Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros de neurociencia, neurorrehabilitación, fisioterapia. • Comentarios de revisiones y artÃculos cientÃficos relacionados con la fisioterapia y la neurorrehabilitación. • Visibilización de investigadores/as. • Exposición de temas especÃficos detallados sobre fisioterapia y neurorrehabilitación. • Entrevistas a fisioterapeutas y especialistas en neurorrehabilitación.
En este episodio, profundizamos en uno de los fenómenos más devastadores pero menos comprendidos en neurorrehabilitación: la denervación muscular tras una lesión medular. A través de una revisión exhaustiva de la literatura científica y de la experiencia clínica, abordamos qué ocurre realmente con los músculos que han perdido su inervación, cómo se transforman con el tiempo y qué posibilidades tenemos para intervenir. Hablamos sobre neurofisiología, degeneración axonal, fases de la denervación, y cómo la estimulación eléctrica —especialmente con pulsos largos— puede modificar el curso degenerativo incluso años después de la lesión. Exploramos también el Proyecto RISE, los protocolos clínicos actuales y las implicaciones terapéuticas reales de aplicar electroestimulación en músculos completamente denervados. Si trabajas en neurorrehabilitación o te interesa la ciencia aplicada a la recuperación funcional, este episodio es para ti. Referencias del episodio: 1. Alberty, M., Mayr, W., & Bersch, I. (2023). Electrical Stimulation for Preventing Skin Injuries in Denervated Gluteal Muscles-Promising Perspectives from a Case Series and Narrative Review. Diagnostics (Basel, Switzerland), 13(2), 219. https://doi.org/10.3390/diagnostics13020219 (https://pubmed.ncbi.nlm.nih.gov/36673029/). 2. Beauparlant, J., van den Brand, R., Barraud, Q., Friedli, L., Musienko, P., Dietz, V., & Courtine, G. (2013). Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain : a journal of neurology, 136(Pt 11), 3347–3361. https://doi.org/10.1093/brain/awt204 (https://pubmed.ncbi.nlm.nih.gov/24080153/). 3. Bersch, I., & Fridén, J. (2021). Electrical stimulation alters muscle morphological properties in denervated upper limb muscles. EBioMedicine, 74, 103737. https://doi.org/10.1016/j.ebiom.2021.103737 (https://pubmed.ncbi.nlm.nih.gov/34896792/). 4. Bersch, I., & Mayr, W. (2023). Electrical stimulation in lower motoneuron lesions, from scientific evidence to clinical practice: a successful transition. European journal of translational myology, 33(2), 11230. https://doi.org/10.4081/ejtm.2023.11230 (https://pmc.ncbi.nlm.nih.gov/articles/PMC10388603/). 5. Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal cord, 35(2), 86–91. https://doi.org/10.1038/sj.sc.3100364 (Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal cord, 35(2), 86–91. https://doi.org/10.1038/sj.sc.3100364). 6. Carlson B. M. (2014). The Biology of Long-Term Denervated Skeletal Muscle. European journal of translational myology, 24(1), 3293. https://doi.org/10.4081/ejtm.2014.3293 (https://pubmed.ncbi.nlm.nih.gov/26913125/). 7. Carraro, U., Boncompagni, S., Gobbo, V., Rossini, K., Zampieri, S., Mosole, S., Ravara, B., Nori, A., Stramare, R., Ambrosio, F., Piccione, F., Masiero, S., Vindigni, V., Gargiulo, P., Protasi, F., Kern, H., Pond, A., & Marcante, A. (2015). Persistent Muscle Fiber Regeneration in Long Term Denervation. Past, Present, Future. European journal of translational myology, 25(2), 4832. https://doi.org/10.4081/ejtm.2015.4832 (https://pubmed.ncbi.nlm.nih.gov/26913148/). 8. Chandrasekaran, S., Davis, J., Bersch, I., Goldberg, G., & Gorgey, A. S. (2020). Electrical stimulation and denervated muscles after spinal cord injury. Neural regeneration research, 15(8), 1397–1407. https://doi.org/10.4103/1673-5374.274326 (https://pubmed.ncbi.nlm.nih.gov/31997798/). 9. Ding, Y., Kastin, A. J., & Pan, W. (2005). Neural plasticity after spinal cord injury. Current pharmaceutical design, 11(11), 1441–1450. https://doi.org/10.2174/1381612053507855 (https://pmc.ncbi.nlm.nih.gov/articles/PMC3562709/). 10. Dolbow, D. R., Bersch, I., Gorgey, A. S., & Davis, G. M. (2024). The Clinical Management of Electrical Stimulation Therapies in the Rehabilitation of Individuals with Spinal Cord Injuries. Journal of clinical medicine, 13(10), 2995. https://doi.org/10.3390/jcm13102995 (https://pubmed.ncbi.nlm.nih.gov/38792536/). 11. Hofer, C., Mayr, W., Stöhr, H., Unger, E., & Kern, H. (2002). A stimulator for functional activation of denervated muscles. Artificial organs, 26(3), 276–279. https://doi.org/10.1046/j.1525-1594.2002.06951.x (https://pubmed.ncbi.nlm.nih.gov/11940032/). 12. Kern, H., Hofer, C., Mödlin, M., Forstner, C., Raschka-Högler, D., Mayr, W., & Stöhr, H. (2002). Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artificial organs, 26(3), 216–218. https://doi.org/10.1046/j.1525-1594.2002.06933.x (https://pubmed.ncbi.nlm.nih.gov/11940016/). 13. Kern, H., Salmons, S., Mayr, W., Rossini, K., & Carraro, U. (2005). Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle & nerve, 31(1), 98–101. https://doi.org/10.1002/mus.20149 (https://pubmed.ncbi.nlm.nih.gov/15389722/). 14. Kern, H., Rossini, K., Carraro, U., Mayr, W., Vogelauer, M., Hoellwarth, U., & Hofer, C. (2005). Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. Journal of rehabilitation research and development, 42(3 Suppl 1), 43–53. https://doi.org/10.1682/jrrd.2004.05.0061 (https://pubmed.ncbi.nlm.nih.gov/16195962/). 15. Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., & Zampieri, S. (2010). One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurological research, 32(1), 5–12. https://doi.org/10.1179/174313209X385644 (https://pubmed.ncbi.nlm.nih.gov/20092690/). 16. Kern, H., & Carraro, U. (2014). Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy. European journal of translational myology, 24(1), 3296. https://doi.org/10.4081/ejtm.2014.3296 (https://pmc.ncbi.nlm.nih.gov/articles/PMC4749003/). 17. Kern, H., Hofer, C., Loefler, S., Zampieri, S., Gargiulo, P., Baba, A., Marcante, A., Piccione, F., Pond, A., & Carraro, U. (2017). Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurological research, 39(7), 660–666. https://doi.org/10.1080/01616412.2017.1314906 (https://pubmed.ncbi.nlm.nih.gov/28403681/). 18. Kern, H., & Carraro, U. (2020). Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel, Switzerland), 10(8), 529. https://doi.org/10.3390/diagnostics10080529 (https://pubmed.ncbi.nlm.nih.gov/32751308/). 19. Ko H. Y. (2018). Revisit Spinal Shock: Pattern of Reflex Evolution during Spinal Shock. Korean journal of neurotrauma, 14(2), 47–54. https://doi.org/10.13004/kjnt.2018.14.2.47 (https://pubmed.ncbi.nlm.nih.gov/30402418/). 20. Mittal, P., Gupta, R., Mittal, A., & Mittal, K. (2016). MRI findings in a case of spinal cord Wallerian degeneration following trauma. Neurosciences (Riyadh, Saudi Arabia), 21(4), 372–373. https://doi.org/10.17712/nsj.2016.4.20160278 (https://pmc.ncbi.nlm.nih.gov/articles/PMC5224438/). 21. Pang, Q. M., Chen, S. Y., Xu, Q. J., Fu, S. P., Yang, Y. C., Zou, W. H., Zhang, M., Liu, J., Wan, W. H., Peng, J. C., & Zhang, T. (2021). Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Frontiers in immunology, 12, 751021. https://doi.org/10.3389/fimmu.2021.751021 (https://pubmed.ncbi.nlm.nih.gov/34925326/). 22. Schick, T. (Ed.). (2022). Functional electrical stimulation in neurorehabilitation: Synergy effects of technology and therapy. Springer. https://doi.org/10.1007/978-3-030-90123-3 (https://link.springer.com/book/10.1007/978-3-030-90123-3). 23. Swain, I., Burridge, J., & Street, T. (Eds.). (2024). Techniques and technologies in electrical stimulation for neuromuscular rehabilitation. The Institution of Engineering and Technology. https://shop.theiet.org/techniques-and-technologies-in-electrical-stimulation-for-neuromuscular-rehabilitation 24. van der Scheer, J. W., Goosey-Tolfrey, V. L., Valentino, S. E., Davis, G. M., & Ho, C. H. (2021). Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. Journal of neuroengineering and rehabilitation, 18(1), 99. https://doi.org/10.1186/s12984-021-00882-8 (https://pubmed.ncbi.nlm.nih.gov/34118958/). 25. Xu, X., Talifu, Z., Zhang, C. J., Gao, F., Ke, H., Pan, Y. Z., Gong, H., Du, H. Y., Yu, Y., Jing, Y. L., Du, L. J., Li, J. J., & Yang, D. G. (2023). Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Frontiers in nutrition, 10, 1099143. https://doi.org/10.3389/fnut.2023.1099143 (https://pubmed.ncbi.nlm.nih.gov/36937344/). 26. Anatomical Concepts: https://www.anatomicalconcepts.com/articles
En este episodio entrevistamos a Bernat de las Heras, investigador en neurorehabilitación y experto en neuroplasticidad post-ictus. Desde su formación inicial en Ciencias del Deporte hasta su doctorado en la Universidad McGill, Bernat ha explorado cómo el ejercicio cardiovascular —en especial el aeróbico y HIIT— puede modular la neuroplasticidad cerebral tras un ictus. Bernat nos explica los beneficios y limitaciones del entrenamiento interválico de alta intensidad, su percepción por parte de los pacientes, y cómo combinarlo de forma efectiva con otras estrategias terapéuticas. Hablamos también de aprendizaje y localización de la lesión. Una conversación profunda y práctica para entender los límites actuales de la evidencia, y al mismo tiempo, abrir nuevas vías para la rehabilitación neurológica individualizada. Referencias del episodio: 1) Ploughman, M., Attwood, Z., White, N., Doré, J. J., & Corbett, D. (2007). Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. The European journal of neuroscience, 25(11), 3453–3460. https://doi.org/10.1111/j.1460-9568.2007.05591.x (https://pubmed.ncbi.nlm.nih.gov/17553014/). 2) Jeffers, M. S., & Corbett, D. (2018). Synergistic Effects of Enriched Environment and Task-Specific Reach Training on Poststroke Recovery of Motor Function. Stroke, 49(6), 1496–1503. https://doi.org/10.1161/STROKEAHA.118.020814 (https://pubmed.ncbi.nlm.nih.gov/29752347/). 3) De Las Heras, B., Rodrigues, L., Cristini, J., Moncion, K., Ploughman, M., Tang, A., Fung, J., & Roig, M. (2024). Measuring Neuroplasticity in Response to Cardiovascular Exercise in People With Stroke: A Critical Perspective. Neurorehabilitation and neural repair, 38(4), 303–321. https://doi.org/10.1177/15459683231223513 (https://pubmed.ncbi.nlm.nih.gov/38291890/). 4) Roig, M., & de Las Heras, B. (2018). Acute cardiovascular exercise does not enhance locomotor learning in people with stroke. The Journal of physiology, 596(10), 1785–1786. https://doi.org/10.1113/JP276172 (https://pubmed.ncbi.nlm.nih.gov/29603752/). 5) Rodrigues, L., Moncion, K., Eng, J. J., Noguchi, K. S., Wiley, E., de Las Heras, B., Sweet, S. N., Fung, J., MacKay-Lyons, M., Nelson, A. J., Medeiros, D., Crozier, J., Thiel, A., Tang, A., & Roig, M. (2022). Intensity matters: protocol for a randomized controlled trial exercise intervention for individuals with chronic stroke. Trials, 23(1), 442. https://doi.org/10.1186/s13063-022-06359-w (https://pubmed.ncbi.nlm.nih.gov/35610659/). 6) Cristini, J., Kraft, V. S., De Las Heras, B., Rodrigues, L., Parwanta, Z., Hermsdörfer, J., Steib, S., & Roig, M. (2023). Differential effects of acute cardiovascular exercise on explicit and implicit motor memory: The moderating effects of fitness level. Neurobiology of learning and memory, 205, 107846. https://doi.org/10.1016/j.nlm.2023.107846 (https://pubmed.ncbi.nlm.nih.gov/37865261/). 7) Moncion, K., Rodrigues, L., De Las Heras, B., Noguchi, K. S., Wiley, E., Eng, J. J., MacKay-Lyons, M., Sweet, S. N., Thiel, A., Fung, J., Stratford, P., Richardson, J. A., MacDonald, M. J., Roig, M., & Tang, A. (2024). Cardiorespiratory Fitness Benefits of High-Intensity Interval Training After Stroke: A Randomized Controlled Trial. Stroke, 55(9), 2202–2211. https://doi.org/10.1161/STROKEAHA.124.046564 (https://pubmed.ncbi.nlm.nih.gov/39113181/). 8) De las Heras, B., Rodrigues, L., Cristini, J., Moncion, K., Dancause, N., Thiel, A., Edwards, J. D., Eng, J. J., Tang, A., & Roig, M. (2024). Lesion location changes the association between brain excitability and motor skill acquisition post-stroke. medRxiv. https://doi.org/10.1101/2024.07.30.24311146 (https://www.medrxiv.org/content/10.1101/2024.07.30.24311146v1.article-info). 9) Rodrigues, L., Moncion, K., Angelopoulos, S. A., Heras, B. L., Sweet, S., Eng, J. J., Fung, J., MacKay-Lyons, M., Tang, A., & Roig, M. (2025). Psychosocial Responses to a Cardiovascular Exercise Randomized Controlled Trial: Does Intensity Matter for Individuals Post-stroke?. Archives of physical medicine and rehabilitation, S0003-9993(25)00498-8. Advance online publication. https://doi.org/10.1016/j.apmr.2025.01.468 (https://pubmed.ncbi.nlm.nih.gov/39894292/). 10) de Las Heras, B., Rodrigues, L., Cristini, J., Weiss, M., Prats-Puig, A., & Roig, M. (2022). Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition?. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 28(1), 69–86. https://doi.org/10.1177/1073858420975712 (https://pubmed.ncbi.nlm.nih.gov/33300425/). 11) MacKay-Lyons, M., Billinger, S. A., Eng, J. J., Dromerick, A., Giacomantonio, N., Hafer-Macko, C., Macko, R., Nguyen, E., Prior, P., Suskin, N., Tang, A., Thornton, M., & Unsworth, K. (2020). Aerobic Exercise Recommendations to Optimize Best Practices in Care After Stroke: AEROBICS 2019 Update. Physical therapy, 100(1), 149–156. https://doi.org/10.1093/ptj/pzz153 (https://pubmed.ncbi.nlm.nih.gov/31596465/).
En este episodio, actualizamos la evidencia científica sobre la rodilla rígida post-ictus o stiff-knee, ampliando lo que ya sintetizamos hace varios años en el episodio #48. Indagamos en las sinergias musculares en el stiff-knee y en sus fenotipos, para poder realizar una valoración y tratamiento más específico e individualizado. Referencias del episodio: 1. Brough, L. G., Kautz, S. A., & Neptune, R. R. (2022). Muscle contributions to pre-swing biomechanical tasks influence swing leg mechanics in individuals post-stroke during walking. Journal of neuroengineering and rehabilitation, 19(1), 55. https://doi.org/10.1186/s12984-022-01029-z (https://pubmed.ncbi.nlm.nih.gov/35659252/). 2. Chantraine, F., Schreiber, C., Pereira, J. A. C., Kaps, J., & Dierick, F. (2022). Classification of Stiff-Knee Gait Kinematic Severity after Stroke Using Retrospective k-Means Clustering Algorithm. Journal of clinical medicine, 11(21), 6270. https://doi.org/10.3390/jcm11216270 (https://pubmed.ncbi.nlm.nih.gov/36362499/) 3. Fujita, K., Tsushima, Y., Hayashi, K., Kawabata, K., Sato, M., & Kobayashi, Y. (2022). Differences in causes of stiff knee gait in knee extensor activity or ankle kinematics: A cross-sectional study. Gait & posture, 98, 187–194. https://doi.org/10.1016/j.gaitpost.2022.09.078 (https://pubmed.ncbi.nlm.nih.gov/36166956/). 4. Fujita, K., Tsushima, Y., Hayashi, K., Kawabata, K., Ogawa, T., Hori, H., & Kobayashi, Y. (2024). Altered muscle synergy structure in patients with poststroke stiff knee gait. Scientific reports, 14(1), 20295. https://doi.org/10.1038/s41598-024-71083-1 (https://pubmed.ncbi.nlm.nih.gov/39217201/). 5. Krajewski, K. T., Correa, J. S., Siu, R., Cunningham, D., & Sulzer, J. S. (2025). Mechanisms of Post-Stroke Stiff Knee Gait: A Narrative Review. American journal of physical medicine & rehabilitation, 10.1097/PHM.0000000000002678. Advance online publication. https://doi.org/10.1097/PHM.0000000000002678 (https://pubmed.ncbi.nlm.nih.gov/39815400/). 6. Lee, J., Lee, R. K., Seamon, B. A., Kautz, S. A., Neptune, R. R., & Sulzer, J. (2024). Between-limb difference in peak knee flexion angle can identify persons post-stroke with Stiff-Knee gait. Clinical biomechanics (Bristol, Avon), 120, 106351. https://doi.org/10.1016/j.clinbiomech.2024.106351 (https://pubmed.ncbi.nlm.nih.gov/39321614/). 7. Tenniglo, M. J. B., Nene, A. V., Rietman, J. S., Buurke, J. H., & Prinsen, E. C. (2023). The Effect of Botulinum Toxin Type A Injection in the Rectus Femoris in Stroke Patients Walking With a Stiff Knee Gait: A Randomized Controlled Trial. Neurorehabilitation and neural repair, 37(9), 640–651. https://doi.org/10.1177/15459683231189712 (https://pubmed.ncbi.nlm.nih.gov/37644725/).
En este episodio traigo un formato nuevo que creo que puede ser muy útil para aprender y repasar neurología de una forma más aplicada. He cogido preguntas del examen MIR del año 2025 relacionadas con neurología y, además de responderlas, las utilizo como excusa para profundizar en cada tema.
En este episodio, exploramos a fondo el fascinante pero controvertido sistema de las neuronas espejo. Desentrañamos su descubrimiento, su neurofisiología, y el papel que desempeñan en procesos como la comprensión de acciones, la imitación, la empatía y el lenguaje. Además, abordamos las críticas más relevantes de autores como Hickok y Heyes, reflexionamos sobre su relevancia en la neurorrehabilitación y analizamos su conexión con otras redes cerebrales como el cerebelo. Un episodio esencial para entender el estado actual de la ciencia detrás de estas células y su impacto en la cognición y la clínica. Referencias del episodio: 1. Antonioni, A., Raho, E. M., Straudi, S., Granieri, E., Koch, G., & Fadiga, L. (2024). The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neuroscience and biobehavioral reviews, 164, 105830. https://doi.org/10.1016/j.neubiorev.2024.105830 (https://pubmed.ncbi.nlm.nih.gov/39069236/9. 2. Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: implications and applications. Trends in cognitive sciences, 26(9), 767–781. https://doi.org/10.1016/j.tics.2022.06.003 (https://pubmed.ncbi.nlm.nih.gov/35803832/). 3. Borges, L. R., Fernandes, A. B., Oliveira Dos Passos, J., Rego, I. A. O., & Campos, T. F. (2022). Action observation for upper limb rehabilitation after stroke. The Cochrane database of systematic reviews, 8(8), CD011887. https://doi.org/10.1002/14651858.CD011887.pub3 (https://pubmed.ncbi.nlm.nih.gov/35930301/). 4. Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current biology : CB, 17(17), 1527–1531. https://doi.org/10.1016/j.cub.2007.08.006 (https://pubmed.ncbi.nlm.nih.gov/17716898/) 5. Dinstein I. (2008). Human cortex: reflections of mirror neurons. Current biology : CB, 18(20), R956–R959. https://doi.org/10.1016/j.cub.2008.09.007 (https://pubmed.ncbi.nlm.nih.gov/18957251/). 6. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: a magnetic stimulation study. Journal of neurophysiology, 73(6), 2608–2611. https://doi.org/10.1152/jn.1995.73.6.2608 (https://pubmed.ncbi.nlm.nih.gov/7666169/). 7. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain : a journal of neurology, 119 ( Pt 2), 593–609. https://doi.org/10.1093/brain/119.2.593 (https://pubmed.ncbi.nlm.nih.gov/8800951/). 8. Gallese, V., Gernsbacher, M. A., Heyes, C., Hickok, G., & Iacoboni, M. (2011). Mirror Neuron Forum. Perspectives on psychological science : a journal of the Association for Psychological Science, 6(4), 369–407. https://doi.org/10.1177/1745691611413392 (https://pubmed.ncbi.nlm.nih.gov/25520744/). 9. Glenberg, A. M. (2015). Big Myth or Major Miss? [Review of The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition, by Gregory Hickok]. The American Journal of Psychology, 128(4), 533–539. https://doi.org/10.5406/amerjpsyc.128.4.0533 (https://www.jstor.org/stable/10.5406/amerjpsyc.128.4.0533). 10. Heyes, C., & Catmur, C. (2022). What Happened to Mirror Neurons?. Perspectives on psychological science : a journal of the Association for Psychological Science, 17(1), 153–168. https://doi.org/10.1177/1745691621990638 (https://pmc.ncbi.nlm.nih.gov/articles/PMC8785302/). 11. Hickok G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of cognitive neuroscience, 21(7), 1229–1243. https://doi.org/10.1162/jocn.2009.21189 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2773693/). 12. Hickok, G. (2014). The myth of mirror neurons: The real neuroscience of communication and cognition. W. W. Norton & Company (https://wwnorton.com/books/9780393089615). 13. La Touche, R. (2020). Métodos de representación del movimiento en rehabilitación. Construyendo un marco conceptual para la aplicación en clínica. Journal of MOVE and Therapeutic Science, 2(2), 152–159. https://doi.org/10.37382/jomts.v2i2.42 (https://publicaciones.lasallecampus.es/index.php/MOVE/article/view/42). 14. Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–9930. https://doi.org/10.1073/pnas.0902262106 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2701024/). 15. Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and biobehavioral reviews, 36(1), 341–349. https://doi.org/10.1016/j.neubiorev.2011.07.004 (https://pubmed.ncbi.nlm.nih.gov/21782846/). 16. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current biology : CB, 20(8), 750–756. https://doi.org/10.1016/j.cub.2010.02.045 (https://pubmed.ncbi.nlm.nih.gov/20381353/). 17. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain research. Cognitive brain research, 3(2), 131–141. https://doi.org/10.1016/0926-6410(95)00038-0 (https://www.sciencedirect.com/science/article/pii/0926641095000380?via%3Dihub). 18. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental brain research, 111(2), 246–252. https://doi.org/10.1007/BF00227301 (https://pubmed.ncbi.nlm.nih.gov/8891654/). 19. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature clinical practice. Neurology, 5(1), 24–34. https://doi.org/10.1038/ncpneuro0990 (https://pubmed.ncbi.nlm.nih.gov/19129788/). 20. Rizzolatti, G., & Sinigaglia, C. (2015). A curious book on mirror neurons and their myth: Review of Gregory Hickok's The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition (https://bpb-us-e1.wpmucdn.com/sites.ucsc.edu/dist/0/158/files/2015/04/Rizzolatti-Sinigaglia-Review.pdf). 21. Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: challenging a theory of Autism. Trends in cognitive sciences, 12(6), 225–229. https://doi.org/10.1016/j.tics.2008.03.005 (https://pubmed.ncbi.nlm.nih.gov/18479959/). 22. Tarhan, L. Y., Watson, C. E., & Buxbaum, L. J. (2015). Shared and Distinct Neuroanatomic Regions Critical for Tool-related Action Production and Recognition: Evidence from 131 Left-hemisphere Stroke Patients. Journal of cognitive neuroscience, 27(12), 2491–2511. https://doi.org/10.1162/jocn_a_00876 (https://pmc.ncbi.nlm.nih.gov/articles/PMC8139360/). 23. Ventoulis, I., Gkouma, K. R., Ventouli, S., & Polyzogopoulou, E. (2024). The Role of Mirror Therapy in the Rehabilitation of the Upper Limb's Motor Deficits After Stroke: Narrative Review. Journal of clinical medicine, 13(24), 7808. https://doi.org/10.3390/jcm13247808 (https://pubmed.ncbi.nlm.nih.gov/39768730/).
