POPULARITY
Gudrun sprach im Januar 2024 mit zwei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Lukas Ullmer und Moritz Vogel. Sie hatten in ihrem Projekt Wahlmodelle ananlysiert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben. Der Fokus ihrer Projektarbeit liegt auf der Betrachtung und Analyse von Wahlen, in denen mehrere verschiedene Wähler zu einem Thema abstimmen. Formal von Relevanz sind hierbei die sogenannten Wahlsysteme, welche die Art der Aggregation der Wählerstimmen beschreiben. Diese fallen in der Praxis recht vielfältig aus und über die Jahre wurden verschiedenste Wahlsysteme vorgeschlagen, angewendet und auch analysiert. In dieser Arbeit werden drei Kategorien präferenzbasierter Wahlsysteme analysiert: vergleichsbasierte Systeme, Scoring-Systeme sowie Approval-Systeme. Aufbauend darauf erfolgt die Konstruktion mehrstufiger und hybrider Wahlsysteme. Desweiteren werden verschiedenen Wahleigenschaften wie z.B. die Nicht-Diktatur oder die Strategiesicherheit betrachtet. Diese meist wünschenswerten Eigenschaften schließen sich teilweise gegenseitig aus. Die Themen Wahlmanipulation und Wahlkontrolle liegen deshalb besonders im Fokus. Literatur und weiterführende Informationen J. Rothe u.a. Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen, Wählen und Teilen. Spektrum Akademischer Verlag Heidelberg, 2012. doi: 10.1007/978-3-8274-2571-3. A.D. Taylor and A.M. Pacelli: Mathematics and Politics - Strategy, Voting, Power, and Proof. Springer-Verlag, Berlin Heidelberg, 2nd corrected ed. 2008, corr. 3rd printing, 2009. H.-J. Bungartz e.a.: Modellbildung und Simulation - Eine anwendungsorientierte Einführung Kapitel 4: Gruppenentscheidungen, Springer, 2009. G.G. Szpiro: Die verflixte Mathematik der Demokratie, Springer, 2011. W.D. Wallis. The Mathematics of Elections and Voting. Springer, Berlin, Heidelberg, 2014. K. Loewenstein: Verfassungsrecht und Verfassungspraxis der Vereinigten Staaten, Springer-Verlag, Berlin Heidelberg New York, 1959. Podcasts P. Stursberg, G. Thäter: Social Choice, Gespräch im Modellansatz Podcast, Folge 129, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. P. Staudt, G. Thäter: Wahlsysteme, Gespräch im Modellansatz Podcast, Folge 27, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M. Fehndrich, T. Pritlove: Wahlrecht und Wahlsysteme, Gespräch im CRE Podcast, Folge 128, Metaebene Personal Media, 2009. S. Gassama, L. Harms, D. Schneiderhan, G. Thaeter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
Der menschengemachte Klimawandel ist seit vielen Jahren ein weltweit politisch und medial omnipräsentes Thema. Der freie Journalist Tom-Oliver Regenauer spricht in seinem Artikel "Klima, Kartelle und Korruption" sogar vom "mächtigsten Narrativ unserer Ära". Auch die deutsche Bundesregierung hat auf Grundlage des Klimawandels als existentielle Bedrohung für die Menschheit politische Entscheidungen getroffen, die sowohl kostspielig als auch sehr einschneidend für die Bevölkerung sind. Es stellt sich jedoch heraus, dass es sich dabei meist lediglich um örtliche Verschiebungen der CO2-Emission handelt. Andere Länder, wie zum Beispiel China übernehmen Industriezweige, die vorher in Deutschland ansässig waren und erhöhen weiterhin ihre Emissionen. Deutschlands Einfluss auf das Weltklima ist also de facto nicht vorhanden, trotzdem findet eine massive Deindustrialisierung statt, um ,so die Begründung der Regierung, das Klima zu retten. In der Umschreibung der sogenannten Klimakrise geht es immer wieder um den Konsens in der Wissenschaft, um irreversible Schäden, die eintreffen, wenn Kipppunkte überschritten sind und um einen Anstieg von Wetterextremen durch den menschengemachten Klimawandel. Dabei spielt die Menge an CO2, die sich in der Atmosphäre befindet, eine sehr wichtige Rolle, da der als Gas vorliegenden Verbindung aus Sauerstoff und Kohlenstoff zugeschrieben wird, für die Erderwärmung hauptverantwortlich zu sein. Über dieses hochkomplexe Thema spreche ich mit dem promovierten und habilitierten Physiker, Dr. Joachim Dengler. Seine Habilitationsarbeit „Grundlagen optimaler Modellbildung“ schrieb er 1990 während eines Gastwissenschaftler-Aufenthalts am MIT in Boston (Mass./USA). Er betreibt die Webseite klima-fakten.net und äußert dort sein Vorhaben, die Diskussion über den Klimawandel wieder „vom Kopf auf die Füße zu stellen“. Artikel & Video: https://blog.bastian-barucker.de/klimawandel-dengler/ Meine Arbeit unterstützen: https://blog.bastian-barucker.de/unterstuetzung/
Gudrun spricht in dieser Folge mit Pauline Brumm von der TU Darmstadt über Benetzung im Tiefdruck. Sie ist wissenschaftliche Mitarbeiterin am Institut für Druckmaschinen und Druckverfahren und promoviert im SFB 1194 zur Mechanischen Zwangsbenetzung von Oberflächen durch gravierte Tiefdruckzylinder im Teilprojekt C01. Es handelt sich um eine Weiterführung des Gesprächs mit Dr. Mathis Fricke im Modellansatz-Podcast Folge 242 über Dynamische Benetzung. Herr Fricke hatte über die Arbeit im SFB 1194 aus Sicht der Mathematik berichtet, Frau Brumm liefert in dieser Folge nun einen Beitrag aus Sicht der Anwendung. Sie hat Maschinenbau im Bachelor und Master an der TU Darmstadt studiert und sich auf Drucktechnik spezialisiert. Drucken wird seit hunderten von Jahren praktiziert und angewendet, jedoch gibt es bisher noch keine umfassende Modellbildung für viele Druckprozesse. Das bedeutet, dass ein Großteil des Wissens empirisch geprägt ist. Firmen stützen sich auf die Erfahrung von gelernten Drucktechnikern, jedoch ist diese Erfahrung nur selten öffentlich zugänglich und es gibt wenige Forschungsinstitute weltweit zum Thema Drucktechnik. Um innovative Anwendungen zu entwickeln, zum Beispiel aus dem Bereich der gedruckten Elektronik, bedarf es jedoch einer detaillierten Modellvorstellung des Druckprozesses, um klassische Druckverfahren aus dem grafischen Druck (Zeitungsdruck, Verpackungsdruck etc.) für den sogenannten „funktionalen Druck“ nutzbar zu machen. Die Schwierigkeit liegt darin, dass an den funktionalen Druck ganz andere Anforderungen gestellt werden, zum Beispiel müssen die gedruckten, häufig ultradünnen Schichten geschlossen, fehlerfrei und von konstanter Schichtdicke sein. Ein häufiger Druckfehler ist das sogenannte „Viscous Fingering“, eine hochdynamische Grenzflächeninstabilität bei der Fluidübertragung, die sich in Form von faszinierenden, verästelten, fingerartigen Strukturen in der gedruckten Schicht bemerkbar macht. Sie sehen so ähnlich aus wie die Arme eines Flussdeltas aus Vogelperspektive oder die Wurzeln von Bäumen. In ihrer Forschung untersucht Frau Brumm diese verästelten Strukturen im Tiefdruck, um sie besser zu verstehen und um den Druckfehler in Zukunft zu verhindern oder für spezielle Anwendungen nutzbar zu machen. Beim Tiefdruck wird die Farbe über gravierte Näpfchen in einem Druckzylinder übertragen. Die Näpfchen liegen vertieft und sind nur wenige zehn Mikrometer groß. Beim Kontakt mit dem zu bedruckenden Substrat (Papier, Folie, Glas…) wird die Druckfarbe unter hohem Druck und hoher Geschwindigkeit aus den Näpfchen herausgesaugt. Es kommt zur Zwangsbenetzung des Substrats. Mit Stokes-Gleichungen kann man Parametermodelle herleiten, welche das Skalierungsverhalten der verästelten, gedruckten Strukturen beschreiben. Zum Beispiel skaliert der dominante Abstand der gedruckten Strukturen mit der Druckgeschwindigkeit hoch minus ein Halb laut Sauer et al. (2015), welches dem 60 Jahre alten Skalengesetz von Saffman und Taylor (1958) entspricht. Mit Experimenten können diese Modelle bestätigt oder widerlegt werden. Die Planung von Experimenten geschieht zielgerichtet. Im Vorfeld muss überlegt werden, welche Parameter im Experiment variiert werden sollen und wie viele Messpunkte benötigt werden, um statistisch abgesicherte Aussagen treffen zu können. Meistens ist die Herausforderung, die Vielzahl der Parameterkombinationen auf ein Minimum zu reduzieren und dennoch die gewünschten Aussagen treffen zu können. Die gedruckten Proben werden hochauflösend mit einem Flachbettscanner digitalisiert und danach werden Bildverarbeitungsmethoden in den ingenieurstypischen Programmiersprachen Matlab oder Python angewendet. Beispielsweise wird eine Fast Fourier Transformation (FFT) benutzt, um den dominanten Abstand der gedruckten Strukturen zu ermitteln. Die Automatisierung des Experiments und vor allem der anschließenden Auswertung ist ein weiterer wichtiger Punkt. Um zehntausende von gedruckten Mustern zu analysieren, wurde ein hochautomatisierter computergestützter Workflow entwickelt. Seit kurzem wird von Frau Brumm auch Künstliche Intelligenz, genauer gesagt Deep Learning, zur Klassifizierung der gedruckten Muster verwendet. Dies ist notwendig, um die Skalierbarkeit hin zu industriellen Prozessen zu ermöglichen, indem umfangreiche Versuchsreihen an industriellen Maschinen durchgeführt und automatisiert ausgewertet werden. Diese werden anschließend mit kleineren Versuchsreihen an speziell entwickelten Labormaschinen verglichen, bei denen teilweise auch Modellfluide anstelle von realen Druckfarben verwendet werden. Bei Laborexperimenten werden in Teilprojekt C01 im SFB 1194 auch Hochgeschwindigkeitsvideos der hochdynamischen Grenzflächeninstabilität aufgenommen, die noch tiefere Einblicke in die Strömungsdynamik bieten und die industriellen Experimente ergänzen und erklären sollen. Der Maschinenbau ist sehr breit gefächert und das Studium muss dementsprechend auch breite Kenntnisse vermitteln. Beispielsweise werden umfangreiche Methoden aus der Mathematik gelehrt, damit ein/e Maschinenbau-Absolvent/in für die diversen Anwendungsaufgaben gerüstet ist. In der modernen Forschung ist die Fähigkeit zur interdisziplinären Zusammenarbeit und zur Wissenschaftskommunikation sehr entscheidend. Maschinenbauer/innen im SFB 1194 arbeiten beispielsweise mit Mathematikern/innen, Physikern/innen und Informatikern/innen zusammen, um eine größere Forschungsfrage zu beantworten. In dieser Podcast-Folge wird auch an junge Frauen appelliert, ein MINT-Studium auszuprobieren, um mehr Diversität im Studium, Forschung und Industrie zu erreichen, um am Ende noch innovativere Lösungen zu schaffen, die der Welt einen Nutzen bringen. Literatur und weiterführende Informationen Pauline Brumm, Tim Eike Weber, Hans Martin Sauer, and Edgar Dörsam: Ink splitting in gravure printing: localization of the transition from dots to fingers. J. Print Media Technol. Res. Vol. 10 No. 2 (2021), 81-93 Pauline Brumm, Hans Martin Sauer, and Edgar Dörsam: Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process. Colloids and Interfaces, Vol. 3 No. 1 (2019), 37 Hans Martin Sauer; Dominik Daume, and Edgar Dörsam: Lubrication theory of ink hydrodynamics in the flexographic printing nip. Journal of Print and Media Technology Research, Vol. 4 No. 3 (2015), 163-172 Julian Schäfer, Ilia V. Roisman, Hans Martin Sauer, and Edgar Dörsam: Millisecond fluid pattern formation in the nip of a gravure printing machine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 575 (2019), 222-229 Philip Geoffrey Saffman, and Geoffrey Ingram Taylor: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences Vol. 245 No. 1242 (1958), 312-329 Podcasts M. Fricke, G. Thäter: Dynamische Benetzung, Gespräch im Modellansatz Podcast, Folge 242, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. M. Haragus, G. Thäter: Pattern Formation, Conversation im Modellansatz Podcast, Episode 227, Department of Mathematics, Karlsruhe Institute of Technology (KIT), 2019. S. Winter: Fraktale Geometrie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 120, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. S. Lerch, G. Thaeter: Machine Learning, Gespräch im Modellansatz Podcast, Folge 232, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
