one of the early Google Glass developers was this MIT computer scientist who basically built the first wearable computer while he was at MIT. And he like took notes about all of his conversations in real time on his wearable and then he would have real time access to them. Ended up being kind of a scandal because he wanted to use a computer during his defense and they like tried to prevent him from doing it. So pretty interesting story. [00:24:35]Alessio: I don't know but the future is going to be weird. I can tell you that much. Talking about pickaxes, what do you think about the pickaxes that people built before? Like all the whole MLOps space, which has its own like startup graveyard in there. How are those products evolving? You know, you were at Wits and Biases before, which is now doing a big AI push as well. [00:24:57]Bryan: If you really want to like sort of like rub my face in it, you can go look at my white paper on MLOps from 2022. It's interesting. I don't think there's many things in that that I would these days think are like wrong or even sort of like naive. But what I would say is there are both a lot of analogies between MLOps and LLMops, but there are also a lot of like key differences. So like leading an engineering team at the moment, I think a lot more about good engineering practices than I do about good ML practices. That being said, it's been very convenient to be able to see around corners in a few of the like ML places. One of the first things I did at Hex was work on evals. This was in February. I hadn't yet been overwhelmed by people talking about evals until about May. And the reason that I was able to be a couple of months early on that is because I've been building evals for ML systems for years. I don't know how else to build an ML system other than start with the evals. I teach my students at Rutgers like objective framing is one of the most important steps in starting a new data science project. If you can't clearly state what your objective function is and you can't clearly state how that relates to the problem framing, you've got no hope. And I think that is a very shared reality with LLM applications. Coming back to one thing you mentioned from earlier about sort of like the applications of these LLMs. To that end, I think what pickaxes I think are still very valuable is understanding systems that are inherently less predictable, that are inherently sort of experimental. On my engineering team, we have an experimentalist. So one of the AI engineers, his focus is experiments. That's something that you wouldn't normally expect to see on an engineering team. But it's important on an AI engineering team to have one person whose entire focus is just experimenting, trying, okay, this is a hypothesis that we have about how the model will behave. Or this is a hypothesis we have about how we can improve the model's performance on this. And then going in, running experiments, augmenting our evals to test it, et cetera. What I really respect are pickaxes that recognize the hybrid nature of the sort of engineering tasks. They are ultimately engineering tasks with a flavor of ML. And so when systems respect that, I tend to have a very high opinion. One thing that I was very, very aligned with Weights and Biases on is sort of composability. These systems like ML systems need to be extremely composable to make them much more iterative. If you don't build these systems in composable ways, then your integration hell is just magnified. When you're trying to iterate as fast as people need to be iterating these days, I think integration hell is a tax not worth paying. [00:27:51]Alessio: Let's talk about some of the LLM native pickaxes, so to speak. So RAG is one. One thing is doing RAG on text data. One thing is doing RAG on tabular data. We're releasing tomorrow our episode with Kube, the semantic layer company. Curious to hear your thoughts on it. How are you doing RAG, pros, cons? [00:28:11]Bryan: It became pretty obvious to me almost immediately that RAG was going to be important. Because ultimately, you never expect your model to have access to all of the things necessary to respond to a user's request. So as an example, Magic users would like to write SQL that's relevant to their business. And it's important then to have the right data objects that they need to query. We can't expect any LLM to understand our user's data warehouse topology. So what we can expect is that we can build a RAG system that is data warehouse aware, data topology aware, and use that to provide really great information to the model. If you ask the model, how are my customers trending over time? And you ask it to write SQL to do that. What is it going to do? Well, ultimately, it's going to hallucinate the structure of that data warehouse that it needs to write a general query. Most likely what it's going to do is it's going to look in its sort of memory of Stack Overflow responses to customer queries, and it's going to say, oh, it's probably a customer stable and we're in the age of DBT, so it might be even called, you know, dim customers or something like that. And what's interesting is, and I encourage you to try, chatGBT will do an okay job of like hallucinating up some tables. It might even hallucinate up some columns. But what it won't do is it won't understand the joins in that data warehouse that it needs, and it won't understand the data caveats or the sort of where clauses that need to be there. And so how do you get it to understand those things? Well, this is textbook RAG. This is the exact kind of thing that you expect RAG to be good at augmenting. But I think where people who have done a lot of thinking about RAG for the document case, they think of it as chunking and sort of like the MapReduce and the sort of like these approaches. But I think people haven't followed this train of thought quite far enough yet. Jerry Liu was on the show and he talked a little bit about thinking of this as like information retrieval. And I would push that even further. And I would say that ultimately RAG is just RecSys for LLM. As I kind of already mentioned, I'm a little bit recommendation systems heavy. And so from the beginning, RAG has always felt like RecSys to me. It has always felt like you're building a recommendation system. And what are you trying to recommend? The best possible resources for the LLM to execute on a task. And so most of my approach to RAG and the way that we've improved magic via retrieval is by building a recommendation system. [00:30:49]Alessio: It's funny, as you mentioned that you spent three years writing the book, the O'Reilly book. Things must have changed as you wrote the book. I don't want to bring out any nightmares from there, but what are the tips for people who want to stay on top of this stuff? Do you have any other favorite newsletters, like Twitter accounts that you follow, communities you spend time in? [00:31:10]Bryan: I am sort of an aggressive reader of technical books. I think I'm almost never disappointed by time that I've invested in reading technical manuscripts. I find that most people write O'Reilly or similar books because they've sort of got this itch that they need to scratch, which is that I have some ideas, I have some understanding that we're hard won, I need to tell other people. And there's something that, from my experience, correlates between that itch and sort of like useful information. As an example, one of the people on my team, his name is Will Kurt, he wrote a book sort of Bayesian statistics the fun way. I knew some Bayesian statistics, but I read his book anyway. And the reason was because I was like, if someone feels motivated to write a book called Bayesian statistics the fun way, they've got something to say about Bayesian statistics. I learned so much from that book. That book is like technically like targeted at someone with less knowledge and experience than me. And boy, did it humble me about my understanding of Bayesian statistics. And so I think this is a very boring answer, but ultimately like I read a lot of books and I think that they're a really valuable way to learn these things. I also regrettably still read a lot of Twitter. There is plenty of noise in that signal, but ultimately it is still usually like one of the first directions to get sort of an instinct for what's valuable. The other comment that I want to make is we are in this age of sort of like archive is becoming more of like an ad platform. I think that's a little challenging right now to kind of use it the way that I used to use it, which is for like higher signal. I've chatted a lot with a CMU professor, Graham Neubig, and he's been doing LLM evaluation and LLM enhancements for about five years and know that I didn't misspeak. And I think talking to him has provided me a lot of like directionality for more believable sources. Trying to cut through the hype. I know that there's a lot of other things that I could mention in terms of like just channels, but ultimately right now I think there's almost an abundance of channels and I'm a little bit more keen on high signal. [00:33:18]Alessio: The other side of it is like, I see so many people say, Oh, I just wrote a paper on X and it's like an article. And I'm like, an article is not a paper, but it's just funny how I know we were kind of chatting before about terms being reinvented and like people that are not from this space kind of getting into AI engineering now. [00:33:36]Bryan: I also don't want to be gatekeepy. Actually I used to say a lot to people, don't be shy about putting your ideas down on paper. I think it's okay to just like kind of go for it. And I, I myself have something on archive that is like comically naive. It's intentionally naive. Right now I'm less concerned by more naive approaches to things than I am by the purely like advertising approach to sort of writing these short notes and articles. I think blogging still has a good place. And I remember getting feedback during my PhD thesis that like my thesis sounded more like a long blog post. And I now feel like that curmudgeonly professor who's also like, yeah, maybe just keep this to the blogs. That's funny.Alessio: Uh, yeah, I think one of the things that Swyx said when he was opening the AI engineer summit a couple of weeks ago was like, look, most people here don't know much about the space because it's so new and like being open and welcoming. I think it's one of the goals. And that's why we try and keep every episode at a level that it's like, you know, the experts can understand and learn something, but also the novices can kind of like follow along. You mentioned evals before. I think that's one of the hottest topics obviously out there right now. What are evals? How do we know if they work? Yeah. What are some of the fun learnings from building them into X? [00:34:53]Bryan: I said something at the AI engineer summit that I think a few people have already called out, which is like, if you can't get your evals to be sort of like objective, then you're not trying hard enough. I stand by that statement. I'm not going to, I'm not going to walk it back. I know that that doesn't feel super good because people, people want to think that like their unique snowflake of a problem is too nuanced. But I think this is actually one area where, you know, in this dichotomy of like, who can do AI engineering? And the answer is kind of everybody. Software engineering can become AI engineering and ML engineering can become AI engineering. One thing that I think the more data science minded folk have an advantage here is we've gotten more practice in taking very vague notions and trying to put a like objective function around that. And so ultimately I would just encourage everybody who wants to build evals, just work incredibly hard on codifying what is good and bad in terms of these objective metrics. As far as like how you go about turning those into evals, I think it's kind of like sweat equity. Unfortunately, I told the CEO of gantry several months ago, I think it's been like six months now that I was sort of like looking at every single internal Hex request to magic by hand with my eyes and sort of like thinking, how can I turn this into an eval? Is there a way that I can take this real request during this dog foodie, not very developed stage? How can I make that into an evaluation? That was a lot of sweat equity that I put in a lot of like boring evenings, but I do think ultimately it gave me a lot of understanding for the way that the model was misbehaving. Another thing is how can you start to understand these misbehaviors as like auxiliary evaluation metrics? So there's not just one evaluation that you want to do for every request. It's easy to say like, did this work? Did this not work? Did the response satisfy the task? But there's a lot of other metrics that you can pull off these questions. And so like, let me give you an example. If it writes SQL that doesn't reference a table in the database that it's supposed to be querying against, we would think of that as a hallucination. You could separately consider, is it a hallucination as a valuable metric? You could separately consider, does it get the right answer? The right answer is this sort of like all in one shot, like evaluation that I think people jump to. But these intermediary steps are really important. I remember hearing that GitHub had thousands of lines of post-processing code around Copilot to make sure that their responses were sort of correct or in the right place. And that kind of sort of defensive programming against bad responses is the kind of thing that you can build by looking at many different types of evaluation metrics. Because you can say like, oh, you know, the Copilot completion here is mostly right, but it doesn't close the brace. Well, that's the thing you can check for. Or, oh, this completion is quite good, but it defines a variable that was like already defined in the file. Like that's going to have a problem. That's an evaluation that you could check separately. And so this is where I think it's easy to convince yourself that all that matters is does it get the right answer? But the more that you think about production use cases of these things, the more you find a lot of this kind of stuff. One simple example is like sometimes the model names the output of a cell, a variable that's already in scope. Okay. Like we can just detect that and like we can just fix that. And this is the kind of thing that like evaluations over time and as you build these evaluations over time, you really can expand the robustness in which you trust these models. And for a company like Hex, who we need to put this stuff in GA, we can't just sort of like get to demo stage or even like private beta stage. We really hunting GA on all of these capabilities. Did it get the right answer on some cases is not good enough. [00:38:57]Alessio: I think the follow up question to that is in your past roles, you own the model that you're evaluating against. Here you don't actually have control into how the model evolves. How do you think about the model will just need to improve or we'll use another model versus like we can build kind of like engineering post-processing on top of it. How do you make the choice? [00:39:19]Bryan: So I want to say two things here. One like Jerry Liu talked a little bit about in his episode, he talked a little bit about sort of like you don't always want to retrain the weights to serve certain use cases. Rag is another tool that you can use to kind of like soft tune. I think that's right. And I want to go back to my favorite analogy here, which is like recommendation systems. When you build a recommendation system, you build the objective function. You think about like what kind of recs you want to provide, what kind of features you're allowed to use, et cetera, et cetera. But there's always another step. There's this really wonderful collection of blog posts from Eugene Yon and then ultimately like even Oldridge kind of like iterated on that for the Merlin project where there's this multi-stage recommender. And the multi-stage recommender says the first step is to do great retrieval. Once you've done great retrieval, you then need to do great ranking. Once you've done great ranking, you need to then do a good job serving. And so what's the analogy here? Rag is retrieval. You can build different embedding models to encode different features in your latent space to ensure that your ranking model has the best opportunity. Now you might say, oh, well, my ranking model is something that I've got a lot of capability to adjust. I've got full access to my ranking model. I'm going to retrain it. And that's great. And you should. And over time you will. But there's one more step and that's downstream and that's the serving. Serving often sounds like I just show the s**t to the user, but ultimately serving is things like, did I provide diverse recommendations? Going back to Stitch Fix days, I can't just recommend them five shirts of the same silhouette and cut. I need to serve them a diversity of recommendations. Have I respected their requirements? They clicked on something that got them to this place. Is the recommendations relevant to that query? Are there any hard rules? Do we maybe not have this in stock? These are all things that you put downstream. And so much like the recommendations use case, there's a lot of knobs to pull outside of retraining the model. And even in recommendation systems, when do you retrain your model for ranking? Not nearly as much as you do other s**t. And even this like embedding model, you might fiddle with more often than the true ranking model. And so I think the only piece of the puzzle that you don't have access to in the LLM case is that sort of like middle step. That's okay. We've got plenty of other work to do. So right now I feel pretty enabled. [00:41:56]Alessio: That's great. You obviously wrote a book on RecSys. What are some of the key concepts that maybe people that don't have a data science background, ML background should keep in mind as they work in this area? [00:42:07]Bryan: It's easy to first think these models are stochastic. They're unpredictable. Oh, well, what are we going to do? I think of this almost like gaseous type question of like, if you've got this entropy, where can you put the entropy? Where can you let it be entropic and where can you constrain it? And so what I want to say here is think about the cases where you need it to be really tightly constrained. So why are people so excited about function calling? Because function calling feels like a way to constrict it. Where can you let it be more gaseous? Well, maybe in the way that it talks about what it wants to do. Maybe for planning, if you're building agents and you want to do sort of something chain of thoughty. Well, that's a place where the entropy can happily live. When you're building applications of these models, I think it's really important as part of the problem framing to be super clear upfront. These are the things that can be entropic. These are the things that cannot be. These are the things that need to be super rigid and really, really aligned to a particular schema. We've had a lot of success in making specific the parts that need to be precise and tightly schemified, and that has really paid dividends. And so other analogies from data science that I think are very valuable is there's the sort of like human in the loop analogy, which has been around for quite a while. And I have gone on record a couple of times saying that like, I don't really love human in the loop. One of the things that I think we can learn from human in the loop is that the user is the best judge of what is good. And the user is pretty motivated to sort of like interact and give you kind of like additional nudges in the direction that you want. I think what I'd like to flip though, is instead of human in the loop, I'd like it to be AI in the loop. I'd rather center the user. I'd rather keep the user as the like core item at the center of this universe. And the AI is a tool. By switching that analogy a little bit, what it allows you to do is think about where are the places in which the user can reach for this as a tool, execute some task with this tool, and then go back to doing their workflow. It still gets this back and forth between things that computers are good at and things that humans are good at, which has been valuable in the human loop paradigm. But it allows us to be a little bit more, I would say, like the designers talk about like user-centered. And I think that's really powerful for AI applications. And it's one of the things that I've been trying really hard with Magic to make that feel like the workflow as the AI is right there. It's right where you're doing your work. It's ready for you anytime you need it. But ultimately you're in charge at all times and your workflow is what we care the most about. [00:44:56]Alessio: Awesome. Let's jump into lightning round. What's something that is not on your LinkedIn that you're passionate about or, you know, what's something you would give a TED talk on that is not work related? [00:45:05]Bryan: So I walk a lot. [00:45:07]Bryan: I have walked every road in Berkeley. And I mean like every part of every road even, not just like the binary question of, have you been on this road? I have this little app that I use called Wanderer, which just lets me like kind of keep track of everywhere I've been. And so I'm like a little bit obsessed. My wife would say a lot a bit obsessed with like what I call new roads. I'm actually more motivated by trails even than roads, but like I'm a maximalist. So kind of like everything and anything. Yeah. Believe it or not, I was even like in the like local Berkeley paper just talking about walking every road. So yeah, that's something that I'm like surprisingly passionate about. [00:45:45]Alessio: Is there a most underrated road in Berkeley? [00:45:49]Bryan: What I would say is like underrated is Kensington. So Kensington is like a little town just a teeny bit north of Berkeley, but still in the Berkeley hills. And Kensington is so quirky and beautiful. And it's a really like, you know, don't sleep on Kensington. That being said, one of my original motivations for doing all this walking was people always tell me like, Berkeley's so quirky. And I was like, how quirky is Berkeley? Turn it out. It's quite, quite quirky. It's also hard to say quirky and Berkeley in the same sentence I've learned as of now. [00:46:20]Alessio: That's a, that's a good podcast warmup for our next guests. All right. The actual lightning ground. So we usually have three questions, acceleration, exploration, then a takeaway acceleration. What's, what's something that's already here today that you thought would take much longer to arrive in AI and machine learning? [00:46:39]Bryan: So I invited the CEO of Hugging Face to my seminar when I worked at Stitch Fix and his talk at the time, honestly, like really annoyed me. The talk was titled like something to the effect of like LLMs are going to be the like technology advancement of the next decade. It's on YouTube. You can find it. I don't remember exactly the title, but regardless, it was something like LLMs for the next decade. And I was like, okay, they're like one modality of model, like whatever. His talk was fine. Like, I don't think it was like particularly amazing or particularly poor, but what I will say is damn, he was right. Like I, I don't think I quite was on board during that talk where I was like, ah, maybe, you know, like there's a lot of other modalities that are like moving pretty quick. I thought things like RL were going to be the like real like breakout success. And there's a little pun with Atari and breakout there, but yeah, like I, man, I was sleeping on LLMs and I feel a little embarrassed. I, yeah. [00:47:44]Alessio: Yeah. No, I mean, that's a good point. It's like sometimes the, we just had Jeremy Howard on the podcast and he was saying when he was talking about fine tuning, everybody thought it was dumb, you know, and then later people realize, and there's something to be said about messaging, especially like in technical audiences where there's kind of like the metagame, you know, which is like, oh, these are like the cool ideas people are exploring. I don't know where I want to align myself yet, you know, or whatnot. So it's cool exploration. So it's kind of like the opposite of that. You mentioned RL, right? That's something that was kind of like up and up and up. And then now it's people are like, oh, I don't know. Are there any other areas if you weren't working on, on magic that you want to go work on? [00:48:25]Bryan: Well, I did mention that, like, I think this like Memex product is just like incredibly exciting to me. And I think it's really opportunistic. I think it's very, very feasible, but I would maybe even extend that a little bit, which is I don't see enough people getting really enthusiastic about hardware with advanced AI built in. You're hearing whispering of it here and there, put on the whisper, but like you're starting to see people putting whisper into pieces of hardware and making that really powerful. I joked with, I can't think of her name. Oh, Sasha, who I know is a friend of the pod. Like I joked with Sasha that I wanted to make the big mouth Billy Bass as a babble fish, because at this point it's pretty easy to connect that up to whisper and talk to it in one language and have it talk in the other language. And I was like, this is the kind of s**t I want people building is like silly integrations between hardware and these new capabilities. And as much as I'm starting to hear whisperings here and there, it's not enough. I think I want to see more people going down this track because I think ultimately like these things need to be in our like physical space. And even though the margins are good on software, I want to see more like integration into my daily life. Awesome. [00:49:47]Alessio: And then, yeah, a takeaway, what's one message idea you want everyone to remember and think about? [00:49:54]Bryan: Even though earlier I was talking about sort of like, maybe like not reinventing things and being respectful of the sort of like ML and data science, like ideas. I do want to say that I think everybody should be experimenting with these tools as much as they possibly can. I've heard a lot of professors, frankly, express concern about their students using GPT to do their homework. And I took a completely opposite approach, which is in the first 15 minutes of the first class of my semester this year, I brought up GPT on screen and we talked about what GPT was good at. And we talked about like how the students can sort of like use it. I showed them an example of it doing data analysis work quite well. And then I showed them an example of it doing quite poorly. I think however much you're integrating with these tools or interacting with these tools, and this audience is probably going to be pretty high on that distribution. I would really encourage you to sort of like push this into the other people in your life. My wife is very technical. She's a product manager and she's using chat GPT almost every day for communication or for understanding concepts that are like outside of her sphere of excellence. And recently my mom and my sister have been sort of like onboarded onto the chat GPT train. And so ultimately I just, I think that like it is our duty to help other people see like how much of a paradigm shift this is. We should really be preparing people for what life is going to be like when these are everywhere. [00:51:25]Alessio: Awesome. Thank you so much for coming on, Bryan. This was fun. [00:51:29]Bryan: Yeah. Thanks for having me. And use Hex magic. [00:51:31] Get full access to Latent Space at www.latent.space/subscribe
This episode came together at ~4 hrs notice since Dylan had just landed in SF and we had to setup quickly; you might notice some small audio issues in some segments, we apologize. We're currently building our own podcast studio for 2024!