En este episodio, resumimos varios artículos científicos sobre espasticidad, en cuanto a conceptualización, neurofisiología, evaluación y tratamiento. Es una forma de actualización anual sobre esta temática tan estudiada en neurociencia. Hablamos sobre nuevos estudios de neuroimagen sobre la espasticidad, consensos sobre evaluación y desarrollos emergentes de tratamientos médicos. Referencias del episodio: 1. Cho, M. J., Yeo, S. S., Lee, S. J., & Jang, S. H. (2023). Correlation between spasticity and corticospinal/corticoreticular tract status in stroke patients after early stage. Medicine, 102(17), e33604. https://doi.org/10.1097/MD.0000000000033604 (https://pubmed.ncbi.nlm.nih.gov/37115067/). 2. Gal, O., Baude, M., Deltombe, T., Esquenazi, A., Gracies, J. M., Hoskovcova, M., Rodriguez-Blazquez, C., Rosales, R., Satkunam, L., Wissel, J., Mestre, T., Sánchez-Ferro, Á., Skorvanek, M., Tosin, M. H. S., Jech, R., & members of the MDS Clinical Outcome Assessments Scientific Evaluation Committee and MDS Spasticity Study group (2024). Clinical Outcome Assessments for Spasticity: Review, Critique, and Recommendations. Movement disorders : official journal of the Movement Disorder Society, 10.1002/mds.30062. Advance online publication. https://doi.org/10.1002/mds.30062 (https://pubmed.ncbi.nlm.nih.gov/39629752/). 3. Gracies J. M. (2005). Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle & nerve, 31(5), 535–551. https://doi.org/10.1002/mus.20284 (https://pubmed.ncbi.nlm.nih.gov/15714510/). 4. Gracies J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & nerve, 31(5), 552–571. https://doi.org/10.1002/mus.20285 (https://pubmed.ncbi.nlm.nih.gov/15714511/). 5. Gracies, J. M., Alter, K. E., Biering-Sørensen, B., Dewald, J. P. A., Dressler, D., Esquenazi, A., Franco, J. H., Jech, R., Kaji, R., Jin, L., Lim, E. C. H., Raghavan, P., Rosales, R., Shalash, A. S., Simpson, D. M., Suputtitada, A., Vecchio, M., Wissel, J., & Spasticity Study Group of the International Parkinson and Movement Disorders Society (2024). Spastic Paresis: A Treatable Movement Disorder. Movement disorders : official journal of the Movement Disorder Society, 10.1002/mds.30038. Advance online publication. https://doi.org/10.1002/mds.30038 (https://pubmed.ncbi.nlm.nih.gov/39548808/). 6. Guo, X., Wallace, R., Tan, Y., Oetomo, D., Klaic, M., & Crocher, V. (2022). Technology-assisted assessment of spasticity: a systematic review. Journal of neuroengineering and rehabilitation, 19(1), 138. https://doi.org/10.1186/s12984-022-01115-2 (https://pubmed.ncbi.nlm.nih.gov/36494721/). 7. He, J., Luo, A., Yu, J., Qian, C., Liu, D., Hou, M., & Ma, Y. (2023). Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Frontiers in neurology, 14, 1121323. https://doi.org/10.3389/fneur.2023.1121323 (https://pubmed.ncbi.nlm.nih.gov/37475737/). 8. Levin, M. F., Piscitelli, D., & Khayat, J. (2024). Tonic stretch reflex threshold as a measure of disordered motor control and spasticity - A critical review. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 165, 138–150. https://doi.org/10.1016/j.clinph.2024.06.019 (https://pubmed.ncbi.nlm.nih.gov/39029274/). 9. Li, S., Winston, P., & Mas, M. F. (2024). Spasticity Treatment Beyond Botulinum Toxins. Physical medicine and rehabilitation clinics of North America, 35(2), 399–418. https://doi.org/10.1016/j.pmr.2023.06.009 (https://pubmed.ncbi.nlm.nih.gov/38514226/). 10. Qin, Y., Qiu, S., Liu, X., Xu, S., Wang, X., Guo, X., Tang, Y., & Li, H. (2022). Lesions causing post-stroke spasticity localize to a common brain network. Frontiers in aging neuroscience, 14, 1011812. https://doi.org/10.3389/fnagi.2022.1011812 (https://pubmed.ncbi.nlm.nih.gov/36389077/). 11. Suputtitada, A., Chatromyen, S., Chen, C. P. C., & Simpson, D. M. (2024). Best Practice Guidelines for the Management of Patients with Post-Stroke Spasticity: A Modified Scoping Review. Toxins, 16(2), 98. https://doi.org/10.3390/toxins16020098 (https://pubmed.ncbi.nlm.nih.gov/38393176/). 12. Winston, P., Mills, P. B., Reebye, R., & Vincent, D. (2019). Cryoneurotomy as a Percutaneous Mini-invasive Therapy for the Treatment of the Spastic Limb: Case Presentation, Review of the Literature, and Proposed Approach for Use. Archives of rehabilitation research and clinical translation, 1(3-4), 100030. https://doi.org/10.1016/j.arrct.2019.100030 (https://pubmed.ncbi.nlm.nih.gov/33543059/).
En esta entrevista, charlo con Leonardo Boccuni, fisioterapeuta italiano que acaba de presentar (noviembre, 2024) su tesis doctoral por la Universidad Autónoma de Barcelona sobre prehabilitación de tumores cerebrales mediante neuromodulación cerebral no invasiva y terapia intensiva, dentro del Proyecto PREHABILITA, del Institut Guttmann (Barcelona, España). Leonardo nos habla sobre este proyecto, su originalidad y complejidad, debido a la confluencia de áreas como la neurocirugía, neuroimagen, neurofisiología, neurorrehabilitación y programación informática. Además, nos cuenta sus aprendizajes en la investigación y práctica clínica sobre la neurorrehabilitación del miembro superior. Referencias del episodio: 1. Boccuni, L., et al (2018). Is There Full or Proportional Somatosensory Recovery in the Upper Limb After Stroke? Investigating Behavioral Outcome and Neural Correlates. Neurorehabilitation and neural repair, 32(8), 691–700. https://doi.org/10.1177/1545968318787060 (https://pubmed.ncbi.nlm.nih.gov/29991331/). 2. Boccuni, L., et al (2019). Premotor dorsal white matter integrity for the prediction of upper limb motor impairment after stroke. Scientific reports, 9(1), 19712. https://doi.org/10.1038/s41598-019-56334-w (https://pubmed.ncbi.nlm.nih.gov/31873186/). 3. Boccuni, L.,et al (2022). Time to reconcile research findings and clinical practice on upper limb neurorehabilitation. Frontiers in neurology, 13, 939748. https://doi.org/10.3389/fneur.2022.939748 (https://pubmed.ncbi.nlm.nih.gov/35928130/). 4. Boccuni, L., et al (2023). Neuromodulation-induced prehabilitation to leverage neuroplasticity before brain tumor surgery: a single-cohort feasibility trial protocol. Frontiers in neurology, 14, 1243857. https://doi.org/10.3389/fneur.2023.1243857 (https://pubmed.ncbi.nlm.nih.gov/37849833/). 5. Boccuni, L., et al (2024). Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Frontiers in oncology, 14, 1390542. https://doi.org/10.3389/fonc.2024.1390542 (https://pubmed.ncbi.nlm.nih.gov/38826790/). 6. Boccuni, L., et al (2024). Non-invasive prehabilitation to foster widespread fMRI cortical reorganization before brain tumor surgery: lessons from a case series. Journal of neuro-oncology, 170(1), 185–198. https://doi.org/10.1007/s11060-024-04774-4 (https://pubmed.ncbi.nlm.nih.gov/39044115/). 7. Essers, B., Meyer, S., De Bruyn, N., Van Gils, A., Boccuni, L., Tedesco Triccas, L., Peeters, A., Thijs, V., Feys, H., & Verheyden, G. (2019). Mismatch between observed and perceived upper limb function: an eye-catching phenomenon after stroke. Disability and rehabilitation, 41(13), 1545–1551. https://doi.org/10.1080/09638288.2018.1442504 (https://pubmed.ncbi.nlm.nih.gov/29564912/). 8. Salvalaggio, S., Boccuni, L., & Turolla, A. (2023). Patient's assessment and prediction of recovery after stroke: a roadmap for clinicians. Archives of physiotherapy, 13(1), 13. https://doi.org/10.1186/s40945-023-00167-4 (https://pubmed.ncbi.nlm.nih.gov/37337288/). 9. Yilmazer, C., Boccuni, L., Thijs, L., & Verheyden, G. (2019). Effectiveness of somatosensory interventions on somatosensory, motor and functional outcomes in the upper limb post-stroke: A systematic review and meta-analysis. NeuroRehabilitation, 44(4), 459–477. https://doi.org/10.3233/NRE-192687 (https://pubmed.ncbi.nlm.nih.gov/31256086/). *Tesis doctoral próximamente disponible :)
En el episodio de hoy, tratamos de responder a la pregunta que formulamos, sobre todo matizando la autonomía o no de esos CPGs en la médula humana. Revisamos los principales autores y estudios sobre el tema y ahondamos en la evidencia más actual sobre el sistema de interneuronas que conforman los CPGs y las implicaciones para la neurorrehabilitación (estimulación epidural y terapia intensiva). Referencias del episodio: 1. Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P., & Harkema, S. J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain : a journal of neurology, 137(Pt 5), 1394–1409. https://doi.org/10.1093/brain/awu038 (https://pubmed.ncbi.nlm.nih.gov/24713270/). 2. Barkan, C. L., & Zornik, E. (2019). Feedback to the future: motor neuron contributions to central pattern generator function. The Journal of experimental biology, 222(Pt 16), jeb193318. https://doi.org/10.1242/jeb.193318 (https://pmc.ncbi.nlm.nih.gov/articles/PMC6739810/). 3. Brown, T. G. (1911). The Intrinsic Factors in the Act of Progression in the Mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(572), 308–319. http://www.jstor.org/stable/80647 (https://www.jstor.org/stable/80647). 4. Cherni, Y., Begon, M., Chababe, H., & Moissenet, F. (2017). Use of electromyography to optimize Lokomat® settings for subject-specific gait rehabilitation in post-stroke hemiparetic patients: A proof-of-concept study. Neurophysiologie clinique = Clinical neurophysiology, 47(4), 293–299. https://doi.org/10.1016/j.neucli.2017.01.008 (https://pubmed.ncbi.nlm.nih.gov/28318816/). 5. Courtine, G., Gerasimenko, Y., van den Brand, R., Yew, A., Musienko, P., Zhong, H., Song, B., Ao, Y., Ichiyama, R. M., Lavrov, I., Roy, R. R., Sofroniew, M. V., & Edgerton, V. R. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature neuroscience, 12(10), 1333–1342. https://doi.org/10.1038/nn.2401 (https://pubmed.ncbi.nlm.nih.gov/19767747/). 6. Dietz V. (2010). Behavior of spinal neurons deprived of supraspinal input. Nature reviews. Neurology, 6(3), 167–174. https://doi.org/10.1038/nrneurol.2009.227 (https://pubmed.ncbi.nlm.nih.gov/20101254/). 7. Dimitrijevic, M. R., Gerasimenko, Y., & Pinter, M. M. (1998). Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences, 860, 360–376. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x (https://pubmed.ncbi.nlm.nih.gov/9928325/). 8. Dzeladini, F., van den Kieboom, J., & Ijspeert, A. (2014). The contribution of a central pattern generator in a reflex-based neuromuscular model. Frontiers in human neuroscience, 8, 371. https://doi.org/10.3389/fnhum.2014.00371 (https://pmc.ncbi.nlm.nih.gov/articles/PMC4071613/). 9. Gizzi, L., Nielsen, J. F., Felici, F., Moreno, J. C., Pons, J. L., & Farina, D. (2012). Motor modules in robot-aided walking. Journal of neuroengineering and rehabilitation, 9, 76. https://doi.org/10.1186/1743-0003-9-76 (https://pubmed.ncbi.nlm.nih.gov/23043818/). 10. Gosgnach S. (2022). Synaptic connectivity amongst components of the locomotor central pattern generator. Frontiers in neural circuits, 16, 1076766. https://doi.org/10.3389/fncir.2022.1076766 (https://pmc.ncbi.nlm.nih.gov/articles/PMC9730330/). 11. Grillner, S. (1981). Control of Locomotion in Bipeds, Tetrapods, and Fish. Comprehensive Physiology, 1179-1236 (https://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010226). 12. Guertin P. A. (2014). Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Frontiers in human neuroscience, 8, 272. https://doi.org/10.3389/fnhum.2014.00272 (https://pubmed.ncbi.nlm.nih.gov/24910602/). 13. Harkema, S., Gerasimenko, Y., Hodes, J., Burdick, J., Angeli, C., Chen, Y., Ferreira, C., Willhite, A., Rejc, E., Grossman, R. G., & Edgerton, V. R. (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet (London, England), 377(9781), 1938–1947. https://doi.org/10.1016/S0140-6736(11)60547-3 (https://pubmed.ncbi.nlm.nih.gov/21601270/). 14. Kathe, C., Skinnider, M. A., Hutson, T. H., Regazzi, N., Gautier, M., Demesmaeker, R., Komi, S., Ceto, S., James, N. D., Cho, N., Baud, L., Galan, K., Matson, K. J. E., Rowald, A., Kim, K., Wang, R., Minassian, K., Prior, J. O., Asboth, L., Barraud, Q., … Courtine, G. (2022). The neurons that restore walking after paralysis. Nature, 611(7936), 540–547. https://doi.org/10.1038/s41586-022-05385-7 (https://pubmed.ncbi.nlm.nih.gov/36352232/). 15. Minassian, K., Jilge, B., Rattay, F., Pinter, M. M., Binder, H., Gerstenbrand, F., & Dimitrijevic, M. R. (2004). Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal cord, 42(7), 401–416. https://doi.org/10.1038/sj.sc.3101615 (https://pubmed.ncbi.nlm.nih.gov/15124000/). 16. Minassian, K., Persy, I., Rattay, F., Dimitrijevic, M. R., Hofer, C., & Kern, H. (2007). Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle & nerve, 35(3), 327–336. https://doi.org/10.1002/mus.20700 (https://pubmed.ncbi.nlm.nih.gov/17117411/). 17. Radhakrishna, M., Steuer, I., Prince, F., Roberts, M., Mongeon, D., Kia, M., Dyck, S., Matte, G., Vaillancourt, M., & Guertin, P. A. (2017). Double-Blind, Placebo-Controlled, Randomized Phase I/IIa Study (Safety and Efficacy) with Buspirone/Levodopa/Carbidopa (SpinalonTM) in Subjects with Complete AIS A or Motor-Complete AIS B Spinal Cord Injury. Current pharmaceutical design, 23(12), 1789–1804. https://doi.org/10.2174/1381612822666161227152200 (https://pubmed.ncbi.nlm.nih.gov/28025945/). 18. Reier, P. J., Howland, D. R., Mitchell, G., Wolpaw, J. R., Hoh, D., & Lane, M. A. (2017). Spinal cord injury: repair, plasticity and rehabilitation. eLS, 1-12 (https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0021403.pub2).
En el episodio de hoy, describimos el modelo de competición interhemisférica, base de algunas técnicas de estimulación cerebral no invasiva y exponemos las críticas y modelos alternativos en la actualidad para explicar esa relación entre hemisferios cerebrales y la relación con la recuperación motora tras un ictus. 1. Di Pino, G., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., Ranieri, F., Tombini, M., Ziemann, U., Rothwell, J. C., & Di Lazzaro, V. (2014). Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nature reviews. Neurology, 10(10), 597–608. https://doi.org/10.1038/nrneurol.2014.162 (https://pubmed.ncbi.nlm.nih.gov/25201238/). 2. Brancaccio, A., Tabarelli, D., & Belardinelli, P. (2022). A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. Journal of personalized medicine, 12(1), 59. https://doi.org/10.3390/jpm12010059 (https://pubmed.ncbi.nlm.nih.gov/35055374/). 3. Lee, H. S., Kim, D. H., Seo, H. G., Im, S., Yoo, Y. J., Kim, N. Y., Lee, J., Kim, D., Park, H. Y., Yoon, M. J., Kim, Y. S., Kim, H., & Chang, W. H. (2024). Efficacy of personalized rTMS to enhance upper limb function in subacute stroke patients: a protocol for a multi-center, randomized controlled study. Frontiers in neurology, 15, 1427142. https://doi.org/10.3389/fneur.2024.1427142 (https://pubmed.ncbi.nlm.nih.gov/39022726/). 4. Xu, J., Branscheidt, M., Schambra, H., Steiner, L., Widmer, M., Diedrichsen, J., Goldsmith, J., Lindquist, M., Kitago, T., Luft, A. R., Krakauer, J. W., Celnik, P. A., & SMARTS Study Group (2019). Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Annals of neurology, 85(4), 502–513. https://doi.org/10.1002/ana.25452 (https://pubmed.ncbi.nlm.nih.gov/30805956/). 5. Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Annals of neurology, 55(3), 400–409. https://doi.org/10.1002/ana.10848 (https://pubmed.ncbi.nlm.nih.gov/14991818/). 6. Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G., & Marsden, C. D. (1992). Interhemispheric inhibition of the human motor cortex. The Journal of physiology, 453, 525–546. https://doi.org/10.1113/jphysiol.1992.sp019243 (https://pubmed.ncbi.nlm.nih.gov/1464843/).
En el episodio de hoy, os hablo de un libro muy interesante publicado este 2024 titulado “Dime qué sientes. Diario de un neurocirujano. Pacientes despiertos, las 5 dimensiones del cerebro y un cambio de paradigma”. Su autor es el Dr. Jesús Martín-Fernández, un neurocirujano español especializado en cirugía despierta y formado con Hughes Duffau en Montpelier (Francia). Este libro divulgativo y con tintes autobiográficos defiende la tesis de que tenemos que comprender el cerebro en forma de red, o red de redes, que tienen nodos o puntos clave y que hay ciertas zonas clásicamente sagradas en neurociencia, como el área de Broca, que no existen como tal y que lo importante sobre todo a la hora de la neurocirugía, es respetar los tractos profundos y largos que llevan las grandes funciones cognitivas y motoras. A través de los casos que expone Jesús en el libro, se puede ver cómo van monitorizando al paciente despierto para preservar las funciones cognitivas con diferentes test y con ayuda de inteligencia artificial, todo mientras están quitando un tumor, que en muchas ocasiones, había sido catalogado como ‘inoperable'. Referencias del episodio: 1. Martín-Fernández, J., Moritz-Gasser, S., Herbet, G., & Duffau, H. (2024). Is intraoperative mapping of music performance mandatory to preserve skills in professional musicians? Awake surgery for lower-grade glioma conducted from a meta-networking perspective. Neurosurgical focus, 56(2), E9. https://doi.org/10.3171/2023.11.FOCUS23702 (https://pubmed.ncbi.nlm.nih.gov/38301246/). 2. Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and language, 162, 60–71. https://doi.org/10.1016/j.bandl.2016.08.004 (https://pubmed.ncbi.nlm.nih.gov/27584714/). 3. Duffau H. (2021). The death of localizationism: The concepts of functional connectome and neuroplasticity deciphered by awake mapping, and their implications for best care of brain-damaged patients. Revue neurologique, 177(9), 1093–1103. https://doi.org/10.1016/j.neurol.2021.07.016 (https://pubmed.ncbi.nlm.nih.gov/34563375/). 4. Duffau H. (2018). The error of Broca: From the traditional localizationist concept to a connectomal anatomy of human brain. Journal of chemical neuroanatomy, 89, 73–81. https://doi.org/10.1016/j.jchemneu.2017.04.003 (https://pubmed.ncbi.nlm.nih.gov/28416459/). 5. Herbet, G., & Duffau, H. (2020). Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiological reviews, 100(3), 1181–1228. https://doi.org/10.1152/physrev.00033.2019 (https://pubmed.ncbi.nlm.nih.gov/32078778/). 6. Martín-Fernández, J. (2024). Dime qué sientes. Diario de un neurocirujano. Pacientes despiertos, las 5 dimensiones del cerebro y un cambio de paradigma. Ed. Paidós. 1ªed (https://www.amazon.es/Dime-qu%C3%A9-sientes-neurocirujano-dimensiones-ebook/dp/B0CVN4HVCV).