Gudrun spricht in dieser Folge mit Sarah Bischof, Timo Bohlig und Jonas Albrecht. Die drei haben im Sommersemester 2021 am Projektorientiertes Softwarepraktikum teilgenommen. Das Praktikum wurde 2010 als forschungsnaher Lernort konzipiert. Studierende unterschiedlicher Studiengänge arbeiten dort ein Semester lang an konkreten Strömungssimulationen. Es wird regelmäßig im Sommersemester angeboten. Seit 2014 liegt als Programmiersprache die Open Source Software OpenLB zugrunde, die ständig u.a. in der Karlsruher Lattice Boltzmann Research Group (LBRG) weiter entwickelt wird. Konkret läuft das Praktikum etwa folgendermaßen ab: Die Studierenden erhalten eine theoretische Einführung in Strömungsmodelle, die Idee von Lattice-Boltzmann-Methoden und die Nutzung der Hochleistungrechner am KIT. Außerdem finden sie sich für ein einführendes kleines Projekt in Gruppen zusammen. Anschließend wählen sie aus einem Katalog eine Frage aus, die sie bis zum Ende des Semesters mit Hilfe von Computersimulationen gemeinsam beantworten. Diese Fragen sind Teile von Forschungsthemen der Gruppe, z.B. aus Promotionsprojekten oder Drittmittelforschung. Während der Projektphase werden die Studierenden von dem Doktoranden/der Doktorandin der Gruppe, die die jeweilige Frage gestellt haben, betreut. Am Ende des Semesters werden die Ergebnisse in Vorträgen vorgestellt und diskutiert oder es wird eine Podcastfolge aufgenommen. In einer Ausarbeitung werden außerdem die Modellbildung, die Umsetzung in OpenLB und die konkreten Simulationsergebnisse ausführlich dargelegt und in den aktuellen Forschungsstand eingeordnet. Sarah, Timo und Jonas sind am KIT im Masterstudiengang Chemieingenieurwesen eingeschrieben. Neben den verschiedenen Masterstudiengängen Mathematik kommen aus diesem Studiengang die meisten Interessenten für das Softwarepraktikum. Im Podcast erläutern sie, was sie an der Strömungssimulation interessiert und inwieweit sie sich gut oder auch nicht so gut auf die Anforderungen vorbereitet gefühlt haben, wie sie sich die Arbeit in der Gruppe aufgeteilt haben und was sie an fachlichen und überfachlichen Dingen dort gelernt haben. Das Thema des Projektes war ein Benchmark für die Durchströmung der Aorta. Dies ist einer der Showcases für OpenLB, die auf den ersten Blick die Leistungsfähigkeit der Software demonstrieren sollen. Das Projekt wurde von der Gruppe in drei Teile gegliedert: Benchmark Test auf dem bwUniCluster 2.0 (High Performance Computer) Performance Analyse mit selbstgeschriebener Source Code Erweiterung Performance Analyse mit externer Software (Validierung der Source Code Erweiterung) Mit Hilfe der Benchmark Tests auf dem HPC konnte die maximale Skalierbarkeit des Aorta Source Codes in Abhängigkeit der Problemgröße gefunden werden. Sie gibt an, auf wie vielen Computerprozessoren der Showcase mit der höchsten Performance simuliert werden kann. Des Weiteren wurde die parallele Effizienz mit Hilfe der Speedup Kennzahl untersucht. Diese beschreibt inwiefern sich die Simulationszeit infolge von Erhöhung der Prozessoranzahl verringert. In beiden Fällen zeigten die Performanceindikatoren ein Maximum bei 400-700 Prozessoreinheiten für Problemgrößen bis zu einer Resolution von N = 80. Das Softwarepaket OpenLB beinhaltet in Release 1.4r0 keine detaillierten Schnittstellen zur Performancemessung. Durch eine Source Code Erweiterung konnte eine interne Zeitmessung der einzelnen Funktionen des Codes realisiert werden. Dabei wurden so genannte Bottlenecks identifiziert und dokumentiert, welche durch Updates in zukünftigen Versionen der Software eliminiert werden sollen. Des Weiteren konnte auch durch die Code Erweiterung eine Aussage über die Parallelisierung getroffen werden. Im Vergleich zu den Benchmark Tests können direkt Funktionen des Source Codes, die die Parallelisierung hemmen, bestimmt werden. Die Performance Analyse durch das externe Programm und durch die Source Code Erweiterung bestätigen eine gut funktionierende Parallelisierung. Die Realisierung erfolgte dabei durch die Messung der Laufzeit der Hauptschritte einer OpenLB Simulation, sowie der detaillierten Analyse einzelner Funktionen. Diese finden sich zum aktuellen Zeitpunkt im Post-Processing des "Collide And Stream" Schrittes der Simulation. Collide And Stream beschreibt einen lokalen Berechnungsschritt, einen lokalen und einen nicht lokalen Übertragungsschritt. Der Kollisionsschritt bestimmt ein lokales Gleichgewicht der Massen-, Momenten- und Energiebilanzen. Im nicht-lokalen Streaming Schritt werden diese Werte auf die angrenzenden Blöcke des Simulationsgitters übertragen. Dies ermöglicht im Vergleich zu CFD-Simulationen, die auf Basis der Finite-Volumen-Methode (FVM) die Navier-Stokes Gleichungen lösen, effizientere Parallelisierung insbesondere bei Einsatz einer HPC-Einheit. Die Post Prozessoren im Collide And Stream wenden unter anderem bestimmte, im vorangegangenen Schritt gesetzte Randbedingungen auf definierte Bereiche der Simulationsgeometrie an. Sie werden dabei nur für nicht-lokale Randbedingungen verwendet, weitere Randbedingungen können auch innerhalb des Kollisionsschrittes modelliert werden. Im Showcase der Aorta ist für das Fluid (Blut) am Eingang der Simulation eine Geschwindigkeits-Randbedingung nach Bouzidi mit Poiseuille-Strömungsprofil und am Ausgang eine "stress-free" Bedingung gewählt. Für die Aortawand ist eine no-slip Bedingung mit Fluidgeschwindigkeit null implementiert (Für genauere Informationen zum Simulationsaufbau hier und hier. Die Laufzeit der Post-Processor Funktionen, deren Aufgabe es ist die Randbedingungen anzuwenden, können mit dem Timer des Release 1.4r0 nicht analysiert werden. Mit Blick auf spätere Releases ist es mit der Source Code Erweiterung nun möglich mit geringem Aufwand Daten über die Effizienz der vorhandenen, neuer oder verbesserter Funktionen in OpenLB zu gewinnen. Eine integrierte Zeitmessung als Analysetool kann einen direkten Einfluss auf die Performance des Source Codes haben, weshalb mit Hilfe der externen Software AMDµProf die Bottlenecks validiert wurden. Sowohl bei der internen als auch externe Performance Analyse sind die selben Post-Processing Schritte als Bottlenecks erkennbar, welches die Code Erweiterung validiert. Zusätzlich konnte mit der AMDμProf-Software die aktuelle OpenLB Version 1.4r0 mit der vorherigen Version 1.3r1 verglichen werden. Dabei fällt auf, dass sich die Bottlenecks vom Berechnungsschritt in Collide And Stream (Release 1.3r1) zum Post-Processing Schritt in Collide And Stream (Release 1.4r0) verschoben haben. Abschließend wurde eine vektorisierte Version von OpenLB erfolgreich getestet und ebenfalls auf Bottlenecks untersucht. Eine Vektorisierung eines Codes, auch bekannt als SIMD, soll die Parallelisierung verbessern und der Aorta Simulation eine bessere Performance verleihen. Das Bottleneck des Post-Processing Schritts in Collide And Stream, speziell durch Implementierung neuer Bouzidi Boundaries, wurde durch eine weitere Gruppe im Rahmen des Projektorientierten Softwarepraktikums optimiert. Es konnte eine Performance Verbesserung um einen Faktor 3 erreicht werden (mit OpenMP Compiler). Durch eine gezielte Analyse der Bottlenecks im Code konnte das Potential für die Beschleunigung der Simulation erweitert werden. Aber natürlich lohnt es sich hier weiterhin anzusehen, wo noch konkretes Potential für die Beschleunigung der Simulation liegt. Zumal seit dem letzten Relounch einige Pardigmen in der Software OpenLB verändert wurden. Podcasts L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019. A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.A. Bayer, T. Braun, G. Thäter: Binärströmung, Gespräch im Modellansatz Podcast, Folge 218, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. Literatur und weiterführende Informationen Showcase blood flow simulation auf der Seite der Software OpenLBAortic Coarctation Simulation Based on the Lattice Boltzmann Method: Benchmark Results, Henn, Thomas;Heuveline, Vincent;Krause, Mathias J.;Ritterbusch, SebastianMRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study; Mirzaee, Hanieh;Henn, Thomas;Krause, Mathias J.;Goubergrits, Leonid; Schumann, Christian; Neugebauer, Mathias; Kuehne, Titus; Preusser, Tobias; Hennemuth, Anja
In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden. Gudrun sprach im Januar 2020 mit drei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Samory Gassama, Lennart Harms und David Schneiderhan. Sie hatten in ihrem Projekt Gruppenentscheidungen modelliert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben. Wie lassen sich Entscheidungen von Wählergruppen fair in demokratische Willensbildung einbringen? Mit diesem Thema beschäftigt sich u.a. auch die Volkswirtschaftslehre. Die dafür benutzten Modelle sollten einige Eigenschaften haben. Ein grundlegendes Kriterium wäre beispielsweise: Wenn alle der gleichen Meinung sind, sollte diese Meinung auch immer die Gruppenentscheidung sein. Ein weiteres Kriterum könnte verlangen, dass das Ergebnis Pareto-optimal ist, es also kein anderes Ergebnis gibt, mit dem jedes Gruppenmitglied zufriedener wäre. Um die Präferenz der Gruppe auszudrücken, führen die Studenten die Wohlfahrtsfunktion ein. Das ist eine Abbildung, welche als Input die Präferenzen der einzelnen Wähler verknüpft. Das Wahlverfahren wird sozusagen in dieser Abbildung modelliert. Man wünscht sich Anonymität: Jede Stimme sollte gleich gewertet werden. Neutralität: Wenn die Relationen im Input invertiert werden, bewirkt dies das Selbe beim Output. Monotonie: Falls eine Relation aus dem Input, welche nicht den Präferenzen des Outputs entspricht, sich zur Präferenzrelation des Outputs ändert, bleibt dieser gleich. Verfahren wie Rangaddition und Condorcet-Methode sind klassisch und erfüllen leider nicht alle diese Bedingungen. Die Studenten fügen eine weitere Entscheidungsebene im Modell hinzu. Man nennt dies geschachtelte Wahl. Als Beispiele dienen die US Präsidentschaftswahl 2016 und der Eurovision Song Contest 2019. Bei den Präsidentschaftswahlen in den VereinigtenStaaten von Amerika, wird der Präsident von den Wahlleuten der Bundesstaaten für eine Amtszeit bestimmt. Jeder Bundesstaat hat unterschiedlich viele Wahlleute. Die Wahlberechtigten legen unmittelbar nur die Wahlleute fest. Deshalb ist das Modell der US Präsidentschaftswahlen ist ein geschachteltes Modell. Im ersten Schritt, werden in allen 52 Staaten die Wahlen, mit den US Bürgern des jeweiligen Staates als Wähler, mithilfe des Condorcet Modells durchgeführt. Im zweiten Schritt bilden eben jene 52 Staaten die neue Wählermenge, welche dann über eine gewichtete Rangaddition den endgültigen Präsidenten bestimmt. Die Studenten haben im Projekt zwei Datensätze verwendet, um die Präsidentschaftswahlen 2016 in den USA zwischen Donald Trump und Hillary Clinton zu simulieren. Sie geben die Anzahl der Stimmen für Donald Trump und Hillary Clinton in den verschiedenen Wahlbezirken der USA an. Um die Simulation durchzuführen, wurde Google Colab verwendet. Die benutzte Programmiersprache ist Python. Die Wahl wurde folgendermaßen simuliert: Man summiert die Anzahl der Stimmen für alle Kandidaten in jedem Staat. Anschließend vergleicht man die Anzahl der Stimmen für Trump und Clinton in jedem Bundesstaat. Dem Gewinner eines Staates werden die Anzahl der Wahlleute dieses Bundesstaates in das Endergebnis addiert. Zum Schluss werden die Anzahl der Wahlleute, welche für die Kandidaten gestimmt haben verglichen. Trump gewinnt die Wahlen in 30 Bundesstaaten und Clinton in 20 Bundesstaaten, genauer gesagt erhält Trump 304 Wahlleute und Clinton 227. Somit wäre gewinnt Trump gegen Clinton. Alternativ zum geschachtelten Modell, wird anschließend die Abstimmungsmethode direkt auf alle Wahlstimmen angewandt. Dabei erhält Trump 62.984.828 Stimmen, während Clinton 65.853.514 bekommt. Bei diesem Verfahren gewinnt Clinton gegen Trump. Im Gespräch wird besprochen, dass es ein Problem ist, wenn bei recht knappem Wahlausgang pro Bundesstaat eine "Rundung" auf Wahlleute erfolgt und diese dann addiert wird. Im Vergleich hierzu kann es bei vielen Parteien auch durch Instrumente wie die 5%-Hürde, die wir in Deutschland implementiert haben, zu unfairen Effekten kommen. Die Regeln beim Eurovision Song Contest sind wie folgt: Aus den Televoting-Ergebnissen und den Jurywertungen jedes einzelnen Landes setzt sich das Gesamtergebnis für alle Teilnehmenden zusammen. Die besten zehn Titel werden mit eins, zwei, drei, vier, fünf, sechs, sieben, acht, zehn und zwölf Punkten bewertet. Dabei werden die Jury- und Zuschauerwertungen seit 2016 voneinander getrennt. Jedes Land kann einem Teilnehmenden also bis zu 24 Punkte geben - zwölf durch die Jury, zwölf durch die Zuschauer. Wenn zwei Songs auf die gleiche Punktzahl kommen, bekommt das Land die höhere Punktzahl, das vom Publikum höher bewertet wurde. Abgesehen davon, dass es sich auch hierbei wieder um ein geschachteltes Modell handelt, werden hierbei auch noch die gewichtete Rangaddition und ein externes Diktator Modell verwendet. Literatur und weiterführende Informationen A.D. Taylor and A.M. Pacelli: Mathematics and Politics - Strategy, Voting, Power, and Proof. Springer-Verlag, Berlin Heidelberg, 2nd corrected ed. 2008, corr. 3rd printing, 2009. H.-J. Bungartz e.a.: Modellbildung und Simulation - Eine anwendungsorientierte Einführung Kapitel 4: Gruppenentscheidungen, Springer, 2009. G.G. Szpiro: Die verflixte Mathematik der Demokratie, Springer, 2011. W.D. Wallis. The Mathematics of Elections and Voting. Springer, Berlin, Heidelberg, 2014. au. edition, 2014. K. Loewenstein: Verfassungsrecht und Verfassungspraxis der Vereinigten Staaten, Springer-Verlag, Berlin Heidelberg New York, 1959. US Election Tracker as xlsx, 2016. nytimes presidential elections 2016 results as csv, 2016. ESC Regelwerk, 2019. ESC Datensatz, 2019. S. Gassama, L. Harms, D. Schneiderhan: Gruppenentscheidungen. Jupyter Notebooks: Eurocontest_2019.ipynb (Web-Viewer), MS_USA_2016.ipynb (Web-Viewer) Podcasts P. Stursberg, G. Thäter: Social Choice, Gespräch im Modellansatz Podcast, Folge 129, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. P. Staudt, G. Thäter: Wahlsysteme, Gespräch im Modellansatz Podcast, Folge 27, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M. Fehndrich, T. Pritlove: Wahlrecht und Wahlsysteme, Gespräch im CRE Podcast, Folge 128, Metaebene Personal Media, 2009.