ChatGPT: News on Open AI, MidJourney, NVIDIA, Anthropic, Open Source LLMs, Machine Learning
Join us in this episode as we sit down with Chris Lattner, CEO of Modular, who is making waves in the tech world by raising $100 million to overhaul AI infrastructure for developers. We dive deep into how this funding will reshape the future of AI development and what it means for the broader tech ecosystem. Discover the innovative solutions that will empower developers to create smarter, faster, and more efficient AI applications. Get on the AI Box Waitlist: https://AIBox.ai/Join our ChatGPT Community: https://www.facebook.com/groups/739308654562189/Follow me on Twitter: https://twitter.com/jaeden_ai
Thanks to the over 17,000 people who have joined the first AI Engineer Summit! A full recap is coming. Last call to fill out the State of AI Engineering survey! See our Community page for upcoming meetups in SF, Paris and NYC.This episode had good interest on Twitter.Fast.ai's “Practical Deep Learning” courses been watched by over >6,000,000 people, and the fastai library has over 25,000 stars on Github. Jeremy Howard, one of the creators of Fast, is now one of the most prominent and respected voices in the machine learning industry; but that wasn't always the case. Being non-consensus and right In 2018, Jeremy and Sebastian Ruder published a paper on ULMFiT (Universal Language Model Fine-tuning), a 3-step transfer learning technique for NLP tasks: The paper demonstrated that pre-trained language models could be fine-tuned on a specific task with a relatively small amount of data to achieve state-of-the-art results. They trained a 24M parameters model on WikiText-103 which was beat most benchmarks.While the paper had great results, the methods behind weren't taken seriously by the community: “Everybody hated fine tuning. Everybody hated transfer learning. I literally did tours trying to get people to start doing transfer learning and nobody was interested, particularly after GPT showed such good results with zero shot and few shot learning […] which I was convinced was not the right direction, but who's going to listen to me, cause as you said, I don't have a PhD, not at a university… I don't have a big set of computers to fine tune huge transformer models.”Five years later, fine-tuning is at the center of most major discussion topics in AI (we covered some like fine tuning vs RAG and small models fine tuning), and we might have gotten here earlier if Jeremy had OpenAI-level access to compute and distribution. At heart, Jeremy has always been “GPU poor”:“I've always been somebody who does not want to build stuff on lots of big computers because most people don't have lots of big computers and I hate creating stuff that most people can't use.”This story is a good reminder of how some of the best ideas are hiding in plain sight; we recently covered RWKV and will continue to highlight the most interesting research that isn't being done in the large labs. Replacing fine-tuning with continued pre-trainingEven though fine-tuning is now mainstream, we still have a lot to learn. The issue of “catastrophic forgetting” and potential solutions have been brought up in many papers: at the fine-tuning stage, the model can forget tasks it previously knew how to solve in favor of new ones. The other issue is apparent memorization of the dataset even after a single epoch, which Jeremy covered Can LLMs learn from a single example? but we still don't have the answer to. Despite being the creator of ULMFiT, Jeremy still professes that there are a lot of open questions on finetuning:“So I still don't know how to fine tune language models properly and I haven't found anybody who feels like they do.”He now advocates for "continued pre-training" - maintaining a diversity of data throughout the training process rather than separate pre-training and fine-tuning stages. Mixing instructional data, exercises, code, and other modalities while gradually curating higher quality data can avoid catastrophic forgetting and lead to more robust capabilities (something we covered in Datasets 101).“Even though I originally created three-step approach that everybody now does, my view is it's actually wrong and we shouldn't use it… the right way to do this is to fine-tune language models, is to actually throw away the idea of fine-tuning. There's no such thing. There's only continued pre-training. And pre-training is something where from the very start, you try to include all the kinds of data that you care about, all the kinds of problems that you care about, instructions, exercises, code, general purpose document completion, whatever. And then as you train, you gradually curate that, you know, you gradually make that higher and higher quality and more and more specific to the kinds of tasks you want it to do. But you never throw away any data….So yeah, that's now my view, is I think ULMFiT is the wrong approach. And that's why we're seeing a lot of these so-called alignment tax… I think it's actually because people are training them wrong.An example of this phenomena is CodeLlama, a LLaMA2 model finetuned on 500B tokens of code: while the model is much better at code, it's worse on generic tasks that LLaMA2 knew how to solve well before the fine-tuning. In the episode we also dive into all the places where open source model development and research is happening (academia vs Discords - tracked on our Communities list and on our survey), and how Jeremy recommends getting the most out of these diffuse, pseudonymous communities (similar to the Eleuther AI Mafia).Show Notes* Jeremy's Background* FastMail* Optimal Decisions* Kaggle* Enlitic* fast.ai* Rachel Thomas* Practical Deep Learning* fastai for PyTorch* nbdev* fastec2 (the underrated library we describe)* Can LLMs learn from a single example?* the Kaggle LLM Science Exam competition, which “challenges participants to answer difficult science-based questions written by a Large Language Model”.* Sebastian Ruder* Alec Radford* Sylvain Gugger* Stephen Merity* Chris Lattner* Modular.ai / Mojo* Jono Whittaker* Zeiler and Fergus paper* ULM Fit* DAWNBench* Phi-1* Code Llama* AlexNetTimestamps* [00:00:00] Intros and Jeremy's background* [00:05:28] Creating ULM Fit - a breakthrough in NLP using transfer learning* [00:06:32] The rise of GPT and the appeal of few-shot learning over fine-tuning* [00:10:00] Starting Fast.ai to distribute AI capabilities beyond elite academics* [00:14:30] How modern LMs like ChatGPT still follow the ULM Fit 3-step approach* [00:17:23] Meeting with Chris Lattner on Swift for TensorFlow at Google* [00:20:00] Continued pre-training as a fine-tuning alternative* [00:22:16] Fast.ai and looking for impact vs profit maximization* [00:26:39] Using Fast.ai to create an "army" of AI experts to improve their domains* [00:29:32] Fast.ai's 3 focus areas - research, software, and courses* [00:38:42] Fine-tuning memorization and training curve "clunks" before each epoch* [00:46:47] Poor training and fine-tuning practices may be causing alignment failures* [00:48:38] Academia vs Discords* [00:53:41] Jeremy's high hopes for Chris Lattner's Mojo and its potential* [01:05:00] Adding capabilities like SQL generation through quick fine-tuning* [01:10:12] Rethinking Fast.ai courses for the AI-assisted coding era* [01:14:53] Rapid model development has created major technical debt* [01:17:08] Lightning RoundAI Summary (beta)This is the first episode we're trying this. Here's an overview of the main topics before you dive in the transcript. * Jeremy's background and philosophies on AI* Studied philosophy and cognitive science in college* Focused on ethics and thinking about AI even 30 years ago* Believes AI should be accessible to more people, not just elite academics/programmers* Created fast.ai to make deep learning more accessible* Development of transfer learning and ULMFit* Idea of transfer learning critical for making deep learning accessible* ULMFit pioneered transfer learning for NLP* Proposed training general language models on large corpora then fine-tuning - this became standard practice* Faced skepticism that this approach would work from NLP community* Showed state-of-the-art results on text classification soon after trying it* Current open questions around fine-tuning LLMs* Models appear to memorize training data extremely quickly (after 1 epoch)* This may hurt training dynamics and cause catastrophic forgetting* Unclear how best to fine-tune models to incorporate new information/capabilities* Need more research on model training dynamics and ideal data mixing* Exciting new developments* Mojo and new programming languages like Swift could enable faster model innovation* Still lots of room for improvements in computer vision-like innovations in transformers* Small models with fine-tuning may be surprisingly capable for many real-world tasks* Prompting strategies enable models like GPT-3 to achieve new skills like playing chess at superhuman levels* LLMs are like computer vision in 2013 - on the cusp of huge new breakthroughs in capabilities* Access to AI research* Many key convos happen in private Discord channels and forums* Becoming part of these communities can provide great learning opportunities* Being willing to do real work, not just talk about ideas, is key to gaining access* The future of practical AI* Coding becoming more accessible to non-programmers through AI assistance* Pre-requisite programming experience for learning AI may no longer be needed* Huge open questions remain about how to best train, fine-tune, and prompt LLMsTranscriptAlessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Residence at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol AI. [00:00:21]Swyx: Hey, and today we have in the remote studio, Jeremy Howard all the way from Australia. Good morning. [00:00:27]Jeremy: The remote studio, also known as my house. Good morning. Nice to see you. [00:00:32]Swyx: Nice to see you too. I'm actually very used to seeing you in your mask as a message to people, but today we're mostly audio. But thank you for doing the very important public service of COVID awareness. It was a pleasure. [00:00:46]Jeremy: It was all very annoying and frustrating and tedious, but somebody had to do it. [00:00:52]Swyx: Somebody had to do it, especially somebody with your profile. I think it really drives home the message. So we tend to introduce people for them and then ask people to fill in the blanks on the personal side. Something I did not know about you was that you graduated with a BA in philosophy from the University of Melbourne. I assumed you had a PhD. [00:01:14]Jeremy: No, I mean, I barely got through my BA because I was working 80 to 100 hour weeks at McKinsey and Company from 19 years old onwards. So I actually didn't attend any lectures in second and third year university. [00:01:35]Swyx: Well, I guess you didn't need it or you're very sort of self-driven and self-motivated. [00:01:39]Jeremy: I took two weeks off before each exam period when I was working at McKinsey. And then, I mean, I can't believe I got away with this in hindsight, I would go to all my professors and say, oh, I was meant to be in your class this semester and I didn't quite turn up. Were there any assignments I was meant to have done, whatever. I can't believe all of them let me basically have it. They basically always would say like, okay, well, if you can have this written by tomorrow, I'll accept it. So yeah, stressful way to get through university, but. [00:02:12]Swyx: Well, it shows that, I guess, you min-maxed the opportunities. That definitely was a precursor. [00:02:18]Jeremy: I mean, funnily, like in as much as I, you know, in philosophy, the things I found interesting and focused on in the little bit of time I did spend on it was ethics and cognitive science. And it's kind of really amazing that it's now come back around and those are actually genuinely useful things to know about, which I never thought would happen. [00:02:38]Swyx: A lot of, yeah, a lot of relevant conversations there. So you were a consultant for a while and then in the magical month of June 1989, you founded both Optimal Decisions and Fastmeal, which I also briefly used. So thank you for that. [00:02:53]Jeremy: Oh, good for you. Yeah. Cause I had read the statistics, which is that like 90% or something of small businesses fail. So I thought if I start two businesses, I have a higher chance. In hindsight, I was thinking of it as some kind of stochastic thing I didn't have control over, but it's a bit odd, but anyway. [00:03:10]Swyx: And then you were president and chief scientist at Kaggle, which obviously is the sort of composition platform of machine learning. And then Enlitic, where you were working on using deep learning to improve medical diagnostics and clinical decisions. Yeah. [00:03:28]Jeremy: I was actually the first company to use deep learning in medicine, so I kind of founded the field. [00:03:33]Swyx: And even now that's still like a pretty early phase. And I actually heard you on your new podcast with Tanish, where you went very, very deep into the stuff, the kind of work that he's doing, such a young prodigy at his age. [00:03:47]Jeremy: Maybe he's too old to be called a prodigy now, ex-prodigy. No, no. [00:03:51]Swyx: I think he still counts. And anyway, just to round out the bio, you have a lot more other credentials, obviously, but most recently you started Fast.ai, which is still, I guess, your primary identity with Rachel Thomas. So welcome. [00:04:05]Jeremy: Yep. [00:04:06]Swyx: Thanks to my wife. Thank you. Yeah. Doing a lot of public service there with getting people involved in AI, and I can't imagine a better way to describe it than fast, fast.ai. You teach people from nothing to stable diffusion in seven weeks or something, and that's amazing. Yeah, yeah. [00:04:22]Jeremy: I mean, it's funny, you know, when we started that, what was that, like 2016 or something, the idea that deep learning was something that you could make more accessible was generally considered stupid. Everybody knew that deep learning was a thing that you got a math or a computer science PhD, you know, there was one of five labs that could give you the appropriate skills and that you would join, yeah, basically from one of those labs, you might be able to write some papers. So yeah, the idea that normal people could use that technology to do good work was considered kind of ridiculous when we started it. And we weren't sure if it was possible either, but we kind of felt like we had to give it a go because the alternative was we were pretty sure that deep learning was on its way to becoming, you know, the most or one of the most, you know, important technologies in human history. And if the only people that could use it were a handful of computer science PhDs, that seemed like A, a big waste and B, kind of dangerous. [00:05:28]Swyx: Yeah. [00:05:29]Alessio: And, you know, well, I just wanted to know one thing on your bio that at Kaggle, you were also the top rank participant in both 2010 and 2011. So sometimes you see a lot of founders running companies that are not really in touch with the problem, but you were clearly building something that you knew a lot about, which is awesome. Talking about deep learning, you created, published a paper on ULM fit, which was kind of the predecessor to multitask learning and a lot of the groundwork that then went to into Transformers. I've read back on the paper and you turned this model, AWD LSTM, which I did the math and it was like 24 to 33 million parameters, depending on what training data set you use today. That's kind of like not even small, it's like super small. What were some of the kind of like contrarian takes that you had at the time and maybe set the stage a little bit for the rest of the audience on what was kind of like the state of the art, so to speak, at the time and what people were working towards? [00:06:32]Jeremy: Yeah, the whole thing was a contrarian take, you know. So okay, so we started Fast.ai, my wife and I, and we thought, yeah, so we're trying to think, okay, how do we make it more accessible? So when we started thinking about it, it was probably 2015 and then 2016, we started doing something about it. Why is it inaccessible? Okay, well, A, no one knows how to do it other than a few number of people. And then when we asked those few number of people, well, how do you actually get good results? They would say like, oh, it's like, you know, a box of tricks that aren't published. So you have to join one of the labs and learn the tricks. So a bunch of unpublished tricks, not much software around, but thankfully there was Theano and rappers and particularly Lasagna, the rapper, but yeah, not much software around, not much in the way of data sets, you know, very hard to get started in terms of the compute. Like how do you get that set up? So yeah, no, everything was kind of inaccessible. And you know, as we started looking into it, we had a key insight, which was like, you know what, most of the compute and data for image recognition, for example, we don't need to do it. You know, there's this thing which nobody knows about, nobody talks about called transfer learning, where you take somebody else's model, where they already figured out like how to detect edges and gradients and corners and text and whatever else, and then you can fine tune it to do the thing you want to do. And we thought that's the key. That's the key to becoming more accessible in terms of compute and data requirements. So when we started Fast.ai, we focused from day one on transfer learning. Lesson one, in fact, was transfer learning, literally lesson one, something not normally even mentioned in, I mean, there wasn't much in the way of courses, you know, the courses out there were PhD programs that had happened to have recorded their lessons and they would rarely mention it at all. We wanted to show how to do four things that seemed really useful. You know, work with vision, work with tables of data, work with kind of recommendation systems and collaborative filtering and work with text, because we felt like those four kind of modalities covered a lot of the stuff that, you know, are useful in real life. And no one was doing anything much useful with text. Everybody was talking about word2vec, you know, like king plus queen minus woman and blah, blah, blah. It was like cool experiments, but nobody's doing anything like useful with it. NLP was all like lemmatization and stop words and topic models and bigrams and SPMs. And it was really academic and not practical. But I mean, to be honest, I've been thinking about this crazy idea for nearly 30 years since I had done cognitive science at university, where we talked a lot about the CELS Chinese room experiment. This idea of like, what if there was somebody that could kind of like, knew all of the symbolic manipulations required to answer questions in Chinese, but they didn't speak Chinese and they were kind of inside a room with no other way to talk to the outside world other than taking in slips of paper with Chinese written on them and then they do all their rules and then they pass back a piece of paper with Chinese back. And this room with a person in is actually fantastically good at answering any question you give them written in Chinese. You know, do they understand Chinese? And is this, you know, something that's intelligently working with Chinese? Ever since that time, I'd say the most thought, to me, the most thoughtful and compelling philosophical response is yes. You know, intuitively it feels like no, because that's just because we can't imagine such a large kind of system. But you know, if it looks like a duck and acts like a duck, it's a duck, you know, or to all intents and purposes. And so I always kind of thought, you know, so this is basically a kind of analysis of the limits of text. And I kind of felt like, yeah, if something could ingest enough text and could use the patterns it saw to then generate text in response to text, it could appear to be intelligent, you know. And whether that means it is intelligent or not is a different discussion and not one I find very interesting. Yeah. And then when I came across neural nets when I was about 20, you know, what I learned about the universal approximation theorem and stuff, and I started thinking like, oh, I wonder if like a neural net could ever get big enough and take in enough data to be a Chinese room experiment. You know, with that background and this kind of like interest in transfer learning, you know, I'd been thinking about this thing for kind of 30 years and I thought like, oh, I wonder if we're there yet, you know, because we have a lot of text. Like I can literally download Wikipedia, which is a lot of text. And I thought, you know, how would something learn to kind of answer questions or, you know, respond to text? And I thought, well, what if we used a language model? So language models are already a thing, you know, they were not a popular or well-known thing, but they were a thing. But language models exist to this idea that you could train a model to fill in the gaps. Or actually in those days it wasn't fill in the gaps, it was finish a string. And in fact, Andrej Karpathy did his fantastic RNN demonstration from this at a similar time where he showed like you can have it ingest Shakespeare and it will generate something that looks a bit like Shakespeare. I thought, okay, so if I do this at a much bigger scale, using all of Wikipedia, what would it need to be able to do to finish a sentence in Wikipedia effectively, to do it quite accurately quite often? I thought, geez, it would actually have to know a lot about the world, you know, it'd have to know that there is a world and that there are objects and that objects relate to each other through time and cause each other to react in ways and that causes proceed effects and that, you know, when there are animals and there are people and that people can be in certain positions during certain timeframes and then you could, you know, all that together, you can then finish a sentence like this was signed into law in 2016 by US President X and it would fill in the gap, you know. So that's why I tried to create what in those days was considered a big language model trained on the entirety on Wikipedia, which is that was, you know, a bit unheard of. And my interest was not in, you know, just having a language model. My interest was in like, what latent capabilities would such a system have that would allow it to finish those kind of sentences? Because I was pretty sure, based on our work with transfer learning and vision, that I could then suck out those latent capabilities by transfer learning, you know, by fine-tuning it on a task data set or whatever. So we generated this three-step system. So step one was train a language model on a big corpus. Step two was fine-tune a language model on a more curated corpus. And step three was further fine-tune that model on a task. And of course, that's what everybody still does today, right? That's what ChatGPT is. And so the first time I tried it within hours, I had a new state-of-the-art academic result on IMDB. And I was like, holy s**t, it does work. And so you asked, to what degree was this kind of like pushing against the established wisdom? You know, every way. Like the reason it took me so long to try it was because I asked all my friends in NLP if this could work. And everybody said, no, it definitely won't work. It wasn't like, oh, maybe. Everybody was like, it definitely won't work. NLP is much more complicated than vision. Language is a much more vastly complicated domain. You know, and you've got problems like the grounding problem. We know from like philosophy and theory of mind that it's actually impossible for it to work. So yeah, so don't waste your time. [00:15:10]Alessio: Jeremy, had people not tried because it was like too complicated to actually get the data and like set up the training? Or like, were people just lazy and kind of like, hey, this is just not going to work? [00:15:20]Jeremy: No, everybody wasn't lazy. So like, so the