En el episodio de hoy, os traigo un tema muy presente en neurorrehabilitación y en las consultas de neurología en relación con la esclerosis múltiple y es nada menos que la fatiga. La fatiga, ese síntoma tan temido desde siempre, tanto por pacientes como por profesionales de la salud, que es uno de los más reportados, con cifras de prevalencia entre 52 y el 90% de los pacientes (Nagaraj et al., 2013). Indagamos en la fisiopatología de la fatiga para entender mejor este fenómeno, también diferentes formas de ver la fatiga con sus distintas nomenclaturas o términos, vamos a ver cómo se suele evaluar en el entorno clínico y en investigación y finalmente daremos algunas pinceladas de tratamiento neuromodulador. Referencias del episodio: 1. Adibi, I., Sanayei, M., Tabibian, F., Ramezani, N., Pourmohammadi, A., & Azimzadeh, K. (2022). Multiple sclerosis-related fatigue lacks a unified definition: A narrative review. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences, 27, 24. https://doi.org/10.4103/jrms.jrms_1401_20 (https://pubmed.ncbi.nlm.nih.gov/35419061/). 2. Ayache, S. S., & Chalah, M. A. (2017). Fatigue in multiple sclerosis - Insights into evaluation and management. Neurophysiologie clinique = Clinical neurophysiology, 47(2), 139–171. https://doi.org/10.1016/j.neucli.2017.02.004 (https://pubmed.ncbi.nlm.nih.gov/28416274/). 3. Ayache, S. S., Serratrice, N., Abi Lahoud, G. N., & Chalah, M. A. (2022). Fatigue in Multiple Sclerosis: A Review of the Exploratory and Therapeutic Potential of Non-Invasive Brain Stimulation. Frontiers in neurology, 13, 813965. https://doi.org/10.3389/fneur.2022.813965 (https://pubmed.ncbi.nlm.nih.gov/35572947/). 4. Bhattarai, J. J., Patel, K. S., Dunn, K. M., Brown, A., Opelt, B., & Hughes, A. J. (2023). Sleep disturbance and fatigue in multiple sclerosis: A systematic review and meta-analysis. Multiple sclerosis journal - experimental, translational and clinical, 9(3), 20552173231194352. https://doi.org/10.1177/20552173231194352 (https://pubmed.ncbi.nlm.nih.gov/37641617/). 5. Braley, T. J., & Chervin, R. D. (2010). Fatigue in multiple sclerosis: mechanisms, evaluation, and treatment. Sleep, 33(8), 1061–1067. https://doi.org/10.1093/sleep/33.8.1061 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910465/). 6. Capone, F., Motolese, F., Falato, E., Rossi, M., & Di Lazzaro, V. (2020). The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue. Frontiers in neurology, 11, 251. https://doi.org/10.3389/fneur.2020.00251 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212459/). 7. Chalah, M. A., Riachi, N., Ahdab, R., Créange, A., Lefaucheur, J. P., & Ayache, S. S. (2015). Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation. Frontiers in cellular neuroscience, 9, 460. https://doi.org/10.3389/fncel.2015.00460 (https://pubmed.ncbi.nlm.nih.gov/26648845/). 8. Chalah, M. A., Kauv, P., Créange, A., Hodel, J., Lefaucheur, J. P., & Ayache, S. S. (2019). Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Multiple sclerosis and related disorders, 28, 145–152. https://doi.org/10.1016/j.msard.2018.12.029 (https://pubmed.ncbi.nlm.nih.gov/30594815/). 9. Dittner, A. J., Wessely, S. C., & Brown, R. G. (2004). The assessment of fatigue: a practical guide for clinicians and researchers. Journal of psychosomatic research, 56(2), 157–170. https://doi.org/10.1016/S0022-3999(03)00371-4 (https://pubmed.ncbi.nlm.nih.gov/15016573/). 10. Dobryakova, E., Genova, H. M., DeLuca, J., & Wylie, G. R. (2015). The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Frontiers in neurology, 6, 52. https://doi.org/10.3389/fneur.2015.00052 (https://pubmed.ncbi.nlm.nih.gov/25814977/). 11. Freal, J. E., Kraft, G. H., & Coryell, J. K. (1984). Symptomatic fatigue in multiple sclerosis. Archives of physical medicine and rehabilitation, 65(3), 135–138 (https://pubmed.ncbi.nlm.nih.gov/6703889/). 12. Gaede, G., Tiede, M., Lorenz, I., Brandt, A. U., Pfueller, C., Dörr, J., Bellmann-Strobl, J., Piper, S. K., Roth, Y., Zangen, A., Schippling, S., & Paul, F. (2017). Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurology(R) neuroimmunology & neuroinflammation, 5(1), e423. https://doi.org/10.1212/NXI.0000000000000423 (https://pubmed.ncbi.nlm.nih.gov/29259998/). 13. Garis, G., Haupts, M., Duning, T., & Hildebrandt, H. (2023). Heart rate variability and fatigue in MS: two parallel pathways representing disseminated inflammatory processes?. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 44(1), 83–98. https://doi.org/10.1007/s10072-022-06385-1 (https://pubmed.ncbi.nlm.nih.gov/36125573/). 14. Hanken, K., Eling, P., & Hildebrandt, H. (2014). The representation of inflammatory signals in the brain - a model for subjective fatigue in multiple sclerosis. Frontiers in neurology, 5, 264. https://doi.org/10.3389/fneur.2014.00264 (https://pubmed.ncbi.nlm.nih.gov/25566171/). 15. Iriarte, J., Subirá, M. L., & Castro, P. (2000). Modalities of fatigue in multiple sclerosis: correlation with clinical and biological factors. Multiple sclerosis (Houndmills, Basingstoke, England), 6(2), 124–130. https://doi.org/10.1177/135245850000600212 (https://pubmed.ncbi.nlm.nih.gov/10773859/). 16. Jaeger, S., Paul, F., Scheel, M., Brandt, A., Heine, J., Pach, D., Witt, C. M., Bellmann-Strobl, J., & Finke, C. (2019). Multiple sclerosis-related fatigue: Altered resting-state functional connectivity of the ventral striatum and dorsolateral prefrontal cortex. Multiple sclerosis (Houndmills, Basingstoke, England), 25(4), 554–564. https://doi.org/10.1177/1352458518758911 (https://pubmed.ncbi.nlm.nih.gov/29464981/). 17. Langeskov-Christensen, M., Heine, M., Kwakkel, G., & Dalgas, U. (2015). Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis. Sports medicine (Auckland, N.Z.), 45(6), 905–923. https://doi.org/10.1007/s40279-015-0307-x (https://pubmed.ncbi.nlm.nih.gov/25739555/). 18. Linnhoff, S., Fiene, M., Heinze, H. J., & Zaehle, T. (2019). Cognitive Fatigue in Multiple Sclerosis: An Objective Approach to Diagnosis and Treatment by Transcranial Electrical Stimulation. Brain sciences, 9(5), 100. https://doi.org/10.3390/brainsci9050100 (https://pubmed.ncbi.nlm.nih.gov/31052593/). 19. Liu, M., Fan, S., Xu, Y., & Cui, L. (2019). Non-invasive brain stimulation for fatigue in multiple sclerosis patients: A systematic review and meta-analysis. Multiple sclerosis and related disorders, 36, 101375. https://doi.org/10.1016/j.msard.2019.08.017 (https://pubmed.ncbi.nlm.nih.gov/31491597/). 20. Loy, B. D., Taylor, R. L., Fling, B. W., & Horak, F. B. (2017). Relationship between perceived fatigue and performance fatigability in people with multiple sclerosis: A systematic review and meta-analysis. Journal of psychosomatic research, 100, 1–7. https://doi.org/10.1016/j.jpsychores.2017.06.017 (https://pubmed.ncbi.nlm.nih.gov/28789787/). 21. Mills, R. J., & Young, C. A. (2008). A medical definition of fatigue in multiple sclerosis. QJM : monthly journal of the Association of Physicians, 101(1), 49–60. https://doi.org/10.1093/qjmed/hcm122 (https://pubmed.ncbi.nlm.nih.gov/18194977/). 22. Nagaraj, K., Taly, A. B., Gupta, A., Prasad, C., & Christopher, R. (2013). Prevalence of fatigue in patients with multiple sclerosis and its effect on the quality of life. Journal of neurosciences in rural practice, 4(3), 278–282. https://doi.org/10.4103/0976-3147.118774 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821412/). 23. Patejdl, R., Penner, I. K., Noack, T. K., & Zettl, U. K. (2016). Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration. Autoimmunity reviews, 15(3), 210–220. https://doi.org/10.1016/j.autrev.2015.11.005 (https://pubmed.ncbi.nlm.nih.gov/26589194/). 24. Patejdl, R., & Zettl, U. K. (2022). The pathophysiology of motor fatigue and fatigability in multiple sclerosis. Frontiers in neurology, 13, 891415. https://doi.org/10.3389/fneur.2022.891415 (https://pubmed.ncbi.nlm.nih.gov/35968278/). 25. Torres-Costoso, A., Martínez-Vizcaíno, V., Reina-Gutiérrez, S., Álvarez-Bueno, C., Guzmán-Pavón, M. J., Pozuelo-Carrascosa, D. P., Fernández-Rodríguez, R., Sanchez-López, M., & Cavero-Redondo, I. (2022). Effect of Exercise on Fatigue in Multiple Sclerosis: A Network Meta-analysis Comparing Different Types of Exercise. Archives of physical medicine and rehabilitation, 103(5), 970–987.e18. https://doi.org/10.1016/j.apmr.2021.08.008 (https://pubmed.ncbi.nlm.nih.gov/34509464/). 26. Yang, T. T., Wang, L., Deng, X. Y., & Yu, G. (2017). Pharmacological treatments for fatigue in patients with multiple sclerosis: A systematic review and meta-analysis. Journal of the neurological sciences, 380, 256–261. https://doi.org/10.1016/j.jns.2017.07.042 (https://pubmed.ncbi.nlm.nih.gov/28870581/). 27. Zimek, D., Miklusova, M., & Mares, J. (2023). Overview of the Current Pathophysiology of Fatigue in Multiple Sclerosis, Its Diagnosis and Treatment Options - Review Article. Neuropsychiatric disease and treatment, 19, 2485–2497. https://doi.org/10.2147/NDT.S429862 (https://pubmed.ncbi.nlm.nih.gov/38029042/). 28. Zhou, X., Li, K., Chen, S., Zhou, W., Li, J., Huang, Q., Xu, T., Gao, Z., Wang, D., Zhao, S., & Dong, H. (2022). Clinical application of transcranial magnetic stimulation in multiple sclerosis. Frontiers in immunology, 13, 902658. https://doi.org/10.3389/fimmu.2022.902658 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483183/).
En este episodio, realizo una síntesis de conocimiento y experiencia sobre el cerebelo y la ataxia, desde la anatomía y fisiología, describiendo la ataxia, hasta la evaluación y el tratamiento neurorrehabilitador. El objetivo es hilar el conocimiento anatómico y neurofisiológico con el aprendizaje motor y la plasticidad del cerebelo y tratar de establecer un marco de evaluación y tratamiento de los pacientes atáxicos. Referencias bibliográficas: 1. Stephan, M. A., et al (2011). Effect of long-term climbing training on cerebellar ataxia: a case series. Rehabilitation research and practice, 2011, 525879. (https://pubmed.ncbi.nlm.nih.gov/22191034/). 2. Aprigliano, F., et al (2019). Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia. Journal of neuroengineering and rehabilitation, 16(1), 50. (https://pubmed.ncbi.nlm.nih.gov/30975168/9. 3. Benussi, A.,et al (2017). Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain stimulation, 10(2), 242–250. (https://pubmed.ncbi.nlm.nih.gov/27838276/). 4. Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: nodes in an integrated network. Nature reviews. Neuroscience, 19(6), 338–350. (https://pubmed.ncbi.nlm.nih.gov/29643480/). 5. Cabaraux, P., et al (2023). Consensus Paper: Ataxic Gait. Cerebellum (London, England), 22(3), 394–430. (https://pubmed.ncbi.nlm.nih.gov/35414041/). 6. D'Angelo E. (2014). The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in brain research, 210, 31–58. (https://pubmed.ncbi.nlm.nih.gov/24916288/). 7. D'Angelo E. (2018). Physiology of the cerebellum. Handbook of clinical neurology, 154, 85–108. (https://pubmed.ncbi.nlm.nih.gov/29903454/). 8. França, C., et al (2018). Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain stimulation, 11(2), 249–260. (https://pubmed.ncbi.nlm.nih.gov/29191439/). 9. Gong, C., et al (2023). Efficacy and safety of noninvasive brain stimulation for patients with cerebellar ataxia: a systematic review and meta-analysis of randomized controlled trials. Journal of neurology, 270(10), 4782–4799. (https://pubmed.ncbi.nlm.nih.gov/37460852/). 10. Gorgas, A. M., et al (2015). Gait changes with balance-based torso-weighting in people with multiple sclerosis. (https://pubmed.ncbi.nlm.nih.gov/24930996/). 11. Ilg, W., et al (2023). Quantitative Gait and Balance Outcomes for Ataxia Trials. Cerebellum 10.1007/s12311-023-01625-2. Advance online publication. (https://pubmed.ncbi.nlm.nih.gov/37955812/). 12. Ilg, W., et al (2009). Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology, 73(22), 1823–1830. (https://pubmed.ncbi.nlm.nih.gov/19864636/). 13. Jacobson, G. A. et al (2008). A model of the olivo-cerebellar system as a temporal pattern generator. Trends in neurosciences, 31(12), 617–625. (https://pubmed.ncbi.nlm.nih.gov/18952303/). 14. Kelly, G., & Shanley, J. (2016). Rehabilitation of ataxic gait following cerebellar lesions: Applying theory to practice. Physiotherapy theory and practice, 32(6), 430–437. (https://pubmed.ncbi.nlm.nih.gov/27458875/). 15. Marsden J. F. (2018). Cerebellar ataxia. Handbook of clinical neurology, 159, 261–281. (https://pubmed.ncbi.nlm.nih.gov/30482319/). 16. Morton, S. M., & Bastian, A. J. (2003). Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. Journal of neurophysiology, 89(4), 1844–1856. (https://pubmed.ncbi.nlm.nih.gov/12612041/). 17. Ruggieri, S., et al (2021). A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. Journal of neurology, 268(12), 4698–4706. (https://pubmed.ncbi.nlm.nih.gov/33942160/). 18. Serrao, M., et al (2017). Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients. European journal of physical and rehabilitation medicine, 53(5), 735–743. (https://pubmed.ncbi.nlm.nih.gov/28627859/). 19. Shah, V. V., et al (2021). Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors. Movement disorders : official journal of the Movement Disorder Society, 36(12), 2922–2931. (https://pubmed.ncbi.nlm.nih.gov/34424581/). 20. Wang, Y., et al (2023). Effects of transcranial magnetic stimulation on cerebellar ataxia: A systematic review and meta-analysis. Frontiers in neurology, 14, 1049813. (https://pubmed.ncbi.nlm.nih.gov/36779066/). 21. Wright, R. L., et al (2016). Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke. Frontiers in neurology, 7, 84. (https://pubmed.ncbi.nlm.nih.gov/27313563/).
En este episodio, actualizamos la neuroanatomía funcional del núcleo rojo a raíz del último trabajo pre-print de Krimmel (2024): The brainstem's red nucleus was evolutionarily upgraded to support goal-directed action. Aprovechamos para traer de vuelta la crítica al tracto rubroespinal que hicimos en el #1 de Hemispherics y argumentamos el sentido evolutivo y funcional del núcleo rojo y sus conexiones en el ser humano adulto. ¿Es el núcleo rojo motor? ¿O tiene más función como nodo en una red más amplia de control ejecutivo de la acción? ¡Lo vemos en este episodio! Referencias del episodio: 1. Habas, C., & Cabanis, E. A. (2006). Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology, 48(10), 755–762. https://doi.org/10.1007/s00234-006-0117-9 (https://pubmed.ncbi.nlm.nih.gov/16937147/). 2. Basile, G. A., Quartu, M., Bertino, S., Serra, M. P., Boi, M., Bramanti, A., Anastasi, G. P., Milardi, D., & Cacciola, A. (2021). Red nucleus structure and function: from anatomy to clinical neurosciences. Brain structure & function, 226(1), 69–91. https://doi.org/10.1007/s00429-020-02171-x (https://pubmed.ncbi.nlm.nih.gov/33180142/). 3. Sung, Y. W., Kiyama, S., Choi, U. S., & Ogawa, S. (2022). Involvement of the intrinsic functional network of the red nucleus in complex behavioral processing. Cerebral cortex communications, 3(3), tgac037. https://doi.org/10.1093/texcom/tgac037 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491841/). 4. Krimmel, S.R., et al. (2024). The brainstem's red nucleus was evolutionarily upgraded to support goal-directed action. bioRxiv. Preprint. https://doi.org/10.1101/2023.12.30.573730 (https://www.biorxiv.org/content/10.1101/2023.12.30.573730v1). 5. Gordon, E. M., Chauvin, R. J., Van, A. N., Rajesh, A., Nielsen, A., Newbold, D. J., Lynch, C. J., Seider, N. A., Krimmel, S. R., Scheidter, K. M., Monk, J., Miller, R. L., Metoki, A., Montez, D. F., Zheng, A., Elbau, I., Madison, T., Nishino, T., Myers, M. J., Kaplan, S., … Dosenbach, N. U. F. (2023). A somato-cognitive action network alternates with effector regions in motor cortex. Nature, 617(7960), 351–359. https://doi.org/10.1038/s41586-023-05964-2 (https://pubmed.ncbi.nlm.nih.gov/37076628/).
En este episodio, resumo un artículo reciente (2023) de John Krakauer y Tamar Makin sobre la reorganización cortical. Es un artículo crítica a este concepto tan famoso y vanagloriado en neurociencia y se aportan datos que apoyan esta crítica mencionando estudios clásicos en animales y humanos. Estudios sobre ceguera congénita, experimentos en gatos y hurones, amputados y reorganización tras un ictus. Krakauer propone su definición y criterios de reorganización cortical y en base a eso refuta los estudios que afirman la reorganización. Referencias del episodio: 1. Makin, T. R., & Krakauer, J. W. (2023). Against cortical reorganisation. eLife, 12, e84716. https://doi.org/10.7554/eLife.84716 (https://pubmed.ncbi.nlm.nih.gov/37986628/). 2. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science (New York, N.Y.), 279(5357), 1714–1718. https://doi.org/10.1126/science.279.5357.1714 (https://pubmed.ncbi.nlm.nih.gov/9497289/). 3. Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain : a journal of neurology, 116 ( Pt 1), 39–52. https://doi.org/10.1093/brain/116.1.39 (https://pubmed.ncbi.nlm.nih.gov/8453464/). 4. Nudo R. J. (2007). Postinfarct cortical plasticity and behavioral recovery. Stroke, 38(2 Suppl), 840–845. https://doi.org/10.1161/01.STR.0000247943.12887.d2 (https://pubmed.ncbi.nlm.nih.gov/17261749/). 5. Ramachandran, V. S., Stewart, M., & Rogers-Ramachandran, D. C. (1992). Perceptual correlates of massive cortical reorganization. Neuroreport, 3(7), 583–586. https://doi.org/10.1097/00001756-199207000-00009 (https://pubmed.ncbi.nlm.nih.gov/1421112/). 6. Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of neurophysiology, 26, 1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003 (https://pubmed.ncbi.nlm.nih.gov/14084161/).
Este es un episodio muy especial, en el que resumo la biografía de Cajal y sus principales descubrimientos en neurociencia, además de hablar de su contexto y principales discípulos. Es un episodio homenaje a una figura muy poco reconocida en España para la relevancia que tiene en la neurociencia moderna. Cajal ganó el Premio Nobel en Fisiología y Medicina en 1906, compartido con Camillo Golgi, en reconocimiento a su “teoría neuronal” y a su investigación sobre histología del sistema nervioso del humano y los vertebrados. Obtuvo innumerables galardones, como la Medalla Helmholtz en 1905, Premio Nacional de Moscú en 1900 y Doctor Honoris Causa en muchas universidades. Referencias del episodio: 1. Cánovas Sánchez F. (2021). Cajal. Alianza Editorial. 2. Swanson W. Larry & Newman Eric (2017). The Beautiful Brain: The Drawings of Santiago Ramon y Cajal. Abrams. 3.de Castro F. (2019). Cajal and the Spanish Neurological School: Neuroscience Would Have Been a Different Story Without Them. Frontiers in cellular neuroscience, 13, 187. https://doi.org/10.3389/fncel.2019.00187 (https://pubmed.ncbi.nlm.nih.gov/31178695/). 4. Alonso Peña Jose Ramón & De Carlos Segovia Juan Andrés (2018). Cajal: un grito por la ciencia. Next Door Publishers S.L.