Gudrun war in Dresden zu Gast am Leibniz Institut für Polymerforschung. Sie spricht dort mit Axel Spickenheuer und Lars Bittrich über deren Forschungsfeld, das Tailored-Fiber-Placement-Verfahren (TFP). Anlass des Treffens in Dresden war der Beginn einer gemeinsamen Masterarbeit. Das Institut für Polymerforschung hat - zusammen mit Vorgängerinstitutionen - eine längere Geschichte in Dresden. Seit 1950 gab es dort ein Institut für Technologie der Fasern (als Teil der Akademie der Wissenschaften der DDR). Dieses wurde 1984 zum Institut für Technolgie der Polymere und nach der Gründung des Freistaates Sachsen schließlich am 1.1. 1992 neu als Institut für Polymerforschung Dresden e.V. gegründet. Seitdem wird dort auch schon an der TFP-Technologie gearbeitet. Seit 2004 gehört das Institut der Leibniz-Gemeinschaft an. Es ist damit der anwendungsnahen Grundlagenforschung verpflichtet. Ein wichtiges Thema im Haus ist Leichtbauforschung. Die TFP-Verfahren beinhalten Verstärkung von Geweben oder Thermoplasten durch feste Fasern aus z.B. Glas, Kohlenstoff und Aramiden. Diese Verstärkung kann man so aufbringen, dass sie in allen Richtungen gleich stark wirkt (isotrop) oder aber so, dass sich sehr unterschiedliche Materialeigenschaften bei Beanspruchung in unterschiedlichen Richtungen ergeben (anisotrop). In den so entstehenden zusammengesetzten Materialien geht es darum, für die Bauteile Masse zu reduzieren, aber Steifigkeit und/oder Tragfähigkeit stark zu erhöhen. Besonderes Potential für Einsparungen hat die anisotrope Verstärkung, also die (teuren) Fasern genau so zu einzusetzen, wie es den berechneten Anforderungen von Bauteilen am besten entspricht. Das führt auf sehr unterschiedliche Fragen, die in der Forschungstätigkeit des Dresdner Instituts beantwortet werden. Sie betreffen u.a. die tatsächliche Herstellung an konkreten Maschinen, die Kommunikation zwischen Planung und Maschine, die Optimierung des Faserverlaufs im Vorfeld und die Prüfung der physikalischen Eigenschaften. Die Verstärkungsstruktur wird durch das Aufnähen einzelner sogenannter Rovings auf dem Basismaterial erzeugt. Das Grundmaterial kann eine textile Flächenstruktur (Glasgewebe, Carbongewebe, Multiaxialgelege) oder für thermoplastische Verstärkungsstrukturen ein vernähfähiges Folienmaterial sein. Die Verstärkungsstrukturen werden durch die Bewegung des Grundmaterials mit Hilfe einer CNC-Steuerung und der gleichzeitigen Fixierung des Rovings mit Hilfe des Nähkopfes gefertigt. Um eine hohe Effektivität zu erhalten, können Verstärkungsstrukturen mit bis zu 1000 Stichen pro Minute hergestellt werden. Für die Mathematik besonders interessant ist die Simulation und Optimierung der sehr komplexen Verbundstoffe. Um optimale Faseranordnungen umsetzen zu können, braucht es natürlich numerische Methoden und prozessorientierte Software, die möglichst alle Schritte der Planung und Herstellung automatisiert. Traditionell wurde oft die Natur zum Vorbild genommen, um optimale Verstärkungen - vor allem an Verzweigungen - nachzuahmen. Hier gibt es einen Verbindung nach Karlsruhe ans KIT, denn Claus Mattheck hat hier über viele Jahrzehnte als Leiter der Abteilung Biomechanik im Forschungszentrum Karlsruhe richtungsweisend gearbeitet und auch mit dem Institut für Polymerforschung kooperiert. Ein weiterer Ansatz, um gute Faserverläufe zu konstruieren ist es, die Hauptspannungsverläufe (insbesondere 1. und 2. Hauptspannung) zu berechnen und das Material entsprechend zu verstärken. Dies ist aber für die komplexen Materialien gar nicht fundiert möglich. Eine der derzeit wichtigsten Problemstellung dabei ist die hinreichend genaue Modellbildung für eine Finite Elemente Analyse (FEA). Erst dadurch lassen sich exakte Vorhersagen zum späteren Bauteilverhalten bzgl. Steifigkeits- und Festigkeitsverhalten treffen. Besonders schwierig sind dabei die Berücksichtigung der lokal variablen Dicken im FE-Modell bzw. die genaue Wiedergabe der lokalen Faserorientierung darin. Vorzeigebeispiele für die Leistungsfähigkeit der Technologie sind die Fenster des Airbus und ein sehr leichtgewichtiger Hocker (650g), der bis zu 200 kg Last tragen kann und auch noch schick aussieht. Er wurde inzwischen in vielen technischen Ausstellungen gezeigt, z.B. im Deutschen Museum München. Mit Hilfe der am Institut entwickelten Softwaretools EDOPunch und AOPS (nach der Kommerzialisierung wurden daraus die Produkte EDOpath und EDOstructure der Complex Fiber Structures GmbH) ist es nun möglich, ausgehend von einem nahezu beliebigen TFP-Stickmuster, 3D-FEA-Simulationsmodelle zu erstellen, die in einem makroskopischen Maßstab sowohl die lokale Dickenkontur (sozusagen den Querschnitt) als auch die lokale Faserorientierung entsprechend abbilden können. Erste Ergebnisse zeigen, dass sich hierdurch sehr gut das Steifigkeitsverhalten solcher variabelaxialer Faserverbundbauteile berechnen lässt. Neben dem Vorgehen zum Erstellen entsprechender Simulationsmodelle wird anhand verschiedener experimentell ermittelter Bauteilkennwerte die Leistungsfähigkeit des verwendeten Modellansatzes immer wieder demonstriert. Die Weiterentwicklung dieser Software geht über die Ziele des Instituts für Polymerforschung hinaus und wird seit März 2013 in der Ausgründung Complex Fiber Structures erledigt. Ziel ist es, allen Ingenieuren die mit Faserverbünden arbeiten, sehr einfach handhabbare Tools zur Planung und Entwicklung zur Verfügung stellen zu können. Es gibt hierfür sehr unterschiedliche typische Nutzungsfälle. Im Gespräch geht es z.B. darum, dass Löcher in klassischen Bauteilen regelmäßig zu starken Festigkeitseinbußen führen. Allerdings kann man sehr oft nicht auf Löcher im Bauteil verzichten. TFP-Lösungen können aber so umgesetzt werden, dass im Verbundmaterial die Festigkeitseinbuße durch Löcher nicht mehr vorhanden ist. Damit Ingenieure diesen Vorteil für sich nutzen können, brauchen sie aber gute Software, die ihnen solche Standardprobleme schnell zu lösen hilft, ohne sich erst in den ganzen Hintergrund einzuarbeiten. Axel Spickenheuer hat Luft-und Raumfahrttechnik an der TU Dresden studiert und arbeitet seit 2005 am Institut für Polymerforschung. Seit vielen Jahren leitet er die Gruppe für Komplexe Strukturkomponenten und hat 2014 zum Thema TFP-Verfahren promoviert. Lars Bittrich hat an der TU Dresden Physik studiert und zu Quantenchaos promoviert. Dabei hat er schon viel mit numerischen Verfahren gearbeitet. Seit Ende 2010 ist er Mitglieder von Axels Gruppe. Literatur und weiterführende Informationen L. Bittrich e.a.: Buckling optimization of composite cylinders for axial compression: A design methodology considering a variable-axial fiber layout more. Composite Structures 222 (2019) ID110928 L. Bittrich e.a.: Optimizing variable-axial fiber-reinforced composite laminates: The direct fiber path optimization concept more. Mathematical Problems in Engineering (2019) ID 8260563 A. Spickenheuer: Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement Promotionsschrift TU Dresden, 2014. Podcasts H. Benner, G. Thäter: Formoptimierung, Gespräch im Modellansatz Podcast, Folge 212, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. M. An, G. Thäter: Topologieoptimierung, Gespräch im Modellansatz Podcast, Folge 125, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 053, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
In dieser Folge spricht Gudrun mit Anne Bayer und Tom Braun. Sie sind im Bachelorstudiengang Wirtschaftsmathematik bzw. Mathematik am KIT eingeschrieben und haben 2019 das Projektorientierte Softwarepraktikum in Gudruns Arbeitsgruppe absolviert. Das Gespräch dreht sich um ihre Erfahrungen in dieser Lehrveranstaltung. Das Projektorientierte Softwarepraktikum wurde 2010 als forschungsnaher Lernort konzipiert. Studierende unterschiedlicher Studiengänge arbeiten dort ein Semester lang an konkreten Strömungssimulationen. Es wird regelmäßig im Sommersemester angeboten. Seit 2014 liegt als Programmiersprache die Open Source Software OpenLB zugrunde, die ständig u.a. in der Karlsruher Lattice Boltzmann Research Group weiter entwickelt wird. Außerdem wird das Praktikum seit 2012 vom Land Baden-Württemberg gefördert als eine Möglichkeit für Studierende, sich im Studium schon an Forschung zu beteiligen. Konkret läuft das Praktikum etwa folgendermaßen ab: Die Studierenden erhalten eine theoretische Einführung in Strömungsmodelle und die Idee von Lattice-Boltzmann-Methoden und finden sich für ein einführendes kleines Projekt in Zweiergruppen zusammen. Anschließend wählen sie aus einem Katalog eine Frage aus, die sie bis zum Ende des Semesters mit Hilfe von Computersimulationen gemeinsam beantworten. Diese Fragen sind Teile von Forschungsthemen der Gruppe, z.B. aus Promotionsprojekten oder Drittmittelforschung. Während der Projektphase werden die Studierenden von dem Doktoranden/der Doktorandin der Gruppe, die die jeweilige Frage gestellt haben, betreut. Am Ende des Semesters werden die Ergebnisse in Vorträgen vorgestellt und diskutiert. Hier ist die ganze Arbeitsgruppe beteiligt. In einer Ausarbeitung werden außerdem die Modellbildung, die Umsetzung in OpenLB und die konkreten Simulationsergebnisse ausführlich dargelegt und in den aktuellen Forschungsstand eingeordnet. Diese Ausarbeitung wird benotet. Die Veranstaltung wird mit 4 ECTS angerechnet. Anne und Tom betrachten einen Würfel, in dem zwei Flüssigkeiten enthalten sind, die sich nicht mischen können. Konkret ist eine Tropfen von Fluid 1 ist in ein Fluid 2 eingebettet. Dadurch entsteht insbesondere eine diffuse Grenzfläche zwischen beiden, die durch mehrere physikalische Faktoren beeinflusst ist, wie z.B. die Viskosität der Flüssigkeiten oder die Größe des Tropfens. Wo die Grenzfläche verläuft ist Teil des physikalischen Problems. Grundlage des verwendeten sehr einfachen Modells ist die Oberflächenspannung. Der Tropfen hat aufgrund dieser Oberflächenspannung einen anderen Druck im Inneren als im das Fluid im außen. Dies kann mit dem Laplace-Operator modelliert und berechnet werden. Sie berechnen die im numerischen Modell vorliegende Druckdifferenz, indem der Druck im kugelförmigen Tropfen und dem Punkt am weitesten entfernt betrachtet wird (in diesem Fall den Punkt aus der linken unteren Ecke). Literatur und weiterführende Informationen A. Komrakova e.a.: Lattice Boltzmann simulations of drop deformation and breakup in shear flow International Journal of Multiphase Flow 59, 24-43, 2014. Podcasts L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019. A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.