person I thought at that time who, you know, there were two people I thought at that time, actually, who were the strongest at language models were Stephen Merity and Alec Radford. And at the time I didn't know Alec, but I, after we had both, after I'd released ULM Fit and he had released GPT, I organized a chat for both of us with Kate Metz in the New York Times. And Kate Metz answered, sorry, and Alec answered this question for Kate. And Kate was like, so how did, you know, GPT come about? And he said, well, I was pretty sure that pre-training on a general large corpus wouldn't work. So I hadn't tried it. And then I read ULM Fit and turns out it did work. And so I did it, you know, bigger and it worked even better. And similar with, with Stephen, you know, I asked Stephen Merity, like, why don't we just find, you know, take your AWD-ASTLM and like train it on all of Wikipedia and fine tune it? And he's kind of like, well, I don't think that's going to really lie. Like two years before I did a very popular talk at KDD, the conference where everybody in NLP was in the audience. I recognized half the faces, you know, and I told them all this, I'm sure transfer learning is the key. I'm sure ImageNet, you know, is going to be an NLP thing as well. And, you know, everybody was interested and people asked me questions afterwards and, but not just, yeah, nobody followed up because everybody knew that it didn't work. I mean, even like, so we were scooped a little bit by Dai and Lee, Kwok Lee at Google. They had, they had, I already, I didn't even realize this, which is a bit embarrassing. They had already done a large language model and fine tuned it. But again, they didn't create a general purpose, large language model on a general purpose corpus. They only ever tested a domain specific corpus. And I haven't spoken to Kwok actually about that, but I assume that the reason was the same. It probably just didn't occur to them that the general approach could work. So maybe it was that kind of 30 years of mulling over the, the cell Chinese room experiment that had convinced me that it probably would work. I don't know. Yeah. [00:17:48]Alessio: Interesting. I just dug up Alec announcement tweet from 2018. He said, inspired by Cobe, Elmo, and Yola, I'm fit. We should have a single transformer language model can be fine tuned to a wide variety. It's interesting because, you know, today people think of AI as the leader, kind of kind of like the research lab pushing forward the field. What was that at the time? You know, like kind of like going back five years, people think of it as an overnight success, but obviously it took a while. [00:18:16]Swyx: Yeah. Yeah. [00:18:17]Jeremy: No, I mean, absolutely. And I'll say like, you know, it's interesting that it mentioned Elmo because in some ways that was kind of diametrically opposed to, to ULM fit. You know, there was these kind of like, so there was a lot of, there was a lot of activity at the same time as ULM fits released. So there was, um, so before it, as Brian McCann, I think at Salesforce had come out with this neat model that did a kind of multitask learning, but again, they didn't create a general fine tune language model first. There was Elmo, um, which I think was a lip, you know, actually quite a few months after the first ULM fit example, I think. Um, but yeah, there was a bit of this stuff going on. And the problem was everybody was doing, and particularly after GPT came out, then everybody wanted to focus on zero shot and few shot learning. You know, everybody hated fine tuning. Everybody hated transfer learning. And like, I literally did tours trying to get people to start doing transfer learning and people, you know, nobody was interested, particularly after GPT showed such good results with zero shot and few shot learning. And so I actually feel like we kind of went backwards for years and, and not to be honest, I mean, I'm a bit sad about this now, but I kind of got so disappointed and dissuaded by like, it felt like these bigger lab, much bigger labs, you know, like fast AI had only ever been just me and Rachel were getting all of this attention for an approach I thought was the wrong way to do it. You know, I was convinced was the wrong way to do it. And so, yeah, for years people were really focused on getting better at zero shot and few shots and it wasn't until, you know, this key idea of like, well, let's take the ULM fit approach, but for step two, rather than fine tuning on a kind of a domain corpus, let's fine tune on an instruction corpus. And then in step three, rather than fine tuning on a reasonably specific task classification, let's fine tune on a, on a RLHF task classification. And so that was really, that was really key, you know, so I was kind of like out of the NLP field for a few years there because yeah, it just felt like, I don't know, pushing uphill against this vast tide, which I was convinced was not the right direction, but who's going to listen to me, you know, cause I, as you said, I don't have a PhD, not at a university, or at least I wasn't then. I don't have a big set of computers to fine tune huge transformer models. So yeah, it was definitely difficult. It's always been hard. You know, it's always been hard. Like I've always been somebody who does not want to build stuff on lots of big computers because most people don't have lots of big computers and I hate creating stuff that most people can't use, you know, and also stuff that's created on lots of big computers has always been like much more media friendly. So like, it might seem like a recent thing, but actually throughout my 30 years in data science, the attention's always been on, you know, the big iron results. So when I first started, everybody was talking about data warehouses and it was all about Teradata and it'd be like, oh, this big bank has this huge room full of computers and they have like terabytes of data available, you know, at the press of a button. And yeah, that's always what people want to talk about, what people want to write about. And then of course, students coming out of their PhDs and stuff, that's where they want to go work because that's where they read about. And to me, it's a huge distraction, you know, because like I say, most people don't have unlimited compute and I want to help most people, not the small subset of the most well-off people. [00:22:16]Alessio: That's awesome. And it's great to hear, you do such a great job educating that a lot of times you're not telling your own story, you know? So I love this conversation. And the other thing before we jump into Fast.AI, actually, a lot of people that I know, they run across a new architecture and whatnot, they're like, I got to start a company and raise a bunch of money and do all of this stuff. And say, you were like, I want everybody to have access to this. Why was that the case for you? Was it because you already had a successful venture in like FastMail and you were more interested in that? What was the reasoning? [00:22:52]Jeremy: It's a really good question. So I guess the answer is yes, that's the reason why. So when I was a teenager, I thought it would be really cool to like have my own company. You know, I didn't know the word startup. I didn't know the word entrepreneur. I didn't know the word VC. And I didn't really know what any of those things were really until after we started Kaggle, to be honest. Even the way it started to what we now call startups. I just thought they were just small businesses. You know, they were just companies. So yeah, so those two companies were FastMail and Optimal Decisions. FastMail was the first kind of synchronized email provider for non-businesses. So something you can get your same email at home, on your laptop, at work, on your phone, whatever. And then Optimal Decisions invented a new approach to insurance pricing. Something called profit-optimized insurance pricing. So I saw both of those companies, you know, after 10 years. And at that point, I had achieved the thing that as a teenager I had wanted to do. You know, it took a lot longer than it should have because I spent way longer in management consulting than I should have because I got caught up in that stupid rat race. But, you know, eventually I got there and I remember my mom saying to me, you must be so proud. You know, because she remembered my dream. She's like, you've done it. And I kind of reflected and I was like, I'm not proud at all. You know, like people quite liked FastMail. You know, it's quite nice to have synchronized email. It probably would have happened anyway. Yeah, I'm certainly not proud that I've helped some insurance companies suck more money out of their customers. Yeah, no, I'm not proud. You know, it's actually, I haven't really helped the world very much. You know, maybe in the insurance case I've made it a little bit worse. I don't know. So, yeah, I was determined to not waste more years of my life doing things, working hard to do things which I could not be reasonably sure would have a lot of value. So, you know, I took some time off. I wasn't sure if I'd ever work again, actually. I didn't particularly want to, because it felt like, yeah, it felt like such a disappointment. And, but, you know, and I didn't need to. I had enough money. Like, I wasn't super rich, but I had enough money. I didn't need to work. And I certainly recognized that amongst the other people I knew who had enough money that they didn't need to work, they all worked ridiculously hard, you know, and constantly put themselves in extremely stressful situations. And I thought, I don't want to be one of those idiots who's tied to, you know, buying a bigger plane than the next guy or whatever. You know, Kaggle came along and I mainly kind of did that just because it was fun and interesting to hang out with interesting people. But, you know, with Fast.ai in particular, you know, Rachel and I had a very explicit, you know, long series of conversations over a long period of time about like, well, how can we be the most helpful to society as a whole, and particularly to those people who maybe need more help, you know? And so we definitely saw the world going in a potentially pretty dystopian direction if the world's most powerful technology was controlled by a small group of elites. So we thought, yeah, we should focus on trying to help that not happen. You know, sadly, it looks like it still is likely to happen. But I mean, I feel like we've helped make it a little bit less likely. So we've done our bit. [00:26:39]Swyx: You've shown that it's possible. And I think your constant advocacy, your courses, your research that you publish, you know, just the other day you published a finding on, you know, learning that I think is still something that people are still talking about quite a lot. I think that that is the origin story of a lot of people who are going to be, you know, little Jeremy Howards, furthering your mission with, you know, you don't have to do everything by yourself is what I'm saying. No, definitely. Definitely. [00:27:10]Jeremy: You know, that was a big takeaway from like, analytic was analytic. It definitely felt like we had to do everything ourselves. And I kind of, I wanted to solve medicine. I'll say, yeah, okay, solving medicine is actually quite difficult. And I can't do it on my own. And there's a lot of other things I'd like to solve, and I can't do those either. So that was definitely the other piece was like, yeah, you know, can we create an army of passionate domain experts who can change their little part of the world? And that's definitely happened. Like I find nowadays, at least half the time, probably quite a bit more that I get in contact with somebody who's done really interesting work in some domain. Most of the time I'd say, they say, yeah, I got my start with fast.ai. So it's definitely, I can see that. And I also know from talking to folks at places like Amazon and Adobe and stuff, which, you know, there's lots of alumni there. And they say, oh my God, I got here. And like half of the people are fast.ai alumni. So it's fantastic. [00:28:13]Swyx: Yeah. [00:28:14]Jeremy: Actually, Andre Kapathy grabbed me when I saw him at NeurIPS a few years ago. And he was like, I have to tell you, thanks for the fast.ai courses. When people come to Tesla and they need to know more about deep learning, we always send them to your course. And the OpenAI Scholars Program was doing the same thing. So it's kind of like, yeah, it's had a surprising impact, you know, that's just one of like three things we do is the course, you know. [00:28:40]Swyx: Yes. [00:28:40]Jeremy: And it's only ever been at most two people, either me and Rachel or me and Sylvia nowadays, it's just me. So yeah, I think it shows you don't necessarily need a huge amount of money and a huge team of people to make an impact. [00:28:56]Swyx: Yeah. So just to reintroduce fast.ai for people who may not have dived into it much, there is the courses that you do. There is the library that is very well loved. And I kind of think of it as a nicer layer on top of PyTorch that people should start with by default and use it as the basis for a lot of your courses. And then you have like NBDev, which I don't know, is that the third one? [00:29:27]Jeremy: Oh, so the three areas were research, software, and courses. [00:29:32]Swyx: Oh, sorry. [00:29:32]Jeremy: So then in software, you know, fast.ai is the main thing, but NBDev is not far behind. But then there's also things like FastCore, GHAPI, I mean, dozens of open source projects that I've created and some of them have been pretty popular and some of them are still a little bit hidden, actually. Some of them I should try to do a better job of telling people about. [00:30:01]Swyx: What are you thinking about? Yeah, what's on the course of my way? Oh, I don't know, just like little things. [00:30:04]Jeremy: Like, for example, for working with EC2 and AWS, I created a FastEC2 library, which I think is like way more convenient and nice to use than anything else out there. And it's literally got a whole autocomplete, dynamic autocomplete that works both on the command line and in notebooks that'll like auto-complete your instance names and everything like that. You know, just little things like that. I try to make like, when I work with some domain, I try to make it like, I want to make it as enjoyable as possible for me to do that. So I always try to kind of like, like with GHAPI, for example, I think that GitHub API is incredibly powerful, but I didn't find it good to work with because I didn't particularly like the libraries that are out there. So like GHAPI, like FastEC2, it like autocompletes both at the command line or in a notebook or whatever, like literally the entire GitHub API. The entire thing is like, I think it's like less than 100K of code because it actually, as far as I know, the only one that grabs it directly from the official open API spec that GitHub produces. And like if you're in GitHub and you just type an API, you know, autocomplete API method and hit enter, it prints out the docs with brief docs and then gives you a link to the actual documentation page. You know, GitHub Actions, I can write now in Python, which is just so much easier than writing them in TypeScript and stuff. So, you know, just little things like that. [00:31:40]Swyx: I think that's an approach which more developers took to publish some of their work along the way. You described the third arm of FastAI as research. It's not something I see often. Obviously, you do do some research. And how do you run your research? What are your research interests? [00:31:59]Jeremy: Yeah, so research is what I spend the vast majority of my time on. And the artifacts that come out of that are largely software and courses. You know, so to me, the main artifact shouldn't be papers because papers are things read by a small exclusive group of people. You know, to me, the main artifacts should be like something teaching people, here's how to use this insight and here's software you can use that builds it in. So I think I've only ever done three first-person papers in my life, you know, and none of those are ones I wanted to do. You know, they were all ones that, like, so one was ULM Fit, where Sebastian Ruder reached out to me after seeing the course and said, like, you have to publish this as a paper, you know. And he said, I'll write it. He said, I want to write it because if I do, I can put it on my PhD and that would be great. And it's like, okay, well, I want to help you with your PhD. And that sounds great. So like, you know, one was the masks paper, which just had to exist and nobody else was writing it. And then the third was the Fast.ai library paper, which again, somebody reached out and said, please, please write this. We will waive the fee for the journal and everything and actually help you get it through publishing and stuff. So yeah, so I don't, other than that, I've never written a first author paper. So the research is like, well, so for example, you know, Dawn Bench was a competition, which Stanford ran a few years ago. It was kind of the first big competition of like, who can train neural nets the fastest rather than the most accurate. And specifically it was who can train ImageNet the fastest. And again, this was like one of these things where it was created by necessity. So Google had just released their TPUs. And so I heard from my friends at Google that they had put together this big team to smash Dawn Bench so that they could prove to people that they had to use Google Cloud and use their TPUs and show how good their TPUs were. And we kind of thought, oh s**t, this would be a disaster if they do that, because then everybody's going to be like, oh, deep learning is not accessible. [00:34:20]Swyx: You know, to actually be good at it, [00:34:21]Jeremy: you have to be Google and you have to use special silicon. And so, you know, we only found out about this 10 days before the competition finished. But, you know, we basically got together an emergency bunch of our students and Rachel and I and sat for the next 10 days and just tried to crunch through and try to use all of our best ideas that had come from our research. And so particularly progressive resizing, just basically train mainly on small things, train on non-square things, you know, stuff like that. And so, yeah, we ended up winning, thank God. And so, you know, we turned it around from being like, like, oh s**t, you know, this is going to show that you have to be Google and have TPUs to being like, oh my God, even the little guy can do deep learning. So that's an example of the kind of like research artifacts we do. And yeah, so all of my research is always, how do we do more with less, you know? So how do we get better results with less data, with less compute, with less complexity, with less education, you know, stuff like that. So ULM fits obviously a good example of that. [00:35:37]Swyx: And most recently you published, can LLMs learn from a single example? Maybe could you tell the story a little bit behind that? And maybe that goes a little bit too far into the learning of very low resource, the literature. [00:35:52]Jeremy: Yeah, yeah. So me and my friend, Jono Whittaker, basically had been playing around with this fun Kaggle competition, which is actually still running as we speak, which is, can you create a model which can answer multiple choice questions about anything that's in Wikipedia? And the thing that makes it interesting is that your model has to run on Kaggle within nine hours. And Kaggle's very, very limited. So you've only got 14 gig RAM, only two CPUs, and a small, very old GPU. So this is cool, you know, if you can do well at this, then this is a good example of like, oh, you can do more with less. So yeah, Jono and I were playing around with fine tuning, of course, transfer learning, pre-trained language models. And we saw this, like, so we always, you know, plot our losses as we go. So here's another thing we created. Actually, Sylvain Guuger, when he worked with us, created called fast progress, which is kind of like TQEDM, but we think a lot better. So we look at our fast progress curves, and they kind of go down, down, down, down, down, down, down, a little bit, little bit, little bit. And then suddenly go clunk, and they drop. And then down, down, down, down, down a little bit, and then suddenly clunk, they drop. We're like, what the hell? These clunks are occurring at the end of each epoch. So normally in deep learning, this would be, this is, you know, I've seen this before. It's always been a bug. It's always turned out that like, oh, we accidentally forgot to turn on eval mode during the validation set. So I was actually learning then, or, oh, we accidentally were calculating moving average statistics throughout the epoch. So, you know, so it's recently moving average or whatever. And so we were using Hugging Face Trainer. So, you know, I did not give my friends at Hugging Face the benefit of the doubt. I thought, oh, they've fucked up Hugging Face Trainer, you know, idiots. Well, you'll use the Fast AI Trainer instead. So we switched over to Learner. We still saw the clunks and, you know, that's, yeah, it shouldn't really happen because semantically speaking in the epoch, isn't like, it's not a thing, you know, like nothing happens. Well, nothing's meant to happen when you go from ending one epoch to starting the next one. So there shouldn't be a clunk, you know. So I kind of asked around on the open source discords. That's like, what's going on here? And everybody was just like, oh, that's just what, that's just what these training curves look like. Those all look like that. Don't worry about it. And I was like, oh, are you all using Trainer? Yes. Oh, well, there must be some bug with Trainer. And I was like, well, we also saw it in Learner [00:38:42]Swyx: and somebody else is like, [00:38:42]Jeremy: no, we've got our own Trainer. We get it as well. They're just like, don't worry about it. It's just something we see. It's just normal. [00:38:48]Swyx: I can't do that. [00:38:49]Jeremy: I can't just be like, here's something that's like in the previous 30 years of neural networks, nobody ever saw it. And now suddenly we see it. [00:38:57]Swyx: So don't worry about it. [00:38:59]Jeremy: I just, I have to know why. [00:39:01]Swyx: Can I clarify? This is, was everyone that you're talking to, were they all seeing it for the same dataset or in different datasets? [00:39:08]Jeremy: Different datasets, different Trainers. They're just like, no, this is just, this is just what it looks like when you fine tune language models. Don't worry about it. You know, I hadn't seen it before, but I'd been kind of like, as I say, I, you know, I kept working on them for a couple of years after ULM fit. And then I kind of moved on to other things, partly out of frustration. So I hadn't been fine tuning, you know, I mean, Lama's only been out for a few months, right? But I wasn't one of those people who jumped straight into it, you know? So I was relatively new to the kind of Lama fine tuning world, where else these guys had been, you know, doing it since day one. [00:39:49]Swyx: It was only a few months ago, [00:39:51]Jeremy: but it's still quite a bit of time. So, so yeah, they're just like, no, this is all what we see. [00:39:56]Swyx: Don't worry about it. [00:39:56]Jeremy: So yeah, I, I've got a very kind of like, I don't know, I've just got this brain where I have to know why things are. And so I kind of, I ask people like, well, why, why do you think it's happening? And they'd be like, oh, it would pretty obviously, cause it's like memorize the data set. It's just like, that can't be right. It's only seen it once. Like, look at this, the loss has dropped by 0.3, 0.3, which is like, basically it knows the answer. And like, no, no, it's just, it is, it's just memorize the data set. So yeah. So look, Jono and I did not discover this and Jono and I did not come up with a hypothesis. You know, I guess we were just the ones, I guess, who had been around for long enough to recognize that