En este episodio, hablo sobre vibración focal en neurorrehabilitación del adulto, apoyándome posteriormente en la charla con el fisioterapeuta Serafín Ortigueira, quien tiene amplia experiencia con esta técnica. Describo brevemente la vibración focal, sus mecanismos de acción y algunas de las aplicaciones clínicas actuales, sobre todo en pacientes con ictus y lesión medular. La vibración focal es una técnica sencilla de aplicar, pero tiene mecanismos que deben ser comprendidos para aplicarla con toda su riqueza y posibilidades que brinda, ya sea para el tratamiento de la espasticidad, mejora del control motor o o incluso aspectos coaduyaventes a nivel visceral o respiratorio. Referencias del episodio: 1. Shinohara M. (2005). Effects of prolonged vibration on motor unit activity and motor performance. Medicine and science in sports and exercise, 37(12), 2120–2125. https://doi.org/10.1249/01.mss.0000178106.68569.7e (https://pubmed.ncbi.nlm.nih.gov/16331139/). 2. Khalifeloo, M., Naghdi, S., Ansari, N. N., Akbari, M., Jalaie, S., Jannat, D., & Hasson, S. (2018). A study on the immediate effects of plantar vibration on balance dysfunction in patients with stroke. Journal of exercise rehabilitation, 14(2), 259–266. https://doi.org/10.12965/jer.1836044.022 (https://pubmed.ncbi.nlm.nih.gov/29740561/). 3. Karimi-AhmadAbadi, A., Naghdi, S., Ansari, N. N., Fakhari, Z., & Khalifeloo, M. (2018). A clinical single blind study to investigate the immediate effects of plantar vibration on balance in patients after stroke. Journal of bodywork and movement therapies, 22(2), 242–246. https://doi.org/10.1016/j.jbmt.2017.04.013 (https://pubmed.ncbi.nlm.nih.gov/29861214/). 4. Celletti, C., Suppa, A., Bianchini, E., Lakin, S., Toscano, M., La Torre, G., Di Piero, V., & Camerota, F. (2020). Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 41(1), 11–24. https://doi.org/10.1007/s10072-019-04047-3 (https://pubmed.ncbi.nlm.nih.gov/31468237/). 5. Paoloni, M., Mangone, M., Scettri, P., Procaccianti, R., Cometa, A., & Santilli, V. (2010). Segmental muscle vibration improves walking in chronic stroke patients with foot drop: a randomized controlled trial. Neurorehabilitation and neural repair, 24(3), 254–262. https://doi.org/10.1177/1545968309349940 (https://pubmed.ncbi.nlm.nih.gov/19855076/). 6. Moggio, L., de Sire, A., Marotta, N., Demeco, A., & Ammendolia, A. (2022). Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disability and rehabilitation, 44(20), 5741–5749. https://doi.org/10.1080/09638288.2021.1946175 (https://pubmed.ncbi.nlm.nih.gov/34225557/). 7. Rosenkranz, K., & Rothwell, J. C. (2003). Differential effect of muscle vibration on intracortical inhibitory circuits in humans. The Journal of physiology, 551(Pt 2), 649–660. https://doi.org/10.1113/jphysiol.2003.043752 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343209/). 8. Binder, C., Kaya, A. E., & Liepert, J. (2009). Vibration prolongs the cortical silent period in an antagonistic muscle. Muscle & nerve, 39(6), 776–780. https://doi.org/10.1002/mus.21240 (https://pubmed.ncbi.nlm.nih.gov/19334048/). 9. Bertasi, V., Bertolasi, L., Frasson, E., & Priori, A. (2000). The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation. Experimental brain research, 132(3), 384–389. https://doi.org/10.1007/s002210000352 (https://pubmed.ncbi.nlm.nih.gov/10883387/). 10. Mortaza, N., Abou-Setta, A. M., Zarychanski, R., Loewen, H., Rabbani, R., & Glazebrook, C. M. (2019). Upper limb tendon/muscle vibration in persons with subacute and chronic stroke: a systematic review and meta-analysis. European journal of physical and rehabilitation medicine, 55(5), 558–569. https://doi.org/10.23736/S1973-9087.19.05605-3 (https://pubmed.ncbi.nlm.nih.gov/30868835/). 11. Avvantaggiato, C., Casale, R., Cinone, N., Facciorusso, S., Turitto, A., Stuppiello, L., Picelli, A., Ranieri, M., Intiso, D., Fiore, P., Ciritella, C., & Santamato, A. (2021). Localized muscle vibration in the treatment of motor impairment and spasticity in post-stroke patients: a systematic review. European journal of physical and rehabilitation medicine, 57(1), 44–60. https://doi.org/10.23736/S1973-9087.20.06390-X (https://pubmed.ncbi.nlm.nih.gov/33111513/). 12. Murillo, N., Valls-Sole, J., Vidal, J., Opisso, E., Medina, J., & Kumru, H. (2014). Focal vibration in neurorehabilitation. European journal of physical and rehabilitation medicine, 50(2), 231–242 (https://pubmed.ncbi.nlm.nih.gov/24842220/). 13. Li, W., Luo, F., Xu, Q., Liu, A., Mo, L., Li, C., & Ji, L. (2022). Brain oscillatory activity correlates with the relief of post-stroke spasticity following focal vibration. Journal of integrative neuroscience, 21(3), 96. https://doi.org/10.31083/j.jin2103096 (https://pubmed.ncbi.nlm.nih.gov/35633177/). 14. Murillo, N., Kumru, H., Vidal-Samso, J., Benito, J., Medina, J., Navarro, X., & Valls-Sole, J. (2011). Decrease of spasticity with muscle vibration in patients with spinal cord injury. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 122(6), 1183–1189. https://doi.org/10.1016/j.clinph.2010.11.012 (https://pubmed.ncbi.nlm.nih.gov/21172739/). 15. Murillo, N. (2011). Neuromodulación de la espasticidad en pacientes con lesión medular mediante vibración y estimulación magnética transcraneal (http://hdl.handle.net/10803/3840). 16. Wang, H., Chandrashekhar, R., Rippetoe, J., & Ghazi, M. (2020). Focal Muscle Vibration for Stroke Rehabilitation: A Review of Vibration Parameters and Protocols. Applied Sciences, 10(22), 8270. MDPI AG. Retrieved from http://dx.doi.org/10.3390/app10228270 (https://www.mdpi.com/2076-3417/10/22/8270). 17. Filippi, G. M., Rodio, A., Fattorini, L., Faralli, M., Ricci, G., & Pettorossi, V. E. (2023). Plastic changes induced by muscle focal vibration: A possible mechanism for long-term motor improvements. Frontiers in neuroscience, 17, 1112232. https://doi.org/10.3389/fnins.2023.1112232 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992721/). 18. Hagbarth, K. E., & Eklund, G. (1969). The muscle vibrator--a useful tool in neurological therapeutic work. Scandinavian journal of rehabilitation medicine, 1(1), 26–34 (https://pubmed.ncbi.nlm.nih.gov/5406721/). 19. Zapatillas Nushu (https://magnes.ch/solutions/nushu/). 20. Sadeghi, M., & Sawatzky, B. (2014). Effects of vibration on spasticity in individuals with spinal cord injury: a scoping systematic review. American journal of physical medicine & rehabilitation, 93(11), 995–1007. https://doi.org/10.1097/PHM.0000000000000098 (https://pubmed.ncbi.nlm.nih.gov/24743464/). 21. DeForest, B. A., Bohorquez, J., & Perez, M. A. (2020). Vibration attenuates spasm-like activity in humans with spinal cord injury. The Journal of physiology, 598(13), 2703–2717. https://doi.org/10.1113/JP279478 (https://pubmed.ncbi.nlm.nih.gov/32298483/). 22. Calabrò, R. S., Naro, A., Russo, M., Milardi, D., Leo, A., Filoni, S., Trinchera, A., & Bramanti, P. (2017). Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial. PloS one, 12(10), e0185936. https://doi.org/10.1371/journal.pone.0185936 (https://pubmed.ncbi.nlm.nih.gov/28973024/). 23. Chen, Y. L., Jiang, L. J., Cheng, Y. Y., Chen, C., Hu, J., Zhang, A. J., Hua, Y., & Bai, Y. L. (2023). Focal vibration of the plantarflexor and dorsiflexor muscles improves poststroke spasticity: a randomized single-blind controlled trial. Annals of physical and rehabilitation medicine, 66(3), 101670. https://doi.org/10.1016/j.rehab.2022.101670 (https://pubmed.ncbi.nlm.nih.gov/35940478/).
En el episodio de hoy, tenemos delante un tema muy desconocido en neurorrehabilitación aunque muy relevante como es el sistema nervioso autónomo. Todos los profesionales de la salud y especialmente los que nos dedicamos a los pacientes neurológicos, tenemos una cierta base teórica sobre el sistema nervioso autónomo, si bien peca mucho de lo periférico, cuando existe una representación central (la red autónoma central) que ejerce control sobre el sistema autónomo y tiene implicaciones en patología neurológica, incluso en el tratamiento. Hablamos de variabilidad de frecuencia cardíaca como variable autónoma fundamental y de algunos modelos vagales cardíacos que explican la conexión cerebro-corazón. Referencias del episodio: 1. Sposato, L. A., Hilz, M. J., Aspberg, S., Murthy, S. B., Bahit, M. C., Hsieh, C. Y., Sheppard, M. N., Scheitz, J. F., & World Stroke Organisation Brain & Heart Task Force (2020). Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(23), 2768–2785. https://doi.org/10.1016/j.jacc.2020.10.009 (https://pubmed.ncbi.nlm.nih.gov/33272372/). 2. Porges S. W. (2009). The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic journal of medicine, 76 Suppl 2(Suppl 2), S86–S90. https://doi.org/10.3949/ccjm.76.s2.17 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108032/). 3. Sletten, D. M., Suarez, G. A., Low, P. A., Mandrekar, J., & Singer, W. (2012). COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clinic proceedings, 87(12), 1196–1201. https://doi.org/10.1016/j.mayocp.2012.10.013 (https://pubmed.ncbi.nlm.nih.gov/23218087/). 4. Nikolin, S., Boonstra, T. W., Loo, C. K., & Martin, D. (2017). Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PloS one, 12(8), e0181833. https://doi.org/10.1371/journal.pone.0181833 (https://pubmed.ncbi.nlm.nih.gov/28771509/). 5. Vistisen, S. T., Jensen, J., Fleischer, J., & Nielsen, J. F. (2015). Association between the sensory-motor nervous system and the autonomic nervous system in neurorehabilitation patients with severe acquired brain injury. Brain injury, 29(3), 374–379. https://doi.org/10.3109/02699052.2014.969312 (https://pubmed.ncbi.nlm.nih.gov/25356639/). 6. Vistisen, S. T., Hansen, T. K., Jensen, J., Nielsen, J. F., & Fleischer, J. (2014). Heart rate variability in neurorehabilitation patients with severe acquired brain injury. Brain injury, 28(2), 196–202. https://doi.org/10.3109/02699052.2013.860477 (https://pubmed.ncbi.nlm.nih.gov/24295072/). 7. Scheitz, J. F., Sposato, L. A., Schulz-Menger, J., Nolte, C. H., Backs, J., & Endres, M. (2022). Stroke-Heart Syndrome: Recent Advances and Challenges. Journal of the American Heart Association, 11(17), e026528. https://doi.org/10.1161/JAHA.122.026528 (https://pubmed.ncbi.nlm.nih.gov/36056731/). 8. Lee, Y., Walsh, R. J., Fong, M. W. M., Sykora, M., Doering, M. M., & Wong, A. W. K. (2021). Heart rate variability as a biomarker of functional outcomes in persons with acquired brain injury: Systematic review and meta-analysis. Neuroscience and biobehavioral reviews, 131, 737–754. https://doi.org/10.1016/j.neubiorev.2021.10.004 (https://pubmed.ncbi.nlm.nih.gov/34626686/). 9. Arakaki, X., Arechavala, R. J., Choy, E. H., Bautista, J., Bliss, B., Molloy, C., Wu, D. A., Shimojo, S., Jiang, Y., Kleinman, M. T., & Kloner, R. A. (2023). The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Frontiers in neuroscience, 17, 1055445. https://doi.org/10.3389/fnins.2023.1055445 (https://pubmed.ncbi.nlm.nih.gov/36937689/). 10. Agorastos, A., Mansueto, A. C., Hager, T., Pappi, E., Gardikioti, A., & Stiedl, O. (2023). Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines, 11(6), 1591. https://doi.org/10.3390/biomedicines11061591 (https://pubmed.ncbi.nlm.nih.gov/37371686/). 11. Buitrago-Ricaurte, N., Cintra, F., & Silva, G. S. (2020). Heart rate variability as an autonomic biomarker in ischemic stroke. Arquivos de neuro-psiquiatria, 78(11), 724–732. https://doi.org/10.1590/0004-282X20200087 (https://pubmed.ncbi.nlm.nih.gov/33331466/). 12. Dawson, J., Liu, C. Y., Francisco, G. E., Cramer, S. C., Wolf, S. L., Dixit, A., Alexander, J., Ali, R., Brown, B. L., Feng, W., DeMark, L., Hochberg, L. R., Kautz, S. A., Majid, A., O'Dell, M. W., Pierce, D., Prudente, C. N., Redgrave, J., Turner, D. L., Engineer, N. D., … Kimberley, T. J. (2021). Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet (London, England), 397(10284), 1545–1553. https://doi.org/10.1016/S0140-6736(21)00475-X (https://pubmed.ncbi.nlm.nih.gov/33894832/). 13. Lee, H., Lee, J. H., Hwang, M. H., & Kang, N. (2023). Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis. Journal of affective disorders, 339, 443–453. https://doi.org/10.1016/j.jad.2023.07.039 (https://pubmed.ncbi.nlm.nih.gov/37459970/). 14. Mankoo, A., Roy, S., Davies, A., Panerai, R. B., Robinson, T. G., Brassard, P., Beishon, L. C., & Minhas, J. S. (2023). The role of the autonomic nervous system in cerebral blood flow regulation in stroke: A review. Autonomic neuroscience : basic & clinical, 246, 103082. https://doi.org/10.1016/j.autneu.2023.103082 (https://pubmed.ncbi.nlm.nih.gov/36870192/). 15. Matusik, P. S., Zhong, C., Matusik, P. T., Alomar, O., & Stein, P. K. (2023). Neuroimaging Studies of the Neural Correlates of Heart Rate Variability: A Systematic Review. Journal of clinical medicine, 12(3), 1016. https://doi.org/10.3390/jcm12031016 (https://pubmed.ncbi.nlm.nih.gov/36769662/). 16. Ross, S. N., & Ware, K. (2013). Hypothesizing the body's genius to trigger and self-organize its healing: 25 years using a standardized neurophysics therapy. Frontiers in physiology, 4, 334. https://doi.org/10.3389/fphys.2013.00334 (https://pubmed.ncbi.nlm.nih.gov/24312056/). 17. Orgianelis, I., Merkouris, E., Kitmeridou, S., Tsiptsios, D., Karatzetzou, S., Sousanidou, A., Gkantzios, A., Christidi, F., Polatidou, E., Beliani, A., Tsiakiri, A., Kokkotis, C., Iliopoulos, S., Anagnostopoulos, K., Aggelousis, N., & Vadikolias, K. (2023). Exploring the Utility of Autonomic Nervous System Evaluation for Stroke Prognosis. Neurology international, 15(2), 661–696. https://doi.org/10.3390/neurolint15020042 (https://pubmed.ncbi.nlm.nih.gov/37218981/). 18. Riganello, F., Larroque, S. K., Di Perri, C., Prada, V., Sannita, W. G., & Laureys, S. (2019). Measures of CNS-Autonomic Interaction and Responsiveness in Disorder of Consciousness. Frontiers in neuroscience, 13, 530. https://doi.org/10.3389/fnins.2019.00530 (https://pubmed.ncbi.nlm.nih.gov/31293365/). 19. Ruffle, J. K., Hyare, H., Howard, M. A., Farmer, A. D., Apkarian, A. V., Williams, S. C. R., Aziz, Q., & Nachev, P. (2021). The autonomic brain: Multi-dimensional generative hierarchical modelling of the autonomic connectome. Cortex; a journal devoted to the study of the nervous system and behavior, 143, 164–179. https://doi.org/10.1016/j.cortex.2021.06.012 (https://pubmed.ncbi.nlm.nih.gov/34438298/). 20. Siepmann, M., Weidner, K., Petrowski, K., & Siepmann, T. (2022). Heart Rate Variability: A Measure of Cardiovascular Health and Possible Therapeutic Target in Dysautonomic Mental and Neurological Disorders. Applied psychophysiology and biofeedback, 47(4), 273–287. https://doi.org/10.1007/s10484-022-09572-0 (https://pubmed.ncbi.nlm.nih.gov/36417141/).
En el episodio de hoy, hablo de un tema que se escapa un poco de la temática habitual del podcast. Este episodio es una “curiosidad de la neurociencia”; una indagación en un tema que desde hace muchos años me ha llamado la atención. Se trata de los savants. Los savants son personas que bien porque han nacido con problemas en el desarrollo o por una lesión cerebral adquirida, son capaces de tener habilidades extraordinarias. Parece ser que la mitad de los savant son autistas, uno de cada diez autistas es savant y uno de cada mil individuos que tienen dañado el cerebro o padecen retraso mental. Son personas que, sin necesidad de entrenamiento, aprendizaje o interés previo, tienen unas habilidades increíbles, sobre todo en el campo de la música, el cálculo o el dibujo. Referencias del episodio: 1. Treffert D. A. (2014). Savant syndrome: realities, myths and misconceptions. Journal of autism and developmental disorders, 44(3), 564–571. (https://pubmed.ncbi.nlm.nih.gov/23918440/). 2. Treffert DA. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos Trans R Soc Lond B Biol Sci. 2009 May 27;364(1522):1351-7 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677584/). 3. Barr MW. Some notes on echolalia, with the report of an extraordinary case. J Nerv Ment Dis 1898;25:20-30 (https://zenodo.org/record/1734113). 4. Mishkin M, Malamut B, Bachevalier J. Memories and habits: two neural systems. In: Lynch G, McGaugh JL, Weinberger NM, editors. Neurobiology of learning and memory. New York: Guilford Press;1984. p.65-77. 5. Kapur N. (1996). Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain : a journal of neurology, 119 ( Pt 5), 1775–1790.https://doi.org/10.1093/brain/119.5.1775 (https://pubmed.ncbi.nlm.nih.gov/9236635/). 6. Boso, M., Emanuele, E., Prestori, F., Politi, P., Barale, F., & D'Angelo, E. (2010). Autism and genius: is there a link? The involvement of central brain loops and hypotheses for functional testing. Functional neurology, 25(1), 15–20 (https://pubmed.ncbi.nlm.nih.gov/20630121/). 7. Snyder, A. W., Mulcahy, E., Taylor, J. L., Mitchell, D. J., Sachdev, P., & Gandevia, S. C. (2003). Savant-like skills exposed in normal people by suppressing the left fronto-temporal lobe. Journal of integrative neuroscience, 2(2), 149–158. https://doi.org/10.1142/s0219635203000287 (https://pubmed.ncbi.nlm.nih.gov/15011267/). 8. Snyder, A. W., & Thomas, M. (1997). Autistic artists give clues to cognition. Perception, 26(1), 93–96. https://doi.org/10.1068/p260093 (https://pubmed.ncbi.nlm.nih.gov/9196693/). 9. Humphrey, N. (1998). Cave Art, Autism, and the Evolution of the Human Mind. Cambridge Archaeological Journal, 8(2), 165-191. doi:10.1017/S0959774300001827 (https://www.cambridge.org/core/journals/cambridge-archaeological-journal/article/abs/cave-art-autism-and-the-evolution-of-the-human-mind/7E969D1ACAB536BD809348B9B4FE5C4D#). 10. Spikins, P., Scott, C. & Wright, B. (2018). How Do We Explain ‛Autistic Traits' in European Upper Palaeolithic Art?. Open Archaeology, 4(1), 262-279. https://doi.org/10.1515/opar-2018-0016 (https://www.degruyter.com/document/doi/10.1515/opar-2018-0016/html#APA). 11. Folgerø, P. O., Johansson, C., & Stokkedal, L. H. (2021). The Superior Visual Perception Hypothesis: Neuroaesthetics of Cave Art. Behavioral sciences (Basel, Switzerland), 11(6), 81. https://doi.org/10.3390/bs11060081 (https://pubmed.ncbi.nlm.nih.gov/34073168/). 12. Lai G, Pantazatos SP, Schneider H, Hirsch J. Neural systems for speech and song in autism. Brain. 2012 Mar;135(Pt 3):961-75. doi: 10.1093/brain/awr335. Epub 2012 Feb 1. PMID: 22298195; PMCID: PMC3286324 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286324/). 13. Beate H. A memoir of the savant syndrome. Bright splinters of the mind: a personal story of research with autistics savant. London: Jessica Kingsley Publishers; 2001. p. 160 (https://www.proquest.com/docview/198983834). 14. Muñoz-Yunta JA , Ortiz T, Amo C, Fernández-Lucas A, Maestú F, Palau-Baduell M. El síndrome de savant o idiot savant. Rev Neurol 2003;36 (S1):157-0 (https://neurologia.com/articulo/2003061). 15. Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of neurology, 42(5), 428–459. https://doi.org/10.1001/archneur.1985.04060050026008 (https://pubmed.ncbi.nlm.nih.gov/3994562/). 16. Navarro-Pardo E, Alonso-Esteban Y, Alcantud-Marin F, Murphy M. Do Savant Syndrome and Autism Spectrum Disorders Share Sex Differences? A Comprehensive Review. Soa Chongsonyon Chongsin Uihak. 2023 Apr 1;34(2):117-124. doi: 10.5765/jkacap.230008. PMID: 37035793; PMCID: PMC10080262 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080262/). 17. Pring, L., Ryder, N., Crane, L., & Hermelin, B. (2010). Local and global processing in savant artists with autism. Perception, 39(8), 1094–1103. https://doi.org/10.1068/p6674 (https://pubmed.ncbi.nlm.nih.gov/20942360/). 18. Mottron L, Dawson M, Soulières I. Enhanced perception in savant syndrome: patterns, structure and creativity. Philos Trans R Soc Lond B Biol Sci. 2009 May 27;364(1522):1385-91. doi: 10.1098/rstb.2008.0333. PMID: 19528021; PMCID: PMC2677591 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677591/). 19. Park HO. Autism Spectrum Disorder and Savant Syndrome: A Systematic Literature Review. Soa Chongsonyon Chongsin Uihak. 2023 Apr 1;34(2):76-92. doi: 10.5765/jkacap.230003. PMID: 37035789; PMCID: PMC10080257 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080257/). 20. Treffert, D. A., & Treffert, D. A. (2021). The Sudden Savant: A New Form of Extraordinary Abilities. WMJ : official publication of the State Medical Society of Wisconsin, 120(1), 69–73 (https://pubmed.ncbi.nlm.nih.gov/33974770/). 21. Documental “Mentes prodigiosas”. https://www.youtube.com/playlist?list=PL10391BEC6C746C6D 22. Daniel Tammet: sinestesia numérica. https://www.youtube.com/watch?v=HqBzez4WKuU&ab_channel=nuecesyneuronas 23. Documental sobre savant en Discovery: https://www.youtube.com/watch?v=BhZTM-aB0lw&t=2290s&ab_channel=PROYECTOTHERAPI 24. Accidental Genius | Darold Treffert | TEDxFondduLac : https://www.youtube.com/watch?v=Wxe1PkyJev8&ab_channel=TEDxTalks
En este episodio, reflexiono sobre el uso de las tecnologías avanzadas en neurorrehabilitación; reflexión que conviene hacer tanto si uno está familiarizado con ellas como si no. De vez en cuando hay que pararse a pensar, pensar dónde estamos, hacia dónde vamos y qué marcos de pensamiento y práctica tenemos debajo de la reluciente estética de la tecnología. La reflexión la realizo desde el punto de vista clínico, aunque existen otros enfoques, como el empresarial y de gestión. En cualquier caso, lo importante es tener un conocimiento y experiencia suficientes para discernir los fundamentos de la aplicación de tecnología en neurorrehabilitación. Referencias del episodio: 1. José López Sánchez (2023). Tecnologías actuales aplicadas a la neurorrehabilitación. Innovación en neurorrehabilitación. Parque Científico Universidad Miguel Hernández (https://www.youtube.com/watch?v=lEUPm8WAvqs&ab_channel=ParqueCient%C3%ADficoUMH). 2. Putrino, D., & Krakauer, J. W. (2023). Neurotechnology's Prospects for Bringing About Meaningful Reductions in Neurological Impairment. Neurorehabilitation and neural repair, 37(6), 356–366. https://doi.org/10.1177/15459683221137341 (https://pubmed.ncbi.nlm.nih.gov/36384334/). 3. International Industry Society in Advanced Rehabilitation Technology (IISART) (https://iisart.org/).