In dieser Folge spricht Gudrun mit Ayca Akboyraz und Alejandro Castillo. Beide sind im Masterstudiengang Chemieingenieurwesen bzw. Bioingenieurwesen am KIT eingeschrieben und haben 2019 das Projektorientierte Softwarepraktikum in Gudruns Arbeitsgruppe absolviert. Das Gespräch dreht sich um ihre Erfahrungen in dieser Lehrveranstaltung. Ayca stammt aus der Türkei und Alejandro ist in Mexico aufgewachsen. Beide haben in ihren Heimatländern deutsche Schulen besucht. Anschließend haben sie sich jeweils um ein Studium in Deutschland beworben. Ayca hatte sich zunächst für Wirtschaftsingenieurwesen entschieden, hat aber nach einiger Zeit gemerkt, dass ihr Chemieingenieurwesen viel mehr liegt. Das Projektorientierte Softwarepraktikum wurde 2010 als forschungsnaher Lernort konzipiert. Studierende unterschiedlicher Studiengänge arbeiten dort ein Semester lang an konkreten Strömungssimulationen. Es wird regelmäßig im Sommersemester angeboten. Seit 2014 liegt als Programmiersprache die Open Source Software OpenLB zugrunde, die ständig u.a. in der Karlsruher Lattice Boltzmann Research Group weiter entwickelt wird. Außerdem wird das Praktikum seit 2012 vom Land Baden-Württemberg gefördert als eine Möglichkeit für Studierende, sich im Studium schon an Forschung zu beteiligen. Konkret läuft das Praktikum etwa folgendermaßen ab: Die Studierenden erhalten eine theoretische Einführung in Strömungsmodelle und die Idee von Lattice-Boltzmann-Methoden und finden sich für ein einführendes kleines Projekt in Zweiergruppen zusammen. Anschließend wählen sie aus einem Katalog eine Frage aus, die sie bis zum Ende des Semesters mit Hilfe von Computersimulationen gemeinsam beantworten. Diese Fragen sind Teile von Forschungsthemen der Gruppe, z.B. aus Promotionsprojekten oder Drittmittelforschung. Während der Projektphase werden die Studierenden von dem Doktoranden/der Doktorandin der Gruppe, die die jeweilige Frage gestellt haben, betreut. Am Ende des Semesters werden die Ergebnisse in Vorträgen vorgestellt und diskutiert. Hier ist die ganze Arbeitsgruppe beteiligt. In einer Ausarbeitung werden außerdem die Modellbildung, die Umsetzung in OpenLB und die konkreten Simulationsergebnisse ausführlich dargelegt und in den aktuellen Forschungsstand eingeordnet. Diese Ausarbeitung wird benotet. Die Veranstaltung wird mit 4 ECTS angerechnet. In der klassischen Theorie der Strömungsmechanik werden auf der Grundlage der Erhaltung von Masse, Impuls und Energie und unter berücksichtigung typischer Materialeigenschaften die Navier-Stokes-Gleichungen als Modell für das Strömungsverhalten von z.B. Wasser hergeleitet. Die beiden unbekannten Größen in diesem System partieller Differentialgleichungen sind das Geschwindigkeitsfeld und der Druckgradient. Wenn geeigneten Rand- und Anfangsbedingungen für die Geschwindigkeit vorgeschrieben werden, liegt im Prinzip die Lösung des Gleichungssystem fest. Sie kann aber in der Regel nur numerisch angenähert berechnet werden. Eine wichtige Ausnahme ist die Strömung durch einen Zylinder mit kreisförmigem Querschnitt. Wenn am Rand des Zylinders als Randbedingung vorgeschrieben wird, dass dort das Fluid anhaftet, also die Geschwindigkeit ganz am Rand Null ist, dann stellt sich eine zeitlich unveränderliche (stationäre) Strömung ein, die am Rand des Zylinders still steht und in der Mitte am schnellsten ist. Der Verlauf zwischen diesen beiden Extremen entspricht genau dem einer Parabel. Diese Lösung heißt Poiseuille-Strömung. Der Durchfluss ergibt sich dann aus dem Druckgradienten. Wenn der Querschnitt des Kanals nicht genau kreisförmig ist, lässt sich das Prinzip noch übertragen, aber in der Regel ist die Lösung dann nicht mehr analytisch berechenbar. Die Poiseuille-Strömung ist ein häufiges Test- oder Benchmark-Problem in der numerischen Strömungsmechanik, zumal diese Strömungskonfiguration einer der wenigen Fälle der Navier-Stokes-Gleichungen ist, die analytisch gelöst werden können. Der Sinn des Tests besteht darin, zunächst sicherzustellen, dass die Berechnung mit Hilfe von OpenLB, eine gewisse Genauigkeit aufweist. Zweitens wird die Genauigkeit der Methode überprüft, indem analysiert wird, wie der numerische Fehler mit der Gitterverfeinerung skaliert. Ayca und Alejandro haben in ihrem Projekt diesen Benchmark vollzogen und dafür Simulationen im 2D und 3D Fall mit verschiedenen Randbedingungen, die in der Lattice Boltzmann Methode vorkommen (und in OpenLB implementiert vorliegen), und Gitterverfeinerungen mit Auflösung von 25, 50, 75, 100 Unterteilungen durchgeführt. Obwohl die Randbedingungen in numerischen Verfahren die gleichen grundlegenden Ziele wie im analytischen Fall haben, entwickeln sie sich entlang konzeptionell degenerativer Linien. Während analytische Randbedingungen die zugehörige Lösung aus einer Schar von zulässigen Lösungen der Gleichungen auswählen, wirken die Randbedingungen im Lattice Boltzmann Modell dynamisch mit. Sie sind ein Teil des Lösungsprozesses, der für die Änderung des Systemzustands in Richtung der Lösung zuständig ist. Eine der häufigsten Ursachen für die Divergenz der numerischen Lösung ist die falsche Umsetzung von Randbedingungen. Daher ist es für die Genauigkeit und Konvergenz sehr wichtig, dass die geeigneten Randbedingungen für die untersuchte Geometrie und den Strömungsfall ausgewählt werden. Es gibt eine große Familie Randbedingungen, die für die Lattice Boltzmann Methode entwickelt wurden. Für das Praktikum liegt der Fokus für die Wand auf den Randbedingungen "bounce-back" (Haftbedingung), "local", "interpolated" und "bouzidi". Alle genannten Randbedingungen erzeugen ein parabolisches Strömungsprofil passend zur analytischer Lösung. Unterschiede zeigen sich darin, wie groß die numerische Fehler ist, und in welchem Maß sich der numerische Fehler durch Gitterverfeinerung reduzieren lässt. Der graphische Vergleich der Simultionsergebnisse mit der analytischen Lösung hat gezeigt, dass bouzidi Randbedingung den kleinsten numerischen Fehler und die höchste Konvergenzordnung für den 3D-Fall erzeugt, während local und interpolated Randbedingungen für den 2D-Fall bessere Ergebnisse liefern. Zu beachten ist aber, dass mit erhöhter Gitterverfeinerung die Unterschiede zwischen diesen Randbedingungen verschwinden. Bei der Auswahl der Randbedingung sollte dementsprechend ein Kompromiss zwischen Aufwand und Güte der Lösung gefunden werden. Literatur und weiterführende Informationen T. Krüger e.a.: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, 2017. M. Portinari: 2D and 3D Verification and Validation of the Lattice Boltzmann Method. Master Thesis, Montréal 2015. C.J. Amick: Steady solutions of the Navier-Stokes equations in unbounded channels and pipes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4, 473–513 (1977). A. Akboyraz und A. Castillo, Ausarbeitung Softwarepraktikum 2019. M.J. Krause e.a.: OpenLB Release 1.3: Open Source Lattice Boltzmann Code. Podcasts L. Dietz, J. Jeppener, G. Thäter: Flache Photobioreaktoren - Gespräch im Modellansatz Podcast, Folge 213, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. T. Hoffmann, G. Thäter: Luftspalt, Gespräch im Modellansatz Podcast, Folge 153, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Im zweiten Teil des Gesprächs mit Jakob Kapeller geht's u.a. um die Frage, wie wir Ökonomie zukünftig gestalten können. Wir besprechen Spieltheorie, das Gefangenendilemma und was man dadurch über egoistisches Verhalten lernen kann, die österreichische Schule der Nationalökonomie (z.B. Friedrich August von Hayek) und vor allem zeigt Jakob Kapeller mögliche Ansatzpunkte für gegenwärtiges und zukünftiges ökonomisches Gestalten auf. Nützliche Links Homepage von Jakob Kapeller Reddit-Post zum mitdiskutieren: “An die WirtschaftswissenschaftlerInnen auf reddit: warum nutzt ihr heutzutage noch das Konstrukt des Homo Oeconomicus zur Modellbildung?” Alle Bücher von Ariel Rubinstein zum freien Download: http://arielrubinstein.tau.ac.il/books.html Wiki Ariel Rubinstein Friedrich August von Hayek Socialist Calculation Debate Spieltheorie Gefangenendilemma Definition Homo Oeconomicus (Bundeszentrale für politische Bildung) Politische Ökonomie Hier könnt ihr Future Histories auf Patreon unterstützten: https://www.patreon.com/join/FutureHistories? Wenn euch Future Histories gefällt, dann erwägt doch bitte eine Unterstützung auf Patreon: https://www.patreon.com/join/FutureHistories? Schreibt mir unter future_histories@protonmail.com und diskutiert mit auf Twitter (#FutureHistories): https://twitter.com/FutureHpodcast