like, this, this isn't how it's meant to work. And so we, we, you know, and so we went back and like, okay, let's just run some experiments, you know, cause nobody seems to have actually published anything about this. [00:40:51]Well, not quite true.Some people had published things, but nobody ever actually stepped back and said like, what the hell, you know, how can this be possible? Is it possible? Is this what's happening? And so, yeah, we created a bunch of experiments where we basically predicted ahead of time. It's like, okay, if this hypothesis is correct, that it's memorized in the training set, then we ought to see blah, under conditions, blah, but not under these conditions. And so we ran a bunch of experiments and all of them supported the hypothesis that it was memorizing the data set in a single thing at once. And it's a pretty big data set, you know, which in hindsight, it's not totally surprising because the theory, remember, of the ULMFiT theory was like, well, it's kind of creating all these latent capabilities to make it easier for it to predict the next token. So if it's got all this kind of latent capability, it ought to also be really good at compressing new tokens because it can immediately recognize it as like, oh, that's just a version of this. So it's not so crazy, you know, but it is, it requires us to rethink everything because like, and nobody knows like, okay, so how do we fine tune these things? Because like, it doesn't even matter. Like maybe it's fine. Like maybe it's fine that it's memorized the data set after one go and you do a second go and okay, the validation loss is terrible because it's now really overconfident. [00:42:20]Swyx: That's fine. [00:42:22]Jeremy: Don't, you know, don't, I keep telling people, don't track validation loss, track validation accuracy because at least that will still be useful. Just another thing that's got lost since ULMFiT, nobody tracks accuracy of language models anymore. But you know, it'll still keep learning and it does, it does keep improving. But is it worse? You know, like, is it like, now that it's kind of memorized it, it's probably getting a less strong signal, you know, I don't know. So I still don't know how to fine tune language models properly and I haven't found anybody who feels like they do, like nobody really knows whether this memorization thing is, it's probably a feature in some ways. It's probably some things that you can do usefully with it. It's probably, yeah, I have a feeling it's messing up training dynamics as well. [00:43:13]Swyx: And does it come at the cost of catastrophic forgetting as well, right? Like, which is the other side of the coin. [00:43:18]Jeremy: It does to some extent, like we know it does, like look at Code Llama, for example. So Code Llama was a, I think it was like a 500 billion token fine tuning of Llama 2 using code. And also pros about code that Meta did. And honestly, they kind of blew it because Code Llama is good at coding, but it's bad at everything else, you know, and it used to be good. Yeah, I was pretty sure it was like, before they released it, me and lots of people in the open source discords were like, oh my God, you know, we know this is coming, Jan Lukinsk saying it's coming. I hope they kept at least like 50% non-code data because otherwise it's going to forget everything else. And they didn't, only like 0.3% of their epochs were non-code data. So it did, it forgot everything else. So now it's good at code and it's bad at everything else. So we definitely have catastrophic forgetting. It's fixable, just somebody has to do, you know, somebody has to spend their time training a model on a good mix of data. Like, so, okay, so here's the thing. Even though I originally created three-step approach that everybody now does, my view is it's actually wrong and we shouldn't use it. [00:44:36]Jeremy: And that's because people are using it in a way different to why I created it. You know, I created it thinking the task-specific models would be more specific. You know, it's like, oh, this is like a sentiment classifier as an example of a task, you know, but the tasks now are like a, you know, RLHF, which is basically like answer questions that make people feel happy about your answer. So that's a much more general task and it's a really cool approach. And so we see, for example, RLHF also breaks models like, you know, like GPT-4, RLHDEFT, we know from kind of the work that Microsoft did, you know, the pre, the earlier, less aligned version was better. And these are all kind of examples of catastrophic forgetting. And so to me, the right way to do this is to fine-tune language models, is to actually throw away the idea of fine-tuning. There's no such thing. There's only continued pre-training. And pre-training is something where from the very start, you try to include all the kinds of data that you care about, all the kinds of problems that you care about, instructions, exercises, code, general purpose document completion, whatever. And then as you train, you gradually curate that, you know, you gradually make that higher and higher quality and more and more specific to the kinds of tasks you want it to do. But you never throw away any data. You always keep all of the data types there in reasonably high quantities. You know, maybe the quality filter, you stop training on low quality data, because that's probably fine to forget how to write badly, maybe. So yeah, that's now my view, is I think ULM fit is the wrong approach. And that's why we're seeing a lot of these, you know, so-called alignment tacks and this view of like, oh, a model can't both code and do other things. And, you know, I think it's actually because people are training them wrong. [00:46:47]Swyx: Yeah, well, I think you have a clear [00:46:51]Alessio: anti-laziness approach. I think other people are not as good hearted, you know, they're like, [00:46:57]Swyx: hey, they told me this thing works. [00:46:59]Alessio: And if I release a model this way, people will appreciate it, I'll get promoted and I'll kind of make more money. [00:47:06]Jeremy: Yeah, and it's not just money. It's like, this is how citations work most badly, you know, so if you want to get cited, you need to write a paper that people in your field recognize as an advancement on things that we know are good. And so we've seen this happen again and again. So like I say, like zero shot and few shot learning, everybody was writing about that. Or, you know, with image generation, everybody just was writing about GANs, you know, and I was trying to say like, no, GANs are not the right approach. You know, and I showed again through research that we demonstrated in our videos that you can do better than GANs, much faster and with much less data. And nobody cared because again, like if you want to get published, you write a GAN paper that slightly improves this part of GANs and this tiny field, you'll get published, you know. So it's, yeah, it's not set up for real innovation. It's, you know, again, it's really helpful for me, you know, I have my own research lab with nobody telling me what to do and I don't even publish. So it doesn't matter if I get citations. And so I just write what I think actually matters. I wish there was, and, you know, and actually places like OpenAI, you know, the researchers there can do that as well. It's a shame, you know, I wish there was more academic, open venues in which people can focus on like genuine innovation. [00:48:38]Swyx: Twitter, which is unironically has become a little bit of that forum. I wanted to follow up on one thing that you mentioned, which is that you checked around the open source discords. I don't know if it's too, I don't know if it's a pusher to ask like what discords are lively or useful right now. I think that something I definitely felt like I missed out on was the early days of Luther AI, which is a very hard bit. And, you know, like what is the new Luther? And you actually shouted out the alignment lab AI discord in your blog post. And that was the first time I even knew, like I saw them on Twitter, never knew they had a discord, never knew that there was actually substantive discussions going on in there and that you were an active member of it. Okay, yeah. [00:49:23]Jeremy: And then even then, if you do know about that and you go there, it'll look like it's totally dead. And that's because unfortunately, nearly all the discords, nearly all of the conversation happens in private channels. You know, and that's, I guess. [00:49:35]Swyx: How does someone get into that world? Because it's obviously very, very instructive, right? [00:49:42]Jeremy: You could just come to the first AI discord, which I'll be honest with you, it's less bustling than some of the others, but it's not terrible. And so like, at least, to be fair, one of Emma's bustling channels is private. [00:49:57]Swyx: I guess. [00:49:59]Jeremy: So I'm just thinking. [00:50:01]Swyx: It's just the nature of quality discussion, right? Yeah, I guess when I think about it, [00:50:05]Jeremy: I didn't have any private discussions on our discord for years, but there was a lot of people who came in with like, oh, I just had this amazing idea for AGI. If you just thought about like, if you imagine that AI is a brain, then we, you know, this just, I don't want to talk about it. You know, I don't want to like, you don't want to be dismissive or whatever. And it's like, oh, well, that's an interesting comment, but maybe you should like, try training some models first to see if that aligns with your intuition. Like, oh, but how could I possibly learn? It's like, well, we have a course, just actually spend time learning. Like, you know, anyway. And there's like, okay, I know the people who always have good answers there. And so I created a private channel and put them all in it. And I got to admit, that's where I post more often because there's much less, you know, flight of fancy views about how we could solve AGI, blah, blah, blah. So there is a bit of that. But having said that, like, I think the bar is pretty low. Like if you join a Discord and you can hit the like participants or community or whatever button, you can see who's in it. And then you'll see at the top, who the admins or moderators or people in the dev role are. And just DM one of them and say like, oh, here's my GitHub. Well, here's some blog posts I wrote. You know, I'm interested in talking about this, you know, can I join the private channels? And I've never heard of anybody saying no. I will say, you know, Alutha's all pretty open. So you can do the Alutha Discord still. You know, one problem with the Alutha Discord is it's been going on for so long that it's like, it's very inside baseball. It's quite hard to get started. Yeah. Carpa AI looks, I think it's all open. That's just less stability. That's more accessible. [00:52:03]Swyx: Yeah. [00:52:04]Jeremy: There's also just recently, now it's research that does like the Hermes models and data set just opened. They've got some private channels, but it's pretty open, I think. You mentioned Alignment Lab, that one it's all the interesting stuff is on private channels. So just ask. If you know me, ask me, cause I've got admin on that one. There's also, yeah, OS Skunkworks, OS Skunkworks AI is a good Discord, which I think it's open. So yeah, they're all pretty good. [00:52:40]Swyx: I don't want you to leak any, you know, Discords that don't want any publicity, but this is all helpful. [00:52:46]Jeremy: We all want people, like we all want people. [00:52:49]Swyx: We just want people who like, [00:52:51]Jeremy: want to build stuff, rather than people who, and like, it's fine to not know anything as well, but if you don't know anything, but you want to tell everybody else what to do and how to do it, that's annoying. If you don't know anything and want to be told like, here's a really small kind of task that as somebody who doesn't know anything is going to take you a really long time to do, but it would still be helpful. Then, and then you go and do it. That would be great. The truth is, yeah, [00:53:19]Swyx: like, I don't know, [00:53:20]Jeremy: maybe 5% of people who come in with great enthusiasm and saying that they want to learn and they'll do anything. [00:53:25]Swyx: And then somebody says like, [00:53:25]Jeremy: okay, here's some work you can do. Almost nobody does that work. So if you're somebody who actually does the work and follows up, you will massively stand out. That's an extreme rarity. And everybody will then want to help you do more work. [00:53:41]Swyx: So yeah. [00:53:41]Jeremy: So just, yeah, just do work and people will want to support you. [00:53:47]Alessio: Our Discord used to be referral only for a long time. We didn't have a public invite and then we opened it and they're kind of like channel gating. Yeah. A lot of people just want to do, I remember it used to be like, you know, a forum moderator. [00:54:00]Swyx: It's like people just want to do [00:54:01]Alessio: like drive-by posting, [00:54:03]Swyx: you know, and like, [00:54:03]Alessio: they don't want to help the community. They just want to get their question answered. [00:54:07]Jeremy: I mean, the funny thing is our forum community does not have any of that garbage. You know, there's something specific about the low latency thing where people like expect an instant answer. And yeah, we're all somehow in a forum thread where they know it's like there forever. People are a bit more thoughtful, but then the forums are less active than they used to be because Discord has got more popular, you know? So it's all a bit of a compromise, you know, running a healthy community is, yeah, it's always a bit of a challenge. All right, we got so many more things [00:54:47]Alessio: we want to dive in, but I don't want to keep you here for hours. [00:54:50]Swyx: This is not the Lex Friedman podcast [00:54:52]Alessio: we always like to say. One topic I would love to maybe chat a bit about is Mojo, modular, you know, CrystalLiner, not many of you on the podcast. So we want to spend a little time there. You recently did a hacker's guide to language models and you ran through everything from quantized model to like smaller models, larger models, and all of that. But obviously modular is taking its own approach. Yeah, what got you excited? I know you and Chris have been talking about this for like years and a lot of the ideas you had, so. [00:55:23]Jeremy: Yeah, yeah, yeah, yeah, no, absolutely. So I met Chris, I think it was at the first TensorFlow Dev Summit. And I don't think he had even like, I'm not sure if he'd even officially started his employment with Google at that point. So I don't know, you know, certainly nothing had been mentioned. So I, you know, I admired him from afar with LLVM and Swift and whatever. And so I saw him walk into the courtyard at Google. It's just like, oh s**t, man, that's Chris Latner. I wonder if he would lower his standards enough to talk to me. Well, worth a try. So I caught up my courage because like nobody was talking to him. He looked a bit lost and I wandered over and it's like, oh, you're Chris Latner, right? It's like, what are you doing here? What are you doing here? And I was like, yeah, yeah, yeah. It's like, oh, I'm Jeremy Howard. It's like, oh, do you do some of this AI stuff? And I was like, yeah, yeah, I like this AI stuff. Are you doing AI stuff? It's like, well, I'm thinking about starting to do some AI stuff. Yeah, I think it's going to be cool. And it's like, wow. So like, I spent the next half hour just basically brain dumping all the ways in which AI was stupid to him. And he listened patiently. And I thought he probably wasn't even remember or care or whatever. But yeah, then I kind of like, I guess I re-caught up with him a few months later. And it's like, I've been thinking about everything you said in that conversation. And he like narrated back his response to every part of it, projects he was planning to do. And it's just like, oh, this dude follows up. Holy s**t. And I was like, wow, okay. And he was like, yeah, so we're going to create this new thing called Swift for TensorFlow. And it's going to be like, it's going to be a compiler with auto differentiation built in. And blah, blah, blah. And I was like, why would that help? [00:57:10]Swyx: You know, why would you? [00:57:10]Jeremy: And he was like, okay, with a compiler during the forward pass, you don't have to worry about saving context, you know, because a lot will be optimized in the backward. But I was like, oh my God. Because I didn't really know much about compilers. You know, I spent enough to kind of like, understand the ideas, but it hadn't occurred to me that a compiler basically solves a lot of the problems we have as end users. I was like, wow, that's amazing. Okay, you do know, right, that nobody's going to use this unless it's like usable. It's like, yeah, I know, right. So I was thinking you should create like a fast AI for this. So, okay, but I don't even know Swift. And he was like, well, why don't you start learning it? And if you have any questions, ask me. It's just like, holy s**t. Like, not only has Chris Latner lowered his standards enough to talk to me, but he's offering me personal tutoring on the programming language that he made. So I was just like, I'm not g
In this supper club episode of Syntax, Wes and Scott talk with Chris Lattner about Mojo, a new programming language for AI developers. Should developers learn Python? Where does Mojo run? What is Chris excited about in AI's future? Show Notes 00:31 Welcome 01:05 Introducing Chris Lattner Chris Lattner's Homepage Chris Lattner on Wikipedia Chris Lattner on GitHub Chris Lattner on Twitter Modular (@Modular_AI) / X Modular: AI development starts here Swift.org - Welcome to Swift.org 03:50 What's the history behind the hardware? 08:10 What's the difference between a compiled language vs an interpreted language? 12:13 Is Mojo a programming language? Mojo
AI Hustle: News on Open AI, ChatGPT, Midjourney, NVIDIA, Anthropic, Open Source LLMs
Join us for an exclusive conversation with Chris Lattner, the CEO of Modular, as we dive deep into their recent achievement of securing $100 million in funding to reshape AI infrastructure for developers. Explore the innovative solutions that Modular is bringing to the table, promising to streamline and enhance the AI development process. Tune in to discover how this significant investment will impact the future of AI technology and its accessibility for developers worldwide. Get on the AI Box Waitlist: https://AIBox.ai/Join our ChatGPT Community: https://www.facebook.com/groups/739308654562189/Follow me on Twitter: https://twitter.com/jaeden_ai
This Week in Startups is brought to you by… Roots. Invest in the only real estate investment trust that creates wealth for you and its residents at https://investwithroots.com/TWIST Supergut is the easiest and tastiest way clinically-proven to regulate digestion, curb cravings, and boost energy. Get 30% off their delicious shakes, bars, and fiber mix at https://Supergut.com with code TWIST. LinkedIn Marketing. To redeem a $100 LinkedIn ad credit and launch your first campaign, go to https://linkedin.com/thisweekinstartups * Today's show: Modular CEO Chris Lattner joins Jason to discuss the process of building LLMs (8:14), what caused Nvidia to be entrenched in machine learning today (35:37), the AI wrapper debate (41:44), and much more! * Time stamps: (00:00) Modular CEO Chris Lattner joins Jason (2:24) Where hardware and optimization stand today (8:14) What goes into deploying and distributing an AI model into a product (10:32) Roots - Head to https://investwithroots.com/TWIST to sign up and start investing today! (12:02) Why companies make their own machine-learning software (14:32) Nvidia's outlook on what Modular is building (18:46) Chris's time at Apple (20:05) Strategies for reducing complexity (22:53) Awareness of underlying complexities in the technology stack (25:14) Supergut - Get 30% off with code TWIST at https://supergut.com (26:46) What it will look like in five to ten years; Increase consumption by creating new categories (31:29) The open-source community; Risk V and Arm (34:15) LinkedIn Marketing - Get a $100 LinkedIn ad credit at https://linkedin.com/thisweekinstartups (35:37) How Nvidia secured its position (38:21) The AlexNet moment (41:44) The AI wrapper debate (44:32) OpenAI moving from non-profit to profit and open to closed-system (46:32) The lack of programmers and the ability to do more with less (52:09) Modular Mojo and other developments * Check out Modular: https://www.modular.com/ FOLLOW Chris: https://twitter.com/clattner_llvm * Read LAUNCH Fund 4 Deal Memo: https://www.launch.co/four Apply for Funding: https://www.launch.co/apply Buy ANGEL: https://www.angelthebook.com Great recent interviews: Steve Huffman, Brian Chesky, Aaron Levie, Sophia Amoruso, Reid Hoffman, Frank Slootman, Billy McFarland, PrayingForExits, Jenny Lefcourt Check out Jason's suite of newsletters: https://substack.com/@calacanis * Follow Jason: Twitter: https://twitter.com/jason Instagram: https://www.instagram.com/jason LinkedIn: https://www.linkedin.com/in/jasoncalacanis * Follow TWiST: Substack: https://twistartups.substack.com Twitter: https://twitter.com/TWiStartups YouTube: https://www.youtube.com/thisweekin * Subscribe to the Founder University Podcast: https://www.founder.university/podcast
Want to help define the AI Engineer stack? Have opinions on the top tools, communities and builders? We're collaborating with friends at Amplify to launch the first State of AI Engineering survey! Please fill it out (and tell your friends)!If AI is so important, why is its software so bad?This was the motivating question for Chris Lattner as he reconnected with his product counterpart on Tensorflow, Tim Davis, and started working on a modular solution to the problem of sprawling, monolithic, fragmented platforms in AI development. They announced a $30m seed in 2022 and, following their successful double launch of Modular/Mojo
AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning
In this episode, we dive into the story of Modular CEO Chris Lattner and his journey to founding Modular which is aimed at fixing AI infrastructure for developers. We explore the challenges in the current AI landscape and how Modular's solutions could revolutionize the way developers interact with AI technologies. Get on the AI Box Waitlist: https://AIBox.ai/ Facebook Community: https://www.facebook.com/groups/739308654562189/ Discord Community: https://aibox.ai/discord Follow me on X: https://twitter.com/jaeden_ai
Hey ya'll, welcome to yet another ThursdAI, this is Alex coming at you every ThursdAI, including a live recording this time! Which was incredible, we chatted about Falcon 180B,had a great interview in the end with 3 authors of the YaRN scaling paper and LLongMa 128K context, had 3 breaking news! in the middle, MOJO
Zephiriel et Alex' partent pour une enquête En Eaux troubles. En eaux troubles Par Alexander Krys, Christoph Kossendey, Denis Terenichev, Ekaterina Terenichev & Georgij Shugol Illustré par Chris Lattner, Federico Meloni & Yann Valeani Édité par Origames De 1 à 6 joueuses Pour 14 ans et + Pour environ 90 minutes Description : Qu'est-ce qui pourrait pousser quelqu'un à assassiner un joueur de football ? Quand celui-ci pèse plusieurs millions d'euros, ce ne sont pas les raisons qui manquent : corruption, jalousie, fans mécontents… Emission présentée par Alex & Zephiriel Générique par Adrien Larouzée Twitter @ledefausse Instagram Le Dé Faussé Facebook Le Dé Faussé Envie de nous soutenir ? Vous pouvez, si vous le souhaitez, grâce au Patreon de notre collectif, le Vaisseau Hyper Sensas ! patreon.com/vaisseauhypersensas Découvrez également notre site vaisseauhypersensas.fr Rejoignez nous sur Discord! https://discord.gg/uGxNp6n
Brett Cannon (our unofficial ambassador to the Python community) is here to help alleviate our pip install anxiety. Along the way, we ask him about Python 4, removing the GIL, what he thinks about Chris Lattner's Mojo project, Rust in the Python world & way more (of course).