En el episodio de hoy, hablamos del bonito mundo de la doble tarea, un área que ya de por sí tiene sus características en la sociedad en general y que en el campo de la rehabilitación es una categoría fundamental que tarde o temprano hay que abordar. El tema es extenso a más no poder y ha sido un poco complicado hacer una síntesis, ya que tenemos información de estudios tanto a nivel general de lo que implica la atención a dos tareas, críticas sociales (desde la sociología), estudios de neuropsicología y toda la parte de entrenamiento dual en terapia física y en diferentes patologías. Para esta ocasión, lo que me propongo es dar un marco cultural y sociológico inicial que creo que es importante para entender la globalidad del asunto; después voy a introducir conceptos fundamentales relacionados con la doble tarea y la idea después es transitando hacia estudios de correlatos neurales de la doble tarea y cómo podemos entrenar esa habilidad en neurorrehabilitación, sobre todo en la que concierne a la terapia física. Referencias del episodio: 1. Leone, C., Feys, P., Moumdjian, L., D'Amico, E., Zappia, M., & Patti, F. (2017). Cognitive-motor dual-task interference: A systematic review of neural correlates. Neuroscience and biobehavioral reviews, 75, 348–360. https://doi.org/10.1016/j.neubiorev.2017.01.010 (https://pubmed.ncbi.nlm.nih.gov/28104413/). 2. Kuo, H. T., Yeh, N. C., Yang, Y. R., Hsu, W. C., Liao, Y. Y., & Wang, R. Y. (2022). Effects of different dual task training on dual task walking and responding brain activation in older adults with mild cognitive impairment. Scientific reports, 12(1), 8490. https://doi.org/10.1038/s41598-022-11489-x (https://pubmed.ncbi.nlm.nih.gov/35589771/). 3. Li, K. Z. H., Bherer, L., Mirelman, A., Maidan, I., & Hausdorff, J. M. (2018). Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective. Frontiers in neurology, 9, 913. https://doi.org/10.3389/fneur.2018.00913 (https://pubmed.ncbi.nlm.nih.gov/30425679/). 4. Mac-Auliffe D, Chatard B, Petton M, Croizé AC, Sipp F, Bontemps B, Gannerie A, Bertrand O, Rheims S, Kahane P, Lachaux JP. The Dual-Task Cost Is Due to Neural Interferences Disrupting the Optimal Spatio-Temporal Dynamics of the Competing Tasks. Front Behav Neurosci. 2021 Aug 19;15:640178. doi: 10.3389/fnbeh.2021.640178. PMID: 34489652; PMCID: PMC8416616 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416616/). 5. McPhee, A. M., Cheung, T. C. K., & Schmuckler, M. A. (2022). Dual-task interference as a function of varying motor and cognitive demands. Frontiers in psychology, 13, 952245. https://doi.org/10.3389/fpsyg.2022.952245 (https://pubmed.ncbi.nlm.nih.gov/36248521/). 6. Piqueres-Juan I, Tirapu-Ustárroz J, García-Sala M. Paradigmas de ejecución dual: aspectos conceptuales. Rev Neurol 2021;72 (10):357-367 (https://neurologia.com/articulo/2020200). 7. Plummer, P., Eskes, G., Wallace, S., Giuffrida, C., Fraas, M., Campbell, G., Clifton, K. L., Skidmore, E. R., & American Congress of Rehabilitation Medicine Stroke Networking Group Cognition Task Force (2013). Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Archives of physical medicine and rehabilitation, 94(12), 2565–2574.e6. https://doi.org/10.1016/j.apmr.2013.08.002 (https://pubmed.ncbi.nlm.nih.gov/23973751/). 8. St George, R. J., Jayakody, O., Healey, R., Breslin, M., Hinder, M. R., & Callisaya, M. L. (2022). Cognitive inhibition tasks interfere with dual-task walking and increase prefrontal cortical activity more than working memory tasks in young and older adults. Gait & posture, 95, 186–191. https://doi.org/10.1016/j.gaitpost.2022.04.021 (https://pubmed.ncbi.nlm.nih.gov/35525151/). 9. Strobach T. (2020). The dual-task practice advantage: Empirical evidence and cognitive mechanisms. Psychonomic bulletin & review, 27(1), 3–14. https://doi.org/10.3758/s13423-019-01619-4 (https://pubmed.ncbi.nlm.nih.gov/31152433/). 10. Watanabe, K., & Funahashi, S. (2014). Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nature neuroscience, 17(4), 601–611. https://doi.org/10.1038/nn.3667 (https://pubmed.ncbi.nlm.nih.gov/24584049/). 11. Ángel L. Martínez Nogueras (2020). Un repaso al paradigma de tarea dual desde la neuropsicología (1ª parte). (https://neurobase.wordpress.com/2020/03/20/un-repaso-al-paradigma-de-tarea-dual-desde-la-neuropsicologia-1a-parte/). 12. Johann Hari (2023). El valor de la atención. Por qué nos la robaron y cómo recuperarla (https://www.planetadelibros.com/libro-el-valor-de-la-atencion/365202). 13. McIsaac, T. L., Lamberg, E. M., & Muratori, L. M. (2015). Building a framework for a dual task taxonomy. BioMed research international, 2015, 591475. https://doi.org/10.1155/2015/591475 (https://pubmed.ncbi.nlm.nih.gov/25961027/). 14. Rémy, F., Wenderoth, N., Lipkens, K., & Swinnen, S. P. (2010). Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia, 48(9), 2517–2527. https://doi.org/10.1016/j.neuropsychologia.2010.04.026 (https://pubmed.ncbi.nlm.nih.gov/20434467/). 15. D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279–281. https://doi.org/10.1038/378279a0 (https://pubmed.ncbi.nlm.nih.gov/7477346/9. 16. Just, M. A., Carpenter, P. A., Keller, T. A., Emery, L., Zajac, H., & Thulborn, K. R. (2001). Interdependence of nonoverlapping cortical systems in dual cognitive tasks. NeuroImage, 14(2), 417–426. https://doi.org/10.1006/nimg.2001.0826 (https://pubmed.ncbi.nlm.nih.gov/11467915/).
En este episodio, damos comienzo a uno de los proyectos más importantes y ambiciosos de Hemispherics. Nada menos que exponer lo fundamental de la neurofisiología aplicada a la rehabilitación del miembro superior tras una lesión neurológica. Para este episodio, trataré de resumir el conocimiento respecto a la vía reticuloespinal y su relación con la corticoespinal y la recuperación motora y lo hilaré con el conocimiento de la sinergia flexora, los estudios con sistemas de soporte de peso y robóticos para el miembro superior. El objetivo es entender el por qué, el fundamento de los sistemas de soporte de peso y robóticos y qué puede estar ocurriendo en el cerebro para que se produzcan esos fenotipos de miembro superior. Referencias del episodio: 1. Barker, R. N., Brauer, S., & Carson, R. (2009). Training-induced changes in the pattern of triceps to biceps activation during reaching tasks after chronic and severe stroke. Experimental brain research, 196(4), 483–496. https://doi.org/10.1007/s00221-009-1872-8 (https://pubmed.ncbi.nlm.nih.gov/19504088/). 2. Crocher, V., Fong, J., Bosch, T.J., Tan, Y., Mareels, I.M., & Oetomo, D. (2018). Upper Limb Deweighting Using Underactuated End-Effector-Based Backdrivable Manipulanda. IEEE Robotics and Automation Letters, 3, 2116-2122 (https://www.semanticscholar.org/paper/Upper-Limb-Deweighting-Using-Underactuated-Crocher-Fong/6624232dd6ca4e3bae776f684e5fb9e8acc0fc05). 3. Dewald, J. P., Pope, P. S., Given, J. D., Buchanan, T. S., & Rymer, W. Z. (1995). Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain : a journal of neurology, 118 ( Pt 2), 495–510. https://doi.org/10.1093/brain/118.2.495 (https://pubmed.ncbi.nlm.nih.gov/7735890/). 4. Dewald, J. P., Sheshadri, V., Dawson, M. L., & Beer, R. F. (2001). Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Topics in stroke rehabilitation, 8(1), 1–12. https://doi.org/10.1310/WA7K-NGDF-NHKK-JAGD (https://pubmed.ncbi.nlm.nih.gov/14523747/). 5. Ellis, M. D., Carmona, C., Drogos, J., & Dewald, J. P. A. (2018). Progressive Abduction Loading Therapy with Horizontal-Plane Viscous Resistance Targeting Weakness and Flexion Synergy to Treat Upper Limb Function in Chronic Hemiparetic Stroke: A Randomized Clinical Trial. Frontiers in neurology, 9, 71. https://doi.org/10.3389/fneur.2018.00071 (https://pubmed.ncbi.nlm.nih.gov/29515514/). 6. Fong, J., Crocher, V., Haddara, R., Ackland, D., Galea, M., Tan, Y., & Oetomo, D. (2018). Effect Of Arm Deweighting Using End-Effector Based Robotic Devices On Muscle Activity. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2018, 2470–2474. https://doi.org/10.1109/EMBC.2018.8512773 (https://pubmed.ncbi.nlm.nih.gov/30440908/). 7. Hammerbeck, U., Tyson, S. F., Samraj, P., Hollands, K., Krakauer, J. W., & Rothwell, J. (2021). The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabilitation and neural repair, 35(9), 812–822. https://doi.org/10.1177/15459683211028243 (https://pubmed.ncbi.nlm.nih.gov/34219510/). 8. Kopke, J. V., Hargrove, L. J., & Ellis, M. D. (2021). Coupling of shoulder joint torques in individuals with chronic stroke mirrors controls, with additional non-load-dependent negative effects in a combined-torque task. Journal of neuroengineering and rehabilitation, 18(1), 134. https://doi.org/10.1186/s12984-021-00924-1 (https://pubmed.ncbi.nlm.nih.gov/34496876/). 9. McPherson, J. G., Chen, A., Ellis, M. D., Yao, J., Heckman, C. J., & Dewald, J. P. A. (2018). Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. The Journal of physiology, 596(7), 1211–1225. https://doi.org/10.1113/JP274968 (https://pubmed.ncbi.nlm.nih.gov/29457651/). 10. McPherson, L. M., & Dewald, J. P. A. (2022). Abnormal synergies and associated reactions post-hemiparetic stroke reflect muscle activation patterns of brainstem motor pathways. Frontiers in neurology, 13, 934670. https://doi.org/10.3389/fneur.2022.934670 (https://pubmed.ncbi.nlm.nih.gov/36299276/). 11. Miller, L. C., Ruiz-Torres, R., Stienen, A. H., & Dewald, J. P. (2009). A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE transactions on bio-medical engineering, 56(9), 2312–2317. https://doi.org/10.1109/TBME.2009.2026057 (https://pubmed.ncbi.nlm.nih.gov/19567336/). 12. Miller, L. C., & Dewald, J. P. (2012). Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 123(6), 1216–1225. https://doi.org/10.1016/j.clinph.2012.01.009 (https://pubmed.ncbi.nlm.nih.gov/22364723/). 13. Prange, G. B., Jannink, M. J., Stienen, A. H., van der Kooij, H., Ijzerman, M. J., & Hermens, H. J. (2009). Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabilitation and neural repair, 23(5), 478–485. https://doi.org/10.1177/1545968308328720 (https://pubmed.ncbi.nlm.nih.gov/19190089/). 14. Runnalls, K. D., Anson, G., & Byblow, W. D. (2015). Partial weight support of the arm affects corticomotor selectivity of biceps brachii. Journal of neuroengineering and rehabilitation, 12, 94. https://doi.org/10.1186/s12984-015-0085-6 (https://pubmed.ncbi.nlm.nih.gov/26502933/). 15. Runnalls, K. D., Anson, G., & Byblow, W. D. (2017). Posture interacts with arm weight support to modulate corticomotor excitability to the upper limb. Experimental brain research, 235(1), 97–107. https://doi.org/10.1007/s00221-016-4775-5 (https://pubmed.ncbi.nlm.nih.gov/27639400/). 16. Runnalls, K. D., Ortega-Auriol, P., McMorland, A. J. C., Anson, G., & Byblow, W. D. (2019). Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Experimental brain research, 237(12), 3391–3408. https://doi.org/10.1007/s00221-019-05687-9 (https://pubmed.ncbi.nlm.nih.gov/31728596/). 17. Runnalls, K. D., Anson, G., Wolf, S. L., & Byblow, W. D. (2014). Partial weight support differentially affects corticomotor excitability across muscles of the upper limb. Physiological reports, 2(12), e12183. https://doi.org/10.14814/phy2.12183 (https://pubmed.ncbi.nlm.nih.gov/25501435/). 18. Sukal, T. M., Ellis, M. D., & Dewald, J. P. (2007). Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Experimental brain research, 183(2), 215–223. https://doi.org/10.1007/s00221-007-1029-6 (https://pubmed.ncbi.nlm.nih.gov/17634933/). 19. Wu, W., Fong, J., Crocher, V., Lee, P. V. S., Oetomo, D., Tan, Y., & Ackland, D. C. (2018). Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Journal of biomechanics, 72, 7–16. https://doi.org/10.1016/j.jbiomech.2018.02.019 (https://pubmed.ncbi.nlm.nih.gov/29506759/). 20. Dewald, J.P.A., Ellis, M.D., Acosta, A.M., Sohn, M.H., Plaisier, T.A.M. (2022). Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury. In: Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-08995-4_5 (https://link.springer.com/chapter/10.1007/978-3-031-08995-4_5#citeas).
En este episodio, entrevisto a Sara Magallares Sánchez, logopeda especializada en neurorrehabilitación, formada en ciencia vocal y neurociencia cognitiva a nivel de Máster, con formación además transversal en neurorrehabilitación, como estimulación basal, electroestimulación, entre otras formaciones. Ha trabajado en distintos hospitales y clínicas y actualmente trabaja en CEN - Centro Europeo de Neurociencias, dentro de un marco de terapias intensivas. Hablamos de logopedia y, en concreto, de la disartria, desde los conceptos básicos asociados, sus tipos hasta su evaluación y tratamiento. Referencias del episodio: Libros: - Duffy, J. R. (2019). Motor Speech Disorders: Substrates, Differential Diagnosis, and Management (4th ed.). Elsevier. - Schick, T. (2022). Functional Electrical Stimulation in Neurorehabilitation: Synergy Effects of Technology and Therapy. 1st Edition. Springer. https://doi.org/10.1007/978-3-030-90123-3 Artículos: - Summaka, M., Hannoun, S., Harati, H. et al. (2022). Neuroanatomical Regions Associated With Non-progressive Dysarthria Post-Stroke: A Systematic Review. BMC Neurol 22, 353. https://doi.org/10.1186/s12883-022-02877-x - Page, A.D.; Yorkston, K.M. (2022). Communicative Participation in Dysarthria: Perspectives for Management. Brain Sci 12, 420. https://doi.org/10.3390/brainsci12040420 - Borrie, S.A.; Wynn, C.J.; Berisha, V.; Barrett, T.S. (2022) From Speech Acoustics to Communicative Participation in Dysarthria: Toward a Causal Framework. J. Speech Hear. Disord. 65, 405–418. Vídeos: - https://www.youtube.com/watch?v=lCyRuhssJLc
En el episodio de hoy, os traigo el resumen de un artículo muy interesante y completo sobre la bradicinesia y los conceptos relacionados; es una revisión muy completa sobre cómo podemos comprender actualmente la bradicinesia como desorden de red y todo lo que la circunscribe a nivel clínico y neuropatológico. Lo que hacen en la revisión primero es ver los problemas de la terminología y la caracterización de la bradicinesia en estudios clínicos y experimentales en el Parkinson. Después se enfocan en la fisiopatología de la bradicinesia discutiendo el papel de los ganglios basales y la posible participación de otras estructuras, con la idea de aportar un modelo de red. Referencias del episodio: 1. Bologna, M., Paparella, G., Fasano, A., Hallett, M., & Berardelli, A. (2020). Evolving concepts on bradykinesia. Brain : a journal of neurology, 143(3), 727–750. https://doi.org/10.1093/brain/awz344 (https://pubmed.ncbi.nlm.nih.gov/31834375/). 2. Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., Obeso, J., Marek, K., Litvan, I., Lang, A. E., Halliday, G., Goetz, C. G., Gasser, T., Dubois, B., Chan, P., Bloem, B. R., Adler, C. H., & Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society, 30(12), 1591–1601. https://doi.org/10.1002/mds.26424 (https://pubmed.ncbi.nlm.nih.gov/26474316/). 3. Berg, D., Adler, C. H., Bloem, B. R., Chan, P., Gasser, T., Goetz, C. G., Halliday, G., Lang, A. E., Lewis, S., Li, Y., Liepelt-Scarfone, I., Litvan, I., Marek, K., Maetzler, C., Mi, T., Obeso, J., Oertel, W., Olanow, C. W., Poewe, W., Rios-Romenets, S., … Postuma, R. B. (2018). Movement disorder society criteria for clinically established early Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society, 33(10), 1643–1646. https://doi.org/10.1002/mds.27431 (https://pubmed.ncbi.nlm.nih.gov/30145841/). 4. Tinaz, S., Pillai, A. S., & Hallett, M. (2016). Sequence Effect in Parkinson's Disease Is Related to Motor Energetic Cost. Frontiers in neurology, 7, 83. https://doi.org/10.3389/fneur.2016.00083 (https://pubmed.ncbi.nlm.nih.gov/27252678/). 5. Bar-Gad, I., & Bergman, H. (2001). Stepping out of the box: information processing in the neural networks of the basal ganglia. Current opinion in neurobiology, 11(6), 689–695. https://doi.org/10.1016/s0959-4388(01)00270-7 (https://pubmed.ncbi.nlm.nih.gov/11741019/). 6. Lee, M. S., Lee, M. J., Conte, A., & Berardelli, A. (2018). Abnormal somatosensory temporal discrimination in Parkinson's disease: Pathophysiological correlates and role in motor control deficits. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 129(2), 442–447. https://doi.org/10.1016/j.clinph.2017.11.022 (https://pubmed.ncbi.nlm.nih.gov/29304419/). 7. Tinkhauser, G., Pogosyan, A., Tan, H., Herz, D. M., Kühn, A. A., & Brown, P. (2017). Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication. Brain : a journal of neurology, 140(11), 2968–2981. https://doi.org/10.1093/brain/awx252 (https://pubmed.ncbi.nlm.nih.gov/29053865/).
En el episodio de hoy, os traigo un tema muy interesante, un tema del que nadie escapa; todos hemos estudiado esto en algún momento de nuestra carrera o de nuestra especialización en el campo de la neurología. Hay una serie de elementos de la neurociencia que todos conocemos, que son transversales, que son muchas veces el punto de partida para explicar grandes dominios de la neurología. Y así es este caso, el caso del famoso homúnculo de Penfield; 'Homúnculo' o 'pequeño hombre', que tiene toda una historia detrás y por supuesto numerosos desarrollos científicos posteriores que han enriquecido y siguen enriqueciendo nuestra comprensión del sistema nervioso. He dividido este episodio en tres partes: 1) Historia del homúnculo; 2) Críticas al homúnculo; 3) Del homúnculo a la Interfaz Mente-Cuerpo. Referencias del episodio: 1. Boldrey EB. The architectonic subdivision of the mammalian cerebral cortex : including a report of electrical stimulation of one hundred and five human cerebral cortices. Canada: McGill University; 1936 (https://www.proquest.com/openview/136252d5427e84161016fcbea2689e24/1?pq-origsite=gscholar&cbl=18750&diss=y). 2. Penfield W, Boldrey EB. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60: 389-443 (https://academic.oup.com/brain/article-abstract/60/4/389/332082?redirectedFrom=fulltext). 3. Penfield W, Rasmussen T. The Cerebral Cortex of Man. New York, NY: Macmillan; 1950 (https://psycnet.apa.org/record/1951-01483-000). 4. Tamè L et al. Bilateral representations of touch in the primary somatosensory cortex. Cogn Neuropsychol. 2016 Feb-Mar;33(1-2):48-66 (https://pubmed.ncbi.nlm.nih.gov/27314449/). 5. Sallés L, Gironès X, Lafuente JV. Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación. Med Clin (Barc). 2015 Jan 6;144(1):30-4 (https://pubmed.ncbi.nlm.nih.gov/24613375/). 6. Saadon-Grosman N, Loewenstein Y, Arzy S. The 'creatures' of the human cortical somatosensory system. Brain Commun. 2020 Jan 17;2(1):fcaa003 (https://pubmed.ncbi.nlm.nih.gov/32954277/). 7. Ravits J, Stack J. The lower motor neuron homunculus. Brain. 2022 Nov 21;145(11):3727-3729 (https://pubmed.ncbi.nlm.nih.gov/36029046/). 8. Parpia P. Reappraisal of the somatosensory homunculus and its discontinuities. Neural Comput. 2011 Dec;23(12):3001-15 (https://pubmed.ncbi.nlm.nih.gov/21732862/). 9. Morishita T, Miki K, Inoue T. Penfield Homunculus and Recent Advances in Brain Mapping. World Neurosurg. 2020 Feb;134:515-517 (https://pubmed.ncbi.nlm.nih.gov/31785433/). 10. Gandhoke GS et al. Edwin Boldrey and Wilder Penfield's Homunculus: A Life Given by Mrs. Cantlie (In and Out of Realism). World Neurosurg. 2019 Dec;132:377-388 (https://pubmed.ncbi.nlm.nih.gov/31470165/). 11. Iorio-Morin C, Mathieu D. Perspective on the Homunculus, the History of Cerebral Localization, and Evolving Modes of Data Representation. World Neurosurg. 2020 Mar;135:42-47 (https://pubmed.ncbi.nlm.nih.gov/31778834/). 12. Evan Gordon et al. A mind-body interface alternates with effector-specific regions in motor cortex. bioRxiv 2022.10.26.513940 (https://www.biorxiv.org/content/10.1101/2022.10.26.513940v1). 13. Neuroccino 7th Nov - A mind-body interface alternates with effector-specific regions in motor cortex (https://www.youtube.com/watch?v=vd-zoWdcOgI&ab_channel=ClinicalNeuroanatomySeminars). 14. Di Noto PM et al. The hermunculus: what is known about the representation of the female body in the brain? Cerebral Cortex (New York, N.Y. : 1991). 2013 May;23(5):1005-1013 (https://europepmc.org/article/med/22510528). 15. Haven Wright, Preston Foerder; The Missing Female Homunculus. Leonardo 2021; 54 (6): 653–656 (https://direct.mit.edu/leon/article-abstract/54/6/653/97296/The-Missing-Female Homunculus?redirectedFrom=fulltext). 16. Los homúnculos de Penfield – Blog Dr. José Ramón Alonso (https://jralonso.es/2014/04/26/los-homunculos-de-penfield/).