In dieser Folge spricht Gudrun mit Larissa Dietz und Jonathan Jeppener. Beide sind im Masterstudiengang Verfahrenstechnik am KIT eingeschrieben und haben 2019 das Projektorientierte Softwarepraktikum in Gudruns Arbeitsgruppe absolviert. Das Gespräch dreht sich um ihre Erfahrungen in dieser Lehrveranstaltung. Das Praktikum wurde 2010 als forschungsnaher Lernort konzipiert. Studierende unterschiedlicher Studiengänge arbeiten dort ein Semester lang an konkreten Strömungssimulationen. Es wird regelmäßig im Sommersemester angeboten. Seit 2014 liegt als Programmiersprache die Open Source Software OpenLB zugrunde, die ständig u.a. in der Karlsruher Lattice Boltzmann Research Group (LBRG) weiter entwickelt wird. Außerdem wird das Praktikum seit 2012 vom Land Baden-Württemberg gefördert als eine Möglichkeit für Studierende, sich im Studium schon an Forschung zu beteiligen. Konkret läuft das Praktikum etwa folgendermaßen ab: Die Studierenden erhalten eine theoretische Einführung in Strömungsmodelle und die Idee von Lattice-Boltzmann-Methoden und finden sich für ein einführendes kleines Projekt in Zweiergruppen zusammen. Anschließend wählen sie aus einem Katalog eine Frage aus, die sie bis zum Ende des Semesters mit Hilfe von Computersimulationen gemeinsam beantworten. Diese Fragen sind Teile von Forschungsthemen der Gruppe, z.B. aus Promotionsprojekten oder Drittmittelforschung. Während der Projektphase werden die Studierenden von dem Doktoranden/der Doktorandin der Gruppe, die die jeweilige Frage gestellt haben, betreut. Am Ende des Semesters werden die Ergebnisse in Vorträgen vorgestellt und diskutiert. Hier ist die ganze Arbeitsgruppe beteiligt. In einer Ausarbeitung werden außerdem die Modellbildung, die Umsetzung in OpenLB und die konkreten Simulationsergebnisse ausführlich dargelegt und in den aktuellen Forschungsstand eingeordnet. Diese Ausarbeitung wird benotet. Die Veranstaltung wird mit 4 ECTS angerechnet. Das Projekt von Larissa und Jonathan betrachtete den Stofftransport von CO2-Gas in flachen Photobioreaktoren. Mit ihrer großen Oberfläche erlauben sie viel einfallendes Licht. Algenzucht im industriellen Maßstab ist unerlässlich, um die weltweite Nachfrage nach schnell nachwachsender Nahrung und erneuerbaren Energiequellen zu befriedigen. Derzeit nutzen die meisten Produzenten kosteneffiziente und einfach zu bedienende offene Teiche. Die Nachfrage nach gut steuerbaren geschlossenen Photobioreaktoren steigt durch die erhöhte Effizienz der gut einstellbaren Reaktorbedingungen. Weitere Vorteile gegenüber offenen Reaktoren sind ein geringerer CO2- und Wasserverlust und eine größere Vielfalt an kultivierbaren Arten. Für ein optimales Algenwachstum müssen die regulierende Flüssigkeitsdynamik, der Lichttransfer, biochemische Reaktionen und deren gegenseitige Wechselwirkung optimiert werden. Die Untersuchung dieser Parameter mit Hilfe gekoppelter numerischer Simulationen vermeidet teure Experimente und trägt somit zur Verbesserung geschlossener Photobioreaktoren bei. Larissa und Jonathan beschränkten sich für ihr Projekt auf die Modellierung des Stofftransports aller Komponenten und den Lichteinfall. Konkret ergeben sich dabei eine Advektions-Diffusions-Gleichung für den Gastransport und die Navier-Stokes Gleichungen für das Fluid. Die Photosynthese für CO2-Umsatz wurde daran als Quelle gekoppelt. Aufgrund der hohen Parallelisierbarkeit und der Einfachheit der Berechnungsgitterkopplungen ist die Lattice-Boltzmann-Methode (LBM) geeignet, dieses System von interagierenden Differentialgleichungen zu lösen, die Fluidströmung, Stofftransport und Strahlungsfeld beschreiben. Der Bericht von Larissa und Jonathan schlägt stabile Diffusionsparameter und eine Betriebslichtkopplung vor, die sie in ihrer Projektarbeit ermittelt haben. Der von ihnen betrachtete Testfall basiert auf der Simulation der Partikelströmung durch Trunk et al. (Quelle unten). Die beiden mussten außerdem geeignete Randbedingungen finden. Die von ihnen gefundenen Simulationsparameter gewährleisten eine stabile Simulation. Literatur und weiterführende Informationen E. Sierra e.a.: Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138:136–147, 03 2008. R. Trunk e.a.: Inertial dilute particulate fluid flow simulations with an euler–euler lattice boltzmann method. Journal of Computational Science, 17:438–445, 2016. T. Krüger e.a.: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, 2017. C. Posten and R. Rosello-Sastre: Microalgae Reactors. American Cancer Society, 2011. L. Dietz und J. Jeppener: Simulation of CO2 Distribution in Photobioreactors with the Lattice Boltzmann Method, Ausarbeitung Softwarepraktikum 2019. M.J. Krause e.a.: OpenLB Release 1.3: Open Source Lattice Boltzmann Code. Podcasts J. Kolbe, G. Thäter: Photobioreaktoren - Gespräch im Modellansatz Podcast, Folge 065, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2015.
Wer Zukunft anders denken will, muss Wirtschaft anders denken. Der plurale Ökonom Jakob Kapeller zeigt uns Alternativen zum Mainstream auf. Nützliche Links Homepage von Jakob Kapeller Definition des Homo Oeconomicus (Bundeszentrale für politische Bildung) Reddit-Post zum mitdiskutieren “An die WirtschaftswissenschaftlerInnen auf reddit: warum nutzt ihr heutzutage noch das Konstrukt des Homo Oeconomicus zur Modellbildung?” Wikis zu Verhaltensökonomie Friedrich August von Hayek Joseph Schumpeter Institutionenökonomik Spieltheorie Gefangenendilemma Homo oeconomicus Politische Ökonomie Tit for Tat Nutzenfunktion (Mikroökonomie) Wenn euch Future Histories gefällt, dann erwägt doch bitte eine Unterstützung auf Patreon: https://www.patreon.com/join/FutureHistories? Schreibt mir unter future_histories@protonmail.com und diskutiert mit auf Twitter (#FutureHistories): https://twitter.com/FutureHpodcast
Gudrun hatte zwei Podcast-Gespräche beim FEniCS18 Workshop in Oxford (21.-23. März 2018). FEniCS ist eine Open-Source-Plattform zur Lösung partieller Differentialgleichungen mit Finite-Elemente-Methoden. Dies ist die zweite der beiden 2018er Folgen aus Oxford. Susanne Claus ist zur Zeit NRN Early Career Personal Research Fellow an der Cardiff University in Wales. Sie hat sich schon immer für Mathematik, Physik, Informatik und Ingenieursthemen interesseirt und diese Interessen in einem Studium der Technomathematik in Kaiserlautern verbunden. Mit dem Vordiplom in der Tasche entschied sie sich für einen einjährigen Aufenthalt an der Universität Kyoto. Sie war dort ein Research exchange student und hat neben der Teilnahme an Vorlesungen vor allem eine Forschungsarbeit zu Verdunstungsprozessen geschrieben. Damit waren die Weichen in Richtung Strömungsrechnung gestellt. Dieses Interesse vertiefte sie im Hauptstudium (bis zum Diplom) an der Uni in Bonn, wo sie auch als studentische Hilfskraft in der Numerik mitarbeitete. Die dabei erwachte Begeisterung für nicht-Newtonsche Fluid-Modelle führte sie schließlich für die Promotion nach Cardiff. Dort werden schon in langer Tradition sogenannte viskoelastische Stoffe untersucht - das ist eine spezielle Klasse von nicht-Newtonschem Fluiden. Nach der Promotion arbeitet sie einige Zeit als Postdoc in London am University College London (kurz: UCL) zu Fehleranalyse für Finite Elemente Verfahren (*). Bis sie mit einer selbst eingeworbenen Fellowship in der Tasche wieder nach Cardiff zurückkehren konnte. Im Moment beschäftigt sich Susanne vor allem mit Zweiphasenströmungen. In realen Strömungsprozessen liegen eigentlich immer mindestens zwei Phasen vor: z.B. Luft und Wasser. Das ist der Fall wenn wir den Wasserhahn aufdrehen oder die Strömung eines Flusses beobachten. Sehr häufig werden solche Prozesse vereinfacht modelliert, indem man sich nur eine Phase, nämlich die des Wassers genau ansieht und die andere als nicht so wichtig weglässt. In der Modellbildung für Probleme, in denen beide Phasen betrachtet werden sollen, ist das erste Problem, dass das physikalische Verhalten der beiden Phasen sehr unterschiedlich ist, d.h. man braucht in der Regel zwei sehr unterschiedliche Modelle. Hinzu treten dann noch komplexe Vorgänge auf der Grenzflächen auf z.B. in der Wechselwirkung der Phasen. Wo die Grenzfläche zu jedem Zeitpunkt verläuft, ist selbst Teil der Lösung des Problems. Noch interessanter aber auch besonders schwierig wird es, wenn auf der Grenzfläche Tenside wirken (engl. surfactant) - das sind Chemikalien die auch die Geometrie der Grenzfläche verändern, weil sie Einfluß auf die Oberflächenspannung nehmen. Ein Zwischenschritt ist es, wenn man nur eine Phase betrachtet, aber im Fließprozess eine freie Oberfläche erlaubt. Die Entwicklung dieser Oberfläche über die Zeit wird oft über die Minimierung von Oberflächenspannung modelliert und hängt deshalb u.a. mit der Krümmung der Fläche zusammen. D.h. man braucht im Modell lokale Informationen über zweite Ableitungen. In der numerischen Bearbeitung des Prozesses benutzt Susanne das FEniCS Framework. Das hat sie auch konkret dieses Jahr nach Oxford zum Workshop geführt. Ihr Ansatz ist es, das Rechengitter um genug Knoten anzureichern, so dass Sprünge dargestellt werden können ohne eine zu hohe Auflösung insgesamt zu verursachen. (*) an der UCL arbeitet auch Helen Wilson zu viscoelastischen Strömungen, mit der Gudrun 2016 in Oxford gesprochen hat. Literatur und weiterführende Informationen S. Claus & P. Kerfriden: A stable and optimally convergent LaTIn-Cut Finite Element Method for multiple unilateral contact problems, CoRR, 2017. H. Oertel jr.(Ed.): Prandtl’s Essentials of Fluid Mechanics, Springer-Verlag, ISBN 978-0-387-21803-8, 2004. S. Gross, A. Reusken: Numerical Methods for Two-phase Incompressible Flows, Springer-Verlag, eBook: ISBN 978-3-642-19686-7, DOI 10.1007/978-3-642-19686-7, 2011. E. Burman, S. Claus & A. Massing: A stabilized cut finite element method for the three field Stokes problem. SIAM Journal on Scientific Computing 37.4: A1705-A1726, 2015. Podcasts G. Thäter, R. Hill: Singular Pertubation, Gespräch im Modellansatz Podcast, Folge 162, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. H. Wilson: Viscoelastic Fluids, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 92, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
In dieser Folge spreche ich mit Bernhard Thalheim über das Wissensgebiet und Forschungsfeld „Konzeptuelle Modellierung“. Bernhard Thalheim beschäftigt sich seit mehr als 30 Jahren mit konzeptuellen Modellen und Datenbanktechnologie und ist Autor einer Vielzahl von Beiträgen zur konzeptuellen Modellierung in Wissenschaft und praktischen Anwendungen. Gemeinsam mit Koautoren hat er über mehrere Jahre an einem umfassenden Werk zur Modellbildung in verschiedenen Wissenschaften gearbeitet, das unter dem Titel „Wissenschaft und Kunst der Modellierung“ erschienen ist. Wir sprechen über den Modellbegriff und Herausforderungen, ihn zu konturieren, über die Frage, was ein konzeptuelles Modell ausmacht und über konzeptuelle Modelle als Grundlage der Software-Entwicklung.