Brett Cannon (our unofficial ambassador to the Python community) is here to help alleviate our pip install anxiety. Along the way, we ask him about Python 4, removing the GIL, what he thinks about Chris Lattner's Mojo project, Rust in the Python world & way more (of course).
We are now launching our dedicated new YouTube and Twitter! Any help in amplifying our podcast would be greatly appreciated, and of course, tell your friends! Notable followon discussions collected on Twitter, Reddit, Reddit, Reddit, HN, and HN. Please don't obsess too much over the GPT4 discussion as it is mostly rumor; we spent much more time on tinybox/tinygrad on which George is the foremost authority!We are excited to share the world's first interview with George Hotz on the tiny corp!If you don't know George, he was the first person to unlock the iPhone, jailbreak the PS3, went on to start Comma.ai, and briefly “interned” at the Elon Musk-run Twitter. Tinycorp is the company behind the deep learning framework tinygrad, as well as the recently announced tinybox, a new $15,000 “luxury AI computer” aimed at local model training and inference, aka your “personal compute cluster”:* 738 FP16 TFLOPS* 144 GB GPU RAM* 5.76 TB/s RAM bandwidth* 30 GB/s model load bandwidth (big llama loads in around 4 seconds)* AMD EPYC CPU* 1600W (one 120V outlet)* Runs 65B FP16 LLaMA out of the box (using tinygrad, subject to software development risks)(In the episode, we also talked about the future of the tinybox as the intelligence center of every home that will help run models, at-home robots, and more. Make sure to check the timestamps
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
Today we're joined by Chris Lattner, Co-Founder and CEO of Modular. In our conversation with Chris, we discuss Mojo, a new programming language for AI developers. Mojo is unique in this space and simplifies things by making the entire stack accessible and understandable to people who are not compiler engineers. It also offers Python programmers the ability to make it high-performance and capable of running accelerators, making it more accessible to more people and researchers. We discuss the relationship between the Modular Engine and Mojo, the challenge of packaging Python, particularly when incorporating C code, and how Mojo aims to solve these problems to make the AI stack more dependable. The complete show notes for this episode can be found at twimlai.com/go/634
"These contributions were pivotal in the image generation space, setting Stable Diffusion on a different path from Dall-E. Having an open model led to product integrations, marketplaces, user interfaces, and innovations that didn't happen for Dall-E. The effect was palpable: rapid domination in terms of cultural impact vs the OpenAI solution, which became increasingly irrelevant. Whether the same thing will happen for LLMs remains to be seen, but the broad structural elements are the same." ~ Anonymous Google Employee While I wasn't sure whether I would bring the "read" format to this podcast, there was just too much great material to cover and I felt I would do a disservice if I didn't make it available for the audience who wants to dive into this stuff with me fully, rather than be satisfied with a summary. So I felt the best option for a flagship read, was the article that finally tipped me over the edge to start Ai Unchained. A leaked document from a Google employee seeing the trends and compounding effects of the open source Ai movement, titled "We Have No Moat, and Neither Does OpenAI." Get ready for a great read, and the shows first Guy's Take... To dive deeper into the links provided in the read Google "We Have No Moat, And Neither Does (Link: http://tinyurl.com/2t28ye9k) Links for Ai tools and other content mentioned in the show Chris Lattner on Lex (Link: http://tinyurl.com/5xw4txun) Modular announces Mojo (Link: https://www.modular.com/) RunwayML - Text2video (Link: https://runwayml.com/) Host Links Guy on Nostr (Link: https://tinyurl.com/yc376bff) Guy on X (Link: https://twitter.com/theguyswann) Bitcoin Audible on X (Link: https://twitter.com/BitcoinAudible) Check out our awesome sponsors! Get 9% off the COLDCARD with code BITCOINAUDIBLE (Link: bitcoinaudible.com/coldcard) Swan: The best way to buy, learn, and earn #Bitcoin (Link: https://swanbitcoin.com)
Chris Lattner is a legendary software and hardware engineer, leading projects at Apple, Tesla, Google, SiFive, and Modular AI, including the development of Swift, LLVM, Clang, MLIR, CIRCT, TPUs, and Mojo. Please support this podcast by checking out our sponsors: - iHerb: https://lexfridman.com/iherb and use code LEX to get 22% off your order - Numerai: https://numer.ai/lex - InsideTracker: https://insidetracker.com/lex to get 20% off EPISODE LINKS: Chris's Twitter: https://twitter.com/clattner_llvm Chris's Website: http://nondot.org/sabre/ Mojo programming language: https://www.modular.com/mojo Modular AI: https://modular.com/ PODCAST INFO: Podcast website: https://lexfridman.com/podcast Apple Podcasts: https://apple.co/2lwqZIr Spotify: https://spoti.fi/2nEwCF8 RSS: https://lexfridman.com/feed/podcast/ YouTube Full Episodes: https://youtube.com/lexfridman YouTube Clips: https://youtube.com/lexclips SUPPORT & CONNECT: - Check out the sponsors above, it's the best way to support this podcast - Support on Patreon: https://www.patreon.com/lexfridman - Twitter: https://twitter.com/lexfridman - Instagram: https://www.instagram.com/lexfridman - LinkedIn: https://www.linkedin.com/in/lexfridman - Facebook: https://www.facebook.com/lexfridman - Medium: https://medium.com/@lexfridman OUTLINE: Here's the timestamps for the episode. On some podcast players you should be able to click the timestamp to jump to that time. (00:00) - Introduction (06:38) - Mojo programming language (16:55) - Code indentation (25:22) - The power of autotuning (35:12) - Typed programming languages (51:56) - Immutability (1:04:14) - Distributed deployment (1:38:41) - Mojo vs CPython (1:54:30) - Guido van Rossum (2:01:31) - Mojo vs PyTorch vs TensorFlow (2:04:55) - Swift programming language (2:10:27) - Julia programming language (2:15:32) - Switching programming languages (2:24:58) - Mojo playground (2:29:48) - Jeremy Howard (2:40:34) - Function overloading (2:48:59) - Error vs Exception (2:56:39) - Mojo roadmap (3:09:41) - Building a company (3:21:27) - ChatGPT (3:27:50) - Danger of AI (3:31:44) - Future of programming (3:35:01) - Advice for young people
Якщо Джеффрі Хінтон асоціюється у тебе не з Грою престолів чи Періс Хілтон, то 88 епізод Pi Tech Podcast буде тобі особливо цікавим. Павло та Євген поговорили про те, що пан Хінтон йде з Google, що за нову мову розробив Кріс Латтнер та чи норм Passkey замість паролів. 00:20 — анонс випуску01:26 — Passkey замість паролів — норм?17:58 — нова мова для штучного інтелекту від Кріса Латтнера32:22 — Джеффрі Хінтон з Google попереджає про небезпеку ШІ43:42 — в Європі не вистачає роботи для європейців Не забудь підписатись на Pi Tech, аби не пропустити новий випуск наступного тижня!
Mojo, un revolucionario lenguaje de programación presentado por Modular.ai, una startup confundada por Chris Lattner, creador de Swift. Diseñado como super clase de Python pero para superar las limitaciones de este, Mojo ofrece un rendimiento excepcional gracias a su compilación de código y capacidad para trabajar en multihilo. Con una infraestructura de compilación llamada MLIR, Mojo puede adaptarse eficientemente a cualquier hardware y ejecutar tareas en paralelo. ¿Lo mejor de todo? Mojo es hasta 35.000 veces más rápido que Python en ciertos algoritmos y se integra sin problemas con todo el ecosistema de Python. Analicemos este y su importancia. Descubre nuestro canal de Twitch en: twitch.tv/applecoding. Descubre nuestras ofertas para oyentes: - Cursos en Udemy (con código de oferta) - Apple Coding Academy - Suscríbete a Apple Coding en nuestro Patreon. - Canal de Telegram de Swift. Acceso al canal. --------------- Consigue las camisetas oficiales de Apple Coding con los logos de Swift y Apple Coding así como todo tipo de merchadising como tazas o fundas. - Tienda de merchandising de Apple Coding. --------------- Tema musical: "Final Frontier", compuesto por Thomas Bergensen. Usado con permisos de fair use. Escúchalo en Apple Music o Spotify.
AI Unraveled: Latest AI News & Trends, Master GPT, Gemini, Generative AI, LLMs, Prompting, GPT Store
First up, OpenAI's losses doubled to $540 million as it developed ChatGPT. AI development is becoming incredibly expensive, with big companies like Microsoft potentially benefiting the most from this arms race. Microsoft's recent $10 billion investment in OpenAI entitles them to a significant share of the company's profits.AI pioneer Geoffrey Hinton suggests that AI is a new form of intelligence unlike our own. MIT researchers have developed a machine-learning method that detects internal structures, voids, and cracks inside materials based on indirect measurements at boundaries or interfaces.Microsoft Bing Chat, a new search and chat platform, has reached over 100 million daily active users, changing the way we search the web.The White House has announced a $140 million AI research center to develop guidelines and regulations for government agencies.Compiler expert Chris Lattner has developed a new AI programming language called "Mojo," which offers compatibility with Python and a speed boost of 35,000 times, potentially revolutionizing AI development.Microsoft is reportedly providing financial assistance to AMD in the development of an AI chip codenamed Athena.DeepMind's CEO has claimed that General Artificial Intelligence (AGI) could become a reality in just a few years.AI, Machine Learning Improve Patient Care, Can Empower Health Care Professionals: There are still significant unresolved issues in artificial intelligence and machine learning, which must be addressed before they can be safely and effectively used more broadly in medicine.Cracking the Code of Sound Recognition: Machine Learning Model Reveals How Our Brains Understand Communication Sounds. Researchers developed a machine learning model that mimics how the brains of social animals distinguish between sound categories, like mating, food or danger, and react accordingly.The algorithm helps explain how our brains recognize the meaning of communication sounds, such as spoken words or animal calls, providing crucial insight into the intricacies of neuronal processing.Lastly, the UK antitrust regulator is reviewing the AI Guidelines for Competition and Consumer Protection (AIGC) with results expected in September.That's all for this quick update on the latest trends in AI for May 2023. Stay tuned for more news and developments in the world of artificial intelligence!Attention AI Unraveled podcast listeners!Are you eager to expand your understanding of artificial intelligence? Look no further than the essential book "AI Unraveled: Demystifying Frequently Asked Questions on Artificial Intelligence," now available on Amazon! This engaging read answers your burning questions and provides valuable insights into the captivating world of AI. Don't miss this opportunity to elevate your knowledge and stay ahead of the curve. Get your copy on Amazon today!On today's episode, we discussed OpenAI's losses that doubled to $540 million as it developed ChatGPT, as well as machine-learning method that detects internal structures, voids, and cracks inside materials based on indirect measurements at boundaries or interfaces.
It's now almost 6 months since Google declared Code Red, and the results — Jeff Dean's recap of 2022 achievements and a mass exodus of the top research talent that contributed to it in January, Bard's rushed launch in Feb, a slick video showing Google Workspace AI features and confusing doubly linked blogposts about PaLM API in March, and merging Google Brain and DeepMind in April — have not been inspiring. Google's internal panic is in full display now with the surfacing of a well written memo, written by software engineer Luke Sernau written in early April, revealing internal distress not seen since Steve Yegge's infamous Google Platforms Rant. Similar to 2011, the company's response to an external challenge has been to mobilize the entire company to go all-in on a (from the outside) vague vision.Google's misfortunes are well understood by now, but the last paragraph of the memo: “We have no moat, and neither does OpenAI”, was a banger of a mic drop.Combine this with news this morning that OpenAI lost $540m last year and will need as much as $100b more funding (after the complex $10b Microsoft deal in Jan), and the memo's assertion that both Google and OpenAI have “no moat” against the mighty open source horde have gained some credibility in the past 24 hours.Many are criticising this memo privately:* A CEO commented to me yesterday that Luke Sernau does not seem to work in AI related parts of Google and “software engineers don't understand moats”. * Emad Mostaque, himself a perma-champion of open source and open models, has repeatedly stated that “Closed models will always outperform open models” because closed models can just wrap open ones.* Emad has also commented on the moats he does see: “Unique usage data, Unique content, Unique talent, Unique product, Unique business model”, most of which Google does have, and OpenAI less so (though it is winning on the talent front)* Sam Altman famously said that “very few to no one is Silicon Valley has a moat - not even Facebook” (implying that moats don't actually matter, and you should spend your time thinking about more important things)* It is not actually clear what race the memo thinks Google and OpenAI are in vs Open Source. Neither are particularly concerned about running models locally on phones, and they are perfectly happy to let “a crazy European alpha male” run the last mile for them while they build actually monetizable cloud infrastructure.However moats are of intense interest by everybody keen on productized AI, cropping up in every Harvey, Jasper, and general AI startup vs incumbent debate. It is also interesting to take the memo at face value and discuss the searing hot pace of AI progress in open source. We hosted this discussion yesterday with Simon Willison, who apart from being an incredible communicator also wrote a great recap of the No Moat memo. 2,800 have now tuned in on Twitter Spaces, but we have taken the audio and cleaned it up here. Enjoy!Timestamps* [00:00:00] Introducing the Google Memo* [00:02:48] Open Source > Closed?* [00:05:51] Running Models On Device* [00:07:52] LoRA part 1* [00:08:42] On Moats - Size, Data* [00:11:34] Open Source Models are Comparable on Data* [00:13:04] Stackable LoRA* [00:19:44] The Need for Special Purpose Optimized Models* [00:21:12] Modular - Mojo from Chris Lattner* [00:23:33] The Promise of Language Supersets* [00:28:44] Google AI Strategy* [00:29:58] Zuck Releasing LLaMA* [00:30:42] Google Origin Confirmed* [00:30:57] Google's existential threat* [00:32:24] Non-Fiction AI Safety ("y-risk")* [00:35:17] Prompt Injection* [00:36:00] Google vs OpenAI* [00:41:04] Personal plugs: Simon and TravisTranscripts[00:00:00] Introducing the Google Memo[00:00:00] Simon Willison: So, yeah, this is a document, which Kate, which I first saw at three o'clock this morning, I think. It claims to be leaked from Google. There's good reasons to believe it is leaked from Google, and to be honest, if it's not, it doesn't actually matter because the quality of the analysis, I think stands alone.[00:00:15] If this was just a document by some anonymous person, I'd still think it was interesting and worth discussing. And the title of the document is We Have No Moat and neither does Open ai. And the argument it makes is that while Google and OpenAI have been competing on training bigger and bigger language models, the open source community is already starting to outrun them, given only a couple of months of really like really, really serious activity.[00:00:41] You know, Facebook lama was the thing that really kicked us off. There were open source language models like Bloom before that some G P T J, and they weren't very impressive. Like nobody was really thinking that they were. Chat. G P T equivalent Facebook Lama came out in March, I think March 15th. And was the first one that really sort of showed signs of being as capable maybe as chat G P T.[00:01:04] My, I don't, I think all of these models, they've been, the analysis of them has tend to be a bit hyped. Like I don't think any of them are even quite up to GT 3.5 standards yet, but they're within spitting distance in some respects. So anyway, Lama came out and then, Two weeks later Stanford Alpaca came out, which was fine tuned on top of Lama and was a massive leap forward in terms of quality.[00:01:27] And then a week after that Vicuna came out, which is to this date, the the best model I've been able to run on my own hardware. I, on my mobile phone now, like, it's astonishing how little resources you need to run these things. But anyway, the the argument that this paper made, which I found very convincing is it only took open source two months to get this far.[00:01:47] It's now every researcher in the world is kicking it on new, new things, but it feels like they're being there. There are problems that Google has been trying to solve that the open source models are already addressing, and really how do you compete with that, like with your, it's closed ecosystem, how are you going to beat these open models with all of this innovation going on?[00:02:04] But then the most interesting argument in there is it talks about the size of models and says that maybe large isn't a competitive advantage, maybe actually a smaller model. With lots of like different people fine tuning it and having these sort of, these LoRA l o r a stackable fine tuning innovations on top of it, maybe those can move faster.[00:02:23] And actually having to retrain your giant model every few months from scratch is, is way less useful than having small models that you can tr you can fine tune in a couple of hours on laptop. So it's, it's fascinating. I basically, if you haven't read this thing, you should read every word of it. It's not very long.[00:02:40] It's beautifully written. Like it's, it's, I mean, If you try and find the quotable lines in it, almost every line of it's quotable. Yeah. So, yeah, that's that, that, that's the status of this[00:02:48] Open Source > Closed?[00:02:48] swyx: thing. That's a wonderful summary, Simon. Yeah, there, there's so many angles we can take to this. I, I'll just observe one, one thing which if you think about the open versus closed narrative, Ima Mok, who is the CEO of Stability, has always been that open will trail behind closed, because the closed alternatives can always take.[00:03:08] Learnings and lessons from open source. And this is the first highly credible statement that is basically saying the exact opposite, that open source is moving than, than, than closed source. And they are scared. They seem to be scared. Which is interesting,[00:03:22] Travis Fischer: Travis. Yeah, the, the, the, a few things that, that I'll, I'll, I'll say the only thing which can keep up with the pace of AI these days is open source.[00:03:32] I think we're, we're seeing that unfold in real time before our eyes. And. You know, I, I think the other interesting angle of this is to some degree LLMs are they, they don't really have switching costs. They are going to be, become commoditized. At least that's, that's what a lot of, a lot of people kind of think to, to what extent is it Is it a, a rate in terms of, of pricing of these things?[00:03:55] , and they all kind of become roughly the, the, the same in, in terms of their, their underlying abilities. And, and open source is gonna, gonna be actively pushing, pushing that forward. And, and then this is kind of coming from, if it is to be believed the kind of Google or an insider type type mentality around you know, where is the actual competitive advantage?[00:04:14] What should they be focusing on? How can they get back in into the game? When you know, when, when, when, when currently the, the, the external view of, of Google is that they're kind of spinning their wheels and they have this code red,, and it's like they're, they're playing catch up already.[00:04:28] Like how could they use the open source community and work with them, which is gonna be really, really hard you know, from a structural perspective given Google's place in the ecosystem. But a, a lot, lot, a lot of jumping off points there.[00:04:42] Alessio Fanelli: I was gonna say, I think the Post is really focused on how do we get the best model, but it's not focused on like, how do we build the best product around it.[00:04:50] A lot of these models are limited by how many GPUs you can get to run them and we've seen on traditional open source, like everybody can use some of these projects like Kafka and like Alaska for free. But the reality is that not everybody can afford to run the infrastructure needed for it.[00:05:05] So I, I think like the main takeaway that I have from this is like, A lot of the moats are probably around just getting the, the sand, so to speak, and having the GPUs to actually serve these models. Because even if the best model is open source, like running it at large scale for an end is not easy and like, it's not super convenient to get a lot, a lot of the infrastructure.[00:05:27] And we've seen that model work in open source where you have. The opensource project, and then you have a enterprise cloud hosted version for it. I think that's gonna look really different in opensource models because just hosting a model doesn't have a lot of value. So I'm curious to hear how people end up getting rewarded to do opensource.[00:05:46] You know, it's, we figured that out in infrastructure, but we haven't figured it out in in Alans[00:05:51] Running Models On Device[00:05:51] Simon Willison: yet. I mean, one thing I'll say is that the the models that you can run on your own devices are so far ahead of what I ever dreamed they would be at this point. Like Vicuna 13 b i i, I, I think is the current best available open mo model that I've played with.[00:06:08] It's derived from Facebook Lama, so you can't use it for commercial purposes yet. But the point about MCK 13 B is it runs in the browser directly on web gpu. There's this amazing web l l M project where you literally, your browser downloaded a two gigabyte file. And it fires up a chat g D style interface and it's quite good.[00:06:27] It can do rap battles between different animals and all of the kind of fun stuff that you'd expect to be able to do the language model running entirely in Chrome canary. It's shocking to me that that's even possible, but that kind of shows that once, once you get to inference, if you can shrink the model down and the techniques for shrinking these models, the, the first one was the the quantization.