En el episodio de hoy, hablo del síndrome del empujador o patrón empujador, característico de algunos pacientes que han sufrido un ictus e incluso otras lesiones cerebrales. También llamado pusher, lateropulsión o empuje contraversivo, es un fenómeno neurológico que caracteriza la postura y el movimiento de algunos pacientes. En el episodio explico las generalidades, neuroanatomía, valoración y estrategias de tratamiento. Referencias del episodio: 1. Karnath HO, Broetz D. Understanding and treating "pusher syndrome". Phys Ther. 2003 (https://pubmed.ncbi.nlm.nih.gov/14640870/). 2. Karnath HO, Johannsen L, Broetz D, Küker W. Posterior thalamic hemorrhage induces "pusher syndrome". Neurology. 2005 (https://pubmed.ncbi.nlm.nih.gov/15781819/). 3. Roller, Margaret L. DPT, MS. The ‘Pusher Syndrome'. Journal of Neurologic Physical Therapy: 2004 (https://journals.lww.com/jnpt/Fulltext/2004/03000/The__Pusher_Syndrome_.4.aspx). 4. Pérennou DA et al. Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship? Brain. 2008 (https://pubmed.ncbi.nlm.nih.gov/18678565/). 5. Bergmann J et al. The Subjective Postural Vertical Determined in Patients with Pusher Behavior During Standing. Top Stroke Rehabil. 2016 (https://pubmed.ncbi.nlm.nih.gov/27077977/). 6. Dai S et al. Balance, Lateropulsion, and Gait Disorders in Subacute Stroke. Neurology. 2021 (https://pubmed.ncbi.nlm.nih.gov/33177223/). 7. Nolan J, Godecke E, Singer B. The association between contraversive lateropulsion and outcomes post stroke: A systematic review. Top Stroke Rehabil. 2022 (https://pubmed.ncbi.nlm.nih.gov/33648434/). 8. Karnath HO, Ferber S, Dichgans J. The origin of contraversive pushing: evidence for a second graviceptive system in humans. Neurology. 2000 (https://pubmed.ncbi.nlm.nih.gov/11087771/). 9. Babyar SR et al. Lesion Localization of Poststroke Lateropulsion. Stroke. 2019 (https://pubmed.ncbi.nlm.nih.gov/31009350/). 10. Lee KB et al. Is Lateropulsion Really Related with a Specific Lesion of the Brain? Brain Sci. 2021 (https://pubmed.ncbi.nlm.nih.gov/33802116/). 11. Rosenzopt et al. Thalamocortical networks involved in Pusher Syndrome. bioRxiv. 2022 (https://www.biorxiv.org/content/10.1101/2022.10.12.511887v1). 12. Babyar SR et al. Clinical examination tools for lateropulsion or pusher syndrome following stroke: a systematic review of the literature. Clin Rehabil. 2009 (https://pubmed.ncbi.nlm.nih.gov/19403555/). 13. Bergmann J et al. A new cutoff score for the Burke Lateropulsion Scale improves validity in the classification of pusher behavior in subactue stroke patients. Gait Posture. 2019 (https://pubmed.ncbi.nlm.nih.gov/30623845/). 14. Martín Nieto, Ana (2018) Traducción, adaptación cultural y validación al castellano de las escalas "Scale for contraversive pushing" y "Burke laterospulsion scale". [Tesis] (https://eprints.ucm.es/id/eprint/46327/). 15. Paci M et al. Treatment approaches for pusher behaviour: a scoping review. Top Stroke Rehabil. 2022 (https://pubmed.ncbi.nlm.nih.gov/35156566/). 16. Bergmann J et al. Robot-assisted gait training to reduce pusher behavior: A randomized controlled trial. Neurology. 2018 (https://pubmed.ncbi.nlm.nih.gov/30171076/). 17. Romick-Sheldon D, Kimalat A. Novel Treatment Approach to Contraversive Pushing after Acute Stroke: A Case Report. Physiother Can. 2017 (https://pubmed.ncbi.nlm.nih.gov/30369698/). 18. Pardo V, Galen S. Treatment interventions for pusher syndrome: A case series. NeuroRehabilitation. 2019 (https://pubmed.ncbi.nlm.nih.gov/30814367/).
En esta actualización sobre espasticidad, hablamos de dos estudios del 2022 que transmiten información interesante para los clínicos. El primer estudio es de Fujimura y colaboradores, quienes hablan de la relación entre la velocidad de movimiento pasivo y las respuestas cinemáticas en pacientes con espasticidad leve. Aportan información sobre cómo realizar la valoración manual del tono. El segundo estudio es el de Frenkel-Toledo y colaboradores y trata sobre un análisis de mapeado por vóxeles del cerebro para disociar la hemiparesia y la espasticidad a nivel de topografía lesional. Un estudio francamente innovador. Empiezan a verse estudios que sí que tienen en cuenta literatura reciente y crítica con el constructo de la espasticidad como entidad suprema. Referencias del episodio: (1) Fujimura K, Mukaino M, Itoh S, Miwa H, Itoh R, Narukawa D, Tanikawa H, Kanada Y, Saitoh E, Otaka Y. Requirements for Eliciting a Spastic Response With Passive Joint Movements and the Influence of Velocity on Response Patterns: An Experimental Study of Velocity-Response Relationships in Mild Spasticity With Repeated-Measures Analysis. Front Neurol. 2022 Mar 30;13:854125. doi: 10.3389/fneur.2022.854125. PMID: 35432169; PMCID: PMC9007406 (https://pubmed.ncbi.nlm.nih.gov/35432169/). (2) Frenkel-Toledo S, Levin MF, Berman S, Liebermann DG, Baniña MC, Solomon JM, Ofir-Geva S, Soroker N. Shared and distinct voxel-based lesion-symptom mappings for spasticity and impaired movement in the hemiparetic upper limb. Sci Rep. 2022 Jun 17;12(1):10169. doi: 10.1038/s41598-022-14359-8. PMID: 35715476; PMCID: PMC9206020 (https://pubmed.ncbi.nlm.nih.gov/35715476/).
En episodios anteriores sobre los desórdenes de conciencia, hablábamos de la conciencia desde la filosofía y la neurociencia. También en otro episodio, introdujimos los diferentes desórdenes de conciencia, sus características y diferencias fundamentales. Sin lugar a dudas, la clave dentro de la valoración de estos desórdenes de conciencia está en la capacidad de dar un pronóstico de recuperación y, embebido en ello, la capacidad de detectar cambios de transición entre la vigilia sin respuesta y el estado de mínima conciencia. Es importante conocer ciertas escalas y pruebas que se realizan para valorar distintos aspectos que están relacionados con la conciencia y con la transición entre, por ejemplo, una vigilia sin respuesta a una mínima conciencia. Podemos distinguir dos tipos de valoraciones: las valoraciones clínicas, que se pueden realizar a pie de cama, que básicamente sistematizan las respuestas a distintos estímulos o respuestas espontáneas; y por otro lado las valoraciones neurofisiológicas que tratan de valorar el sustrato de la conciencia que permite comprender las respuestas comportamentales de los pacientes. Referencias del episodio: 1. Cuadernos FEDACE sobre daño cerebral adquirido: síndrome de vigilia sin respuesta y de mínima conciencia (2011) (https://fedace.org/files/MSCFEDACE/2016-10/17-19-28-40.admin.13_vigilia_conciencia.pdf). 2. Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004 (https://pubmed.ncbi.nlm.nih.gov/15605342/). 3. Manual de la CRS-R (Coma Recovery Scale-Revised) (https://www.tbims.org/combi/crs/CRS%20Syllabus.pdf). 4. Noé E, Olaya J, Navarro MD, Noguera P, Colomer C, García-Panach J, Rivero S, Moliner B, Ferri J. Behavioral recovery in disorders of consciousness: a prospective study with the Spanish version of the Coma Recovery Scale-Revised. Arch Phys Med Rehabil. 2012 (https://pubmed.ncbi.nlm.nih.gov/22277244/). 5. Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 2009 (https://pubmed.ncbi.nlm.nih.gov/19622138/). 6. Shiel A, Horn SA, Wilson BA, Watson MJ, Campbell MJ, McLellan DL. The Wessex Head Injury Matrix (WHIM) main scale: a preliminary report on a scale to assess and monitor patient recovery after severe head injury. Clin Rehabil. 2000 (https://pubmed.ncbi.nlm.nih.gov/10945425/). 7. Turner-Stokes L, Bassett P, Rose H, Ashford S, Thu A. Serial measurement of Wessex Head Injury Matrix in the diagnosis of patients in vegetative and minimally conscious states: a cohort analysis. BMJ Open. 2015 (https://pubmed.ncbi.nlm.nih.gov/25900459/). 8. Zasler ND, Formisano R, Aloisi M. Pain in Persons with Disorders of Consciousness. Brain Sci. 2022 (https://pubmed.ncbi.nlm.nih.gov/35326257/). 9. Rossi Sebastiano D, Varotto G, Sattin D, Franceschetti S. EEG Assessment in Patients With Disorders of Consciousness: Aims, Advantages, Limits, and Pitfalls. Front Neurol. 2021 (https://pubmed.ncbi.nlm.nih.gov/33868153/). 10. Pruvost-Robieux E, Marchi A, Martinelli I, Bouchereau E, Gavaret M. Evoked and Event-Related Potentials as Biomarkers of Consciousness State and Recovery. J Clin Neurophysiol. 2022 (https://pubmed.ncbi.nlm.nih.gov/34474424/). 11. Kondziella D y cols. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020 (https://pubmed.ncbi.nlm.nih.gov/32090418/). 12. Formisano R, Contrada M, Aloisi M, Ferri G, Schiattone S, Iosa M, Buzzi MG. Nociception Coma Scale with personalized painful stimulation versus standard stimulus in non-communicative patients with disorders of consciousness. Neuropsychol Rehabil. 2020 (https://pubmed.ncbi.nlm.nih.gov/31088203/). 13. Formisano R, Aloisi M, Iosa M, Contrada M, Rizza F, Sattin D, Leonardi M, D'Ippolito M. A new tool to assess responsiveness in disorders of consciousness (DoC): a preliminary study on the Brief Post-Coma Scale (BPCS). Neurol Sci. 2018 (https://pubmed.ncbi.nlm.nih.gov/29948469/). 14. Cortese MD, Arcuri F, Nemirovsky IE, Lucca LF, Tonin P, Soddu A, Riganello F. Nociceptive Response Is a Possible Marker of Evolution in the Level of Consciousness in Unresponsive Wakefulness Syndrome Patients. Front Neurosci. 2021 (https://pubmed.ncbi.nlm.nih.gov/34975378/). 15. Chatelle C, Thibaut A, Bruno MA, Boly M, Bernard C, Hustinx R, Schnakers C, Laureys S. Nociception coma scale-revised scores correlate with metabolism in the anterior cingulate cortex. Neurorehabil Neural Repair. 2014 (https://pubmed.ncbi.nlm.nih.gov/24065132/). 16. Chatelle C, Thibaut A, Whyte J, De Val MD, Laureys S, Schnakers C. Pain issues in disorders of consciousness. Brain Inj. 2014 (https://pubmed.ncbi.nlm.nih.gov/25099024/). 17. Lin K, Wroten M. Ranchos Los Amigos. 2021 (https://pubmed.ncbi.nlm.nih.gov/28846341/). 18. American Congress of Rehabilitation Medicine, Brain Injury-Interdisciplinary Special Interest Group, Disorders of Consciousness Task Force, Seel RT y cols. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. 2010 (https://pubmed.ncbi.nlm.nih.gov/21112421/). 19. Disorder of Consciousness & Cognitive Recovery Following TBI Levels 1-10 with Dr. Alan Weintraub (Craig Hospital) (https://www.youtube.com/watch?v=ZWJUfSWYppM&t=2516s&ab_channel=CraigHospital).
En este episodio, introducimos la controversia con la neurogénesis en el humano adulto, ya que hay diferentes estudios que no obtienen los mismos resultados que los estudios que afirman que existe la neurogénesis en el hipocampo adulto. Aportamos contexto histórico y detalles neurobiológicos que permiten abordar esta controversia con mayor rigor que el habitual en la divulgación en neurociencia y neurorrehabilitación. Entrevistamos a Jon Arellano, investigador en la Universidad de Yale, para aportar una visión crítica y actualizada de la controversia de la neurogénesis. Referencias del episodio: 1. Snyder (2018). Questioning human neurogenesis (https://www.nature.com/articles/d41586-018-02629-3). 2. The Snyder Lab. WTF! No neurogenesis in humans?? http://snyderlab.com/2018/03/07/wtf-no-neurogenesis-in-humans/ 3. Sorrells SF et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018 Mar 15;555(7696):377-381. doi: 10.1038/nature25975. Epub 2018 Mar 7. PMID: 29513649; PMCID: PMC6179355 (https://pubmed.ncbi.nlm.nih.gov/29513649/). 4. Dennis CV et al. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 2016 Dec;42(7):621-638. doi: 10.1111/nan.12337. Epub 2016 Aug 28. PMID: 27424496; PMCID: PMC5125837 (https://pubmed.ncbi.nlm.nih.gov/27424496/). 5. Moreno-Jiménez EP, Terreros-Roncal J, Flor-García M, Rábano A, Llorens-Martín M. Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci. 2021 Mar 24;41(12):2541-2553. doi: 10.1523/JNEUROSCI.0675-20.2020. PMID: 33762406; PMCID: PMC8018741 (https://pubmed.ncbi.nlm.nih.gov/33762406/). 6. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med. 2019 Apr;25(4):554-560. doi: 10.1038/s41591-019-0375-9. Epub 2019 Mar 25. PMID: 30911133 (https://pubmed.ncbi.nlm.nih.gov/30911133/). 7. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998 Nov;4(11):1313-7. doi: 10.1038/3305. PMID: 9809557 (https://pubmed.ncbi.nlm.nih.gov/9809557/). 8. Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, Khung S, Delezoide AL, Milenkovic I, Rasika S, Manivet P, Benifla JL, Deriot N, Gressens P, Adle-Biassette H. Hippocampal Radial Glial Subtypes and Their Neurogenic Potential in Human Fetuses and Healthy and Alzheimer's Disease Adults. Cereb Cortex. 2018 Jul 1;28(7):2458-2478. doi: 10.1093/cercor/bhy096. PMID: 29722804 (https://pubmed.ncbi.nlm.nih.gov/29722804/9. 9. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisén J. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell. 2018 Jul 5;23(1):25-30. doi: 10.1016/j.stem.2018.04.004. Epub 2018 Apr 19. PMID: 29681514; PMCID: PMC6035081 (https://pubmed.ncbi.nlm.nih.gov/29681514/). 10. Jon I Arellano, Brian Harding, Jean-Leon Thomas, Adult Human Hippocampus: No New Neurons in Sight, Cerebral Cortex, Volume 28, Issue 7, July 2018, Pages 2479–2481, https://doi.org/10.1093/cercor/bhy106. 11. Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci. 2021 Oct 25;22(21):11489. doi: 10.3390/ijms222111489. PMID: 34768919; PMCID: PMC8584254 (https://pubmed.ncbi.nlm.nih.gov/34768919/). 12. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018 Apr 5;22(4):589-599.e5. doi: 10.1016/j.stem.2018.03.015. PMID: 29625071; PMCID: PMC5957089 (https://pubmed.ncbi.nlm.nih.gov/29625071/). 13. Nogueira AB, Hoshino HSR, Ortega NC, Dos Santos BGS, Teixeira MJ. Adult human neurogenesis: early studies clarify recent controversies and go further. Metab Brain Dis. 2022 Jan;37(1):153-172. doi: 10.1007/s11011-021-00864-8. Epub 2021 Nov 5. PMID: 34739659 (https://pubmed.ncbi.nlm.nih.gov/34739659/). 14. Bernier PJ, Vinet J, Cossette M, Parent A. Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci Res. 2000 May;37(1):67-78. doi: 10.1016/s0168-0102(00)00102-4. PMID: 10802345 (https://pubmed.ncbi.nlm.nih.gov/10802345/). 15. Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, Xu C, Li Q, Morozov YM, Andrijevic D, Vrselja Z, Spajic A, Santpere G, Li M, Zhang S, Liu Y, Spurrier J, Zhang L, Gudelj I, Rapan L, Takahashi H, Huttner A, Fan R, Strittmatter SM, Sousa AMM, Rakic P, Sestan N. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron. 2022 Feb 2;110(3):452-469.e14. doi: 10.1016/j.neuron.2021.10.036. Epub 2021 Nov 18. PMID: 34798047; PMCID: PMC8813897 (https://pubmed.ncbi.nlm.nih.gov/34798047/. 16. Alvarez-Buylla A, Cebrian-Silla A, Sorrells SF, Nascimento MA, Paredes MF, Garcia-Verdugo JM, Yang Z, Huang EJ. Comment on "Impact of neurodegenerative diseases on human adult hippocampal neurogenesis". Science. 2022 Apr 15;376(6590):eabn8861. doi: 10.1126/science.abn8861. Epub 2022 Apr 15. PMID: 35420933 (https://pubmed.ncbi.nlm.nih.gov/35420933/). 17. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding KL, Frisén J. The age of olfactory bulb neurons in humans. Neuron. 2012 May 24;74(4):634-9. doi: 10.1016/j.neuron.2012.03.030. PMID: 22632721 (https://pubmed.ncbi.nlm.nih.gov/22632721/).
En este episodio, entrevisto a Gonzalo Varas, él es kinesiólogo por la Universidad Andrés Bello. Magíster en Terapia Manual Ortopédica, UNAB. Magíster en Ciencias Biológicas, Mención Neurociencias de la Universidad de Chile. Doctor en Ciencias de la Rehabilitación por la Universidad de Illinois, Chicago (EEUU). Es miembro y ex director de la Asociación Chilena de Ciencias del Movimiento y miembro de la Asociación Latinoamericana de Rehabilitación Neurológica. A nivel clínico, es kinesiólogo especializado la Neurorrehabilitación, principalmente a la rehabilitación de personas adultas con secuela de lesión medular y lesión encefálica. A nivel de investigación, se ha enfocado en el control y aprendizaje motor en contextos de lesión al sistema nervioso, control del equilibrio y la marcha en personas mayores y con lesión del sistema nervioso; y quizás más concretamente también ha investigado mucho el equilibrio reactivo. Actualmente es Profesor Asistente de la Escuela de Kinesiología de la Universidad Finis Terrae, Chile y académico investigador en el Laboratorio de Fisiología del ejercicio y metabolismo de la Facultad de Medicina de la Universidad Finis Terrae. Redes sociales de Gonzalo: -Instagram: gonzalovaras_pt -Researchgate: https://www.researchgate.net/profile/Gonzalo-Varas-Diaz Referencias del episodio: (1) Tesis Doctoral Gonzalo Varas: Effect of Cognitive, Impairment-Oriented and Task-Specific Interventions on Balance and Locomotion Control (https://indigo.uic.edu/articles/thesis/Effect_of_Cognitive_Impairment-Oriented_and_Task-Specific_Interventions_onBalance_and_Locomotion_Control/15261993). (2) Wang S, Varas-Diaz G, Bhatt T. Muscle synergy differences between voluntary and reactive backward stepping (https://pubmed.ncbi.nlm.nih.gov/34326376/). (3) Dakin CJ, Bolton DAE. Forecast or Fall: Prediction's Importance to Postural Control. Front Neurol. 2018 (https://pubmed.ncbi.nlm.nih.gov/30425680/). (4) Kannan L, Vora J, Varas-Diaz G, Bhatt T, Hughes S. Does Exercise-Based Conventional Training Improve Reactive Balance Control among People with Chronic Stroke? Brain Sci. 2020 (https://pubmed.ncbi.nlm.nih.gov/33374957/). (5) Varas-Diaz G, Cordo P, Dusane S, Bhatt T. Effect of robotic-assisted ankle training on gait in stroke participants: A case series study. Physiother Theory Pract. 2021 (https://pubmed.ncbi.nlm.nih.gov/34424126/). (6) Varas-Diaz G, Kannan L, Bhatt T. Effect of Mental Fatigue on Postural Sway in Healthy Older Adults and Stroke Populations. Brain Sci. 2020 (https://pubmed.ncbi.nlm.nih.gov/32575383/). (7) Bhatt T, Wening JD, Pai YC. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait Posture. 2005 (https://pubmed.ncbi.nlm.nih.gov/15639393/).