Gudrun hat sich mit Oliver Beige unterhalten. Im Gespräch geht es um die theoretische Seite von Modellen für Wahlprognosen. Dabei beziehen sie sich in vielen Beispielen auf den Wahlkampf in den USA und insbesondere auf die Besonderheiten der Kampagne von Donald Trump. Die Gelegenheit bot sich vor einem gemeinsamen Konzertbesuch in Berlin-Neukölln in der Alten Welt Siralti. In der Theorie sind Wahlprognosemodell traditionell in der Politologie verankert, wurden aber immer mehr durch ökonomische Modelle verbessert. Die größte Veränderung der letzten Jahre ist, dass es immer mehr empirische Daten gibt, die auch zum Teil der Öffentlichkeit zur Verfügung stehen. Solche Daten und Diskussionen zur Wertung finden sich z.B. auf der Webseite FiveThirtyEight. Große Berühmtheit erreichte schließlich Nate Silver dadurch, dass er 2008 in 49 von 50 US-Bundeststaaten das Ergebnis der US-Präsidentschaftswahlen korrekt vorhergesagt hatte. Im Wahljahr 2012 stimmte seine Vorhersage sogar in allen 50 Staaten. Seine Ergebnisse erzielte er dabei lediglich durch Aggregation von veröffentlichten Umfrageergebnissen. Im Wahljahr 2016 hat aber Donald Trump die Wahl gewonnen obwohl Nate Silvers Modelle (und die Modelle ähnlich arbeitender Wahlforscher) die Wahrscheinlichkeit dafür, dass Hillary Clinton die Präsidentschaftswahl für sich entschieden wird, auf 70% - 99% beziffert hatten. Es stellt sich die Frage, wo der Fehler dieser Prognosemodelle lag. Wenn man im Jahr 2016 genau zuhörte, gab es auch Stimmen, die Donald Trump schon im Frühjahr als wahrscheinlichen Gewinner der Wahlen sahen - z.B. die Zeitung Los Angeles Times. Sie wurden in den Medien zwar lieber als Ausreißer dargestellt, behielten aber schließlich recht. Wieso? Sie hatten den Demographiewandel in den USA in ihre Modellbildung einbezogen. Um zu verstehen, was damit gemeint ist, muss man zunächst einmal klarer beschreiben, wie US-Wahlen traditionell bisher abliefen, und welche Modelle daraus abgeleitet wurden. Es gibt ein schönes Denkmodell, das veranschaulicht, wie das sogenannte Hotelling Gesetz (1929) wirkt. Man stelle sich zwei Eisverkäufer am Strand vor. Wie sollten sie jeweils ihren Stand so positionieren, dass sie möglichst viele Kunden anziehen? Die stille Annahme dabei ist, dass die Badenden gleichmäßig über den Strand verteilt sind und alle irgendwann Lust auf ein (genau ein) Eis bekommen. Das verblüffende Ergebnis ist: Ein Equilibrium der Einflussbereiche der beiden Verkäufer stellt sich ein, wenn beide in der Mitte des Strandes nebeneinander stehen. Im Wahlkampf in den USA folgt man dieser Strategie, indem beide endgültigen Präsidentschaftskandidaten wenig ideologisch unterscheidbar aufgebaut werden. Begünstigt wird das auch durch das mehrstufige Wahlsystem, denn die Vorwahlen (Primaries) kann man dazu nutzen, dass die extremeren Kandidaten herausgefiltert werden. Dann entscheidet über den Sieg schließlich vor allem die erfolgreiche Mobilisierung der Wechselwähler. Eine (stillschweigende) Voraussetzungen dafür, dass von der Ähnlichkeit der Positionen der eigene Kandidat profitiert ist, dass die Wahlbeteiligung hoch ist. Das ist in den USA leider immer weniger der Fall. Dass die Wahlen 2016 anders verliefen als gewohnt, zeigte sich, als bei den Republikanern die Establishmentkandidaten keine Chance gegen den idologisch extremen Trump hatten. Bei den Demokraten konnte jedoch die moderatere Hillary Clinton den ideologisch positionierten Bernie Sanders ruhig stellen. Das bricht mit den bisher gültigen Annahmen der Wahlvorhersagemodelle: Hotellings Model funktioniert nicht mehr. Aber nur weniger der Modelle erkennen die veränderte Situation und reagieren mit neuen Prognosemodellen. Trump hatte dann schließlich auch Erfolg mit seiner Strategie, die Clinton-Wählerschaft zu entmutigen überhaupt zur Wahl zu gehen und die eigene - eigentlich kleine - Clientel extrem zu mobilisieren. Den Trend zur Radikalisierung der Republikaner beobachtet man tatsächlich schon eine Weile. Er setzte etwa mit der Wahl von Reagan ein. Es gab die inzwischen sprichwörtlichen "27%" -- Wähler, die auch einen völlig unqualifizierten rechtsgerichteten Kandidaten wählen. Der sprichwörtliche Name wurde erfunden, nachdem bei der Senatswahl in Illinois ein erkennbar aussichtsloser Kandidat gegen den damals unbekannten Obama 27% der Stimmen erhielt. Diese Zahl ist seitdem eher gestiegen. Für Wahlprognosen braucht es also Modelle, die dieses bekannte menschliche Verhalten besser berücksichtigen. Keith T. Poole und Howard Rosenthal sammeln alle Stimmen im amerikanischen Kongress - das sind ja einfache Ja/Nein Entscheidungen - und analysieren sie fortlaufend. Ihre Methoden lieferten Politikwissenschaftlern erstmals rigorose quantitative Methodiken für Ideologiehörigkeit von Entscheidern über die Zeit der Existenz der USA hinweg. Man nennt dies die Nominal Three-Step Estimation. Literatur und weiterführende Informationen Eisverkäufer Modell K.T. Poole, H. Rosenthal: A Spatial Model for Legislative Roll Call Analysis GSIA Working Paper No. 5–83–84, 1983. K.T. Poole, H. Rosenthal: Congress: A Political-Economic History of Roll Call Voting. New York: Oxford University Press, 1997. K.T. Poole, H. Rosenthal: Congress: Ideology and Congress New Brunswick, Transaction Publishers, 2007. NOMINATE and American Political History: A Primer. W-NOMINATE in R: Software and Examples H. Hotelling: Stability in Competition Economic Journal 39: 41–57, 1929. Voteview, the online voting data repository started by Poole & Rosenthal. Poll-Aggregatoren erklären, warum sie danebenlagen.
Diese Folge ist eines von drei Gesprächen mit Mathematikerinnen und Mathematikern an der TU München (TUM) in Garching bei München, die Gudrun am 10. April 2017 dort geführt hat. Paul Stursberg - hat an der TUM Mathematik studiert und promoviert dort am Lehrstuhl Angewandte Geometrie und Diskrete Mathematik. Wir haben uns über Gruppenentscheidungsmodelle (Social Choice) unterhalten, in denen mitunter auch der Zufall Hilfestellung gibt. Da auch Zuordnung nach Vorlieben (allocation) auf das gleiche Grundproblem führt, wird das Thema unter den Forschungsinteressen von Paul Stursberg als Randomized Social Choice/Ressource Allocation aufgeführt.Das grundlegende Ziel bei Entscheidungen in einer Gruppe ist es, Einzelmeinungen zu einem fairen Gesamturteil zusammen zu führen. Am einfachsten ist es, einer als Anführer von allen anerkannten Person in ihrer Meinung zu folgen. Dieses Modell hat gute mathematische Eigenschaften, funktioniert immer, ist aber leider nicht besonders demokratisch. Je nachdem ob die Leitperson zur Gruppe gehört oder nicht wird es als Modell des internen/externen Diktators bezeichnet. Ein zunächst nahe liegender Zugang zur bestmöglichen Entscheidung in einer Gruppe wäre, eine Nutzenfunktion auzufstellen und danach zu optimieren. Das klingt überzeugend ist aber oft ein unmögliches Unterfangen, weil es sich als sehr schwierig erweist, Vorlieben so zu quantifizieren dass man über die Gruppe konstante Zahlenwerte für einen entstehenden Nutzen findet. Deshalb kann man statt dessen mit ordinalen Präferenzrelationen arbeiten, d.h. im einfachsten Fall mit einer gewünschten Reihenfolge aller Optionen für jede Person der Gruppe. Bevor man über Verfahren sprechen und diese bewerten kann, braucht man Kriterien, die Wahlverfahren (idealerweise) erfüllen sollen. Man muss definieren: Was ist eine gute und faire Entscheidung? Ein grundlegendes Kriterium wäre beispielsweise: Wenn alle der gleichen Meinung sind, sollte diese Meinung auch immer als Ergebnis der Gruppenentscheidung erscheinen. Ein etwas weitergehendes Kriterum könnte exemplarisch auch verlangen, dass das Ergebnis Pareto-optimal ist, es also kein anderes Ergebnis gibt, mit dem jedes Gruppenmitglied zufriedener wäre.Nachdem ein Katalog von Kriterien aufgestellt wurde, kann man sich unter anderem folgende Fragen stellen: Finden wir Wahlverfahren, die all diese Kriterien erfüllen? Wenn ja, welche Wahlverfahren sind das? Können wir sie charakterisieren? Wenn nein, lässt sich zeigen, dass kein Wahlverfahen alle Kriterien zugleich erfüllen kann?Ein bekanntes Beispiel für den letzten Fall ist der Satz von Arrow - ein Unmöglichkeitsresultat, das besagt, dass eigentlich sinnvolle Bedingungen an ein Wahlergebnis für mehr als zwei Optionen nicht gleichzeitig erfüllbar sind.Hinsichtlich der Fairness kommen Wahlverfahren intuitiv schon an ihre Grenzen, wenn sich zwei Leuten abstimmen sollen, die gegensätzliche Wünsche haben: Jede (deterministische) Entscheidung bevorzugt offensichtlich einen der beiden Beteiligten. Hier kann man sich den Zufall zunutze machen, um eine faire Entscheidung zu treffen, was auf das Gebiet der randomisierten Sozialwahltheorie (randomized social choice) führt. Hier hängen viele Kriterien plötzlich davon ab, welche lottery extension verwendet wird, also wie aus ordinalen Präferenzrelationen Präferenzen über Wahrscheinlichkeitsverteilungen abgeleitet werden. Literatur und weiterführende Informationen H.-J. Bungartz e.a.: Modellbildung und Simulation - Eine anwendungsorientierte Einführung Kapitel 4: Gruppenentscheidungen, Springer, 2009. G.G. Szpiro: Die verflixte Mathematik der Demokratie, Springer, 2011. W. J. Cho: Probabilistic assignment: A two-fold axiomatic approach, 2012. H. Aziz, F. Brandt, and M. Brill: On the tradeoff between economic efficiency and strategyproofness in randomized social choice In Proceedings of the 12th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp 455–462. IFAAMAS, 2013. H. Aziz, P. Stursberg: A generalization of probabilistic serial to randomized social choice. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14), pp 559-565. AAAI Press, Palo Alto, 2014. Podcasts M. Lübbecke: Operations Research, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. P. Staudt: Wahlsysteme, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 27, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M. Fehndrich: Wahlrecht und Wahlsysteme, Gespräch mit T. Pritlove im CRE Podcast, Folge 128, Metaebene Personal Media, 2009.