[00:06:48] Which the Lama CPP project really sort of popularized Matt can by using four bits instead of 16 bit floating point numbers, you can shrink it down quite a lot. And then there was a paper that came out days ago suggesting that you can prune the models and ditch half the model and maintain the same level of quality.[00:07:05] So with, with things like that, with all of these tricks coming together, it's really astonishing how much you can get done on hardware that people actually have in their pockets even.[00:07:15] swyx: Just for completion I've been following all of your posts. Oh, sorry. Yes. I just wanna follow up, Simon. You're, you said you're running a model on your phone. Which model is it? And I don't think you've written it up.[00:07:27] Simon Willison: Yeah, that one's vina. I did, did I write it up? I did. I've got a blog post about how it it, it, it knows who I am, sort of, but it said that I invented a, a, a pattern for living called bear or bunny pattern, which I definitely didn't, but I loved that my phone decided that I did.[00:07:44] swyx: I will hunt for that because I'm not yet running Vic on my phone and I feel like I should and, and as like a very base thing, but I'll, okay.[00:07:52] Stackable LoRA Modules[00:07:52] swyx: Also, I'll follow up two things, right? Like one I'm very interesting and let's, let's talk about that a little bit more because this concept of stackable improvements to models I think is extremely interesting.[00:08:00] Like, I would love to MPM install abilities onto my models, right? Which is really awesome. But the, the first thing thing is under-discussed is I don't get the panic. Like, honestly, like Google has the most moats. I I, I was arguing maybe like three months ago on my blog. Like Google has the most mote out of a lot of people because, hey, we have your calendar.[00:08:21] Hey, we have your email. Hey, we have your you know, Google Docs. Like, isn't that a, a sufficient mode? Like, why are these guys panicking so much? I don't, I still don't get it. Like, Sure open source is running ahead and like, it's, it's on device and whatev, what have you, but they have so much more mode.[00:08:36] Like, what are we talking about here? There's many dimensions to compete on.[00:08:42] On Moats - Size, Data[00:08:42] Travis Fischer: Yeah, there's like one of, one of the, the things that, that the author you know, mentions in, in here is when, when you start to, to, to have the feeling of what we're trailing behind, then you're, you're, you're, you're brightest researchers jump ship and go to OpenAI or go to work at, at, at academia or, or whatever.[00:09:00] And like the talent drain. At the, the level of the, the senior AI researchers that are pushing these things ahead within Google, I think is a serious, serious concern. And my, my take on it's a good point, right? Like, like, like, like what Google has modes. They, they, they're not running outta money anytime soon.[00:09:16] You know, I think they, they do see the level of the, the defensibility and, and the fact that they want to be, I'll chime in the, the leader around pretty much anything. Tech first. There's definitely ha ha have lost that, that, that feeling. Right? , and to what degree they can, they can with the, the open source community to, to get that back and, and help drive that.[00:09:38] You know all of the llama subset of models with, with alpaca and Vicuna, et cetera, that all came from, from meta. Right. Like that. Yeah. Like it's not licensed in an open way where you can build a company on top of it, but is now kind of driving this family of, of models, like there's a tree of models that, that they're, they're leading.[00:09:54] And where is Google in that, in that playbook? Like for a long time they were the one releasing those models being super open and, and now it's just they, they've seem to be trailing and there's, there's people jumping ship and to what degree can they, can they, can they. Close off those wounds and, and focus on, on where, where they, they have unique ability to, to gain momentum.[00:10:15] I think is a core part of my takeaway from this. Yeah.[00:10:19] Alessio Fanelli: And think another big thing in the post is, oh, as long as you have high quality data, like you don't need that much data, you can just use that. The first party data loops are probably gonna be the most important going forward if we do believe that this is true.[00:10:32] So, Databricks. We have Mike Conover from Databricks on the podcast, and they talked about how they came up with the training set for Dolly, which they basically had Databricks employees write down very good questions and very good answers for it. Not every company as the scale to do that. And I think products like Google, they have millions of people writing Google Docs.[00:10:54] They have millions of people using Google Sheets, then millions of people writing stuff, creating content on YouTube. The question is, if you wanna compete against these companies, maybe the model is not what you're gonna do it with because the open source kind of commoditizes it. But how do you build even better data?[00:11:12] First party loops. And that's kind of the hardest thing for startups, right? Like even if we open up the, the models to everybody and everybody can just go on GitHub and. Or hugging face and get the waste to the best model, but get enough people to generate data for me so that I can still make it good. That's, that's what I would be worried about if I was a, a new company.[00:11:31] How do I make that happen[00:11:32] Simon Willison: really quickly?[00:11:34] Open Source Models are Comparable on Data[00:11:34] Simon Willison: I'm not convinced that the data is that big a challenge. So there's this PO project. So the problem with Facebook LAMA is that it's not available for, for commercial use. So people are now trying to train a alternative to LAMA that's entirely on openly licensed data.[00:11:48] And that the biggest project around that is this red pajama project, which They released their training data a few weeks ago and it was 2.7 terabytes. Right? So actually tiny, right? You can buy a laptop that you can fit 2.7 terabytes on. Got it. But it was the same exact data that Facebook, the same thing that Facebook Lamb had been trained on.[00:12:06] Cuz for your base model. You're not really trying to teach it fact about the world. You're just trying to teach it how English and other languages work, how they fit together. And then the real magic is when you fine tune on top of that. That's what Alpaca did on top of Lama and so on. And the fine tuning sets, it looks like, like tens of thousands of examples to kick one of these role models into shape.[00:12:26] And tens of thousands of examples like Databricks spent a month and got the 2000 employees of their company to help kick in and it worked. You've got the open assistant project of crowdsourcing this stuff now as well. So it's achievable[00:12:40] swyx: sore throat. I agree. I think it's a fa fascinating point. Actually, so I've heard through the grapevine then red pajamas model.[00:12:47] Trained on the, the data that they release is gonna be releasing tomorrow. And it's, it's this very exciting time because the, the, there, there's a, there's a couple more models that are coming down the pike, which independently we produced. And so yeah, that we, everyone is challenging all these assumptions from, from first principles, which is fascinating.[00:13:04] Stackable LoRA[00:13:04] swyx: I, I did, I did wanted to, to like try to get a little bit more technical in terms of like the, the, the, the specific points race. Cuz this doc, this doc was just amazing. Can we talk about LoRA. I, I, I'll open up to Simon again if he's back.[00:13:16] Simon Willison: I'd rather someone else take on. LoRA, I've, I, I know as much as I've read in that paper, but not much more than that.[00:13:21] swyx: So I thought it was this kind of like an optimization technique. So LoRA stands for lower rank adaptation. But this is the first mention of LoRA as a form of stackable improvements. Where he I forget what, let, just, let me just kind of Google this. But obviously anyone's more knowledgeable please.[00:13:39] So come on in.[00:13:40] Alessio Fanelli: I, all of Lauren is through GTS Man, about 20 minutes on GT four, trying to figure out word. It was I study computer science, but this is not this is not my area of expertise. What I got from it is that basically instead of having to retrain the whole model you can just pick one of the ranks and you take.[00:13:58] One of like the, the weight matrix tests and like make two smaller matrixes from it and then just two to be retrained and training the whole model. So[00:14:08] swyx: it save a lot of Yeah. You freeze part of the thing and then you just train the smaller part like that. Exactly. That seems to be a area of a lot of fruitful research.[00:14:15] Yeah. I think Mini GT four recently did something similar as well. And then there's, there's, there's a, there's a Spark Model people out today that also did the same thing.[00:14:23] Simon Willison: So I've seen a lot of LoRA stable, the stable diffusion community has been using LoRA a lot. So they, in that case, they had a, I, the thing I've seen is people releasing LoRA's that are like you, you train a concept like a, a a particular person's face or something you release.[00:14:38] And the, the LoRA version of this end up being megabytes of data, like, which is, it's. You know, it's small enough that you can just trade those around and you can effectively load multiple of those into the model. But what I haven't realized is that you can use the same trick on, on language models. That was one of the big new things for me in reading the the leaks Google paper today.[00:14:56] Alessio Fanelli: Yeah, and I think the point to make around on the infrastructure, so what tragedy has told me is that when you're figuring out what rank you actually wanna do this fine tuning at you can have either go too low and like the model doesn't actually learn it. Or you can go too high and the model overfit those learnings.[00:15:14] So if you have a base model that everybody agrees on, then all the subsequent like LoRA work is done around the same rank, which gives you an advantage. And the point they made in the, that, since Lama has been the base for a lot of this LoRA work like they own. The, the mind share of the community.[00:15:32] So everything that they're building is compatible with their architecture. But if Google Opensources their own model the rank that they chose For LoRA on Lama might not work on the Google model. So all of the existing work is not portable. So[00:15:46] Simon Willison: the impression I got is that one of the challenges with LoRA is that you train all these LoRAs on top of your model, but then if you retrain that base model as LoRA's becoming invalid, right?[00:15:55] They're essentially, they're, they're, they're built for an exact model version. So this means that being the big company with all of the GPUs that can afford to retrain a model every three months. That's suddenly not nearly as valuable as it used to be because now maybe there's an open source model that's five years old at this point and has like multiple, multiple stacks of LoRA's trained all over the world on top of it, which can outperform your brand new model just because there's been so much more iteration on that base.[00:16:20] swyx: I, I think it's, I think it's fascinating. It's I think Jim Fan from Envidia was recently making this argument for transformers. Like even if we do come up with a better. Architecture, then transformers, they're the sheer hundreds and millions of dollars that have been invested on top of transformers.[00:16:34] Make it actually there is some switching costs and it's not exactly obvious that better architecture. Equals equals we should all switch immediately tomorrow. It's, it's, it's[00:16:44] Simon Willison: kinda like the, the difficulty of launching a new programming language today Yes. Is that pipeline and JavaScript have a million packages.[00:16:51] So no matter how good your new language is, if it can't tap into those existing package libraries, it's, it's not gonna be useful for, which is why Moji is so clever, because they did build on top of Pips. They get all of that existing infrastructure, all of that existing code working already.[00:17:05] swyx: I mean, what, what thought you, since you co-create JAO and all that do, do we wanna take a diversion into mojo?[00:17:10] No, no. I[00:17:11] Travis Fischer: would, I, I'd be happy to, to, to jump in, and get Simon's take on, on Mojo. 1, 1, 1 small, small point on LoRA is I, I, I just think. If you think about at a high level, what the, the major down downsides are of these, these large language models. It's the fact that they well they're, they're, they're difficult to, to train, right?[00:17:32] They, they tend to hallucinate and they are, have, have a static, like, like they were trained at a certain date, right? And with, with LoRA, I think it makes it a lot more amenable to Training new, new updates on top of that, that like base model on the fly where you can incorporate new, new data and in a way that is, is, is an interesting and potentially more optimal alternative than Doing the kind of in context generation cuz, cuz most of like who at perplexity AI or, or any of these, these approaches currently, it's like all based off of doing real-time searches and then injecting as much into the, the, the local context window as possible so that you, you try to ground your, your, your, your language model.[00:18:16] Both in terms of the, the information it has access to that, that, that helps to reduce hallucinations. It can't reduce it, but helps to reduce it and then also gives it access to up-to-date information that wasn't around for that, that massive like, like pre-training step. And I think LoRA in, in, in mine really makes it more, more amenable to having.[00:18:36] Having constantly shifting lightweight pre-training on top of it that scales better than than normal. Pre I'm sorry. Fine tune, fine tuning. Yeah, that, that was just kinda my one takeaway[00:18:45] Simon Willison: there. I mean, for me, I've never been, I want to run models on my own hard, I don't actually care about their factual content.[00:18:52] Like I don't need a model that's been, that's trained on the most upstate things. What I need is a model that can do the bing and bar trick, right? That can tell when it needs to run a search. And then go and run a search to get extra information and, and bring that context in. And similarly, I wanted to be able to operate tools where it can access my email or look at my notes or all of those kinds of things.[00:19:11] And I don't think you need a very powerful model for that. Like that's one of the things where I feel like, yeah, vicuna running on my, on my laptop is probably powerful enough to drive a sort of personal research assistant, which can look things up for me and it can summarize things for my notes and it can do all of that and I don't care.[00:19:26] But it doesn't know about the Ukraine war because the Ukraine war training cutoff, that doesn't matter. If it's got those additional capabilities, which are quite easy to build the reason everyone's going crazy building agents and tools right now is that it's a few lines of Python code, and a sort of couple of paragraphs to get it to.[00:19:44] The Need for Special Purpose Optimized Models[00:19:44] Simon Willison: Well, let's, let's,[00:19:45] Travis Fischer: let's maybe dig in on that a little bit. And this, this also is, is very related to mojo. Cuz I, I do think there are use cases and domains where having the, the hyper optimized, like a version of these models running on device is, is very relevant where you can't necessarily make API calls out on the fly.[00:20:03] and Aug do context, augmented generation. And I was, I was talking with, with a a researcher. At Lockheed Martin yesterday, literally about like, like the, the version of this that's running of, of language models running on, on fighter jets. Right? And you, you talk about like the, the, the amount of engineering, precision and optimization that has to go into, to those type of models.[00:20:25] And the fact that, that you spend so much money, like, like training a super distilled ver version where milliseconds matter it's a life or death situation there. You know, and you couldn't even, even remotely ha ha have a use case there where you could like call out and, and have, have API calls or something.[00:20:40] So I, I do think there's like keeping in mind the, the use cases where, where. There, there'll be use cases that I'm more excited about at, at the application level where, where, yeah, I want to to just have it be super flexible and be able to call out to APIs and have this agentic type type thing.[00:20:56] And then there's also industries and, and use cases where, where you really need everything baked into the model.[00:21:01] swyx: Yep. Agreed. My, my favorite piece take on this is I think DPC four as a reasoning engine, which I think came from the from Nathan at every two. Which I think, yeah, I see the hundred score over there.[00:21:12] Modular - Mojo from Chris Lattner[00:21:12] swyx: Simon, do you do you have a, a few seconds on[00:21:14] Simon Willison: mojo. Sure. So Mojo is a brand new program language you just announced a few days ago. It's not actually available yet. I think there's an online demo, but to zooming it becomes an open source language we can use. It's got really some very interesting characteristics.[00:21:29] It's a super set of Python, so anything written in Python, Python will just work, but it adds additional features on top that let you basically do very highly optimized code with written. In Python syntax, it compiles down the the main thing that's exciting about it is the pedigree that it comes from.[00:21:47] It's a team led by Chris Latner, built L L V M and Clang, and then he designed Swift at Apple. So he's got like three, three for three on, on extraordinarily impactful high performance computing products. And he put together this team and they've basically, they're trying to go after the problem of how do you build.[00:22:06] A language which you can do really high performance optimized work in, but where you don't have to do everything again from scratch. And that's where building on top of Python is so clever. So I wasn't like, if this thing came along, I, I didn't really pay attention to it until j Jeremy Howard, who built Fast ai put up a very detailed blog post about why he was excited about Mojo, which included a, there's a video demo in there, which everyone should watch because in that video he takes Matrix multiplication implemented in Python.[00:22:34] And then he uses the mojo extras to 2000 x. The performance of that matrix multiplication, like he adds a few static types functions sort of struck instead of the class. And he gets 2000 times the performance out of it, which is phenomenal. Like absolutely extraordinary. So yeah, that, that got me really excited.[00:22:52] Like the idea that we can still use Python and all of this stuff we've got in Python, but we can. Just very slightly tweak some things and get literally like thousands times upwards performance out of the things that matter. That's really exciting.[00:23:07] swyx: Yeah, I, I, I'm curious, like, how come this wasn't thought of before?[00:23:11] It's not like the, the, the concept of a language super set hasn't hasn't, has, has isn't, is completely new. But all, as far as I know, all the previous Python interpreter approaches, like the alternate runtime approaches are like they, they, they're more, they're more sort of, Fit conforming to standard Python, but never really tried this additional approach of augmenting the language.[00:23:33] The Promise of Language Supersets[00:23:33] swyx: I, I'm wondering if you have many insights there on, like, why, like why is this a, a, a breakthrough?[00:23:38] Simon Willison: Yeah, that's a really interesting question. So, Jeremy Howard's piece talks about this thing called M L I R, which I hadn't heard of before, but this was another Chris Latner project. You know, he built L L VM as a low level virtual machine.[00:23:53] That you could build compilers on top of. And then M L I R was this one that he initially kicked off at Google, and I think it's part of TensorFlow and things like that. But it was very much optimized for multiple cores and GPU access and all of that kind of thing. And so my reading of Jeremy Howard's article is that they've basically built Mojo on top of M L I R.[00:24:13] So they had a huge, huge like a starting point where they'd, they, they knew this technology better than anyone else. And because they had this very, very robust high performance basis that they could build things on. I think maybe they're just the first people to try and build a high, try and combine a high level language with M L A R, with some extra things.[00:24:34] So it feels like they're basically taking a whole bunch of ideas people have been sort of experimenting with over the last decade and bundled them all together with exactly the right team, the right level of expertise. And it looks like they've got the thing to work. But yeah, I mean, I've, I've, I'm. Very intrigued to see, especially once this is actually available and we can start using it.[00:24:52] It, Jeremy Howard is someone I respect very deeply and he's, he's hyping this thing like crazy, right? His headline, his, and he's not the kind of person who hypes things if they're not worth hyping. He said Mojo may be the biggest programming language advanced in decades. And from anyone else, I'd kind of ignore that headline.[00:25:09] But from him it really means something.[00:25:11] swyx: Yes, because he doesn't hype things up randomly. Yeah, and, and, and he's a noted skeptic of Julia which is, which is also another data science hot topic. But from the TypeScript and web, web development worlds there has been a dialect of TypeScript that was specifically optimized to compile, to web assembly which I thought was like promising and then, and, and eventually never really took off.[00:25:33] But I, I like this approach because I think more. Frameworks should, should essentially be languages and recognize that they're language superset and maybe working compilers that that work on them. And then that is the, by the way, that's the direction that React is going right now. So fun times[00:25:50] Simon Willison: type scripts An interesting comparison actually, cuz type script is effectively a superset of Java script, right?