En este episodio, entrevisto a Diego Martín Laxague. Diego Martín es terapeuta ocupacional especializado en la rehabilitación de la mano y de la extremidad superior, con experiencia en lesiones neurológicas, traumáticas y ortopédicas. Además está formado en técnicas ortoprotésicas y en la movilización instrumental de tejidos blandos. Es miembro de AETEMA (Asociación Española de Terapeutas de Mano). También es co-director de Hand Center (Asturias) y además, se dedica a la docencia y las formaciones sobre ferulaje neumático y NRX-Strap. Le he invitado al podcast para que nos cuente su experiencia con la rehabilitación del miembro superior neurológico y especialmente con la parte estructural. Diego es un profesional que da muchas muestras de su trabajo diario a través de las redes sociales y estoy seguro de que es inspiración para muchos terapeutas como yo que disfrutamos con su creatividad a la hora de plantear ejercicios. Redes sociales de Diego: -Instagram: @martinlaxague_to Referencias del episodio:
En el episodio de hoy, hablo de la lesión medular y el entrenamiento con sistemas de soporte de peso corporal, una modalidad de tratamiento que cada vez está más en boga y que parece realmente que tiene su lugar asentado dentro de la rehabilitación de la lesión medular. Normalmente colocamos un arnés al paciente, que se une a una máquina que descarga el peso en un cierto porcentaje. Esa idea se cumple a la perfección en el caso de las grúas pero si pensamos en un paciente que quiere caminar, parece que quitarle peso, no es suficiente. ¿Hay algo más en estos sistemas de soporte de peso? ¿Qué hay de interacción humano-máquina? En este episodio, vemos estudios en sujetos sanos y en lesionados medulares, describimos sistemas de soporte de peso y aportamos ideas prácticas para terapia. Bibliografía: (1)Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011;34(4):362-79. doi: 10.1179/2045772311Y.0000000018. PMID: 21903010; PMCID: PMC3152808 (https://pubmed.ncbi.nlm.nih.gov/21903010/). (2)Apte S, Plooij M, Vallery H. Influence of body weight unloading on human gait characteristics: a systematic review. J Neuroeng Rehabil. 2018 Jun 20;15(1):53. doi: 10.1186/s12984-018-0380-0. Erratum in: J Neuroeng Rehabil. 2018 Aug 8;15(1):73. PMID: 29925400; PMCID: PMC6011391 (https://pubmed.ncbi.nlm.nih.gov/29925400/). (3)Apte S, Plooij M, Vallery H. Simulation of human gait with body weight support: benchmarking models and unloading strategies. J Neuroeng Rehabil. 2020 Jun 25;17(1):81. doi: 10.1186/s12984-020-00697-z. PMID: 32586398; PMCID: PMC7318415 (https://pubmed.ncbi.nlm.nih.gov/32586398/). (4)Easthope CS, Traini LR, Awai L, Franz M, Rauter G, Curt A, Bolliger M. Overground walking patterns after chronic incomplete spinal cord injury show distinct response patterns to unloading. J Neuroeng Rehabil. 2018 Nov 12;15(1):102. doi: 10.1186/s12984-018-0436-1. PMID: 30419945; PMCID: PMC6233558 (https://pubmed.ncbi.nlm.nih.gov/30419945/). (5)Escribano-Ardura S, Cuesta-Gómez A, Fernández-González P, Carratalá-Tejada M, Molina-Rueda F. Entrenamiento en cinta rodante con soporte parcial del peso corporal en pacientes con lesión medular incompleta: revisión sistemática [Treadmill training with partial body weight support in subjects with incomplete spinal cord injury: a systematic review]. Rev Neurol. 2020 Aug 1;71(3):85-92. Spanish. doi: 10.33588/rn.7103.2020054. PMID: 32672346 (https://pubmed.ncbi.nlm.nih.gov/32672346/). (6)Fenuta AM, Hicks AL. Metabolic demand and muscle activation during different forms of bodyweight supported locomotion in men with incomplete SCI. Biomed Res Int. 2014;2014:632765. doi: 10.1155/2014/632765. Epub 2014 May 21. PMID: 24971340; PMCID: PMC4055602 (https://pubmed.ncbi.nlm.nih.gov/24971340/). (7)Fenuta AM, Hicks AL. Muscle activation during body weight-supported locomotion while using the ZeroG. J Rehabil Res Dev. 2014;51(1):51-8. doi: 10.1682/JRRD.2013.01.0005. PMID: 24805893 (https://pubmed.ncbi.nlm.nih.gov/24805893/9. (8)Fischer AG, Debbi EM, Wolf A. Effects of body weight unloading on electromyographic activity during overground walking. J Electromyogr Kinesiol. 2015 Aug;25(4):709-14. doi: 10.1016/j.jelekin.2015.05.001. Epub 2015 May 16. PMID: 26025610 (https://pubmed.ncbi.nlm.nih.gov/26025610/). (9)Hidler J, Brennan D, Black I, Nichols D, Brady K, Nef T. ZeroG: overground gait and balance training system. J Rehabil Res Dev. 2011;48(4):287-98. doi: 10.1682/jrrd.2010.05.0098. PMID: 21674384 (https://pubmed.ncbi.nlm.nih.gov/21674384/). (10)Huber JP, Sawaki L. Dynamic body-weight support to boost rehabilitation outcomes in patients with non-traumatic spinal cord injury: an observational study. J Neuroeng Rehabil. 2020 Nov 30;17(1):157. doi: 10.1186/s12984-020-00791-2. PMID: 33256797; PMCID: PMC7706039 (https://pubmed.ncbi.nlm.nih.gov/33256797/). (11)Lewek MD. The influence of body weight support on ankle mechanics during treadmill walking. J Biomech. 2011 Jan 4;44(1):128-33. doi: 10.1016/j.jbiomech.2010.08.037. Epub 2010 Sep 19. PMID: 20855074 (https://pubmed.ncbi.nlm.nih.gov/20855074/). (12)Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399):eaah3621. doi: 10.1126/scitranslmed.aah3621. PMID: 28724575 (https://pubmed.ncbi.nlm.nih.gov/28724575/). (13)Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013 Nov;94(11):2297-308. doi: 10.1016/j.apmr.2013.06.023. Epub 2013 Jul 9. PMID: 23850614 (https://pubmed.ncbi.nlm.nih.gov/23850614/). (14)Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil. 2009 Oct 2;6:36. doi: 10.1186/1743-0003-6-36. PMID: 19799783; PMCID: PMC2764722 (https://pubmed.ncbi.nlm.nih.gov/19799783/). (15)M. Plooij, U. Keller, B. Sterke, S. Komi, H. Vallery and J. von Zitzewitz, "Design of RYSEN: An Intrinsically Safe and Low-Power Three-Dimensional Overground Body Weight Support," in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2253-2260, July 2018, doi: 10.1109/LRA.2018.2812913 (https://ieeexplore.ieee.org/document/8307350). (16)Plooij M, Apte S, Keller U, Baines P, Sterke B, Asboth L, Courtine G, von Zitzewitz J, Vallery H. Neglected physical human-robot interaction may explain variable outcomes in gait neurorehabilitation research. Sci Robot. 2021 Sep 22;6(58):eabf1888. doi: 10.1126/scirobotics.abf1888. Epub 2021 Sep 22. PMID: 34550719 (https://pubmed.ncbi.nlm.nih.gov/34550719/). (17)Wessels M, Lucas C, Eriks I, de Groot S. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med. 2010 Jun;42(6):513-9. doi: 10.2340/16501977-0525. PMID: 20549154 (https://pubmed.ncbi.nlm.nih.gov/20549154/).
En este episodio, hablo de la cocontracción del miembro inferior durante la marcha en pacientes neurológicos. El contexto es la típica rehabilitación de la marcha en la que tenemos varios patrones de movimiento que se repiten, muchas veces patrones de marcha instaurados a lo largo del tiempo y que cuestan muchísimo cambiar. Uno de los patrones más habituales es la “marcha con rodilla rígida” (Stiff-Knee Gait), en la que hay una evidente falta de flexión de rodilla, movimientos compensatorios de cadera y pelvis y una sensación desde fuera de que la pierna avanza en bloque, como rígida. Referencias del episodio: (1) Campanini I, Merlo A, Damiano B. A method to differentiate the causes of stiff-knee gait in stroke patients. Gait Posture. 2013 Jun;38(2):165-9. doi: 10.1016/j.gaitpost.2013.05.003. Epub 2013 Jun 4. PMID: 23755883. https://pubmed.ncbi.nlm.nih.gov/23755883/ (2) Ghédira M, Albertsen IM, Mardale V, Loche CM, Vinti M, Gracies JM, Bayle N, Hutin E. Agonist and antagonist activation at the ankle monitored along the swing phase in hemiparetic gait. Clin Biomech (Bristol, Avon). 2021 Oct;89:105459. doi: 10.1016/j.clinbiomech.2021.105459. Epub 2021 Aug 20. PMID: 34438333. https://pubmed.ncbi.nlm.nih.gov/34438333/ (3) Rosa MC, Marques A, Demain S, Metcalf CD. Lower limb co-contraction during walking in subjects with stroke: A systematic review. J Electromyogr Kinesiol. 2014 Feb;24(1):1-10. doi: 10.1016/j.jelekin.2013.10.016. Epub 2013 Nov 8. PMID: 24246405. https://pubmed.ncbi.nlm.nih.gov/24246405/ (4) Souissi H, Zory R, Bredin J, Roche N, Gerus P. Co-contraction around the knee and the ankle joints during post-stroke gait. Eur J Phys Rehabil Med. 2018 Jun;54(3):380-387. doi: 10.23736/S1973-9087.17.04722-0. Epub 2017 Aug 29. PMID: 28849896. https://pubmed.ncbi.nlm.nih.gov/28849896/ (5) Wang W, Li K, Yue S, Yin C, Wei N. Associations between lower-limb muscle activation and knee flexion in post-stroke individuals: A study on the stance-to-swing phases of gait. PLoS One. 2017 Sep 8;12(9):e0183865. doi: 10.1371/journal.pone.0183865. PMID: 28886079; PMCID: PMC5590852. https://pubmed.ncbi.nlm.nih.gov/28886079/ (6) Yuan H, Ge P, Du L, Xia Q. Co-Contraction of Lower Limb Muscles Contributes to Knee Stability During Stance Phase in Hemiplegic Stroke Patients. Med Sci Monit. 2019 Oct 4;25:7443-7450. doi: 10.12659/MSM.916154. PMID: 31584038; PMCID: PMC6792518. https://pubmed.ncbi.nlm.nih.gov/31584038/
En este episodio, entrevisto a Isaac Padrón Afonso. Isaac Padrón es fisioterapeuta en la unidad de hospitalización de Neurología y Neurocirugía del Complejo Hospitalario Universitario de Canarias y miembro de la Comisión de Ictus del mismo hospital. También es TAFAD y lo he invitado a Hemispherics para hablar del ictus agudo y su manejo desde la fisioterapia, un campo que me causa mucho interés porque apenas he trabajado en él y tengo muchas dudas y preguntas que seguro que Isaac me ayuda a resolverlas. Twitter de Isaac: @ipafotfefisio Referencias del episodio: Guías: -T. Platz 2021 Clinical Pathways in stroke rehabilitation Germany -Warlow's Stroke: Practical Management, Fourth Edition. Edited by Graeme J. Hankey, Malcolm Macleod, Philip B. Gorelick, Christopher Chen, Fan Z. Caprio and Heinrich Mattle. © 2019 John Wiley & Sons Ltd. -www.nice.org.uk/guidance/ng128 stroke and transient ischaemic attack in over 16s: diagnosis and initial management 2019 -Stroke Foundation. Clinical Guidelines for stroke management 2017. Melbourne Australia -Heart and stroke Foundation Canada: Canadian stroke best recommendations: Stroke rehabilitation practice guidelines 2015 -Guidelines for adult stroke rehabilitation and recovery. A guideline for healthcare professionals from the American Heart Association/American Stroke Association 2016 -Intercollegiate stroke working party, National Clinical guideline for stroke, 5th edn. Royal College of Physicians, London 2016 Artículos: 1. Zhelev Z, Walker G, Henschke N, Fridhandler J, Yip S. Prehospital stroke scales as screening tools for early identification of stroke and transient ischemic attack. Cochrane Database of Systematic Reviews 2019 2. S. Marzolini et al. 2019. Aerobic Training and Mobilization early post-stroke: Cautions and Considerations 3. Peter Langhorne et al. 2017 A very early rehabilitation trial after stroke (AVERT): a phase III, multicenter, randomized controlled trial 4. Samar M. H. et al. 2016 Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery 5. J.M. Veerbeek et al. Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study 2011 6. M. Smith 2017 the TWIST algorithm predicts time to walking independently after stroke 7. Consensus-Based Core Set of Outcome Measures for Clinical Motor Rehabilitation After Stroke—A Delphi Study. Front Neurol. 2020 8. APTA y ANPT: A Core Set of Outcome Measures for Adults With Neurologic Conditions Undergoing Rehabilitation: A CLINICAL PRACTICE GUIDELINE 2018 9. International consensus recommendations for outcome measurement in post-stroke arm rehabilitation trials Julie Duncan Millar, Frederike Van Wijck, Alex Pollock, Myzoon Ali European Journal of Physical and Rehabilitation Medicine 2021 10. J.C. Van den Noort et al. 2017 European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch 11. K.A. Wattchow et al (2018) Rehabilitation Interventions for Upper Limb Function in the First Four Weeks Following Stroke: A Systematic Review and Meta-Analysis of the Evidence Archives of Physical Medicine and Rehabilitation 12. De Sousa DG et. al. 2018 Interventions involving repetitive practice improve strength after stroke: a systematic review 13. S. Dorsch et al. 2019 In inpatient rehabilitation, large amounts of practice can occur safetly without direct therapist supervision: an observational study 14. Moore et al. 2020 Implementation of high-Intensty stepping training during inpatient stroke rehabilitation improves functional outcomes 15. K. Oyake et al. 2020 Motivational strategies for stroke rehabilitation: A Delphi study 16. Stewart JC and Cramer SC (2018) Genetic Variation and Neuroplasticity: Role in Rehabilitation after Stroke J Neurol Phys Ther. Author manuscript;
En este episodio, hablo de aprendizaje motor, un tema que es transversal a la rehabilitación en general, incluso a otros ámbitos como el deporte. A través de diversas teorías del aprendizaje motor, pero sobre todo a través del artículo de Kristan Leech y colaboradores del 2022 y la crítica de John Krakauer en "Broken Movement", profundizamos en mecanismos de aprendizaje motor, como el aprendizaje dependiente del uso, aprendizaje instructivo, aprendizaje por refuerzo y aprendizaje por adaptación sensoriomotora. Referencias del episodio: (1) Leech (2022). Updates in Motor Learning: Implications for Physical Therapist Practice and Education (https://pubmed.ncbi.nlm.nih.gov/34718787/). (2) Cano-de-la-Cuerda (2012). Theories and control models and motor learning: clinical applications in neuro-rehabilitation (https://pubmed.ncbi.nlm.nih.gov/22341985/). (3) John W. Krakauer and S. Thomas Carmichael (2017). Broken Movement: The Neurobiology of Motor Recovery after Stroke (https://mitpress.mit.edu/books/broken-movement).
En el episodio de hoy sobre “actualización en espasticidad III”, hablo de espasticidad, a raíz del Simposio Internacional Online sobre Espasticidad y Conceptos Relacionados celebrado el 05 de marzo de 2022 y organizado por CEN ACADEMY. En este episodio os traslado algunas de las ideas, hallazgos, curiosidades, conclusiones que pude extraer de las ponencias. Los ponentes que participaron en el simposio fueron: Michelle Kahn, Sergio Lerma, Lucio Marinelli, Lynn Bar-On y Sheng Li. Ponencias en CEN ACADEMY: https://www.eneurocenter.com/material-audiovisual-jornadas-y-cursos-cen-academy/
Interview with Rini Varghese, physical therapist from India, PhD from the University of Southern California where her dissertation work investigated arm use and non-use, specifically bimanual arm use and motor control, and ipsilesional deficits post-stroke. She has published several articles on these topics with her doctoral advisor, Carolee Winstein. She is currently a postdoctoral research fellow with Amy Bastian at Johns Hopkins University and Kennedy Krieger Institute. References: (1) Winstein (2018). Been there, done that, so what's next for arm and hand rehabilitation in stroke? (https://pubmed.ncbi.nlm.nih.gov/29991146/). (2) Varghese (2021). Corpus callosal microstructure predicts bimanual motor performance in chronic stroke survivors: A preliminary cross-sectional study (https://www.biorxiv.org/content/10.1101/2021.05.14.443663v2). (3) Varghese (2020). The probability of choosing both hands depends on an interaction between motor capacity and limb-specific control in chronic stroke (https://pubmed.ncbi.nlm.nih.gov/32880681/). (4) Varghese (2020). Relationship Between Motor Capacity of the Contralesional and Ipsilesional Hand Depends on the Side of Stroke in Chronic Stroke Survivors With Mild-to-Moderate Impairment (https://pubmed.ncbi.nlm.nih.gov/31998211/). (5) Subramaniam (2019). Influence of Chronic Stroke on Functional Arm Reaching: Quantifying Deficits in the Ipsilesional Upper Extremity (https://www.hindawi.com/journals/rerp/2019/5182310/). (6) Maenza (2021). Remedial Training of the Less-Impaired Arm in Chronic Stroke Survivors With Moderate to Severe Upper-Extremity Paresis Improves Functional Independence: A Pilot Study (https://pubmed.ncbi.nlm.nih.gov/33776672/). (7) Buxbaum (2020). Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation (https://pubmed.ncbi.nlm.nih.gov/32476616/).
En el episodio de hoy, vamos a hablar de la cadera post-ictus, un tema que, como dice el título, es una encrucijada, ya que es un lugar donde se cruzan varios caminos, varias explicaciones sobre el movimiento de los pacientes neurológicos. El episodio parte de un introducción, un breve recordatorio anatómico de la cadera, una justificación de por qué hacer episodios como este y después iremos recorriendo algunos estudios que he leído y sintetizado que tienen relación con el fenotipo de la cadera post-ictus. Compensaciones, fatiga, biomecánica...al servicio de la neurociencia. Referencias del episodio: (1) Neumann DA. Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 2010 Feb;40(2):82-94. doi: 10.2519/jospt.2010.3025. PMID: 20118525 (https://pubmed.ncbi.nlm.nih.gov/20118525/). (2) Hyngstrom AS, Onushko T, Heitz RP, Rutkowski A, Hunter SK, Schmit BD. Stroke-related changes in neuromuscular fatigue of the hip flexors and functional implications. Am J Phys Med Rehabil. 2012 Jan;91(1):33-42. doi: 10.1097/PHM.0b013e31823caac0. PMID: 22157434; PMCID: PMC3940208 (https://pubmed.ncbi.nlm.nih.gov/22157434/). (3) Rybar MM, Walker ER, Kuhnen HR, Ouellette DR, Berrios R, Hunter SK, Hyngstrom AS. The stroke-related effects of hip flexion fatigue on over ground walking. Gait Posture. 2014 Apr;39(4):1103-8. doi: 10.1016/j.gaitpost.2014.01.012. Epub 2014 Jan 31. PMID: 24602975; PMCID: PMC4007512 (https://pubmed.ncbi.nlm.nih.gov/24602975/). (4) Lewek MD, Schmit BD, Hornby TG, Dhaher YY. Hip joint position modulates volitional knee extensor muscle activity after stroke. Muscle Nerve. 2006 Dec;34(6):767-74. doi: 10.1002/mus.20663. PMID: 16967491 (https://pubmed.ncbi.nlm.nih.gov/16967491/). (5) Cruz TH, Dhaher YY. Evidence of abnormal lower-limb torque coupling after stroke: an isometric study. Stroke. 2008 Jan;39(1):139-47. doi: 10.1161/STROKEAHA.107.492413. Epub 2007 Dec 6. PMID: 18063824; PMCID: PMC3641752 (https://pubmed.ncbi.nlm.nih.gov/18063824/). (6) Finley JM, Perreault EJ, Dhaher YY. Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp Brain Res. 2008 Jul;188(4):529-40. doi: 10.1007/s00221-008-1383-z. Epub 2008 Apr 30. PMID: 18446331; PMCID: PMC2881696 (https://pubmed.ncbi.nlm.nih.gov/18446331/). (7) Sulzer JS, Gordon KE, Dhaher YY, Peshkin MA, Patton JL. Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke. Stroke. 2010 Aug;41(8):1709-14. doi: 10.1161/STROKEAHA.110.586917. Epub 2010 Jun 24. PMID: 20576947; PMCID: PMC3306800 (https://pubmed.ncbi.nlm.nih.gov/20576947/). (8) Matsuda et al. 2016. Analysis of strategies used by hemiplegic stroke patients to achieve toe clearance (https://www.jstage.jst.go.jp/article/jjcrs/7/0/7_111/_article). (9) Awad LN, Bae J, Kudzia P, Long A, Hendron K, Holt KG, OʼDonnell K, Ellis TD, Walsh CJ. Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit. Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl 1):S157-S164. doi: 10.1097/PHM.0000000000000800. PMID: 28777105; PMCID: PMC7479995 (https://pubmed.ncbi.nlm.nih.gov/28777105/). (10) Akbas T, Prajapati S, Ziemnicki D, Tamma P, Gross S, Sulzer J. Hip circumduction is not a compensation for reduced knee flexion angle during gait. J Biomech. 2019 Apr 18;87:150-156. doi: 10.1016/j.jbiomech.2019.02.026. Epub 2019 Mar 8. PMID: 30876735 (https://pubmed.ncbi.nlm.nih.gov/30876735/).
En este episodio, entrevisto a Juan Anaya Ojeda. Juan Anaya Ojeda es fisioterapeuta especializado en neurofisioterapia. Trabaja en el ámbito neurológico desde hace más de 15 años y actualmente trabaja en la Fundación AISSE en Granada. Es miembro de la sección de Neurofisioterapia de la SEN. También es Director Ejecutivo del Máster Propio en Neurofisioterapia de la UPO. Y por supuesto, es el creador del podcast Neuro(con)ciencia asociado a AISSE en el que colaboran otros trabajadores e incluso participantes externos. En esta entrevista, hablo con él de tono muscular, espasticidad y nuevos conceptos. Referencias del episodio: LIBROS: (1) Shumway-Cook A, Woollacott M. Motor Control: Translating research into clinical practice. 6th ed: Lippincott Williams & Wilkins; 2022. (2) Latash M. Biomechanics and Motor Control: Defining Central Concepts. Academics Press; 2015. (3) Krakauer J. Broken Movement: The neurobiology of Motor Recovery after stroke. The MIT Press; 2017. (4) Pandyan A. Neurological Rehabilitation: Spasticity and Contractures in Clinical Practice and Research. CRC Press; 2018. (5) Shapiro L. Embodied Cognition (New Problems of Philosophy). Routledge; 2019. (6) Steiner H, Tseng K. Handbook of basal ganglia structure and function. 2nd ed: Academic Press; 2016. ARTÍCULOS: (1) Burke D, Wissel J, Donnan A. Pathophysiology of spasticity in stroke. Neurology. 2013; 80 (3,2); 20-26. (2) Van den Noort J. European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. Eur J Neurol. 2017; 24(7); 981-e38. (3) Marinelli L, Currà A, Trompetto C. Spasticity and spastic dystonia: the two faces of velocity-dependent hypertonia. J Electromyogr Kinesiol. 2017; 37; 84-89. (4) Trompetto C, Currà A, Puce L. Spastic dystonia in stroke subjects: prevalence and features of the neglected phenomenon of the upper motor neuron syndrome. Clin Neurophysiol. 2019; 130(4); 521-527.