Zur 100. Folge haben sich Gudrun und Sebastian bei Gudrun getroffen, um sich zum Jubiläum einfach mal in Ruhe über den Podcast, den Ursprung, was wir so erlebten und was vor uns liegt. Für Sebastian öffnete die Raumzeit-Folge zu Tandem-X die Augen, wieviel wissenschaftlicher Inhalt in einem Podcast übertragen werden kann. Schnell war Gudrun begeistert und nahm mit Sebastian die erste Folge zu ihrer Vorlesung über mathematische Modellbildung auf. Nach zwei weiteren Aufnahmen zur Aorta-Challenge und zur Unsichtbarkeit machten wir unsere ersten Versuche öffentlich. Schon früh stellte sich heraus, dass uns die Themen zur Mathematik nicht schnell ausgehen, da es so viele Abschlussarbeiten, Forschungsthemen und Vorlesungen gibt, die jeweils auch noch unter unterschiedlichen Sichtweisen betrachtet werden können. Im Storify sieht man, wie wir schon früh vielseitig unterstützt wurden und unsere Hörerzahl stieg schnell an: Ein besonderer Unterstützer war dabei Henning Krause, der uns eine Grußbotschaft sendete und ganz besonders die Qwirkle-Folge schätzt. Einen weiteren Gruß sandte uns Katrin Leinweber vom KonScience Podcast. Weitere Grüße erreichten uns aus Kanada von Anja Randecker aus unserer Folge zu Wilden Singularitäten, die nun in Toronto als Post-Doc weiter zu Translationsflächen forscht. Sehr haben wir uns auch über die Grüße aus dem Grünen von Martin Rützler gefreut, der selbst im Radio Mono Podcast, im DKG-Podcast und im Sendegarten regelmäßig zu hören ist, die deutschen GanzOhr-Wissenschaftspodcast-Treffen initiierte und die Wissenschaftspodcasts-Seite mit begründete. Neben Gesprächen über Vorlesungen, wie zur Analysis, Höhere Mathematik oder Digitale Währungen, hat nun Gudrun auch eine Vorlesung aufgenommen: Den Schnupperkurs zur Verkehrsmodellierung, der jeweils auf viele Gespräche im Podcast verweist. Bei Konscience gibt es interessante Konzepte zur Verknüpfung von Vortrag und Podcast, die auch auf Vorlesungen angewendet werden könnten. Ganz besondere Grüße erreichten uns von Lorenz Adlung, den wir in der Folge 39 zur Systembiologie im Podcast hatten. Lorenz ist auch ein begnadeter Science-Slammer, wie auch Anastasia August aus unserer Folge 37 zum Metallschaum. Sie ist weiterhin als Mathematikerin am Institut für Angewandte Materialien, wo sie aktuell an Gradierten Schäumen und Magischen Schäumen forscht und ein Graduiertenkolleg vorbereitet. Sebastian hat die Folge 98 zu Primzahlen und Gruppen sehr gefallen, wo Rebecca Waldecker den Einstieg in die Algebra und Zahlentheorie sehr anschaulich beschrieben hat. Besonders spannend sind auch Themen, die inzwischen zu Ausgründungen geführt haben: Markus Dahlem in M-Sense mit dem Thema Migräne, Tobias Hahn mit der Chromatographie, sowie Carlos Falquez, Iris Pantle und Balazs Pritz zu Strömungslärm. Im Zuge des SFB zu Wellenphänomenen haben wir auch ein Special zum Cooking Math Projekt durchgeführt, wo durch Gespräche die vielseitigen Kunstobjekte zur Mathematik dargestellt werden. Ein persönliches Special war für uns aber auch die Nullnummer in Folge 73, die wir mit Nele Heise aufnehmen konnten. Ebenso haben wir uns sehr über die Grüße von Melanie Bartos gefreut, die mit ihrem Podcast Zeit für Wissenschaft immer wieder über spannende wissenschaftliche Themen aus der Uni Insbruck berichtet. Natürlich haben uns auch Annika Brockschmidt und Dennis Schulz vom Science Pie Podcast aus Heidelberg einen wunderschönen Gruß gesendet, und auch Nora Ludewig und Markus Völter vom Omega Tau Podcast schlossen sich mit einer lieben Botschaft an. Und wir freuen uns die beiden im Oktober beim GanzOhr2016-Treffen der Wissenschaftspodcasts wieder zu sehen. Unsere Audiodaten laufen inzwischen durch die Open Source Podcast Audio Chain (OSPAC). Einen Einblick kann man im Vortrag zu OSPAC auf der Subscribe7 oder dem erweiterten Vortrag zu OSPAC auf der GPN16 erhalten, und auch LIGO-Rohdaten auswerten. Informationen zum Aufnehmen von Podcasts mit dem iPhone habe ich auf dem Sendegate hinterlegt. Spannend waren auch die Podcast Nachbarschafts-Graphen, die nun auch eine neue Fortsetzung auf dem FYYD Podcast-Verzeichnis. Wir haben einige Überraschungen in den bisher beliebtesten Folgen und am längesten gehörten Folgen im Modellansatz- welches dies sind, muss man sich beim Interesse im Podcast anhören.
Catherine Bandle war bis 2003 Professorin am Mathematischen Institut der Universität in Basel. Aber auch über die Emeritierung hinaus ist sie sehr rege in der Forschung zu elliptischen und parabolischen partiellen Differentialgleichungen. Das zeigt sich an einer beeindruckenden Zahl von Publikationen, der Teilnahme an Tagungen und im Einbringen ihrer Erfahrung in die Tätigkeit von Gremien wie dem Landeshochschulrat Brandenburg und dem Steering Committee of the European Science Foundation program: Global and Geometric Aspects of Nonlinear Partial Differential Equations. Ihre Faszination für die Vielseitigkeit dieses Themas in den Anwendungen und die Zusammenhänge zur Geometrie haben sich über viele Jahrzehnte erhalten. Für den Workshop Nonlinear Days 2015 wurde sie für einen Hauptvortrag nach Karlsruhe eingeladen. Wir haben diese Gelegenheit genutzt, das Thema der Modellbildung mit Hilfe von partiellen Differentialgleichungen mit ihr etwas allgemeiner zu beleuchten. Traditionell stehen elliptische wie parabolische Gleichungen am Beginn der modernen Modellbildung von Prozessen in der Physik, der Biologie und Chemie. Hier sind es Diffusions-, Reaktions-, Transport- und Wachstumsprozesse, die zunächst durch gewöhnliche Differentialgleichungen beschrieben wurden. Allerdings waren vor etwa 150 Jahren die Anwendungen in Teilen schon zu komplex für dieses zu einfache Modell. Abhängigkeiten von Veränderungen in allen Raum- und der Zeitrichtung sollten interagierend erfasst werden. Das führte zwingend auf die partiellen Differentialgleichungen. Mit dem Aufstellen der Gleichungen verband sich die Hoffnung, durch die zugehörigen Lösungen Vorhersagen treffen zu können. Um diese Lösungen zu finden, brauchte es aber ganz neue Konzepte. Am Anfang der Entwicklung standen beispielsweise die Fourierreihen, die (unter den richtigen Voraussetzungen) eine Darstellung solcher Lösungen sein können. Werkzeuge wie Fourier- und Lapalacetransformation konnten zumindest für bestimmte Geometrien hilfreiche Antworten geben. Später wurder der Begriff der schwachen Lösung bzw. schwachen Formulierung geprägt und die damit verbundenen Sobolevräume auf verschiedenen Wegen entwickelt und untersucht. Die Suche nach den Lösungen der Gleichungen hat damit die theoretische Entwicklung in der Mathematik stark vorangetrieben. Heute sind wir froh, dass wir in der linearen Theorie (siehe auch Lemma von Lax-Milgram) vieles verstanden haben und versuchen uns Stück für Stück nichtlineare Modellen anzueignen. Ein erster Schritt ist häufig eine lokale Linearisierung oder das Zulassen von Nichtlinearitäten in untergeordneten Termen (semilineare Probleme). Ein integraler Bestandteil ist hier jedoch auch die Möglichkeit, mehr als eine Lösung der Gleichung zu haben und wir brauchen deshalb Konzepte, die physikalisch relevante unter ihnen zu finden. Hier sind Konzepte der Stabilität wichtig. Nur stabile Lösungen sind solche, die zu beobachtbaren Phänomenen führen. Wichtige Werkzeuge in der Lösungstheorie sind auch die Normen, in denen wir unsere Lösungen messen. Am überzeugendsten ist es, wenn sich Normen in Energien des Systems übersetzen lassen. Dann kann man auch die Stabilität im Rahmen von Energieerhaltung und Energieminimierung diskutieren. Literatur und Zusatzinformationen Catherine Bandle: Die Mathematik als moderne Weltsprache - Am Beispiel der Differenzialgleichungen, UniNova Wissenschaftsmagazin der Universität Basel, Band 87, 2000. R.Farwig: Skript zu Elementaren Differentialgleichungen, Technische Universität Darmstadt, 2008. Videos zu PDEs (in Englisch) Video zur Fourierreihenidee auf Deutsch
Auch Menschenströme können mathematisch beschrieben und mit geeigneten Modellen auch simuliert werden. Damit können große Veranstaltungen im Vorfeld besser geplant und ausgelegt werden, damit Engpässe oder sogar Katastrophen wie bei der Love-Parade 2010 möglichst verhindert werden. Henrieke Benner hat dazu die Parameter für die Simulation von Fußgängern im Gegenstrom kalibriert und spricht mit Gudrun Thäter über die Verfahren, Herausforderungen und Erkenntnisse.Mathematisch betrachtet sie die Fußgänger in einem mikroskopischen Modell, wo jede Person als eigenes Objekt simuliert wird. Entsprechend der Situation wirken nun virtuelle Kräfte auf diese Objekte, so verhindert eine virtuelle Abstoßungskraft zwischen zwei Personen, dass diese zusammenstoßen. Die betrachtete Simulation wird durch eine Vielzahl von Parametern konfiguriert, die mit realen Experimenten kalibriert werden müssen. Dies kann durch eine Optimierung der Parameter gelöst werden, die die Simulation den Experimenten möglichst weitgehend annähert. Literatur und Zusatzinformationen H.-J. Bungartz, S. Zimmer, M. Buchholz, D. Pflüger: Modellbildung und Simulation: Eine anwendungsorientierte Einführung, Springer Verlag, 2013. U. Chattaraj, A. Seyfried, P. Chakroborty: Comparison of pedestrian fundamental diagram across cultures, Advances in complex systems, 12(03), 393-405, 2009. A. Johansson, D. Helbing, P. K. Shukla: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in complex systems, 10(supp02), 271-288, 2007. D. Helbing, P. Mukerji: Crowd disasters as systemic failures: analysis of the Love Parade disaster, EPJ Data Science 1:7, 2012. PTV Viswalk Software
Auf den Vorschlag von Henning Krause verbreiteten viele Forschende unter dem Hashtag #1TweetForschung ihr Forschungsthema in Kurzform. So auch Lorenz Adlung, der in der Abteilung Systembiologie der Signaltransduktion am Deutschen Krebsforschungszentrum in Heidelberg die mathematische Modellbildung für biologische Prozesse erforscht. Bei der Anwendung einer Chemotherapie leiden Krebspatienten oft unter Blutarmut. Hier kann neben der Bluttransfusion das Hormon Erythropoetin, kurz EPO, helfen, da es die körpereigene Erzeugung von roten Blutkörperchen (Erythrozyten) unterstützt. Leider ist EPO als Dopingmittel bekannt, und um dem Doping noch deutlicher Einhalt zu gebieten, wurde im November 2014 in Deutschland ein Entwurf eines Anti-Doping-Gesetz vorgelegt. Trotz gängigem Einsatz und erprobter Wirkung von EPO ist die genaue Wirkung von EPO auf Krebszellen nicht bekannt. Daher verfolgt Lorenz Adlung den Ansatz der Systembiologie, um im Zusammenwirken von Modellbildung und Mathematik, Biologie und Simulationen sowohl qualitativ und quantitativ analysieren und bewerten zu können. Vereinfacht sind rote Blutkörperchen kleine Sauerstoff-transportierende Säckchen aus Hämoglobin, die auch die rote Farbe des Bluts verursachen. Sie stammen ursprünglich aus Stammzellen, aus denen sich im Differenzierungs-Prozess Vorläuferzellen bzw. Progenitorzellen bilden, die wiederum durch weitere Spezialisierung zu roten Blutkörperchen werden. Da es nur wenige Stammzellen gibt, aus denen eine unglaubliche große Anzahl von Trillionen von Blutkörperchen werden müssen, gibt es verschiedene Teilungs- bzw. Proliferationsprozesse. Das Ganze ergibt einen sehr komplexen Prozess, dessen Verständnis zu neuen Methoden zur Vermehrung von roten Blutkörperchen führen können. Den durch Differenzierung und Proliferation gekennzeichnete Prozess kann man mathematisch beschreiben. Eine zentrale Ansichtsweise in der Systembiologie der Signaltransduktion ist, Zellen als informationsverarbeitende Objekte zu verstehen, die zum Beispiel auf die Information einer höheren EPO-Konzentration in der Umgebung reagieren. Von diesem Ansatz werden durch Messungen Modelle und Parameter bestimmt, die das Verhalten angemessen beschreiben können. Diese Modelle werden in Einklang mit bekannten Prozessen auf molekularer Ebene gebracht, um mehr über die Abläufe zu lernen. Die erforderlichen quantitativen Messungen basieren sowohl auf manuellem Abzählen unter dem Mikroskop, als auch der Durchflusszytometrie, bei der durch Streuung von Laserlicht an Zellen durch Verwendung von Markern sogar Aussagen über die Zelloberflächen getroffen werden können. Zusätzlich kann mit der Massenspektrometrie auch das Innere von Zellen ausgemessen werden. In diesem Anwendungsfall werden die mathematischen Modelle in der Regel durch gekoppelte gewöhnliche Differenzialgleichungen beschrieben, die Zell- oder Proteinkonzentrationen über die Zeit beschreiben. Die Differenzialgleichungen und deren Parameter werden dabei sowohl mit Messungen kalibriert, als auch mit den Kenntnissen in der Molekularbiologie in Einklang gebracht. Die Anzahl der Parameter ist aber oft zu hoch, um naiv auf geeignete zu den Messungen passende Werte zu gelangen. Daher wird unter anderem das Latin Hypercube Sampling verwendet, um schnell nahe sinnvollen Parameterwerten zu gelangen, die durch gradienten-basierte Optimierungsverfahren verbessert werden können. Die Basis für diese Art von Optimierungsverfahren ist das Newton-Verfahren, mit dem man Nullstellen von Funktionen finden kann. Ein wichtiger Aspekt im Umgang mit Messergebnissen ist die Berücksichtigung von Messfehlern, die auch vom Wert der Messung abhängig verstanden werden muss- denn nahe der Messgenauigkeit oder der Sättigung können die relativen Fehler extrem groß werden. Die Bestimmung der Modellparameter ist schließlich auch ein Parameteridentifikationsproblem, wo insbesondere durch eine Sensitivitätsanalyse auch der Einfluss der geschätzten Parameter bestimmt werden kann. Sowohl die Parameter als auch die Sensitivitäten werden mit den biologischen Prozessen analysiert, ob die Ergebnisse stimmig sind, oder vielleicht auf neue Zusammenhänge gedeuten werden können. Hier ist die Hauptkomponentenanalyse ein wichtiges Werkzeug, um zentrale beeinflussende Faktoren erfassen zu können. Ein wichtiges Ziel der Modellbildung ist die numerische Simulation von Vorgängen, die als digitale Experimente sich zu einem eigenen Bereich der experimentellen Forschung entwickelt haben. Darüber hinaus ermöglicht das digitale Modell auch die optimale Planung von Experimenten, um bestimmte Fragestellungen möglichst gut untersuchen zu können. Die Umsetzung auf dem Computer erfolgt unter anderem mit Matlab, R (The R Project for Statistical Computing) und mit der spezialisierten und freien Software D2D - Data to Dynamics.Literatur und Zusatzinformationen M. Boehm, L. Adlung, M. Schilling, S. Roth, U. Klingmüller, W. Lehmann: Identification of Isoform-Specific Dynamics in Phosphorylation-Dependent STAT5 Dimerization by Quantitative Mass Spectrometry and Mathematical Modeling, Journal of Proteome Research, American Chemical Society, 2014. (PubMed) Studium der Systembiologie D2D-Software L. Adlung, C. Hopp, A. Köthe, N. Schnellbächer, O. Staufer: Tutorium Mathe für Biologen, Springer Spektrum, 2014. Science: NextGen Voices zur globalen wissenschaftlichen Zusammenarbeit- mit Lorenz Adlung Lorenz Adlung auf Twitter L. Adlung, et. al: Synbio meets Poetry, CreateSpace, 2013. Kollaborationspartner: U.a. Thomas Höfer, Heidelberg, Jens Timmer, Freiburg i. B., Fabian Theis, München Resonator-Podcast 015: DKFZ-Forscher Christof von Kalle Resonator-Podcast 014: Das DKFZ in Heidelberg Omega Tau-Podcast 069: Grundlagen der Zellbiologie Omega Tau-Podcast 072: Forschung in der Zellbiologie Konscience-Podcast 024, Kapitel 5: Das Hochlandgen aus "Wie kam das bloß durch die Ethikkommission?"