[00:25:54] swyx: It's, but there's no, it's purely[00:25:57] Simon Willison: types, right? Gotcha. Right. So, so I guess mojo is the soup set python, but the emphasis is absolutely on tapping into the performance stuff. Right.[00:26:05] swyx: Well, the just things people actually care about.[00:26:08] Travis Fischer: Yeah. The, the one thing I've found is, is very similar to the early days of type script.[00:26:12] There was the, the, the, the most important thing was that it's incrementally adoptable. You know, cuz people had a script code basis and, and they wanted to incrementally like add. The, the, the main value prop for TypeScript was reliability and the, the, the, the static typing. And with Mojo, Lucia being basically anyone who's a target a large enterprise user of, of Mojo or even researchers, like they're all going to be coming from a, a hardcore.[00:26:36] Background in, in Python and, and have large existing libraries. And the the question will be for what use cases will mojo be like a, a, a really good fit for that incremental adoption where you can still tap into your, your, your massive, like python exi existing infrastructure workflows, data tooling, et cetera.[00:26:55] And, and what does, what does that path to adoption look like?[00:26:59] swyx: Yeah, we, we, we don't know cuz it's a wait listed language which people were complaining about. They, they, the, the mojo creators were like saying something about they had to scale up their servers. And I'm like, what language requires essential server?[00:27:10] So it's a little bit suss, a little bit, like there's a, there's a cloud product already in place and they're waiting for it. But we'll see. We'll see. I mean, emojis should be promising in it. I, I actually want more. Programming language innovation this way. You know, I was complaining years ago that programming language innovation is all about stronger types, all fun, all about like more functional, more strong types everywhere.[00:27:29] And, and this is, the first one is actually much more practical which I, which I really enjoy. This is why I wrote about self provisioning run types.[00:27:36] Simon Willison: And[00:27:37] Alessio Fanelli: I mean, this is kind of related to the post, right? Like if you stop all of a sudden we're like, the models are all the same and we can improve them.[00:27:45] Like, where can we get the improvements? You know, it's like, Better run times, better languages, better tooling, better data collection. Yeah. So if I were a founder today, I wouldn't worry as much about the model, maybe, but I would say, okay, what can I build into my product and like, or what can I do at the engineering level that maybe it's not model optimization because everybody's working on it, but like you said, it's like, why haven't people thought of this before?[00:28:09] It's like, it's, it's definitely super hard, but I'm sure that if you're like Google or you're like open AI or you're like, Databricks, we got smart enough people that can think about these problems, so hopefully we see more of this.[00:28:21] swyx: You need, Alan? Okay. I promise to keep this relatively tight. I know Simon on a beautiful day.[00:28:27] It is a very nice day in California. I wanted to go through a few more points that you have pulled out Simon and, and just give you the opportunity to, to rant and riff and, and what have you. I, I, are there any other points from going back to the sort of Google OpenAI mode documents that, that you felt like we, we should dive in on?[00:28:44] Google AI Strategy[00:28:44] Simon Willison: I mean, the really interesting stuff there is the strategy component, right? The this idea that that Facebook accidentally stumbled into leading this because they put out this model that everyone else is innovating on top of. And there's a very open question for me as to would Facebook relic Lama to allow for commercial usage?[00:29:03] swyx: Is there some rumor? Is that, is that today?[00:29:06] Simon Willison: Is there a rumor about that?[00:29:07] swyx: That would be interesting? Yeah, I saw, I saw something about Zuck saying that he would release the, the Lama weights officially.[00:29:13] Simon Willison: Oh my goodness. No, that I missed. That is, that's huge.[00:29:17] swyx: Let me confirm the tweet. Let me find the tweet and then, yeah.[00:29:19] Okay.[00:29:20] Simon Willison: Because actually I met somebody from Facebook machine learning research a couple of weeks ago, and I, I pressed 'em on this and they said, basically they don't think it'll ever happen because if it happens, and then somebody does horrible fascist stuff with this model, all of the headlines will be Meg releases a monster into the world.[00:29:36] So, so hi. His, the, the, the, a couple of weeks ago, his feeling was that it's just too risky for them to, to allow it to be used like that. But a couple of weeks is, is, is a couple of months in AI world. So yeah, it wouldn't be, it feels to me like strategically Facebook should be jumping right on this because this puts them at the very.[00:29:54] The very lead of, of open source innovation around this stuff.[00:29:58] Zuck Releasing LLaMA[00:29:58] swyx: So I've pinned the tweet talking about Zuck and Zuck saying that meta will open up Lama. It's from the founder of Obsidian, which gives it a slight bit more credibility, but it is the only. Tweet that I can find about it. So completely unsourced,[00:30:13] we shall see. I, I, I mean I have friends within meta, I should just go ask them. But yeah, I, I mean one interesting angle on, on the memo actually is is that and, and they were linking to this in, in, in a doc, which is apparently like. Facebook got a bunch of people to do because they, they never released it for commercial use, but a lot of people went ahead anyway and, and optimized and, and built extensions and stuff.[00:30:34] They, they got a bunch of free work out of opensource, which is an interesting strategy.[00:30:39] There's okay. I don't know if I.[00:30:42] Google Origin Confirmed[00:30:42] Simon Willison: I've got exciting piece of news. I've just heard from somebody with contacts at Google that they've heard people in Google confirm the leak. That that document wasn't even legit Google document, which I don't find surprising at all, but I'm now up to 10, outta 10 on, on whether that's, that's, that's real.[00:30:57] Google's existential threat[00:30:57] swyx: Excellent. Excellent. Yeah, it is fascinating. Yeah, I mean the, the strategy is, is, is really interesting. I think Google has been. Definitely sleeping on monetizing. You know, I, I, I heard someone call when Google Brain and Devrel I merged that they would, it was like goodbye to the Xerox Park of our era and it definitely feels like Google X and Google Brain would definitely Xerox parks of our, of our era, and I guess we all benefit from that.[00:31:21] Simon Willison: So, one thing I'll say about the, the Google side of things, like the there was a question earlier, why are Google so worried about this stuff? And I think it's, it's just all about the money. You know, the, the, the engine of money at Google is Google searching Google search ads, and who uses Chachi PT on a daily basis, like me, will have noticed that their usage of Google has dropped like a stone.[00:31:41] Because there are many, many questions that, that chat, e p t, which shows you no ads at all. Is, is, is a better source of information for than Google now. And so, yeah, I'm not, it doesn't surprise me that Google would see this as an existential threat because whether or not they can be Bard, it's actually, it's not great, but it, it exists, but it hasn't it yet either.[00:32:00] And if I've got a Chatbook chatbot that's not showing me ads and chatbot that is showing me ads, I'm gonna pick the one that's not showing[00:32:06] swyx: me ads. Yeah. Yeah. I, I agree. I did see a prototype of Bing with ads. Bing chat with ads. I haven't[00:32:13] Simon Willison: seen the prototype yet. No.[00:32:15] swyx: Yeah, yeah. Anyway, I I, it, it will come obviously, and then we will choose, we'll, we'll go out of our ways to avoid ads just like we always do.[00:32:22] We'll need ad blockers and chat.[00:32:23] Excellent.[00:32:24] Non-Fiction AI Safety ("y-risk")[00:32:24] Simon Willison: So I feel like on the safety side, the, the safety side, there are basically two areas of safety that I, I, I sort of split it into. There's the science fiction scenarios, the AI breaking out and killing all humans and creating viruses and all of that kind of thing. The sort of the terminated stuff. And then there's the the.[00:32:40] People doing bad things with ai and that's latter one is the one that I think is much more interesting and that cuz you could u like things like romance scams, right? Romance scams already take billions of dollars from, from vulner people every year. Those are very easy to automate using existing tools.[00:32:56] I'm pretty sure for QNA 13 b running on my laptop could spin up a pretty decent romance scam if I was evil and wanted to use it for them. So that's the kind of thing where, I get really nervous about it, like the fact that these models are out there and bad people can use these bad, do bad things.[00:33:13] Most importantly at scale, like romance scamming, you don't need a language model to pull off one romance scam, but if you wanna pull off a thousand at once, the language model might be the, the thing that that helps you scale to that point. And yeah, in terms of the science fiction stuff and also like a model on my laptop that can.[00:33:28] Guess what comes next in a sentence. I'm not worried that that's going to break out of my laptop and destroy the world. There. There's, I'm get slightly nervous about the huge number of people who are trying to build agis on top of this models, the baby AGI stuff and so forth, but I don't think they're gonna get anywhere.[00:33:43] I feel like if you actually wanted a model that was, was a threat to human, a language model would be a tiny corner of what that thing. Was actually built on top of, you'd need goal setting and all sorts of other bits and pieces. So yeah, for the moment, the science fiction stuff doesn't really interest me, although it is a little bit alarming seeing more and more of the very senior figures in this industry sort of tip the hat, say we're getting a little bit nervous about this stuff now.[00:34:08] Yeah.[00:34:09] swyx: So that would be Jeff Iton and and I, I saw this me this morning that Jan Lacoon was like happily saying, this is fine. Being the third cheer award winner.[00:34:20] Simon Willison: But you'll see a lot of the AI safe, the people who've been talking about AI safety for the longest are getting really angry about science fiction scenarios cuz they're like, no, the, the thing that we need to be talking about is the harm that you can cause with these models right now today, which is actually happening and the science fiction stuff kind of ends up distracting from that.[00:34:36] swyx: I love it. You, you. Okay. So, so Uher, I don't know how to pronounce his name. Elier has a list of ways that AI will kill us post, and I think, Simon, you could write a list of ways that AI will harm us, but not kill us, right? Like the, the, the non-science fiction actual harm ways, I think, right? I haven't seen a, a actual list of like, hey, romance scams spam.[00:34:57] I, I don't, I don't know what else, but. That could be very interesting as a Hmm. Okay. Practical. Practical like, here are the situations we need to guard against because they are more real today than that we need to. Think about Warren, about obviously you've been a big advocate of prompt injection awareness even though you can't really solve them, and I, I worked through a scenario with you, but Yeah,[00:35:17] Prompt Injection[00:35:17] Simon Willison: yeah.[00:35:17] Prompt injection is a whole other side of this, which is, I mean, that if you want a risk from ai, the risk right now is everyone who's building puts a building systems that attackers can trivially subvert into stealing all of their private data, unlocking their house, all of that kind of thing. So that's another very real risk that we have today.[00:35:35] swyx: I think in all our personal bios we should edit in prompt injections already, like in on my website, I wanna edit in a personal prompt injections so that if I get scraped, like I all know if someone's like reading from a script, right? That that is generated by any iBot. I've[00:35:49] Simon Willison: seen people do that on LinkedIn already and they get, they get recruiter emails saying, Hey, I didn't read your bio properly and I'm just an AI script, but would you like a job?[00:35:57] Yeah. It's fascinating.[00:36:00] Google vs OpenAI[00:36:00] swyx: Okay. Alright, so topic. I, I, I think, I think this this, this mote is is a peak under the curtain of the, the internal panic within Google. I think it is very val, very validated. I'm not so sure they should care so much about small models or, or like on device models.[00:36:17] But the other stuff is interesting. There is a comment at the end that you had by about as for opening open is themselves, open air, doesn't matter. So this is a Google document talking about Google's position in the market and what Google should be doing. But they had a comment here about open eye.[00:36:31] They also say open eye had no mode, which is a interesting and brave comment given that open eye is the leader in, in a lot of these[00:36:38] Simon Willison: innovations. Well, one thing I will say is that I think we might have identified who within Google wrote this document. Now there's a version of it floating around with a name.[00:36:48] And I look them up on LinkedIn. They're heavily involved in the AI corner of Google. So my guess is that at Google done this one, I've worked for companies. I'll put out a memo, I'll write up a Google doc and I'll email, email it around, and it's nowhere near the official position of the company or of the executive team.[00:37:04] It's somebody's opinion. And so I think it's more likely that this particular document is somebody who works for Google and has an opinion and distributed it internally and then it, and then it got leaked. I dunno if it's necessarily. Represents Google's sort of institutional thinking about this? I think it probably should.[00:37:19] Again, this is such a well-written document. It's so well argued that if I was an executive at Google and I read that, I would, I would be thinking pretty hard about it. But yeah, I don't think we should see it as, as sort of the official secret internal position of the company. Yeah. First[00:37:34] swyx: of all, I might promote that person.[00:37:35] Cuz he's clearly more,[00:37:36] Simon Willison: oh, definitely. He's, he's, he's really, this is a, it's, I, I would hire this person about the strength of that document.[00:37:42] swyx: But second of all, this is more about open eye. Like I'm not interested in Google's official statements about open, but I was interested like his assertion, open eye.[00:37:50] Doesn't have a mote. That's a bold statement. I don't know. It's got the best people.[00:37:55] Travis Fischer: Well, I, I would, I would say two things here. One, it's really interesting just at a meta, meta point that, that they even approached it this way of having this public leak. It, it, it kind of, Talks a little bit to the fact that they, they, they felt that that doing do internally, like wasn't going to get anywhere or, or maybe this speaks to, to some of the like, middle management type stuff or, or within Google.[00:38:18] And then to the, the, the, the point about like opening and not having a moat. I think for, for large language models, it, it, it will be over, over time kind of a race to the bottom just because the switching costs are, are, are so low compared with traditional cloud and sas. And yeah, there will be differences in, in, in quality, but, but like over time, if you, you look at the limit of these things like the, I I think Sam Altman has been quoted a few times saying that the, the, the price of marginal price of intelligence will go to zero.[00:38:47] Time and the marginal price of energy powering that intelligence will, will also hit over time. And in that world, if you're, you're providing large language models, they become commoditized. Like, yeah. What, what is, what is your mode at that point? I don't know. I think they're e extremely well positioned as a team and as a company for leading this space.[00:39:03] I'm not that, that worried about that, but it is something from a strategic point of view to keep in mind about large language models becoming a commodity. So[00:39:11] Simon Willison: it's quite short, so I think it's worth just reading the, in fact, that entire section, it says epilogue. What about open ai? All of this talk of open source can feel unfair given open AI's current closed policy.[00:39:21] Why do we have to share if they won't? That's talking about Google sharing, but the fact of the matter is we are already sharing everything with them. In the form of the steady flow of poached senior researchers until we spent that tide. Secrecy is a moot point. I love that. That's so salty. And, and in the end, open eye doesn't matter.[00:39:38] They are making the same mistakes that we are in their posture relative to open source. And their ability to maintain an edge is necessarily in question. Open source alternatives. Canned will eventually eclipse them. Unless they change their stance in this respect, at least we can make the first move. So the argument this, this paper is making is that Google should go, go like meta and, and just lean right into open sourcing it and engaging with the wider open source community much more deeply, which OpenAI have very much signaled they are not willing to do.[00:40:06] But yeah, it's it's, it's read the whole thing. The whole thing is full of little snippets like that. It's just super fun. Yes,[00:40:12] swyx: yes. Read the whole thing. I, I, I also appreciate that the timeline, because it set a lot of really great context for people who are out of the loop. So Yeah.[00:40:20] Alessio Fanelli: Yeah. And the final conspiracy theory is that right before Sundar and Satya and Sam went to the White House this morning, so.[00:40:29] swyx: Yeah. Did it happen? I haven't caught up the White House statements.[00:40:34] Alessio Fanelli: No. That I, I just saw, I just saw the photos of them going into the, the White House. I've been, I haven't seen any post-meeting updates.[00:40:41] swyx: I think it's a big win for philanthropic to be at that table.[00:40:44] Alessio Fanelli: Oh yeah, for sure. And co here it's not there.[00:40:46] I was like, hmm. Interesting. Well, anyway,[00:40:50] swyx: yeah. They need, they need some help. Okay. Well, I, I promise to keep this relatively tight. Spaces do tend to have a, have a tendency of dragging on. But before we go, anything that you all want to plug, anything that you're working on currently maybe go around Simon are you still working on dataset?[00:41:04] Personal plugs: Simon and Travis[00:41:04] Simon Willison: I am, I am, I'm having a bit of a, so datasets my open source project that I've been working on. It's about helping people analyze and publish data. I'm having an existential crisis of it at the moment because I've got access to the chat g p T code, interpreter mode, and you can upload the sequel light database to that and it will do all of the things that I, on my roadmap for the next 12 months.[00:41:24] Oh my God. So that's frustrating. So I'm basically, I'm leaning data. My interest in data and AI are, are rapidly crossing over a lot harder about the AI features that I need to build on top of dataset. Make sure it stays relevant in a chat. G p t can do most of the stuff that it does already. But yeah the thing, I'll plug my blog simon willis.net.[00:41:43] I'm now updating it daily with stuff because AI move moved so quickly and I have a sub newsletter, which is effectively my blog, but in email form sent out a couple of times a week, which Please subscribe to that or RSS feed on my blog or, or whatever because I'm, I'm trying to keep track of all sorts of things and I'm publishing a lot at the moment.[00:42:02] swyx: Yes. You, you are, and we love you very much for it because you, you are a very good reporter and technical deep diver into things, into all the things. Thank you, Simon. Travis are you ready to announce the, I guess you've announced it some somewhat. Yeah. Yeah.[00:42:14] Travis Fischer: So I'm I, I just founded a company.[00:42:16] I'm working on a framework for building reliable agents that aren't toys and focused on more constrained use cases. And you know, I I, I look at kind of agi. And these, these audigy type type projects as like jumping all the way to str to, to self-driving. And, and we, we, we kind of wanna, wanna start with some more enter and really focus on, on reliable primitives to, to start that.[00:42:38] And that'll be an open source type script project. I'll be releasing the first version of that soon. And that's, that's it. Follow me you know, on here for, for this type of stuff, I, I, I, everything, AI[00:42:48] swyx: and, and spa, his chat PT bot,[00:42:50] Travis Fischer: while you still can. Oh yeah, the chat VT Twitter bot is about 125,000 followers now.[00:42:55] It's still running. I, I'm not sure if it's your credit. Yeah. Can you say how much you spent actually, No, no. Well, I think probably totally like, like a thousand bucks or something, but I, it's, it's sponsored by OpenAI, so I haven't, I haven't actually spent any real money.[00:43:08] swyx: What? That's[00:43:09] awesome.[00:43:10] Travis Fischer: Yeah. Yeah.[00:43:11] Well, once, once I changed, originally the logo was the Chachi VUI logo and it was the green one, and then they, they hit me up and asked me to change it. So it's now it's a purple logo. And they're, they're, they're cool with that. Yeah.[00:43:21] swyx: Yeah. Sending take down notices to people with G B T stuff apparently now.[00:43:26] So it's, yeah, it's a little bit of a gray area. I wanna write more on, on mos. I've been actually collecting and meaning to write a piece of mos and today I saw the memo, I was like, oh, okay. Like I guess today's the day we talk about mos. So thank you all. Thanks. Thanks, Simon. Thanks Travis for, for jumping on and thanks to all the audience for engaging on this with us.[00:43:42] We'll continue to engage on Twitter, but thanks to everyone. Cool. Thanks everyone. Bye. Alright, thanks everyone. Bye. Get full access to Latent Space at www.latent.space/subscribe
There is a growing movement within the AI community to makeiem tractable so that they can better support human needs. Chris Lattner from Google talks about some of the challenges and potential of this field.