En el episodio de hoy, nos adentramos de lleno en la neurociencia. Vamos a hablar de conectoma y su relación con la recuperación motora del miembro superior. El conectoma implica una forma novedosa de entender el cerebro, que puede explicar comportamientos de una forma más certera que con otras formas de comprensión del cerebro. El término conectoma, por tanto, se refiere a la matriz de conexiones altamente organizadas del cerebro humano. 86.000 millones de neuronas y 500 billones de sinapsis. Referencias del episodio: (1) Koch (2021). The structural connectome and motor recovery after stroke: predicting natural recovery (https://academic.oup.com/brain/article/144/7/2107/6316639?login=false). (2) Van den Heuvel (2011). Rich-Club Organization of the Human Connectome (https://www.jneurosci.org/content/31/44/15775). (3) Schultz (2015). Parietofrontal motor pathways and their association with motor function after stroke (https://pubmed.ncbi.nlm.nih.gov/25935722/). (4) Toga (2012). Mapping the Human Connectome (https://academic.oup.com/neurosurgery/article-abstract/71/1/1/2607411?redirectedFrom=fulltext).
En el episodio de hoy, hablo de una enfermedad rara. Se trata de la distonía-parkinsonismo de inicio rápido. Es un episodio para dar visibilidad a esta enfermedad. Se caracteriza por un comienzo brusco de disartria, disfagia y distonía de localización variable, asociada a parkinsonismo en el sentido de bradicinesia, rigidez o inestabilidad postural. Los síntomas se establecen en días o semanas y normalmente se estabilizan o hay una pequeña evolución negativa a lo largo de los años. En teoría hay una severidad de afectación rostro-caudal, es decir, mayor afectación bulbar de la cara, después los miembros superiores y finalmente miembros inferiores. Referencias del episodio: (1) Carecchio (2018). ATP1A3-related disorders: An update (https://pubmed.ncbi.nlm.nih.gov/29291920/). (2) Díez-Fairen (2021). The Genetic Landscape of Parkinsonism-Related Dystonias and Atypical Parkinsonism-Related Syndromes (https://pubmed.ncbi.nlm.nih.gov/34360863/). (3) Dobyns (1993). Rapid-onset dystonia-parkinsonism (https://pubmed.ncbi.nlm.nih.gov/8255463/). (4) Haq (2019). Revising rapid-onset dystonia-parkinsonism: Broadening indications for ATP1A3 testing (https://pubmed.ncbi.nlm.nih.gov/31361359/). (5) Linazasoro (2002). Possible sporadic rapid-onset dystonia-parkinsonism (https://pubmed.ncbi.nlm.nih.gov/12112218/). (6) Romero-López (2008). Distonía-parkinsonismo de inicio rápido: forma esporádica (https://www.neurologia.com/articulo/2008268). (7) Rosewich (2014). The expanding clinical and genetic spectrum of ATP1A3-related disorders (https://pubmed.ncbi.nlm.nih.gov/24523486/).
En este episodio, hablo de la relación que tiene el sistema vestibular y la postura con la espasticidad. El episodio está dividido en tres partes. La primera es una introducción al sistema vestibular, hablando de sus partes, sus funciones, también de su rol en el tono muscular y la postura y al final de la introducción plantearemos la pregunta de qué tiene que ver el sistema vestibular con la espasticidad. La segunda parte trata sobre algunos estudios clásicos en animales que nos han permitido conocer las implicaciones clínicas del sistema vestibular y que fundamentan gran parte de los estudios posteriores. Y la tercera parte resume algunos estudios actuales sobre espasticidad, sistema vestibular y postura, como por ejemplo, los estudios sobre cambios en el tono con los cambios de postura, los potenciales evocados vestibulares y algunas intervenciones vestibulares. Referencias del episodio: (1) Knight & Decker (2021). Decerebrate And Decorticate Posturing (https://www.ncbi.nlm.nih.gov/books/NBK559135/). (2) Androwis et al. (2013). Quantifying the Effect of Mechanical Vestibular Stimulation on Muscle Tone and Spasticity (https://ieeexplore.ieee.org/document/6574335). (3) Čobeljić et al. (2018). Does galvanic vestibular stimulation decrease spasticity in clinically complete spinal cord injury? (https://pubmed.ncbi.nlm.nih.gov/29889116/). (4) Miller et al. (2014). Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role (https://pubmed.ncbi.nlm.nih.gov/24680197/). (5) Colebatch & Burke (2014). Vestibular function and vestibular evoked myogenic potentials (VEMPs) in spasticity (https://pubmed.ncbi.nlm.nih.gov/24680317/). (6) Fleuren et al. (2006). Influence of posture and muscle length on stretch reflex activity in poststroke patients with spasticity (https://pubmed.ncbi.nlm.nih.gov/16813787/). (7) Markham (1987). Vestibular control of muscular tone and posture (https://pubmed.ncbi.nlm.nih.gov/3315150/). (8) Qin et al. (2019). Influence of positional changes on spasticity of the upper extremity in poststroke hemiplegic patients (https://pubmed.ncbi.nlm.nih.gov/31491464/). (9) Qin et al. (2021). Soleus H-Reflex Change in Poststroke Spasticity: Modulation due to Body Position (https://pubmed.ncbi.nlm.nih.gov/34917144/).
En este episodio, hablo de cómo pensamos el movimiento del miembro superior y de cómo establecemos un modelo interno de cómo se rehabilita un miembro superior. Es un episodio que tiene mucho de fenomenología, de entender los fundamentos del movimiento, o si se quiere, de cada elemento crucial del movimiento de un miembro superior. Utilizo como guía un artículo del año 2019 de Heidi Schambra y colaboradores. El artículo se titula: “A taxonomy of Functional upper Extremity Motion” (Una taxonomía del movimiento funcional de la extremidad superior”. Es un artículo que parte de la necesidad de establecer un lenguaje sistemático y claro para analizar los movimientos del miembro superior y trasladar ese lenguaje a los tratamientos y a los estudios. A partir de ahí, introducen un concepto que va a vertebrar toda la taxonomía, que es el de “primitivo funcional”. Referencia del episodio: (1) Schambra (2019). A Taxonomy of Functional Upper Extremity Motion (https://www.frontiersin.org/articles/10.3389/fneur.2019.00857/full). (2) Vídeos de material complementario del artículo: https://www.frontiersin.org/articles/10.3389/fneur.2019.00857/full#supplementary-material
En este episodio, hablo de los factores predictores de la marcha independiente post-ictus. Ya vimos en el episodio #32 los factores predictores para el miembro superior; cómo hay todo un recorrido científico en buscar aquellas escalas clínicas y evaluaciones instrumentales para predecir la funcionalidad del miembro superior a un determinado tiempo. Vimos la regla de recuperación proporcional, el algoritmo PREP2, la FMA, el ARAT y otros aspectos relacionados. Pues bien, para este episodio, la tarea que nos ocupa es encontrar en la literatura científica (y refrendada de alguna manera por la clínica) aquellas variables que son críticas para predecir la marcha independiente de una persona que ha sufrido un ictus. Predecir cuándo un paciente caminará independientemente puede ser clínicamente útil para su tratamiento y por supuesto para el alta hospitalaria. Referencias del episodio: (1) Veerbeek (2011). Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study (https://pubmed.ncbi.nlm.nih.gov/21186329/). (2) Smith (2017). The TWIST Algorithm Predicts Time to Walking Independently After Stroke (https://pubmed.ncbi.nlm.nih.gov/29090654/). (3) Kollen (2005). Predicting improvement in gait after stroke: a longitudinal prospective study (https://pubmed.ncbi.nlm.nih.gov/16282540/). (4) Henderson (2020). Predicting Discharge Walking Function With High-Intensity Stepping Training During Inpatient Rehabilitation in Nonambulatory Patients Poststroke (https://pubmed.ncbi.nlm.nih.gov/33227267/). (5) Langerak (2021). Externally validated model predicting gait independence after stroke showed fair performance and improved after updating (https://www.jclinepi.com/article/S0895-4356(21)00104-9/fulltext). (6) EXCEL GAIT PREDICTION (Henderson, 2020). https://docs.google.com/spreadsheets/d/15wO9Ftt8mu2B-IT9sQJj-dWfzApGFwJo/edit?usp=share_link&ouid=111866300812430998503&rtpof=true&sd=true
Part 2 of the interview with Susan Woll, physiotherapist from the USA and creator with Jan Utley of the Forced-Use Concept. She is a physiotherapist with more than 50 years of clinical experience with neurological patients and currently continues to work and teach courses on Forced-Use internationally. Formed in the Bobath Concept with Karel and Berta Bobath, she was a Bobath tutor until 2002, when she left IBITA. In 2012, with Jan Utley she created IFUSA (International Forced Use Specialist Association) with the aim of creating a forum for exchange between therapists and maintaining quality control of the Forced-Use concept. References: (1) International Forced Use Specialist Association. https://www.ifusa.net/index.php/en/ (2) Recovery interventions. http://recoveryinterventions.com/ (3) Woll (2014). Research Project Article Clinical Application of Forced Use with clients with Stroke. https://www.researchgate.net/publication/261437711_Research_Project_Article_Clinical_Application_of_Forced_Use_with_clients_with_Stroke
Part 1 of the interview with Susan Woll, physiotherapist from the USA and creator with Jan Utley of the Forced-Use Concept. She is a physiotherapist with more than 50 years of clinical experience with neurological patients and currently continues to work and teach courses on Forced-Use internationally. Formed in the Bobath Concept with Karel and Berta Bobath, she was a Bobath tutor until 2002, when she left IBITA. In 2012, with Jan Utley she created IFUSA (International Forced Use Specialist Association) with the aim of creating a forum for exchange between therapists and maintaining quality control of the Forced-Use concept. References: (1) International Forced Use Specialist Association. https://www.ifusa.net/index.php/en/ (2) Recovery interventions. http://recoveryinterventions.com/ (3) Woll (2014). Research Project Article Clinical Application of Forced Use with clients with Stroke. https://www.researchgate.net/publication/261437711_Research_Project_Article_Clinical_Application_of_Forced_Use_with_clients_with_Stroke
En este episodio, hablo de biomarcadores aplicados a la robótica, un tema que tiene su presencia en la investigación y que no termina de permear en la práctica clínica. Hablar de biomarcadores es estar bordeando muchas disciplinas, profesiones, áreas de especialización y lo habitual es tener que apoyarse en diferentes perfiles de personas para entender este campo. En este caso, voy a utilizar un artículo reciente para introducir el tema, dar algunas pinceladas, aportar algo sobre mi experiencia utilizando alguno de los dispositivos robóticos y sobre todo, poner el tema sobre la mesa y animar a otras personas a leer sobre esto. Referencias del episodio: (1) Garro (2021). Neuromechanical Biomarkers for Robotic Neurorehabilitation (https://pubmed.ncbi.nlm.nih.gov/34776920/). (2) Sukal (2007). Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications (https://pubmed.ncbi.nlm.nih.gov/17634933/). (3) Irastorza-Landa (2021). Functional synergy recruitment index as a reliable biomarker of motor function and recovery in chronic stroke patients (https://pubmed.ncbi.nlm.nih.gov/33530072/). (4) Rehabilomics. http://www.rehabilomics.pitt.edu/ (5) Knikou (2013). Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury (https://pubmed.ncbi.nlm.nih.gov/23708757/).
En este episodio, traigo un estudio interesante del 2021 de Ko y colaboradores, sobre la vía córticorreticular y la espasticidad. Con este estudio se propusieron investigar la relación entre la lesión en la vía corticorreticular y la espasticidad en pacientes con ictus mediante el uso del tensor de difusión. Ese objetivo se basa en la premisa de la evidencia acumulada hasta el momento de que existe un desequilibrio entre el tracto reticuloespinal dorsal y el medial debido a una lesión de esa vía corticorreticular producida por el ictus. Referencias del episodio: (1) Ko (2021). Corticoreticular Pathway in Post-Stroke Spasticity: A Diffusion Tensor Imaging Study (https://pubmed.ncbi.nlm.nih.gov/34834503/). (2) Yeo (2012). Corticoreticular pathway in the human brain: Diffusion tensor tractography study (https://pubmed.ncbi.nlm.nih.gov/22197953/). (3) Jang (2014). The distribution of the cortical origin of the corticoreticular pathway in the human brain: A diffusion tensor imaging study (https://pubmed.ncbi.nlm.nih.gov/24915055/). (4) Li (2019). A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control (https://pubmed.ncbi.nlm.nih.gov/31133971/).
En este episodio, entrevisto a Pablo Herrero Gallego, fisioterapeuta, Doctor en Fisioterapia por la Universidad de Zaragoza y profesor e investigador en la Unizar. Es Presidente de la Asociación para la Investigación en la Discapacidad Motriz (AIDIMO) y Editor de la Revista Fisioterapia Invasiva y Journal of Invasive Techniques in Physical Therapy. Entre los logros científicos destacan diferentes publicaciones en revistas de impacto internacional en el área de fisioterapia invasiva y dolor, destacando además ser el autor de la técnica y concepto DNHS®. Le entrevisto para hablar sobre su trayectoria con la punción seca, revisar sus fundamentos, aplicaciones específicas y otros aspectos relacionados Referencias recomendadas: (1) Brandín-de la Cruz N, Calvo S, Rodríguez-Blanco C, Herrero P, Bravo-Esteban E. Effects of dry needling on gait and muscle tone in Parkinson's disease: a randomized clinical trial. Acupunct Med. 2021 Sep 19:9645284211039232. doi: 10.1177/09645284211039232. Epub ahead of print. PMID: 34541889. (2) Ortín JA, Bravo-Esteban E, Ibáñez J, Herrero P, Gómez-Soriano J, Marcén-Román Y. Effects of Deep Dry Needling on Tremor Severity and Functionality in Stroke: A Case Report. Healthcare (Basel). 2020 Dec 23;9(1):5. doi: 10.3390/healthcare9010005. PMID: 33374576; PMCID: PMC7822438. (3) Cuenca Zaldívar JN, Calvo S, Bravo-Esteban E, Oliva Ruiz P, Santi-Cano MJ, Herrero P. Effectiveness of dry needling for upper extremity spasticity, quality of life and function in subacute phase stroke patients. Acupunct Med. 2021 Aug;39(4):299-308. doi: 10.1177/0964528420947426. Epub 2020 Aug 20. PMID: 32815384. (4) Villafañe JH, Lopez-Royo MP, Herrero P, Valdes K, Cantero-Téllez R, Pedersini P, Negrini S. Prevalence of Myofascial Trigger Points in Poststroke Patients With Painful Shoulders: A Cross-Sectional Study. PM R. 2019 Oct;11(10):1077-1082. doi: 10.1002/pmrj.12123. Epub 2019 Apr 16. PMID: 30734521. (5) Hadi S, Khadijeh O, Hadian M, Niloofar AY, Olyaei G, Hossein B, Calvo S, Herrero P. The effect of dry needling on spasticity, gait and muscle architecture in patients with chronic stroke: A case series study. Top Stroke Rehabil. 2018 Jul;25(5):326-332. doi: 10.1080/10749357.2018.1460946. Epub 2018 Apr 23. PMID: 29683410. (6) Pablo Herrero Gallego y Orlando Mayoral del Moral. “A Case Study Looking at the Effectiveness of Deep Dry Needling for the Management of Hypertonia”. Revista Journal of Muskuloskeletal Pain. San Antonio,Texas, EEUU. Vol 15. Issue 2. 2007. https://doi.org/10.1300/J094v15n02_09 (7) Calvo S, Quintero I, Herrero P. Effects of dry needling (DNHS technique) on the contractile properties of spastic muscles in a patient with stroke: a case report. Int J Rehabil Res. 2016 Jun 29. ISSN 0342-5282. JCR Q3. Impact factor: 1.259. Rehabilitation (position 38/65–IQ3). DOI: 10.1097/MRR.0000000000000185 (8) Calvo S, Navarro J, Herrero P, Del Moral R, De Diego C, Marijuán P. Electroencephalographic Changes After Application of Dry Needling [DNHS© Technique] in Two Patients With Chronic Stroke. MYOPAIN (Journal of Musculoskeletal Pain) 2017, 23:3-4. P.112-117 ISSN 2470-8593. SCR Q4. Impact Factor 0.103. doi: 10.1080/24708593.2017.1291550 (9) Motamedzadeh O, Ansari NN, Naghdi S, Azimi A, Mahmoudzadeh A, Calvo S, Herrero P. A Study on the Effects of Dry Needling in Multiple Sclerosis Patients with Spasticity: Protocol of a Randomized Waitlist-Controlled Trial. J Acupunct Meridian Stud 2021;14:82-88. (10) Jiménez-Sánchez C, Gómez-Soriano J, Bravo-Esteban E, Mayoral-Del Moral O, Herrero-Gállego P, Ortiz-Lucas M. The effect of dry needling of myofascial trigger points on muscle stiffness and motoneuron excitability in healthy subjects. Acupunct Med. 2021 Jul 20:9645284211027579. (11) Jiménez-Sánchez C, Gómez-Soriano J, Bravo-Esteban E, Mayoral-Del Moral O, Herrero-Gállego P, Serrano-Muñoz D, Ortiz-Lucas M. Effects of Dry Needling on Biomechanical Properties of the Myofascial Trigger Points Measured by Myotonometry: A Randomized Controlled Trial. J Manipulative Physiol Ther. 2021 Aug 7:S0161-4754(21)00076-2.
En este episodio, hablamos de factores predictores de la función de la extremidad superior tras un ictus. Esta es una interesante subespecialidad o subespecialización dentro de la neurorrehabilitación, que la atraviesa de manera transversal. Los terapeutas somos, al final, los que damos la cara cuando estamos con los pacientes y los que tenemos que sortear preguntas difíciles, preguntas que a veces toreamos con respuestas vagas o complacientes. Preguntas del tipo: ¿volveré a andar? ¿Volveré a mover la mano? ¿Podré volver a trabajar? Lo que me propongo en este episodio es revisar algunas áreas relacionadas con la predicción de funciones tras un ictus, intentar aportar algo de luz y claridad sobre las últimas evidencias para poder mejorar la comunicación con el paciente respecto a esas duras preguntas sobre la recuperación. Me gustaría que pudiéramos sacar de este episodio ciertos elementos clínicos que se van repitiendo en múltiples estudios, para poder ser más específicos en nuestras respuestas cuando un paciente nos pregunta en fase aguda, subaguda o crónica del ictus, si va a recuperar determinada función. Bibliografía del episodio: (1) Iosa (2021). Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses (https://www.mdpi.com/2076-3425/11/9/1147). (2) Jordan (2021). Fast Outcome Categorization of the Upper Limb After Stroke (https://pubmed.ncbi.nlm.nih.gov/34601902/). (3) Lundquist (2021). Accuracy of the Upper Limb Prediction Algorithm PREP2 Applied 2 Weeks Poststroke: A Prospective Longitudinal Study (https://pubmed.ncbi.nlm.nih.gov/33218284/). (4) Stinear (2017). PREP2: A biomarker‐based algorithm for predicting upper limb function after stroke (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682112/). (5) Smith (2019). PREP2 Algorithm Predictions Are Correct at 2 Years Poststroke for Most Patients (https://pubmed.ncbi.nlm.nih.gov/31268414/). (6) Van der Vliet (2020). Predicting Upper Limb Motor Impairment Recovery after Stroke: A Mixture Model (https://pubmed.ncbi.nlm.nih.gov/31925838/). (7) Wolf (2021). Predictive Value of Upper Extremity Outcome Measures After Stroke—A Systematic Review and Metaregression Analysis (https://www.frontiersin.org/articles/10.3389/fneur.2021.675255/full).
In this episode, I interview Belén Rubio Ballester, postdoctoral researcher in the SPECS laboratory of the Instituto de Bioingeniería de Cataluña (IBEC). She has a degree in Audiovisual Communication and a PhD in Technologies for Neuroscience. She has been and is involved in different projects related to virtual reality, motor learning and learned non-use recovery model. Her work aims to identify the principles of recovery after brain injury and to develop innovative solutions based on technology for the management of different conditions. We start from her doctoral thesis on virtual reality and motor recovery, and she introduces key concepts in neurorehabilitation and specifically, in stroke: proportional recovery, recovery window, motor learning, learned disuse, error... In essence, Belén advocates for a principle-based neurorehabilitation. Episode references: (1) Belén Rubio's PhD Thesis (2015). VR-based rehabilitation strategies for functional motor recovery after stroke: individualization, reinforcement, and transfer (https://www.tdx.cat/handle/10803/392145#page=1). (2) Rubio-Ballester (2016). Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy (https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-016-0178-x). (3) Rubio-Ballester (2012). A Wearable Bracelet Device for Promoting Arm Use in Stroke Patients (https://www.scitepress.org/Link.aspx?doi=10.5220/0005662300240031). (4) Rubio-Ballester (2015). Accelerating motor adaptation by virtual reality based modulation of error memories (https://ieeexplore.ieee.org/document/7281270). (5) Rubio-Ballester (2015). The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients (https://pubmed.ncbi.nlm.nih.gov/26055406/). (6) Maier (2019). Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms (https://www.frontiersin.org/articles/10.3389/fnsys.2019.00074/full). (7) Maier (2019). Effect of Specific Over Nonspecific VR-Based Rehabilitation on Poststroke Motor Recovery: A Systematic Meta-analysis (https://pubmed.ncbi.nlm.nih.gov/30700224/). (8) Rubio-Ballester (2018). Revealing an extended critical window of recovery post-stroke (https://www.biorxiv.org/content/10.1101/458745v1). (9) Rubio-Ballester (2019). A critical time window for recovery extends beyond one-year post-stroke (https://pubmed.ncbi.nlm.nih.gov/31141442/). (10) Rubio-Ballester (2021). Relationship between intensity and recovery in post-stroke rehabilitation: a retrospective analysis (https://jnnp.bmj.com/content/early/2021/06/23/jnnp-2021-326948). This podcast is available at: Youtube → https://www.youtube.com/channel/UCG_bOtqshlQAcsjeVAGLjKQ Ivoox → https://www.ivoox.com/podcast-hemispherics_sq_f11035526_1.html Spotify → https://open.spotify.com/show/6nd69JiChOlITeToV7XnDf Apple Podcast → https://podcasts.apple.com/es/podcast/hemispherics/id1563368094 You can follow me on: Twitter → https: //twitter.com/JSanchez_PT Instagram → https://instagram.com/hemispherics
En este episodio especial, doy por terminada la Temporada 1 de Hemispherics. El 03 de septiembre, Hemispherics cumplió 1 año. En este episodio, cuento cómo surgió Hemispherics y algunas impresiones de este año. Gracias por seguir Hemispherics y espero que me acompañéis en la segunda temporada; seguiremos compartiendo conocimiento sobre neurorrehabilitación y neurociencia. Este podcast está disponible en: ·Youtube→https://www.youtube.com/channel/UCG_b... · Ivoox→https://www.ivoox.com/podcast-hemisph... · Spotify→https://open.spotify.com/show/6nd69Ji... Pueden seguirme en: · Twitter→https://twitter.com/JSanchez_PT · Instagram→ https://instagram.com/jsanchez_pt