Eine Funktion, die eine Matrix auf eine Matrix abbilden kann, ist eine Matrixfunktion. Diese Funktionen finden besonders bei der numerischen Behandlung von Evolutionsgleichungen wie zum Beispiel der Wärmeleitungsgleichung ihre Anwendung. Dazu bändigt Tanja Göckler die komplizierten partiellen Differentialgleichungen, die aus der mathematischen Modellbildung entstehen, durch Diskretisierung und weiteren Methoden zu gewöhnlichen Differentialgleichungen. Diese können durch Potenzreihen gelöst werden, die auch als Matrixfunktionen eingesetzt werden können. So kann man beispielsweise auch die Exponentialfunktion als Potenzreihe auf eine Matrix anwenden, um lineare Differentialgleichungen zu lösen. Im Gespräch mit Gudrun Thäter erklärt sie, wie man diese Aufgaben aber mit rationalen Krylov-Verfahren noch viel effizienter lösen kann. Literatur und Zusatzinformationen T. Göckler, V. Grimm: Convergence Analysis of an Extended Krylov Subspace Method for the Approximation of Operator Functions in Exponential Integrators, SIAM J. Numer. Anal., 51(4), 2189-2213, 2013. S. Güttel: Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection, GAMM‐Mitteilungen 36.1: 8-31, 2013. N. J. Higham: Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, 2008. S. Ritterbusch: Warum funktioniert das CG-Verfahren? Eine Einführung in das wohl bekannteste Krylovraum-Verfahren.
Das Gehirn ist nicht nur eine graue Substanz, sondern ein sehr komplexes Organ, wo es noch viel zu erforschen gibt. Markus Dahlem befasst sich mit der Migräne, und erklärt im Gespräch mit Gudrun Thäter und Sebastian Ritterbusch, wie hier mit Modellbildung im Gehirn neue Erkenntnisse erzielt werden: Migräne ≠ Kopfschmerzen, auf diese einfache Formel kann man es bringen. Denn Migräne ist eine Krankheit, Kopfschmerz ein Symptom. Kopfschmerzen sind nicht einmal notwendiges Merkmal dieser Volkskrankheit, die, je nach Detailtiefe der Diagnose, in bis zu 19 Unterformen klassifiziert werden kann, eine davon ohne Kopfschmerzen dafür mit visuellen Halluzinationen, die man Aura nennt. Laut der neusten Studie der Weltgesundheitsorganisation über die globale Gesundheitsbelastung ist Migräne weltweit für fast 3% der Behinderungen verantwortlich. Damit befindet sich Migräne an achter Stelle der am schwersten belastenden Krankheiten und auf dem ersten Platz unter den neurologischen Erkrankungen. Wie kann hier die Mathematik helfen? Der Verlauf einer Migräne mit Aura ist kennzeichnend für einen bestimmten Mechanismus raum-zeitlicher Strukturen. Solche Strukturen zum Beispiel in Form lokalisierter Wellensegmente sind in der Musterbildung aus Reaktion-Diffusions-Systemen vom Aktivator-Inhibitor-Typ bekannt. Literatur und Zusatzinformationen Markus A. Dahlem: Graue Substanz, SciLogs Blog. Markus A. Dahlem: Dynamik der Migräne- Modelle aus der Physik tragen dazu bei, bislang unverstandene Phänomene der Migräne zu erklären, Physik Journal 11.10: 39, 2012. Markus A. Dahlem, Thomas M. Isele: Transient localized wave patterns and their application to migraine, The Journal of Mathematical Neuroscience (JMN) 3.1: 1-28, 2013. Markus A. Dahlem: Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos: An Interdisciplinary Journal of Nonlinear Science 23.4: 046101, 2013.
In vielen bisherigen Episoden haben wir uns implizit mit mathematischen Modell befasst. In dieser Episode rollen wir das Thema nochmal systematisch auf und unterhalten uns dazu mit Gudrun Thäter und Sebastian Ritterbusch vom Karlsruhe Institut für Technologie (und dem Der Modellansatz Podcast). Wir unterhalten uns zunächst allgemein was Modelle sind und woher ich weiß, dass ich ein dem Modellzweck angemessenes Modell gewählt habe. Wir besprechen dann typische Abstraktionen und Lösungsverfahren für mathematische Modelle.
Marie-Luise Maier hat ein 3D-Druck-Verfahren analysiert und optimiert, mit dem das sonst bei FDM-Druck notwendige Stützmaterial eingespart werden kann. Teil der Modellbildung ist dabei der Funktionsbegriff. Mit Sebastian Ritterbusch spricht sie über Klassen von mehr oder weniger druckbaren Objekten und einem konstruktiven Algorithmus. Literatur und Zusatzinformationen P. Fastermann: 3D-Druck/Rapid Prototyping, Springer, 2012. M. Leary, M. Babaee, M. Brandt, and A. Subic: Feasible Build Orientations for Self-Supporting Fused Deposition Manufacture: A Novel Approach to Space-Filling Tesselated Geometries, Advanced Materials Research, 633, 148-168, 2013. K. Thrimurthulu, P. M. Pandey, and N. V. Reddy: Optimum part deposition orientation in fused deposition modeling, International Journal of Machine Tools and Manufacture 44.6: 585-594, 2004.
Gudrun Thäter spricht mit Sebastian Ritterbusch über Mathematische Modellbildung und die zugehörige Vorlesung im Studium, über überraschende Ventile, dem Stau aus dem Nichts und Fußgängersimulationen. Literatur und Zusatzinformationen H.-J. Bungartz, S. Zimmer, M. Buchholz, D. Pflüger: Modellbildung und Simulation: Eine anwendungsorientierte Einführung, Springer Verlag, 2013. F. Haußer, Y. Luchko: Mathematische Modellierung mit MATLAB: Eine praxisorientierte Einführung, Spektrum Verlag, 2010. S. Howison: Practical Applied Mathematics- Modelling, Analysis, Approximation, Cambridge University Press, 2005. M. Braun: Differentialgleichungen und ihre Anwendungen, Springer Verlag, 1991.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Die Faltung und die Funktionsdynamik von Proteinen basieren auf schnellen Prozessen, die zum Teil im Zeitbereich der Pikosekunden bis Nanosekunden ablaufen. Zur Untersuchung dieser Dynamiken und der mit ihnen verbundenen strukturellen Änderungen werden häufig Molekulardynamik (MD)-Simulationen eingesetzt, die auf empirisch parametrisierten molekularmechanischen (MM) Kraftfeldern basieren. Die vorliegenden Arbeit stellt einen Ansatz zur Validierung solcher MM-Kraftfelder vor, der darin besteht, die Relaxationsdynamik kleiner lichtschaltbarer Modellpeptide zu simulieren und die dabei auftretenden Kinetiken mit Ergebnissen der Femtosekunden-Spektroskopie zu vergleichen. Erste Simulationen dieser Art zeigen eine überraschende Übereinstimmung zwischen den simulierten und den gemessenen Kinetiken. Weitere Untersuchungen, bei denen einzelne Details des eingesetzten Kraftfelds variiert werden, lassen jedoch erkennen, dass diese Übereinstimmung auf einer zufälligen Kompensation von Fehlern beruht. Es wird gezeigt, dass die simulierten Kinetiken sehr empfindlich auf Änderungen am MM-Kraftfeld reagieren und damit als Maßstab für die Güte seiner Parametrisierung dienen können. Besonders die Modellierung des Lösungsmittels DMSO hat einen entscheidenden Einfluss auf die beobachteten Kinetiken, und zwar nicht nur auf die Kühlzeiten der Wärmedissipation, sondern auch auf die Relaxationsdynamik des Peptidteils der Modellsysteme. Als Vorarbeit für die Simulation der Modellpeptide wird ein flexibles und explizites DMSO-Modell aus ersten Prinzipien abgeleitet und dessen thermodynamische und strukturelle Eigenschaften mit denen existierender Modelle verglichen. Ferner wird das eingesetzte Kraftfeld um Parameter für den in die Modellpeptide integrierten Farbstoff Azobenzol erweitert und dessen lichtinduzierte Isomerisierungsreaktion modelliert. Darüber hinaus werden neuartige Methoden zur statistischen Auswertung von MD-Trajektorien vorgestellt, die dazu dienen, eine strukturelle Klassifikation der Peptidgeometrien zu ermöglichen. Mit Hilfe dieser Klassifikation kann ein vertiefter Einblick in die während der Relaxation der Modellpeptide auftretenden Konformationsübergänge gewonnen werden. Ferner ermöglichen es die statistischen Auswertungsverfahren, aus Langzeitsimulationen der Modellpeptide deren Gleichgewichtskonformationen zu bestimmen. Der Vergleich dieser Konformationen mit Daten der NMR"=Spektroskopie zeigt schließlich die Leistungsfähigkeit der Methode der MD-Simulation für die Vorhersage von Peptidstrukturen.