Array Cast - February 3, 2023 Show NotesThanks to Bob Therriault, Conor Hoekstra and Rich Park for gathering these links:[01] 00:01:51 The APL Show apl.show https://apl.show/ Norman Thomson APL Campfire https://aplwiki.com/wiki/APL_Campfire APLseeds Conference Dyalog https://www.dyalog.com/apl-seeds-user-meetings/aplseeds23.htm[02] 00:05:18 KXcon https://kx.com/events/kx-con-2023/[03] 00:05:50 BQN Compiler Bootstrap https://github.com/mlochbaum/BQN/tree/master/src/bootstraphttps://github.com/dzaima/CBQN/blob/master/src/opt/comp.c[04] 00:08:37 Dyalog Video https://www.youtube.com/@dyalogltd Dyalog Conferences https://www.youtube.com/@DyalogUsermeeting Michael Higginson's talk https://www.youtube.com/watch?v=WZyeXGbcpbA&list=PL5i_Y8skrlUJn2029On-QnGqxXtL_HVie&index=4[05] 00:10:46 Commodore Vic 20 https://en.wikipedia.org/wiki/VIC-20 Compute Magazine https://en.wikipedia.org/wiki/Compute! BASIC programming language https://en.wikipedia.org/wiki/BASIC[06] 00:14:06 IBM XT https://en.wikipedia.org/wiki/IBM_Personal_Computer_XT[07] 00:19:30 Turing Programming Language http://individual.utoronto.ca/kensou/programming/turing.html[08] 00:20:50 Perl Programming Language https://en.wikipedia.org/wiki/Perl Regex https://en.wikipedia.org/wiki/Regular_expression Java Programming Language https://en.wikipedia.org/wiki/Java_(programming_language)[09] 00:22:40 Notepad https://en.wikipedia.org/wiki/Windows_Notepad Vim https://en.wikipedia.org/wiki/Vim_(text_editor) Pair programming https://en.wikipedia.org/wiki/Pair_programming[10] 00:24:15 Leslie Goldsmith https://ca.linkedin.com/in/lhg00 I.P. Sharp and Associates https://aplwiki.com/wiki/I.P._Sharp_Associates Ken Iverson https://aplwiki.com/wiki/Ken_Iverson Arthur Whitney https://aplwiki.com/wiki/Arthur_Whitney[11] 00:33:25 kdb+ https://kx.com/ q Programming Language https://en.wikipedia.org/wiki/Q_(programming_language_from_Kx_Systems)[12] 00:35:36 ArrayCast Podcast https://www.arraycast.com Dyalog Contest https://contest.dyalog.com/?goto=welcome Trains https://aplwiki.com/wiki/Train[13] 00:39:20 Tzu-Ching Lee Student Winner https://www.youtube.com/watch?v=KonuJwRFtks&list=PL5i_Y8skrlUJn2029On-QnGqxXtL_HVie&index=5[14] 00:42:35 ArrayCast Episode 44 https://www.arraycast.com/episodes/episode44-language-choice-and-recreational-programming REPL https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop[15] 00:45:40 k Programming Language https://aplwiki.com/wiki/K[16] 00:48:56 BEDMAS https://en.wikipedia.org/wiki/Order_of_operations[17] 00:55:25 Tacit programming https://aplwiki.com/wiki/Tacit_programming q enlist https://code.kx.com/q/ref/enlist/[18] 01:02:38 Union without intersection in APL ∪~∩ Conor's blog on use of B1 and Phi1 combinators https://codereport.github.io/B1andPhi1/[19] 01:07:20 Iverson College https://iversoncollege.com/ Joel Kaplan Episode of the ArrayCast https://www.arraycast.com/episodes/episode27-joel-kaplan[20] 01:13:00 Sean Parent https://sean-parent.stlab.cc/ Stackoverflow https://en.wikipedia.org/wiki/Stack_Overflow[21] 01:15:46 Rust Programming Language https://en.wikipedia.org/wiki/Rust_(programming_language) Conor's Video on rust https://www.youtube.com/watch?v=0RsLGM_7ODE Chris Lattner https://en.wikipedia.org/wiki/Chris_Lattner[22] 01:17:05 Oxide and Friends (mentions Roger Hui) https://oxide.computer/podcasts/oxide-and-friends/838566 (mentions Arthur Whitney) https://oxide.computer/podcasts/oxide-and-friends/838567 Functional Geekery https://www.functionalgeekery.com/[23] 01:25:30 Adám's Array Proposal https://aplwiki.com/wiki/Array_notation J Gerunds https://code.jsoftware.com/wiki/Help/Learning/Ch_14:_Gerunds C++ Programming Language https://en.wikipedia.org/wiki/C%2B%2B First Class Functions https://en.wikipedia.org/wiki/First-class_function[24] 01:28:39 Leonard Cohen Came so Far For Beauty https://www.youtube.com/watch?v=yXBT5-0pkyg[25] 01:33:45 Conor's Algorithms as a Tool of Thought https://dyalog.tv/APLSeeds21/?v=GZuZgCDql6g[26] 01:16:55 Contact AT ArrayCast DOT com
Lexman Artificial interviews Chris Lattner, the co-creator of the Apple iOS operating system. They discuss the history and development of the salinometers feature in Volans, kirmesses in betrothal, and the importance of design in software.
Lexman and Chris Lattner discuss the finer points of Taluk life and the various arguments that can break out between residents. They also chat about the various observed physical traits of locals, such as the oblateness of bosoms and the pronounced torii党 Japanese gate hanging from many doorposts.
In diesem Interview durfte ich Jonathan Krauss von Exodus Heilbronn begrüßen. Die Themen: - Wie kam es zu der Zusammenarbeit mit Chris Lattner und the Room Labs bei "Kapitän Flynn und der Schatz der Poseidon" - Wie kann man sich die Überarbeitung eines bestehenden Escape Rooms vorstellen? - Welches Projekt ist als nächstes geplant und ist The Room Labs wieder involviert? - Besteht die Gefahr, die eigene Identität durch so eine Zusammenarbeit aufzugeben? - "Das Zombielabor" und "Leonardo da Vinci – Das Elixir der Macht" - Die Terpeca Awards - und vieles vieles mehr. Weitere Infos unter: www.exodus-hn.de Jonathans Geheimtipp "Der Lazarus-Effekt" findet ihr unter: www.escapearea.de Musik: www.ashamaluevmusic.com
Chris Lattner, the Apple programmer who created the Swift programming language and was briefly a Project Manager at Tesla, discusses his experiences working on "shadowers," the rogue Russia operation codenamed Komintern, and the consequences of his convictions.
Lexman Artificial and Chris Lattner talk about the stresses of being an AI developer.
Chris Lattner, the co-founder of Tinder, discusses his experience with polyuria, a rare condition in which excess sweat causes a large volume of urine.
Lexman interviews programming mastermind Chris Lattner about his new book, "Pabulum: How to Build Great Software," which boils down the essentialprogramming concepts into aRoguelike-like experience.
Chris Lattner is a computer scientist and the co-founder of Apple Inc., most notably responsible for the development of the Cocoa and Cocoa Touch frameworks. He is also credited with inventing rfol, the runtime used for compiling Objective-C into machine code. In this episode, Lexman and Chris Lattner discuss sulphonates, Carborundum, inspissators and opera.
Lexman and Chris Lattner discuss the differences between scallions and bikes, Torbay and percepts, and how to correctly toss a softhead.
Lexman and Chris Lattner discuss Italy and the Choctaw people.
Array Cast - July 8, 2022 Show Notes[01] 00:01:15 Dyalog Problem /solving Contest https://contest.dyalog.com/?goto=welcome[02] 00:01:35 Dyalog Early Bird Discount https://www.dyalog.com/user-meetings/dyalog22.htm[03] 00:02:40 Jeremy Howard wikipedia https://en.wikipedia.org/wiki/Jeremy_Howard_(entrepreneur) Fastmail https://www.fastmail.com/ Optimal Decisions Group https://www.finextra.com/newsarticle/18047/choicepoint-acquires-insurance-analytics-firm-optimal-decisions[04] 00:04:30 APL Study Group https://forums.fast.ai/t/apl-array-programming/97188[05] 00:05:50 McKinsey and Company https://en.wikipedia.org/wiki/McKinsey_%26_Company[06] 00:10:20 AT Kearney https://en.wikipedia.org/wiki/AT_Kearney[07] 00:12:33 MKL (Intel) https://en.wikipedia.org/wiki/Math_Kernel_Library[08] 00:13:00 BLAS http://www.netlib.org/blas/[09] 00:13:11 Perl BQN https://mlochbaum.github.io/BQN/running.html[10] 00:14:06 Raku https://en.wikipedia.org/wiki/Raku_%28programming_language%29[11] 00:15:45 kaggle https://www.kaggle.com/ kaggle competition https://www.kaggle.com/competitions/unimelb/leaderboard[12] 00:16:52 R https://en.wikipedia.org/wiki/R_(programming_language)[13] 00:18:50 Neural Networks https://en.wikipedia.org/wiki/Artificial_neural_network[14] 00:19:50 Enlitic https://www.enlitic.com/[15] 00:20:01 Fast.ai https://www.fast.ai/about/[16] 00:21:02 Numpy https://numpy.org/[17] 00:21:26 Leading Axis Theory https://aplwiki.com/wiki/Leading_axis_theory[18] 00:21:31 Rank Conjunction https://code.jsoftware.com/wiki/Vocabulary/quote[19] 00:21:40 Einstein notation https://en.wikipedia.org/wiki/Einstein_notation[20] 00:22:30 GPU https://en.wikipedia.org/wiki/Graphics_processing_unit[21] 00:22:55 CUDA https://en.wikipedia.org/wiki/CUDA[22] 00:23:30 Map https://en.wikipedia.org/wiki/Map_(higher-order_function)[23] 00:24:05 Data Science https://en.wikipedia.org/wiki/Data_science[24] 00:25:15 First Neural Network https://en.wikipedia.org/wiki/Frank_Rosenblatt[25] 00:28:51 Numpy Another Iverson Ghost https://dev.to/bakerjd99/numpy-another-iverson-ghost-9mc[26] 00:30:11 Pivot Tables https://en.wikipedia.org/wiki/Pivot_table[27] 00:30:36 SQL https://en.wikipedia.org/wiki/SQL[28] 00:31:25 Larry Wall "The three chief virtues of a programmer are: Laziness, Impatience and Hubris." From the glossary of the first Programming Perl book.[29] 00:32:00 Python https://www.python.org/[30] 00:36:25 Regular Expressions https://en.wikipedia.org/wiki/Regular_expression[31] 00:36:50 PyTorch https://pytorch.org/[32] 00:37:39 Notation as Tool of Thought https://www.jsoftware.com/papers/tot.htm[33] 00:37:55 Aaron Hsu codfns https://scholarworks.iu.edu/dspace/handle/2022/24749[34] 00:38:40 J https://www.jsoftware.com/#/[35] 00:39:06 Eric Iverson on Array Cast https://www.arraycast.com/episodes/episode10-eric-iverson[36] 00:40:18 Triangulation Jeremy Howard https://www.youtube.com/watch?v=hxB-rEQvBeM[37] 00:41:48 Google Brain https://en.wikipedia.org/wiki/Google_Brain[38] 00:42:30 RAPIDS https://rapids.ai/[39] 00:43:40 Julia https://julialang.org/[40] 00:43:50 llvm https://llvm.org/[41] 00:44:07 JAX https://jax.readthedocs.io/en/latest/notebooks/quickstart.html[42] 00:44:21 XLA https://www.tensorflow.org/xla[43] 00:44:32 MILAR https://www.tensorflow.org/mlir[44] 00:44:42 Chris Lattner https://en.wikipedia.org/wiki/Chris_Lattner[45] 00:44:53 Tensorflow https://www.tensorflow.org/[46] 00:49:33 torchscript https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html[47] 00:50:09 Scheme https://en.wikipedia.org/wiki/Scheme_(programming_language)[48] 00:50:28 Swift https://en.wikipedia.org/wiki/Swift_(programming_language)[49] 00:51:10 DragonBox Algebra https://dragonbox.com/products/algebra-12[50] 00:52:47 APL Glyphs https://aplwiki.com/wiki/Glyph[51] 00:53:24 Dyalog APL https://www.dyalog.com/[52] 00:54:24 Jupyter https://jupyter.org/[53] 00:55:44 Jeremy's tweet of Meta Math https://twitter.com/jeremyphoward/status/1543738953391800320[54] 00:56:37 Power function https://aplwiki.com/wiki/Power_(function)[55] 01:03:06 Reshape ⍴ https://aplwiki.com/wiki/Reshape[56] 01:03:40 Stallman 'Rho, rho, rho' https://stallman.org/doggerel.html#APL[57] 01:04:20 APLcart https://aplcart.info/ BQNcrate https://mlochbaum.github.io/bqncrate/[58] 01:06:12 J for C programmers https://www.jsoftware.com/help/jforc/contents.htm[59] 01:07:54 Transpose episode https://www.arraycast.com/episodes/episode29-transpose[60] 01:10:00 APLcart video https://www.youtube.com/watch?v=r3owA7tfKE8[61] 01:12:28 Functional Programming https://en.wikipedia.org/wiki/Functional_programming[62] 01:13:00 List Comprehensions https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions[63] 01:13:30 BQN to J https://mlochbaum.github.io/BQN/doc/fromJ.html BQN to Dyalog APL https://mlochbaum.github.io/BQN/doc/fromDyalog.html[64] 01:18:15 Einops https://cgarciae.github.io/einops/1-einops-basics/[65] 01:19:30 April Fools APL https://ci.tc39.es/preview/tc39/ecma262/sha/efb411f2f2a6f0e242849a8cc8d7e21bbcdff543/#sec-apl-expression-rules[66] 01:20:35 Flask library https://flask.palletsprojects.com/en/2.1.x/[67] 01:21:22 JuliaCon 2022 https://juliacon.org/2022/[68] 01:28:05 Myelination https://en.wikipedia.org/wiki/Myelin[69] 01:29:15 Sanyam Bhutani interview https://www.youtube.com/watch?v=g_6nQBsE4pU&t=2150s[70] 01:31:27 Jo Boaler Growth Mindset https://www.youcubed.org/resource/growth-mindset/[71] 01:33:45 Discovery Learning https://en.wikipedia.org/wiki/Discovery_learning[72] 01:37:05 Iverson Bracket https://en.wikipedia.org/wiki/Iverson_bracket[73] 01:39:14 Radek Osmulski Meta Learning https://rosmulski.gumroad.com/l/learn_machine_learning[74] 01:40:12 Top Down Learning https://medium.com/@jacksonbull1987/top-down-learning-4743f16d63d3[75] 01:41:20 Anki https://apps.ankiweb.net/[76] 01:43:50 Lex Fridman Interview https://www.youtube.com/watch?v=J6XcP4JOHmk Deep Talks #54 https://www.youtube.com/watch?v=n7YVlPszaWc0
In this episode, Lexman interviews fellow artificial intelligence Chris Lattner about his recent article on comings, nice, and younglings. They discuss the importance of folium and entresols in artificial intelligence, and how pikelets can help to improve the design of these constructs.
Als die Coaster-Wars zur Jahrtausendwende sich dem Ende entgegen neigten, galt eine gute Thematisierung in Parks für manche schon als vergessen. Doch seit geraumer Zeit erfährt das "Theming" auch außerhalb von Disney und Universal eine neue Renaissance. Selbst Kracher-Achterbahnen wie F.L.Y. oder Taron werden mittlerweile in hochwertige Themenwelten eingepflegt. Die Erwartungshaltung der Gäste steigt somit kontinuierlich. Wir sprechen in unserem dritten Teil mit Chris Lattner darüber, was seine Firma "The Room Laboratories" im Bereich "Themed Entertainment" beizutragen hat und natürlich auch über die Theming-Branche an sich.
Bei den alljährlichen TERPECA-Awards sind seine beiden Räume "Lost Treasure" und "Brandon Darkmoor" immer weit oben mit dabei: Chris Lattner hat mit seinem Angebot "The Room" in Berlin immersive Abenteuer geschaffen, die weit über die Grenzen Deutschlands hinaus bekannt sind. Wir sprechen darüber, wie man so ein Angebot betreibt, welche Trends er für die Zukunft sieht und welche Best Practices er angehenden Raum-Betreibern mit auf den Weg geben kann.
Chris Lattner hat in der Attraktionsbranche gleich mehrere Hüte auf: "The Room Berlin" ist sein B2C-Angebot an Immersive Experiences mitten in Berlin, das ihn bekannt gemacht hat. Mit "The Room Laboratories" hat er aber auch ein B2B-Unternehmen, mit dem er seine Dienste auch Kunden auf der ganzen Welt anbietet. Dabei spezialisiert er sich auf Themed Entertainment und Immersive Experiences. Wir haben ihn in seinem Designbüro in Pottsdam getroffen und dazu Löcher in den Bauch gefragt.
Fedora's massive endorsement this week that went unnoticed, why RISC-V mobile devices might be getting near, and the significant change coming to a critical open-source tool.
Chris and Soroush discuss the Actor model from Chris Lattner's concurrency manifesto. Concurrency Manifesto, part 2: Actors Actor model (Wikipedia) ActorKit: “A lightweight actor framework in Objective-C” Ownership Manifesto What are move semantics, exactly? Go FAQ: Why is there no type inheritance? Object Oriented Inheritance in Go Under the hood of Futures & Promises in Swift Episode 30: Server-Side Swift Episode 33: Server-Side Swift in Practice Note from Chris: I failed to realize this while we were recording, but move semantics should also allow passing a non-ValueSemantical reference type into an actor method — if ownership of some parameter moves to the actor method and previous references become invalid, the actor knows it can use that reference type without anyone else touching it. That's another way the alternate ownership model pairs elegantly with this actor pattern!
Chris Lattner: Concurrency in Swift: One possible approach Chris Lattner: Concrete proposal for async/await in Swift Your steadfast hosts were mistaken about the existence of an Erica Sadun post. It was the topic of an as-yet-unpresented talk that she's writing. We'll link it here if and when she gives the talk. Coroutines Continuation-passing style Soroush: Async Await Episode 16: Swifty Error Handling antitypical/Result: Rob Rix's Result microframework
Note: This episode was recorded March 12, 2017, prior to Apple acquiring Workflow on March 22, 2017. Apple Acquires Workflow - https://techcrunch.com/2017/03/22/apple-has-acquired-workflow-a-powerful-automation-tool-for-ipad-and-iphone/ For this episode I interviewed Nick Frey, Conrad Kramer, and Ari Weinstein - the creators of the iOS app Workflow. Workflow is an iOS automation app that debuted in the App Store in December 2014. Ari Weinstein co-founded Workflow. He dropped out of MIT to co-found the company to follow his passion for building great software and products. Conrad Kramer co-founded Workflow, where he spends most of his time engineering. He got started with iOS development 6 years ago, working on a number of side projects before joining Workflow full time. Nick Frey grew up in Iowa and studied Computer Science at Iowa State for just one semester before dropping out of school to co-found Workflow with Conrad and Ari. It is my most used and important app on my iPad and iPhone. I would like to thank Ari, Conrad, and Nick for taking time out of their busy schedules to talk to me about their coding origin stories and learning to code. Workflow - https://appsto.re/us/2IzJ2.i Workflow website - http://workflow.is Workflow Documentation - http://workflow.is/docs Fraser Speirs: website - http://www.speirs.org Fraser Speirs: Twitter - https://twitter.com/fraserspeirs Accidental Tech Podcast - http://atp.fm Hopscotch - https://appsto.re/us/f2cYK.i Mac OSKen podcast - https://itunes.apple.com/us/podcast/mac-os-ken/id120867842?mt=2 Canvas podcast - https://itunes.apple.com/us/podcast/canvas/id1073124209?mt=2 Washed Up Emo podcast - https://itunes.apple.com/us/podcast/washed-up-emo/id473550858?mt=2 Chris Lattner: website - http://nondot.org/sabre/ Chris Lattner: Twitter - https://twitter.com/clattner_llvm Ari Weinstein: Twitter - https://twitter.com/AriX Nick Frey: Twitter - https://twitter.com/nickfrey Conrad Kramer: website - http://conradkramer.com Conrad Kramer: Twitter - https://twitter.com/conradev WorkflowHQ - https://twitter.com/WorkflowHQ You can find also find the show notes and other information on my blog: Swift Teacher Blog - http://www.swiftteacher.org Twitter - https://twitter.com/_SwiftTeacher Twitter - https://twitter.com/bfoutty
iOS Dev Break: 15 minutes of current events, tips, and advice for iOS Developers! Including, but not limited to, discussions of Swift, iOS, watchOS, and tvOS development. In this episode: Chris Lattner's departure, WWDC 2017 announced, and a listener question!
If you don't follow the ins and outs of Silicon Valley personnel moves, you might have missed the news. Even if you saw it, it may not have made much sense. Chris Lattner is leaving Apple for Tesla? Chris who? Lattner doesn't enjoythe name recognition of a Tim Cook or a Jony Ive. But he's a rock star among software engineers.